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Abstract. Splitting/fusion grammars were recently introduced as
devices for the generation of hypergraph languages. Their rule appli-
cation mechanism is inspired by basic operations of DNA computing.
In this paper, we demonstrate that splitting/fusion grammars and well-
known computational approaches based on DNA computing are closely
related on a technical level beyond the mere motivation. This includes
Adleman’s seminal experiment, insertion-deletion systems, and extended
iterated 2-splicing systems.

1 Introduction

Adleman demonstrated in his seminal experiment [1] that the NP-hard Hamilto-
nian path problem can be solved by a polynomial number of biochemical opera-
tions on DNA strands with high probability exploiting the parallelism of chem-
ical reactions in tubes of molecules. This was the starting point of the area of
DNA computing that has been intensely developed since then. Inspired by DNA
computing, we introduced fusion grammars in [2] and splicing/fusion grammars
in [3]. In this paper, we rename the latter by splitting/fusion grammars as the
term “splicing” may be misleading.

The core of DNA computing is the biochemical processing on tubes of DNA
molecules. In the framework of splitting/fusion grammars, we exploit similar-
ities between hypergraphs and tubes of molecules, which are multisets from a
mathematical point of view. Each hypergraph is the disjoint union of its con-
nected components which corresponds to a multiset if one counts the isomor-
phic connected components. Therefore, connected components of hypergraphs
can be seen as counterparts of DNA molecules. To emphasize this analogy, we
call the connected components molecules. Furthermore, we reflect the Watson-
Crick complementarity of DNA nucleotides and single DNA strands by a com-
plementarity of hyperedges and the basic DNA operations ligation, restriction,
duplication by polymerase chain reaction, and reading by gel electrophoresis by
fusion, splitting, multiplication, and filtering of special connected components,
respectively. In this paper, we show that the relation between DNA comput-
ing and splitting/fusion grammars goes far beyond mere motivation. We model
three well-known DNA computing approaches in our framework. In Sect. 4, we
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recreate Adleman’s experiment in terms of fusion grammars. In Sect. 5, insertion-
deletion systems as one of the prominent (string) language generating devices
based on DNA computing (cf., e.g., Chapter 6 of [4]) are transformed into split-
ting/fusion grammars. Another important DNA computing approach offers splic-
ing systems in many variants (cf., e.g., Chapters 7 to 11 of [4]). In Sect. 6, we
generalize extended iterated 2-splicing systems to 2-splicing grammars that are
special regulated splitting/fusion grammars. Section 2 provides preliminaries for
hypergraphs and the notion of splitting/fusion grammars is recalled in Sect. 3.
Section 7 concludes the paper. The proofs of all stated correctness results are
omitted because of the page limit.

2 Preliminaries

In this section, basic notions and notations of hypergraphs are recalled (see,
e.g., [5]).

Let Σ be a label alphabet. A hypergraph over Σ is a system H =
(V,E, att , lab) where V is a finite set of nodes, E is a finite set of hyperedges,
att : E → V ∗ is a function, called attachment (assigning a string of attachment
nodes to each edge), and lab : E → Σ is a function, called labeling.

The length of the attachment att(e) for e ∈ E is called type of e, and e is called
A-hyperedge if A is its label. Let Σ′ ⊆ Σ be a subalphabet of Σ and type : Σ′ → N

a function, called type function. Then we require that every A-hyperedge with
A ∈ Σ′ is of type type(A). The components of H = (V,E, att , lab) may also be
denoted by VH , EH , attH , and labH respectively. The class of all hypergraphs
over Σ is denoted by HΣ .

A (directed) graph is a hypergraph H = (V,E, att , lab) with att(e) ∈ V 2 for
all e ∈ E. In this case, the hyperedges are called edges. If att(e) = vv for some
v ∈ V , then e is also called a loop. A graph is called loop-free if for all e ∈ E
att(e) = vv′ with v �= v′. A graph is called simple if it is loop-free and no parallel
edges exist.

The set {1, . . . , k} for some k ∈ N is denoted by [k] which also denotes the
discrete graph with the nodes 1, . . . , k and an empty set of hyperedges.

In drawings, an A-hyperedge e with attachment att(e) = v1 · · · vk is depicted

by •v1 1

•v2
2 A

•vkk
. Moreover, a hyperedge of type 2 may be depicted as

an edge by • •A instead of • A •1 2 . If there are two edges with the same

label, but in opposite directions, we may draw them as an undirected edge. We
assume the existence of a special label ∗ ∈ Σ that is omitted in drawings. We
call a hypergraph unlabeled if lab(e) = ∗ for all e ∈ E.

Given H,H ′ ∈ HΣ , H is a subhypergraph of H ′ if VH ⊆ VH′ , EH ⊆ EH′ ,
attH(e) = attH′(e), and labH(e) = labH′(e) for all e ∈ EH . This is denoted by
H ⊆ H ′.

Let H ∈ HΣ . Then a sequence of triples (i1, e1, o1) . . . (in, en, on) ∈ (N ×
EH × N)∗ is a path from v ∈ VH to v′ ∈ VH if v = attH(e1)i1 , v

′ = attH(en)on
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and attH(ej)oj
= attH(ej+1)ij+1 for j = 1, . . . , n − 1 where, for each e ∈ EH ,

attH(e)i = vi for attH(e) = v1 · · · vk and i = 1, . . . , k. In the case of simple
graphs, a path may be denoted by the sequence of visited nodes as the involved
edges are uniquely determined.

H is connected if each two nodes are connected by a path. A connected
subgraph M of H is called a molecule of H if it is maximal meaning that M ⊆
M ′ ⊆ H for a connected M ′ implies M = M ′. The set of molecules of H is
denoted by M(H).

Given H,H ′ ∈ HΣ , a (hypergraph) morphism g : H → H ′ consists of two
mappings gV : VH → VH′ and gE : EH → EH′ such that attH′(gE(e)) =
g∗

V (attH(e)) and labH′(gE(e)) = labH(e) for all e ∈ EH , where g∗
V : V ∗

H → V ∗
H′

is the canonical extension of gV , given by g∗
V (v1 · · · vn) = gV (v1) · · · gV (vn) for

all v1 · · · vn ∈ V ∗
H . H and H ′ are isomorphic, denoted by H ∼= H ′, if there is

an isomorphism g : H → H ′, i.e., a morphism with bijective mappings. Clearly,
H ⊆ H ′ implies that the two inclusions VH ⊆ VH′ and EH ⊆ EH′ define a
morphism incl : H → H ′. Given a morphism g : H → H ′, the image of H in H ′

under g defines the subgraph g(H) ⊆ H ′.
Let H ′ ∈ HΣ as well as V ⊆ VH′ and E ⊆ EH′ . Then the removal of

(V,E) from H ′ given by H = H ′ − (V,E) = (VH′ − V,EH′ − E, attH , labH)
with attH(e) = attH′(e) and labH(e) = labH′(e) for all e ∈ EH′ − E defines
a subgraph H ⊆ H ′ if attH′(e) ∈ (VH′ − V )∗ for all e ∈ EH′ − E, i.e., no
remaining hyperedge is attached to a removed node. This condition is called
dangling condition. The dangling condition is fulfilled in the special case that
only hyperedges are removed.

Given H,H ′ ∈ HΣ , the disjoint union of H and H ′ is denoted by H + H ′.
A special case is the disjoint union of H with itself k times, denoted by k · H.
Let H ∈ HΣ and m : M(H) → N be a mapping, called multiplicity. Then the
multiplication of m and H is defined by m · H =

∑

M∈M(H)

m(M) · M . The

disjoint union is unique up to isomorphism. It is easy to see that the disjoint
union is commutative and associative. Moreover, there are injective morphisms
inH : H → H +H ′ and inH′ : H ′ → H +H ′ such that inH(H)∪ inH′(H ′) = H +
H ′ and inH(H)∩inH′(H ′) = ∅. Each two morphisms gH : H → Y and gH′ : H ′ →
Y define a unique morphism 〈gH , gH′〉 : H + H ′ → Y with 〈gH , gH′〉 ◦ inH = gH

and 〈gH , gH′〉 ◦ inH′ = gH′ . In particular, one gets g = 〈g ◦ inH , g ◦ inH′〉 for all
morphisms g : H + H ′ → Y and g + g′ = 〈inY ◦ g, inY ′ ◦ g′〉 : H + H ′ → Y + Y ′

for morphisms g : H → Y and g′ : H ′ → Y ′. The disjoint union is the coproduct
in the category of hypergraphs.

The merging of nodes is defined as a quotient by means of an equivalence rela-
tion ≡ on the set of nodes VH of H as follows: H/≡ = (VH/≡, EH , attH/≡, labH)
with attH/≡(e) = [v1] · · · [vk] for e ∈ EH , attH(e) = v1 · · · vk where [v] denotes
the equivalence class of v ∈ VH and VH/≡ is the set of equivalence classes.
Given two sequences d(1) · · · d(k) and d′(1) · · · d′(k) of nodes in VH for some
k ∈ N. Then the relation d(i) ∼ d′(i) for i = 1, . . . , k induces a particular equiv-
alence relation (by the reflexive, symmetric and transitive closure of ∼) that is
denoted by d = d′. This is employed in the next section to define the fusion of
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hyperedges. It is easy to see that f : H → H/≡ given by fV (v) = [v] for all
v ∈ VH and fE(e) = e for all e ∈ EH defines a quotient morphism.

3 Splitting/Fusion Grammars

In this section, we recall the notion of splitting/fusion grammars which are called
splicing/fusion grammars in [3]. The grammars are renamed because we think
that “splitting” fits better. We begin with the concept of fusion considered as
application of fusion rules, and then continue with splitting which is converse to
fusion.

Definition 1. 1. Let F ⊆ Σ be a finite set of labels and k : F → N a type
function.F is called fusion alphabet, its elements fusion labels. Let a ∈ Σ
be a complementary fusion label for each a ∈ F such that a �= b for all
a �= b. The set of complementary fusion labels is denoted by F . The typing
function and the complementarity are extended to F by k(a) = k(a) and
a = a for all a ∈ F . Let H ∈ HΣ and e, e ∈ EH with a = labH(e) = labH(e)
for some a ∈ F . Then the fusion of e and e in H yields the hypergraph
Hfuse(e,e) = (H − (∅, {e, e}))/attH(e)=attH(e).

2. Let H,H ′ ∈ HΣ . Then H directly derives H ′ through fusion wrt a ∈ F if
H ′ ∼= Hfuse(e,e) for some e, e ∈ EH with a = labH(e) = labH(e). Here the
fusion label a ∈ F plays the role of a fusion rule indicated by the notation
fr(a). Its application is denoted by H =⇒

fr(a)
H ′.

Remark 1. 1. As each hyperedge belongs to a single molecule, the fusion of two
hyperedges changes either one molecule or two molecules. Moreover, a fusion
can have three different effects.

– It may be a kind of folding, e.g., • •a a =⇒
fr(a)

• ,

– two molecules may be joint, e.g.,

•

•
•

•

•
•b

1

2
b

1

2

=⇒
fr(b)

•
•

•
•

, or

– it can also result in disconnection, e.g.,

•

•
c

1

2

c

1

2

=⇒
fr(c)

•
• wrt one molecule

or • • • •d1 2
d

1 2 =⇒
fr(d)

• • wrt two molecules.

2. It is easy to see that fusion rules can be applied in parallel if their matchings
access pairwise different hyperedges (cf. [2]).

Definition 2. 1. Let H ′ ∈ HΣ and a ∈ F . Then H ∈ HΣ is a splitting of H ′ wrt
a if there are e, e ∈ EH with a = labH(e) = labH(e) such that H ′ ∼= Hfuse(e,e).

2. Such a splitting can be considered as a direct derivation H ′ =⇒
sr(a)

H, where

sr(a) indicates that the label a is used as a splitting rule.



Relating DNA Computing and Splitting/Fusion Grammars 163

Remark 2. 1. To get more flexibility, we use other complementary labels for
splitting than for fusion. For a ∈ F , the complementary splitting label of a is
denoted by â (instead of a).

2. An application of sr(a) to H ′ can be explicitly performed by (1) choosing a
matching morphism g′ : [k(a)] → H ′, i.e., a sequence of nodes g′(1) · · · g′(k(a))
in H ′, (2) for i = 1, . . . , k(a), either splitting g′(i) into two new nodes d(i)
and d̂(i) or replacing it by one new node v with d(i) = v = d̂(i), subject
to the condition: g′(i) = g′(j) for some i �= j if and only if d(i) = d(j)
and d̂(i) = d̂(j), (3) constructing the hypergraph I ′ = (VH′ \ {g′(i) | i =
1, . . . , k(a)} + {d(i), d̂(i) | i = 1, . . . , k(a)}, EH′ , attI′ , labH′) with attI′(e′)j =
d(i) or attI′(e′)j = d̂(i) for j = 1, . . . , k(a) provided that attH′(e′)j = g′(i) for
some i = 1, . . . , k(a) and attI′(e′) = attH′(e′) otherwise, (4) constructing H ′′

from I ′ by adding two new hyperedges e and ê with attH′′(e) = d(1) · · · d(k(a))
and attH′(ê) = d̂(1) · · · d̂(k(a)) as well as labH′′(e) = a and labH′′(ê) = â,
and (5) renaming nodes and hyperedges of H ′′ optionally. I ′ in (3) is called
intermediate hypergraph.

3. While the application of a fusion rule is unique up to isomorphism, splitting
is highly nondeterministic in general because each tentacle of a hyperedge
of H ′ that is attached to a matching node g′(i) may be attached to d(i) or
d̂(i) in H ′′. Consider, for example, a fusion symbol t of type 2 and a triangle

•
•1

•2 where the numbered nodes define the matching. Although this is a

very small graph with much symmetry, one gets five splittings:

•
•

•
t

1

2

•
•
t

1

2
, •

•
•
t

1

2

•
•
t

1

2
,

•
•
t

1

2 •
•

•
t

1

2
,

•
•
t

1

2 •
•

•
t

1

2
, •

•
•
t

1

2

t
1

2 .

As the high nondeterminism of splitting is not always desirable, we employ
some variants of context conditions to cut the nondeterminism down.

Definition 3. Let F be a fusion alphabet and a ∈ F .

1. A splitting rule with a fixed disjoint subcontext is a triple (sr(a), d : [k(a)] →
D, incl : D → C) where C,D ∈ HΣ are connected hypergraphs, d is a mor-
phism, and incl is an injective morphism. It can be applied to H ′ wrt the
matching morphism g′ : [k(a)] → H ′ if there is a morphism f : C → H ′ and
the intermediate hypergraph I ′ can be chosen as I ′′ + D with d(i) ∈ VI′′ and
d̂(i) ∈ VD for i = 1, . . . , k(a) and I ′′ ⊆ H ′ such that g′ = d ◦ incl ◦ f .

2. A splitting rule with double context is a triple (sr(a), c1 : [k(a)] →
C1, c2 : [k(a)] → C2) where C1 and C2 are connected hypergraphs and
c1 and c2 morphisms. It is applicable to H ′ wrt the matching morphism
g′ : [k(a)] → H ′ if there are morphisms fj : Cj → H ′, j = 1, 2, with
f1(C1) ∩ f2(C2) = g′([k(a)]) = f1(c1([k(a)])) = f2(c2([k(a)])) and the inter-
mediate hypergraph I ′ can be chosen as I1+I2 such that there are morphisms
f ′

j : Cj → Ij for j = 1, 2 and injective morphisms inj : Ij → H ′ for j = 1, 2
such that inj ◦ f ′

j = fj for j = 1, 2.
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f(C) ⊇f(D) =⇒
r E a

1

k(a)

a f(D)

1

k(a)

Fig. 1. Application of a splitting rule r = (sr(a), d, incl) with fixed disjoint subcontext
where E = (f(C)− f(D)) + f([k(a)])

f1(C1) f2(C2) =⇒
r f ′

1(C1) a

1

k(a)

â f ′
2(C2)

1

k(a)

Fig. 2. Application of a splitting rule with double context r = (sr(a), c1, c2)

Remark 3. 1. The splitting rules with fixed disjoint subcontext are used in
Sect. 5 together with a variant for the special types of graphs considered
there. Splitting rules with fixed disjoint subcontext where context and sub-
context coincide were already used in [3]. While the context is required to
be present in the processed hypergraphs, the subcontext is required to be a
disjoint component after splitting. Figure 1 illustrates such a splitting for a
single molecule. This is not always possible as there may be a hyperedge in the
processed hypergraphs that does not belong to the matching of the subcon-
text, but one of its tentacles is attached to an inner node of the subcontext,
i.e., a node that is not matched by g′.

2. The splitting rules with double context are used in Sect. 6. An application of
such a rule is only possible if the processed hypergraph can be cut in two parts
which intersect in the splitting nodes only and where one context matches
in one part and the other context in the other part. As the contexts are
connected and intersect in the splitting nodes, only one molecule is cut while
the other molecules remain unchanged. Figure 2 illustrates such a splitting
for a single molecule.

Now we can define splitting/fusion grammars as used in this paper. Besides
fusion and splitting rules, such a grammar provides a start hypergraph, a set
of markers, and a set of terminal labels. The derivation process combines rule
applications with multiplications. A terminal hypergraph belongs to the gen-
erated language if it is obtained by removing all marked hyperedges from a
molecule that has at least one marked hyperedge and that is derived from the
start hypergraph. The markers allow one to partition the molecules of the start
hypergraph into marked and unmarked ones. As markers can not be generated,
the unmarked molecules can only contribute to the generated language if they
are fused with marked molecules so that they are of an auxiliary nature.

Definition 4. 1. A splitting/fusion grammar is a system SFG = (Z,F,M, T,SR)
where Z is a start hypergraph, F ⊆ Σ is a fusion alphabet, M ⊆ Σ with
M∩(F ∪F ) = ∅ is a finite set of markers, T ⊆ Σ with T ∩(F ∪F ) = ∅ = T ∩M
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is a finite set of terminal labels, and SR is a finite set of splitting rules that
may have some type of context conditions.

2. A direct derivation H =⇒H ′ for some H,H ′ ∈ HΣ is either a rule application
H =⇒

r
H ′ for some rule in SR∪{fr(a) | a ∈ F} or a multiplication H =⇒

m
m·H

for some multiplicity m.
3. A derivation H

n=⇒H ′ of length n is a sequence H0 =⇒H1 =⇒· · · =⇒Hn

with H = H0 and H ′ = Hn. One may write H
∗=⇒H ′.

4. L(SFG) = {remM (Y ) | Z
∗=⇒H,Y ∈ M(H)∩(HT∪M −HT )} is the generated

language of SFG where remM (Y ) is the hypergraph obtained when removing
all hyperedges with labels in M from Y .

Remark 4. 1. A splitting/fusion grammar where SR = ∅ is called a fusion gram-
mar and SR can be omitted in the tuple.

2. The provision of markers is significant. In other generative devices initial
objects to start a generation and rules to perform the generation are sepa-
rated while in fusion grammars the corresponding information is integrated
in the start hypergraph. But it is necessary in some cases to distinguish
between marked connected components that can contribute directly to the
generated language and other components that can contribute to the gen-
erated languages by fusion with marked components only (cf., for example,
the transformation of hyperedge replacement grammars into fusion grammars
in [2]).

4 Adleman’s Experiment

In this section, we adapt Adleman’s famous experiment finding Hamiltonian
paths by DNA computing to fusion grammars.

A graph G with designated nodes start and end is said to have a Hamiltonian
path if and only if there exists a path from start to end that enters every node
of the graph exactly once. The Hamiltonian path problem asks if a graph has a
Hamiltonian path and has been proven to be NP-complete [6,7]. Adleman has
proposed a transformation of the Hamiltonian path problem into a molecular
biological process by encoding the graph by DNA molecules in order to generate
a solution by massive parallelism. The computation is performed by standard
DNA computing operations. In more detail, Adleman generated random paths
by encoding every node of the input graph into a DNA strand such that two
strands can be fused if and only if their corresponding nodes are connected via
an edge in the respective direction. Afterwards filtering operations are applied
to get rid of DNA strands that do not represent Hamiltonian paths from start
to end. Finally emptiness is tested (see [1] for details).

For every unlabeled and loop-free graph, a fusion grammar can be constructed
that generates paths from start to end by fusing smaller paths in parallel. Subse-
quent filter operations let only Hamiltonian paths remain. The start hypergraph
of the fusion grammar contains a molecule for each edge of the input graph. Addi-
tionally, there is a molecule with a marker for constructing paths that begin with
start and there is a molecule for the end node that allows to terminate paths
fusions at end. The grammar is defined as follows.
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Definition 5. Let G = (V,E, att , lab) be an unlabeled simple graph, and let
start, end ∈ V with start �= end. Then FG(G) = (ZG, {outv | v ∈ V }, {μ}, V ∪
{∗}) is the fusion grammar of G, where

ZG = • outstart

start

µ + outend • +
∑

e∈E: att(e)=vv′
outv • • outv′

v′

.

Example 1. Consider Adleman’s sample graph, where bidirectional arrows rep-
resent two edges in opposite directions.

52
0

3
4 1

6

Select 0 as start and 6 as end. Then the start graph consists of the following
molecules:

• out0

0
µ out6 • out0 • • out1

1

out0 • • out3

3

out0 • • out6

6

. . . out5 • • out6

6

For example, the path starting from 0 and visiting then nodes 1 to 6 in this
order can be sequentially generated as follows.

• out0

0
µ =⇒

fr(out0)
• • out1

0
µ

1

=⇒
fr(out1)

• • • out2

0
µ

1 2

=⇒
fr(out2)

· · ·

· · · =⇒
fr(out5)

• • • • • • • out6

0
µ

1 2 3 4 5 6

=⇒
fr(out6)

• • • • • • •
0

µ

1 2 3 4 5 6

All involved fusions can be performed in parallel, because only pairwise
distinct edges are fused where each such path appears with some probability
depending on the number of copies of molecules of the start graph produced by
a respective multiplication before the fusion step. Hence, this path (as well as
all other paths) can be generated in a single step.

For each path p = v0 · · · vn we call the graph pg(p) = • • . . . • •
v0 v1 vn−1 vn

a path graph of p.
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Theorem 1. L(FG(G)) = {pg(p) | p = start v1 · · · vn end is a path in G}.

In other words, the terminal graphs generated by FG(G) are all path graphs
from start to end.

The theorem follows directly from the following Lemma which can be proven
by induction on the lengths of derivations.

Lemma 1. Let ZG
∗=⇒H be a derivation in FG(G). Let M ∈ M(H). Then M

is either a molecule of ZG or it has one of the following forms:

• • . . . • •µ

begin v1 vn−1 end

v2
v1

vn+1• • . . . •outv1 outvn+1

v2 vn+1

• • . . . • outvnµ

begin v1 vn

• • . . . • •outv1

v2 vn end

where v1, . . . , vn+1 ∈ V, n ≥ 1.
In order to get only Hamiltonian paths, further filters are needed where the

number of elements of a finite set X is denoted by |X|.
1. lengthk(L) = {s ∈ L | |Vs| − 1 = k} for L ⊆ L(FG(G)),
2. simple(L) = {s ∈ L | |Vs| = |labG(EG)| − 1} for L ⊆ L(FG(G)) where

labG(E) = {labG(e) | e ∈ E}.

Corollary 1. The language simple(length|V |−1(L(FG(G)))) is equal to the set
of all path graphs pg(p), where p is Hamiltonian.

The corollary indicates that it may be meaningsful to employ more general
mechanisms to filter the members of the generated language from the derived
hypergraphs. In the definition in Sect. 3, the generated language contains the
terminal subhypergraph of a connected component of a derived hypergraph if
it has some marked hyperedge, but no fusion hyperedges. This yields for our
grammar that simulates Adleman’s experiment graph representations of all paths
from begin to end so that further filtering is needed to get the Hamiltonian
paths. In general, other and further filter mechanisms may be employed if it is
reasonable for a specific application.

5 Transformation of Insertion-Deletion Systems into
Splitting/Fusion Grammars

Insertion-deletion systems are (string) language generating devices the basic
operations of which are closely related to DNA computing (see, e.g., [8] and [4]).
In this section, we transform insertion-deletion systems into splitting/fusion
grammars. Our main result states that the transformation is correct meaning
that the language generated by an insertion-deletion system equals the language
of the corresponding splitting/fusion grammar up to the representation of strings
by graphs.
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5.1 Insertion-Deletion Systems

An insertion-deletion system is a quadruple γ = (V, T,A,R) where V is a finite
alphabet, T ⊆ V is a subalphabet of terminal symbols, A ⊆ V ∗ is a finite
language of axioms, and R is a finite set of rules of the form r = (u, α/β, v)
with u, α, β, v ∈ V ∗ such that either α = λ or β = λ. The application of rules to
strings defines a binary relation of computation steps:

insertion : w = xuvy →
r

xuβvy for w, x, y ∈ V ∗ and r = (u, λ/β, v), and

deletion : w = xuαvy →
r

xuvy for w, x, y ∈ V ∗ and r = (u, α/λ, v).

The reflexive and transitive closure of all computation steps is called compu-
tation relation and denoted by ∗→

R
, its elements are the computations of γ. The

generated language of γ consists of all terminal strings that can be computed
from axioms: L(γ) = {w ∈ T ∗ | z

∗→
R

w, z ∈ A}.

5.2 String Graphs

A string is represented by a simple path where the sequence of labels along the
path equals the given string.

Let Σ be a label alphabet the elements of which are of type 2. Let w =
x1 . . . xn ∈ Σ∗ for n ≥ 1 and xi ∈ Σ for i = 1, . . . , n. Then the string graph of w is
defined by sg(w) = ({0}∪ [n], [n], attw, labw) with attw(i) = (i−1)i and lab(i) =
xi for i = 1, . . . , n. The string graph of λ, denoted by sg(λ), is the discrete graph
with a single node 0. Obviously, there is a one-to-one correspondence between
Σ∗ and sg(Σ∗) = {sg(w) | w ∈ Σ∗}.

Note that u ∈ Σ∗ is a substring of w ∈ Σ∗, i.e., w = xuy for some x, y ∈ Σ∗

if and only if there is a graph morphism xuy : sg(u) → sg(w).
Each string graph sg(w) for w ∈ Σ∗ gives rise to a special graph morphism

bw : [2] → sg(w) with bw(1) = 0 and bw(2) = n, where n is the length of w.
For technical reasons, we need the extension of a string graph by a labeled

edge bending from the begin node to the end node. Consider sg(w) for some
w ∈ Σ∗, and let s ∈ Σ. Then the s-handled string graph sg(w)s contains sg(w)
as subgraph and the edge 0 with the attachment 0n and the label s, where n is
the length of w.

5.3 The Transformation

Let γ = (V, T,A,R) be an insertion-deletion system. The corresponding split-
ting/fusion grammar SFG(γ) has a splitting rule for each rule of the insertion-
deletion system, where the context u, v of the rule (u, α/β, v) is reflected by the
context of the splitting rule. In the case of a deletion rule, the corresponding rule
has a fixed disjoint subcontext reflecting the string to be deleted. In the case
of an insertion rule, the corresponding rule has a fixed disjoint subcontext, too.
But its application includes an additional node stretching within the intermedi-
ate hypergraph I ′. Let r = (u, λ/β, v) be an insertion rule and let a ∈ Σ. Then
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(sr(a), bλ, uλv) is a splitting rule with node stretching, and, for each w = xuvy,
its application to sg(w)μ with the matching sg(uv) xuvy−−−→ sg(w) ⊆ sg(w)μ yields
the molecules sg(xuavy)μ and sg(λ)â meaning that the node separating sg(u)
and sg(v) is stretched to an a-edge. Moreover, there is a fusion rule for each rule
of the insertion-deletion system.

Definition 6. SFG(γ) = (Zγ , R, {μ}, T, Pγ), where

– the rule set R is used as fusion alphabet with the complementary fusion
alphabet R and the complementary splitting alphabet R̂ chosen such that
V,R,R and R̂ are pairwise disjoint, the marker μ is an extra label, i.e., μ /∈
V ∪ R ∪ R ∪ R̂, μ and the fusion labels in R are of type 2,

– Zγ =
∑

z∈A

sg(z)μ +
∑

r=(u,α/β,v)∈R

sg(β)r, i.e., the start graph consists of the

μ-handled string graphs of the axioms, the r-handled string graphs of λ for
each deletion rule r, and the r-handled string graphs of the insertion string
of each insertion rule r, and

– Pγ contains two types of splitting rules:
1. for each deletion rule r = (u, α/λ, v) ∈ R, there is a splitting rule with

fixed disjoint subcontext rγ = (sr(r), bα, uαv),
2. for each insertion rule r = (u, λ/β, v) ∈ R, there is a splitting rule with

node stretching rγ = (sr(r), bλ, uλv).

To see how these rules work, consider sg(w)μ. The rule rγ for r = (u, α/λ, v)
is applicable if w = xuαvy for some x, y using the matching sg(uαv) xuαvy−−−−→
sg(w) ⊆ sg(w)μ. Then the splitting produces the two molecules sg(xurvy)μ

and sg(α)r̂. If the former molecule is fused with sg(λ)r applying the fusion rule
fr(r), one gets the molecule sg(xuvy)μ. In other words, the application of rγ to
sg(w)μ followed by the application of fr(r) coincides with the computation step
w →

r
xuvy in γ up to representation of strings by graphs. Similarly, the rule rγ

for r = (u, λ/β, v) is applicable to sg(w)μ if w = xuvy for some x, y using the

matching sg(uv) xuλvy−−−−→ sg(w) ⊆ sg(w)μ. The splitting with stretching yields the
molecules sg(xurvy)μ and sg(λ)r̂. If the former molecule is fused with sg(β)r

applying the fusion rule fr(r), then one gets sg(xyβvy)μ. This means that the
application of rγ to sg(w)μ followed by the application of fr(r) coincides with
the computation step w →

r
xuβuv in γ.

These observations allow to prove the following lemma that links computa-
tions in an insertion-deletion system to special derivations in the corresponding
splitting/fusion grammar. To formulate the lemma, we use three kinds of multi-
plication for a given insertion-deletion system γ = (V, T,A,R):

1. m(z) for z ∈ A removes all molecules sg(z′)μ (via multiplication by 0) for
z′ ∈ A with z′ �= z and keeps all others.

2. m(r) for r = (u, α/β, v) ∈ R duplicates the molecule sg(β)r and keeps all
others.

3. m(r̂) for r = (u, α/β, v) ∈ R removes the molecule sg(α)r̂ and keeps all
others.
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Lemma 2. Let γ = (V, T,A,R) be an insertion-deletion system and SFG(γ) the
corresponding splitting/fusion grammar. Let d = (w0 →

r1
w1 →

r2
. . . →

rn

wn) be a

computation in γ with w0 ∈ A and ri = (ui, αi/βi, vi) ∈ R. Then there is a
derivation in SFG(γ) of the following form:

dγ = (Zγ =⇒
m(w0)

sg(w0)μ + Xγ
4=⇒ sg(w1)μ + Xγ

4=⇒· · · 4=⇒ sg(wn)μ + Xγ),

where Xγ =
∑

r=(u,α/β,v)∈R

sg(β)r. The sections sg(wi−1)μ +Xγ
4=⇒ sg(wi)μ +Xγ

for i = 1, . . . , n are defined by

sg(wi−1)μ + Xγ =⇒
(ri)γ

sg(xiuiriviyi)μ + Xγ + sg(αi)r̂i
=⇒
m(r̂i)

sg(xiuiriviyi)μ + Xγ

=⇒
m(ri)

sg(xiuiriviyi)μ + sg(βi)ri
+ Xγ =⇒

fr(ri)
sg(wi)μ + Xγ

for some xi, yi ∈ (V ∪ R)∗.

The derivation dγ is called insdel -derivation of d.
Conversely, the derivations in SFG(γ) can also be nicely related to the com-

putations in γ.

Lemma 3. Let γ = (V, T,A,R) be an insertion-deletion system and SFG(γ) the
corresponding splitting/fusion grammar. Let D = (Zγ

∗=⇒H) be a derivation in
SFG(γ) and sg(w)μ ∈ M(H) for some w ∈ V ∗. Then there is an insdel-derivation
dγ of some computation d = (w0

∗→w).

Using these lemmata, one can prove that an insertion-deletion system and
the corresponding splitting/fusion grammar generate the same language up to
the representation of strings as string graphs.

Theorem 2. Let γ = (V, T,A,R) be an insertion/deletion system and SFG(γ)
its corresponding splitting/fusion grammar. Then

sg(L(γ)) = {sg(w) | w ∈ L(γ)} = L(SFG(γ)).

6 2-Splicing Grammars

In the literature, one encounters many variants of splicing systems as they are
considered as a potential computational kernel of a future DNA computer (see
e.g., [4] for a comprehensive survey). Typically, a rule of a splicing system has the
form of a quadruple (u1, u2;u3, u4) of four strings. It is applicable to two strings
w and w′ if w = x1u1u2x2 and w′ = x3u3u4x4 for some strings x1, x2, x3, and
x4. Such a rule application splits w and w′ between u1, u2 and u3, u4 respectively
and recombines the parts into x1u1u4x4 and x2u2u3x3. The operation is an 1-
splicing if only the first result is further taken into account; it is a 2-splicing if
both results are further considered. In an iterated splicing system, the splicing
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process is arbitrarily iterated on the resulting strings starting with a given set
of strings, called axioms. Finally, an extended iterated splicing system has an
additional alphabet of terminal symbols, and its generated language consists
of all terminal strings that result from the splicing process. In this section, we
introduce 2-splicing grammars generalizing extended iterated 2-splicing systems
to hypergraphs as underlying structures.

Definition 7. 1. A 2-splicing grammar is a system 2SG = (V, T,A,R) where V
is a finite label alphabet, T ⊆ V is a subalphabet of terminal labels, A ⊆ HV

is a finite set of connected hypergraphs, called axioms, and R is a finite set
of rules of the form r = (c1, c2; c3, c4) with ci : [k(r)] → Ci where Ci is a
connected hypergraph for each i = 1, 2, 3, 4 and some k(r) ∈ N, called type of
r.

2. The application of r to H ∈ HV is defined by the application of the two
splitting rules with double context (sr(r1), c1, c2) and (sr(r2), c3, c4) to two
different molecules of H followed by the application of the fusion rules fr(r1)
and fr(r2) where the complementary fusion and splitting labels satisfy the
condition r1 = r̂2 and r2 = r̂1.

3. A derivation in 2SG from H to H ′ is a sequence of rule applications and multi-
plications H = H0 =⇒H1 =⇒ . . . =⇒Hn = H ′, shortly denoted by H

∗=⇒H ′.
4. The generated language of 2SG consists of all terminal molecules of hyper-

graphs derived from the axioms: L(2SG) = {Y ∈ HT | ∑

Z∈A

Z
∗=⇒H,Y ∈

M(H)}.

Remark 5. 1. Focusing on rule application to the two changed molecules, it looks
as in Fig. 3 where the subgraphs f(Cj), f ′(Cj) and f ′′(Cj) for j = 1, 2 coincide
up to the distinguished nodes.

2. Without loss of generality, one can assume that none of the molecules involved
in a derivation disappears because one may duplicate the two molecules that
are cut by the rule application beforehand.

3. Note that the 2-splicing grammars are defined without markers. We refrain
from their use because all the molecules of the start hypergraph can contribute
to the generated language in the same way.

Example 2. To illustrate the concept of 2-splicing grammars, we specify a sample
grammar MOP that generates a certain type of maximal outerplanar graphs. An
undirected unlabeled graph is a maximal outerplanar graph (mop for short) if
it consists of a simple cycle that visits all nodes and a maximum number of
further edges such that the graph is planar, but any further edge would yield a
non-planar graph.

MOP = ({∗}, {∗}, { •
•

• , •••
• • }, {rM = (• •

•
2

1
, ••

•
1

2
; • •

•
2

1
, ••

•
1

2
)})

where the type of the single rule is 2 and the morphisms from the discrete
graph with two nodes to the contexts are indicated by the numbered nodes.
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f1(C1) f2(C2) f3(C3) f4(C4)

f ′
1(C1) r1

1

k(r1)

r̂1 f ′
2(C2)

1

k(r)

f ′
3(C3) r2

1

k(r3)

r̂2 f ′
4(C4)

1

k(r4)

f ′′
1 (C1) f ′′

4 (C4) f ′′
3 (C3) f ′′

2 (C2)

(sr(r1), c1, c2) + (sr(r2), c3, c4)

fr(r1) + fr(r2)

Fig. 3. 2-splicing wrt two molecules

The start graph joins the mops with 3 and 5 nodes. The splitting rule with the
first two graphs of the rule as double context cannot be applied to the triangle
as the embedding of the two context graphs are required to intersect in the
distinguished nodes only. But the rule of MOP can be applied to two copies of
the mop with 5 nodes in the following way:

•••
• •

•••
• • =⇒

splitting

••
•

(rM )1
1

2

••
• •

(r̂M )1
1

2

••
• •

(rM )2
1

2

••
•

(r̂M )2
1

2

=⇒
fusion

•
•

•
•

•
••

•
• •

An alternative way of the splitting yields

••
•

(rM )1
1

2

••
• •

(r̂M )1
1

2

••
• •

(rM )2
2

1

••
•

(r̂M )2
2

1

Then the recombination of the third and the second molecule yields
•

••
•
• • .

This means that rule application in MOP can generate the mop with 4 nodes
and two mops with 6 nodes. Iterating the rule application, one can generarate
mops with an arbitrary number of nodes.

Let 2SGsg = (V, T,A,R) be a 2-splicing grammar such that A ⊆ sg(V ∗)
and each rule r ∈ R has the form (bu1 , bu2 ; bu3 , bu4) for some u1, u2, u3, u4 ∈ V ∗

(cf. Sect. 5.2). Then σ = (V, T,Aσ, Rσ) with Aσ = {z ∈ V ∗ | sg(z) ∈ A} and
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Rσ = {(u1, u2;u3, u4) | (bu1 , bu2 ; bu3 , bu4) ∈ R} defines an extended iterated 2-
splicing system (on strings) that is also called extended H-system in [4]. This
means that there is an obvious relation between the string case and the hyper-
graph case on the syntactic level. In contrast to this, the generated language of
an extended iterated 2-splicing system is defined by means of an infinite iteration
on sets of strings and not by derivations. The iteration process can be carried
over to the hypergraph case.

Definition 8. Let 2SG = (V, T,A,R) be a 2-splicing grammar. Then its iterated
language L′(2SG) is defined as follows: L′(2SG) = σ∗

2(A) ∩ T ∗ with σ∗
2(A) =⋃

i∈N

σi
2(A) where σi

2(A) is inductively defined by σ0
2(A) = A, and σi+1

2 (A) =

σ2(σi
2(A)) for all i ∈ N with σ2(X) = {M3,M4 | M1 + M2 =⇒

r
M3 + M4, r ∈

R,M1,M2 ∈ X} for all sets X of connected hypergraphs in HV .

Nicely enough, it turns out that the generated language and the iterated
language of a 2-splicing grammar coincide.

Theorem 3. Let 2SG be a 2-splicing grammar. Then L(2SG) = L′(2SG).

This means that the hypergraph case is a proper generalization of the string
case on the semantic level, too.

7 Conclusion

In this paper, we have related three well-known DNA computing approaches
to the framework of splitting/fusion grammars. First, we have recreated Adle-
man’s seminal experiment that marks the origin of DNA computing by means of
fusion grammars (where no splitting is needed). Secondly, we have transformed
insertion-deletion systems into splitting/fusion grammars. And, thirdly, we have
generalized extended iterated 2-splicing systems, that process strings as underly-
ing data structure, by 2-splicing grammars that operate on hypergraphs. Future
research in this context may head in various directions:

Further approaches to DNA computing like sticker systems (cf., e.g., [4]) may
be related to splitting/fusion grammars.

In analogy to Adleman’s experiment, we have solved the Hamiltonian path
problem by fusion grammars with additional filter mechanisms in such a way
that the decision takes one multiplication step and one parallel fusion step
and is correct with high probability. It may be interesting to consider other
NP-complete problems and to investigate the computational capability of split-
ting/fusion grammars in more depth.

In addition to the transformation of insertion-deletion systems, it may be
worthwhile to generalize this kind of string processing to hypergraph processing
with the hope that interesting examples can be modeled in this way.

Besides extended iterated 2-splicing systems, one encounters many variants
based on splicing in the literature. To consider them from the point of view of
splitting/fusion grammars may lead to new insights.
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In [9], graph multiset transformation was introduced as a computational app-
roach with massive parallelism inspired by DNA computing like splitting/fusion
grammars. There the traditional double-pushout rules are used rather than the
very special cases of splitting and fusion rules. As multisets and disjoint unions
are very similar data structures, a comparison of the two approaches may be
worthwhile.

Acknowledgment. We are grateful to the anonymous reviewers for their critical com-
ments that encouraged us to add some more explanations.
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