
Esther Guerra
Fernando Orejas (Eds.)

LN
CS

 1
16

29

12th International Conference, ICGT 2019
Held as Part of STAF 2019
Eindhoven, The Netherlands, July 15–16, 2019, Proceedings

Graph
Transformation

Lecture Notes in Computer Science 11629

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Esther Guerra • Fernando Orejas (Eds.)

Graph
Transformation
12th International Conference, ICGT 2019
Held as Part of STAF 2019
Eindhoven, The Netherlands, July 15–16, 2019
Proceedings

123

Editors
Esther Guerra
Universidad Autónoma de Madrid
Madrid, Spain

Fernando Orejas
Universitat Politècnica de Catalunya
Barcelona, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-23610-6 ISBN 978-3-030-23611-3 (eBook)
https://doi.org/10.1007/978-3-030-23611-3

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2818-2278
https://doi.org/10.1007/978-3-030-23611-3

Preface

This volume contains the proceedings of ICGT 2019, the 12th International Conference
on Graph Transformation held during July 15–16, 2019 in Eindhoven, The Netherlands.
ICGT 2019 was affiliated with STAF (Software Technologies: Applications and
Foundations), a federation of leading conferences on software technologies. ICGT
2019 took place under the auspices of the European Association of Theoretical
Computer Science (EATCS), the European Association of Software Science and
Technology (EASST), and the IFIP Working Group 1.3, Foundations of Systems
Specification.

The aim of the ICGT series is to bring together researchers from different areas
interested in all aspects of graph transformation. Graph structures are used almost
everywhere when representing or modelling data and systems, not only in computer
science, but also in the natural sciences and in engineering. Graph transformation and
graph grammars are the fundamental modelling paradigms for describing, formalizing,
and analyzing graphs that change over time when modelling, e.g., dynamic data
structures, systems, or models. The conference series promotes the cross-fertilizing
exchange of novel ideas, new results, and experiences in this context among
researchers and students from different communities.

ICGT 2019 continued the series of conferences previously held in Barcelona (Spain)
in 2002, Rome (Italy) in 2004, Natal (Brazil) in 2006, Leicester (UK) in 2008,
Enschede (The Netherlands) in 2010, Bremen (Germany) in 2012, York (UK) in 2014,
L’Aquila (Italy) in 2015, Vienna (Austria) in 2016, Marburg (Germany) in 2017, and
Toulouse (France) in 2018, following a series of six International Workshops on Graph
Grammars and Their Application to Computer Science from 1978 to 1998 in Europe
and in the USA.

This year, the conference solicited research papers describing new unpublished
contributions in the theory and applications of graph transformation as well as tool
presentation papers that demonstrate main new features and functionalities of
graph-based tools. All papers were reviewed thoroughly by at least three Program
Committee members and additional reviewers. We received 22 submissions, and the
Program Committee selected 12 research papers and one tool presentation paper for
publication in these proceedings, after careful reviewing and extensive discussions. The
topics of the accepted papers range over a wide spectrum, including theoretical
approaches to graph transformation, logic and verification for graph transformation,
model transformation, as well as the application of graph transformation in some areas.
In addition to these paper presentations, the conference program included an invited
talk, given by Marieke Huisman (University of Twente, The Netherlands).

We would like to thank all who contributed to the success of ICGT 2019, the invited
speaker Marieke Huisman, the authors of all submitted papers, as well as the members
of the Program Committee and the additional reviewers for their valuable contributions
to the selection process. We are grateful to Reiko Heckel, the chair of the Steering

Committee of ICGT for his valuable suggestions; to Mark van den Brand and Loek
Cleophas, the general chair and the local chair, respectively, of STAF 2019; and to the
STAF federation of conferences for hosting ICGT 2019. We would also like to thank
EasyChair for providing support for the review process.

May 2019 Esther Guerra
Fernando Orejas

vi Preface

Organization

Steering Committee

Paolo Bottoni Sapienza University of Rome, Italy
Andrea Corradini University of Pisa, Italy
Gregor Engels University of Paderborn, Germany
Holger Giese Hasso Plattner Institute at the University of Potsdam,

Germany
Reiko Heckel (Chair) University of Leicester, UK
Dirk Janssens University of Antwerp, Belgium
Barbara König University of Duisburg-Essen, Germany
Hans-Jörg Kreowski University of Bremen, Germany
Leen Lambers Hasso Plattner Institute at the University of Potsdam,

Germany
Ugo Montanari University of Pisa, Italy
Mohamed Mosbah LaBRI, University of Bordeaux, France
Manfred Nagl RWTH Aachen, Germany
Fernando Orejas Technical University of Catalonia, Spain
Francesco Parisi-Presicce Sapienza University of Rome, Italy
John Pfaltz University of Virginia, Charlottesville, USA
Detlef Plump University of York, UK
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro University Federal do Rio Grande do Sul, Brazil
Grzegorz Rozenberg University of Leiden, The Netherlands
Andy Schürr Technical University of Darmstadt, Germany
Gabriele Taentzer University of Marburg, Germany
Jens Weber University of Victoria, Canada
Bernhard Westfechtel University of Bayreuth, Germany

Program Committee

Anthony Anjorin University of Paderborn, Germany
Paolo Bottoni Sapienza University of Rome, Italy
Andrea Corradini University of Pisa, Italy
Juan De Lara Autonomous University of Madrid, Spain
Juergen Dingel Queen’s University, Canada
Maribel Fernández King’s College London, UK
Holger Giese Hasso Plattner Institute at the University of Potsdam,

Germany
Esther Guerra (Co-chair) Autonomous University of Madrid, Spain
Reiko Heckel University of Leicester, UK
Barbara König University of Duisburg-Essen, Germany

Harald König FHDW Hannover, Germany
Leen Lambers Hasso Plattner Institute at the University of Potsdam,

Germany
Yngve Lamo Western Norway University of Applied Sciences,

Norway
Fernando Orejas (Co-chair) Technical University of Catalonia, Spain
Detlef Plump University of York, UK
Christopher M. Poskitt Singapore University of Technology and Design,

Singapore
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro Federal University of Rio Grande do Sul, Brazil
Andy Schürr Technical University of Darmstadt, Germany
Daniel Strüber University of Koblenz and Landau, Germany
Gabriele Taentzer Philipps University of Marburg, Germany
Jens Weber University of Victoria, Canada

Additional Reviewers

Atkinson, Timothy
Heindel, Tobias
Kosiol, Jens
Lochau, Malte
Nolte, Dennis
Schneider, Sven
Tomaszek, Stefan
Wulandari, Gia

viii Organization

Contents

Theory

Introducing Symmetry to Graph Rewriting Systems
with Process Abstraction . 3

Taichi Tomioka, Yutaro Tsunekawa, and Kazunori Ueda

Double-Pushout Rewriting in Context: Rule Composition
and Parallel Independence . 21

Michael Löwe

Adhesive Subcategories of Functor Categories with Instantiation
to Partial Triple Graphs . 38

Jens Kosiol, Lars Fritsche, Andy Schürr, and Gabriele Taentzer

Extending Predictive Shift-Reduce Parsing to Contextual Hyperedge
Replacement Grammars . 55

Frank Drewes, Berthold Hoffmann, and Mark Minas

Analysis and Verification

Exploring Conflict Reasons for Graph Transformation Systems. 75
Leen Lambers, Jens Kosiol, Daniel Strüber, and Gabriele Taentzer

Unfolding Graph Grammars with Negative Application Conditions 93
Andrea Corradini, Maryam Ghaffari Saadat, and Reiko Heckel

Two-Level Reasoning About Graph Transformation Programs 111
Amani Makhlouf, Christian Percebois, and Hanh Nhi Tran

Tools and Applications

Incremental (Unidirectional) Model Transformation with eMoflon::IBeX 131
Nils Weidmann, Anthony Anjorin, Patrick Robrecht, and Gergely Varró

Knowledge Representation and Update in Hierarchies of Graphs. 141
Russ Harmer and Eugenia Oshurko

Relating DNA Computing and Splitting/Fusion Grammars 159
Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye

Transformation Rules Construction and Matching

Constructing Optimized Validity-Preserving Application Conditions
for Graph Transformation Rules . 177

Nebras Nassar, Jens Kosiol, Thorsten Arendt, and Gabriele Taentzer

From Pattern Invocation Networks to Rule Preconditions 195
Nils Weidmann, Anthony Anjorin, Florian Stolte, and Florian Kraus

Hybrid Search Plan Generation for Generalized Graph Pattern Matching 212
Matthias Barkowsky and Holger Giese

Author Index . 231

x Contents

Theory

Introducing Symmetry to Graph
Rewriting Systems with Process

Abstraction

Taichi Tomioka(B), Yutaro Tsunekawa, and Kazunori Ueda

Waseda University, Tokyo, Japan
{tomioka,tsunekawa,ueda}@ueda.info.waseda.ac.jp

Abstract. Symmetry reduction in model checking is a technique for
reducing state spaces by exploiting the inherent symmetry of models,
i.e., the interchangeability of their subcomponents. Model abstraction,
which abstracts away the details of models, often strengthens the sym-
metry of the models. Graph rewriting systems allow us to express models
in such a way that inherent symmetry manifests itself with graph isomor-
phism of states. In graph rewriting, the synergistic effect of symmetry
reduction and model abstraction is obtained under graph isomorphism.
This paper proposes a method for abstracting programs described in a
hierarchical graph rewriting language LMNtal. The method automat-
ically finds and abstracts away subgraphs of a graph rewriting system
that are irrelevant to the results of model checking. The whole framework
is developed within the syntax and the formal semantics of the modeling
language LMNtal without introducing new domains or languages. We
show that the proposed abstraction method combined with symmetry
reduction reduces state spaces while preserving the soundness of model
checking. We implemented the method on SLIM, an implementation of
LMNtal with an LTL model checker, tested it with various concurrent
algorithms, and confirmed that it automatically reduces the number of
states by successfully extracting the symmetry of models.

Keywords: LMNtal · Graph rewriting systems · Model checking ·
Symmetry reduction · Abstraction

1 Introduction

Symmetry reduction [3] in model checking is one of the key techniques to tackle
the space explosion problem. Symmetry reduction reduces a state space by
regarding equivalent states (i.e., states that need not be distinguished from each
other) in the state space as a single state using the symmetry of a model. The
technique should be applicable to diverse models; for instance, analysis of algo-
rithms for board games and of distributed algorithms over a network of processes
may well exploit the symmetry of the board and of the network topology, respec-
tively. In general, symmetry of a model is obtained by program analysis [5] or
given by user specification [17].
c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-23611-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-23611-3_1

4 T. Tomioka et al.

There are many model description languages for model checking, ranging
from concurrent imperative languages like Promela [12] to rewriting systems.
Of these, graph rewriting systems are a highly general and expressive modeling
framework in the sense that they allow us to represent both dynamically evolving
processes structures formed by processes, channels and messages and dynami-
cally evolving data structures formed by constructors and pointers in a uniform
manner. They are general also in the sense that they subsume multiset rewrit-
ing which is the basis of the Gamma model, Chemical Abstract Machines and
also Petri Nets. Furthermore, they are highly amenable to symmetry reduction
because graph rewriting systems allow us to express individual states as graphs
in such a way that various kinds of symmetry such as rotation and reflection
manifest themselves. The symmetry can then be handled as graph isomorphism
checking in graph rewriting systems, as pioneered by the model checker of the
graph transformation tool GROOVE [9,18].

However, even when a model appears to be symmetric basically, the symme-
try may not be recognized as graph isomorphism due to minor differences that
break the symmetry. For example, consider the model checking of concurrent
programs. Concurrent processes and channels are usually given their own IDs,
either explicitly or implicitly. These IDs and other inessential details must be
carefully eliminated to reveal the symmetry.

Some asymmetric states represented as graphs could possibly be made sym-
metric by abstracting them appropriately. This motivates us to consider elimi-
nating inessential details of the models and make previously nonequivalent states
equivalent. It may enable the symmetry reduction mechanism to reduce states
even further. In our approach we will detail in this paper, which parts of a model
are irrelevant to verification and can be abstracted away is automatically decided
from a model described as a rewriting system and its verification conditions. The
advantages of the technique are twofold. Firstly, space and time efficiency can be
improved without working on complicated models manually. Secondly, it enables
us to generate models which are simplified but yet detailed enough to validate
given properties. For example, we can reuse the same model for different verifica-
tion conditions and apply model abstraction only for the conditions that allow
the use of the model’s inherent symmetry. We use LMNtal [26]1, a language
based on hierarchical graph rewriting, as a model description language. Hier-
archical graphs of LMNtal consist of labeled nodes, links, and membranes that
enclose subgraphs to form hierarchical structures. Many systems in the world
have two kinds of structures that may co-exist: connectivity and hierarchy. LMN-
tal provides these two structuring mechanisms for the straightforward modeling
of various systems and formalisms. Its expressive power has been demonstrated
by the encoding of various formalisms ranging from the ambient calculus [24] to
strong reduction of the λ-calculus [25]. Formalisms designed with a similar moti-
vation include Milner’s bigraphs [16]. SLIM [10]2, a full-fledged implementation
of LMNtal, features state space construction and LTL model checking.

1 LMNtal homepage: https://www.ueda.info.waseda.ac.jp/lmntal/.
2 Available at https://github.com/lmntal/slim.

https://www.ueda.info.waseda.ac.jp/lmntal/
https://github.com/lmntal/slim

Introducing Symmetry to Graph Rewriting with Process Abstraction 5

This paper contains three main contributions. First, we developed a method
for automatically reducing the state space of a model by static model abstrac-
tion that preserves the soundness of graph-based model checking. Second, we
showed the soundness of abstraction by reducing equivalence relations induced
by the abstraction to equivalence relations defined over LMNtal programs, that
is, without introducing yet another formalism or sublanguage. Third, we estab-
lished a relationship between (i) SLIM’s symmetry reduction based on the struc-
tural equivalence and reduction relation of LMNtal and (ii) symmetry reduction
known as a standard formulation of model checking [4].

We implemented the proposed method on SLIM, made experiments with
examples including concurrent algorithms, and confirmed that our method suc-
cessfully reduces the state space.

The rest of this paper is organized as follows. Section 2 introduces related
work. Section 3 introduces the hierarchical graph rewriting language LMNtal and
its implementation SLIM. Section 4 explains how symmetry reduction is realized
in LMNtal. Section 5 describes our method for model abstraction. Section 6 shows
the results of experiments.

2 Related Work

Reduction of state space by abstracting graphs for graph rewriting systems
has been studied before. Rensink et al. [19] proposed a method for abstract-
ing graph rewriting systems. An abstract graph rewriting system is created
automatically by abstracting graph generation rules and initial state graphs.
Backes et al. [1] focused on the local relationships of graphs and abstract them
into chunks of nodes called clusters. In these papers, the authors consider an
abstract graph rewriting system with different semantics from the original and
discuss an abstract program expressed in the abstract system. Our work differs
from them in expressing abstract programs in the original language instead of
giving additional framework. Also, it is worth noting that we have developed
a framework of abstraction and its proof technique for a graph rewriting lan-
guage whose syntax and semantics are defined in a structural manner, i.e., in a
standard style of concurrent languages.

The abstraction of graphs proposed in this paper enhances the effect of sym-
metry reduction as will be described in Sect. 5. Sistla et al. [23] proposed a
symmetry reduction method that exploits process symmetry and state symme-
try of a model. Process symmetry is a relation between two global states that
can be considered equivalent. State symmetry exploits the symmetry of a single
state composed of possibly many processes with the same state. Since the graph
rewriting systems we are working on express the state of a program as a graph,
the two kinds of symmetry are expressed as graph isomorphism (that includes
graph automorphism) comprehensively.

There is a lot of work on symmetry reduction for Petri Nets, whose survey
can be found in [14]. The techniques can be divided into (i) reduction based on
the isomorphism of the states of Place/Transition Nets [21] and (ii) reduction

6 T. Tomioka et al.

(process) P ::= 0 (null)
| p(X1, . . . , Xm) (m ≥ 0) (atom)
| P, P (molecule)
| {P} (cell)
| T :- T (rule)

(process template) T ::= 0 (null)
| p(X1, . . . , Xm) (m ≥ 0) (atom)
| T, T (molecule)
| {T} (cell)
| T :- T (rule)
| $p[X1, . . . , Xm | ∗X] (m ≥ 0) (process context)

Fig. 1. Syntax of LMNtal (constructs not relevant to this paper are omitted.)

based on the data values of high-level Petri Nets such as CPN [13]. In LMNtal,
on the other hand, the symmetry of states is handled uniformly by structural
congruence which will be described in Sect. 3. Since graphs (with labeled nodes)
are an expressive structure that subsumes lists, trees and scalar values, and
structural congruence has been built into the language, LMNtal allows one to
describe symmetric models without specifying symmetry explicitly.

Sistla et al. [22] and Emerson et al. [6] discussed methods to reduce asymmet-
ric models by symmetry reduction. Our study is similar to theirs in that both
strengthen the symmetry of models and reduce their state space while preserving
soundness. The difference is that we give a concrete framework and implemen-
tation for a full-fledged language and that the method is applicable to a wide
variety of models.

Symmetry of graph-based models has been studied in contexts other than
model checking. For instance, Feret proposed a method for analyzing properties
of models described in Kappa [8] but their research goals and the underlying
formalisms are quite different from ours.

3 LMNtal: Graph Rewriting Language

This section describes a hierarchical graph rewriting language LMNtal and its
implementation SLIM. Readers are referred to [26] for further details including
design principles and relation to other computational models.

3.1 Syntax of LMNtal

LMNtal is a programming and modeling language for describing graph rewrit-
ing systems composed of hierarchical graphs (which we will simply call graphs
henceforth) and rewrite rules. Graphs handled by LMNtal are (connected or
unconnected) undirected graphs with labeled nodes. The syntax of LMNtal is

Introducing Symmetry to Graph Rewriting with Process Abstraction 7

% Initial state
phi(L1,R1), {+R1,+L2},
phi(L2,R2), {+R2,+L3},
phi(L3,R3), {+R3,+L4},
phi(L4,R4), {+R4,+L5},
phi(L5,R5), {+R5,+L1},

% grab a left fork
({+X,+L}, phi(L,R) :- {-X,+L}, phi(L,R)),

% grab a right fork
({-X,+L}, phi(L,R), {+R,+Y} :- {-X,+L}, phi(L,R), {+R,-Y}),

% release forks
({-X,+L}, phi(L,R), {+R,-Y} :- {+X,+L}, phi(L,R), {+R,+Y}).

Fig. 2. A dining philosophers model (left) and its visualization by LaViT (right)

shown in Fig. 1. We call LMNtal graphs processes since the language was ini-
tially designed to model concurrency. The 0 stands for an empty process. A
graph node is called an atom and may have edges called links. Unlike standard
graphs found in the literature of graph theory and graph rewriting [20], the links
connected to an atom are totally ordered and each atom has a fixed arity (num-
ber of links). Atom names start with lowercase letters, and link names start with
capital letters. Each link name can occur at most twice in a process because it
expresses an endpoint of an edge. We call a link whose name occurs once in a
process a free link, and a link whose name occurs twice in a process a local link.
A molecule stands for parallel composition of processes. A membrane is provided
to introduce hierarchical structure to processes. A cell refers to processes con-
tained in a membrane, including the membrane itself. A cell could be considered
as a composite graph node. A rewrite rule is composed of two process templates.

Process templates are the same as processes except that they may contain
process contexts. A process context matches non-rule processes and works as a
wildcard in rewriting. Process contexts are to be specified within membranes.
Arguments of a process context specify what free links may or must occur in a
matched process; the details are omitted and can be found in [26].

There is a special binary atom = called a connector. An atom = (X,Y) fuses
link X and link Y and can be written as X = Y .

To give the connection between the above syntax and the graph structure
it represents3, Fig. 2 shows an example LMNtal program modeling the dining
philosophers problem, whose initial state forms a ring structure formed by atoms
(representing philosophers) and membranes (representing shared forks), and its
visualization by LaViT (LMNtal Visual Tool), a publicly available integrated
development environment of LMNtal. The unary atoms ‘+’(X) and ‘-’(X)
(representing “the fork is not in use” and “the fork is in use”, respectively) are
written as prefix operators +X and -X, respectively.

3 The details of this correspondence are beyond the scope of the present paper and
not described here.

8 T. Tomioka et al.

(E1) 0, P ≡ P (E2) P, Q ≡ Q, P (E3) P, (Q, R) ≡ (P, Q), R

(E4) P ≡ P [Y/X] if X is a local link of P

(E5)
P ≡ P

P, Q ≡ P , Q
(E6)

P ≡ P

{P} ≡ {P }
(E7) X = X ≡ 0 (E8) X = Y ≡ Y = X

(E9) X = Y, P ≡ P [Y/X] if P is an atom and X occurs free in P

(E10) {X = Y, P} ≡ X = Y, {P} if exactly one of X and Y occurs free in P

Fig. 3. Structural congruence on LMNtal processes [26]

We denote by P [Y/X] a process P whose links X are replaced with Y and by
P [Y ↔X] a process P with all occurrences of X and Y replaced by each other.
The set of all processes generated by the syntax rules is denoted as Proc. We
also denote the set of all atoms as Atom, and the set of all links as Link. We
may use metavariables p, q, . . . to indicate atoms, X,Y, . . . for links, P,Q, . . . for
processes, and T,U, . . . for process templates.

Unlike standard data structures like lists and trees, graphs whose links may
interconnect nodes in a arbitrary manner do not allow straightforward induc-
tive arguments. How to formalize concepts like symmetry and abstraction over
LMNtal’s powerful hierarchical graph structure is therefore a challenging topic.
However, terms generated by the LMNtal syntax have a tree structure, over
which structural congruence to be discussed in Sect. 3.2 is defined to allow an
interpretation of them as graphs or network of nodes (which in turn allow an
interpretation as processes, messages, data constructors etc.). Accordingly, we
use paths over a syntax tree to refer to elements of terms. Given a term P , we
consider a partial function �P � : N>0

∗ → {,, {}, :-, 0}∪Atom∪Link to refer
to individual occurrences of symbols. The symbol • expresses an empty sequence
of positive integers. �P � is defined inductively as follows:

�0�(π) := 0 (π = •) �p(X1, . . . , Xn)�(π) :=

{
p (π = •)
Xi (π = i)

�P,Q�(π) :=

⎧⎪⎨
⎪⎩
, (π = •)
�P �(ρ) (π = 1ρ)
�Q�(ρ) (π = 2ρ)

�{P}�(π) :=

{
{} (π = •)
�P �(ρ) (π = 1ρ)

�T :- U�(π) := T :- U (π = •)

As suggested by the above definition, we do not consider the internal structure
of rewrite rules. It is not difficult to see that there is one-to-one correspondence
between P and �P �. Note also that π is uniquely determined for all elements of
a term. Thus, we can regard π as the identifier of a syntactic element �P �(π).
Given terms P , Q and a path α, �P �[α �→ Q] denotes a term P with the subtree
rooted at α replaced by Q.

Introducing Symmetry to Graph Rewriting with Process Abstraction 9

(R1)
P −→ P

P, Q −→ P , Q
(R2)

P −→ P

{P} −→ {P } (R3)
Q ≡ P P −→ P P ≡ Q

Q −→ Q

(R4) {X = Y, P} −→ X=Y, {P} if X and Y occur free in {X = Y, P}
(R5) X = Y, {P} −→ {X = Y, P} if X and Y occur free in P

(R6) Tθ, (T :- U) −→ Uθ, (T :- U)

Fig. 4. Reduction relation on LMNtal processes [26]

3.2 Relations Between Processes

The syntax we introduced is not sufficient to represent the graph structure of
LMNtal processes. There is a pair of processes which are regarded as isomor-
phic but are not (yet) equal terms. For example, the names of local links and the
order of atoms are insignificant when interpreting processes as graphs with unla-
beled edges. To absorb these syntactic differences, LMNtal provides structural
congruence, which is an equivalence relation on processes, as defined in Fig. 3.

Next, we explain computation of LMNtal processes. Rewriting of processes
is defined by a reduction relation (−→) shown in Fig. 4. There are six rules of
which the most fundamental one is (R6). The θ in (R6) is a mapping from process
contexts in T to concrete processes. This means that the θ is identity if the rule
T :-U contains no process contexts. If a rewrite rule is applicable to multiple
subprocesses of a process, the language does not define which is rewritten, that
is, the rewriting can be nondeterministic.

For example, consider the LMNtal process with three rewrite rules:

p(P), waiting(P), q(Q), waiting(Q), semaphore,

(waiting(X) :- requesting(X)),

(requesting(X), semaphore :- processing(X)),

(processing(X) :- waiting(X), semaphore).

The first rewrite rule is applicable to two parts of the initial process. The state
space generated by this program is shown in Fig. 5. There are other structurally
congruent processes for each state, but here we have shown just one of those
processes. Rewrite rules in processes are omitted because all processes have the
same set of rules.

We normally avoid redundancy in discussion by equating structurally con-
gruent processes implicitly. However, this makes it difficult to discuss the effect
of structural congruence closely, which is exactly the topic of the present paper.
Consequently, unless stated otherwise, we deal with structural congruence explic-
itly via the relation ≡.

3.3 Semantics of LMNtal

Computation in LMNtal proceeds by applying rewrite rules to processes. In this
paper, we define the semantics �P � of a term P as its state space, i.e., the state
transition graph generated by nondeterministic rewriting.

10 T. Tomioka et al.

Fig. 5. State space of an LMNtal program (rules are omitted)

Fig. 6. State space diagrams of LMNtal programs generated by LaViT; Dining Philoso-
phers with one deadlock state (left), the semaphore program (middle) and the Peterson
algorithm with abstraction (right)

Definition 1. Semantics �P � of an LMNtal process P is a state transition graph
represented by a triplet SP , RP , P , where

1. SP is the set of all states reachable from P ,
2. RP is a binary relation on SP generated by LMNtal’s reduction rules,
3. P is the initial state.

In model checking, each state is augmented with a labeling function L :
SP → 2AP that judges whether the state satisfies each atomic proposition in
AP . An atomic proposition ap ∈ AP here is represented by an LMNtal term
T :-0. The left-hand side T works as a predicate on a process P and judges
whether T matches P or its subprocess. In other words, if T :-0 can rewrite P ,
P satisfies ap. By abuse of notation, we denote an augmented transition system
(SP , RP , P, L) also as �P �.

LaViT features a visualizer of �P �. Figure 6 shows the state space of the
dining philosophers program (Sect. 3.1), the semaphore program (Sect. 3.2) and
the Peterson algorithm (Sect. 6) visualized by LaViT.

4 Symmetry Reduction

Symmetry reduction [15] in model checking reduces the state space of a model
with the symmetry inherent in the model. We can obtain smaller state spaces by

Introducing Symmetry to Graph Rewriting with Process Abstraction 11

equating symmetric states. Symmetry reduction is achieved by defining equiva-
lent classes of states that preserve the transition relation. State spaces reduced
with such an equivalence is sound in CTL∗ (and hence LTL) model checking [7].

Although our process abstraction method presented in Sect. 5 reveals the
potential symmetry of a model, it is necessary to use symmetry reduction after
the abstraction in order to reduce the state space of the model. LMNtal and its
implementation SLIM have long exploited the symmetry of models implicitly,
but the formal argument of symmetry reduction has not been made so far. In
this section, we show how state spaces in LMNtal can be reduced by structural
congruence and symmetry reduction.We first redefine structural congruence as
a symmetric group of mapping between processes. Then we show that the group
enjoys the soundness condition of symmetry reduction.

4.1 Symmetric Group for Structural Congruence

The standard theory of symmetry reduction employs the notion of the symmetric
group of bijective mappings σ between states to define equivalence relations
between states. On the other hand, the structural congruence of LMNtal is
defined in a syntax-directed manner. In general, an equivalence relation has an
underlying symmetric group generating the relation. We redefine the structural
congruence as a symmetric group in order to discuss symmetry reduction in
LMNtal in a clearer way. That is, we define a symmetric group E of mappings
σ : Proc → Proc and prove that an equivalence relation on processes given by
E is equivalent to the structural congruence. This is not straightforward because
(E5) and (E6) of the structural congruence rules are defined inductively on the
LMNtal syntax. They make the definition of E somewhat tricky. Here we give
mappings corresponding to the structural congruence rules except (E5) and (E6)
as bases, and E is defined as the least fixed point of a generating function.

First, we define a family of fundamental mappings in Fig. 7. Each mapping
except σ1,n, σ4,X↔Y , σ7,X , and σ9,X,i maps the LHS to the RHS and the RHS
to the LHS of structural congruence rules. Note that if σ1,1 were defined just
like 0, P ↔ P , σ1,1 would not be bijective because σ1,1 maps 0,0, P and P
equally into 0, P . σ1,n defined in Fig. 7 maps multiple 0s into different processes
or themselves. σ4,X↔Y changes a local link name with a new link name which
does not occur in a source process. σ9,X,i corresponds to (E9) which is both an
introduction rule and an elimination rule of a connector. X stands for the name
of a link introduced or eliminated, and i stands for the position of the link. The
inverses of σ1,n, σ4,X↔Y , σ7,X , and σ9,X,i are themselves like other mappings.

Let E1 be {σ1,n | n ∈ N}, E2 be {σ4,X↔Y | X,Y ∈ Link}, E3 be {σ7,X |
X ∈ Link}, E4 be {σ9,X,i | X ∈ Link, i ∈ N>0}, and E5 be {σ2, σ3, σ8, σ10},
then a generating function F is defined as

F (A) :=
5⋃

i=1

Ei ∪ {σ ◦ τ | σ, τ ∈ A} ∪ {μ5σ | σ ∈ A} ∪ {μ6σ | σ ∈ A}.

12 T. Tomioka et al.

σ1,n(s) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s (s = 0, . . . ,0
k

, P ∧ 2n ≤ k)

0, . . . ,0
k−n

, P (s = 0, . . . ,0
k

, P ∧ n ≤ k < 2n)

0, . . . ,0
k+n

, P (s = 0, . . . ,0
k

, P ∧ 0 ≤ k < n)

σ2(s) :=
Q, P (s = P, Q)
s (otherwise)

σ3(s) :=

⎧⎪⎨
⎪⎩

P, (Q, R) (s = (P, Q), R)
(P, Q), R (s = P, (Q, R))
s (otherwise)

σ4,X↔Y (s) :=
s[X ↔ Y] (Either X or Y is local and the other is free in s)
s (otherwise)

σ7,X(s) :=

⎧⎪⎨
⎪⎩

X=X (s = 0)
0 (s = X=X)
s (otherwise)

σ8(s) :=
Y =X (s = X=Y)
s (otherwise)

σ9,X,i(s) :=

⎧⎪⎨
⎪⎩

P [Y/X] (s = X=Y, P and P is an atom and P (i) = X)
X=Y, P [2i X] (s = P and P is an atom and P (i) = Y)
s (otherwise)

σ10(s) :=

⎧⎪⎨
⎪⎩

{X=Y, P} (s = X=Y, {P} and exactly one of X and Y occurs free in P)
X=Y, {P} (s = {X=Y, P} and exactly one of X and Y occurs free in P)
s (otherwise)

Fig. 7. A family of fundamental mappings

where μ5σ and μ6σ are defined as

μ5σ(�s�)(π) :=

{
σ(�P �)(ρ) (s = P,Q ∧ π = 1ρ)
�s�(π) (otherwise),

μ6σ(�s�)(π) :=

{
σ(�P �)(ρ) (s = {P} ∧ π = 1ρ)
�s�(π) (otherwise).

The inverses of μ5σ and μ6σ are

(μ5σ)−1(�s�)(π) =

{
σ−1(�P �)(ρ) (s = P,Q ∧ π = 1ρ)
�s�(π) (otherwise),

(μ6σ)−1(�s�)(π) =

{
σ−1(�P �)(ρ) (s = {P} ∧ π = 1ρ)
�s�(π) (otherwise).

Now we construct a group E whose underlying set is the least fixed point of F
and whose multiplication is function composition. An equivalence relation ∼E

on Proc introduced by E is defined as follows:

Introducing Symmetry to Graph Rewriting with Process Abstraction 13

P ∼E Q ⇐⇒ ∃σ ∈ E. �Q� = σ�P �

Then, we can show that ≡ and ∼E are equivalent (proof in Appendix):

Theorem 1. For all processes P,Q ∈ Proc, P ≡ Q ⇐⇒ P ∼E Q.

4.2 Soundness of Structural Congruence

Let [s]E denote {σs | σ ∈ E}, the equivalence class of s ∈ Proc by a symmetric
group E. We denote some representative element of [s]E as rep([s]E). Now we
define �P �/≡ = (SP /≡, RP /≡, P/≡) as follows:

SP /≡ := {rep([s]E) | s ∈ SP }
RP /≡ := {(rep([s]E), rep([t]E)) | (s, t) ∈ RP }

P/≡ := rep([P]E)

For �P �/≡ to be sound with respect to model checking, it is sufficient that
σ ∈ E preserves the reduction relations. By the reduction rule (R3), we have

∀s, s′, t, t′ ∈ Proc, s −→ t ∧ s ≡ s′ ∧ t ≡ t′ =⇒ s′ −→ t′

⇔ ∀s, s′, t, t′ ∈ Proc, (∃σ, τ ∈ E, s −→ t ∧ s′ = σs ∧ t′ = τt) =⇒ s′ −→ t′

⇔ ∀s, s′, t, t′ ∈ Proc,∀σ, τ ∈ E, (s −→ t ∧ s′ = σs ∧ t′ = τt) =⇒ s′ −→ t′

⇔ ∀s, t ∈ Proc,∀σ, τ ∈ E, s −→ t =⇒ σs −→ τt.

Hence all mappings σ ∈ E satisfy the soundness of the reduction in symmetry
reduction: ∀s, t, (s, t) ∈ R =⇒ (σ(s), σ(t)) ∈ R. As a result, for all LTL
formula φ, �P �/≡ |= φ =⇒ �P � |= φ holds by a discussion similar to symmetry
reduction.

5 Process Abstraction

We propose a process abstraction method for introducing further symmetry
to reduce state spaces. Our method eliminates some details of processes in
order to make them equivalent under structural congruence. For example, in
the semaphore program in Sect. 3.2, the choice of the atom names p and q is
irrelevant in the sense that it does not affect the form of the state space; that is,
the state transition graphs are isomorphic up to the choice of these atom names.
This means that, unless the verification condition mentions those atom names
explicitly, p and q are not the essence of this model. Now we consider a variant
of the program which uses a special atom name # instead of p and q:

#(P), waiting(P), #(Q), waiting(Q), semaphore,

(waiting(X) :- requesting(X)),

(requesting(X), semaphore :- processing(X)),

(processing(X) :- waiting(X), semaphore)

14 T. Tomioka et al.

Fig. 8. Reduced state space of the semaphore program

The state space of this program (Fig. 8) is smaller than that of the previous
program (Fig. 5). Indeed, the change of these atom names can be shown to be
a graph homomorphism over the state space (Sect. 5.2), and we can still see in
Fig. 8 that these two processes are not in the processing state simultaneously.

In this way, we may be able to obtain reduced state spaces by abstracting
away some part of processes and thus enlarging equivalence classes based on the
structural congruence relation. We will explain how to perform process abstrac-
tion while keeping the soundness of model checking.

5.1 UPE, Unused Process Elimination

First, we give some notations to explain our algorithm. Suppose �P �(π) = p and
�P �(πi) = Xi (i = 1 . . . n). We denote the arity of an atom π as num(π) and the
atom connected to the ith argument as atom(π, i). The function membrane(π)
returns the innermost membrane containing π, which can be obtained by finding
the longest prefix π′ of π satisfying �P �(π′) = {}. If π is not contained in any
membrane, membrane(π) returns •. Conversely, by atoms(�P �, πM) we denote
a function that returns the set of all atom occurrences directly contained in a
membrane πM . If π = •, it returns the set of all atom occurrences not included in
any membrane. In addition, atoms(�P �) returns the set of all atom occurrences
of P , disregarding the membranes of P .

Algorithm 1 shows our algorithm UPE (Unused Process Elimination) for pro-
cess abstraction. If an atom name p occurs in a rewrite rule, atoms with the
name p may be rewritten by the rewrite rule. Let F be the set of atom names
occurring in the rewrite rules in a process. For each atom in the process, UPE
checks whether its name is contained in F and if not, marks it as removable.
An atom whose name is not in F will not be a target of rewriting, so deleting
the atom should make no difference to the behavior of a program. Because links
between an atom to be deleted and another atom must be retained, the endpoint
of a link connected to a deleted atom is terminated by a unary atom with a fresh
name (for which we use # in this paper) not occurring in P . Free links crossing
a membrane are terminated in the same way because arguments of a process
context may match these free links (Fig. 9). When all atoms directly included in
a membrane are deleted, UPE adds a special nullary atom in order to indicate
that there were some atoms in the membrane (Fig. 10). Added atoms and deleted
atoms are recorded in the set A and D for rewriting, respectively. Note that UPE

Introducing Symmetry to Graph Rewriting with Process Abstraction 15

Algorithm 1. UPE, Unused Process Elimination
function UPE(P)

A := ∅
D := ∅
F := atom names occurring in the rules of P
for each π in atoms(�P �) do

if �P �(π) �∈ F then
D := D ∪ {π}
for each i ∈ {1, . . . , num(π)} do

π′ = atom(π, i)
if �P �(π′) ∈ F or membrane(π) �= membrane(π′) then

A := A ∪ {(membrane(π), #, {(1, �P �(π, i))})}
end if

end for
end if

end for
for each membrane πM in �P � do

if atoms(�P �, πM) ⊆ D then
A := A ∪ {(πM , #, ∅)}

end if
end for
return updated P by adding A and deleting D

end function

Fig. 9. UPE keeps a link crossing a
membrane and terminates the end-
points of free links with # (drawn as •).
Atoms except # are drawn as circles.

Fig. 10. UPE inserts a special
nullary atom # (drawn as •) into
a membrane emptied during UPE.

does not delete any atoms whose names occur in the rewrite rules of P . That is,
a subgraph of P that matches some rewrite rule of P remains unchanged.

What UPE is able to abstract away is not limited to atom names; UPE can
also abstract graph structures as in Figs. 9 and 10.

5.2 UPE for State Spaces

We extend the abstraction function UPE to take state spaces as well. Given
a state space �P � = (SP , RP , P), UPE(�P �) = (S#

P , R#
P ,UPE(P)) denotes a

state space reduced by UPE, where SP
:= {UPE(s) | s ∈ SP } and RP

:=
{(UPE(s),UPE(t)) | (s, t) ∈ RP }. The following theorem states that UPE pre-
serves transitions in �P �, i.e., UPE is a graph homomorphism for state spaces
being considered.

Theorem 2. ∀s, t ∈ SP , (s, t) ∈ RP =⇒ (UPE(s),UPE(t)) ∈ RP
#.

16 T. Tomioka et al.

Now we show an important property of UPE.

Theorem 3. UPE(�P �) = �UPE(P)�.

This theorem is very important in practice because applying UPE to all states
is costly in constructing state space. Theorem 3 shows that applying UPE to the
initial state once is sufficient to reduce state space.

The structural congruence relation can make the size of UPE(�P �) defined
above smaller than the size of �P �. To show that, we first prove that UPE pre-
serves the structural congruence relation.

Theorem 4. ∀s, t ∈ Sp, s ≡ t =⇒ UPE(s) ≡ UPE(t)

The next theorem is an almost immediate consequence.

Theorem 5. For �P �/≡ = (SP/≡, RP/≡, P) and UPE(�P �/≡) = (S#
P/≡, R#

P/≡,

P #), we have |S#
P/≡| ≤ |SP/≡|, i.e., UPE does not increase the number of states

of �P �/≡.

How much smaller |S#
P/≡| becomes compared to |SP/≡| depends on individual

models. We will study the effect of UPE in Sect. 6.

5.3 Soundness of UPE

A model is a state space including a labeling function L mentioned in Sect. 3.3.
Since UPE can be regarded as an abstraction function, we discuss the soundness
of UPE for LTL model checking in terms of abstract interpretation. Given a model
�P � = (SP , RP , P, L) and its abstract model UPE(�P �) = (S#

P , R#
P ,UPE(P), L′),

UPE is called sound iff the following two conditions hold [4]:

∀s, t ∈ SP , (s, t) ∈ RP =⇒ (UPE(s),UPE(t)) ∈ R#
P

∀s ∈ SP , L(s) = L′(UPE(s))

Note that �P � and UPE(�P �) uses the same atomic propositions, which means
that L : SP → 2AP and L′ : S#

P → 2AP has the same codomain.
UPE must preserve labeling functions to satisfy the conditions above. Accord-

ingly, we modify UPE and add atom names occurring in atomic propositions in
φ to the set F (in Algorithm 1) of atom names occurring in the original UPE.
This prevents atoms which may affect the truth/falsity of atomic propositions
from being abstracted away. That is, this modification enables UPE to equalize
the results of labeling functions. It is clear that the modified UPE retains the
properties of UPE shown as Theorems 2–5.

Theorem 6. Given a process P and an LTL formula φ, the modified UPE sat-
isfies UPE(�P �) |= φ =⇒ �P � |= φ.

Introducing Symmetry to Graph Rewriting with Process Abstraction 17

6 Experiments

In order to confirm the effect of our proposed method, we measured the improve-
ment of the number of states for some benchmark programs. We created LMN-
tal programs by translating popular concurrent algorithms in the textbook [2]
and constructed their state spaces using SLIM. The translation was done man-
ually but in a straightforward manner that could be automated without diffi-
culty. Dekker, Peterson, Doran-Thomas, and Udding’s starvation-free algorithms
are algorithms for mutual exclusion of critical sections. The dining philosophers
problem is a model with five philosophers and a fork placed between each pair
of adjacent philosophers. When all the philosophers pick up their left forks first,
a deadlock may occur. However, if one philosopher is perverse and picks up the
right fork first, no deadlock will occur. We evaluated both the deadlock and non-
deadlock versions straightforwardly translated from the textbook description of
the algorithm. Note that they are less abstract, and have larger state space, than
the program in Fig. 2 that fully exploits the features of LMNtal.

These algorithms have potential symmetry because individual processes in an
original procedural algorithm are almost identical. However, processes symmetry
does not immediately appear because variables and process names differ.

We experimented on Dekker, Peterson, and Doran-Thomas algorithms with
two processes, Udding’s algorithm with three processes, and the dining philoso-
phers problem with five processes. The results are shown in Table 1. UPE reduced
the number of states by extracting the essential behavior and the symmetry of
a model. The exception was the non-deadlocking dining philosophers model for
which changing the behavior of one philosopher collapsed the symmetry.

Table 1. The effect of UPE on the number of states

Problem # of States # of States (UPE)

Dekker 364 182

Peterson 190 95

Doran-Thomas 576 288

Udding’s (3 processes) 7619 1478

Philosophers 16805 3365

Philosophers (no Deadlock) 16806 16806

The effect of UPE with different numbers of processes was measured for
Udding’s algorithm and the dining philosophers problem. The results are shown
in Figs. 11 and 12. In Udding’s algorithm, UPE reduced the number of states to
nearly 1/N ! times, N being the number of processes. This is because Udding’s
algorithm forms a star shape with semaphore variables in the center, and all per-
mutations of the N processes become isomorphic. Dekker, Peterson, and Doran-
Thomas algorithms also have a star topology, and the number of states of their

18 T. Tomioka et al.

models will be reduced to 1/N ! by UPE. However, in the dining philosophers
problem, UPE reduced the number of states only to 1/N of the non-UPE case
because philosophers and forks form a ring topology rather than a star topology.
Thus the effect of UPE depends on the symmetry of the topology of the model.

Fig. 11. Number of states of Udding’s
starvation-free algorithm

Fig. 12. Number of states of the dining
philosophers problem

7 Conclusion and Future Work

In this paper, we focused on the symmetry of graph structures in model checking
and proposed an abstraction method for strengthening the symmetry to reduce
the size of state spaces. Our method makes models more symmetric based on
equivalences built into the modeling language. We have shown that the method
preserves soundness with respect to model checking. Our experiments showed
that the proposed method reduces the size of state spaces when they are poten-
tially symmetric. It is important to note that our rather simple UPE algorithm
effectively introduced an abstraction method to an existing and working language
and system. This is achieved by reducing an equivalence relation introduced by
the abstraction to an equivalence relation inherent in the source language.

For future work, it is interesting to consider predicate abstraction in graph
rewriting systems. Predicate abstraction is a successful technique [11] that
divides domains of variables in programs depending on the truth values of pred-
icates. Rewrite rules describe the behavior of models in graph rewriting systems
and can also be considered as constraints on graphs. We used rather limited
information of rewrite rules for our abstraction, but obtaining graph constraints
by analyzing rewrite rules will enable more powerful abstraction.

Acknowledgments. The authors would like to thank anonymous reviewers for their
useful comments. This work was partially supported by Grant-in-Aid for Scientific
Research (B) JP18H03223, JSPS, Japan.

Introducing Symmetry to Graph Rewriting with Process Abstraction 19

References

1. Backes, P., Reineke, J.: Analysis of infinite-state graph transformation systems by
cluster abstraction. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015.
LNCS, vol. 8931, pp. 135–152. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46081-8 8

2. Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Addison-
Wesley, Boston (2006)

3. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Form. Methods Syst. Des. 9(1), 77–104 (1996)

4. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

5. Donaldson, A.F., Miller, A.: A computational group theoretic symmetry reduction
package for the Spin model checker. In: Johnson, M., Vene, V. (eds.) AMAST
2006. LNCS, vol. 4019, pp. 374–380. Springer, Heidelberg (2006). https://doi.org/
10.1007/11784180 29

6. Emerson, E.A., Havlicek, J.W., Trefler, R.J.: Virtual symmetry reduction. In: Pro-
ceedings o LICS 2000, pp. 121–131. IEEE Computer Society (2000)

7. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Methods Syst.
Des. 9(1–2), 105–131 (1996)

8. Feret, J.: An algebraic approach for inferring and using symmetries in rule-based
models. Electron. Notes Theor. Comput. Sci. 316, 45–65 (2015)

9. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. STTT 14(1), 15–40 (2012)

10. Gocho, M., Hori, T., Ueda, K.: Evolution of the LMNtal runtime to a parallel
model checker. Comput. Softw. 28(4), 4 137–4 157 (2011)

11. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

12. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, Boston (2003)

13. Jensen, K.: Condensed state spaces for symmetrical coloured Petri Nets. Form.
Methods Syst. Des. 9(1–2), 7–40 (1996)

14. Junttila, T.: On the symmetry reduction method for Petri Nets and similar for-
malisms. Ph.D. thesis, Helsinki University of Technology (2003)

15. Miller, A., Donaldson, A.F., Calder, M.: Symmetry in temporal logic model check-
ing. ACM Comput. Surv. 38(3), 8 (2006)

16. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

17. Norris, I.P.C., Dill, D.L.: Better verification through symmetry. Form. Methods
Syst. Des. 9(1), 41–75 (1996)

18. Rensink, A.: Isomorphism checking in GROOVE. Electron. Commun. EASST 1
(2006). https://doi.org/10.14279/tuj.eceasst.1.77

19. Rensink, A., Distefano, D.: Abstract graph transformation. Electron. Notes Theor.
Comput. Sci. 157(1), 39–59 (2006)

20. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formation. World Scientific, Singapore (1997)

21. Schmidt, K.: Integrating low level symmetries into reachability analysis. In: Graf,
S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 315–330. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0 22

https://doi.org/10.1007/978-3-662-46081-8_8
https://doi.org/10.1007/978-3-662-46081-8_8
https://doi.org/10.1007/11784180_29
https://doi.org/10.1007/11784180_29
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.14279/tuj.eceasst.1.77
https://doi.org/10.1007/3-540-46419-0_22

20 T. Tomioka et al.

22. Sistla, A.P., Godefroid, P.: Symmetry and reduced symmetry in model checking.
In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 91–103.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 9

23. Sistla, A.P., Gyuris, V., Emerson, E.A.: SMC: a symmetry-based model checker for
verification of safety and liveness properties. ACM Trans. Softw. Eng. Methodol.
9(2), 133–166 (2000)

24. Ueda, K.: Encoding distributed process calculi into LMNtal. Electron. Notes Theor.
Comput. Sci. 209, 187–200 (2008)

25. Ueda, K.: Encoding the pure lambda calculus into hierarchical graph rewriting. In:
Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 392–408. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70590-1 27

26. Ueda, K.: LMNtal as a hierarchical logic programming language. Theor. Comput.
Sci. 410(46), 4784–4800 (2009)

https://doi.org/10.1007/3-540-44585-4_9
https://doi.org/10.1007/978-3-540-70590-1_27

Double-Pushout Rewriting in Context
Rule Composition and Parallel Independence

Michael Löwe(B)

FHDW Hannover, Freundallee 15, 30173 Hanover, Germany
michael.loewe@fhdw.de

Abstract. Recently, we introduced double-pushout rewriting in context
(DPO-C) as a conservative extension of the classical double-pushout app-
roach (DPO) at monic matches. DPO-C allows non-monic rules such that
the split and merge of items can be specified together with determinis-
tic context distribution and joining. First results showed that DPO-C
is practically applicable, for example in the area of model refactoring,
and that the theory of the DPO-approach is very likely to carry over to
DPO-C. In this paper, we extend the DPO-C-theory. We investigate rule
composition and characterise parallel independence.

1 Introduction

The classical double-pushout approach to graph and model rewriting (DPO) [4,5]
uses spans of monic morphisms as rewrite rules in order to make sure that
rewrites are deterministic and reversible in any adhesive category [9]. Therefore,
DPO-rules can only specify deletion and addition of vertices and edges in any
graph-like category. We claim that, from the practical point of view, it is also
worthwhile to admit non-monic rules which allow the split and merge of items.

An intuitive example for such a rule in the application area of model refactor-
ing is depicted in Fig. 1.1 It specifies the extraction of an abstract type out of a
given type denoted by 1/2 in the rule’s left-hand side. The rule’s left-hand transi-
tion from L to K specifies that all incoming associations and outgoing inheritance
relations shall be connected to the more abstract type 1 and that all outgoing
associations and incoming inheritance relations shall be adjacent to the more
concrete type 2. This means, that the complete context of the refactored item
1/2 is distributed to the two split particles; nothing in the context is copied nor
deleted. The rule’s right-hand transition from K to R adds the necessary new
inheritance relation from the concrete to the abstract type.

In order to handle all adjacent edges of the item 1/2 correctly, we must
bind them to the representatives in the rule’s left hand side L. For this purpose
we will borrow a mechanism from AGREE-rewriting [1]. Given a match m for
the type 1/2 in a model M , we map the complete model M back to the rule’s
left-hand side L: all other types besides m(1/2) are mapped to the frame of

1 For more examples, see [11].
c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 21–37, 2019.
https://doi.org/10.1007/978-3-030-23611-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-23611-3_2

22 M. Löwe

Fig. 1. Type extraction

L, adjacent associations and inheritance relations of m(1/2) are mapped to the
suitable representatives in L, and all other associations and inheritance relations
are mapped to the loops on L’s frame. Thus, the frames of L, K, and R in the
rule stand for all other types that are not mentioned explicitly in the rule.

This inversion of the match offers a natural opportunity for negative appli-
cation conditions like in [6]. In Fig. 1 for example, there is no inheritance loop
on the type 1/2 such that the rule cannot be applied to ill-formed types with
such a loop.2 The negative application condition feature becomes more obvious,
if we consider the rule in Fig. 2. It specifies the removal of a useless type. The
type 1 is useless, since it has no outgoing and incoming associations and just one
incoming inheritance relation from a type that has no other outgoing inheritance
relations.

Fig. 2. Removal of useless abstraction

These example demonstrate, that splitting and merging items with controlled
handling of all the context can be a powerful specification mechanism. Thus, it is
worthwhile to extend DPO-rewriting by such mechanisms. We have introduced
such an approach in [11,12] which we called double pushout rewriting in context
DPO-C. In this paper, we provide more theoretical results for DPO-C which all
turn out to be natural extensions of the corresponding DPO-results. The paper is
organised as follows: Sect. 2 explains the categorical construction partial arrow
classifier which allows the above mentioned inversion of the match. DPO-C
is built on this feature. DPO-C is formally introduced in Sect. 3, which also
contains a summary of the results obtained in [12]. Sections 4 and 5 present new
theoretical results for rule composition/decomposition and parallel independence
respectively. Finally, Sect. 6 discusses possible future research.
2 Every well-structured object-oriented model shall be hierarchical.

Double-Pushout Rewriting in Context 23

B′ A′

A• X B A

A D D C

D′ C ′

(4)

(2)

f ′
h

hB

(3) fh

gh

hA

(PB)

(i,f)•

(1)f ′ f

g

ηA

f

i

(5)

g′

hD hC

g′
h

Fig. 3. Partial arrow classifier and commutative cube

2 Partial Arrow Classifier

For the above mentioned context matching, we need the categorical notion of
partial arrow classifiers. In this section, we formally introduce them, recapitulate
important and later used results, and illustrate by examples how classifiers are
constructed and how they contribute to the required inversion of matches.

Definition 1 (Partial arrow classifiers). A category has partial arrow clas-
sifiers, if for each object A there is monic morphism ηA : A � A• satisfying: For
every pair (i : D � X, f : D → A) of morphisms with monic i, there is a unique
morphism (i, f)• : X → A• such that (i,f) is the pullback of (ηA, (i, f)•), com-
pare left part of Fig. 3. The morphism (i, f)• is called the totalisation of (i, f).
We abbreviate (i, idA)

• by i•.

For categories with partial arrow classifiers, we know the following facts [8]:

Fact 2 (Properties of classified categories).

1. For d ◦ a = c ◦ b with monic a and c and arbitrary x such that x ◦ b is
defined, (a, x ◦ b)• = (c, x)• ◦ d, if and only if (a, b) is pullback of (c, d). For
the special case that x is the identity, we obtain: (a, b)• = c• ◦ d, if and only
if (a, b) is pullback of (c, d). The special case that b is the identity provides:
(a, x)• = (c, x)• ◦ d, if and only if (a, id) is pullback of (c, d).

2. All pushouts are hereditary: Pushout (f ′, g′) of (g, f) in sub-diagram (1) in
the right part of Fig. 3 is hereditary, if all commutative situations as in Fig. 3
where sub-diagrams (2) and (3) are pullbacks and hB and hC are monic
satisfy: (f ′

h, g′
h) is pushout of (gh, fh), if and only if sub-diagrams (4) and (5)

are pullbacks and hD is monic.
3. Pushouts preserve monomorphisms.
4. Pushouts of morphisms pairs (f, g) with monic g are pullbacks.

In the rest of this section, we present some sample classifiers in the categories of
sets, graphs, and simple object-oriented models.

24 M. Löwe

Fig. 4. Sample partial arrow classifiers in the categories Set and Graph

Example 3 (Classifier in the category Set of sets and maps). Given a set S,
the classifier object is defined as S• = S ∪ {X}, i. e. the union of S with the
final Set-object, and the classifier is the inclusion ηS : S � S ∪ {X}. The left
part of Fig. 4 shows a sample classifier for a four element set. It also shows an
example how the unique morphism (i, f)• : A → S•) is constructed for a pair
(i : D � A, f : D → S): Every element with a pre-image under i is mapped as
f does and all other elements are mapped to X .

Example 4 (Classifier in the category G of graphs).For a given graph G, the
classifier object G• adds the final graph object, i. e. a vertex X with a loop,
and an ‘undefined’ edge between every vertex in each direction. The classifier
ηG : G � G• is again the resulting inclusion. The right part of Fig. 4 shows a
sample classifier for a graph with two vertices, an edge between them, and a loop.
The edges that the classifier adds are painted as dotted arrows.3 Figure 4 also
depicts a sample ‘totalisation’ for a pair (i, f): All vertices and edges with pre-
image under i are mapped as f does, all other vertices are mapped to X , and all
other edges are mapped homomorphically to the uniquely determined suitable
‘undefined’ edge. Edges that are mapped to ‘undefined’ edges are painted as
dotted arrows in Fig. 4.

Example 5 (Classifier in the category M of simple object-oriented models).
Simple object-oriented models are algebras wrt. the following signature.4

M(odel) = sorts Type [painted as: �],
Inheritance [painted as: �],
Association [painted as: →]

opns child, parent: Inheritance −→ Type
owner, target: Association −→ Type

They are graph-like structures that distinguish two sorts of edges, namely asso-
ciations and inheritance relations. Thus, the classifier for a model adds the final
model, i.e. an ‘undefined’ type X together with an association and an inheri-
tance loop, and an ‘undefined’ association and an ‘undefined’ inheritance rela-
tion between every type in each direction. Figure 5 depicts the classifier for a
3 Two-headed arrows stand for a pair of arrows one in each direction.
4 The examples in the introduction also use this underlying category.

Double-Pushout Rewriting in Context 25

Fig. 5. Sample partial arrow classifier in the category M

model with three types, i. e. type A with two specialisations E and C, and an
association from C to A. The left part of Fig. 5 shows a totalisation (i, f)• for a
pair (i, f) and the right part a totalisation m• for a pair (m, id).5

The latter demonstrates the inversion of matches capability of totalisations.
For a monic match m : L � M , the totalisation m• : M → L• binds all items in
M to suitable representatives in L•: All items in L are identically reflected, since
m• ◦m = ηL, all associations and inheritance relations adjacent to items in L are
bound to a unique structural compatible ‘undefined’ association or inheritance
relation in L•, and all other context is mapped to the final model in L•.

3 DPO-Rewriting in Context

This section presents DPO-C by summarising definitions and results of [11].

Assumption 6 (Basic category). For the rest of the paper, we assume an
adhesive category with partial arrow classifiers.

A category is adhesive if (i) it has all pullbacks and (ii) it has pushouts along
monomorphisms which are all van-Kampen squares. A pushout (f ′, g′) of (g, f)
as (1) in the right part of Fig. 3 is van-Kampen, if, for every commutative diagram
as depicted in Fig. 3 in which sub-diagrams (2) and (3) are pullbacks, (f ′

h, g′
h) is

pushout of (gh, fh), if and only if sub-diagrams (4) and (5) are pullbacks.

5 Again, the associations and inheritance relations the classifier adds and the associ-
ations and inheritance relations which are mapped to them by the totalisation are
painted as dotted arrows.

26 M. Löwe

L• R•

LC C RC

L K R

G D H

c•
l

lc rc

c•
r

m

ηL

cl

(PO)
n

l

c

r

p

ηR

cr

m•

m′

g h

n′ p′

p•

Fig. 6. DPO-C rule, match, and derivation

Definition 7 (DPO-C-rule). A rule (l : K → L, c : K � C, r : K → R) is a
triple of morphisms such that the context specification c is monic and, given the
pushouts (cl : L � LC , lc : C → LC) and (cr : R � RC , rc : C → RC) of (l, c)
and (r, c) respectively, the morphisms c•

l and c•
r are monic, compare Fig. 6.6

The special rule format makes sure that items in LC which are not in L,
have a ‘unique pre-image’ under lc. Thus, DPO-C does not allow any copying
or deletion of contexts. Context can only be distributed to split particles. The
symmetric restriction of the right side will ensure reversibility of rewrites.

Definition 8 (DPO-C-match and -derivation). Given rule σ = (l : K →
L, c : K � C, r : K → R), a monomorphism m : L � G is a match, if
the following match condition is satisfied: The morphism m• : G → L• factors
through LC , i. e. there is m′ : G → LC such that c•

l ◦ m′ = m•.
A derivation with rule σ at match m is constructed as follows, compare Fig. 6:

1. Construct pullback (g : D → G,n′ : D → C) of (m′ : G → LC , lc : C → LC).
2. Let n : K � D be the unique mediating morphism for this pullback for

(m ◦ l, c). By pullback decomposition and Fact 2(4) for pushout (lc, cl), (l, n)
is pullback of (g,m). Since pullbacks preserve monomorphisms, n is monic.

3. Construct pushout (h : D → H, p : R � H) of (n : K � D, r : K → R). The
morphism p is monic by Fact 2(3).

Remarks. Note that we restrict matches to monomorphisms. The morphism m′

which satisfies the matching condition is unique, if it exists, since c•
l is monic.

The morphism n can be constructed in Step 2 of Definition 8, since c•
l ◦m′ ◦m =

m• ◦ m = ηL = c•
l ◦ cl implies m′ ◦ m = cl due to c•

l being monic.

Fact 9 (Rewrite properties). The sub-diagrams of a derivation with rule σ =
(l, c, r) at match m as depicted in Fig. 6 have the following properties:

1. (m, idL) and (n, idK) are pullbacks of (m′, cl) and (n′, c) respectively.
2. (m, g) and (m′, lc) are pushouts of (l, n) and (g, n′) respectively.
6 The pushout morphisms cl and cr are monic by Fact 2 (3).

Double-Pushout Rewriting in Context 27

3. Because there is unique morphism p′ : H → RC for pushout (p, h) such that
p′ ◦ p = cr and p′ ◦ h = rc ◦ n′,
(a) (h, n′) and (p, idR) are pullbacks of (rc, p

′) and (p′, cr) respectively,
(b) c•

r ◦ p′ = p•, and
(c) (rc, p

′) is pushout of (n′, h).

DPO-C rewrites deterministic up to isomorphism justifying a special notation:

Notation 10 (Rewrite). In a derivation with rule σ at match m as in Def-
inition 8, the result H is denoted by σ@m, the span (g, h) is called the trace,
written σ 〈m〉, and morphism p constitutes the co-match, written m 〈σ〉.

Every DPO-C-rewrite is reversible: If we denote the inverse rule for a rule
(l, c, r) by σ−1 = (r, c, l) and the inverse trace for a trace (g, h) by (g, h)−1 =
(h, g), then, for any trace σ 〈m〉 and co-match m 〈σ〉, there is a trace σ−1 〈m 〈σ〉〉
and co-match m 〈σ〉 〈

σ−1
〉

such that σ−1 〈m 〈σ〉〉 = σ 〈m〉−1 and m 〈σ〉〈
σ−1

〉
= m.

DPO-C rewriting is a conservative extension of the DPO approach with linear
rules at monic matches: if we define the DPO-C-simulation of a left- and right-
linear DPO-rule � = (l : K � L, r : K � R) by σ� = (l, ηK , r), then, for any
match m : L � G, � 〈m〉 = σ� 〈m〉 and m 〈�〉 = m 〈σ�〉.7

4 Rule Composition and Decomposition

The analysis with respect to rule composition and decomposition investigates
how more complex rules can be built up from and decomposed into more elemen-
tary parts. In the DPO-approach two rules �1 = (l1 : K1 � L1, r1 : K1 � R1)
and �2 = (l2 : K2 � L2, r2 : K2 � R2) can be composed, if R1 = L2. The com-
position is given by the standard notion of span composition8 by constructing
the pullback of the first rule’s right-hand side and the second rule’s left-hand side
morphism, i. e. �2 ◦ �1 = (l1 ◦ l′2 : K12 → L1, r2 ◦ r′

1 : K12 → R2) where (l′2, r
′
1) is

pullback of (r1, l2), compare upper part in Fig. 7. The composition �2 ◦ �1 is a
span of monomorphisms, since pullbacks preserve monomorphisms.

In the DPO-approach, it is easy to show that rule composition leads to
trace composition in derivations, i. e. (�2 ◦ �1) 〈m〉 = �2 〈m 〈�1〉〉 ◦ �1 〈m〉 and
m 〈�2 ◦ �1〉 = m 〈�1〉 〈�2〉 for any match m. Consider Fig. 7 where �1 = (l1, r1),
�2 = (l2, r2), �2 ◦ �1 = (l1 ◦ l′2, r2 ◦ r′

1), �1 〈m1〉 = (g1, h1), m1 〈�1〉 = m2, and
�2 〈m1 〈�1〉〉 = (g2, h2). Construct (g′

2, h
′
1) as pullback of (h1, g2) which pro-

vides morphism p12 making the diagram commutative. By Fact 2(4), (r1, n1)
and (l2, n2) are pullbacks. By pullback composition and decomposition, (r′

1, p12)
and (l′2, p12) are pullbacks as well. Hereditariness Fact 2(2) guarantees that
(n1, g

′
2) and (n2, h

′
1) are pushouts. Finally, pushout composition produces the two

required pushouts for the application of the composed rule, namely (m1, g1 ◦ g′
2)

and (p2, h2 ◦ h′
1).

7 If (m, g) and (p, h) are pushouts of (n, l) resp. (n, r) in a DPO-derivation with rule
� = (l, r) at match m, we denote the trace (g, h) by � 〈m〉 and co-match p by m 〈�〉.

8 See [13] for composition of partial maps and especially composition of monic spans.

28 M. Löwe

K12

L1 K1 K2 R2

R1 = L2

D12

G D1 D2 H2

H1

p12

l′2 r′
1

m1 n1

l1
r1

n2

l2

r2

p2

g′
2

h′
1

g1

h1 g2

h2

p1=m2

Fig. 7. Rule composition in DPO

This analysis shows that most rewrite rules are compositions of more elemen-
tary rules. In the category of graphs for example, every DPO-rule can be built
up by elementary rules which add or delete a single item, i. e. either an edge or
a vertex without adjacent edges.9

For the composition of DPO-C-rules, coincidence of the first rule’s right-hand
side with the second rule’s left-hand side is not sufficient. We have to take the
context specification into account as well.

Definition 11 (Rule composition). Two DPO-C rules σ1 = (l1, c1, r1) and
σ2 = (l2, c2, r2) can be composed, if c1r = c2l . The composition σ2 • σ1 = (l1 ◦
l′2, c12, r2◦r′

1) is defined by the pullback (l′2, r′
1) of (r1, l2), the pullback (l12c , r12c) of

(r1c , l2c), and the morphism c12 making the diagram commutative, compare upper
part of Fig. 8.

Proposition 12 (Composed rule). Rule composition is well-defined.

Proof. We must show that the composed rule satisfies the requirements of Defi-
nition 7. Consider the upper part of Fig. 8. By Fact 2(4), (c1, r1) and (c2, l2) are
pullbacks. By pullback composition and decomposition, (l′2, c12) and (r′

1, c12)
are pullbacks and, since pullbacks preserve monomorphisms, c12 is monic. Now,
the van-Kampen-property guarantees that (l12c , c1) and (r12c , c2) are pushouts of
(c12, l′2) and (c12, r′

1) respectively. Finally, pushout composition provides the two
pushouts (c1l , l

1
c ◦ l12c) and (c2r, r

2
c ◦r12c) of (l1 ◦ l′2, c12) and (r2 ◦r′

1, c12) respectively
which satisfy the requirements of Definition 7. ��

As in the DPO-approach, composition of rules is consistent with derivations.

Proposition 13 (Composition of derivation). Given a composition σ2 •σ1
of DPO-C rules σ1 and σ2 and a derivation σ1@m1 with co-match m1 〈σ1〉, there
is a derivation (σ2 • σ1)@m1, if and only if there is a derivation σ2@m1 〈σ1〉. In
this case, traces and co-matches of the two derivations satisfy (σ2 • σ1) 〈m1〉 =
σ2 〈m1 〈σ1〉〉 ◦ σ1 〈m1〉 and m1 〈σ2 • σ1〉 = m1 〈σ1〉 〈σ2〉.
9 To my knowledge, rule and trace composition has never been investigated in isolation
in the DPO-approach. Some aspects are handled within the concurrency theorem [4].

Double-Pushout Rewriting in Context 29

L•
1 R•

1 = L•
2 R•

2

C12

L1
C C1 C2 R2

C

L2
C = R1

C

K12

L1 K1 K2 R2

R1 = L2

D12

G D1 D2 H2

H1

n′
12

c12

r12
c

l12c(l1c)
•

l1c

r1
c l2c

r2
c

(r2
c)

•(c1r)
•=(c2l)

•

p12

l′2
r′
1

m1

c1l
c1

n1

l1
r1

c2

n2

l2

r2

c2r

p2

c1r=c2l

g′
2

h′
1

m′
1

n′
1

g1

h1

n′
2

g2

h2

p′
2

p′
1=m′

2

p1=m2

Fig. 8. Rule composition in DPO-C

Proof. Consider Fig. 8 which depicts the composition (l1 ◦ l′2, c12, r2 ◦ r′
1) of the

rules σ1 = (l1, c1, r1) and σ2 = (l2, c2, r2) in the upper and the derivation with
σ1 at match m1 by the pullback (g1, n′

1) and pushout (p1, h1) in the left part.
“⇐”: If we have the derivation with rule σ2 at match p1 = m2, there is pull-

back (g2, n′
2) and pushout (p2, h2). Construct pullback (g′

2, h
′
1) of (h1, g2) which

provides morphisms p12 and n′
12 making the resulting diagram commutative.

Pullbacks (g′
2, h

′
1) and (g2, n′

2) compose, such that (g′
2, n

′
12) is pullback by

pullback decomposition, since (l12c , r12c) is pullback as well. By pullback com-
position, (g1 ◦ g′

2, n
′
12) is the left-hand side of the derivation with σ2 • σ1 at

match m1.
Since (l2, n2) is pullback by Definition 8, pullback composition and decompo-

sition guarantee that (l′2, p12) is pullback. By van-Kampen, (h′
1, n2) is pushout

of (p12, r′
1). Pushout composition provides (p2, h2 ◦h′

1) as pushout of (r2 ◦r′
1, p12)

which is the right-hand side of the derivation with σ2 • σ1 at match m1.
“⇒”: If we have the derivation with rule σ2•σ1 at match m1, there is pullback

(g1 ◦ g′
2, n

′
12) and pushout (p2, h2 ◦ h′

1) which can both be decomposed into pull-
backs (g1, n′

1) and (g′
2, n

′
12) resp. into pushouts (n2, h

′
1) and (p2, h2) the second of

which is the right-hand side of the derivation with σ2 at match m2. The pushout
(n2, h

′
1) provides two mediating morphisms g2 and n′

2 and the pullback (g′
2, n

′
12)

provides the mediating morphism p12 making the diagram commutative. Now,
(l′2, r

′
1) and (l′2, p12) are pullbacks10 and (m2, h1) and (n2, h

′
1) are pushouts such

that the van-Kampen-property provides pullbacks (g′
2, h

′
1) and (l2, n2) the first

of which is the composition of the traces (g1, h1) for σ1 and (g2, h2) for σ2.

10 The latter by pullback decomposition of (c12, l′2).

30 M. Löwe

Fig. 9. Rule decomposition

It remains to show that (g2, n′
2) is pullback of (l2c , p′

1). The pullbacks (g′
2, n

′
12),

(idK1 , n1), (idK12 , p12), and the trivial pullback (idk12 , l
′
2) of (idK1 , l

′
2) together

with the pushout (c1, l12c) provide pushout (n1, g
′
2) of (l′2, p12) by van-Kampen.

By pushout composition/decomposition, we conclude that (m2, g2) is pushout of
(l2, n2). Pullbacks (idK12 , p12) of (c12, n′

12)
11 and (idK12 , r

′
1) of (r′

1, idK2) together
with pushouts (c2, r12c) and (n2, h

′
1) lead to pullbacks (n′

12, h
′
1) of (r12c , n′

2) and
(n2, idk2) of (c2, n′

2) again by van-Kampen. A final application of the van-
Kampen-property to pullback (n2, idk2), trivial pullback (idK2 , l2) of (idL2 , l2)
and pushouts (l2c , c

2
l) and (m2, g2) provides pullback (g2, n′

2) of (m′
2, l

2
c). ��

Corollary 14 (Decomposition of derivations). Derivations with a com-
posed rule σ • σ′ can be decomposed into derivations with the component rules,
i. e. (σ • σ′) 〈m〉 = σ 〈m 〈σ′〉〉 ◦ σ′ 〈m〉 for every match m for σ • σ′.

Proof. Consequence of Property 13 and the fact that every σ • σ′-match is σ′-
match.

This analysis demonstrates that DPO-C derivations possess the same compo-
sition and decomposition properties as simple pushouts in arbitrary categories.
Furthermore, Property 13 and Corollary 14 show that more complex DPO-C
rules can be built up by more elementary rules. In the category of graphs, these
elementary rules consist of the rules that add or delete a single item, which are
well-known from DPO-rewriting, rules that split a single edge or vertex into two
items (with context distribution in the case of vertices), and rules which merge
two items.

Example 15 (Decomposition). The rule “type extraction” in Fig. 1 in the intro-
duction formulates two actions, namely the split of class 1/2 into classes 1 and
2 with a distribution of all adjacent context edges and the addition of a single
edge between classes 1 and 2. We can make these elementary actions explicit by
decomposing the rule into two simpler rules. These rules are depicted in Fig. 9.

11 See Rewrite Property 9(1).

Double-Pushout Rewriting in Context 31

Fig. 10. Rule composition: reusing useless abstraction

In the left lower part is the rule for the split. Its right-hand side is the identity.
In the right lower part is the rule for the addition. Its left-hand side is the iden-
tity. The original rule is re-obtained by the pullback (pair of identity morphisms
here) of the first rule’s right-hand side and the second rule’s left-hand side.

Decomposing rule “removal of useless abstraction” in Fig. 2 will also result
in two elementary actions, namely a deletion of a single edge and a merge of 2
vertices.

Example 16 (Composition). The two rules “removal of useless abstraction” and
“type extraction” in the introduction, compare Figs. 2 and 1 respectively, can be
composed, since the right-hand side of the first rule coincides with the left-hand
side of the second rule. Figure 10 depicts both rules and their composition. The
result is a rule “reusing useless abstraction” whose overall effect is the redis-
tribution of the context associations of class 2 to classes 1 (in-coming) and 2
(out-going). The actions of this rule are: (1) delete the inheritance relation, (2a)
split class 1 into classes 11 and 12 and connect the only possible sort of context
edges to class 11, (2b) split class 2 into classes 21 and 22 and distribute the
context edges such that all in-coming ones get connected to 21 and all out-going
ones are connected to 22, (3) merge the classes 11 and 21 to 1 as well as 12 and 22
to 2, and (4) add an inheritance relation between sub-class 2 and super-class 1.

5 Analysis and Characterisation of Parallel Independence

Parallel independence analysis investigates the conditions under which two
rewrites of the same object can be performed in either order and produce the
same result. Essential for the theory is the notion of residual match: Under which
conditions are two matches mG : L � G and mH : L � H for a rule’s left-hand
side L the same match, if there is a trace (g : D → G,h : D → H)? The DPO-
answer is: mG and mH are the same, if there is mD : L � D with g ◦mD = mG

and h ◦ mD = mH , compare [7]. This answer is not sufficient for DPO-C, since

32 M. Löwe

Fig. 11. Fake residual

we need to take the context matches into account as well, i. e. m•
G, m•

D, and m•
H

shall classify the ‘same objects’ in the same way. An example for inconsistent
classification is given by Example 17.

Example 17 (Fake residual). Consider Fig. 11 which, in the category Set, shows
a trace (g : D → G,h : D → H), a match m : L � G, and a candidate map
mD : L � D for a residual of m. We have g ◦ mD = m, but the classification
m•, m•

D, and (h◦mD)• are inconsistent. The map m•
D classifies the items 1’ and

2’ as undefined, while g(1′) and h(2′) are not classified as undefined by m• and
(h ◦ mD)• resp. Thus, we neither have m• ◦ g = m•

D nor (h ◦ mD)• ◦ h = m•
D.

This analysis demonstrates that m•
G, m•

D, and m•
H classify the ’same objects’

in the same way only if m•
G ◦ g = m•

D and m•
H ◦ h = m•

D. By Fact 2 (1), this is
equivalent to requiring that (idL,mD) is pullback of (mG, g) and (mH , h).12

Definition 18 (Residual). Let (g : D → G,h : D → H) be a trace of a direct
derivation and m match for rule σ in G. A match m(g,h) for σ in H is the
residual of m for trace (g, h), if there is morphism mD from the left-hand side
L of σ to D such that (idL,mD) is pullback of (m, g) and (m(g,h), h).13

The pullback properties uniquely determine the residual, if it exists. Two
derivations are parallel independent, if there are mutual residuals.

Definition 19 (Parallel independence). Two derivations with rules σ1 and
σ2 at matches m1 and m2 resp. rewriting the same object are parallel indepen-
dent, if m1 has a residual for σ2 〈m2〉 and m2 has a residual for σ1 〈m1〉.
12 This condition is identical to the one in [3].
13 This notion of residual is a conservative extension of the notion for DPO-rewriting

with monic rules at monic matches, since traces become monic in this case as well
and it is easy to see that a triangle g ◦ mD = m with monic g is a pullback diagram.

Double-Pushout Rewriting in Context 33

L1
C C1 R1

C

L•
2 L1 K1 R1

L12

L2
C L2 G D1 H1

l1c r1
c

(π1,π2)′

m1

c1l
(i,π2)′

n1

l1

c1

r1

j

p1

c1r

i
π1

π2(c2l)
•

m21

c2l m2

m′
2

m′
21

g1 h1

(h1◦m21)′

Fig. 12. Residual by independence

In [11,12], we proved that parallel independent derivations are confluent.

Theorem 20 (Confluence). If derivations with rules σ1 and σ2 at matches
m1 and m2 are parallel independent, then the derivations with the mutual resid-
uals m

σ2〈m2〉
1 and m

σ1〈m1〉
2 produce the same result up to isomorphism, i. e. we

can choose σ1@m
σ2〈m2〉
1 = σ2@m

σ1〈m1〉
2 . Additionally, the two traces of the two

involved derivation sequences can be chosen, such that:

σ2

〈
m

σ1〈m1〉
2

〉
◦ σ1 〈m1〉 = σ1

〈
m

σ2〈m2〉
1

〉
◦ σ2 〈m2〉 .

The parallel independence criterion of Definition 19 for confluence is not easy
to check, since it requires the calculation of two complete derivations. Here, we
seek for a better criterion that can be checked on the basis of the participating
rules and matches only. Since the DPO-C approach to rewriting is much simpler
than the general AGREE-framework, we do not need the heavy machinery of
[10] for this purpose. For our analysis, the criteria in [2] provide a solid basis.
We reduce the complexity for the confluence check by providing an easy to check
characterisation for the existence of residuals.

Definition 21 (Independent match). Given rule σ1 = (l1 : K1 → L1, c1, r1),
the left-hand side (c2l : L2 � L2

C , (c2l)
• : L2

C � L•
2) of another rule σ2, two

matches m1 : L1 � G and m2 : L2 � G, and the pullback (π1 : L12 � L1, π2 :
L12 � L2) of the matches m1 and m2, then m2 is independent of m1, if there
is morphism i : L12 � K1 satisfying:14

1. r1 ◦ i is monic,
2. (i, idL12) is pullback of (π1, l1) and (r1, r1 ◦ i), and

14 Compare Fig. 12.

34 M. Löwe

L12 L12

L1 K1

G D1

L2 L2

(4)

(2)

π2

π1

(3) π2

idL12

i

(1)m1 n1

l1

(5)

g1

m2
m21

idL2

Fig. 13. Characterisation—left-hand side

3. (r1 ◦ i, π2)• : R1 → L•
2 factors through L2

C , i. e. there is j : R1 → LC
2 such

that (r1 ◦ i, π2)• = (c2l)
• ◦ j.

Proposition 22 (Existence of residuals). A match m2 for rule σ2 is inde-
pendent of match m1 for σ1, if and only if m2 has a residual for trace σ1 〈m1〉.
Proof. “⇐”: Consider Fig. 12. If m2 has a residual for σ1 〈m1〉, there is m21 such
that (i)h1◦m21 is monic, (ii) (m21, idL2) is pullback of (m2, g1) and (h1◦m21, h1),
and (iii) there is (h1 ◦ m21)′ such that (c2l)

• ◦ (h1 ◦ m21)′ = (h1 ◦ m21)•.
Now, consider Fig. 13 where sub-diagrams (1), (4), and (5) are given as pull-

backs. Construct pullback (L12, π2, idL12) of (π2, idL2). This provides morphism
i : L12 � K1 making the diagram commute. Since (4) and (π2, idL12) as well as
(1) are pullbacks, pullback composition and decomposition properties guarantee
that (3) is pullback. Since (5)+(3) and (4) are pullbacks

(i, idL12) is pullback of (π1, l1) (1)

Now, consider Fig. 14 where sub-diagrams (1), (4), and (5) are given as pullbacks.
Construct pullback (3) as (X,x, y) of (p1, h1◦m21) such that (h1◦m21)◦x = p1◦y.
This provides unique morphism z : L12 → X such that (2) becomes pullback
as well, i. e. (i, z) is pullback of (y, r1). Since (1)+(2) and (5) are pullbacks, the
outer square in Fig. 14 is pullback, such that we can choose X = L12, z = idL12 ,
y = r1 ◦ i, and x = π2. Thereby and by the fact that (3) is pullback, we obtain:

r1 ◦ i is monic and (i, idL12) is pullback of (r1 ◦ i, r1) (2)

Since (r ◦ i, π2) is pullback of (p1, h ◦ m21), Fact 2(1) provides (r1 ◦ i, π2)• =

(h1 ◦ m21)
• ◦ p1

(iv)
= (c2l)

• ◦ (h1 ◦ m21)
′ ◦ p1. Thus, (r ◦ i, π2)• factors through L2

C

and there is j with

j = (h1 ◦ m21)
′ ◦ p1 and (r ◦ i, π2)• = (c2l)

• ◦ j (3)

Properties (1), (2), and(3) show that match m2 is independent of match m1.
“⇒”: Consider again Fig. 12. If match m2 is independent of match m1, there
are morphisms i and j, such that (iv) r1 ◦ i is monic, (v) (i, idL12) is pullback of

Double-Pushout Rewriting in Context 35

L12 L12

K1 R1

D1 H1

L2 L2

(4)

(2)

π2

i

(3) π2

idL12

r1◦i

(1)n1 p1

r1

(5)

h1
m21 h1◦m21

idL2

Fig. 14. Characterisation—right-hand side

(π1, l1) and (r1, r1 ◦ i), and (vi) (r1 ◦ i, π2)• = (c2l)
• ◦ j. This implies (i, π2)• =

(r1 ◦i, π2)• ◦r1 =
(
c2l

)• ◦(j ◦ r1) such that (i, π2)• factors through L2
C . In Fig. 12,

(j ◦ r1) is denoted by (i, π2)′.
Here, we have pullbacks (1), (2), and (4) and pushout (1) given in Fig. 13.

Construct pullback (5) as (X,x,m21) of (m2, g1). This provides unique mor-
phism y : L12 → X making the diagram commutative and pullback (3) as (i, y)
of (n1,m21). Since sub-diagram (1) is also pushout, the van-Kampen-property
guarantees that (π2, x) is pushout of (idL12 , y). Since pushouts can be chosen to
preserve identities15, x = idL2 and y = π2. Thus,

(i, π2) is pullback of (n1,m21) and (m21, idL12) is pullback of (m2, g1) (4)

In Fig. 14, sub-diagrams (1), (2), and (4) are given as pullbacks and (1) as
pushout. Construct the pushout (idL2 , π2) of (π2, idL12). This provides unique
morphism x : L2 → H1 making the diagram commutative which means that
x = h1 ◦ m21. By hereditariness (Fact 2(2)), sub-diagram (3) is pullback and

h1 ◦ m21 ismonic and (m21, idL2) is pullback of (h1 ◦ m21, h1). (5)

With Eqs. (4) and (5), it remains to show that (h1 ◦ m21)
• factors through L2

C .
Since m2 is match, we know that m•

2 factors through L2
C , i. e. there is m′

2 such
that m•

2 =
(
c2l

)• ◦ m′
2. By Fact 2(1) and (m21, idL12) being pullback of (m2, g1),

m•
21 = m•

2 ◦ g1 =
(
c2l

)• ◦ (m′
2 ◦ g1) such that m•

21 factors through L2
C , i. e. there

is m′
21 with m•

21 =
(
c2l

)• ◦m′
21 and m′

2 ◦g1 = m′
21. By Fact 2(1) and (i, π2) being

pullback of (n1,m21),

(
c2l

)• ◦ m
′
21 ◦ n1 = m•

21 ◦ n1 = (i, π2)• =
(
c2l

)• ◦ (i, π2)′ =⇒ m
′
21 ◦ n1 = (i, π2)′

Again by Fact 2(1) and (id, i) being pullback of (r1, r1 ◦ i)
(
c2l

)• ◦ (i, π2)′ = (i, π2)• = (r1 ◦ i, π2)• ◦ r1 =
(
c2l

)• ◦ j ◦ r1 =⇒ (i, π2)′ = j ◦ r1

15 More precisely, pushouts preserve isomorphisms.

36 M. Löwe

By these results, we obtain: m•
21◦n1 = (r1 ◦ i, π2)

•◦r1 and m′
21◦n1 = j◦r1. Two

times Fact 2(1) and the two pullbacks (id,m21) of (h1, h1 ◦ m21) and (π2, r1 ◦ i)
of (p1, h1 ◦ m21)16 guarantee that

(h1 ◦ m21)
• ◦ p1 = (r1 ◦ i, π2)

• and (h1 ◦ m21)
• ◦ h1 = m•

21

Thus, (h1 ◦ m21)
• is the unique mediating morphism for pushout (h1, p1) and the

pair (m•
21, (r1 ◦ i, π2)

•). Since we also have m′
21 ◦n1 = j ◦ r1, there is (h1 ◦ m21)

′

with (h1 ◦ m21)
′ ◦p1 = (r1 ◦ i, π2)

′ = j and (h1 ◦ m21)
′◦h1 = m′

21. This provides
[(

c2l
)• ◦ (h1 ◦ m21)

′
]

◦ p1 =
(
c2l

)• ◦ j = (r1 ◦ i, π2)
• and

[(
c2l

)• ◦ (h1 ◦ m21)
′
]

◦ h1 =
(
c2l

)• ◦ m′
21 = m•

21.

Therefore,
(
c2l

)• ◦ (h1 ◦ m21)
′
is also a mediating morphism for pushout (h1, p1)

and the pair (m•
21, (r1 ◦ i, π2)

•). Thus,
(
c2l

)• ◦ (h1 ◦ m21)
′
= (h1 ◦ m21)

• ��
The notion of independent match is asymmetric: match m1 for rule σ1 can be

independent of match m2 for rule σ2 while m2 is dependent of m1. This means
that the derivation and trace σ2 〈m2〉 can be computed without destroying the
match m1, since there is the residual m

σ2〈m2〉
1 and the trace σ1

〈
m

σ2〈m2〉
1

〉
which

produces the ’same’ effect of σ1 at match m1 after σ2 has been applied.

Theorem 23 (Characterisation of parallel independence). Two deriva-
tions with rule σ1 at match m1 and rule σ2 at match m2 starting at the same
object are parallel independent, if and only if m1 and m2 are mutual independent.

Proof. Direct consequence of Proposition 22.

6 Conclusion

In this paper, we have shown two new results for DPO-C-rewriting. Both results
are straightforward generalisations of corresponding results for the classical
double-pushout approach (DPO) [4,5]. Thus, DPO-C proves again that it pre-
serves all good properties of DPO, for example reversible and decomposable
rules and derivations as well as derivation-independent characterisation of par-
allel independence, while enhancing the expressive power by non-monic rules.
These rules allow item splitting and merging together with deterministic context-
distribution and -join respectively. These features improve the applicability in
some application areas, for example model refactorisation. DPO-C, however,
does not allow “wild” actions, like copying and deleting complete graphs, as it is
possible in AGREE-rewriting [1]. Thus, it is a “tamed AGREE-tiger”.

From the theoretical point of view, there is a natural program for future
research, namely the generalisation of other DPO-results to DPO-C for exam-
ple with respect to sequential independence, concurrency, critical pair analysis,
parallelism, and amalgamation. Besides that, future research can address the
following issues:
16 Pushout (p1, h1) of (r1, n1) is also pullback by Fact 2(4) and pullbacks compose.

Double-Pushout Rewriting in Context 37

– Comparison of the DPO-C-built-in negative application conditions to the
well-known negative application conditions from the literature, e.g. [6],

– Comparison of DPO-C to other reversible approaches e.g. [3],
– Development of a clear and handy visual notation for the rules especially for

the context specification, and
– Elaboration of bigger case studies e.g. in the field of model transformation.

References

1. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic
graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B.
(eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21145-9_3

2. Corradini, A., et al.: On the essence of parallel independence for the double-pushout
and sesqui-pushout approaches. In: Heckel, R., Taentzer, G. (eds.) Graph Trans-
formation, Specifications, and Nets. LNCS, vol. 10800, pp. 1–18. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75396-6_1

3. Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Reversible sesqui-pushout
rewriting. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 161–176.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09108-2_11

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31188-2

5. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation -
General Framework and Applications. Monographs in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47980-3

6. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996)

7. Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited.
Math. Struct. Comput. Sci. 11(5), 637–688 (2001)

8. Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 250–265. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15928-2_17

9. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. ITA 39(3), 511–
545 (2005)

10. Löwe, M.: Characterisation of parallel independence in AGREE-rewriting. In: Lam-
bers, L., Weber, J. (eds.) ICGT 2018. LNCS, vol. 10887, pp. 118–133. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92991-0_8

11. Löwe, M.: Double-pushout rewriting in context. In: Mazzara, M., Ober, I., Salaün,
G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 447–462. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-04771-9_32

12. Löwe, M.: Double pushout rewriting in context. Technical report 2018/02, FHDW
Hannover (2018). www.researchgate.net

13. Robinson, E., Rosolini, G.: Categories of partial maps. Inf. Comput. 79(2), 95–130
(1988)

https://doi.org/10.1007/978-3-319-21145-9_3
https://doi.org/10.1007/978-3-319-21145-9_3
https://doi.org/10.1007/978-3-319-75396-6_1
https://doi.org/10.1007/978-3-319-09108-2_11
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-642-15928-2_17
https://doi.org/10.1007/978-3-319-92991-0_8
https://doi.org/10.1007/978-3-030-04771-9_32
http://www.researchgate.net

Adhesive Subcategories of Functor
Categories with Instantiation to Partial

Triple Graphs

Jens Kosiol1(B) , Lars Fritsche2 , Andy Schürr2 , and Gabriele Taentzer1

1 Philipps-Universität Marburg, Marburg, Germany
{kosiolje,taentzer}@mathematik.uni-marburg.de

2 TU Darmstadt, Darmstadt, Germany
{lars.fritsche,andy.schuerr}@es.tu-darmstadt.de

Abstract. Synchronization and integration processes of correlated mod-
els that are formally based on triple graph grammars often suffer from
the fact that elements are unnecessarily deleted and recreated losing
information in the process. It has been shown that this undesirable loss
of information can be softened by allowing partial correspondence mor-
phisms in triple graphs. We provide a formal framework for this new
synchronization process by introducing the category PTrG of partial
triple graphs and proving it to be adhesive. This allows for ordinary
double pushout rewriting of partial triple graphs. To exhibit PTrG as
an adhesive category, we present a fundamental construction of subcat-
egories of functor categories and show that these are adhesive HLR if
the base category already is. Secondly, we consider an instantiation of
this framework by triple graphs to illustrate its practical relevance and
to have a concrete example at hand.

Keywords: Adhesiveness · Functor category ·
Double pushout rewriting · Triple graphs

1 Introduction

Bidirectional transformation (bx) is a central concept in model-driven software
development among others [1,3]. Bx provides the means to define and restore
consistency between different kinds of artifacts or different views on a system.
Triple Graph Grammars (TGGs) [28] are an established bx-formalism. A triple
graph correlates two models (referred to as source and target) by defining a
correspondence graph in between that contains elements relating elements of
both sides. A TGG defines how correlated models co-evolve and can be used
to, e.g., automatically synchronize source and target model after a user edited
only one of them. Approaches that have been suggested for such synchroniza-
tion processes are either informal and rather ad-hoc [9,12], quite inefficient and
work under restricted circumstances only [16], or unnecessary deletions may be

c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 38–54, 2019.
https://doi.org/10.1007/978-3-030-23611-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_3&domain=pdf
http://orcid.org/0000-0003-4733-2777
http://orcid.org/0000-0003-4996-4639
http://orcid.org/0000-0001-8100-1109
http://orcid.org/0000-0002-3975-5238
https://doi.org/10.1007/978-3-030-23611-3_3

Adhesive Subcategories 39

included leading to a loss of information [10,22]. In [7], we present a synchro-
nization process based on triple graphs that allow correspondence morphisms to
be partial. This largely improved existing approaches with regard to information
loss and runtime. The formal background in that work, however, was restricted
and an elaborated theory of partial triple graphs was left to future work. Such
a theory is one of the contributions of this paper. We show that the category
of partial triple graphs is adhesive such that double pushout rewriting becomes
possible [5,21].

When working with adhesive (HLR) categories, an often used technique is
to exhibit a category D as (equivalent to) a functor category [X , C] where X is
small and C is known to be an adhesive (HLR) category. This ensures that D is
an adhesive (HLR) category as well. Considering partial triple graphs and their
morphisms, they can be formalized quite naturally as a subcategory of a functor
category over an adhesive category. More precisely, they are formalized as those
functors of the category [← → ← → ,Graph] that map both central
morphisms to injective morphisms. This category can be seen as an instance
of a more general principle. There are several categories of interest that form
a proper subcategory of a functor category [X , C] in a quite natural way. More
precisely, we consider subcategories consisting of only those functors that map a
designated subset S of the morphisms from X to monomorphisms (morphisms
from M) in C. Besides the already mentioned partial triple graphs, examples
include but are not limited to:1

1. Elements of [↪→ , C], where C is any adhesive (HLR) category, can be
understood as objects that come with a marked (M-)subobject. These are
exactly the categories that Kastenberg and Rensink proved to be adhesive
in [17], for the case that C is adhesive. They introduce a new concept of
attribution for the case where C is the category Graph.

2. Elements of [←↩ ↪→ , C], where C is any adhesive (HLR) category, are
exactly the linear rules of C.

3. Elements of [←↩ → , C] are the partial morphisms of C (without the usual
identification of equivalent ones [27]).

4. Let Sn be a star-like shape: there exists a central node with n outgoing
spans (the shape ← → ← → being the special case for n = 2).
Let S̄n denote the same shape with the arrows pointing to the central node
designated to be mapped to monomorphisms. König et al. [19,30] use (slice
categories of) [S̄n, C] (where C is a suitable category of models) to formalize
a correspondence relation between n different (meta-)models via n partial
morphisms from a correspondence model.

5. If T is a finite tree and T̄ denotes the tree where every edge of T is marked as
to be mapped to monomorphisms (morphisms from M), after fixing an appro-
priate decoration of the nodes of T with quantifiers and logical connectives
the elements of [T̄ , C] are nested conditions [13] in C of a fixed structure.

1 We do not depict identities of X and mark the morphisms from the designated set
S by a hooked arrow.

40 J. Kosiol et al.

Simple examples (as Example 4) show that, in general, the full subcategory
generated by such a choice of functors will not be an adhesive (HLR) category. In
Sect. 4 we show that an adhesive (HLR) category is obtained by restricting the
class of morphisms to those natural transformations where all squares induced
by the designated morphisms are pullback squares (Theorem 11).

In the second part of this paper (Sect. 5), we instantiate our theory and
consider an application to triple graphs with partial morphism between corre-
spondence and source or target graphs. We discuss the expressiveness of double
pushout rewriting in that category (Proposition 20) and provide a basic char-
acterization of matches to partial triple graphs (Proposition 21). Moreover, we
define the decomposition of a rule on partial triple graphs into a source and a
forward rule (Theorem 23) in analogy to the procedure for TGGs [28].

We begin by presenting an introductory example in Sect. 2 and recall some
preliminaries in Sect. 3. After the main contributions, we discuss related work in
Sect. 6 and conclude in Sect. 7. All omitted proofs are presented in an extended
version of this paper [20], together with some additional technical preliminaries.

2 Introductory Example

We motivate our new construction of categories on an example of triple graph
grammars (TGGs). TGGs [28] provide a means to define consistency between
two correlated models in a declarative and rule-based way by incorporating a
third model, a correspondence model, to connect elements from both sides via
correspondence links. Elements connected in such a way are henceforth consid-
ered to be consistent. Figure 1 shows the rule set of our running example con-
sisting of three TGG rules taken from [7]. They allow to simultaneously create
correlated models of a Java abstract syntax tree and a custom documentation
model. Root-Rule creates a root Package and a root Folder together with a cor-
respondence link in between which is indicated by the annotation (++) and by
green colouring. This rule can be applied arbitrarily often as it does not con-
tain a precondition. Sub-Rule requires a Package, Folder , and a correspondence
link between both as precondition and creates a Package and Folder hierarchy
together with a Doc-File. Finally, Leaf-Rule creates a Class with a corresponding
Doc-File under the same precondition as Sub-Rule. Given these rules, we can
generate consistent triple graphs like the one depicted in Fig. 2 by iteratively
applying the above rules. With content contained in the Doc-Files on the target
side, we indicate that a user has edited them independently such that the model
includes information that is private to the target side.

A common use case for TGGs is to synchronize changes between models in
order to restore consistency after a user edit. Assume that changes are applied
to the left side of Fig. 2 such that the element p is deleted and a new refer-
ence is created connecting rootP with subP as depicted in Fig. 3(a). Note that
this change also leads to a broken correspondence link, i.e., the result is not a
triple graph any longer. There are several TGG-based approaches to synchro-
nize source and target again. However, suggested incremental approaches [9,12]

Adhesive Subcategories 41

FolderPackage

FolderPackage

Doc-FileClass

Doc-File

Root-Rule

Sub-Rule

Leaf-Rule

(++)

(++)
(++)

(++)

(++)

(++)
(++)(++)

(++)
(++)

(++)

(++)

(++)
(++)

(++)

Package

Package

Folder

Folder

Fig. 1. Example: TGG rules (Color
figure online)

rootF :
Folder

rootP:
Package

f :
Folder

p :
Package

d: Doc-File
content=c1

subF :
Folder

subP :
Package

sd: Doc-File
content=c2

cd: Doc-File
content=c3

c :
Class

Fig. 2. Example: instance model

are rather ad-hoc and not proven to be correct. One provably correct approach
parses the whole instance for a maximal remaining valid submodel [16] and is
thus quite inefficient and only applicable to a restricted class of TGGs. Other
approaches [10,22] first derive the triple graph depicted in Fig. 3(b) and then
start a re-translation process using so-called forward rules, which are derived
from the TGG, to obtain the consistent triple shown in Fig. 3(c). But the Doc-
Files’ contents have been lost in the process.

rootF :
Folder

rootP:
Package

f :
Folder

d: Doc-File
content=c1

subF :
Folder

subP :
Package

sd: Doc-File
content=c2

cd: Doc-File
content=c3

c :
Class

rootF :
Folder

rootP:
Package

rootF :
Folder

rootP:
Package

subF :
Folder

subP :
Package

sd: Doc-File
content=c2'

cd: Doc-File
content=c3'

c :
Class

subP :
Package

c :
Class

(a) (b) (c)

Fig. 3. A synchronization scenario

If it was possible to apply rules to partial triple graphs directly, the one
depicted in Fig. 3 (a) can be synchronized by applying Delta-Forward-Rule as
depicted in Fig. 5 where the red elements (additionally annotated with (−−))
are to be deleted. The qualitative difference of the result is that the contents of
both Doc-Files are preserved as both elements are not recreated in the process
and furthermore, less rule applications are necessary. Delta-Forward-Rule can
be obtained by splitting Delta-Rule (see Fig. 4) into two rules (which is also
called operationalization): Delta-Source-Rule which is a projection to the source
component and Delta-Forward-Rule which propagates the according changes to
correspondence and target graphs. In [8], we show how to construct rules like
Delta-Rule from given TGG rules. In [7], we operationalize these rules and use
them for more efficient synchronization processes. However, we did not introduce
partial triple graphs as a category. Moreover, we only defined rule applications
to partial triple graphs were the rules arise by operationalizing rules for triple
graphs. Hence, an elaborated theory for applying and operationalizing rules for
partial triple graphs is still needed which is one of the contributions of this paper.

42 J. Kosiol et al.

f :
Folder

subF :
Folder

subP :
Package

sd :
Doc-File

Delta-Rule

(--)

(--)

(--)

p :
Package

(--)

(++)

(--)

(--)

rootF :
Folder

rootP :
Package

(--) d :
Doc-File

(--)

(++)

Fig. 4. Example: Delta-Rule
(Color figure online)

Fig. 5. Example: Operationalized Delta-Rule
(Color figure online)

3 Preliminaries

In this section, we introduce some preliminaries, namely adhesive (HLR) cat-
egories and double pushout rewriting. Adhesive categories can be understood
as categories where pushouts along monomorphisms behave like pushouts along
injective functions in the category of sets. They have been introduced by Lack
and Sobociński [21] to offer a unifying formal framework for double pushout
rewriting. Later, Ehrig et al. [5] introduced the more general notion of adhesive
HLR categories that includes practically relevant examples which are not adhe-
sive. We also introduce the notion of a partial van Kampen square [15] that we
need later on.

Definition 1 (Adhesive and adhesive HLR categories). A category C with
a class of monomorphisms M is adhesive HLR if

– the class of monomorphisms M contains all isomorphisms and is closed under
composition and decomposition, i.e., f, g ∈ M implies g ◦ f ∈ M whenever
the composition is defined and g ◦ f ∈ M, g ∈ M implies f ∈ M.

– the category C has pushouts and pullbacks along M-morphisms and M-
morphisms are closed under pushouts and pullbacks such that if Fig. 6 depicts
a pushout square with m ∈ M then also n ∈ M and analogously if it depicts
a pullback square with n ∈ M then also m ∈ M.

– pushouts in C along M-morphisms are van Kampen squares, i.e., for any
commutative cube as depicted in Fig. 7 where the bottom square is a pushout
along an M-morphism m and the backfaces are pullbacks then the top square
is a pushout if and only if both front faces are pullbacks.

A category C is adhesive if it has all pullbacks, and pushouts along monomor-
phisms exist and are van Kampen squares.

Pushouts along M-morphisms are partial van Kampen squares if for any
commutative cube as depicted in Fig. 7 where the bottom square is a pushout
along an M-morphism m, the backfaces are pullbacks, and b and c are M-
morphisms, then the top square is a pushout if and only if both front faces are
pullbacks and d is an M-morphism.

Adhesive Subcategories 43

Fig. 6. A pushout square Fig. 7. Commutative cube over pushout
square

Remark 2. Every adhesive category is adhesive HLR for M being the class of
all monomorphisms [5]. Moreover, pushouts along monomorphisms are partial
van Kampen squares in adhesive categories [15].

Important examples of adhesive categories include the categories of sets, of
(typed) graphs, and of (typed) triple graphs [5,21]. Examples of categories that
are not adhesive but adhesive HLR (for an appropriate choice of M) include
typed attributed [5] and symbolic attributed graphs [26]. Adhesive HLR cate-
gories are a suitable formal framework for rule-based rewriting as defined in the
double pushout approach: Rules are a declarative way to define transformations
of objects. They consist of a left-hand side (LHS) L, a right-hand side (RHS) R,
and a common subobject K, the interface of the rule. In case of (typed) graphs,
application of a rule p to a graph G amounts to choosing an image of the rule’s
LHS L in G, deleting the image of L\K and adding a copy of R\K. This proce-
dure can be formalized by two pushouts. Rules and their application semantics
are defined as follows.

Definition 3 (Rules and transformations). Given an adhesive HLR cat-
egory C, a rule p consists of three objects L,K, and R, called left-hand side,
interface, and right-hand side, and two monomorphisms l : K ↪→ L, r : K ↪→ R.
Given a rule p, an object G, and a monomorphism
m : L ↪→ G, called match, a (direct) transfor-
mation G ⇒p,m H from G to H via p at match
m is given by the diagram to the right where both
squares are pushouts.

L K R

G D H

4 Adhesive Subcategories of Functor Categories

We are interested in investigating subcategories of functor categories [X , C] over
an adhesive HLR category C with a set of monomorphisms M. In particular,
these subcategories arise by restricting to those functors that map all morphisms
from a designated set S of morphisms from X to M-morphisms in C. As the
next example shows, the induced full subcategory fails to be adhesive already

44 J. Kosiol et al.

for basic examples. The reason for this is that—in the category of morphisms—
the (componentwise computed) pushout of monomorphisms does not need to
result in a monomorphism again, even if additionally the morphisms between
the monomorphisms are monomorphisms as well. The counterexample below
has already been presented in [24].

Example 4. Let C be the adhesive category Set and X the category → .
Consider the full subcategory of the functor category [→ ,Set] induced by
those functors that map the only non-identity morphism to an injective function
in Set. This is just the category with
injective functions as objects and com-
muting squares as morphisms. Let [n]
denote the set with n elements and con-
sider the commuting cube depicted to
the right: The two squares in the back
are a span of monomorphisms in that
category. Computing the top and the
bottom square as pushouts, i.e., com-
puting the pushout of the two squares
in the back in the category [→ ,Set],

∅
[1] [1]

[2]

[1]

[1] [1]

[1]

id[1]

id[1] id[1]

id[1] id[1]

id[1]

results in a function that is not injective. It is not difficult to check that the cat-
egory with injective functions as objects and commuting squares as morphisms
does not have pushouts, even not along monomorphisms: There is no way to
replace the vertical morphism in the front by an injective function and obtain a
cube that is a pushout of the two squares in the back.

To resolve this problem, we introduce our categories of interest not as full
subcategories of functor categories but restrict the class of allowed morphisms
between them.

Definition 5 (S-functor. S-cartesian natural transformation). Given a
small category X , a subset S of the morphisms of X , and an arbitrary category C
with designated class of monomorphisms M, an S-functor is a functor F : X →
C such that for every morphism m ∈ S the morphism Fm is an M-morphism.

A natural transformation σ : F → G between two S-functors is S-cartesian
if for every morphism S � m : x → y the corresponding naturality square σy ◦
Fm = Gm ◦ σx is a pullback square.

Example 6. The partial triple graph that is depicted in Fig. 3(a) is an S-functor
from the category ← → ← → to the category of graphs where S con-
sists of the two morphisms to the central object: The left object is mapped to
the source graph depicted to the left in Fig. 3(a), the right object to the target
graph depicted to the right, and the central object to the correspondence graph
consisting of the four hexagons. The second and the fourth object are mapped
to the respective domains of the correspondence morphisms to source and target
graph. While the domain of the correspondence morphism to the target graph
is the whole correspondence graph, the domain of the correspondence morphism

Adhesive Subcategories 45

to the source graph just consists of three of the hexagons. The outer morphisms
of ← → ← → are mapped to the correspondence morphisms while the
central morphisms are mapped to the inclusion of the domains of the correspon-
dence morphisms into the correspondence graph, which are both injective.

Since the composition of two pullbacks is a pullback and the identity natu-
ral transformation is trivially S-cartesian, S-functors with S-cartesian natural
transformations as morphisms form a category (associativity of composition and
neutrality of the composition with the identity natural transformation are just
inherited from the full functor category). We call such categories S-cartesian
subcategories and denote them by [XS , C].

Proposition 7. Given a small category X , a subset S of the morphisms of
X and an arbitrary category C with designated class of monomorphisms M, S-
functors with S-cartesian natural transformations as morphisms form a generally
non-full subcategory of the functor category [X , C]. In particular, there is an
inclusion functor I : [XS , C] ↪→ [X , C].

Section 5 is devoted to develop the category of partial triple graphs as an
instantiation of this very general framework. In particular, it presents concrete
examples illustrating the abstract notions. In this section, we prove that if a
category C is adhesive HLR, categories [XS , C] are adhesive HLR again (Theorem
11), assuming pushouts along M-morphisms to be partial van Kampen squares.
We first collect results that contribute to the proof of our main theorem. They
are of independent interest as they determine that pushouts and pullbacks along
M-morphisms are computed componentwise in categories of S-functors. Recall
that a functor F : C → D is said to create (co-)limits of a certain type J if for
every diagram D : J → C and every (co-)limit for F ◦ D in D there exists a
unique preimage under F that is a (co-)limit of D in C [2].

In the following, let X always be a small category and S a subset of its mor-
phisms; moreover, C is an arbitrary category with designated class of monomor-
phisms M (in particular, if C is adhesive HLR, M is understood to be the
corresponding class of monomorphisms).

Proposition 8. Let [XS , C] be an S-cartesian subcategory of [X , C]. If pullbacks
along M-morphisms exist, [X , C] and [XS , C] have pullbacks along natural trans-
formations where every component is an M-morphism and the inclusion functor
I : [XS , C] ↪→ [X , C] creates these.

The next lemma characterizes the monomorphisms of [XS , C].

Lemma 9. Let [XS , C] be an S-cartesian subcategory of [X , C]. Then every mor-
phism in [X , C] or in [XS , C] where every component is a monomorphism is a
monomorphism in the respective category. If C has pullbacks, then the converse
is true.

The next proposition states that also pushouts along M-morphisms are cal-
culated componentwise in a category [XS , C]. In contrast to the case of pullbacks,
the proof requires that C is adhesive HLR and that pushouts along M-morphisms
are partial van Kampen squares.

46 J. Kosiol et al.

Proposition 10. Let C be an adhesive HLR category such that pushouts along
M-morphisms are partial van Kampen squares. Let [XS , C] be an S-cartesian sub-
category of [X , C]. Then [X , C] and [XS , C] have pushouts along morphisms where
every component is an M-morphism and the inclusion functor I : [XS , C] ↪→
[X , C] creates these.

Together, the obtained results guarantee that our construction leads to cat-
egories that are adhesive HLR again:

Theorem 11 (Adhesive HLR). Let C be an adhesive HLR category such that
pushouts along M-morphisms are partial van Kampen squares. Let [XS , C] be an
S-cartesian subcategory of [X , C]. Then [XS , C] is adhesive HLR for the class M′

of natural transformations where every component is an M-morphism.

Proof. By Lemma 9, M′ consists of monomorphisms if C is adhesive HLR and
is the class of all monomorphisms if C is adhesive. By definition of M′, the
necessary composition and decomposition properties are inherited from M. Since
the inclusion functor from [XS , C] to [X , C] creates pullbacks and pushouts along
M′-morphisms (Propositions 8 and 10) and [X , C] is adhesive HLR with respect
to natural transformations that are M-morphisms in every component, [XS , C]
is adhesive HLR as well. �	

The next proposition states that—whenever the involved objects and mor-
phisms belong to [XS , C]—applying a rule in [XS , C] or in [X , C] yields the same
result. For simplicity, we suppress the inclusion functor I in its formulation.

Proposition 12 (Functoriality of rule application). Let C be an adhesive
HLR category such that pushouts along M-morphisms are partial van Kampen

squares. Let [XS , C] be an S-cartesian subcategory of [X , C]. Let p = (L
λ←−↩ K

ρ
↪−→

R) be a rule and μ : L → G a match such that λ, ρ, μ, L,K,R,G are morphisms
and objects of [XS , C]. Then p is applicable to G with match μ in [XS , C] if
and only if it is in [X , C]. Moreover, the resulting object H coincides (up to
isomorphism).

5 The Category of Partial Triple Graphs

In this section, we apply the theory developed in the section above to the category
of (typed) partial triple graphs. Our definition of these rests upon the following
(simple) definition of partial morphisms in arbitrary categories. We refrain from
identifying equivalent partial morphisms as usually done [27].

Definition 13 (Partial morphism). A partial morphism a : A ��� B is a
span A

ιA←−↩ A′ a−→ B where ιA is a monomorphism; A′ is called the domain of a.

In the section above, we address the framework of adhesive HLR categories
since we generally want to be able to support attribution concepts for par-
tial triple graphs. Two influential such concepts, namely attributed graphs and

Adhesive Subcategories 47

symbolic attributed graphs, have been shown to constitute adhesive HLR cate-
gories [5,26]. Moreover, it is not difficult to check that in both cases pushouts
along the respective M-morphisms are partial van Kampen squares. Hence, they
can be used as base categories C when instantiating the framework from above.
But for simplicity, we here just present (typed) partial triple graphs without
attributes.

Definition 14 (Partial triple graph). The category of triple graphs TrG is
the functor category [← → ,Graphs]. The category of partial triple graphs
PTrG is the category [← ↪→ ←↩ → ,Graphs].

Remark 15. By the definitions above, an object G = (GS ← G̃S ↪→ GC ←↩
G̃T → GT) of PTrG might equivalently be considered to consist of a graph GC

with partial morphisms σ : GC ��� GL and τ : GC ��� GT where G̃S and G̃T are
the domains of σ and τ , respectively. A morphism f : G → H between partial
triple graphs then is a triple (fS : GS → HS , fC : GC → HC , fT : GT → HT) of
graph morphisms such that both induced squares of partial morphisms commute.
In our context, such a square with two opposed partial morphisms (as depicted
as square (1) in Fig. 8) commutes if there exists a morphism f̃S : G̃S → H̃S such
that both arising squares (2) and (3) (compare Fig. 9) commute and, moreover,
(2) is a pullback square. If f̃S exists, it is necessarily unique since ιHS

is a
monomorphism. This is stricter than, e.g., the weak commutativity used in [25]
that does not require the square (2) to be a pullback square.

Fig. 8. Square of partial morphisms Fig. 9. Commuting square of partial
morphisms

The next proposition states that the category of triple graphs is isomorphic
to a full subcategory of the category of partial triple graphs.

Proposition 16. The category TrG of triple graphs is isomorphic to a full
subcategory of the category PTrG of partial triple graphs, i.e., there exists a full
and faithful functor J : TrG → PTrG that is injective on objects. Moreover,
rule application is functorial.

In practical applications, the considered triple graphs are generally typed
over a fixed triple graph. The next definition introduces typing of partial triple
graphs over a fixed triple graph. For, e.g., synchronization scenarios as discussed
in [7], it is convenient if the partial triple graphs are still typed over essentially
the same triple graph as the original triple graph was.

48 J. Kosiol et al.

Definition 17 (Typed partial triple graph). The category of triple graphs
typed over a fixed triple graph TG = (TGS ← TGC → TGT) is the slice
category TrG/TG, denoted TrGTG. The category of partial triple graphs typed
over a fixed triple graph TG, denoted PTrGTG, has as objects morphisms tG :
G → J (TG) from [← → ← → ,Graphs] where J is the inclusion
functor and G is a partial triple graph. Morphisms are morphisms g : G → H
from PTrG such that tH ◦ g = tG.

Example 18. Figure 3 (a) was already presented as a partial triple graph in
Example 6. To consider it as still typed over the same type graph (not depicted)
as the original triple graph from Fig. 2, one just restricts its typing morphism
accordingly. Note that the resulting typing morphism is not S-cartesian but a
morphism in [← → ← → ,Graphs]. We therefore did not define typing
of partial triple graphs just as slice category as well. We exemplify rules and
morphisms in PTrGTG using Delta-Rule depicted in Fig. 4: Its LHS consists
of the elements depicted in black or in red (not annotated or annotated with
(−−)) while its interface only consists of the black elements. First, the mapping
of the interface into the LHS is injective in every component. Moreover, all three
correspondence nodes in the LHS of the rule are in the domain of the accord-
ing correspondence morphism to the source side and the two correspondence
nodes that are already part of the interface of the rule are in the domain of the
according correspondence morphism as well. This means, the induced square
of morphisms is a pullback square. The same holds for the target side. Hence,
the morphism from the interface of Delta-Rule to its LHS is a morphism in
PTrGTG.

In contrast, the morphism from the interface to the LHS of Delta-Source-
Rule as depicted in Fig. 5 is not a morphism in PTrGTG: The according square
K̃S → KC → LC ← L̃S ← K̃S is not a pullback square since the domain of the
correspondence morphism to the source side in the interface graph only contains
two elements and not three. Theorem 23 explains why this is not a hindrance to
our desired application.

Proposition 19. Typed partial triple graphs form an adhesive category. More-
over, the category TrGTG of triple graphs typed over TG is isomorphic to a full
subcategory of the category PTrGTG of partial triple graphs typed over TG and
rule application is functorial.

We formulate the following results for the category PTrG; they hold for cate-
gories PTrGTG as well. The restriction to morphisms where certain squares are
required to form pullback squares comes with some limitations. Namely, it is not
possible to delete a reference (i.e., an element from the domain of a correspon-
dence morphism) without deleting the referencing element (i.e., the according
element in the correspondence graph), nor is it possible to create a reference
from an already existing correspondence element. And for every matched corre-
spondence element, a morphism also needs to match the according preimages in
the domains of the two correspondence morphisms (if they exist) to become a
valid match.

Adhesive Subcategories 49

Proposition 20 (Characterizing valid rules and matches). Let a rule p =

(L
l←−↩ K

r
↪−→ R) and a morphism m : L → G in [← → ← → ,Graphs] be

given where L,K,R, and G are already objects from PTrG (i.e., L = (LS
σL←−−

L̃S

ιLS
↪−−→ LC

ιLT←−−↩ L̃T
τL−→ LT) and similar for K,R,G). Then p is a rule with

match already in PTrG if and only if (compare Fig. 10 for notation)

1. ∀x ∈ LC .((x ∈ ιLS
(L̃S) ∧ x ∈ lC(KC)) ⇒ x ∈ lC(ιKS

(K̃S))) and analogously
∀x ∈ LC .((x ∈ ιLT

(L̃T) ∧ x ∈ lC(KC)) ⇒ x ∈ lC(ιKT
(K̃T))),

2. ∀x ∈ RC .((x ∈ ιRS
(R̃S)∧x ∈ rC(KC)) ⇒ x ∈ rC(ιKS

(K̃S))) and analogously
∀x ∈ RC .((x ∈ ιRT

(R̃T) ∧ x ∈ rC(KC)) ⇒ x ∈ rC(ιKT
(K̃T))), and

3. ∀x ∈ GC .((∃y1 ∈ G̃S .x = ιGS
(y1) ∧ ∃y2 ∈ LC .x = mC(y2)) ⇒ ∃z ∈

L̃S .(m̃S(z) = y1 ∧ ιLS
(z) = y2)) and analogously ∀x ∈ GC .((∃y1 ∈ G̃T .x =

ιGT
(y1) ∧ ∃y2 ∈ LC .x = mC(y2)) ⇒ ∃z ∈ L̃T .(m̃T (z) = y1 ∧ ιLT

(z) = y2)).

Fig. 10. Rule with match in PTrG

We now elementary characterize matches at which a rule in PTrG is appli-
cable in the spirit of the gluing condition for graphs [5, Def. 3.9].

Proposition 21. Let a rule p = (L
l←−↩ K

r
↪−→ R) and a match m : L → G in

PTrG with L = (LS
σL←−− L̃S

ιLS
↪−−→ LC

ιLT←−−↩ L̃T
τL−→ LT), l = (lS , l̃S , lC , l̃T , lT),

and m = (mS , m̃S ,mC , m̃T ,mT) be given. Then p is applicable at match m if
and only if

1. mS ,mC , and mT satisfy the gluing condition, i.e., none of these morphisms
identifies an element that is to be deleted with another element and none
of these morphisms determines a node to be deleted that has adjacent edges
which are not to be deleted as well [5, Def. 3.9] and

2. for every referenced element in the source and the target graphs that is deleted
the reference is deleted as well, i.e., for every element x ∈ GS that has a
preimage in LS under mS, no preimage under mS ◦ lS in KS but a preimage
in G̃S under σG, there is an element y ∈ L̃S such that mS(σL(y)) = x =

50 J. Kosiol et al.

σG(m̃S(y)). Analogously, for every element x ∈ GT that has a preimage in
LT under mT , no preimage under mT ◦ lT in KT but a preimage in G̃T under
τG, there is an element y ∈ L̃T such that mT (τL(y)) = x = τG(m̃T (y)).

Starting point for many practical applications of TGGs is the so-called oper-
ationalization of a rule which is a split of it into a source and a forward rule (or
equivalently: a target and a backward rule). The source rule only performs the
action of the original rule on the source part and the forward rule transfers this
to the correspondence and the target part. A basic result states that applying
a rule to a triple graph is equivalent to applying the source rule followed by an
application of the forward rule. In the rest of this section, we present a com-
parable definition and result for partial triple graphs. However, we generalize
the operationalization of rules in two directions: Our rules are rules on partial
triple graphs instead of triple graphs and, moreover, they are allowed to be delet-
ing, whereas classically the rules of a TGG are monotonic [28]. To be able to
do this, we need to deviate slightly from the original construction. Our source
rules perform the action of the original rule on the source side. Moreover, the
deletion-action on the domain of the correspondence morphism to the source part
is performed. All other actions are performed by the forward rule. In general,
the resulting source and forward rules are not rules in PTrG any longer but in
[← → ← → ,Graphs]. However, the following theorem shows that the
application of a rule in PTrG is equivalent to applying first the source and after-
wards the forward rule (at a suitable match) in [← → ← → ,Graphs].

Definition 22 (Source and forward rule). Let a rule p = (L
l←−↩ K

r
↪−→ R)

in PTrG be given. Then its source rule pS = (LS lS←−↩ KS rS

↪−→ RS) is defined
as depicted in Fig. 11 where ∅ denotes the empty graph. Its forward rule pF =

(LF lF←−↩ KF rF

↪−→ RF) is defined as depicted in Fig. 12.

Fig. 11. Source rule pS of a rule p Fig. 12. Forward rule pF of a rule p

Theorem 23. Let a rule p = (L
l←−↩ K

r
↪−→ R) in PTrG with source and forward

rules pS = (LS lS←−↩ KS rS

↪−→ RS) and pF = (LF lF←−↩ KF rF

↪−→ RF) be given.

1. Given a direct transformation G ⇒p,m H in PTrG, there is a transformation
sequence G ⇒pS ,m G′ ⇒pF ,n H in [← → ← → ,Graphs].

Adhesive Subcategories 51

2. Given transformation steps G ⇒pS ,m G′ ⇒pF ,n H in [← → ← →
,Graphs] where n coincides with the comatch of the first transformation
step on source and correspondence graph and G and m are already elements
of PTrG, there is a direct transformation G ⇒p,m H in PTrG.

Example 24. Delta-Rule as depicted in Fig. 4 is split by our construction into
Delta-Source-Rule and Delta-Forward-Rule as depicted in Fig. 5. Applying Delta-
Rule to the triple graph from Fig. 2 such that nodes p and f are deleted gives
the same result as first applying Delta-Source-Rule at the according match,
which gives the partial triple graph from Fig. 3(a) as intermediate result, and
Delta-Forward-Rule subsequently (with consistent match). Namely, both yield
the triple graph from Fig. 3(c).

6 Related Works

In [7] we have already used partial triple graphs to develop an optimized synchro-
nization process for correlated models where the correspondence relationship has
been formalized using TGGs. However, we only defined rule application for spe-
cial cases, only obtained a very restricted version of Theorem 23, and generally
left the thorough investigation of that category to future work.

The work that is most closely related to ours with regard to the formal
content is the introduction of a new concept of attribution by Kastenberg and
Rensink in [17]. They use subgraphs for attribution and prove that the category
of reflected monos ([↪→ , C] in our notation) is adhesive if C is. Since proving
this for an arbitrary S-cartesian subcategory [XS , C] reduces to inspection of a
single naturality square at a morphism m ∈ S, our proofs are similar in places.
However, they do not consider the case of C being adhesive HLR and do not
relate to the full functor category [→ , C].

Golas et al. provide a formalization of TGGs in [11] which allows to gener-
alize correspondence relations between source and target graphs as well. They
use special typings for the source, target, and correspondence parts of a triple
graph and introduce edges between correspondence and source and target nodes
instead of using graph morphisms. Hence, they allow for even more flexible cor-
respondence relations and for more flexible deletion and creation of references
than possible in our approach. In contrast, we allow for references also between
edges and are more in line with the standard formalization of TGGs.

Double pushout rewriting of graph transformation rules by so-called 2-rules
has been extensively studied by Machado et al. in [24]. They, too, identify the
problem that applying a 2-rule to a rule does not need to result in a rule again
since the resulting morphisms are not necessarily injective. Instead of restricting
the allowed morphisms, they equip their 2-rules by suitable application condi-
tions. However, their approach is specific to rewriting of graph transformation
rules and not directly generalizable to a purely categorical setting. It is not dif-
ficult to see that, instantiated for typed graphs, their framework is more general
than ours: None of the involved morphisms needs to form a pullback square for a

52 J. Kosiol et al.

2-rule to be applicable and result in a rule again. This evokes the research ques-
tion whether it is possible to increase the classes of morphisms in the categories
we presented and still obtain categories that are adhesive HLR.

In contrast to TGGs, where correspondence between elements is defined by
total morphisms, partial morphisms have already been used to formalize the
correspondence of elements in situations where more than two meta-models are
involved [19,30]. As mentioned in Sect. 1, this can also be seen as an instantiation
of our general framework. In our practical application to partial triple graphs, we
are interested in allowing for partial correspondence morphisms to obtain a more
incremental synchronization process. Overall correspondence is still defined via
total morphisms.

Partial morphisms have long been a research topic in the area of graph trans-
formation, in particular in connection with the single pushout approach to graph
transformation as, e.g., in [4,18,23]. Moreover, there has been research com-
puting limits in categories of partial morphisms [29] or relating properties of
pushouts in a category to properties of a pushout in the according category of
partial morphisms [14,15]. In this line of research, one enlarges the class of mor-
phisms of a given category by considering also partial morphisms, whereas our
framework allows to consider partial morphisms as objects but pushouts and
pullbacks are still computed along total morphisms (componentwise).

In [6], Ehrig et al. also consider certain functors as objects of a new category
to model distributed objects. They prove (co-)completeness in case the base
category is. However, their functors allow for change in the category (or graph)
from which the functor starts and the considered morphisms are accordingly
quite different from ours.

7 Conclusion

In this paper, we present a new way to construct a category that is adhesive HLR
out of a given one, namely as a certain subcategory of a functor category. This
construction unifies several categories for which rewriting has been discussed
separately so far. As a new application case, we present a category of partial
triple graphs. This inspection (as well as comparison to another approach to
rewriting rules) shows that, while still interesting in practice, the restriction to a
certain kind of morphisms comes with a price. Searching for a (categorical) way
to relax this restriction is interesting future work. Moreover, we plan to apply
our formal framework to other instances, e.g., to rewriting of constraints.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able feedback. This work was partially funded by the German Research Foundation
(DFG), project “Triple Graph Grammars (TGG) 2.0”.

Adhesive Subcategories 53

References

1. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Introduction
to bidirectional transformations. In: Gibbons, J., Stevens, P. (eds.) Bidirectional
Transformations. LNCS, vol. 9715, pp. 1–28. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-79108-1 1

2. Awodey, S.: Category Theory, Oxford Logic Guides, vol. 52, 2nd edn. Oxford Uni-
versity Press Inc., New York (2010)

3. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: a cross-discipline perspective. In: Paige, R.F. (ed.) ICMT
2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02408-5 19

4. Ehrig, H., et al.: Algebraic approaches to graph transformation - part ii: single
pushout approach and comparison with double pushout approach. In: Rozenberg,
G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation,
chap. 4, pp. 247–312. World Scientific, Singapore (1997)

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, Springer, Heidel-
berg (2006). https://doi.org/10.1007/3-540-31188-2

6. Ehrig, H., Orejas, F., Prange, U.: Categorical foundations of distributed graph
transformation. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg,
G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 215–229. Springer, Heidelberg (2006).
https://doi.org/10.1007/11841883 16

7. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Efficient model synchronization
by automatically constructed repair processes. In: Hähnle, R., van der Aalst, W.
(eds.) FASE 2019. LNCS, vol. 11424, pp. 116–133. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-16722-6 7

8. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Short-cut rules. Sequential compo-
sition of rules avoiding unnecessary deletions. In: Mazzara, M., Ober, I., Salaün, G.
(eds.) STAF 2018. LNCS, vol. 11176, pp. 415–430. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-04771-9 30

9. Giese, H., Hildebrandt, S.: Efficient model synchronization of large-scale models.
Technical report 28, Hasso-Plattner-Institut (2009)

10. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Softw. Syst. Modeling 8(1), 21–43 (2009)

11. Golas, U., Lambers, L., Ehrig, H., Giese, H.: Toward bridging the gap between
formal foundations and current practice for triple graph grammars. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp.
141–155. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33654-
6 10

12. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model
synchronization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-21470-7 11

13. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19, 245–296 (2009)

14. Hayman, J., Heindel, T.: On pushouts of partial maps. In: Giese, H., König, B.
(eds.) ICGT 2014. LNCS, vol. 8571, pp. 177–191. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-09108-2 12

https://doi.org/10.1007/978-3-319-79108-1_1
https://doi.org/10.1007/978-3-319-79108-1_1
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/11841883_16
https://doi.org/10.1007/978-3-030-16722-6_7
https://doi.org/10.1007/978-3-030-16722-6_7
https://doi.org/10.1007/978-3-030-04771-9_30
https://doi.org/10.1007/978-3-030-04771-9_30
https://doi.org/10.1007/978-3-642-33654-6_10
https://doi.org/10.1007/978-3-642-33654-6_10
https://doi.org/10.1007/978-3-642-21470-7_11
https://doi.org/10.1007/978-3-319-09108-2_12
https://doi.org/10.1007/978-3-319-09108-2_12

54 J. Kosiol et al.

15. Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 250–265. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15928-2 17

16. Hermann, F., et al.: Model synchronization based on triple graph grammars: cor-
rectness, completeness and invertibility. Softw. Syst. Modeling 14(1), 241–269
(2015)

17. Kastenberg, H., Rensink, A.: Graph attribution through sub-graphs. In: Heckel,
R., Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS,
vol. 10800, pp. 245–265. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75396-6 14

18. Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig,
H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532,
pp. 490–504. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0017408

19. König, H., Diskin, Z.: Efficient consistency checking of interrelated models. In:
Anjorin, A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol. 10376, pp. 161–178.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61482-3 10

20. Kosiol, J., Fritsche, L., Schürr, A., Taentzer, G.: Adhesive subcategories of functor
categories with instantiation to partial triple graphs: extended version. Technical
report, Philipps-Universität Marburg (2019). https://cms.uni-marburg.de/fb12/
arbeitsgruppen/swt/forschung/publikationen/2019/KFST19-TR.pdf/download

21. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoret. Inform.
Appl. 39(3), 511–545 (2005)

22. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization
with precedence triple graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 401–415. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33654-6 27

23. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoret.
Comput. Sci. 109(1), 181–224 (1993)

24. Machado, R., Ribeiro, L., Heckel, R.: Rule-based transformation of graph rewriting
rules: towards higher-order graph grammars. Theoret. Comput. Sci. 594, 1–23
(2015)

25. Montanari, U., Ribeiro, L.: Linear ordered graph grammars and their algebraic
foundations. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 317–333. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45832-8 24

26. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transfor-
mation. Electronic Communications of the EASST, vol. 30. (International Collo-
quium on Graph and Model Transformation (GraMoT) 2010) (2010)

27. Robinson, E., Rosolini, G.: Categories of partial maps. Inf. Comput. 79(2), 95–130
(1988)

28. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 45

29. Shir Ali Nasab, A.R., Hosseini, S.N.: Pullback in partial morphism categories.
Appl. Categorical Struct. 25(2), 197–225 (2017)

30. Stünkel, P., König, H., Lamo, Y., Rutle, A.: Multimodel correspondence through
inter-model constraints. In: Conference Companion of the 2nd International Con-
ference on Art, Science, and Engineering of Programming, pp. 9–17. ACM, New
York (2018)

https://doi.org/10.1007/978-3-642-15928-2_17
https://doi.org/10.1007/978-3-319-75396-6_14
https://doi.org/10.1007/978-3-319-75396-6_14
https://doi.org/10.1007/BFb0017408
https://doi.org/10.1007/978-3-319-61482-3_10
https://cms.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2019/KFST19-TR.pdf/download
https://cms.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2019/KFST19-TR.pdf/download
https://doi.org/10.1007/978-3-642-33654-6_27
https://doi.org/10.1007/3-540-45832-8_24
https://doi.org/10.1007/3-540-45832-8_24
https://doi.org/10.1007/3-540-59071-4_45

Extending Predictive Shift-Reduce
Parsing to Contextual Hyperedge

Replacement Grammars

Frank Drewes1, Berthold Hoffmann2, and Mark Minas3(B)

1 Ume̊a universitet, Ume̊a, Sweden
drewes@cs.umu.se

2 Universität Bremen, Bremen, Germany
hof@uni-bremen.de

3 Universität der Bundeswehr München, Neubiberg, Germany
mark.minas@unibw.de

Abstract. Parsing with respect to grammars based on hyperedge
replacement (HR) is NP-hard in general, even for some fixed grammars.
In recent work, we have devised predictive shift-reduce parsing (PSR), a
very efficient algorithm that applies to a wide subclass of HR grammars.
In this paper, we extend PSR parsing to contextual HR grammars, a
moderate extension of HR grammars that have greater generative power,
and are therefore better suited for the practical specification of graph and
diagram languages. Although the extension requires considerable modi-
fications of the original algorithm, it turns out that the resulting parsers
are still very efficient.

Keywords: Graph grammar · Graph parsing ·
Contextual hyperedge replacement

1 Introduction

Grammars based on hyperedge replacement (HR) generate a well-studied class of
context-free graph languages [16]. However, their generative power is too weak;
e.g., their languages are known to have bounded treewidth [16, Thm. IV.3.12(7)].
Since this even excludes a language as simple as that of all graphs, HR grammars
cannot reasonably be advocated for specifying graph models in general.

An example illustrating this weakness of hyperedge replacement is provided
by “unstructured” flowcharts with jumps (see Sect. 6). Since jumps can target
any location in the program, an edge that represents such a jump may point
to any arbitrary node (representing a program location). Inserting such edges is
beyond what hyperedge replacement can do because it would require nonterminal
hyperedges of unbounded arity, such as the adaptive star grammars of [8].

A similar example is Abstract Meaning Representation [1], a representa-
tion of the meaning of natural language sentences that is being heavily studied

c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 55–72, 2019.
https://doi.org/10.1007/978-3-030-23611-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-23611-3_4

56 F. Drewes et al.

in computational linguistics. Coreferences caused by, e.g., pronouns that refer
to entities mentioned elsewhere in a sentence, give rise to edges that point to
nodes which may be almost anywhere else in the graph. Hence, again, hyperedge
replacement is too weak.

Contextual hyperedge replacement (CHR) has been devised as a moderate
extension of HR that overcomes such restrictions, while preserving many other
formal properties of HR [7,9]. Rather than having left-hand sides consisting of
nonterminal edges only, CHR rules can have additional isolated context nodes in
their left-hand side, to which the right-hand side can attach edges. Hence, CHR
can attach edges to already generated nodes elsewhere in the graph, but the gain
in power is limited as the mechanism lacks control over which nodes to choose.
(The application conditions of [17] are not yet supported by Grappa.)

In recent work, we have devised a very efficient predictive shift-reduce (PSR)
parsing algorithm for a subclass of HR grammars. In this paper, we extend
this algorithm to contextual HR grammars. Its implementation in the graph-
parser distiller Grappa1 turned out to be smooth, and yields parsers that are as
efficient as those for the context-free case. This perhaps surprisingly good result
is due to the fact that both parsers consume one edge after another and apply
rules backwards until the start symbol is reached. As in the context-free case,
the grammar analysis by the distiller ensures that suitable edges can be chosen
in constant time, and backtracking is avoided. Hence, the overall running time
of the generated parser remains linear.

The rest of this paper is structured as follows. Section 2 introduces CHR
grammars. In Sect. 3 we recall PSR parsing and discuss the point where it has to
be modified for CHR grammars. A particular normal form needed to parse CHR
grammars is introduced in Sect. 4, before we discuss the analysis of lookahead in
Sect. 5. In Sect. 6 we discuss a more realistic example grammar (of flowcharts),
compare the efficiency of different parsers for this grammar, and evaluate some
CHR grammars wrt. PSR-parsability with Grappa. We conclude by summariz-
ing the results obtained so far, and indicate related and future work in Sect. 7.
Due to lack of space, our presentation is driven by a small artificial example, and
properties like unique start nodes and free edge choice are not discussed here in
order to keep the paper focused. The complete constructions and proofs for the
base case, PSR parsing for HR grammars, can be found in [13].

2 Contextual Hyperedge Replacement Grammars

We first compile the basic notions and notation used in this paper. Throughout
the paper, N denotes the non-negative integers and A∗ denotes the set of all
finite sequences over a set A, with ε denoting the empty sequence.

We let X be a global, countably infinite supply of nodes or vertices.

Definition 1 (Graph). An alphabet is a set Σ of symbols together with an
arity function arity : Σ → N. Then a literal e = ax1···xk over Σ consists of a

1 Available from its implementor Mark Minas under www.unibw.de/inf2/grappa.

www.unibw.de/inf2/grappa

Extending PSR Parsing to Contextual HR Grammars 57

symbol a ∈ Σ and an attachment x1 · · ·xk of k = arity(a) pairwise distinct
nodes x1, . . . , xk ∈ X. We denote the set of all literals over Σ by LitΣ .

A graph γ = 〈V, ϕ〉 over Σ consists of a finite set V ⊆ X of nodes and a
sequence ϕ = e1 · · · en ∈ Lit∗Σ such that all nodes in these literals are in V . GΣ

denotes the set of all graphs over Σ.
We say that two graphs γ = 〈V, ϕ〉 and γ′ = 〈V ′, ϕ′〉 are equivalent, written

γ �� γ′, if V = V ′ and ϕ is a permutation of ϕ′.

Note that graphs are sequences of literals, i.e., two graphs 〈V, ϕ〉 and 〈V ′, ϕ′〉
are considered to differ even if V = V ′ and ϕ′ is just a permutation of ϕ.
However, such graphs are considered equivalent, denoted by the equivalence
relation ��. “Ordinary” graphs would rather be represented using multisets of
literals. The equivalence classes of graphs, therefore, correspond to conventional
graphs. The ordering of literals is technically convenient for the constructions in
this paper. However, input graphs to be parsed should of course be considered
up to equivalence. To make sure that this is the case, our parsers always treat the
remaining (not yet consumed) edge literals as a multiset rather than a sequence.

An injective function � : X → X is called a renaming. Moreover, γ� denotes
the graph obtained by renaming all nodes in γ according to �.

For a graph γ = 〈V, ϕ〉, we use the notations X(γ) = V and lit(γ) = ϕ.
We define the concatenation of two graphs α, β ∈ GΣ as αβ = 〈X(α) ∪
X(β), lit(α) lit(β)〉. If a graph γ is completely determined by its sequence lit(γ)
of literals, i.e., if each node in X(γ) also occurs in some literal in lit(γ), we sim-
ply use lit(γ) as a shorthand for γ. In particular, a literal e ∈ LitΣ is identified
with the graph consisting of just this literal and its attached nodes.

We now recall contextual hyperedge replacement from [7,9]. To keep the tech-
nicalities simple, we omit node labels. Adding them does not pose any technical
or implementational difficulties. Node labels are actually available in Grappa,
but discussing them here would only complicate the exposition.2

Definition 2 (CHR Grammar). Let the alphabet Σ be partitioned into dis-
joint subsets N and T of nonterminals and terminals, respectively. A contextual
hyperedge replacement rule r = (α → β) (a rule for short) has a graph α ∈ GΣ

with a single literal lit(α) = A ∈ LitN as its left-hand side, and a graph β ∈ GΣ

with X(α) ⊆ X(β) as its right-hand side. The nodes in X(α) \ X(A) are called
context nodes of r. A rule without context nodes is called context-free.

Consider a graph γ = δA′δ′ ∈ GΣ and a rule r as above. A renaming μ is a
match (of r to γ) if Aμ = A′ and3

X(γ) ∩ X(βμ) ⊆ X(αμ) ⊆ X(γ). (1)

2 Contextual hyperedge replacement with application conditions, as originally intro-
duced in [17], would require a more significant extension the difficulties of which we
have not yet studied. Investigating this will be a topic of future work; cf. Sect. 7.

3 This condition makes sure that all nodes that are introduced on the right-hand side
β of a rule are renamed so that they are distinct from all nodes that do already
occur in graph γ, whereas all other nodes are renamed to nodes that occur in γ.

58 F. Drewes et al.

Fig. 1. Graphs g1, g2, g3 and their derivations in Γ .

A match μ of r derives γ to the graph γ′ = δβμδ′. This is denoted as γ ⇒r,μ

γ′, or just as γ ⇒r γ′. We write γ ⇒R γ′ for a set R of rules if γ ⇒r γ′ for some
r ∈ R, and denote the reflexive-transitive closure of ⇒R by ⇒∗

R, as usual.
A contextual hyperedge replacement grammar Γ = (Σ, T ,R,Z) (CHR gram-

mar for short) consists of finite alphabets Σ, T as above, a finite set R of
rules over Σ, and a start symbol Z ∈ N of arity 0. Γ generates the language
L(Γ) = {g ∈ GT | Z ⇒∗

R g} of terminal graphs. We call a graph g valid with
respect to Γ if L(Γ) contains a graph g′ with g �� g′.

Context-free rules are in fact hyperedge replacement (HR) rules as defined
in [13, Def. 2.2], and thus CHR grammars with context-free rules only are HR
grammars. Note, however, that derivations in [13] are always rightmost deriva-
tions that require δ′ ∈ GT in every derivation step. Example 1 demonstrates why
derivations for contextual grammars cannot be restricted to just rightmost ones.

Our running example is an artificial CHR grammar chosen for the purpose
of illustration only. More practical grammars are considered in Sect. 6.

Example 1. The CHR grammars Γ has N = {Z,A,B,C,D} and T = {a, b, c, d}.
Z has arity 0, whereas A, B, and C have arity 1; all other labels are binary. Γ has
the following rules:

Z
z−→ AxBx Bx b1|b2−→ Cxbxy | Dxybxy Dxy d−→ dxzdzy

Ax a−→ axy Cx+y
c−→ Dxycxy

In rule c, Cx+y is a shorthand for the graph 〈{x, y},Cx〉 with context node y;
the other rules are context-free.

Figure 1 illustrates the three graphs g1, g2, g3 that constitute the language
generated by Γ (up to renaming).4 As usual, nodes are drawn as circles whereas
(binary) edges are drawn as arrows with their label ascribed.

Moreover, Fig. 1 shows the derivations of g1, g2, g3. Underlined nonterminal
literals are those rewritten in the next derivation step. The rightmost deriva-
tion (2) uses just context-free rules to derive g1. Both derivation (3) and (4)

4 Thus a CHR grammar is in fact not necessary to describe this tiny language.

Extending PSR Parsing to Contextual HR Grammars 59

use the contextual rule c in their fourth step. There is only a subtle difference:
(3) uses node 2 as context node, whereas (4) uses node 3. Neither derivation is
rightmost. While (4) could be turned into a rightmost one, there is no right-
most derivation for g2: In (3), A1 must be rewritten before C1 because the rule
rewriting C1 uses 2 as a context node, which has to be created by rewriting A1.

�

3 Making Shift-Reduce Parsing Predictive

In this section, we recall how a nondeterministic (and inefficient) shift-reduce
parsing is made predictive (and efficient), by using a characteristic finite-state
automaton (CFA) for control, and by inspecting lookahead. The algorithm devel-
oped for HR grammars [13] carries over to CHR grammars in many cases; an
exception that requires some modification is discussed at the end of this section.

Nondeterministic Shift-Reduce Parsers read an input graph, and keep a
stack of literals (nonterminals and terminals) that have been processed so far.
They perform two kinds of actions. Shift reads an unread literal of the input
graph and pushes it onto the stack. Reduce can be applied if literals on top
of the stack form the right-hand side of a rule (after a suitable match of their
nodes). Then the parser pops these literals off the stack and pushes the left-hand
side of the rule onto it (using the same match). The parser starts with an empty
stack and an input graph, and accepts this input if the stack just contains the
start graph Z and the input has been read completely.

Table 1 shows a parse of graph g3 in Example 1. Each row shows the current
stack, which grows to the right, the sequence of literals read so far, and the
multiset of yet unread literals. Note that the literals of the input graph can
be shifted in any order; the parser has to choose the literals so that it can
construct a reverse rightmost derivation of the input graph. The last column in

Table 1. Shift-reduce parse of graph g3.

Stack Read literals Unread literals Action

0 ε ε {a12, b13, c13, d14, d43} shift a12

1 a12 a12 {b13, c13, d14, d43} reduce a

2 A1 a12 {b13, c13, d14, d43} shift d14

3 A1d14 a12d14 {b13, c13, d43} shift d43

4 A1d14d43 a12d14d43 {b13, c13} reduce d

5 A1D13 a12d14d43 {b13, c13} shift c13

6 A1D13c13 a12d14d43c13 {b13} reduce c

7 A1C1 a12d14d43c13 {b13} shift b13

8 A1C1b13 a12d14d43c13b13 ∅ reduce b1

9 A1B1 a12d14d43c13b13 ∅ reduce z

10 Z a12d14d43c13b13 ∅ accept

60 F. Drewes et al.

Fig. 2. Characteristic items and states for the steps of the parse of graph g3 in Table 1.

the table indicates the parser action that yields the situation shown in the next
row. Underlined literals on the stack are those popped off the stack by the next
reduction step.

We have shown in [13, Sect. 4] that such a parser can find an accepting parse
if and only if the input graph is valid. But this parser is highly nondeterministic.
For instance, it could start with shifting any literal in step 0, but only shifting a12

leads to a successful parse. So it must employ expensive backtracking whenever
it runs into a dead end.

Characteristic Finite-State Automata (CFAs) are used to reduce the non-
determinism in shift-reduce parsers. This concept has been transferred from LR
parsing for context-free string grammars in [13, Sect. 5–7]. The CFA records
items of the grammar which the parser is processing, where an item is a rule
with a dot in its right-hand side that indicates how far processing has advanced.
Figure 2 shows the characteristic items for the steps of the parse in Table 1. The
numbering of item sets corresponds to the steps in Table 1. Each of these sets
corresponds to a state of the CFA, with a particular renaming of nodes.5

In step 0 of the parse, the parser starts with the item Z
z→ �AxBx, where the

dot at the beginning indicates that nothing has been processed so far. As the
dot is before the nonterminal literal Ax, which can be replaced using rule a, the
corresponding configuration in Fig. 2 also contains the item Ax a→ � axy. So the
parser can read a literal axy (with a suitable match of x and y). It cannot process
the nonterminal Ax, as only terminals can be shifted; so shifting a12 is the only
action fitting the grammar in step 0. As a consequence, step 1 is characterized
by the sole item Ax a→ axy � x

1
y
2 , which indicates that the right-hand side of rule a

has been processed completely and x and y have been matched to nodes 1 and
2, respectively. This implies that a12 can be reduced to A1, which turns item
Z

z→ �AxBx of step 0 into item Z
z→ Ax �Bx x

1 in step 2. Step 2 contains further
items because the dot is in front of nonterminal Bx.

5 The complete CFA for Example 1 will only be presented in the next section.

Extending PSR Parsing to Contextual HR Grammars 61

Table 2. Wrong shift-reduce parse of graph g4. Steps 0–4 are essentially the same as
in Table 1

Stack Read literals Unread literals Action

0 ε ε {a12, b12, d14, d42} shift a12

1 a12 a12 {b12, d14, d42} reduce a

2 A1 a12 {b12, d14, d42} shift d14

3 A1d14 a12d14 {b12, d42} shift d42

4 A1d14d42 a12d14d42 {b12} reduce d

5 A1D12 a12d14d42 {b12} shift b12

6 A1D12b12 a12d14d42b12 ∅ reduce b2

7 A1B1 a12d14d42b12 ∅ reduce z

8 Z a12d14d42b12 ∅ accept

Transitions in the CFA move the dot across a literal in some of its items, and
match nodes accordingly. The transitions in Fig. 2 are labeled with these literals.
Note that the sequence of literals along any path starting in state 0 equals the
stack of the step that is reached by the path.

Every shift-reduce parser can be controled by the CFA so that it will only
choose actions in accordance with the grammar, which are promising to find
a successful parse if the input graph is valid [13, Sect. 9]. Still some sources of
nondeterminism remain, which have to be resolved by different means.

Lookahead may be used when a set of items allows several promising actions.
For instance, consider step 5 in Fig. 2, where the dot is in front of b13 and c13

(under the match x
1

y
3), which both occur in the unread input. Only shifting

c13 leads to a successful parse of g3. If the parser shifted b13 instead, the next
steps would reduce for rules b2 and z, yielding a stack Z, leaving c13 unread so
that the parse would fail. In such a situation, one must check which literals may
follow later when either of the actions is selected. An analysis of grammar Γ
(prior to parsing) reveals that selecting c13 will allow to shift b13 later, whereas
selecting b13 will never allow to shift c13 later. So the predictive shift-reduce
(PSR) parser must shift c13 in step 5. In general (not for Γ), a HR grammar
may have states with conflicts where the lookahead does not determine which
shift or reduction should be done in some state. Then the grammar is not PSR-
parsable [13, Sect. 9]. We will discuss the analysis of lookahead in Sect. 5.

Context Nodes require a modification of the PSR parsing algorithm. For a HR
grammar, a PSR parser can always continue its parse to a successful one (for
some remaining input) as long as all actions comply with the CFA. This does
not necessarily hold for CHR grammars.

For instance, consider the invalid graph g4 = a12d14d42b12. Its parse, shown in
Table 2, starts with the same actions 0–5 as for g3 in Table 1 and Fig. 2. However,
only b12 is unread in step 5, which is then shifted. Therefore, the parser will
eventually accept g4 as all literals have been read, although g4 is invalid! In fact,
the reduction in step 6 is wrong, because condition (1) in Definition 2 is violated:

62 F. Drewes et al.

The reduce action is the reverse of the derivation A1B1 ⇒b2 A1D12b12 that
creates node 2, which is also created when deriving A1. But the error happened
already in step 5 with its characteristic items Bx b2→ Dxy � bxy x

1
y
2 and Cx+y

c→
Dxy � cxy x

1
y
2 . Since node 2 has been reused for y, it must be a context node, i.e.,

the first of these items, which is based on the context-free rule b2, is not valid
in step 5. Apparently, the CFA does not treat context nodes correctly. We shall
see in the following section that a CHR grammar like Γ has to be transformed
before parsing in order to solve the problem.

4 IOC Normalform

The problem described in the previous section could have been avoided if the
parser would “know” in step 5 that node 2 of the nonterminal literal D12 is a
context node. This would be easy if it held for all occurrences of a D-literal in Γ ,
but this is not true for the occurrence of Dxy in b2. In the following, we consider
only CHR grammars where such situations cannot occur. We require that the
label of a nonterminal literal always determines the roles of its attached nodes.
We then say that a CHR grammar is in IOC normalform. Fortunately, every
CHR grammar can be transformed into an equivalent IOC normalform. Before
we define the IOC normalform in a formal manner, we discuss roles of nodes and
profiles of nonterminals.

Nonterminal literals are produced by reduce actions, i.e., if the dot is moved
across the nonterminal literal within a rule. For instance, consider literal Dxy in
item Bx → �Dxybxy x

1 in Fig. 2. Node x is already bound to node 1 before the
dot is moved across Dxy, whereas y is unbound before, but bound afterwards (to
node 3 in step 5). Nodes x and y act like in and out parameters, respectively, of
a procedure; we say that x has role I (for “in”) and y has role O (for “out”). By
combining I and O for x and y, we say that Dxy has profile IO in this particular
situation. However, the situation is different for Dxy in item Cx+y → �Dxycxy x

1 .
Node x again has role I, and y is again not bound before moving the dot across
Dxy. But y must then be bound to the context node of this rule; we say that
y has role C (for “context”), and Dxy has profile IC in this situation. So the
profile of Dxy is not determined by its label D. This must not happen for a CHR
grammar in IOC normalform.

Definition 3. A CHR grammar Γ = (Σ, T ,R,Z) is in IOC normalform if there
is a function P : N → {I,O,C}∗ so that, for every rule (α → β) ∈ R and every
nonterminal literal B = By1...ym ∈ LitN occurring in β, i.e., β = δBδ′ for some
δ, δ′ ∈ Lit∗Σ , P (B) = p1 · · · pm with

pi =

⎧
⎪⎪⎨

⎪⎪⎩

I if yi ∈ X(δ)
O if yi /∈ X(δ) ∧ yi /∈ X(α)
C if yi /∈ X(δ) ∧ yi ∈ X(α) \ X(A)
p′j if yi /∈ X(δ) ∧ yi = xj

(for i = 1, . . . ,m)

where lit(α) = A = Ax1...xk and P (A) = p′1 · · · p′k.

Extending PSR Parsing to Contextual HR Grammars 63

Example 2. CHR grammar Γ of Example 1 can be turned into a CHR grammar
Γ ′ in IOC normalform by splitting up the nonterminal label D into D1 and D2

and using the following rules:

Z
z−→ AxBx Bx b1|b2−→ Cxbxy | Dxy

1 bxy Dxy
1

d1−→ dxzdzy

Ax a−→ axy Cx+y
c−→ Dxy

2 cxy Dxy
2

d2−→ dxzdzy

It can easily be verified that the function P defined by Z
→ ε, A
→ O, B
→ I,
C
→ I, D1
→ IO, and D2
→ IC satisfies the conditions of Definition 3. In
particular, every D1-literal has profile IO, and every D2-literal has profile IC.

The general construction is straightforward: the simplest method is to create,
for every nonterminal label B, all copies BP (B) in which B is indexed with its
3arity(B) possible profiles. Each rule for B is thus turned into 3arity(B) rules, and
the nonterminal literals in the right-hand sides are annotated according to Defi-
nition 3. Grappa turns this procedure around to avoid the exponential blow-up
in most practically relevant cases, as follows. In all rules for a nonterminal label
B, assume first that the profile of the left-hand side is Iarity(B), and annotate it
accordingly. Then annotate the nonterminal labels in all right-hand sides, again
following Definition 3. This may give rise to a number of yet unseen annotated
nonterminal labels. Create rules for them by copying the respective original rules
as before, and repeat until no more new annotations are encountered.

Figure 3 shows the CFA of grammar Γ ′. The start state is q0, indicated by
the incoming arc out of nowhere. The CFA has been built in essentially the same

Fig. 3. The characteristic finite automaton of Γ ′ in Example 2.

64 F. Drewes et al.

way as the characteristic items and states for the steps when parsing the specific
graph g3 in Fig. 2. Instead of the concrete nodes of g3, we now use parameters a,
b, and c. They are placeholders, which will be bound to nodes of the particular
input graph during parsing. For instance, item Ax a→ axy � x

1
y
2 that characterizes

step 1 in Fig. 2 corresponds to state qab2 in Fig. 3 where a and b have been bound
to nodes 1 and 2, respectively.

The transitions between states also refer to parameters. For instance, the
transition from qa1 to qab3 means that the dots in the two items Dxy

1
d1→ � dxzdzy x

a

and Dxy
2

d2→ � dxzdzy x
a are moved across dxz where x is bound to a and z is

yet unbound. The corresponding shift action must select and read a d-edge in
the input graph that leaves the node being bound to parameter a. The node of
the input graph that matches z and is bound to parameter b in state qab3 , also
becomes “known” that way. It must not have been read before because d1 and d2
are context-free rules. Figure 3 represents the fact that b is bound to the target
node of the d-edge by using b as the underlined target node, and the fact that
this node has not been read before is indicated by the label “b is new”. Using
the IOC normalform, this distinction between “new” and “old” nodes makes it
possible to handle context nodes correctly (see also the discussion at the end of
Sect. 3). It marks the major technical difference between the context-free parser
and the contextual one.

The label “c is old” at the transition from qab3 to qabc9 , however, indicates that
c is bound to a node of the input graph that has already been read, together
with a shifted edge, earlier in the parsing process. This situation can occur
although this transition means moving the dot of item Dxy

2
d2→ dxz � dzy x

a
z
b across

dzy in the context-free rule d2. Node y of the nonterminal literal corresponds
to context node y of the contextual rule c. This is reflected by the profile IC
of D2, which says that the second node of D2 must be a context node. Further
note that qabc8 also contains the same item as qabc9 , but c is declared “new” by
the corresponding transition. This is so because the context node may be still
unread in this situation, and the parser can not yet distinguish whether it is
currently processing rule d2 or d1, where y is not a context node, indicated by
profile IO of D1. This is demonstrated in the following.

Table 3 shows the only parse that a PSR parser using the CFA in Fig. 3 will
try when analyzing graph g3. Note that this parse corresponds to the unique
successful (non-predictive) shift-reduce parse among all possible attempts to
parse graph g3, shown earlier in Table 1. It predicts the unique promising action
that keeps it on track towards a successful parse. This is done by keeping, on
its stack, an alternating sequence of CFA states and literals processed so far, for
instance q0 A

1 q11 d
14 q143 d43 q1438 in step 4. The stack contents represent a walk

through the CFA from the initial state q0 to q1438 via q11 and q143 ; the literals
between consecutive states correspond to the transitions and their labels. When
we ignore the states, the stack equals the stack of the (nondeterministic) shift-
reduce parse shown in Table 1. The shift and reduce action of a PSR parser work
as follows:

Extending PSR Parsing to Contextual HR Grammars 65

Table 3. PSR parse of g3 using the CFA in Fig. 3.

Stack Read literals Unread literals Action

0 q0 ε {a12, b13, c13, d14, d43} shift a12

1 q0 a
12 q122 a12 {b13, c13, d14, d43} reduce a

2 q0 A
1 q11 a12 {b13, c13, d14, d43} shift d14

3 q0 A
1 q11 d

14 q143 a12d14 {b13, c13, d43} shift d43

4 q0 A
1 q11 d

14 q143 d43 q1438 a12d14d43 {b13, c13} reduce d2

5 q0 A
1 q11 D

13
2 q135 a12d14d43 {b13, c13} shift c13

6 q0 A
1 q11 D

13
2 q135 c13 q1311 a12d14d43c13 {b13} reduce c

7 q0 A
1 q11 C

1 q16 a12d14d43c13 {b13} shift b13

8 q0 A
1 q11 C

1 q16 b
13 q1312 a12d14d43c13b13 ∅ reduce b

9 q0 A
1 q11 B

1 q17 a12d14d43c13b13 ∅ accept

Table 4. PSR parse of the invalid graph g4 using the CFA in Fig. 3.

Stack Read literals Unread literals Action

0 q0 ε {a12, b12, d14, d42} shift a12

1 q0 a
12 q122 a12 {b12, d14, d42} reduce a

2 q0 A
1 q11 a12 {b12, d14, d42} shift d14

3 q0 A
1 q11 d

14 q143 a12d14 {b12, d42} shift d42

4 q0 A
1 q11 d

14 q143 d42 q1429 a12d14d42 {b12} reduce d2

5 q0 A
1 q11 D

12
2 q125 a12d14d42 {b12} failure

A shift action corresponds to an outgoing transition of the state which is
currently on top of the stack. For instance, in step 3 with topmost state q143
there are two transitions leaving qab3 . They both look for a d-edge leaving node 4
in g3. The only such edge is d43. And, the parser must choose the transition to
q1438 because node 3 is “new”, i.e., has not yet occurred in the parse.

A reduce action may be selected if the topmost state on the stack contains
an item with the dot at the end. For instance, consider step 4 with topmost
state q1438 . This state in fact contains two items with a dot at their ends: The
parser may either reduce according to rule d1 or d2; the CFA cannot help the
parser with this decision. However, further analysis (see the following section)
reveals that only reducing d2 can lead to a successful parse. The parser, therefore,
removes the topmost four elements from the stack (the right-hand side of rule d2
together with the states in between, indicated by the underline), leaving q11 as
the intermediate topmost state. It then selects the transition for the obtained
nonterminal literal D13

2 that leaves q11 , i.e., the transition to q135 .
The PSR parser accepts g3 in step 9 because all literals of g3 have been read

and the topmost state is q17 which has the dot at the end of rule z, i.e., a last
reduction would produce Z.

66 F. Drewes et al.

Finally Table 4 shows that the PSR parser using CHR grammar Γ ′ in IOC
normalform correctly recognizes that graph g4 is invalid. It fails in step 5 in state
q125 where it looks for an unread literal c12, but only finds b12, which cannot be
shifted, in contrast to the situation shown in Table 2.

5 Lookahead Analysis

The previous section revealed that the CFA does not always provide enough
information for the parser to unambiguously select the next action. This is in
fact unavoidable (at least if P �= NP) because PSR parsing is very efficient while
HR graph languages in general can be NP-complete. The problem is that the CFA
may contain states with items that trigger different actions, for instance state
qabc8 in Fig. 3, which allows two different reduce actions. Then we must analyze
(prior to parsing) which literals may follow or cannot follow (immediately or
later) in a correct parse when either of the possible actions is chosen. This may
yield two results: The analysis may either identify a fixed number of (lookahead)
literals that the parser must find among the unread literals in order to always
predict the correct next action, or there is at least one state for which this is not
possible. The latter situation is called a conflict. A CHR grammar is PSR only
if no state has a conflict. Here, we describe this situation and the peculiarities
for CHR grammars by means of grammar Γ ′ and state qabc8 .

Consider the situation when the PSR parser has reached qabc8 . We wish to
know which literals will be read next or later if either “reduce d1” or “reduce d2”
is chosen, producing Dac

1 or Dac
2 . Figure 4 shows the history of the parser that

is relevant in this situation. The parser is either in item I6 or I7. If it is in I7, it
must also be in I5 where its literal Dxy

2 corresponds to the left-hand side of I7,
and so on. Bx in I1 corresponds to the left-hand side of either I3 or I4. Note that
the node renamings in I2, . . . , I5 reflect the information available when I6 or I7
are reduced. For instance, node y of I5 will be bound to parameter c. However,
the choice of context node y of I5 affects these situations. In this small example,
y can be bound either to the node which y of I2 is bound to, or to the node
which y of I3 is bound to. In the former case, y of I2 is bound to c since we
already know that y of I5 is bound to c; then, y of I3 must be a yet unread node,
indicated by y

– . Otherwise, y of I3 must be bound to c, and y of I2 has already
been read, but is not stored in any of the parameters, indicated by y

• .
It is clear from Fig. 4 that the parser must read a literal cac next if it

reduces I7, or more precisely, a c-literal that is attached to the input nodes
bound to parameters a and c, respectively. This is so because cxy immediately
follows Dxy

2 in I5 (indicated by a box). And, if the parser reduces I6, it must read
bac next. In fact, the parser must check whether there is a yet unread literal
cac. If it finds one, it must reduce d2, otherwise it must reduce d1. To see this,
assume there is an unread cac. This can be read when I7 is reduced, but never
if I6 is reduced because no further literal would be read after bac. And if there
is no cac, the parser would get stuck after reducing I7.

On the other hand, the parser cannot make a reliable decision based on the
existence of just literal bac, because such a literal can be read by the parser if it

Extending PSR Parsing to Contextual HR Grammars 67

Fig. 4. Lookahead analysis for state qabc
8 in Fig. 3.

chooses “reduce d1”, but also if it chooses “reduce d2”. The former is obvious. To
see the latter, consider the literal read immediately after cac when I7 has been
reduced. This must be a literal that corresponds to bxy in I3, i.e., it is either bc–

or bac according to the possible renamings of I3. This means, bac may in fact
be read later if I7 is reduced. Note that this is only possible because the node
used as y of I3 can be the context node used as y of I5.

6 Realization and Evaluation

PSR parsers for CHR grammars can be generated with the Grappa parser
distiller (see footnote 1). Grappa checks whether the CHR grammar has the
free edge choice property, which is not discussed in this paper. It ensures that,
if the parser can end up in a conflict-like situation between shifting alternative
edges, the choice will not affect the outcome of the parsing; see [13, Sect. 9] for
details.

Parsing of an input graph starts with the identification of unique start nodes,
i.e., a place in the graph where parsing has to start. (This is also not considered in
this paper; see [11, Sect. 4] for details.) Then the parser uses the concepts outlined
in the previous sections to find a shift-reduce parse of the input graph, and finally
tries to construct a derivation from this parse so that context nodes are never
used before they have been created in the derivation. However, it may turn out
in this last step that the input graph is invalid although a parse has been found.
This does happen if there are cyclic dependencies between derivation steps that
create nodes and those that use such nodes as context nodes [7]. Identification of
start nodes and finding a PSR parse are as efficient as in the context-free case.
As discussed in [11,13], this means that these steps require linear time in the
size of the graph, for all practical purposes. So does creating a derivation from
the parse by topological sorting. As a consequence, PSR parsing with respect to
CHR grammars runs in linear time in the size of the input graph. However, a
more detailed discussion must be omitted here due to lack of space.

We now use the more realistic language of flowcharts to evaluate PSR pars-
ing for CHR grammars. Note that these “unstructured” flowcharts cannot be
specified with HR grammars as they have unbounded treewidth.

68 F. Drewes et al.

Fig. 5. Derivation of a flowchart

Fig. 6. Definition of flowchart graphs Fn (left) and running time (in milliseconds) of
different parsers analyzing Fn for varying numbers of n (right).

Example 3 (Flowcharts). Flowcharts represent the control of low-level impera-
tive programs. In the graphs representing these charts, nodes drawn as small
black circles represent program states, unary edges labeled with � and � desig-
nate its unique start state and its stop states, resp., binary edges labeled with
and � represent instructions and jumps, resp., and ternary edges labeled with

represent predicates, which select one of the following branches. (Here, we
ignore the texts that usually occur in instructions and predicates.) Flowcharts
can be generated by a CHR grammar [7, Ex. 2.6] as follows:

The context-free rules h, i, and c generate control flow trees of the halt, instruc-
tion, and conditional selection, respectively, and the fourth rule, j, which is not
context-free, inserts jumps to some program location in the context. Figure 5
shows the diagrams of a derivation of a small flowchart.

Grappa has been used to generate a PSR parser for this grammar. In order to
evaluate its efficiency, we have generated three further parsers: a predictive top-
down (PTD) parser for the same grammar (after extending PTD parsing [10] to
CHR grammars), a Cocke-Younger-Kasami -style (CYK) parser [20], and finally
a generalized predictive shift-reduce (GPSR) parser for structured flowcharts [18].

Extending PSR Parsing to Contextual HR Grammars 69

Table 5. Key figures for parsers generated with Grappa. “Grammar” columns indicate
maximal nonterminal arity (A), nonterminals (N) and terminals (T), context-free (Rcf)
and contextual (Rc) rules, and the maximal length of right-hand sides (L). As the AMR
grammar must be transformed into IOC normalform, its key figures are listed under
“IOC normalform”. “CFA” columns count states (S), items (I), and transitions (Δ)
in the CFAs. The last column counts the conflicts in the CFAs.

Example Grammar IOC normalform CFA Conflicts

A N T Rcf Rc L A N T Rcf Rc L S I Δ

Flowcharts 1 2 5 4 1 3 10 26 30 –

Program graphs 2 12 11 17 4 4 33 80 62 –

AMR 2 9 14 17 11 5 2 13 14 25 11 5 68 211 128 11

GPSR parsing extends PSR parsing to grammars that are not PSR, which is the
case for structured flowcharts.

All four parsers have been used to parse flowcharts Fn as defined in Fig. 6
(left), which consist of n predicates, 3n + 1 instructions, and n jumps. Fn has
a subgraph Dn, which, for n > 0, contains subgraphs Dm and Dm′ with n =
m+m′+1. Note that the predicates in Fn form a binary tree with n nodes when
we ignore instructions. We always choose m and m′ such that it is a complete
binary tree. Note furthermore that each Fn forms in fact a structured flowchart,
which must be built with jumps in our flowchart grammar. The GPSR parser
has been applied to variations of Fn wherein jumps have been removed, and
their source and target nodes have been identified.

Figure 6 shows the running time of each of the four parsers when analyzing
graphs Fn with varying values of n. It was measured on a iMac 2017, 4.2 GHz
Intel Core i7, Java 1.8.0 202 with standard configuration, and is shown in mil-
liseconds on the y-axis while n is shown on the x-axis. The graphics shows nicely
that the PSR parser is linear, and about four times faster than the PTD parser.
The GPSR parser is much slower because it deals with conflicts of the CFA by
following several parses simultaneously. The CYK parser is the slowest, because
it builds up a table of nonterminal edges by dynamic programming.

We have also created parsers for CHR grammars for two additional graph lan-
guages: Program graphs [7, Ex. 2.7] represent the syntactic structure of object-
oriented programming and are used for refactoring. Abstract Meaning Repre-
sentations are widely used in natural language processing to represent sen-
tence meaning. To define the structure of AMRs, CHR grammars are preferable
because of their greater capability to cover the set of all AMRs over a given
domain. At the same time the grammars become both smaller and simpler.
Unfortunately, the example grammar from [14] is not PSR because the CFA has
11 conflicts (see Table 5), but one can employ generalized PSR parsing intro-
duced in [18]. Table 5 lists key figures of the three example languages outlined
above.

70 F. Drewes et al.

7 Conclusions

In this paper, we have described how predictive shift-reduce parsing can be
extended from HR grammars to CHR grammars. These parsers can be generated
with Grappa (see footnote 1), and are as efficient as the context-free version,
although they apply to a larger class of languages.

Related Work

Much work has been dedicated to graph parsing. Since space is limited, we men-
tion only results and approaches for HR grammars. Early on, Lautemann [19]
identified connectedness conditions which make polynomial parsing of certain
HR languages possible, using a generalization of the Cocke-Younger-Kasami
(CYK) algorithm for context-free string languages. However, the degree of the
polynomial depends on the HR language. Stronger connectedness requirements
yield cubic parsing (by a different kind of algorithm), as shown by Vogler and
Drewes [6,21]. A CYK parser for general HR grammars (even extended by so-
called embedding rules) was implemented by Minas in DiaGen [20]. While this
parser takes exponential time in general, it can handle graphs with hundreds of
nodes and edges.

The line of work continued in this paper started with the proposal of pre-
dictive top-down (PTD) parsers in [10] and continued with the introduction of
predictive shift-reduce (PSR) parsers [12,13]. Both apply to suitable classes of
HR grammars, while the current paper extends PSR parsers to CHR grammars.

Independently, Chiang et al. [4] improved the parser by Lautemann by mak-
ing use of tree decompositions, and Gilroy et al. [15] studied parsing for the
regular graph grammars by Courcelle [5]. Finally, Drewes et al. [2,3] study a
structural condition which enables very efficient uniform parsing.

Future Work

If a grammar has conflicts, a generalized parser can pursue all conflicting options
in parallel until one of them yields a successful parse. This idea, which has been
used for LR string parsing in the first place, has recently been transferred to
HR grammars [18]. It turns out that generalized PSR parsing can be further
extended to CHR grammars. This way the CHR grammar for abstract meaning
representations analyzed in Table 5 can be recognized by a generalized PSR
parser generated with Grappa.

So far, the matching of a context node in a host graph depends on the exis-
tence of a matching host node. So a contextual rule may causally depend on
another rule that generates the required node. Example 1 showed that cer-
tain graphs cannot be derived with a rightmost derivation. This complicates
the parser, which always constructs rightmost derivations, since it has to check
whether causal dependencies have been respected. Since we conjecture that
causal dependencies do not really extend the generative power of CHR gram-
mars, we will consider to re-define CHR grammars, without causality. However,
for the practical modeling of graph and diagram languages, it should be possible

Extending PSR Parsing to Contextual HR Grammars 71

to express certain conditions that the host node of a context node should ful-
fill. For instance, one may wish to forbid that the application of a context rule
introduces a cycle. This is why the initial version of CHR grammars introduced
in [17] features contextual rules with application conditions that can express the
existence or absence of certain paths in the host graph. We will investigate the
ramifications of application conditions for parsing in the future.

References

1. Banarescu, L., et al.: Abstract meaning representation for sembanking. In: Proceed-
ings of 7th Linguistic Annotation Workshop at ACL 2013 Workshop, pp. 178–186
(2013)

2. Björklund, H., Drewes, F., Ericson, P.: Between a rock and a hard place – uniform
parsing for hyperedge replacement DAG grammars. In: Dediu, A.-H., Janoušek,
J., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 521–532.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9 40

3. Björklund, H., Drewes, F., Ericson, P., Starke, F.: Uniform parsing for hyperedge
replacement grammars. UMINF 18.13, Ume̊a University (2018)

4. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceedings of 51st Annual
Meeting of the Association for Computational Linguistic (Vol. 1: Long Papers),
pp. 924–932 (2013)

5. Courcelle, B.: The monadic second-order logic of graphs V: on closing the gap
between definability and recognizability. Theoret. Comput. Sci. 80, 153–202 (1991)

6. Drewes, F.: Recognising k-connected hypergraphs in cubic time. Theoret. Comput.
Sci. 109, 83–122 (1993)

7. Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Informatica
52, 497–524 (2015)

8. Drewes, F., Hoffmann, B., Janssens, D., Minas, M.: Adaptive star grammars and
their languages. Theoret. Comput. Sci. 411, 3090–3109 (2010)

9. Drewes, F., Hoffmann, B., Minas, M.: Contextual hyperedge replacement. In:
Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 182–
197. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34176-2 16

10. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyperedge
replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015.
LNCS, vol. 9151, pp. 19–34. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21145-9 2

11. Drewes, F., Hoffmann, B., Minas, M.: Approximating Parikh images for generating
deterministic graph parsers. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF
2016. LNCS, vol. 9946, pp. 112–128. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-50230-4 9

12. Drewes, F., Hoffmann, B., Minas, M.: Predictive shift-reduce parsing for hyperedge
replacement grammars. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol.
10373, pp. 106–122. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61470-0 7

13. Drewes, F., Hoffmann, B., Minas, M.: Formalization and correctness of predic-
tive shift-reduce parsers for graph grammars based on hyperedge replacement. J.
Logical Algebraic Methods Program. 104, 303–341 (2019)

https://doi.org/10.1007/978-3-319-30000-9_40
https://doi.org/10.1007/978-3-642-34176-2_16
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-50230-4_9
https://doi.org/10.1007/978-3-319-50230-4_9
https://doi.org/10.1007/978-3-319-61470-0_7
https://doi.org/10.1007/978-3-319-61470-0_7

72 F. Drewes et al.

14. Drewes, F., Jonsson, A.: Contextual hyperedge replacement grammars for abstract
meaning representations. In: 13th International Workshop on Tree-Adjoining
Grammar and Related Formalisms (TAG+13), pp. 102–111 (2017)

15. Gilroy, S., Lopez, A., Maneth, S.: Parsing graphs with regular graph grammars.
In: Proceedings of 6th Joint Conference on Lexical and Computational Semantics
(*SEM 2017), pp. 199–208 (2017)

16. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013875

17. Hoffmann, B., Minas, M.: Defining models - meta models versus graph grammars.
Elect. Commun. EASST 29 (2010). Proceedings of 6th Workshop on Graph Trans-
formation and Visual Modeling Techniques (GT-VMT’10), Paphos, Cyprus

18. Hoffmann, B., Minas, M.: Generalized predictive shift-reduce parsing for hyperedge
replacement graph grammars. In: Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.)
LATA 2019. LNCS, vol. 11417, pp. 233–245. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-13435-8 17

19. Lautemann, C.: The complexity of graph languages generated by hyperedge
replacement. Acta Informatica 27, 399–421 (1990)

20. Minas, M.: Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Sci. Comput. Program. 44(2), 157–180 (2002)

21. Vogler, W.: Recognizing edge replacement graph languages in cubic time. In: Ehrig,
H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532,
pp. 676–687. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0017421

https://doi.org/10.1007/BFb0013875
https://doi.org/10.1007/978-3-030-13435-8_17
https://doi.org/10.1007/978-3-030-13435-8_17
https://doi.org/10.1007/BFb0017421

Analysis and Verification

Exploring Conflict Reasons for Graph
Transformation Systems

Leen Lambers1(B) , Jens Kosiol2 , Daniel Strüber3 ,
and Gabriele Taentzer2

1 Hasso-Plattner-Institut, Universität Potsdam, Potsdam, Germany
leen.lambers@hpi.de

2 Philipps-Universität Marburg, Marburg, Germany
{kosiolje,taentzer}@informatik.uni-marburg.de

3 Chalmers University, University of Gothenburg, Gothenburg, Sweden
danstru@chalmers.se

Abstract. Conflict and dependency analysis (CDA) is a static analy-
sis for the detection of conflicting and dependent rule applications in
a graph transformation system. Recently, granularity levels for conflicts
and dependencies have been investigated focussing on delete-use con-
flicts and produce-use dependencies. A central notion for granularity
considerations are (minimal) conflict and dependency reasons. For a rule
pair, where the second rule is non-deleting, it is well-understood based
on corresponding constructive characterizations how to efficiently com-
pute (minimal) conflict and dependency reasons. We further explore the
notion of (minimal) conflict reason for the general case where the second
rule of a rule pair may be deleting as well. We present new constructive
characterizations of (minimal) conflict reasons distinguishing delete-read
from delete-delete reasons. Based on these constructive characterizations
we propose a procedure for computing (minimal) conflict reasons and we
show that it is sound and complete.

Keywords: Graph transformation · Conflict analysis · Static analysis

1 Introduction

Graph transformation [1] is a formal paradigm with many applications. A graph
transformation system is a collection of graph transformation rules that, in union,
serve a common purpose. For many applications (see [2] for a survey involving 25
papers), it is beneficial to know all conflicts and dependencies that can occur for
a given pair of rules. A conflict is a situation in which one rule application ren-
ders another rule application inapplicable. A dependency is a situation in which
one rule application needs to be performed such that another rule application
becomes possible. For a given rule set, a conflict and dependency analysis (CDA)
technique is a means to compute a list of all pairwise conflicts and dependencies.

Inspired by the related concept from term rewriting, critical pair analysis
(CPA, [3]) has been the established CDA technique for over two decades. CPA
c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 75–92, 2019.
https://doi.org/10.1007/978-3-030-23611-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_5&domain=pdf
http://orcid.org/0000-0001-6937-5167
http://orcid.org/0000-0003-4733-2777
http://orcid.org/0000-0002-5969-3521
http://orcid.org/0000-0002-3975-5238
https://doi.org/10.1007/978-3-030-23611-3_5

76 L. Lambers et al.

reports each conflict as a critical pair1, that is, a minimal example graph together
with a pair of rule applications from which a conflict arises. Recently it has been
observed that applying CPA in practice is problematic: First, computing the
critical pairs does not scale to large rules and rule sets. Second, the results are
often hard to understand; they may contain many redundant conflicts that differ
in subtle details only, typically not relevant for the use case at hand.

To address these drawbacks, in previous work, we presented the multi-
granular conflict and dependency analysis (MultiCDA [2,5]) for graph transfor-
mation systems. It supports the computation of conflicts on a given granularity
level: On binary granularity, it reports if a given rule pair contains a conflict
at all. On coarse granularity, it reports minimal conflict reasons, that is, prob-
lematic rule fragments shared by both rules that may give rise to a conflict.
Fine granularity is, roughly speaking, the level of granularity provided by criti-
cal pairs. (In the terminology of our recent work [4], we here focus on different
levels of overlap granularity with fixed coarse context granularity.) We showed
that coarse-grained results are more usable than fine-grained ones in a diverse
set of scenarios and can be used to compute the fine-grained results much faster.

In this work, we address a major current limitation of MultiCDA [2]. The
computation of conflicts is only exact for cases where the second rule of the
considered rule pair is non-deleting. In this case, it is well-understood how to
compute conflicts efficiently, using constructive characterisations of minimal con-
flict reasons (for coarse granularity) and conflict reasons (for fine granularity).
In the other case, MultiCDA can provide an overapproximation of the actual
conflicts, by replacing the second rule with its non-deleting variant. On the one
hand, this overapproximation may contain conflicts which can never actually
arise. On the other hand, the overapproximation does not distinguish conflicts
for rule pairs where the second rule is non-deleting from those for rule pairs
where the second rule is deleting (i.e. no distinction between delete-delete and
delete-read). The first issue leads to a MultiCDA that may report false positives,
whereas the latter issue causes the MultiCDA to report true positives without
the desired level of detail. Therefore the overapproximation presents an obstacle
to the understandability of the results and the usability of the overall technique.

In this paper, we come up with the foundations for an improved MultiCDA
avoiding this limitation, thus delivering in all cases exact as well as detailed
results. To this end we present new constructive characterizations of (minimal)
conflict reasons for rule pairs where the second rule may be deleting, distin-
guishing in particular delete-read (dr) from delete-delete (dd) reasons. Based on
these constructive characterizations we propose a basic procedure for computing
dr/dd (minimal) conflict reasons and we show that it is sound and complete.
In particular, we learn that we can reduce the computation of dr/dd minimal
reasons to the constructions presented for the overapproximation [2]. Moreover,
the construction of dr/dd reasons can reuse the results computed for minimal
reasons, representing the basis for an efficient computation of fine-grained results

1 For brevity, since all conflict-specific considerations in this paper dually hold for
dependencies (see our argumentation in [4]), we omit talking about dependencies.

Exploring Conflict Reasons for Graph Transformation Systems 77

Fig. 1. Rules for running example in an integrated representation

based on coarse-grained ones. We illustrate our results using a running example
modeling requirements for a project management software.

The rest of this paper is structured as follows: Sect. 2 introduces our running
example. Section 3 revisits preliminaries. Section 4 introduces delete-read and
delete-delete conflict reasons. Section 5 presents a new characterization of conflict
reasons, accommodating both delete-read (dr) and delete-delete (dd) conflicts.
Section 6 is devoted to the construction of conflict reasons based on the new
characterizations. Section 7 discusses related work and concludes. We present
proofs that are omitted from this paper in an extended version [6].

2 Running Example

In agile software development processes [7], enterprises quickly react to changes
by flexibly adapting their team structures. Figure 1 introduces a set of rules
describing requirements for a project management software. The rules are repre-
sented in the Henshin [8] syntax, using an integrated syntax with delete, create,
and preserve elements. Delete and create elements are only contained in the LHS
and RHS, respectively, whereas a preserved element represents an element that
occurs both in the LHS and RHS.

The rules, focusing on restructuring and deletion cases for illustration pur-
poses, stem from a larger rule overall set. The first two rules allow the project
managers of a branch of the company to reassign roles and members between
teams. Rule ShiftMember assigns a member to a different role in the same team.
Rule ShiftRole moves a role and its assigned team member to a different team.
The other rule deals with a team member leaving the company. Rule Replace-
MemberWithSubstitute (abbreviated to ReplaceM in what follows) removes a

78 L. Lambers et al.

team member while filling the left role with a replacement team member, based
on their shared expertise. The role of the replacement member in the existing
project is deleted. Note that a variant of this rule, in which the existing role is
not deleted, may exist as well.

Conflicts and dependencies between requirements such as those expressed
with the rules from Fig. 1 can be automatically identified with a CDA tech-
nique. Doing so is useful for various purposes: To support project managers from
different teams who may want to plan changes to the personnel structure as inde-
pendently as possible. Or, for the software developers, to check whether conflicts
and dependencies expected to arise actually do, thereby validating the correct-
ness of the requirement specification. Therefore, we use this running example to
illustrate the novel CDA concepts introduced in this paper.

3 Preliminaries

As a prerequisite for our exploration of conflict reasons, we recall the double-
pushout approach to graph transformation as presented in [1]. Furthermore, we
reconsider conflict notions on the transformation and rule level [2,9,10], including
conflict reasons.

3.1 Graph Transformation and Conflicts

Throughout this paper we consider graphs and graph morphisms as presented in
[1] for the category of graphs; all results can be easily extended to the category
of typed graphs by assuming that each graph and morphism is typed over some
fixed type graph TG .

Graph transformation is the rule-based modification of graphs. A rule mainly
consists of two graphs: L is the left-hand side (LHS) of the rule representing
a pattern that has to be found to apply the rule. After the rule application, a
pattern equal to R, the right-hand side (RHS), has been created. The intersection
K is the graph part that is not changed; it is equal to L ∩ R provided that
the result is a graph again. The graph part that is to be deleted is defined by
L \ (L ∩ R), while R \ (L ∩ R) defines the graph part to be created.

A direct graph transformation G
m,r
=⇒ H between two graphs G and H is

defined by first finding a graph morphism2 m of the LHS L of rule r into G
such that m is injective, and second by constructing H in two passes: (1) build
D := G \ m(L \ K), i.e., erase all graph elements that are to be deleted; (2)
construct H := D ∪ m′(R \ K). The morphism m′ has to be chosen such that a
new copy of all graph elements that are to be created is added. It has been shown
for graphs and graph transformations that r is applicable at m iff m fulfills the
dangling condition. It is satisfied if all adjacent graph edges of a graph node to be

2 A morphism between two graphs consists of two mappings between their nodes and
edges being both structure-preserving w.r.t. source and target functions. Note that
in the main text we denote inclusions by ↪→ and all other morphisms by →.

Exploring Conflict Reasons for Graph Transformation Systems 79

deleted are deleted as well, such that D becomes a graph. Injective matches are
usually sufficient in applications and w.r.t. our work here, they allow to explain
constructions with more ease than for general matches. In categorical terms, a
direct transformation step is defined using a so-called double pushout as in the
following definition. Thereby step (1) in the previous informal explanation is
represented by the first pushout and step (2) by the second one [1].

Definition 1 ((non-deleting) rule and transformation). A rule r is

defined by r = (L
le←↩ K

ri
↪→ R) with L,K, and R being graphs connected

by two graph inclusions. The non-deleting rule of r is defined by ND(r) =

(L
idL←↩ L

ri′
↪→ R′) with (L

ri′
↪→ R′ ←↩ R) being the pushout of (le, ri). Given

rule r1 = (L1
le1←↩ K1

ri1
↪→ R1), square (1) in Fig. 2 can be constructed as initial

pushout over morphism le1. It yields the boundary graph B1 and the deletion
graph C1.

A direct transformation G
m,r
=⇒ H which

applies rule r to a graph G consists of
two pushouts as depicted right. Rule r
is applicable and the injective morphism
m : L → G is called match if there exists
a graph D such that (PO1) is a pushout.

L K R

G D H

(PO1) (PO2)m m′

Given a pair of transformations, a delete-use conflict [1] occurs if the match
of the second transformation cannot be found anymore after applying the first
transformation. Note that we do not consider delete-use conflicts of the second
transformation on the first one explicitly. To get those ones as well, we simply
consider the inverse pair of transformations. The following definition moreover
distinguishes two cases [9]: (1) a delete-read conflict occurs if the match of the
first transformation can still be found after applying the second one (2) a delete-
delete conflict occurs if this is not the case, respectively.

Definition 2 (dr/dd conflict). Given a pair of direct transformations (t1, t2)

= (G
m1,r1=⇒ H1, G

m2,r2=⇒ H2) applying rules r1 : L1
le1←↩ K1

ri1
↪→ R1 and r2 :

L2
le2←↩ K2

ri2
↪→ R2 as depicted in Fig. 2. Transformation pair (t1, t2) is in delete-

use conflict if there does not exist a morphism x21 : L2 → D1 such that g1◦x21 =
m2. Transformation pair (t1, t2) is in dr conflict if it is in delete-use conflict and
if there exists a morphism x12 : L1 → D2 such that g2◦x12 = m1. Transformation
pair (t1, t2) is in dd conflict if it is in delete-use conflict and if there does not
exist a morphism x12 : L1 → D2 such that g2 ◦ x12 = m1.

3.2 Conflict Reasons

We consider delete-use conflicts between transformations where at least one
deleted element of the first transformation is overlapped with some used ele-
ment of the second transformation. This overlap is formally expressed by a span

80 L. Lambers et al.

Fig. 2. Illustration of conflict and conflict reason

of graph morphisms between the deletion graph C1 of the first rule, and the
LHS of the second rule (Fig. 2). Remember that C1 := L1 \ (K1 \ B1) contains
the deletion part of a given rule and boundary graph B1 consisting of all nodes
needed to make L1 \ K1 a graph. C1 \ B1 may consist of several disjoint frag-
ments, called deletion fragments. Completing a deletion fragment to a graph by
adding all incident nodes (i.e. boundary nodes) it becomes a deletion component
in C1. Each two deletion components overlap in boundary nodes only; the union
of all deletion components is C1. If two transformations overlap such that there
is at least one element of a deletion fragment included, they are in conflict.

The overlap conditions reintroduced in Definition 3 describe for an overlap of
a given pair of rules under which conditions it may lead to a conflict (conflict con-
dition), since there exist transformations (transformation condition) that overlap
all elements as prescribed by the given overlap indeed (completeness condition).
We call such an overlap conflict reason and it is minimal if no bigger one exists in
which it can be embedded. Table 1 provides an overview over all conflict notions
for rules (as reintroduced in Definition 4) and their overlap conditions.

General Setting: For the rest of this paper, we assume the following basic
setting: Given rules r1 : L1

le1←↩ K1
ri1
↪→ R1 with the initial pushout (1) for

K1
le1
↪→ L1 and r2 : L2

le2←↩ K2
ri2
↪→ R2, we consider a span s1 : C1

o1←↩ S1
q12→ L2

as depicted in Fig. 2.

Definition 3 (overlap conditions). Given rules r1 and r2 as well as a span
s1, overlap conditions for the span s1 of (r1, r2) are defined as follows:

1. Weak conflict condition: Span s1 satisfies the weak conflict condition if there
does not exist any injective morphism x : S1 → B1 such that b1 ◦ x = o1.

2. Conflict condition: Span s1 satisfies the conflict condition if for each coproduct⊕
i∈I Si

1, where each Si
1 is non-empty and S1 =

⊕
i∈I Si

1, each of the induced

Exploring Conflict Reasons for Graph Transformation Systems 81

spans si1 : C1
oi1←↩ Si

1
qi12→ L2 with oi1 = o1|Si

1
and qi12 = q12|Si

1
fulfills the weak

conflict condition.
3. Transformation condition: Span s1 satisfies the transformation condition if

there is a pair of transformations (t1, t2) = (G
m1,r1=⇒ H1, G

m2,r2=⇒ H2) via
(r1, r2) with m1(c1(o1(S1))) = m2(q12(S1)) (i.e. (2) is commuting in Fig. 2).

4. Completeness condition: Span s1 satisfies the completeness condition if there
is a pair of transformations (t1, t2) = (G

m1,r1=⇒ H1, G
m2,r2=⇒ H2) via (r1, r2)

such that (2) is the pullback of (m1 ◦ c1,m2) in Fig. 2.

5. Minimality condition: A span s′
1 : C1

o′
1←↩ S′

1
q′

12→ L2 can be embedded into
span s1 if there is an injective morphism e : S′

1 → S1, called embedding
morphism, such that o1 ◦ e = o′

1 and q12 ◦ e = q′
12. If e is an isomorphism,

then we say that the spans s1 and s′
1 are isomorphic. (See (3) and (4) in

Fig. 3.) Span s1 satisfies the minimality condition w.r.t. a set SP of spans if
any s′

1 ∈ SP that can be embedded into s1 is isomorphic to s1.

Fig. 3. Illustrating span embeddings

Note that span s1 which fulfils the weak conflict condition, also fulfils the
conflict condition iff S1 does not contain any isolated boundary nodes [4].

Definition 4 (conflict notions). Let the rules r1 and r2 as well as a span s1
be given.

1. Span s1 is called conflict part candidate for the pair of rules (r1, r2) if it
satisfies the conflict condition. Graph S1 is called the conflict graph of s1.

2. A conflict part candidate s1 for (r1, r2) is a conflict part for (r1, r2) if s1
fulfils the transformation condition.

3. A conflict part candidate s1 for (r1, r2) is a conflict atom candidate for (r1, r2)
if it fulfils the minimality condition w.r.t. the set of all conflict part candidates
for (r1, r2).

4. A conflict part s1 for (r1, r2) is a conflict atom if it fulfils the minimality
condition w.r.t. the set of all conflict parts for (r1, r2).

5. A conflict part s1 for (r1, r2) is a conflict reason for (r1, r2) if s1 fulfils the
completeness condition.

82 L. Lambers et al.

Table 1. Overview of conflict notions

Overlap condition/
conflict notion

Conflict
condition

Transf.
condition

Compl.
condition

Minimality
condition

Conflict part candidate x
Conflict part x x
Conflict atom candidate x x
Conflict atom x x x
Conflict reason x x x
Min. conflict reason x x x x

6. A conflict reason s1 for (r1, r2) is minimal if it fulfils the minimality condition
w.r.t. the set of all conflict reasons for (r1, r2).

Conflict notions are in various interrelations as shown in [4]. Here, we recall
those that are relevant for our further exploration of conflict reasons.

Definition 5 (covering and composition of conflict parts).

1. Given a conflict part s1, the set A of all conflict atoms that can be embedded

into s1 covers s1 if for each conflict part s′
1 : C1

o′
1←↩ S′

1
q′

12→ L2 for (r1, r2)
that can be embedded into s1, it holds that s′

1 is isomorphic to s1 if each atom
in A can be embedded into s′

1.
2. Given a conflict part s1, the set M = {smi | i ∈ I} of spans that can be

embedded into s1 via a corresponding set of embedding morphisms EM =
{ei| i ∈ I} composes s1 if the set EM is jointly surjective.

Fact 1 (Interrelations of conflict notions and characterization [2,4]).
Let rules r1 and r2 as well as conflict part candidate s1 for (r1, r2) be given.

1. If s1 is a conflict part for (r1, r2), there is a conflict reason for (r1, r2) such
that s1 can be embedded into it.

2. If s1 is a conflict atom candidate for rules (r1, r2), its conflict graph S1 either
consists of a node v s.t. o1(v) ∈ C1 \ B1 or of an edge e with its incident
nodes v1 and v2 s.t. o1(e) ∈ C1 \ B1 and o1(v1), o1(v2) ∈ B1.

3. If s1 is a conflict part (esp. conflict reason) for rules (r1, r2), the set A of all
conflict atoms that can be embedded into s1 is non-empty and covers s1.

4. If s1 is a conflict reason for rule pair (r1,ND(r2)), it can be composed of all
minimal conflict reasons for (r1,ND(r2)) that can be embedded into s1.

5. If s1 is a minimal conflict reason for rule pair (r1,ND(r2)), its conflict graph
S1 is a subgraph of a deletion component of C1.

4 DR/DD Conflict Reasons

Conflict reasons are constructed from conflict part candidates. We distinguish
delete-read (dr) from delete-delete (dd) conflict part candidates (and conse-
quently also reasons) by requiring that the dd candidate entails elements that
are deleted by both rules, whereas the dr candidate does not.

Exploring Conflict Reasons for Graph Transformation Systems 83

Definition 6 (dr/dd conflict reason). Let the rules r1 and r2 and a conflict
part candidate s1 for (r1, r2) be given.

1. s1 is a dr conflict part candidate for (r1, r2) if there exists a morphism k12 :
S1 → K2 such that le2 ◦ k12 = q12.

2. s1 is a dd conflict part candidate for (r1, r2) otherwise.

A conflict part, atom or (minimal) reason is a dr (dd) conflict part, atom or
(minimal) reason, respectively, if it is a dr (dd) conflict part candidate.

A conflict atom consists of either a deleted node or deleted edge with incident
preserved nodes (see Fact 1). DR atoms, where the conflict graph consists of a
node, might possess incident edges that are deleted not only by the first, but
also by the second rule. We say that a dr atom is pure if this is not the case.

Definition 7 (pure dr atom). Given a conflict reason s1 : C1
o1←↩ S1

q12→ L2

and a dr atom s′
1 : C1

o′
1←↩ S′

1
q′
12→ L2 embedded into s1 via e : S′

1 → S1, then s′
1

is pure with respect to s1 if the conflict graph S′
1 consists of an edge, or if S′

1
consists of a node x and each edge y in C1 with source or target node o′

1(x) has
a pre-image y′ in S1 with source or target node e(x) s.t. q12(y′) ∈ le2(K2).

In this paper, we consider the general case of rule pairs where both rules
may be deleting. This implies that conflicts may arise in both directions. The
following definition therefore describes for a given pair of rules and a conflict
part candidate how compatible counterparts look like for the reverse direction.
It naturally leads to the notion of compatible conflict reasons that may occur in
the same conflict in reverse directions. We distinguish compatible counterparts
that overlap in at least one deletion item as special case, since they will be
important for the dd conflict reason construction.

Definition 8 (compatibility, join, dd overlapping). Given rules r1 and r2

with conflict part candidates s1 for (r1, r2) and s2 : C2
o2←↩ S2

q21→ L1 for (r2, r1)
as in Fig. 4.

1. Candidates s1 and s2 are compatible if the pullbacks S1
a1←− S′ a2−→ S2 of

(c1 ◦ o1, q21) and S1
a′
1←− S′′ a′

2−→ S2 of (q12, c2 ◦ o2) are isomorphic via an
isomorphism i : S′ → S′′ such that a′

1 ◦ i = a1 and a′
2 ◦ i = a2. We denote a

representative of these pullbacks as s : S1
a1←↩ S′ a2

↪→ S2.

2. Let S1
s′
1

↪→ S
s′
2←↩ S2 be the pushout of s. Morphisms ls1 and ls2 are the universal

morphisms arising from this pushout and the fact that c1 ◦ o1 ◦ a1 = q21 ◦ a2

and c2 ◦ o2 ◦ a2 = q12 ◦ a1. Then L1
ls1←↩ S

ls2
↪→ L2 as in Fig. 4 is called the join

of s1 and s2 and S is called the joint conflict graph.
3. Compatible conflict part candidates s1 for (r1, r2) and s2 for (r2, r1) are dd

overlapping if there do not exist morphisms k1 : S′ → K1 with le1 ◦ k1 =
c1 ◦ o1 ◦ a1 and k2 : S′ → K2 with le2 ◦ k2 = c2 ◦ o2 ◦ a2.

84 L. Lambers et al.

Fig. 4. Compatible conflict part candidates

Conflict parts, atoms, or reasons are (dd overlapping) compatible if the cor-
responding conflict part candidates are, respectively.

As clarified in the following proposition a dr conflict reason can be responsible
on its own for a conflict: if only a dr conflict reason is overlapped by correspond-
ing matches, then we obtain a dr initial conflict. Contrarily, for a dd conflict
reason, there exists at least one compatible conflict reason for the reverse rule
pair that it can be overlapped with leading to a dd initial conflict. The idea of
initial conflicts [10] is that they describe all possible conflicts in a minimal way
by overlapping as less elements as possible from both rules.

Proposition 1 (dr/dd conflict reasons and initial conflicts).

– Given a dr conflict reason s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2), then
the pushout (m1 : L1 → K,m2 : L2 → K) of L1

c1◦o1←↩ S1
q12→ L2 determines

the matches of an dr initial conflict (t1, t2) = (K
m1,r1=⇒ P1,K

m2,r2=⇒ P2) with
the pullback of (m1 ◦ c1,m2) being isomorphic to s1.

– Given a dd conflict reason s1 for rule pair (r1, r2), then there exists a non-
empty set DD(s1) of dd overlapping compatible dd conflict reasons for rule
pair (r2, r1) s.t. for each s2 in DD(s1) the pushout (m1 : L1 → K,m2 : L2 →
K) of the join of (s1, s2) determines the matches of an dd initial conflict
(t1, t2) = (K

m1,r1=⇒ P1,K
m2,r2=⇒ P2).

Finally, we can conclude from the overapproximation already considered in [2]
the following relationship between conflict reasons and overapproximated ones.

Proposition 2 (overapproximating conflict reasons). If a span s1 is a
conflict reason for rule pair (r1, r2), it is a dr conflict reason for (r1,ND(r2)).

5 Characterizing DR/DD Conflict Reasons

Table 2 gives a preview of characterization results for dr/dd conflict reasons
described in this section and used for coming up with basic procedures for con-
structing them in Sect. 6. We start with characterizing dr/dd conflict reasons

Exploring Conflict Reasons for Graph Transformation Systems 85

Table 2. Characterizing dr/dd conflict reasons for rule pair (r1, r2)

Conflict notion Characterization result

dr conflict reason covered by pure dr atoms only (Proposition 3)
dd conflict reason covered by at least one dd or non-pure dr atom and

arbitrary number of pure dr atoms (Proposition 3)
dr min. conflict reason equals min. reason for (r1,ND(r2)) (Proposition 4)
dd min. conflict reason composed of min. reasons for (r1,ND(r2)) being dd conflict

part candidates for (r1, r2) (Proposition 5)
dr conflict reason composed of dr min. conflict reasons only (Corollary 1)
dd conflict reason composed of min. conflict reasons where at least one of

which is dd (Corollary 1)

via atoms (Proposition 3). We proceed to characterize dr/dd minimal conflict
reasons, showing that we can reuse the constructions for a pair of rules, where
the second one is non-deleting (Propositions 4 and 5). We conclude with char-
acterizing dr/dd conflict reasons via minimal ones (Corollary 1). We distinguish
dr from dd conflict reasons and learn that the dd case is more involved than the
dr case.

Characterizing DR/DD Reasons via Atoms. From the characterization
of conflict reasons via atoms (see Fact 1), we can conclude that dr reasons are
covered (see Definition 5) by pure dr atoms (see Definition 7). Moreover, each dd
reason entails at least one dd atom or non-pure dr atom.

Proposition 3 (dr/dd conflict reason characterization). A dr conflict rea-
son is covered by pure dr atoms only. On the contrary, a dd conflict reason is
covered by at least one dd atom or non-pure dr atom and an arbitrary number
of pure dr atoms.

From the above characterization it follows that it makes sense to distinguish
as special case dd conflict reasons that are covered by dd atoms only.

Definition 9 (pure dd conflict reason). A dd conflict reason is pure if it is
covered by dd atoms only.

Characterizing DR/DD Minimal Reasons. A dr minimal conflict reason
for a given rule pair equals the minimal conflict reason for the rule pair, where
the second rule of the given rule pair has been made non-deleting.

Proposition 4 (dr minimal conflict reason characterization). Each dr
minimal conflict reason s1 for rule pair (r1, r2) is a dr minimal conflict reason
for rule pair (r1,ND(r2)).

86 L. Lambers et al.

Fig. 5. Two dr minimal conflict reasons for rules ShiftMember and ShiftRole

We can therefore conclude that the conflict graph of a dr minimal conflict
reason is again a subgraph of one deletion component (see Fact 1).

Example 1 (dr minimal conflict reason). Figure 5 shows two dr minimal conflict
reasons as examples, one for (r1, r2) and one for (r2, r1). Note that they do not
overlap in elements to be deleted. They are the same minimal reasons as for the
cases where the second rule is made non-deleting. For comparison, AGG [11]
computes 4 critical pairs for (r1, r2) one of which is an initial conflict. Figure 5
shows a critical pair but not the initial conflict. For obtaining the initial conflict,
it is enough to overlap merely the dr minimal conflict reason for (r1, r2) (see
Proposition 1).

A dd minimal conflict reason for a rule pair is composed (Definition 5) of
minimal reasons for the rule pair, where the second rule has been made non-
deleting.

Proposition 5 (dd minimal conflict reason characterization). Given a dd
minimal conflict reason s1 for (r1, r2), s1 is composed of a set M = {smi | i ∈ I}
of minimal conflict reasons for (r1,ND(r2)). Moreover, each reason in M is a
dd conflict part candidate for (r1, r2).

Remember that the conflict graph of each minimal conflict reason for a rule
pair, where the second rule is non-deleting, consists of a subgraph of one deletion
component. We can therefore conclude that the conflict graph of a dd minimal
conflict reason is a subgraph of one or more deletion components.

Example 2 (dd minimal conflict reason). Figure 6 shows an example of a dd
minimal conflict reason s1 for rule pair (ReplaceM, ReplaceM). s1 is a dd conflict
reason since S1 cannot be mapped to K2 in a suitable way. Furthermore, we see

Exploring Conflict Reasons for Graph Transformation Systems 87

Fig. 6. A dd (minimal) conflict reason for the rule pair (ReplaceM, ReplaceM)

that graph G can be constructed such that the completeness condition is fulfilled
and m1 and m2 are matches. It remains to show that s1 is indeed minimal.
Conflict part candidate s′

1 would also be a promising candidate. The resulting
graph G, however, would not merge nodes 4:Role with D:Role. Morphism m1
would not satisfy the dangling condition then. For a conflict part candidate
comprising nodes 2B: Member, 4D: Role, and 5E:Team we can argue similarly.
Due to Proposition 5, s1 has to be composed of minimal conflict reasons for
(ReplaceM, ND(ReplaceM)) which have to be deletion components as shown in
[2]. Hence, there are no further possibilities to choose a smaller span than s1. Note
that a dd conflict reason is not always pure. For example, the atom 1A:Member is
a (non-pure) dr atom. In addition to this dd minimal conflict reason there exist
two more. Their conflict graphs contain the following sets of nodes: {1B:Member,
2A:Member, 3D:Role} and {2A:Member, 4C:Role, 5F:Team}.

For the rule pair (ReplaceM, ND(ReplaceM)), four minimal conflict rea-
sons exist instead. Their conflict graphs contain the following sets of
nodes: {1B:Member, 2A:Member, 3D:Role}, {2A:Member, 4C:Role, 5F:Team},
{1A:Member, 2B:Member, 3C:Role}, and {2B:Member, 4D:Role, 5E:Team}. While
the first two are also conflict graphs of dd minimal conflict reasons for rule pair
(ReplaceM, ReplaceM), this is not the case for the last two as the dangling con-
dition is not satisfied in those cases. Moreover, the dd minimal conflict reason in
Fig. 6 is a conflict reason for (ReplaceM, ND(ReplaceM)) but not a minimal one.
For comparison, for the rule pair (ReplaceM, ReplaceM) AGG [11] computes 71
critical pairs. Figure 6 shows one initial conflict (according to Proposition 1).

88 L. Lambers et al.

Characterizing DR/DD Reasons via Minimal Reasons. The following
proposition was proven for a rule pair with the second rule non-deleting, but
it can be generalized to the case where the second rule is not necessarily non-
deleting. It allows us to construct also for this general case conflict reasons from
minimal ones by composing them appropriately.

Proposition 6 (composition of conflict reasons by minimal reasons).
Given a conflict reason s1 for (r1, r2), there is a set of minimal conflict reasons
for (r1, r2) s1 is composed of (Definition 5).

This allows to establish the following relationship between dr/dd conflict
reasons and minimal ones.

Corollary 1 (composition of dr/dd conflict reasons by minimal ones).

– A dr conflict reason is composed of dr minimal conflict reasons only.
– A dd conflict reason is composed of minimal conflict reasons where at least

one of which is dd.

6 Constructing DR/DD Conflict Reasons

It is known how to construct (minimal) conflict reasons for a rule pair, where the
second rule is non-deleting [2]. Proposition 4 tells us that each dr minimal conflict
reason for a rule pair (r1, r2) equals a minimal conflict reason for the rule pair
(r1,ND(r2)). Each such minimal conflict reason for the rule pair (r1,ND(r2))
that is in addition dr for (r1, r2) delivers us a dr minimal conflict reason. From
Corollary 1 we know that each dr conflict reason is a composition of dr minimal
conflict reasons again such that their construction is analogous to the one already
presented in [2]. In the following, we construct dd minimal conflict reasons from
rule pairs, which is much more involved than the dr case.

Definition 10 (composability, composition of conflict part candidates).

Given rules r1 and r2 with conflict part candidates s1 and s′
1 : C1

o′
1←↩ S′

1
q′
21→ L2

for (r1, r2).

1. Candidates s1 and s′
1 are composable if the pullbacks s : S1

a1←− S′ a2−→
S′
1 of (o1, o′

1) and S1
a′
1←− S′′ a′

2−→ S′
1 of (q21, q′

21) are isomorphic via an
isomorphism i : S′ → S′′ such that a′

1 ◦ i = a1 and a′
2 ◦ i = a2. We denote a

representative of these pullbacks as s.

2. Let S1
s′
1

↪→ S
s′
2←↩ S′

1 be the pushout of s. Morphisms ls1 and ls2 are the
universal morphisms arising from this pushout and the fact that o1 ◦ a1 =

o′
1 ◦a2 and q21 ◦a2 = q′

21 ◦a1. Then C1
ls1←↩ S

ls2
↪→ L2 is called the composition

of s1 and s′
1.

Exploring Conflict Reasons for Graph Transformation Systems 89

3. Given a set C of candidates, they are composable for |C| < 2. If C is larger,
each two of its candidates have to be composable. The composition of all can-
didates in C is the candidate itself if |C| = 1 and the successive composition
of its candidates otherwise.

Conflict parts, atoms, or reasons are composable if the corresponding conflict
part candidates are, respectively.

Construction (dd Minimal Conflict Reasons)
Let the rules r1 and r2 be given.

– Let CPC 1 be the set of all minimal conflict reasons for (r1,ND(r2)) which
are dd conflict part candidates for (r1, r2).

– Given a conflict part candidate s1, let CPC 2(s1) be the set of all conflict
reasons s2 : C2

o2←↩ S2
q21→ L1 for (r2,ND(r1)) such that s1 is dd overlapping

compatible with s2.

The set DDMCR of all dd minimal conflict reasons for (r1, r2) can be constructed
as follows (compare Fig. 4):

1. Let DDMCR be the empty set and n := 1.
2. For each subset M of n composable candidates in CPC1 for which the com-

position of a subset M ′ ⊂ M of n − 1 candidates is not in DDMCR yet:
(a) Compose all candidates in M to a candidate s1 and construct CPC 2(s1).
(b) For each s2 in CPC2(s1):

– Construct the pushout L1
m1
↪→ G

m2←↩ L2 of the join of s1 and s2.
– If m1 is a match for rule r1 and m2 a match for r2 and if the pullback

of (m1 ◦ o1,m2) is isomorphic to s1, then add s1 to DDMCR and
break.

(c) n := n + 1

Remark: Note that a composition of 0 candidates is trivially not in an empty
DDMCR. This construction terminates since CPC 1 is finite and it has finitely
many subsets. n is increased maximally to the size of CPC 1.

Example 3 (Construction of dd min. conflict reason). We construct a dd mini-
mal conflict reason for rule pair (ReplaceM, ReplaceM). We start with n = 1 and
choose s′

1 including conflict graph S′
1 in Fig. 6. It is a min. reason for (ReplaceM,

ND(ReplaceM)) not belonging to DDCMR yet. As discussed in Example 2, it is
not a conflict reason for (ReplaceM, ReplaceM). Hence, we cannot find a suitable
s2 ∈ CPC 2(s′

1). The argumentation for the other minimal conflict reason for
(ReplaceM, ND(ReplaceM)) is analogous. Hence, we have to set n = 2. As s1 is
a composition of two minimal conflict reasons for (ReplaceM, ND(ReplaceM)),
we choose this candidate next. Figure 6 shows that there is an s2 ∈ CPC 2(s1)
such that two matches m1 and m2 with the pullback of (m1 ◦ o1,m2) being
isomorphic to s1 can be constructed. Hence, s1 is in DDMCR.

90 L. Lambers et al.

Theorem 2 (Correctness dd min. conflict reason construction). Given
two rules r1 and r2, the construction above yields dd minimal conflict reasons
for (r1, r2) only (soundness) and all those (completeness).

Proof. Soundness: Because of Proposition 5 we know that a dd minimal conflict
reason for s1 for (r1, r2) is composed of a set of minimal conflict reasons for
(r1,ND(r2)), where each of them is a dd conflict part candidate for (r1, r2). In
Step 2 of the construction we select exactly these building bricks for minimal
conflict reasons and compose them if composable. We then perform a breadth-
first search (w.r.t. size of composition) over all possible compositions of minimal
conflict reasons for (r1,ND(r2)). The search returns all compositions for which
we can find a compatible conflict part candidate (see Proposition 2) that leads
to a dd reason for (r1, r2) (see Proposition 1). We only continue searching for
new minimal reasons if we did not find a successful smaller composition already.

Completeness: By checking in the construction for all possible combinations of
minimal conflict reasons for (r1,ND(r2)) if we can find a compatible conflict part
candidate leading to an initial conflict (see Proposition 1), we find all minimal
conflict reasons for (r1,ND(r2)).
�

Having constructions for dr/dd minimal conflict reasons at hand, we can
compute dd conflict reasons. Each dd reason is composed from minimal reasons,
where at least one of them is dd (see Corollary 1). Their construction is thus
analogous to the one for dd minimal conflict reasons with the following two
differences: (1) Instead of CPC 1 we have the set MCR1 of minimal dr/dd reasons
for (r1, r2). (2) Step 2 considers each set of n composable minimal reasons in
MCR1 with at least one of them dd, no matter if the composition of a subset
is already present in the result set or not (since we do not need minimality).
Soundness and completeness follows analogous to the proof of Theorem 2 based
on Corollary 1 instead of Proposition 5 and omitting the argument for minimality.

7 Related Work and Conclusion

Our paper continues a recent line of research on conflict and dependency anal-
ysis (CDA) for graph transformations aiming to improve on the previous CDA
technique of critical pair analysis (CPA). Originally inspired by the CPA in
term and term graph rewriting [3], the CPA theory has been extended to graph
transformation and generally, to M-adhesive transformation systems [1,12].

Azzi et al. [13] conducted similar research to identify root causes of conflict-
ing transformations as initiated in [9] and continued in [5]. Their work is based
upon an alternative characterization of parallel independence [14] that led to a
new categorical construction of initial transformation pairs. The most important
difference is that we define our conflict notions (including the dr/dd characteriza-
tion) for rule pairs instead of transformation pairs [13] with the aim of coming up
with efficient CDA. Moreover, we consider conflict atoms and (minimal) reasons,
whereas Azzi et al. [13] focus conflict reasons (in our terminology).

Exploring Conflict Reasons for Graph Transformation Systems 91

In this paper, we extend the foundations for computing conflicts and depen-
dencies for graph transformations in a multi-granular way. In particular, our
earlier work relied on an over-approximation of (minimal) conflict reasons; we
assumed a non-deleting version of the second rule of the considered rule pair as
input. In contrast, our present work introduces a new constructive characteri-
zation of (minimal) conflict reasons distinguishing dr from dd reasons and we
present a basic computation procedure that is sound and complete. Building on
our recent work [2], we now support precise conflict computation for any given
granularity level, from binary (conflict atom) over medium (minimal conflict rea-
son) to fine (conflict reason). Future work is needed to implement the presented
constructions, to evaluate efficiency and to investigate usability.

Acknowledgements. This work was partially funded by the German Research Foun-
dation, project “Triple Graph Grammars (TGG) 2.0: Reliable and Scalable Model Inte-
gration”.

References

1. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
MTCSAES. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

2. Lambers, L., Strüber, D., Taentzer, G., Born, K., Huebert, J.: Multi-granular con-
flict and dependency analysis in software engineering based on graph transfor-
mation. In: International Conference on Software Engineering (ICSE). pp. 716–
727. ACM (2018). Extended version. www.uni-marburg.de/fb12/swt/forschung/
publikationen/2018/LSTBH18-TR.pdf

3. Plump, D.: Critical pairs in term graph rewriting. In: Prívara, I., Rovan, B., Ruz-
ička, P. (eds.) MFCS 1994. LNCS, vol. 841, pp. 556–566. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58338-6_102

4. Lambers, L., Born, K., Kosiol, J., Strüber, D., Taentzer, G.: Granularity of conflicts
and dependencies in graph transformation systems: a two-dimensional approach.
J. Log. Algebr. Methods Program. 103, 105–129 (2019)

5. Born, K., Lambers, L., Strüber, D., Taentzer, G.: Granularity of conflicts and
dependencies in graph transformation systems. In: de Lara, J., Plump, D. (eds.)
ICGT 2017. LNCS, vol. 10373, pp. 125–141. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-61470-0_8

6. Lambers, L., Kosiol, J., Strüber, D., Taentzer, G.: Exploring conflict reasons
for graph transformation systems: Extended version (2019). https://www.uni-
marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2019/LKST19-
TR.pdf

7. Beck, K., et al.: Manifesto for Agile software development (2001)
8. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced

concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2_9

9. Lambers, L., Ehrig, H., Orejas, F.: Efficient conflict detection in graph transfor-
mation systems by essential critical pairs. Electr. Notes Theor. Comput. Sci. 211,
17–26 (2008)

https://doi.org/10.1007/3-540-31188-2
www.uni-marburg.de/fb12/swt/forschung/publikationen/2018/LSTBH18-TR.pdf
www.uni-marburg.de/fb12/swt/forschung/publikationen/2018/LSTBH18-TR.pdf
https://doi.org/10.1007/3-540-58338-6_102
https://doi.org/10.1007/978-3-319-61470-0_8
https://doi.org/10.1007/978-3-319-61470-0_8
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2019/LKST19-TR.pdf
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2019/LKST19-TR.pdf
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2019/LKST19-TR.pdf
https://doi.org/10.1007/978-3-642-16145-2_9

92 L. Lambers et al.

10. Lambers, L., Born, K., Orejas, F., Strüber, D., Taentzer, G.: Initial conflicts and
dependencies: critical pairs revisited. In: Heckel, R., Taentzer, G. (eds.) Graph
Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 105–123. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75396-6_6

11. AGG: Attributed Graph Grammar system. http://user.cs.tu-berlin.de/~gragra/
agg/

12. Ehrig, H., Padberg, J., Prange, U., Habel, A.: Adhesive high-level replacement
systems: a new categorical framework for graph transformation. Fundam. Inform.
74(1), 1–29 (2006)

13. Azzi, G.G., Corradini, A., Ribeiro, L.: On the essence and initiality of conflicts. In:
Lambers, L., Weber, J. (eds.) ICGT 2018. LNCS, vol. 10887, pp. 99–117. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92991-0_7

14. Corradini, A., et al.: On the essence of parallel independence for the double-pushout
and sesqui-pushout approaches. In: Heckel, R., Taentzer, G. (eds.) Graph Trans-
formation, Specifications, and Nets. LNCS, vol. 10800, pp. 1–18. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75396-6_1

https://doi.org/10.1007/978-3-319-75396-6_6
http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~gragra/agg/
https://doi.org/10.1007/978-3-319-92991-0_7
https://doi.org/10.1007/978-3-319-75396-6_1

Unfolding Graph Grammars
with Negative Application Conditions

Andrea Corradini1(B), Maryam Ghaffari Saadat2, and Reiko Heckel2

1 Dipartimento di Informatica, University of Pisa, Pisa, Italy
andrea@di.unipi.it

2 Department of Informatics, University of Leicester, Leicester, UK
{mgs17,rh122}@leicester.ac.uk

Abstract. The unfolding of a graph grammar provides a compact and
comprehensive representation of its behaviour, serving both as a seman-
tic model and as the basis for scalable analysis techniques. We study the
extension of the theory of unfolding to grammars with negative appli-
cation conditions (NACs), discuss the challenges with the general case
of NACs consisting of complex graph patterns and how they could be
avoided by restricting to simpler, incremental NACs.

Keywords: Graph grammars · Unfolding semantics ·
Negative application conditions · Incremental NACs

1 Introduction

Graph grammars provide a natural way of modelling computations over graphs,
in order to formalise semantics, support analysis, or solve combinatorial prob-
lems. Arguably the most comprehensive representation of the concurrent and
non-deterministic behaviour a graph grammar is its unfolding [1–3]. This can be
computed incrementally and represents in one structure the branching compu-
tations of the grammar in what could be described as a partial-order variant of
its derivation tree.

Negative application conditions (NACs) [9] increase the expressiveness of
rules by allowing to specify preconditions requiring the absence of nodes, edges
or patterns in the context of the match. While not formally increasing the com-
putational power of double-pushout (DPO) graph grammars [5,6] (which are
already Turing-complete) they support a more high-level way of modelling. By
avoiding the need to encode negative information into the graph structure they
tend to reduce the size of models and thus make analysis more feasible.

In the presence of NACs, the concurrent and non-deterministic behaviour
of a graph grammar becomes significantly more complex. While, traditionally,
dependencies and conflicts between transformations are based on how their left-
and right-hand sides overlap in given or derived graphs, and if these overlaps
include elements created or deleted by one rule and required or preserved by

c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 93–110, 2019.
https://doi.org/10.1007/978-3-030-23611-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-23611-3_6

94 A. Corradini et al.

the other, NACs entail new types of conflicts and dependencies. In particular, a
create-forbid conflict exists if one rule creates part of a structure that is forbidden
by the NAC of another, thus disabling it. A delete-enable dependency is caused
by one rule enabling another one by deleting elements that previously caused a
violation of the second rule’s NAC.

The added complexity here is due to the fact that, even in a given derivation,
there may be several possible transformations contributing to the creation or
destruction of a substructure matching a negative condition. That means, a
delete-enable dependency may exist not with a unique transformation but with a
set of alternative transformations each deleting part of that forbidden structure.
Dually, a create-forbid conflict can arise with any of a number of transformations
creating part of such a structure. That means, intuitively, these relations have
a disjunctive flavour in contrast to the conjunctive nature of the classical causal
dependency where all transformations establishing part of a rule’s match have
to be present for this rule to be applied. In addition, a rule with a NAC may be
applied to a given match either before the NAC occurs in the derivation or after
it has been destroyed, adding another level of disjunction.

We address the problem of unfolding conditional graph grammars generalis-
ing the approach by [14] for the unfolding of Place/Transition Petri nets with
read and inhibitor arcs. The idea here is to resolve the disjunction mentioned
above by introducing so-called assignments that fix, for each NAC occurrence, a
transformation creating or destroying part of this occurrence. The causal history
of a rule can then be considered relative to such an assignment.

In analogy to [14] we define a notion of conditional occurrence graph grammar
assuming the existence of a suitable assignment for every rule and show how
to create such an occurrence grammar by unfolding a given conditional graph
grammar. The unfolding is equipped with a morphism to the original grammar,
and as a consequence each derivation of the unfolding is mapped to a derivation
of the original grammar. It remains beyond the scope this paper, but a topic of
future work, to prove that the resulting construction gives rise to a co-reflection.
This means that not only the unfolding preserves the behaviour, but it is also
maximal with this property, in the sense that each morphism from an occurrence
grammar to the original grammar factorizes uniquely through the unfolding.

Somewhat surprisingly, our approach works for both the incremental case
(the more direct generalisation of a net with read and inhibitor arcs, because
the inhibitor arc only points to a single place) and the general case of complex
forbidden patterns. However, this makes the choice of assignments in the con-
struction of the unfolding highly non-deterministic calling into question its use
as an efficient computational structure. We discuss how a restriction to incre-
mental NACs leads to a canonical choice of assignments bringing the complexity
of the unfolding construction closer to the unconditional case.

Related Work. So far, only some of the more basic elements of the theory of
concurrency of graph grammars have been lifted to the case with NACs, including
the classical Local Church Rosser and Concurrency theorems [9,10] and the
analysis of critical pairs [11]. Graph processes, a deterministic form of unfolding,

Unfolding Graph Grammars with Negative Application Conditions 95

have been studied for grammars with NACs in [12]. In [13] two of the authors
established the existence of canonical derivations for systems with incremental
NACs which, in the case of graphs, are limited to forbidding individual nodes,
or edges attached to existing nodes (and their opposite source or target node).
The theory of approximate unfolding [4] in the DPO approach has been used to
implement scalable verification [7] and optimisation [8].

The paper is organized as follows: in the following section we introduce the
main concepts of conditional graph grammars; in Sect. 3, we review the notion of
occurrence grammar and of unfolding in the unconditional case. Section 4 intro-
duces conditional occurrence grammars and Sect. 5 presents the corresponding
unfolding construction. Section 6 is devoted to a discussion of the case with
incremental NACs and Sect. 7 concludes the paper.

2 Basic Definitions

This section summarizes the basic definitions of typed graph grammars [15]
based on the DPO approach [5,6] extended by negative application conditions
(NACs) [9]. Formally, a (directed, unlabelled) graph is a tuple G = 〈N,E, s, t〉,
where N is a set of nodes, E is a set of arcs, and s, t : E → N are the source
and target functions. A graph morphism f : G → G′ is a pair of functions
f = 〈fN : N → N ′, fE : E → E′〉 preserving sources and targets, i.e., such that
fN ◦ s = s′ ◦ fE and fN ◦ t = t′ ◦ fE .

The category of graphs and graph morphisms is denoted by Graph. Given
a graph TG, called type graph, a TG-typed (instance) graph is a pair 〈G, tG〉,
where G is a graph and tG : G → TG is a morphism. A morphism between typed
graphs f : 〈G1, tG1〉 → 〈G2, tG2〉 is a graph morphisms f : G1 → G2 consistent
with the typing, i.e., such that tG1 = tG2 ◦ f . The category of TG-typed graphs
and typed graph morphisms is denoted by TG-Graph.

A rule p = (L ←l− K −r→ R) consists of a span of two injective graph morphisms
l and r. A rule is consuming if l is not an isomorphism: all along the paper rules
are assumed to be consuming. A redex in a graph G is a pair 〈p,m〉, where p is
a rule and m : L → G is an injective graph morphisms, called a match.

Given a redex 〈p,m〉, a double-pushout (DPO)
transformation G =

p,m
==⇒ H from G to H exists

if we can construct a diagram such as (1) where
both squares are pushouts in TG-Graph.

L

m
��

K
l�� r ��

d��

R

m∗
��

G D
g

��
h

�� H

(1)

The applicability of rules can be restricted by negative application conditions.
For a rule p as above, a (negative) constraint over p is a monomorphism n : L →
N . A match m : L → G satisfies n if there is no monomorphism q : N → G such
that q ◦ n = m. A negative application condition (NAC) over a rule p is a set of
constraints over p. A match m : L → G satisfies a NAC φ over p if m satisfies
every constraint in φ. A graph grammar G = 〈TG,Gin, P, π〉 consists of a type
graph TG, a TG-typed input graph Gin, a set of rule names P and a function
π assigning to each p ∈ P a rule π(p) = (Lp ←l− Kp −r→ Rp).

96 A. Corradini et al.

Fig. 1. Conditional graph grammar

A conditional graph grammar CG = 〈TG,Gin, P, π, Φ〉 adds a function Φ
providing for each p ∈ P a NAC Φ(p) over π(p). We denote by ΦCG the total
set of constraints of the grammar, i.e., ΦCG = {〈q, n〉 | q ∈ P, n ∈ Φ(q)}. A
transformation with NACs is called conditional transformation.

A derivation in G is a finite sequence of transformations s = (Gin =
G0 =

p1,m1===⇒ · · · =
pn,mn====⇒ Gn) with pi ∈ P .1 A conditional derivation in CG is

a derivation in G such that each Gi−1 =
pi,mi===⇒ Gi is a conditional transformation,

that is, its match mi satisfies Φ(pi).

Example 1 (Conditional Graph Grammar). Figure 1 shows an example of a con-
ditional graph grammar CG modelling an online meeting system where Clients
can be promoted to act as Servers, who can then start Meetings between two
Clients. Up to two additional Clients can join each meeting, and Clients can
leave the Meeting independently, for an empty meeting to be terminated. The
number for Meetings per Server and Clients per Meeting are limited by loops
on Server and Meeting nodes, respectively. They also ensure that the system is
consuming, i.e., each rule deletes at least one element of its left-hand side. When
terminating, the meeting rule tm(m) deletes the four loops attached to m when
no Client is connected.

We use a condensed notation for rules, omitting the interface graph of the
span (which can be reconstructed as the intersection of the left- and right-hand
sides) and integrating the negative elements into the left-hand side. For example,
in rule pc(c) the left hand side Lpc(c) consists of a single Client node while its
negative constraint L̂pc(c) consists of the Client node, the Meeting node and the
edge between them, indicating that the rule can only be applied if Client c is
not in a Meeting. The negative part of the constraint is L̂pc(c) \ Lpc(c), given by
the Meeting node and the edge only.
1 For the sake of simplicity we often leave the application of function π implicit.

Unfolding Graph Grammars with Negative Application Conditions 97

It is well known [9] that NACs can express the dangling condition of the DPO
approach. The idea is to add to every rule p a constraint for each deleted node
v, requesting that v is not the source or target of edges beside those in p’s left-
hand side. If this is true for all rules of a conditional grammar CG, we say that
its NACs subsume the dangling condition. Examples can be seen in rules pc(c)
and tm(c,m) above. In the rest of the paper we assume this of all conditional
grammars.

3 Occurrence Grammars

As a prerequisite to considering conditional grammars, in this section we recall
the notion of non-deterministic occurrence grammar and describe informally the
unfolding construction [1].

A grammar G = 〈TG,Gin, P, π〉 is (strongly) safe if, for all H such that
Gin ⇒∗ H, H has an injective typing morphism. The basic observation is that
typed graphs having an injective typing morphism can be safely identified with
the corresponding subgraphs of the type graph (just thinking of injective mor-
phisms as inclusions). Therefore, in particular, each graph 〈G, tG〉 reachable in a
safe grammar can be identified with the subgraph tG(G) of the type graph TG.
For a safe grammar G = 〈TG,Gin, P, π〉, the set of its elements is defined as
Elem(G) = TGE ∪ TGN ∪ P , assuming without loss of generality that the three
sets are mutually disjoint.

Using a net-like language, we speak of pre-set •q, context q and post-set q• of
a rule q, defined as the disjoint sets of elements deleted, preserved and created
by the rule. Similarly for a node or arc x in TG we write •x, x and x• to denote
the disjoint sets of rules which produce, preserve and consume x.2

Definition 1 (causal and asymmetric conflict relations). The causal rela-
tion of a safe grammar G is the binary relation < over Elem(G) defined as the
least transitive relation satisfying: for any node or arc x in the type graph TG,
and for rules q1, q2 ∈ P

1. if x ∈ •q1 then x < q1;
2. if x ∈ q1

• then q1 < x;
3. if q1

• ∩ q2 �= ∅ then q1 < q2;

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote
by �x� the set of causes of x in P , namely {q ∈ P : q ≤ x}.

The asymmetric conflict relation of a grammar G is the binary relation ↗
over the set of rules, defined by:

1. if q1 ∩ •q2 �= ∅ then q1 ↗ q2;
2. if •q1 ∩ •q2 �= ∅ and q1 �= q2 then q1 ↗ q2;
3. if q1 < q2 then q1 ↗ q2.
2 For the sake of conciseness, we depart slightly from [1] by providing the next defini-
tion for safe grammars only.

98 A. Corradini et al.

Given two productions q1 and q2 of a safe grammar, if q1 < q2 then in any
derivation where q2 occurs, q1 must occur before q2, as it produces some item
necessary for q2. Instead q1 ↗ q2 states that in any derivation where both occur,
q1 must precede q2, but q2 could occur alone. This is the case when (first clause)
q2 deletes an item that is preserved by q1.

A nondeterministic occurrence grammar is a safe grammar where the causal
relation is acyclic, and which represents, in a branching structure, several possible
computations starting from its initial graph and using each rule at most once.

Definition 2 ((nondeterministic) occurrence grammar [1]). A (nonde-
terministic) occurrence grammar is a safe grammar O = 〈TG,Gin, P, π〉 where

1. for each rule q : 〈L, tL〉 l← 〈K, tK〉 r→ 〈R, tR〉, the typing morphisms tL, tK
and tR are injective.

2. its causal relation ≤ is a partial order, and for any q ∈ P , the set �q� is finite
and asymmetric conflict ↗ is acyclic on �q�;

3. the initial graph Gin coincides with the set Min(O) of minimal elements of
〈Elem(O),≤〉3 (with the graphical structure inherited from TG and typed by
the inclusion);

4. each arc or node x in TG is created by at most one rule in P : | •x | ≤ 1.

Since the initial graph of an occurrence grammar O is determined by Min(O),
we often do not mention it explicitly.

Example 2 (Occurrence Grammar). Figure 2 shows an occurrence grammar OG
based on the grammar G underlying the conditional grammar CG of Exam-
ple 1. That means, in G we keep type graph and rules of OG but drop all
application conditions. The type graph at the bottom of Fig. 2 contains all
graph elements required for the application of a selection of rules of G, rep-
resented by the rule occurrences listed above it. These occurrences are the
rule names of OG, shown by means of their names in G, using parameters
to indicate their matches. For example, sm(c1, c3, 21) represents an applica-
tion of rule sm(c1, c2, 1) to Server s2 and Clients c1, c3, consuming the loop
21 and producing a meeting m21 with links 21-1, 21-3 to c1, c3, respectively.
That means, pre-set, context and post-set are given by •sm(c1, c3, 21) = {21},
sm(c1, c3, 21) = {c1, c3, s2} and sm(c1, c3, 21)• = {m21, 21-1, 21-3, 211, 212, 1}.
Independently, sm(c1, c3, 22) produces a meeting m22 linking the same clients
via 22-1, 22-3 after consuming loop 22. In particular, its pre-set and context
are given by •sm(c1, c3, 22) = {22}, sm(c1, c3, 22) = {c1, c3, s2}, so according to
Definition 1 they are neither related by < nor by ↗.

Instead, with pre-set, context and post-set for pc(c2) given by •pc(c2) = {c2},
pc(c2) = ∅ and pc(c2)• = {s2, 21, 22}, both pc(c2) < sm(c1, c3, 21) and
pc(c2) < sm(c1, c3, 22) because by clause 2 of the definition of <, pc(c2) < 2i

and by clause 1, 2i < sm(c1, c3, 2i). Similarly, jm(c1, 2i1), jm(c1, 2i2) are inde-
pendent, but sm(c1, c3, 2i) < jm(c1, 2i1), jm(c1, 2i2). Furthermore, we have
3 Notice that Min(O) ⊆ NTG ∪ ETG, i.e., it does not contain rules, since the grammar
is consuming.

Unfolding Graph Grammars with Negative Application Conditions 99

Fig. 2. Occurrence grammar OG. For readability the type graph does not show loops
on m2i created by lm(j) occurrences nor loops on s2 created by tm(m) occurrences.

mutual conflicts ↗ among all occurrences jm(cl, 2i1) consuming 2i1 and all
occurrences jm(cl, 2i2) consuming 2i2. All occurrences of lm(j) are independent
of each other because they each consume their own link. Occurrences tm(m2i)
consume m2i, i.e., m2i ∈ •tm(m2i), and since m2i ∈ jm(cl, 2ik), we have
jm(cl, 2ik) ↗ tm(m2i) by clause 1 of ↗.

Definition 3 (concurrent graph). A subgraph G of the type graph TG of an
occurrence grammar is concurrent if

1. ¬(x < y) for all x, y ∈ G
2. �G� is finite
3. ↗ is acyclic on �G�
4. for all e ∈ TG and n ∈ {s(e), t(e)}, if n• ∩ �G� �= ∅ and •e ⊆ �G� then

e• ∩ �G� �= ∅
Condition 4. Ensures the satisfaction of the dangling condition for all rules

in �G�. Concurrent graphs represent the coverable graphs of the grammar [1].

Proposition 1 (concurrent graph). A graph G ⊆ TG is concurrent if and
only if it is coverable in O, i.e. there is derivation Min(O) ⇒∗ H with G ⊆ H.

The idea is that, for every concurrent graph G one can find a derivation
Min(O) ⇒∗ H which applies exactly once every rule in �G�, in any order con-
sistent with (↗�G�)∗. Vice versa for each derivation Min(O) ⇒∗ G in O, the set
of rules it applies contains �G� and their order is compatible with ↗∗. Therefore
reachable graphs are concurrent. Furthermore, each subgraph of a concurrent
graph is concurrent as well, thus so are all coverable graphs.

For example in the type graph of Fig. 2, each subgraph consisting of an l-
edge and its Meeting and Client node is concurrent and thus contained in a

100 A. Corradini et al.

graph reachable by a suitable sequence of rules. E.g., 21-1 results from applying
pc(c2); sm(c1, c3, 21) while each 12-1i requires, in addition, jm(c1, 21i).

Given a consuming grammar G, a nondeterministic occurrence grammar
describing the behaviour of G, called its unfolding, can be obtained with the
so-called unfolding construction. The unfolding is equipped with a morphism of
graph grammars u to the original grammar G which allows to see rules in O as
instances of rule applications in G, and items of the type graph of O as instances
of items of the type graph of G. The idea is to start from the initial graph of
the grammar, then apply its rules in all possible ways, recording in the unfold-
ing each occurrence of rule and each new graph item generated in the rewriting
process, both enriched with the corresponding causal history.

4 Conditional Occurrence Grammars

We define morphisms of conditional graph grammars such that they preserve
behaviour. For a graph morphism fTG : TG1 → TG2, we denote by f>

TG the
covariant retyping functor from TG1-typed graphs to TG2-typed graphs, defined
as f>

TG(〈G1, tG1〉) = 〈G1, fTG ◦ tG1〉.
Definition 4 (CGG morphisms). Given conditional graph grammars CGi =
〈TGi, Gi, Pi, πi, Φi〉 for i = 1, 2 a CGG morphism f = 〈fTG, fP 〉 : CG1 → CG2

consists of a graph morphism fTG : TG1 → TG2 and a mapping fP : P1 → P2

such that

– G2 = f>
TG(G1)

– π2(fP (p)) = f>
TG(π1(p)) for all p ∈ P1

– f>
TG(Lp → N) ∈ Φ2(fP (p)) ⇒ (Lp → N) ∈ Φ1(p).

The category of conditional graph grammars and CGG morphisms is CGG.

Proposition 2 (CGG morphisms preserve derivations). Morphisms of
conditional graph grammars preserve derivations.

Proof. We show that given a transformation G =
p,m
==⇒ H in CG1 we obtain a trans-

formation f>
TG(G) =

fP (p),f>
T G(m)

========⇒ f>
TG(H) in CG2. Then, this mapping extends

to derivations of length >1 by concatenation.
Functor f>

TG preserves pushouts. That means, for the underlying uncon-
ditional grammars, applying f>

TG to the DPO diagram of a transforma-
tions G =

p,m
==⇒ H in G1 we obtain the DPO diagram of a transformation

f>
TG(G) =

fP (p),f>
T G(m)

========⇒ f>
TG(H) in G2.

Assume that m satisfies Φ1(p), i.e., G =
p,m
==⇒ H is a transformation in CG1. We

proceed by contradiction, assuming that there is a constraint n2 : f>
TG(Lp) →

N2 ∈ Φ2(fP (p)) not satisfied by f>
TG(m), i.e., there exists an injective morphism

q : N2 → f>
TG(G) such that q◦n2 = f>

TG(m). In this case, there exists a morphism
n1 : Lp → N1, typed over TG1, such that f>

TG(n1) = n2. In particular, TG1-
typed graph N1 is the same as N2 with typing tN1 = tG ◦q (∗). This composition

Unfolding Graph Grammars with Negative Application Conditions 101

is well-defined because G and f>
TG(G) are the same graph with different typing

morphisms, i.e., tf>
T G(G) = fTG ◦ tG. TG2-typed morphism n2 is also typed over

TG1 because tN1 ◦n2 = tG ◦q◦n2 = tLp
based on the analogous observation that

Lp and f>
TG(Lp) are the same graph, but for typing. We let n1 be this TG1-typed

version of n2, so f>
TG(n) = n2.

By the third clause in Definition 4, n1 ∈ Φ1(p). Now, if f>
TG(m) does not

satisfy n2, there exists an injective morphism q : f>
TG(N1) → f>

TG(G) such
that q ◦ f>

TG(n1) = f>
TG(m). Morphism q is also a TG1-typed q : N1 → G if

tG ◦ q = tN1 . However, this is just as tN1 was defined in (∗) above. Hence m
does not satisfy n1 ∈ Φ1(p), contradicting the assumption. ��

Following [14], we introduce the notion of assignment that will be pivotal in
the definition of conditional occurrence grammar. An assigment determines for
each constraint 〈q, L̂q〉4 of a rule q, which rule guarantees that the constraint is
satisfied when q is applied.

Definition 5 (assignment). Let CG be a safe conditional grammar. An assign-
ment for CG is a function ρ : ΦCG → P such that, for all 〈q, L̂q〉 ∈ ΦCG,
ρ(〈q, L̂q〉) ∈ •(L̂q \ Lq) ∪ (L̂q \ Lq)•.

Given a constraint n = 〈q, L̂q〉, an assignment ρ associates with n either a
rule that deletes one or more items forbidden by n, guaranteeing that q can
be applied after ρ(n), or a rule that creates one or more items forbidden by n,
meaning that q can be applied before ρ(n). Therefore once an assignment ρ for
CG is fixed, new dependencies among their rules arise, that we denote by <n

ρ and
↗n

ρ . More precisely, we define:

– ρ(〈q, L̂q〉) <n
ρ q if ρ(〈q, L̂q〉) ∈ (L̂q \ Lq)•, and

– q ↗n
ρ ρ(〈q, L̂q〉) if ρ(〈q, L̂q〉) ∈ •(L̂q \ Lq) and ρ(〈q, L̂q〉) �= q.

The notation suggests in the first case a proper causality (if q is applied, then
ρ(〈q, L̂q〉) should have been applied before), while in the second case we have
an asymmetric conflict (if both q and ρ(〈q, L̂q〉) are applied, q must be applied
before). The second clause also considers the self-disabling case where q itself
generates (part of) its constraint, in which case no new dependencies arise.

We define extended relations <ρ and ↗ρ, integrating conflicts and dependen-
cies from negative constraints, as <ρ = (< ∪ <n

ρ)+ and ↗ρ =<ρ ∪ ↗ ∪ ↗n
ρ .

For x ∈ Elem(CG) we denote by �x�ρ the set {q ∈ P | q ≤ρ x} and by �X�ρ the
extension to sets X ⊆ Elem(CG).

A conditional grammar CG is safe if its underlying grammar G is, and all
its constraints have injective typing morphisms. As before, we assume inclusions
and represent a constraint n : L → L̂ by its target graph L̂ only.

Definition 6 (conditional occurrence grammar). A conditional occur-
rence grammar is a safe grammar CO = 〈TG,Gin, P, π, Φ〉 where

4 We denote a constraint 〈q, Lq
n→ L̂q〉 simply as 〈q, L̂q〉 assuming that n is an inclusion.

102 A. Corradini et al.

1. for each rule q, its typing morphisms tLq
, tKq

and tRq are injective, and for
each constraint 〈q, L̂q〉 ∈ ΦCG graph L̂q is typed injectively

2. for all q ∈ P there exists an assignment ρ such that (↗ρ)�q�ρ
is acyclic and

�q�ρ is finite
3. the (unconditional) grammar O = 〈TG,Gin, P, π〉 satisfies the conditions of

Definition 2 (3) and (4).

The category of conditional occurrence grammars and CGG morphisms is
denoted by COG.

Example 3 (Conditional Occurrence Grammar). We extend Example 2 by con-
straints associated with rule occurrences. For example, none of the 12 l-edges
are constraints of pc(c2) because they are not attached to c2. Instead, any of the
three edges j : l from m21 to c1 is a constraint L̂(j) of jm(c1, 211).

An assignment ρ discharges existing constraints, justifying the applicabil-
ity of rules for new dependencies or conflicts. Assignment ρ(〈jm(c1, 211), L̂(j)〉)
nominates a rule that creates j : l after jm(c1, 211) or consumes
j : l before. If j = 21-1, the edges is created by sm(c1, c3, 21), but
ρ(〈jm(c1, 211), L̂(21-1)〉) = sm(c1, c3, 21) implies jm(c1, 211) ↗ρ sm(c1, c3, 21).
Due to the dependency via m21, sm(c1, c3, 21) < jm(c1, 211) and so
sm(c1, c3, 21) ↗ρ jm(c1, 211). Since the set of causes of jm(c1, 211) has
a cyclic dependency, sm(c1, c3, 21) is not a valid choice for ρ. Instead,
ρ(〈jm(c1, 211), L̂(21-1)〉) = lm(21-1) is the rule deleting the edge, thus enabling
jm(c1, 211), and hence lm(21-1) <ρ jm(c1, 211).

If j = 21-12 ∈ jm(c1, 212)•, then ρ(〈jm(c1, 211), L̂(21-12)〉) = jm(c1, 212),
which implies jm(c1, 211) ↗ρ jm(c1, 212). Dually, jm(c1, 212) ↗ρ jm(c1, 211),
so both occurrences are in conflict because each creates an edge violating the
other’s constraint. Hence they cannot both be part of the same derivation.

If j = 21-11 ∈ jm(c1, 211)• with ρ(〈jm(c1, 211), L̂(21-11)〉) = jm(c1, 211),
this is a self-disabling constraint with no extra dependencies or conflicts.

A similar analysis finds valid assignments for all rules of O from Example 2,
so we can define a conditional occurrence grammar CO with the same rule occur-
rences, but stronger dependencies and conflicts.

As stated at the end of Sect. 2, we assume for each conditional grammar that
its NACs subsume the dangling condition. This allows to show the following.

Proposition 3 (executability). A conditional occurrence grammar CO =
〈TG, Gin, P, π, Φ〉 is executable, i.e., for each rule p ∈ P there exists a derivation
Gin =⇒∗ G =

p,m
==⇒ H in CO.

Proof. Let p : 〈Lp, tL〉 l← 〈Kp, tK〉 r→ 〈Rp, tR〉. By Definition 6.1 we know that
the typing morphism tL is injective.

Since we also know, by hypothesis, that the NACs subsume the dangling
condition, by the “gluing conditions” of the DPO approach it is sufficient to
show that there is a derivation Gin =⇒∗ G such that (†) tL(Lp) ⊆ G and (‡) tL
satisfies the NAC Φ(p).

Unfolding Graph Grammars with Negative Application Conditions 103

By Definition 6.2 there is an assignment ρ such that �p�ρ is finite and (↗ρ)�p�ρ

is acyclic. Let q1, . . . , qk, qk+1 = p be an arbitrary linearization of a finite set of
rules P such that �p�ρ ⊆ P and �P �ρ = P , compatible with ↗ρ (i.e., qi ↗ρ qj

implies i < j for all i, j ∈ {1, . . . , k + 1}). Then we show by induction on k
that Gin =

q1,m1===⇒ G1 =
q2,m2===⇒ G2 . . . =

qk,mk===⇒ Gk is a derivation such that (†)
tL(Lp) ⊆ Gk and (‡) tL satisfies the NAC Φ(p).

(k = 0). In this case �p� = {p}, thus each item x ∈ tL(Lp) must belong to Gin

(otherwise for the only rule (by Definition 6.3) px creating x we would have
px ↗ρ p, by Definition 1). Therefore we have (†) tL(Lp) ⊆ Gin. Furthermore,
for each 〈p, L̂p〉 ∈ ΦCO, let p̂ = ρ(〈p, L̂p〉). Then it cannot be the case that
p̂ ∈ (L̂p \ Lp)•, otherwise p̂ <ρ p. Thus p̂ ∈ •(L̂p \ Lp), which means that
there is at least one item x ∈ L̂p \Lp which does not belong to Gin, implying
that tL satisfies the constraint Lp → L̂p. As this holds for all constraints of
p, we have that (‡) tL satisfies the NAC Φ(p).
(k → k +1). Let q1, . . . , qk, qk+1, qk+2 = p be a linearization of P ⊇ �p�ρ with
�P �ρ = P compatible with ↗ρ. Clearly �qk+1�ρ ⊆ P \ {p}, and therefore by
induction hypothesis we know that Gin =

q1,m1===⇒ G1 =
q2,m2===⇒ G2 . . . =

qk,mk===⇒ Gk

is a derivation, that tLk+1(Lk+1) ⊆ Gk, and that tLk+1 satisfies the NAC
Φ(qk+1).

Thus we can apply qk+1 obtaining the transformation Gk =
qk+1,tLk+1=======⇒ Gk+1.

Let us show that (†) tL(Lp) ⊆ Gk+1 by contradiction. Otherwise, there is an
x ∈ tL(Lp) such that x �∈ Gk+1. Since all the rules in �p� are applied in the
derivation (including the one generating x, if any, or else x ∈ Gin), there must
be a rule qi consuming x in the derivation (i.e. such that x ∈ tLi

(Li \ Ki)). But
in this case p ↗ρ qi, thus the linearization would not be compatible with ↗ρ.
Concerning the satisfaction of NAC (‡), let 〈p, L̂p〉 ∈ ΦCO and let p̂ = ρ(〈p, L̂p〉).
If p̂ ∈ •(L̂p \ Lp) then p ↗ρ p̂ and the constraint is satisfied because L̂p is not yet
complete when p is applied. If p̂ ∈ (L̂p \ Lp)• then p̂ ↗ρ p, implying that p̂ was
applied in the derivation before p, consuming at least one item of the constraint,
that is therefore satisfied by p. ��

5 Unfolding Conditional Graph Grammars

This section introduces the unfolding construction which, applied to a condi-
tional grammar CG, produces a conditional occurrence grammar UCG describing
the behaviour of CG. The unfolding is equipped with a morphism uCG to the
original grammar CG which allows to see rules in UCG as instances of rule appli-
cations in CG, and items of the type graph of UCG as instances of items of the
type graph of CG.

Starting from the initial graph of the grammar, we apply in all possible ways
its rules, and record in the unfolding each redex and each new graph item gener-
ated, both enriched with their corresponding causal history. In order to account

104 A. Corradini et al.

for the satisfaction of NACs, for each rule q we check that for all occurrences of
its negative constraints L̂q present in one of its histories, there is another rule
r deleting part of L̂q \ Lq. In that case we know that there exists a history in
which the constraint is no longer present when q is applied.

We introduce conditional concurrent graphs as the subgraphs of the type
graph coverable in the conditional occurrence grammar.

Definition 7 (conditional concurrent graph). Let CO = 〈TG,Gin, P, π, Φ〉
be a conditional occurrence grammar. A subgraph G of TG is called conditional
concurrent if there is an assignment ρ such that

1. ¬(x <ρ y) for all x, y ∈ G.
2. �G�ρ is finite
3. ↗ρ is acyclic on �G�ρ.

Proposition 4 (conditional concurrent graphs are coverable). A graph
G ⊆ TG is conditional concurrent if and only if it is coverable in CO.

Proof. Given a derivation s = (Gin = G0 =
p1,m1===⇒ · · · =

pn,mn====⇒ Gn = G) in
CO, it is also a derivation in the underlying unconditional occurrence grammar
O. That means, G is a concurrent graph in the sense of Definition 3. Let ρ be
defined for all pi in the derivation and any constraint L̂pi

of pi as follows. Since
s is a conditional derivation, we know that L̂pi

�⊆ Gi−1. Then if L̂pi
⊆ Gk for

k < i−1, there must exist a rule pj ∈ (L̂pi
\ Lpi

)• with k < j < i. In this case we
set ρ(〈pi, L̂pi

〉) = pj , which induces the new dependency pj <ρ pi. Otherwise, we
set ρ(〈pi, L̂pi

〉) = q, where q is an arbitrary rule in •(L̂pi
\ Lpi

). Note that in this
case q �∈ {p1, . . . pi}, and the new induced dependency is pi ↗ρ q. This defines
ρ on all constraints in

⋃
i∈{1,...,n} Φ(pi): it can be shown that ρ can be extended

to all constraints in Φ(CO) without introducing cycles of dependencies among
rules in {p1, . . . , pn}. Then we can easily check that G is conditional concurrent
w.r.t. ρ. In fact,

1. no new dependencies are added between items of G, i.e., ¬(x <ρ y) for all
x, y ∈ G;

2. �G�ρ ⊆ {p1, . . . , pn}, thus it is finite;
3. the new dependencies cannot make ↗ρ cyclic on �G�ρ, as all of them are

consistent with the ordering of rules in the derivation.

Furthermore, by Definition 7 it is obvious that conditional concurrent graphs are
closed under inclusion, thus all coverable graphs are conditional concurrent.

Vice versa, if G is a conditional concurrent graph w.r.t. assignment ρ, let
p1, . . . , pn be a linearization of �G�ρ compatible with ↗ρ. Then following the
same outline of the proof of Proposition 3, it is possible to prove by induction on
n that there is a derivation s = (Gin = G0 =

p1,m1===⇒ · · · =
pn,mn====⇒ Gn) in CO such

that G ⊆ Gn. ��
Another basic ingredient of the unfolding is the gluing operation, that we

borrow literally from [1]. It can be interpreted as a “partial application” of a

Unfolding Graph Grammars with Negative Application Conditions 105

rule to a given match, in the sense that it generates the new items as specified by
the rule (i.e., items of right-hand side not in the interface), but items that should
have been deleted are not affected: intuitively, this is because such items may
still be used by another rule in the nondeterministic unfolding. In the following
we assume that for each rule name q its associated rule is Lq ← Kq → Rq, where
the injections lq and rq are inclusions (and not generic injective morphisms).

Definition 8 (gluing). Let q be a rule, G a graph and m : Lq → G a graph
morphism. We define, for any given symbol ∗, the gluing of G and Rq along
Kq, according to m and marked by ∗, denoted by glue∗(q,m,G) as the graph
〈N,E, s, t〉, where:

N = NG ∪ m∗(NRq
) E = EG ∪ m∗(ERq

)

with m∗ defined by: m∗(x) = m(x) if x ∈ Kq and m∗(x) = 〈x, ∗〉 otherwise. The
source and target functions s and t, and the typing are inherited from G and Rq.

The gluing operation keeps unchanged the identity of the items already in G, and
records in each newly added item from Rq the given symbol ∗. We remark that
the gluing, as just defined, is a concrete deterministic definition of the pushout

of the arrows G
m← Lq

lq←↩ Kq and Kq

rq

↪→ Rq.
In the construction that follows, if q is a rule with NAC Φ(q) and 〈q,m〉 is

a redex in the type graph TG of a conditional occurrence grammar, then we let
ΦTG(〈q,m〉) denote the set of occurrences of q’s constraints in TG relevant to
m. That means, ΦTG(〈q,m〉) is the set of all graphs k(L̂q) such that there exists
a constraint n : Lq → L̂q ∈ Φ(q) and a mono k : L̂q → TG with m = k ◦ n.

Now the unfolding of a conditional grammar CG = 〈TG,Gin, P, π, Φ〉 is
defined as follows. For each n ∈ IlN, we construct a partial unfolding U(CG)(n) =
〈U (n), u(n)〉, where U (n) = 〈TG(n), P (n), π(n), Φ(n)〉 is a conditional occurrence
grammar and u(n) = 〈u(n)

TG, u
(n)
P 〉 : U(CG)(n) → CG a CGG morphism. Intuitively,

the occurrence grammar generated at level n contains all possible computations
of the grammar with “causal depth” at most n.

– (n = 0) 〈U (0), u(0)〉 is defined as U (0) = 〈Gin, ∅, ∅, ∅〉 and u
(0)
TG = tGin

.
– (n → n + 1) Given U(CG)(n), the partial unfolding U(CG)(n+1) is obtained by

extending it with all the compatible applications of rules of P to concurrent
subgraphs of the type graph of U (n). Given a rule q ∈ P and match m : Lq →
〈TG(n), u

(n)
TG〉, redex 〈q,m〉 is an occurrence of q compatible with U(CG)(n) if

there exists an assignment ρ such that
1. graph m(Lq) ⊆ TG(n) is conditional concurrent w.r.t. ρ, and
2. for each constraint occurrence L̂q ∈ ΦTG(n)(〈q,m〉), there exists a rule

r ∈ (L̂q \ Lq)• ∩ �m(Lq)�ρ or a rule r ∈ •(L̂q \ Lq) \ �m(Lq)�ρ.
Let Pn+1 be the set of all 〈qi,mi〉, for i = 1, . . . , k, such that qi ∈ P and
〈qi,mi〉 is an occurrence of qi compatible with U(CG)(n). Then, U(CG)(n+1)

is given by

106 A. Corradini et al.

• TG(n+1) is the consecutive gluing of TG(n) with Rq1 , . . . , Rqk
along

Kq1 , . . . , Kqk
respectively. Formally, TG(n+1) = TGk where TG0 =

TG(n), and TGi = glue〈qi,mi〉(qi,mi, TGi−1) for i ∈ {1, k}. Note that
the result is independent of the order of rule matches applied.

• Morphism u
(n)
TG extends canonically to u

(n+1)
TG : TG(n+1) → TG.

• P (n+1) = P (n) ∪ Pn+1.
• u

(n+1)
P = u

(n)
P ∪ uP,n+1 where uP,n+1(〈q,m〉) = q.

• π(n+1)(〈q,m〉) coincides with π(q) except for the typing.
• Φ(n+1)(〈q,m〉) = ΦTG(n+1)(〈q,m〉) is the set of all occurrences of q’s con-

straints relevant to m in TG(n+1).

Note that if a rule is applied twice (also in different steps) at the same
match, the generated items are the same and thus they appear only once in the
unfolding. By construction it is evident that U(CG)(n) ⊆ U(CG)(n+1), component-
wise.

Definition 9 (unfolding). The unfolding U(CG) = 〈UCG , uCG〉 of the grammar
CG is defined as

⋃
n U(CG)(n), where union is applied componentwise.

Example 3 provides part of the unfolding of the grammar of Example 1. Step
(n = 1) adds pc(c2) and corresponding occurrences pc(c1) and pc(c3), creating
3 Server nodes. Step (n = 2) creates two occurrences of sm per Server, each
creating a meeting node. Step (n = 3) adds 2 occurrences of lm per meeting,
allowing participants to leave. This enables 4 occurrences of jm per meeting in
(n = 4) which in turn enables the remaining 4 instances of lm per meeting in step
(n = 5) and then one occurrence of tm per meeting in step (n = 6). The folding
morphism u is defined by mapping rules by name and types as uTG(x : X) = X.

We conclude by showing that UCG is a conditional occurrence grammar, and
that uCG : UCG → CG is a conditional grammar morphism. From the proof it
follows that the same holds for all finite approximations U (n)(CG).

Proposition 5 (conditional unfolding). UCG is a conditional occurrence
grammar and uCG : UCG → CG is a conditional grammar morphism.

Proof. Condition 1 of Definition 6 is satisfied by construction: elements of Gin

and those created by each rule occurrence are added as fresh elements to the type
graph, and all rules are injective by definition. Further, if we drop the NACs Φ
from the unfolding as constructed above, we obtain an unconditional occurrence
grammar. This ensures condition 3 in Definition 6.

It remains to show that for all q ∈ PUCG , there exists an assignment ρ such
that �q�ρ is finite and (↗ρ)�q�ρ

is acyclic. For n = 0 the set of rules is empty,
so the condition trivially holds. For the inductive step, note that P (n+1) =
P (n) ∪P(n+1). We consider the two cases separately. If p = 〈q,m〉 ∈ P(n+1), thus
p was added in step (n + 1), we know by construction that m(Lq) ⊆ TG(n) is a
conditional concurrent subgraph w.r.t. an assigment ρ′. We can extend ρ′ to an
assignment ρ′′ : Φ(U (n+1)) → P (n+1) as follows:

Unfolding Graph Grammars with Negative Application Conditions 107

ρ′′(〈L̂, q′〉) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ′(〈L̂, q′〉) if 〈L̂, q′〉 ∈ Φ(U (n))
r if p = q′ and r is determined as in point

2 of construction step (n → n + 1)
any r ∈ •(L̂ \ Lq′) if q′ ∈ P(n+1) \ {p}

Then �p�ρ′′ is finite because so is �m(Lq)�ρ′ , and (↗ρ′′)�p�ρ′′ is acyclic,
because new relevant dependencies are added only in the second case above:
if ρ′′(〈L̂q, p〉) = r ∈ (L̂q \ Lq)• ∩�m(Lq)�ρ then r <ρ′′ p, but r is already a cause
of p; otherwise r ∈ •(L̂q \ Lq) \ �m(Lq)�ρ and r is not among the causes of p.

If instead p = 〈q,m〉 ∈ P (n), by inductive hypothesis we know that there is
an assignment for it satisfying the required condition and defined on Φ(U (n)).
We can easily extend it to the constraints in Φ(U (n+1)) \ Φ(U (n)), which are
generated at step (n + 1), by mapping them to one of the rules generating the
constraint. This does not affect neither the set of causes of p nor the dependencies
among them. Concerning uCG : UCG → CG, the fact that it is a conditional
grammar morphism follows by the fact that so are all its finite approximations
u(n) : U (n) → CG, which in turn is pretty obvious because the conditions of
Definition 4 are enforced by construction at each step. ��

It is possible to show that the unfolding construction applied to a conditional
occurrence grammar yields a grammar which is isomorphic to the original one.

6 Incremental NACs

With general NACs allowing complex forbidden patterns, for each constraint
occurrence there can be a number of choices for the assignment ρ among the
rules creating or destroying parts of the occurrence. These choices multiply as
the assignment is defined for all occurrences of all constraints of all rules in the
occurrence grammar. This complexity is particularly worrying in the unfolding
construction, where a suitable assignment has to be determined for each match
of each rule to be applied.

We consider the class of incremental NACs for which such choices can be
made more canonically, reducing the complexity. In [13] these are defined cat-
egorically. While working with concrete typed graphs, it is sufficient here to
say that they only allow constraints containing either isolated negative nodes or
edges attached to nodes in the left-hand side with their opposite source or target
nodes. E.g., in the grammar of Example 1, all NACs are incremental apart from
the one of rule sm(c1, c2, i). When defining an assignment for its occurrences,
e.g., ρ(〈sm(c1, c3, 21), L̂(21-11, 21-31)〉) ∈ •L̂(21-11, 21-31) can map to either one
of jm(c1, 211) or jm(c3, 211) each of which creates one of the edges. Hence the
choice is not canonical.

Instead, occurrences of incremental NACs cannot be created or destroyed
in two or more independent steps. For example, a constraint L̂ containing an
outgoing edge and its target node can be established by first creating the node
and then the edge, but not vice versa. That means, in any occurrence grammar

108 A. Corradini et al.

and for any assignment ρ for rule q the rules in •(L̂ \ L)∩�q�ρ as well as (L̂ \ L)•∩
�q�ρ are linearly ordered by ↗ρ.

Given an occurrence grammar and rule p we can order assignments ρ satis-
fying the clause (1) of Definition 6 by inclusion of the relation ↗ρ induced as
ρ′ ≤ ρ iff (↗ρ′)+ ⊆ (↗ρ)+.

Since ≤ is a partial order on assignments, this gives us a notion of minimal
assignment, leading to an asymmetric conflict relation that allows maximal con-
currency. We can “improve” an assignment ρ for a rule p (make the order more
concurrent) by picking a rule q ∈ �Lp�ρ and, for each constraint occurrence L̂q:

– If ρ(〈q, L̂q〉) = r ∈ •(L̂q \ Lq) let ρ′(〈q, L̂q〉) = r′ be such that r ↗ρ r′ and r′

is maximal within •(L̂q \ Lq) with that property
– if ρ(〈q, L̂q〉) = r ∈ (L̂q \ Lq)• let ρ′(〈q, L̂q〉) = r′ be such that r′ ↗ρ r and r′

is minimal within (L̂q \ Lq)• with that property.

Intuitively we maximise the freedom of q by defining its limits as widely
as possible. This leads to a weakening of the relation, such that after repeated
application of such improvement step we arrive at an assignment that is minimal
w.r.t. the order defined above.

In general, such a minimum is not unique, but for incremental NACs it is
easy to see that there is a unique minimal or maximal r′ to be chosen in the
improvement step above, leading to a single most concurrent assignment for
each rule p. That means, in step n + 1 of the unfolding, we can choose this
minimal assignment for every new rule q′, avoiding the need to try and discard
alternatives that do not lead to acyclic histories. In fact, since the minimal
assignment represents the weakest relation, if there is an assignment ρ leading to
an acyclic ↗ρ on �m(Lq)�ρ, then the minimal assignment also has that property.

7 Conclusion

Aiming to generalise the theory of unfolding of both typed graph grammars and
P/T nets with read and inhibitor arcs, in this paper we present occurrence gram-
mars and unfolding for conditional graph grammars and prove their fundamental
relationships with each other and the derivations in the grammar. This estab-
lishes conditional unfolding as a sound semantic model of graph grammars with
negative application conditions. We believe that the proof that unfoldings give
rise to a co-reflection, which is often part of this theory, requires a restriction to
incremental NACs.

The constructions in this paper can be generalised in several ways, which we
would also like to explore in the future. First, like in the classical case, we are
limited to consuming rules. For unconditional rules this ensures that the same
rule cannot be applied twice at the same match, but for rules with NACs the
same can be achieved by so-called self-disabling rules that generate their own
NACs. However, the current formulation of unfolding, based on a restriction
of the construction for the unconditional case, leads us to identify recurrent

Unfolding Graph Grammars with Negative Application Conditions 109

rule matches with self-disabling NACs. A stronger notion of rule occurrence,
taking account of the history also in terms of the NACs created and destroyed,
is required to address this problem.

The work presented here is part of a wider project of using graph grammars
to specify and solve graph-based combinatorial optimisation problem. In this
context, unfoldings provide an efficient form of breadth-first search through the
state space of the grammar which, if the grammar is terminating, will yield a
finite set of output graphs. Apart from exploring the advantages of incremen-
tal NACs we will consider attributed graph grammars to model combinatorial
problem with data.

References

1. Baldan, P., Corradini, A., Montanari, U., Ribeiro, L.: Unfolding semantics of graph
transformation. Inf. Comput. 205(5), 733–782 (2007)

2. Baldan, P., Corradini, A., Heindel, T., König, B., Sobociński, P.: Unfolding gram-
mars in adhesive categories. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO
2009. LNCS, vol. 5728, pp. 350–366. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03741-2 24

3. Baldan, P., Corradini, A., Montanari, U., Ribeiro, L.: Coreflective concurrent
semantics for single-pushout graph grammars. In: Wirsing, M., Pattinson, D.,
Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 165–184. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-40020-2 9

4. Baldan, P., König, B.: Approximating the behaviour of graph transformation sys-
tems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2002. LNCS, vol. 2505, pp. 14–29. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45832-8 4

5. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: 14th Annual Symposium on Switching and Automata Theory, pp. 167–180.
IEEE Computer Society (1973)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
MTCSAES. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

7. Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: an
unfolding-based approach. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004.
LNCS, vol. 3170, pp. 83–98. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-28644-8 6

8. Qayum, F., Heckel, R.: Search-based refactoring using unfolding of graph transfor-
mation systems. ECEASST 38 (2011)

9. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996)

10. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M -adhesive transforma-
tion systems with nested application conditions. Part 1: parallelism, concurrency
and amalgamation. MSCS 24(4) (2014)

11. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M -adhesive transforma-
tion systems with nested application conditions. Part 2: embedding, critical pairs
and local confluence. Fundam. Inform. 118(1–2), 35–63 (2012)

https://doi.org/10.1007/978-3-642-03741-2_24
https://doi.org/10.1007/978-3-642-03741-2_24
https://doi.org/10.1007/978-3-540-40020-2_9
https://doi.org/10.1007/3-540-45832-8_4
https://doi.org/10.1007/3-540-45832-8_4
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-540-28644-8_6
https://doi.org/10.1007/978-3-540-28644-8_6

110 A. Corradini et al.

12. Hermann, F., Corradini, A., Ehrig, H.: Analysis of permutation equivalence in -
adhesive transformation systems with negative application conditions. MSCS 24(4)
(2014)

13. Corradini, A., Heckel, R.: Canonical derivations with negative application condi-
tions. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 207–221.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09108-2 14

14. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theor. Comput. Sci. 323(1–
3), 129–189 (2004)

15. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundam. Inform.
26(3/4), 241–265 (1996)

https://doi.org/10.1007/978-3-319-09108-2_14

Two-Level Reasoning About Graph
Transformation Programs

Amani Makhlouf, Christian Percebois(B), and Hanh Nhi Tran

IRIT, University of Toulouse, Toulouse, France
{Amani.Makhlouf,Christian.Percebois,Hanh-Nhi.Tran}@irit.fr

Abstract. This paper presents a method for verifying graph transfor-
mation programs written in Small-tALC, an imperative language which
allows expressing graph properties and graph transformations in ALCQI
description logic. We aim at reasoning not only about the local effect
when applying a transformation rule on a matched subgraph but also
about the global impact on the whole input graph when applying a set of
rules. Using ALCQI assertional and terminological formulae to formalize
directed labeled graphs, Small-tALC allows specifying local properties on
individual nodes and edges as well as global properties on sets of nodes
and edges. Our previous work focuses on verifying local properties of the
graph. In this paper, we propose a static analyzer at terminological level
that intertwines with a static analyzer at assertional level to infer global
properties of the transformed graph.

Keywords: Graph transformation · Description logics ·
Static analysis · Abstract interpretation · Program verification

1 Introduction

To allow verifying the correctness of graph transformations, many works, rooted
in algebraic approach for formalizing graph transformations, have introduced
logic systems that are specially tailored for expressing graph properties under
study (see e.g. [1–5]).

The work presented in this paper uses another approach which directly
encodes graphs in an existing logic [6,7] in order to benefit the inference mech-
anisms provided for the chosen logic. Adopting this approach, we proposed
the graph transformation language Small-tALC [8] which specifies graphs with
ALCQI description logic formulae [9] and defines transformation statements
to manipulate graphs in an imperative paradigm. Transformation specifications
and code are based on the same logic thus we can take advantage of a Hoare-like
calculus and also of proven program verification techniques to reason about the
correctness of graph transformations.

Small-tALC graphs are directed and labeled. A graph consists of nodes repre-
senting individuals and edges representing relations between individuals. A node
can be labeled to express that it belongs to the concept denoted by the node’s
c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 111–127, 2019.
https://doi.org/10.1007/978-3-030-23611-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-23611-3_7

112 A. Makhlouf et al.

label; the label of an edge denotes the role of the relation represented by the
edge. Graph properties can be specified by ALCQI assertional axioms (ABox)
about nodes and edges and by terminological axioms (TBox) about set of nodes.

A Small-tALC program consists of a set of transformation rules. Each rule
comprises a precondition specifying the matching constraints of the rule on a
host graph, a code consisting of transformation statements and a postcondition
specifying the properties of the graph yielded from the rule’s application. Both
rule’s specifications and code are formalized at ABox level. In [7,10], we devel-
oped tools to formally verify the correctness of each transformation rule using
Hoare logic. However, our previous works allow verifying only a plain set of
rules, not the correctness of a whole transformation program. Moreover, using
only assertional formulae to specify graph properties, we could analyze only local
properties on individual nodes and edges.

We now extend the approach to reason not only about the local effect when
applying a transformation rule on a matched subgraph but also about the global
impact on the whole input graph when applying a set of rules. For this purpose,
first we exploit both ALCQI assertional formulae (ABox) and terminological
formulae (TBox) to formalize directed labeled graphs, and thus allow specifying
respectively local properties as well as global properties. We then propose a
static analyzer at terminological level that intertwines with a static analyzer
at assertional level to infer global properties of the transformed graph. Rules
verification at ABox level was presented in [10]. The focus of this paper is the
TBox analyzer for transformation programs.

We introduces our graph transformation language Small-tALC in Sect. 2 and
present in Sect. 3 the main idea of two-levels reasoning about Small-tALC pro-
grams by exploiting the ABox and TBox components of ALCQI. In Sect. 4 we
explain how to infer, by abstract interpretation, TBox global properties from
ABox statements. The relation between ABox and TBox verifications is stud-
ied in Sect. 5. Section 6 shows that some monadic second-order properties can
be expressed by Small-tALC TBox assertions too. We finally provide some dis-
cussions on related work in Sect. 7 and wrap up the paper with a conclusion
including further work in Sect. 8.

2 The Small-tALC Language

Small-tALC [8] is an imperative graph transformation language based on the
description logic ALCQI [9]. The distinctive characteristic of this graph trans-
formation language is the tight integration of logical aspects with the intended
execution mechanism, with the overall aim to obtain a decidable calculus for
reasoning about program correctness in a pre-/post-condition style.

2.1 Logic Foundation

ALCQI represents knowledge at two levels: TBox introduces the terminology,
i.e., the vocabulary of an application domain, while ABox contains assertions

Two-Level Reasoning About Graph Transformation Programs 113

about named individuals in terms of this vocabulary. The vocabulary consists
of concepts, which denote sets of individuals, and roles, which denote binary
relationships between individuals. An interpretation I that is used to define
the semantics of DLs comprises a non-empty set ΔI called the interpretation
domain and an interpretation function ·I . The interpretation function assigns
an element iI ∈ ΔI to each individual i of the ABox, a subset of individuals
CI ∈ ΔI to each concept C of the TBox, and a subset of ordered pairs of
individuals rI ∈ ΔI × ΔI to every role r of the TBox.

Let C be a concept, x and y be individuals, and r be a role. If x belongs to
the concept C, then x is called C-type. If x is r-related to y, then y is called a
r-successor of x. ALCQI provides concept constructors to build more complex
concepts as given in Table 1.

Table 1. ALCQI concept constructors

Name Syntax Semantics

top � ΔI

bottom ⊥ ∅
negation ¬C ΔI\CI

conjunction C ∩ D CI ∩ DI

disjunction C ∪ D CI ∪ DI

existential restriction ∃ r C {x ∈ ΔI | ∃y, (x, y) ∈ rI ∧ y ∈ CI}
universal restriction ∀ r C {x ∈ ΔI | ∀y, (x, y) ∈ rI ⇒ y ∈ CI}
at-most restriction ≤ n r C {x ∈ ΔI | |(x, y) ∈ rI ∧ y ∈ CI | ≤ n}
at-least restriction ≥ n r C {x ∈ ΔI | |(x, y) ∈ rI ∧ y ∈ CI | ≥ n}
equality restriction = n r C {x ∈ ΔI | |(x, y) ∈ rI ∧ y ∈ CI | = n}
inverse role r−1 {(y, x)| (x, y) ∈ rI}

(∃ r C) describes the set of individuals having at least a r-successor which is
C-type. (∀ r C) presents the set of individuals whose all r-successors are C-type.
(≤ n r C) and (≥ n r C) are qualified number restrictions expressing that an
individual has at most (respectively at least) n r-successors which are C-type.

2.2 Small-tALC Graphs

An interpretation I can be drawn as a directed labeled graph [11] where TBox
represents concepts and roles respectively as nodes labels and edges labels, and
ABox specifies individuals and binary relations between them respectively as
graph nodes and graph edges.

In Small-tALC, concept assertions (i : C) express that an individual i is
C-type, i.e. the node i is labeled with C (C-node). Role assertions in the form
(i r j) express that an individual i is connected by the role r to the individual
j i.e. the edge (i, j) is labeled with r (r-edge). By combining concept assertions

114 A. Makhlouf et al.

and role assertions, ABox formulae are made up and used to specify properties
on named graph nodes and edges. Figure 1 depicts a graph having two A-nodes
a1, a2 and two B-nodes b1, b2. b1 is a r-successor of a2 and b2 is a r-successor
of a1. There are also two anonymous C-type nodes which are r-successors of a1,
thus a1 belongs to the concept which has at least 2 C-nodes as r-successors.

In the rest of the paper, we call AFact an ABox assertion, and AFormula
an ABox formula.

Fig. 1. A graph satisfying the AFormula (a1 : A) ∧ (a2 : A) ∧ (b1 : B) ∧ (b2 : B) ∧
(a1 r b2) ∧ (a2 r b1) ∧ (a1 : (≤ 2 r C))

TBox axioms use general concept inclusions (GCI) [12] to express properties
concerning concepts. TBox axioms are so-called TFacts in Small-tALC and are
of the form C ⊆ D or C = D where C and D are concepts. An interpretation
I is a model of C ⊆ D if CI ⊆ DI . When CI ⊆ DI in every model of I,
D subsumes C. Thus, TFormulae, which are Boolean combinations of TFacts,
can be used now to express global graph properties on set of nodes. For example,
the TFact (∀ r−1 A) ⊆ B expresses that r-edges outgoing from A-nodes all go
towards B-nodes. The graph of Fig. 1 does not hold this property because it has
two r-edges outgoing from A-nodes to C-nodes.

2.3 Small-tALC Statements

Small-tALC features atomic statements to add, delete or select graph nodes and
edges. We have defined five atomic Small-tALC statements according to the
following grammar, where i and j are node variables which will be bound to the
host graph’s nodes during the transformation’s execution, C is a concept name,
r is a role name, F is an ALCQI AFormula and v is a list of node variables:
stmt ::= add(i : C) (CI = CI + {i})

| delete(i : C) (CI = CI − {i})

| add(i r i) (rI = rI + {i, j})

| delete(i r i) (rI = rI − {i, j})

| select v with F

Operationally, the first four Small-tALC statements define new interpreta-
tions i.e. new graphs by adding and deleting individuals (nodes) and pair of
individuals (edges) to and from the interpretations of concepts and roles. The

Two-Level Reasoning About Graph Transformation Programs 115

interpretation function of TBox concepts and roles are thus evolved. In this
sense, a rule operates on AFormulae but affects as well TFormulae. Note that
the Small-tALC statements do not add/delete individuals to/from the graph,
but change their label to modify the interpretation represented by the graph.

Since concepts and roles are considered as sets of nodes and set of pairs of
nodes respectively, add(i : C) and add(i r j) have no effects if i ∈ C and (i, j) ∈ r
respectively. Therefore, no parallel edges with the same label are allowed. The
statement delete(i : C) does not remove it definitely from the graph, but excludes
it from the interpretation function CI of the indicated concept C, i.e. the node
will no more be labeled with C.

An original construct is the select statement that non-deterministically binds
node variables to nodes in the subgraph that satisfies an AFormula. This assign-
ment is used to select specific nodes where the transformations are requested to
occur. The remaining language constructs are conventional control structures:
sequence, branching and iteration.

2.4 Small-tALC Programs

A Small-tALC program consists of a set of transformation rules and a main
entry point of the program. A rule is structured into three parts: a precondition,
the transformation code (a sequence of statements) and a postcondition. The
pre- and postconditions of a rule are two AFormulae which specify respectively
a source graph which can be transformed by the rule and the target graph
supposed to be produced by the rule.

Fig. 2. Small-tALC program Edges − Reversing

116 A. Makhlouf et al.

Rules that are defined separately in a Small-tALC program are called sequen-
tially in the main. Two types of rule calls are proposed: a simple call (call) and
an iterative call (call!). The first executes the code of the rule if a subgraph in
the source graph matches the ABox precondition formula. The second executes
the code of the rule as long as a subgraph matches the precondition. We can
inject TFormulae into main to specify the properties of the transformed graph
before (pre-TFormula) and after (post-TFormula) applications of one or many
rules.

We illustrate in Fig. 2 a Small-tALC transformation program which reverses
all r-edges from A-nodes to B-nodes. This transformation is done in two steps:
first the r-edges from A-nodes to B-nodes are transformed into s-edges from A-
nodes to B-nodes; then each s-edge from an A-node to a B-node is replaced by
a r-edge in the opposite direction from the B-node to the A-node. The program
thus is made up of two rules: (1) rename which locally renames a r-edge between
an A-node a and a B-node b, so that a r b turns into a s b; (2) reverse which
locally replaces a s-edge between an A-node a and a B-node b by a r-edge
between b and a so that a s b turns into b r a. The main of the program calls,
in an iterative way, first the rule rename then reverse.

The question is how to prove that the given program produces the expected
states of the graph specified by TFormulae. This verification problem will be
discussed in the next section.

3 Small-tALC Program Verification

We are interested in verifying the correctness of transformation programs, i.e.
checking whether a transformation behaves the way it is expected to and pro-
duces what it should. Therefore, besides verifying the correctness of each rule,
we need to verify that the sequence of rules in the main program is also correct.

3.1 Motivating Example

For instance, consider the program in Fig. 2. To prove that the transformation
is correct, the following points must be verified:

1. The correctness of the rules rename and reverse with respect to their ABox
pre- and postconditions,

2. The correctness of applying iteratively the two rules rename and reverse
with respect to the TBox assert clauses.

The second point necessitates examining global modifications in the host
graph. The properties to be verified in (2) are global because they concern a set of
nodes of type A or of type B thus they cannot be expressed with AFormulae but
by TFormulae. We can specify the transformation program of Fig. 2 as follows: if
in the source graph there are r-edges connecting A-nodes to B-nodes and there
is not s-edges outgoing from A-nodes, then after applying iteratively the rules

Two-Level Reasoning About Graph Transformation Programs 117

rename and reverse, there are r-edges connecting B-nodes to A-nodes and there
is not r-edges nor s-edges outgoing from A-nodes.

More precisely, according to DL definitions [9], the TFormula (∃ r−1 A) ⊆
B ∧ (∃ s−1 A) = ⊥ asserts that before transformation B-nodes subsume the
target nodes of the r-edges outgoing from A-nodes and that the set of target
nodes of the s-edges outgoing from A-nodes is empty. From this assumption, we
verify after transformation the TFormula (∃ r−1 A) = ⊥ ∧ (∃ r−1 B) ⊆ A
which expresses now that the set of target nodes of the r-edges outgoing from
A-nodes is empty and that A-nodes subsume the set of target nodes of the r-
edges outgoing from B-nodes. After the transformation, (∃ s−1 A) = ⊥ stays as
an invariant to express the temporary use of s-edges which are created in the
rule rename are deleted in the rule reverse.

This paper focuses on reasoning about global properties on concepts and
roles, i.e. properties of the graph as a whole as in (2), that are impacted by appli-
cation of a set of rules, one or many times. For this purpose, we provide reasoning
capabilities not only at rule-level using AFormulae but also at program-level
using TFormulae. Proving the correctness of a program entails verifying that
both the source graph (an interpretation) and the target graph (another inter-
pretation) are models of the TBox and ABox. The next sections presents our
solution to verify a rule at ABox level and to verify a program at TBox level.

3.2 Rule Verification Using ABox Layer

Within a rule, Small-tALC uses AFormulae to specify graph elements manipu-
lated by the rule’s code in the pre- and postconditions. Therefore, only named
graph nodes and edges in the current matched graph are concerned. In other
words, a rule-level verification allows reasoning only about the local effect when
applying once a rule on a matched graph.

Adopting Hoare-like calculus, a prover was developed [7,10] to prove that a
Small-tALC rule {P}S{Q} is correct. This verification process is based on an
ABox static analysis performed in a backward mode in order to compute the
weakest precondition (wp) [13]. Each rule statement s of S is assigned to a pred-
icate transformer yielding an ALCQI formula wp(s,Q) assuming the postcondi-
tion Q. The correctness of the code S of a rule with respect to Q is established
by proving that the given precondition P implies the weakest precondition.

3.3 Program Verification Using TBox Layer

As stated in Sect. 2.3, TFormulae are implicitly updated by rules statements
that explicitly add and delete individuals and pairs of individuals respectively
into and from concepts interpretations. Reasoning about graph global properties
when executing a sequence of ABox rules turns into studying the effects of ABox
statements on the TBox properties. This results in verifying TFormulae of the
transformation program in order to check if the graph is correctly transformed
as expected.

118 A. Makhlouf et al.

Using TFormulae, we consider an abstract graph that is a superset of the
concrete Small-tALC graph: properties on nodes are ignored and only properties
about the sets of nodes and the sets of source and target nodes of roles are
taken into account. Considering such global properties results in losing certain
information regarding AFormulae. For example, we can not know concretely
each pair of connected nodes given the property “all r-edges outgoing from A-
nodes go towards B-nodes” i.e. (∀ r−1 A) ⊆ B. This abstraction idea and its
formalization is called the theory of abstract interpretation [14].

The main question in this paper is how to infer the TBox properties on
abstract graphs thus allow verifying a program consisting of a sequence of ABox
rules, not only at rule level as done in our previous work. In the next section,
we present in detail our solution for this question.

4 Static Analysis by Abstract Interpretation

In order to verify the global state of a graph before and after rule applications,
we study the impact of ABox Small-tALC statements on a given TFormula
representing TBox properties. To do so, we analyze the effect of adding (deleting)
an element to (from) a set on the set equality and inclusion relationships.

4.1 Interpretation of Small-tALC Statements

The aim of our proposed static analysis is to infer a post-TFormula on the basis
of a given pre-TFormula considered as a rule’s assumption by interpreting the
rules statements in a forward chaining. The inference of a such TFormula is
done by studying the effect of add and delete statements on each TFact in
the pre-TFormula considering the statement’s precondition as hypothesis. For
instance, given the TFact C = D in a pre-TFormula, adding an individual i to
C through the instruction add(i : C) may affect the validity of C = D. If i is
already an element of C, according to set theory, add(i : C) has no effect on
the set C. Consequently, C = D remains valid. However, if i does not belong to
C, add(i : C) will add one additional element to C, thus C becomes C ∪ {i}.
Consequently, C = D turns into C ⊇ D. The AFact i : C can be checked in the
precondition of the statement add(i : C).

To clarify the static analysis process, consider the inference of a post-
TFormula after the call of the rule rename with respect to the pre-TFormula
(∃ r−1 A) ⊆ B ∧ (∃ s−1 A) = ⊥ given in the main of Fig. 2. As illustrated in
Fig. 3, the pre- and postconditions of the statements are specified by computing
the strongest postcondition (sp) of the statement from its precondition. The sp
of a statement expresses most accurately the evolution of the graph being trans-
formed at the ABox level. Taking into account these ABox effects on individual
nodes and edges, we want to determine the most precise evolution, at TBox level,
of the concepts and edges containing these individuals. The inference of a post-
TFormula after each statement is done by studying the effect of the statement
on the TFormula while taking into account the properties of the manipulated

Two-Level Reasoning About Graph Transformation Programs 119

nodes identified in the ABox precondition of the statement. In this example,
the statement delete(a r b) that removes the r-edge between the nodes a and b
does not affect any TFact of the pre-TFormula. In fact, the deletion of the pair
(b, a) from the set r−1, knowing that a : A and b : B, holds the validity of the
inclusion (∃ r−1 A) ⊆ B and does not concern the TFact (∃ s−1 A) = ⊥ which
remains valid. However, adding an s-edge between the nodes a and b, knowing
that a : A and b : B from the statement’s precondition, transforms the TFact
(∃ s−1 A) = ⊥ into (∃ s−1 A) ⊆ B in the post-TFormula.

Fig. 3. Inference of a TFormula after each statement of the rule rename

Table 2 summarizes the effect of the statement add(i : C) on both equality
and inclusion relationships between concepts. The second column presents the
pre-TFact; the AFacts considered as hypothesis for the interpretation are shown
in the third column. The fourth column provides the inferred TFact obtained
by the interpretation, so called post-TFact. In cases where the pre-TFact is
confirmed as being not valid yet the effect of the statement on the pre-TFact
can not be deduced, that TFact will be deleted from the TFormula. This case
is marked in the table by X. For instance, given the pre-TFact C ⊆ D, adding
an instance i to the concept C with i not declared of concept C nor D may
make the inclusion not valid. No more informations can be deduced to infer a
post-TFact so it is deleted from the final TFormula so-called post-TFormula.
Due to the limited number of pages allowed, the tables referring to the others
atomic statements as well as the supporting tools are not presented here but
available for download1.

The select statement has no effect on a TFormula as it is an assignment of
nodes variables. Whereas if condition then s1 else s2 is interpreted by trans-
forming the pre-TFormula regarding the sequence s1 on the one hand, and s2 on
the other. The result is the disjunction of both of the resulting post-TFormulae.

The body of the while loop is interpreted once, as well as the body of a rule
that is called in an iterative way in the main. In fact, whether the interpretation
1 https://www.irit.fr/∼Martin.Strecker/CLIMT/Software/smalltalc.html.

https://www.irit.fr/~Martin.Strecker/CLIMT/Software/smalltalc.html

120 A. Makhlouf et al.

Table 2. Interpretation of the statement add(i : C)

Statement pre-TFact AFact post-TFact

add(i : C) C = ⊥ - ¬(C = ⊥)

¬(C = �) i : C ¬(C = �)

else X

C = D i : C C = D

else D ⊆ C

C ⊆ D i : C ∨ i : D C ⊆ D

else X

C ∪ D = ⊥ - ¬(C ∪ D = ⊥)

¬(C ∪ D = �) i : C ∨ i : D ¬(C ∪ D = �)

else X

C ∪ D = E i : C ∨ i : D ∨ i : E C ∪ E = E

else E ⊆ C ∪ D

C ∪ D ⊆ E i : C ∨ i : D ∨ i : E C ∪ D ⊆ E

else X

C ∩ D = ⊥ i : C ∨ i : ¬D C ∩ D = ⊥
else ¬(C ∩ D = ⊥)

¬(C ∩ D = �) i : C ∨ i : ¬D ¬(C ∩ D = �)

else X

C ∩ D = E i : C ∨ i : E ∨ i : ¬D C ∩ D = E

else E ⊆ C ∩ D

C ∩ D ⊆ E i : C ∨ i : E ∨ i : ¬D C ∩ D ⊆ E

else X

(∃ r C) = D - D ⊆ (∃ r C)

(∃ r C) ⊆ D - X

(∃ r−1 C) = D i : (= 0 r ¬D) (∃ r−1 C) = D

else D ⊆ (∃ r−1 C)

(∃ r−1 C) ⊆ D i : (= 0 r ¬D) (∃ r−1 C) ⊆ D

else X

of the same sequence of statements is done one or several times, the resulting
TFormula remains the same as Small-tALC statements are limited to adding
and deleting elements to and from sets as already mentioned. For instance, con-
sider a TFact C = D and a statement that adds repeatedly a selected instance
d to the concept D. By interpreting the statement for the first time, C = D
turns into C ⊆ D. Adding other elements d to the concept D maintains the
validity of the TFact C ⊆ D. Consequently, the traditional widening operator
of the abstract interpretation, which guarantees termination when applied to

Two-Level Reasoning About Graph Transformation Programs 121

increasing sequences [14], is simpler in our context than in programs employing
non symbolic operations.

4.2 Soundness of the Static Analysis

Deriving a TFormula for Small-tALC programs does not guarantee that our
static verification calculus is sound. Given a correctness formula � {P}S{Q},
we need to show that the proposition |= {P}S{Q} about the semantics of the
correctness formula holds. This entails to consider |= {P}S{Q} as a new judg-
ment based on state updates meaning that the program S when invoked in the
state σ will terminate in the state τ . We denote S(σ, τ) this relation and define
|= {P}S{Q} as ∀σ.P (σ) ⇒ (∃τ.S(σ, τ) ∧ Q(τ)). Proof is done on the derivation
of Hoare correctness formulae considering Small-tALC operational semantics.

Let us consider S = add(i : C), inspired from the assignment statement
V := E in imperative languages for which sp(V := E,P) = ∃V ′.P [V ′\V]∧ (V =
E[V ′\V]), we compute sp(add(i : C), P) as a substitution: sp(add(i : C), P) =
∃C ′.P [C ′\C] ∧ (C ′ + i\C). If the formula sp(add(i : C), P) ⇒ Q is valid, then
for all source graphs G verifying P (σ) we conclude Q(σ′) for target graphs G′

where σ′ denotes the state σ updated by the action add.
In the following, we prove two inferences about adding a node i to a concept

C. The first one is basic and corresponds to the first line of Table 2. Suppose a
state σ = (C = ⊥). Then sp(add(i : C), C = ⊥) = ∃C ′.(C = ⊥)[C ′\C] ∧ (C ′ +
i\C), that is C ′ = ⊥∧C = C ′ + i which implies σ′ = ¬(C = ⊥). As P (σ) is true
for G, we have Q(σ′) for G′. Thus, P (σ) ⇒ S(σ, σ′) ∧ Q(σ′). This case is quite
straightforward because it does not presuppose any AFact for P .

The second one assumes the precondition C = D, as indicated by the third
line of Table 2. We aim at knowing when this relation of subsumption TBox
between the concepts C and D is also a postcondition of the substitution [C ′ +
i\C] related to add(i : C). The outcome of this question depends on whether the
individual i belongs to concept C. If σ = (C = D ∧ i ∈ C), we can conclude that
σ′ = (C = D), otherwise, σ = (C = D∧i �∈ C) is transformed into σ′ = (C ⊇ D).
In the first case, we have sp(add(i : C), C = D ∧ i ∈ C) = ∃C ′.(C = D ∧ i ∈
C)[C ′\C] ∧ (C ′ + i\C), i.e. C ′ = D ∧ i ∈ C ′ ∧ C = C ′ + i which implies C = D,
because i ∈ C ′ ∧ C = C ′ + i ⇒ C = C ′. On the other hand, when i �∈ C,
sp(add(i : C), C = D ∧ i �∈ C) = C ′ = D ∧ i �∈ C ′ ∧ C = C ′ + i which implies
C ⊇ D, because i �∈ C ′∧ C = C ′+i ⇒ C ⊇ C ′. As previously, and in both cases,
as P (σ) is true for G, we have Q(σ′) for G′. Thus, P (σ) ⇒ S(σ, σ′) ∧ Q(σ′).

We can prove the other lines of Table 2 similarly, considering the ABox sub-
stitutions of the language and the TFormulae involved.

5 Relation Between the ABox/TBox Verifications

The purposes of ABox and TBox verifications differ. TBox verification aims
to verify concepts inclusion relationships (universal assertions), whereas ABox
verification is more about fact-checking and instance-checking (membership

122 A. Makhlouf et al.

assertions). In terms of program verification, they are complementary. However,
these two components are undoubtedly dependent.

5.1 Dependence Between the ABox/TBox Verifications

Inferring TFormulae does not consider only rules statements, but takes into
account rule specifications on instances properties too. Therefore, weakening
AFormulae has a direct effect on the process of inferring TFormulae. In case
where instances properties are not revealed in the precondition, some properties
on sets may not be proven to be valid and so are discarded from the post-
TFormula.

For instance, consider the program of Fig. 4 consisting of the rule replace
which replaces a r-edge between two nodes a and b with s. The precondition of
the rule asserts that b is a B-node, however, it does not inform about the concept
of a. Note that this rule is proven to be correct by the Small-tALC prover.

Fig. 4. Example of inconsistent TFormulae

Consider the TFact (∃ s−1 A) = ⊥ before the rule call expressing that there
is no s-edges outgoing from A-nodes. Aiming for verifying after the rule call that
edges outgoing from A-nodes are going towards B-nodes i.e. (∃ s−1 A) ⊆ B, the
static analyzer studies the effect of the rule replace. So it interprets firstly the
statement delete(a r b) which does not affect the validity of (∃ s−1 A) = ⊥,
and secondly the statement add(a s b) which certainly does because the given
TFact concerns the added s-edge. In this case, the static analyzer shows that
the TFact (∃ s−1 A) = ⊥ is unsatisfiable, but does not infer any other fact since
the concept of a is unknown (corresponding to a case X in the interpretation
table of the statement add(i r j)). Hence, the given TFact (∃ s−1 A) ⊆ B is
supposed inconsistent with ABox assertions of the rule replace.

Now suppose that the developer asserts as well in the precondition of the rule
that a is an A-node as shown in bold on Fig. 4. In this case, the static analyzer
would deduce that (∃ s−1 A) ⊆ B. We can conclude that the more strengthened
AFormulae are, the more the diagnostic of TFormulae gets refined.

Two-Level Reasoning About Graph Transformation Programs 123

5.2 Complementarity Between the ABox/TBox Verifications

Verification of a rule’s triple using Hoare logic guarantees a correct transforma-
tion of the manipulated nodes. At a more abstract level, verification of the TBox
checks the effect of the rules on the graph as a whole. These two verification lev-
els are complementary: each level verifies properties that can not be expressed
by the other one.

Let us reconsider the program in Fig. 2 consisting in reversing r-edges outgo-
ing from an A-node a towards B-nodes. Suppose now that the developer makes
an error in the rule reverse by writing the statement add(a r b) instead of
add(b r a) as shown in bold in Fig. 5. In this case, the rule renames each
s-edge to r-edge without reversing it. Consequently, applying the sequence
{rename!, reverse!} on a graph will produce a target graph identical to the
source graph.

Fig. 5. Incorrect rule reverse

The rule reverse is proven as a correct Hoare-triple by the Small-tALC
prover, i.e. the rule’s code ensures the postcondition with the given precon-
dition. This happens because the rule’s postcondition is weak: it checks only the
concept of a and the nonexistence of s-edges outgoing from a. However, exploit-
ing the Small-tALC TBox static analyzer to verify the post-TFormula given in
the main program, we notice that the TFact (∃ r−1 A) = ⊥, which expresses
that there is not a r-edges outgoing from A-nodes, is unsatisfiable.

Warned by the result of the TBox verification, the developer strengthens the
postcondition of the rule reverse with the AFact a : (= 0 r B) to check that
no r-edge is outgoing from a. Now the prover fails to verify the rule with the
modified postcondition. The developer then realizes that b must be connected
by r to a.

Since one is allowed to write weaken specifications of a code while maintaining
the validity of a rule’s triple at the ABox level, a given postcondition may not
reveal all the properties of the transformed instances to be verified yet yield to
a correct triple. In those cases, using TBox verification with TFormulae can
identify an abnormal effect on the graph.

On the other hand, verifying exclusively that the given TFormulae are con-
sistent with the global graph does not attest actually that rules triples are written

124 A. Makhlouf et al.

correct since the TBox verification infer TFormulae from rules supposed cor-
rect. Hence, it is necessary as well to prove rules triples using Hoare logic by
writing complete specifications to get tangible results.

Ultimately, each of the ABox and TBox verifications has different level of
verification and so are complement. ABox checks whether instances that are
manipulated in a rule are locally transformed. TBox checks the effect of instances
transformation on the abstract graph. Hence, errors that are not identified by
one level, can be identified by the other.

6 Verifying Monadic Second-Order Properties

Verifying rules using the Hoare logic with ABox assertions on individuals is
limited for checking local properties of the graph. With quantification over sets,
TBox assertions can express global properties of graphs and can be exploited to
verify some monadic second-order (MSO) properties [6].

For instance, consider the problem of verifying that a graph is bipartite i.e.
a graph that is colored in two colors e.g. A and B, and in which every edge
connects a node of A to one of B. Figure 6 shows the Small-tALC rule grow that
allows connecting, with a r-edge, two nodes belonging to two different concepts.
The bipartiteness property can be expressed in the Small-tALC TFormulae by
two TFacts: (∃ r A)∩A = ⊥ to verify that the set of source nodes of the r-edges
going towards A and A are disjoint, and (∃ r B) ∩ B = ⊥ to verify that the set
of source nodes of the r-edges going towards B and B are disjoint. To close off
the possibility to add a r-edge outgoing from nodes belonging to other concepts
than A or B, closure axioms are necessary: A ∪ B = � ∧ A ∩ B = ⊥ i.e. all the
graph’s nodes are exclusively of concept A or of concept B. This TBox invariant
expressing a global property of the graph can be checked before and after calling
iteratively the rule grow.

Fig. 6. Small-tALC program making up a bipartite graph

Two-Level Reasoning About Graph Transformation Programs 125

Our TBox abstraction level neglects the source and target nodes of an edge.
Hence, our current work is not able to express directly MSO properties related
to connectivity of a graph. We envisage increasing the expressiveness of TBox
formulae by choosing a richer description logic, notably which offer role con-
structors and role connectors such as inclusion and transitivity.

7 Related Work

In the theory of algebraic graph transformations, Habel and Pennemann [1]
defined nested application conditions to describe graph properties. However these
first-order tailored logic formulae need to be derived into specific inference rules
in order to provide a specific theorem-proving that suits them. This approach
has been adopted by the graph transformation language GP [15] which provides
a Hoare-like calculus. Nested conditions of GP have been recently extended to
MSO properties on graphs by introducing new quantifiers for set variables of
nodes and edges and having morphisms with constraints about set member-
ship [5].

The algebraic approach has also given rise to the dedicated logic for graph
properties, called Graph Pattern Logic [16] and Navigational Logic [17], which
consider that a graph pattern P is just an object in the category of graphs.
Thereby, a global property for a graph G can be reduced to identifying a mor-
phism from P to G. The authors have invested patterns dedicated to graph
paths between nodes. We share with them the idea that reasoning mechanisms
are supported by the underlying logic.

The static satisfiability of a DL knowledge base updated by a finite sequence
of insertions and deletions performed on concepts and roles has been studied by
Calvanese et al. [18]. The authors introduce a simple imperative language with
the basic actions A⊕C and A�C on an interpretation I for concepts A and C.
A ⊕ C stands for the addition of the content of CI to AI and A � C represents
the removal of CI from AI .

In order to capture the action effects on a DL knowledge base K, a transfor-
mation TR(K) associated to each action has been defined. This transformation
on a finite interpretation domain enables to reduce static verification to finite
satisfiability of K: TR(K) is K-preserving if there exists a model when apply-
ing TR(K) on interpretations. Transformations allow to modify labels of sets
of nodes instead of individuals. Constraints on interpretations coding graph-
structured data are expressed by specific ALCHOIQbr DL formulae, including
nominals (O) which enables modifying single node labeling.

Dynamic logics [19] are well suited for dealing about properties of evolving
data. J. H. Brenas et al. [20] investigate such logics for graph transformations
and define C2PDLS, a combination of both combinatory and converse propo-
sitional dynamic logics, augmented by substitutions. The main idea is to split
the nodes of the considered graphs into two sets: one contains the nodes before
substitutions take place; the other stores nodes that will be created by future
transformations and those that have been deleted in the past. This separation
allows some reasoning on reachability properties considering named nodes.

126 A. Makhlouf et al.

In our Small-tALC context, ABox updates do not represent changes or refine-
ments in the conceptualization of TBox axioms. We allow adding and deleting
individuals and roles in an imperative style with extensional ABox rules, while
provide a mechanism to infer intentional TBox knowledge which is consistent
with ABox changes. From the user point of view, we share the same desired effect
called projection in action-oriented paradigm, i.e. knowing whether an assertion
that one wants to make true really holds after executing a rule [21].

8 Conclusion and Future Work

Our logic-based graph transformation language Small-tALC allows to reason on
graph transformations and verify local and global properties of graphs by exploit-
ing ABox and TBox levels of description logic respectively. The properties of
nodes manipulated in each rule are expressed in ABox pre- and postconditions
so that a Hoare-like calculus can be realized to verify the correctness of a rule.
Besides this ABox verification, we presented an approach based on a static
analysis aiming to deduce implicit TBox assertions about concepts from explicit
ABox assertions and valid TBox premises. Our TBox verification process deter-
mines whether the given ABox and TBox assertions are consistent. A formal
proof sketch of our static algorithm has been addressed.

We showed that using TFormulae, some monadic second-order properties
can be verified. It would be interesting as future work to improve the expres-
siveness of our TFormulae in such a way that more global properties can be
verified e.g. considering the cardinality restrictions and roles constructors.

Other dialects and in particular DL ALCQIO with nominals O which allows
the description of concepts by the enumeration of named individuals can be
considered as well. The key is to work out how we can increase the expressivity
of Small-tALC programs in order to be able to prove more interesting specifi-
cations. We also investigate Small-tALC functionalities to manage explicit and
inalterable TBox axioms now given by the end-user.

References

1. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009).
https://doi.org/10.1017/S0960129508007202

2. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2 23

3. Orejas, F., Ehrig, H., Prange, U.: A logic of graph constraints. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 179–198. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78743-3 14

4. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Giese,
H., König, B. (eds.) Graph Transformation, pp. 17–32. Springer, Cham (2014)

5. Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph pro-
grams. In: Giese, H., König, B. (eds.) Graph Transformation, pp. 33–48. Springer,
Cham (2014)

https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1007/978-3-540-78743-3_14

Two-Level Reasoning About Graph Transformation Programs 127

6. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations, pp. 313–400 (1997)

7. Strecker, M.: Modeling and verifying graph transformations in proof assistants.
Electron. Notes Theoret. Comput. Sci. 203(1), 135–148 (2008)

8. Baklanova, N., et al.: Coding, executing and verifying graph transformations with
small-tALCQe. In: 7th International Workshop on Graph Computation Mod-
els(GCM) (2016). http://gcm2016.inf.uni-due.de/

9. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York (2003)

10. Makhlouf, A., Percebois, C., Tran, H.N.: An auto-active approach to develop cor-
rect logic-based graph transformations. Int. J. Adv. Softw. 11(1,2), 147–158 (2018)
http://oatao.univ-toulouse.fr/22689/

11. Sattler, U.: Reasoning in description logics: basics, extensions, and relatives. In:
Antoniou, G., et al. (eds.) Reasoning Web 2007. LNCS, vol. 4636, pp. 154–182.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74615-7 2

12. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update and
erasure in description logic ontologies. J. Logic Comput. 19(5), 745–770 (2009)

13. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, New York (1990). https://doi.org/10.1007/978-1-4612-3228-5

14. Cousot, P.: Abstract interpretation based formal methods and future challenges. In:
Wilhelm, R. (ed.) Informatics. LNCS, vol. 2000, pp. 138–156. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44577-3 10

15. Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundam.
Inform. 118, 135–175 (2012)

16. Navarro, M., Pino, E., Orejas, F., Lambers, L.: A logic of graph conditions extended
with paths. In: Pre-proceedings 7th International Workshop on Graph Computa-
tion Models (2016). http://gcm2016.inf.uni-due.de/pre-proceedings.html

17. Lambers, L., Navarro, M., Orejas, F., Pino, E.: Towards a navigational logic for
graphical structures. In: Heckel, R., Taentzer, G. (eds.) Graph Transformation,
Specifications, and Nets. LNCS, vol. 10800, pp. 124–141. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75396-6 7

18. Ahmetaj, S., Calvanese, D., Ortiz, M., Simkus, M.: Managing change in graph-
structured data using description logics. ACM Trans. Comput. Logic 18(4), 27:1–
27:35 (2017). https://doi.org/10.1145/3143803

19. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. In: Gabbay, D.M., Guenthner, F.
(eds.) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol. 4,
pp. 99–217. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0456-
4 2

20. Brenas, J.H., Echahed, R., Strecker, M.: C2PDLS: a combination of combinatory
and converse PDL with substitutions. In: Gammarth, T., Mosbah, M., Rusinow-
itch, M. (eds.) 2017 the 8th International Symposium on Symbolic Computation in
Software Science, SCSS 2017, 6–9 April 2017, pp. 29–41 (2017). https://easychair.
org/publications/paper/dx4z

21. Liu, H., Lutz, C., Miličić, M., Wolter, F.: Reasoning about actions using description
logics with general TBoxes. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa,
A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 266–279. Springer, Heidelberg
(2006). https://doi.org/10.1007/11853886 23

http://gcm2016.inf.uni-due.de/
http://oatao.univ-toulouse.fr/22689/
https://doi.org/10.1007/978-3-540-74615-7_2
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/3-540-44577-3_10
http://gcm2016.inf.uni-due.de/pre-proceedings.html
https://doi.org/10.1007/978-3-319-75396-6_7
https://doi.org/10.1145/3143803
https://doi.org/10.1007/978-94-017-0456-4_2
https://doi.org/10.1007/978-94-017-0456-4_2
https://easychair.org/publications/paper/dx4z
https://easychair.org/publications/paper/dx4z
https://doi.org/10.1007/11853886_23

Tools and Applications

Incremental (Unidirectional) Model
Transformation with eMoflon::IBeX

Nils Weidmann1(B), Anthony Anjorin1, Patrick Robrecht2, and Gergely Varró2

1 Paderborn University, Paderborn, Germany
{nils.weidmann,anthony.anjorin}@uni-paderborn.de

2 Paderborn, Germany

Abstract. Graph transformation is a mature formalism often used as
a basis for model transformation tools. Although numerous graph trans-
formation tools exist, very few explore the paradigm of reactive, event-
driven programming via incremental graph transformation. As we believe
reactive programming to be a promising application for graph transfor-
mation in both research and teaching, we have developed eMoflon::IBeX
as a suitable environment for incremental unidirectional model transfor-
mation via graph transformation. With eMoflon::IBeX, we have realised
a novel mix of complementary tool features that have proven to be useful
and effective in predecessor tools. We discuss these features and present
insights based on an empirical evaluation of eMoflon::IBeX.

Keywords: Graph transformation · Incremental pattern matching

1 Introduction and a Brief History

Graph transformation (GT) is a mature formalism often used as a formal under-
pinning for model transformation tools in the context of model-driven engi-
neering. While numerous GT tools exist, many of which are still under active
development, we have observed that very few explore the paradigm of reactive,
event-driven programming via incremental GT [4]. Based on our work on imple-
menting a novel Triple Graph Grammar (TGG) tool that leverages incremental
graph pattern matching [11], we have come to regard reactive, event-driven pro-
gramming to be a promising application for GT in both research and teaching,
which has not yet received enough attention.

In this paper, therefore, we present eMoflon::IBeX as part of the eMoflon
tool suite,1 which has evolved out of a long line of predecessor GT tools. Figure 1
depicts the history of eMoflon, showing preceding and some related tools. Nodes
represent tools, while edges indicate that one tool (successor) conceptually
or/and technically evolved from another (predecessor). All edges ultimately lead-
ing to IBeX are labelled, indicating the primary reason for the evolution. Related
tools are greyed out, while tools that are currently part of the eMoflon tool suite
are highlighted with a light-blue background.
1 www.emoflon.org.

c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 131–140, 2019.
https://doi.org/10.1007/978-3-030-23611-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_8&domain=pdf
www.emoflon.org
https://doi.org/10.1007/978-3-030-23611-3_8

132 N. Weidmann et al.

Fig. 1. History of eMoflon

Starting with PROGRES, one of the first tools for programmed GT, Fujaba
was developed based on a mainstream GPL (Java). With the goal of implement-
ing the full MOF2 2.0 and JMI3 standard, MOFLON was developed as a plugin
for Fujaba. With the success of Eclipse as an IDE platform, and EMF/Ecore as a
de facto modelling standard, eMoflon was developed as a complete re-engineering
of MOFLON. In addition, Enterprise Architect (EA)4 was established as a visual
front end for GT. For further details concerning the history of eMoflon, we refer
to Anjorin et al. [1]. In its back end, eMoflon was still using the pattern matcher
of Fujaba, which became increasingly challenging to evolve and maintain, partly
because it was bootstrapped with a different tool chain. Based on Democles as
a new pattern matcher [16], eMoflon::TiE was developed as a Democles-based
version of eMoflon. In addition to providing a unified platform for both an inter-
pretative and generative approach to model transformation, Democles was also
designed to simplify exchanging all templates for code generation. This was
exploited to establish cMoflon [10], a GT tool that generates embedded C code.
While EA proved to be a scalable and relatively usable front end for eMoflon,
it required a separate tool chain based on C# and Visual Studio. Combined
with problems concerning licensing and cross-platform support, a decision was
made to switch to Xtext5 as an editor framework, and use PlantUML6 for gen-
erated, read-only visualisations. This led to eMoflon::TiE-TGG for TGGs as a
pilot project, and some time later, eMoflon::TiE-GT for GT. In this process, we
extracted a common core component, eMoflon::Core, providing basic support for
EMF code generation, and visualisation of EMF metamodels and models. For
further details on this EA to Xtext migration, we refer to Yigitbas et al. [19].

Finally, driven by our requirements for TGGs [11], we developed eMoflon::
IBeX based on the incremental Democles interpreter [17]. eMoflon::IBeX realises

2 The Meta Object Facility.
3 Java Metadata Interface.
4 www.sparxsystems.de.
5 www.eclipse.org/Xtext/.
6 http://plantuml.com/en/eclipse.

www.sparxsystems.de
www.eclipse.org/Xtext/
http://plantuml.com/en/eclipse

Incremental (Unidirectional) Model Transformation with eMoflon::IBeX 133

a novel mix of tool features that have proven to be effective over the years. In
the following (Sect. 2), we discuss this mix of features and compare IBeX to
related GT tools. We provide an architectural overview of IBeX in Sect. 3, with
some details on specific tool features. The results of an empirical experiment
conducted with 40 students are discussed in Sect. 4, while Sect. 5 concludes.

2 Motivation and Related Work

Table 1 depicts the six most important requirements that influenced the devel-
opment of IBeX, and provides a comparison with five GT tools, including its
predecessor TiE. Our choice of requirements was primarily driven by current
research and teaching activities at TU Darmstadt and Paderborn University
including model synchronisation, consistency checking and other model man-
agement tasks based on TGGs [2]. The comparison is not meant to be complete;
there are at least double as many GT tools described in the literature – the cho-
sen tools are close enough to IBeX to provide an interesting comparison and help
to put IBeX in context to existing tools. Our comparison also does not imply
that IBeX supports a superset of all features of the selected tools, for example,
TiE is a code generator while IBeX is not, Henshin provides static analyses that
IBeX does not, GRAPE supports schema-less GT while IBeX does not.

Table 1. Comparison of graph transformation tools

We require support for incrementality (R1) to enable a reactive, event-driven
style of programming with GT. Our interest in exploring and supporting incre-
mentality is shared by numerous approaches [5,7,14]. While there are tools and
languages such as [13] that support reactive programming, to the best of our
knowledge, (R1) is currently only fulfilled for GT tools by Viatra [15].

134 N. Weidmann et al.

As we want to use and teach the GT approach, we require support for the full
GT paradigm (R2), i.e., not only graph pattern matching, but also creation and
deletion in form of GT rules. All GT tools in our comparison apart from Viatra
provide this support; Viatra supports graph patterns with application conditions
as rule preconditions, but chooses to provide a flexible DSL over Xtend for the
“action” part of the rule, instead of the “green” (create) and “red” (delete)
parts of a GT rule. We believe this sacrifices a substantial part of the simplicity
and elegance of GT and makes it difficult to visualise and analyse entire rules
meaningfully.

Due to our research and teaching focus on TGGs, we value a seamless inte-
gration of GT and TGGs (R3): users are able to mix and switch between GT
and TGG, and TGG developers can reuse functionality of the GT layer. GT and
TGG specifications should also use a consistent textual concrete syntax, visuali-
sation, and project structure. Of all the tools in our comparison, only EMorF [9]
and TiE [12] fulfil (R3).

A seamless integration with a mainstream GPL (R4) is crucial for practical
applications, allowing users to easily mix and integrate GT rules into GPL code
with support for code completion and type checking. While this is supported by
all GT tools in our comparison, the GPL integration of EMorF and Henshin [6]
is untyped and relies on rule names. This makes it difficult to check for errors
at compile time.

Of similar importance for practical applications is dedicated support for mod-
ularity on the level of GT rules (R5). While Viatra supports advanced modu-
larity concepts on the level of patterns, this does not cover the Xtend code for
actions. Henshin provides variability-based reuse on the level of GT rules by
using annotations. TiE supports rule refinement [8] only for TGG rules; This
modularity feature is generalised in IBeX to uniformly cover patterns, GT rules,
and TGG rules.

Finally, we are convinced that an Xtext-based textual editor combined with
a read-only visualisation focused on the current position in the text editor (R6),
allows for an efficient, effective editing experience that is also sustainable with
respect to the cost of maintenance. From the tools in our comparison, this editing
style is fully implemented only by GRAPE [18]. Although Henshin supports both
a textual and visual concrete syntax, separate editors are used and have to be
maintained separately.

3 Architectural Overview

eMoflon::IBeX is implemented as a set of Eclipse plugins and supports both
incremental unidirectional model transformation with graph transformation, and
bidirectional model transformation with TGGs. In this paper, however, we focus
on the support for general GT. Figure 2 provides an architectural overview of
IBeX: The TGG layer makes use of the GT layer, which consists of a front end
and a back end component. The front end consists of an Xtext-based editor
combined with a read-only visualisation using PlantUML. As input to the front

Incremental (Unidirectional) Model Transformation with eMoflon::IBeX 135

Match
Events

Pattern
Invocation
Network

Component

Class

Legend

TGG Layer

GT Layer

uses

Front End
(Xtext-based Editor

and PlantUML
Visualisation)

.tgg.tgg

.gt
+ .ecore

Back EndAPI

.java
API

MatchPattern

CreateInterpreter

DeleteInterpreter
GT

rules

GTInterpreter

Pattern
Generator

Democles

Viatra

ContextInterpeter

Drools

Layer

Fig. 2. Most important components and classes in eMoflon::IBeX

end, end-users provide .ecore files for all metamodels, and .gt containing graph
transformation rules in a textual concrete syntax. We refer the interested reader
to our handbook on unidirectional model transformation with IBeX [3] for screen
shots of the visualisation and all details to the textual concrete syntax.

The front end produces GT rules (as EMF models) and passes them to the
back end. Figure 2 depicts the most important interfaces and classes in the back
end divided into compile time (to the left) and runtime (to the right).

At compile time, the back end uses a PatternGenerator to generate a set of
separate Patterns from a GT rule. These patterns represent the context to be
matched, elements to be deleted, and elements to be created. A typed API spe-
cially tailored for the set of GT rules is generated as Java code and produced as
output for the end-user. This API wraps all calls to the GTInterpreter allowing
for type safe access and rich compiler errors if rules are changed inconsistently.

At runtime, the GTInterpreter delegates the task of pattern matching to
a ContextInterpreter as a separate component. A so-called pattern invoca-
tion network (an acyclic graph with patterns as nodes and invocations as edges)
is passed, and events signalling new and invalid matches are expected. To use
eMoflon::IBeX, an adapter for an incremental pattern matching engine is neces-
sary. Currently, we mainly support Democles [16], but also have prototypes for
Viatra and Drools7. The GTInterpreter collects all Matches and performs rule
application by delegating deletion to a DeleteInterpreter and creation to a
CreateInterpreter. While IBeX supplies default implementations for deletion
and creation, these can be extended or replaced for special cases or optimisations.

Figure 3 depicts a communication diagram representing the GT rule applica-
tion process at runtime. (1) The generated API serves as a factory for GT rules,
providing methods for all non-abstract rules. (2) Rules can be used to subscribe
for appearing or disappearing matches reported by the GTInterpreter. Rules

7 www.drools.org.

www.drools.org

136 N. Weidmann et al.

Fig. 3. Communication between API and GT interpreter

wrap the generic interpreter to avoid casting in developer code. (3) The inter-
preter initialises the ContextInterpreter for pattern matching, (4) the Delete-
Interpreter for deletion, and (5) the CreateInterpreter for creation. When
the monitored models are manipulated, (6) the ContextInterpreter produces
and reports generic match events. (7) The GTInterpreter notifies the rule, which
then (8) converts the generic matches to typed matches and provides them to the
user via a series of methods such as findAnyMatch or forEachMatch, designed
to work together with the standard Java stream API.

4 Evaluation

To evaluate IBeX and get feedback from users to further improve the tool, we
conducted an empirical study with 40 students of an undergraduate, introductory
course on model-based software development at Paderborn University. As part
of the course, the students formed groups of 5–6 and used IBeX intensively for a
semester while working on a small MBSE project involving DSL development.8

We designed an online questionnaire9 as a mix of quantitative multiple choice
and qualitative open questions, to investigate the following research questions:

(Q1) How do users perceive the editing experience provided by a combination of
textual concrete syntax and coupled, read-only, partial visualisation?

(Q2) How do users judge the ease with which rules and patterns can be mixed
with Java code and integrated in Java applications?

(Q3) How do users rate the relative importance of different language features?
(Q4) Do users appreciate our current documentation of IBeX as a set of hand-

books realised as interactive Dropbox Paper10 documents?.

Figure 4 depicts an overview of the results from the quantitative part of the
survey. All detailed results of the entire experiment are available online.11 To
8 http://bit.ly/2XT2fZ7.
9 https://bit.ly/2VV8hGJ.

10 With Dropbox Paper (https://www.dropbox.com/en GB/paper), readers can com-
municate with authors via questions-and-answer threads directly integrated in the
web-based document.

11 https://bit.ly/2VUCrdc.

http://bit.ly/2XT2fZ7
https://bit.ly/2VV8hGJ
https://www.dropbox.com/en_GB/paper
https://bit.ly/2VUCrdc

Incremental (Unidirectional) Model Transformation with eMoflon::IBeX 137

investigate our four questions, we formulated 23 multiple choice questions divided
up into 5 categories. A scala of 1 to 5 was used for each question with 1 for “low”
and 5 for “high”. The first category Prior Experience was used to characterise
our participants: programmers with sufficient experience with a modern object-
oriented language, moderate prior experience with Eclipse, but with little to no
prior experience with MDE, GT, or any visual language at all.

Regarding (Q1), our results indicate that many users find the textual concrete
syntax acceptable, and even more appreciate the visualisation. While some users
criticise the fact that the visualisation is read-only, our results show that it is
probably not worth developing a visual editor, especially considering that most
users are satisfied with the mix of a textual syntax and a coupled visualisation
that adjusts dynamically to and focusses only on the current selection in the
textual editor. By using the Xtext framework, our results show that it is possible
to provide adequate validation errors and other usability features.

Concerning (Q2), our results indicate that while the expressiveness of the rule
and pattern language is judged to be high enough, most students are uncertain if
and how IBeX can be used in real-world applications. While this is probably due
to some extent to a lack of experience (students of an undergraduate course),
it still indicates that our current documentation tends to introduce the tool in
isolation and should be improved to cover challenges involving an integration
with other (UI, database, Web) frameworks for building realistic applications.

Regarding the integration of Java and GT code, being able to switch seam-
lessly between Java and GT files was judged to be acceptable but in need of
improvement. The automatically generated JavaDoc for the API is appreciated
by only a few users; most are neutral and apparently do not see any direct
benefit.

Regarding (Q3), most students regard (positive and negative) application
conditions and attribute conditions to be most important, followed by support
for modularity (rule refinement), and complex application conditions (combi-
nation of conditions via conjunction (&&) and disjunction(||)). Many students
are apparently unable to appreciate the potential of incrementality and reactive
programming.

Finally, our handbook [3] (Q4) received mostly positive feedback, with many
students preferring the example-driven, tutorial-like explanation to the complete,
but reference-like appendix.

Threats to validity: Even though participation in the survey was anonymous and
optional, we cannot completely exclude the fact that the students involved knew
that their lecturer was one of the primary developers of the tool. This could
have had a positive or negative effect as the students might have projected their
(unrelated) satisfaction or frustration with the lecturer and the rest of the course
on their answers.

Based on the relatively small sample of 40 students, we can only surmise
general indications and suggestions for improvement of the tool. Generalising to
other tools would require more data points and a more advanced experimental
setup involving, e.g., a set of carefully prepared tasks and a control group.

138 N. Weidmann et al.

Fig. 4. Evaluation results

5 Conclusion and Future Work

We presented eMoflon::IBeX, a new GT tool with a special focus on supporting
reactive programming via the incrementality of its underlying and exchangeable
graph pattern matching engine. We discussed our most important requirements
and compared IBeX with other related GT tools.

Based on the results of our empirical evaluation of IBeX, we plan to provide
an additional handbook containing a series of applications and case studies using
IBeX, chosen especially to showcase the advantages of reactive programming via
the support for incrementality. We also plan to further improve the integration
with Java, e.g., enabling a jump from API code back to the GT files containing
the relevant rules and patterns. Concerning an empirical evaluation of GT tools,
it would be interesting to evaluate different GT tools using, e.g., the System
Usability Scale (SUS) questionnaire, which would enable a systematic compari-
son accross different tools. Finally, we are working on improving the scalability

Incremental (Unidirectional) Model Transformation with eMoflon::IBeX 139

of the tool, which requires understanding how best to structure the generated
pattern invocation networks passed to the incremental pattern matcher, taking
the nature of the involved metamodels, the size of the models, and the size and
connectivity of all patterns into account.

References

1. Anjorin, A., Lauder, M., Patzina, S., Schürr, A.: eMoflon: leveraging EMF and
professional CASE tools. In: Informatik 2011, p. 281 (2011)

2. Anjorin, A., Leblebici, E., Schürr, A.: 20 years of triple graph grammars: a roadmap
for future research. ECEASST 73 (2015)

3. Anjorin, A., Robrecht, P.: Unidirectional model transformation with eMoflon::IBeX
(2018). https://bit.ly/2Hw1zDa

4. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transforma-
tions. SoSyM 11(3), 431–461 (2012)

5. Beyhl, T., Giese, H.: Incremental view maintenance for deductive graph databases
using generalized discrimination networks. In: Heußner, A., Kissinger, A., Wijs, A.
(eds.) GaM@ETAPS 2016. EPTCS, vol. 231, pp. 57–71 (2016)

6. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. SoSyM 11(2), 227–250 (2012)

7. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Efficient model synchronization
by automatically constructed repair processes. In: Hähnle, R., van der Aalst, W.
(eds.) FASE 2019. LNCS, vol. 11424, pp. 116–133. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-16722-6 7

8. Klar, F., Königs, A., Schürr, A.: Model transformation in the large. In: ESEC-FSE
2007, pp. 285–294. ACM, New York (2007)

9. Klassen, L., Wagner, R.: EMorF - a tool for model transformations. ECEASST 54
(2012)

10. Kluge, R., Stein, M., Giessing, D., Schürr, A., Mühlhäuser, M.: cMoflon: model-
driven generation of embedded C code for wireless sensor networks. In: Anjorin,
A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol. 10376, pp. 109–125. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-61482-3 7

11. Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging incre-
mental pattern matching techniques for model synchronisation. In: de Lara, J.,
Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 179–195. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61470-0 11

12. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Di
Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 138–145. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08789-4 10

13. Perez, S.M., Tisi, M., Douence, R.: Reactive model transformation with ATL. Sci.
Comput. Program. 136, 1–16 (2017)

14. Schneider, S., Lambers, L., Orejas, F.: A logic-based incremental approach to graph
repair. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol. 11424, pp.
151–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16722-6 9

15. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z.: Road
to a reactive and incremental model transformation platform: three generations of
the VIATRA framework. SoSyM 15(3), 609–629 (2016)

https://bit.ly/2Hw1zDa
https://doi.org/10.1007/978-3-030-16722-6_7
https://doi.org/10.1007/978-3-030-16722-6_7
https://doi.org/10.1007/978-3-319-61482-3_7
https://doi.org/10.1007/978-3-319-61470-0_11
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1007/978-3-030-16722-6_9

140 N. Weidmann et al.

16. Varró, G., Anjorin, A., Schürr, A.: Unification of compiled and interpreter-based
pattern matching techniques. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 368–383. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31491-9 28

17. Varró, G., Deckwerth, F.: A rete network construction algorithm for incremen-
tal pattern matching. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol.
7909, pp. 125–140. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38883-5 13

18. Weber, J.H.: GRAPE – a graph rewriting and persistence engine. In: de Lara,
J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 209–220. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61470-0 13

19. Yigitbas, E., Anjorin, A., Leblebici, E., Grieger, M.: Bidirectional method patterns
for language editor migration. In: Pierantonio, A., Trujillo, S. (eds.) ECMFA 2018.
LNCS, vol. 10890, pp. 97–114. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92997-2 7

https://doi.org/10.1007/978-3-642-31491-9_28
https://doi.org/10.1007/978-3-642-38883-5_13
https://doi.org/10.1007/978-3-642-38883-5_13
https://doi.org/10.1007/978-3-319-61470-0_13
https://doi.org/10.1007/978-3-319-92997-2_7
https://doi.org/10.1007/978-3-319-92997-2_7

Knowledge Representation and Update
in Hierarchies of Graphs

Russ Harmer(B) and Eugenia Oshurko

Univ. Lyon, EnsL, UCBL, CNRS, LIP, 69342 Lyon Cedex 07, France
{russell.harmer,ievgeniia.oshurko}@ens-lyon.fr

Abstract. A mathematical theory is presented for the representation
of knowledge in the form of a directed acyclic hierarchy of objects in a
category where all paths between any given pair of objects are required
to be equal. The conditions under which knowledge update, in the form
of the sesqui-pushout rewriting of an object in a hierarchy, can be prop-
agated to the rest of the hierarchy, in order to maintain all required path
equalities, are analysed: some rewrites must be propagated forwards, in
the direction of the arrows, while others must be propagated backwards,
against the direction of the arrows, and, depending on the precise form
of the hierarchy, certain composability conditions may also be necessary.

Keywords: Knowledge representation · Graph rewriting ·
Graph databases

1 Introduction

We present a framework for knowledge representation (KR) based on hierarchies
of objects from an appropriately structured category: a hierarchy is a directed
acyclic graph (DAG) whose nodes are objects of the category and whose edges
are arrows of the category such that all paths between each pair of objects are
equal; we refer to this as the commutativity condition. The principal model of
interest to us in this paper uses (simple) graphs and homomorphisms so that a
hierarchy is a DAG whose nodes are themselves (simple) graphs. In this model,
an edge of the DAG h : G → T asserts that the graph G is typed by T , i.e. T
defines the kinds of nodes and kinds of edges (and attributes, if desired) that
exist in G and h specifies, for each node and edge of G, which kind it is. As
such, T can be viewed as a more abstract representation of knowledge of which
G provides a more concrete instantiation.

We require certain structure on the category in order to be able to perform
sesqui-pushout rewriting [4] to update an object in the hierarchy. However, such
an update may invalidate some of the typing arrows of the hierarchy. The main
contribution of this paper is to present a mathematical theory that guarantees
the reconstruction of a valid hierarchy, after an arbitrary rewrite of an object,
by appropriately propagating that rewrite to the other objects in the hierarchy.

c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 141–158, 2019.
https://doi.org/10.1007/978-3-030-23611-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_9&domain=pdf
http://orcid.org/0000-0002-0817-1029
https://doi.org/10.1007/978-3-030-23611-3_9

142 R. Harmer and E. Oshurko

In the case where there are multiple paths between a given pair of objects of
the hierarchy, this reconstruction depends on the satisfaction of a composability
condition that guarantees that the propagated rewrites are compatible.

Motivating Use Cases

Modern database systems are increasingly migrating towards graph-based rep-
resentations as a response to the growing wealth of data—from domains as var-
ied as social or transport networks, the semantic web or biological interaction
networks—that are most naturally expressed in those terms. However, unlike tra-
ditional relational DBs or earlier graph-based formats such as RDF, most graph
DBs based on the richer model of property graphs [2,6] do not provide a native
notion of schema. Our notion of hierarchy provides a mathematical framework
for this. Indeed, an explicitly given schema graph to which a data, or instance,
graph is homomorphic is the simplest non-trivial example of a hierarchy in our
sense: the nodes of the schema specify the types of entites allowed in the system;
its edges specify which edges between different types of nodes are allowed; and
the attributes on its nodes and edges define the set of permitted attributes for
nodes and edges. As such, the existence of a homomorphism from a data graph
to a schema graph provides a proof of schema validation.

Our theory of propagation of rewriting in a hierarchy precisely captures the
ways in which schema-aware DBs can be updated: a descriptive update occurs
when the data is modified and the schema has to adjust accordingly; while a
prescriptive update occurs when the schema is modified and the data needs to
be adjusted. More precisely, if we add a node to the data graph and choose not
to specify that its type already exists in the schema graph, in order to maintain
the homomorphism from data to schema, we must propagate this operation to
the schema graph to create a new node in the schema graph to type the new
node of the data graph; similarly, if we merge two nodes of different types of
the data graph, we must merge the corresponding typing nodes of the schema.
Conversely, if we delete a node of the schema graph, we can only maintain the
homomorphism by deleting all instances of that node in the data graph; and
if we clone a node of the schema and choose not specify how to retype its
instances in the data graph, those instances must be cloned in the data graph.
In summary, add and merge updates propagate forwards, in the direction of the
typing homomorphism, while clone and delete updates propagate backwards;
and, as we will show, these observations remain true for general hierarchies.

Our theory thus provides a specification of how to enforce an abstraction
barrier on a schema-less graph DB that provides the illusion of being schema-
aware. Our Python library ReGraph implements this for the Neo4j graph DB by
fixing an encoding of the data and schema graphs and the typing homomorphism
within the single graph provided by Neo4j and translating any combination of
clone, delete, add and merge operations into a corresponding query written in
the Cypher language used by Neo4j [2]. More importantly, our theory also pro-
vides a specification of how to enforce the abstraction barrier corresponding to
an arbitrary hierarchy—modulo the need to fix the encoding into Neo4j and the
translation of update operations into Cypher. However, these two requirements

Knowledge Representation and Update in Hierarchies of Graphs 143

are generic and can be derived systematically. As such, we provide the foun-
dations for exploiting Neo4j (or similar graph DBs) as a platform for arbitrary
user-defined KR systems.

The KAMI bio-curation system [8] has a richer 3-level hierarchy. At the root lies
its meta-model, a fixed, hard-wired graph which defines the universe of discourse
pertinent to the rule-based modelling of protein-protein interactions (PPIs) in
cellular signalling: genes, regions of genes, binding and enzymatic actions, &c.
The meta-model types an action graph which defines the particular collection of
genes (and so on) of interest to a corpus of knowledge, e.g. a signalling pathway.
The action graph types a nugget graph, containing many connected components,
each representing the detailed conditions needed for a particular PPI to occur. In
other words, an action graph summarizes the anatomy of a system while a nugget
graph provides the physiology that determines how the system can behave.

In general, an update of the nugget graph refers to some anatomic features
that already exist in the action graph and to others that must be added to
maintain typing; this is performed automatically by forward propagation. It is
important that propagation does not continue to the meta-model (which must
remain unchanged); this is achieved by requiring that all new anatomic features
specify how they are to be typed by the meta-model. This is an example of the
notion of controlled forward propagation, discussed in Sect. 3, analogous to a
descriptive DB update which actually preserves the current schema.

A knowledge corpus in KAMI can be contextualized, with respect to a choice
of gene products, through an update of its action graph, giving rise to what we
call a KAMI model ; in the terminology of DBs, this is analogous to a materialized
view—a contextualized copy of part of the original DB that can be manipulated
independently. The effect of this update propagates backwards to the nugget
graph. This propagation is not controlled—the cloning of a gene precisely gives
rise to multiple gene products—unlike the case of concept refinement where the
cloning of a schema node is accompanied by a specification of how to retype all
instances of the original node in the data graph in terms of the refined schema.
We discuss controlled backward propagation further in Sect. 4.

Neither of the above use cases require composability conditions, as dis-
cussed in Sect. 5, to guarantee valid reconstruction of a hierarchy after an
update because they contain no (undirected) cycles—although this was actu-
ally exploited in an earlier version of KAMI and we anticipate that many other
use cases will arise naturally.

Related Work

Slice categories provide many rich models of typed sesqui-pushout rewriting [4],
e.g. Set/T defines a setting for multi-set rewriting over the set T . We provide
a powerful generalization of this where, through the use of a hierarchy, we can
not only guarantee that rewriting an object always returns a well-typed result
but, additionally, can dynamically modify the typing object T . Our approach is
related to the change-of-base functor familiar from algebraic topology and to its
right adjoint whose existence characterizes pullback complements [5]. Indeed, in
a sense, our work can be seen as providing a means of exploiting this theory, in

144 R. Harmer and E. Oshurko

a form that can be used for knowledge representation and graph databases, even
when only those PBCs required for SqPO rewriting exist.

The arrows in our hierarchies correspond intuitively to the type, or instance-
of, relationships found in entity-relationship (ER) modelling [3] or UML, i.e.
they are relations that cross from one meta-model layer to another. They also
generally correspond to TBox statements in Description Logic [1] although, in
some cases, this intuition breaks down since an object, such as the nugget graph
of KAMI, with no incoming arrows usually corresponds to a collection of ABox
statements about instances of the concepts defined below it in the hierarchy. In
this paper, we do not consider the specialization/generalization, or is-a, relation-
ships found in ER modelling for the reason that the rewrite of an object does
not need to propagate across such relations.

2 Preliminaries

Let us begin by defining a piece of useful terminology. We use the term element
to refer to any concrete constituent of an object in a concrete category of interest
to us, e.g. an element (in the usual sense) of a set or a node or edge of a graph.

2.1 Sesqui-Pushout Rewriting

Sesqui-pushout (SqPO) rewriting [4] is a generalization of double pushout (DPO)
and single pushout (SPO) rewriting that allows for the expression of rules for all
elementary manipulations generally considered in traditional graph (or multi-
set) rewriting: the addition, deletion, merging and cloning of elements. SqPO
rewriting can be performed in any category with all pullbacks (PBs), all (final)
pullback complements (PBCs) [5] and all pushouts (POs); we further require
that POs preserve monos. These conditions are satisfied in all concrete settings
of interest to us, typically sets and (simple) graphs with attributes.

In order to perform SqPO rewriting, we only actually need POs of spans
where one arrow is a mono. However, in this paper, we sometimes have need of
more general POs. We also need the existence of all image factorizations (IFs).
As this notion is not standard in graph rewriting, we give an explicit definition
of its universal property (UP): the image factorization of an arrow f : A → B
is a mono m : I � B such that (i) there exists an arrow e : A → I such that
f = m ◦ e; and (ii) for any arrow e′ : A → I ′ and mono m′ : I ′ � B such that
f = m′ ◦ e′, there exists a unique arrow i : I → I ′ such that m = m′ ◦ i

A B

I

I ′
e′

e

f

m

i m′

In the concrete settings of interest to us, the IF of an arrow coincides with the
familiar notion of its epi–mono factorization. However, we have no (abstract)

Knowledge Representation and Update in Hierarchies of Graphs 145

need for the first arrow to be an epi and so prefer the more abstract requirement
of having IFs of all arrows.

We consider a rule to be simply an arrow. A restrictive instance of a rule
r− : L ← P in G is a mono m : L � G from the target object L; in this case,
we refer to L as the LHS and P as the RHS. An expansive instance of a rule
r+ : P → R is a mono from the source object P ; in this case, we refer to P as
the LHS and R as the RHS.

The usual notion of rule, i.e. a span of arrows, consists of two rules together
with a restrictive instance of the first; the PBC of r− and m provides an expansive
instance m− of the second and the PO of m− and r+ completes the overall
rewrite.

L P R

G G− G+

m

r−

m−

r+

m+

g− g+

2.2 Hierarchies of Graphs

A hierarchy is a finite category H freely generated from a DAG. An instance
of a hierarchy is a functor from H to a category C. This is equivalent to the
concrete definition as a DAG. For example, the category generated by G → T
can be instantiated into Set by assigning sets to the two objects and a function
between them; such a hierarchy is an intensional representation of a multi-set,
where G represents all the individuals and T represents the types of individuals,
as opposed to an extensional representation which would be a function from T
to N assigning multiplicities to types.

In the next two sections, we explain how (i) an expansive rewrite of G is
propagated to T in order to obtain a rewritten hierarchy h+ : G+ → T+; and (ii)
a restrictive rewrite of T is propagated to G so as to obtain h− : G− → T−. In
the case where C is Set, an expansive rewrite of G applies to the multi-set but
propagates to the support of the multi-set if elements of a completely new type
are added by the rewrite. On the other hand, a restrictive rewrite of T applies to
the support of the multi-set but propagates to the multi-set if a type is deleted
from the support. This generalizes standard multi-set rewriting which only ever
applies to G and never propagates to T .

In Sect. 5, we extend this to arbitrary hierarchies provided that appropri-
ate composability conditions are satisfied and, in Sect. 6, we discuss briefly the
current implementation of our framework in the ReGraph Python library which
works for the more general setting of simple graphs with attributes.

3 Forward Propagation

Throughout this section and the next, we fix two objects G and T and an arrow
h : G → T . In this section, we consider a rule r : L → L+ and an expansive

146 R. Harmer and E. Oshurko

instance m : L � G of r in G. Note that we immediately obtain a typing of L
by T by composition, i.e. h ◦ m : L → T .

3.1 The Strict Phase of Forward Rewriting

In order to decide how to propagate a rewrite of G to T , we must further specify
to what extent we wish to consider the RHS L+ of r to be typed by T . There
are two extreme cases: the first is where we provide an arrow from L+ to T , i.e.
L+ is itself typed by T ; the other is the case where nothing in the complement
of the image of r is homomorphic to T . In the first case, which we call a strict
rewrite of G, the rewritten G+ is still typed by T ; in the other case, which we
call the canonical propagation to T , we must propagate all changes in G to T .
In between these extremes, we must specify those elements, not in the image of
r, that we nonetheless wish to be typed by T .

Definition. Given a rule r : L → L+, a forward factorization of r is an object L′

and arrows r′ : L → L′ and r+ : L′ → L+ such that r = r+ ◦ r′; and an arrow
x : L′ → T such that h ◦ m = x ◦ r′.

L L+

T L′
h◦m

r

r′ r+

x

(1)

In the case of strict rewriting, L′ is isomorphic to L+ so that x : L+ → T
whereas, if L′ is isomorphic to L, x specifies nothing more than h ◦ m. In the
concrete settings of multi-sets and of graphs, r′ is frequently taken to be a mono,
i.e. it expresses a rule that only adds elements that can be typed by T , but in
the abstract setting we have no need to enforce this as a requirement.

The factorization of r splits its application into two phases: the strict phase,
which modifies only G, and the canonical phase, which modifies G and T .

Definition. The strict rewrite of G is defined by taking the PO of m and r′. By
the definition (1) of forward factorization and the universal property of this PO,
we obtain a (unique) arrow h′ that types G′ by T . (Note that x = h′ ◦ m′.)

L L′

G G′

T

m

r′

m′

x

h

g′

h′

(2)

This strict phase of rewriting was discussed briefly in [7] as being the only
kind of rewrite that can be performed if T is hard-wired as the base object of a
slice category; typically, a descriptive update that preserves the current schema.

Knowledge Representation and Update in Hierarchies of Graphs 147

3.2 The Canonical Phase of Forward Propagation

Our more general and flexible setting of hierarchies enables a second phase of
rewriting where the remaining changes to be made to G′, as specified by r+, are
additionally propagated to T , i.e. the base object changes.

Definition. The rewrite of G is completed by taking the PO of r+ and m′. The
forward propagation to T is then defined by taking the PO of g+ and h′. The
final typing of G+ by T+ is given by h+.

L′ L+

G′ G+

m′

r+

m+

g+

G′ G+

T T+

h′

g+

h+

t+ (3a,3b)

Note that we could instead have constructed T+ by taking the PO of r+ and
x = h′ ◦m′ and applying the UP of G+ to construct h+; the two approaches are
equivalent by the pasting lemma for POs. Note also that any object previously
typed by G is still typed by G+ so there is no need to propagate backwards.

The propagated rewrite t+ : T → T+ performs all the additions and merges,
as specified by r+ for G′, in T to produce the new type T+ required for G+. We
can also obtain this rewrite by constructing a new rule applying directly to T .

Definition. The projection r̂+ : LT → L+
T of r+ to T is computed by taking the

IF of h′ ◦ m′ followed by the PO of r+ and ĥ′. It immediately has an expansive
instance m̂′ in T .

L′ L+

LT L+
T

T T+

h′◦m′

ĥ′

r+

r̂+

m̂′ m̂+

t+

(4)

It is easy to show, by the pasting lemma for POs, that these two definitions
of T+ coincide; as such, for the simple hierarchy h : G → T , we can use either.
However, in a general hierarchy where T may be typed by further objects, we
must compute the rule projection explicitly in order to continue propagation.

3.3 The Forward Clean-Up Phase

The strict phase of rewriting allows us to add elements to G that can already be
typed by T . We may nonetheless fail to include everything that we could have
in this strict phase—by inadvertence or simply because, at the time of writing
the rule r, we were not aware that some added element could be typed by T .

148 R. Harmer and E. Oshurko

In order to accommodate this situation, we allow the specification of a clean-
up phase of rewriting, that applies only to T+ (and not G+), by providing an epi
r⊕ : L+

T � L⊕
T ; this allows us in particular to merge a newly-added element with

another that already existed in T . However, this requires us to know L+
T —which

is dependent on the typing h′ : G′ → T and so cannot be specified statically, at
the same time as r, but rather dynamically when r’s rewrite is propagated to T .
The overall effect of such a clean-up is as if the original rewrite had specified
more in r′ and continued with a reduced r+ and clean-up phase.

Definition. The clean-up phase is specified by an epi r⊕ : L+
T � T⊕ and the

expansive instance m̂+ : L+
T � T+, obtained after the rewrite of T with the rule

projection r̂+ above, giving rise to the final retyping t⊕ ◦ h+ : G+ → T⊕ of G+.

G+ L+
T L⊕

T

T+ T⊕
h+ m̂+

r⊕

m̂⊕

t⊕

(5)

We ask for r⊕ to be an epi because, in all concrete models of interest to us,
this corresponds to a rule that only merges nodes of T+ in the image of m̂+ and
we have no use case for using clean-up to add new elements to T+.

3.4 Example

Let us illustrate the above theory in a case where G and T are sets, i.e. the
hierarchy represents a multi-set. The object T has three elements—white circle,
black circle and square—and G has two instances of each of the circles (we use
this colour coding to avoid specifying the homomorphisms explicitly). The rule
specifies (i) the merge of one white and one black circle; and (ii) the addition of
a square. The fact that the square can be typed in T is expressed by the arrow
from L′ to T .

L′ TL L′ L+

G G′ G+

T T+

The strict phase of rewriting adds a square to G; the second phase performs
the merge in G and propagates this to T . Note that this operation has the
side-effect that the two circles of G not directly concerned by the rewrite have
nonetheless been retyped in T+.

An alternative factorization of the same rule could have a trivial strict phase
and propagate both the merge and the addition to T ; in order to arrive at the

Knowledge Representation and Update in Hierarchies of Graphs 149

same result (up to isomorphism) as the first factorization, we must apply a
clean-up rule to T+ to merge the black and white squares.

L′ T

L+
T L⊕

T

L L′ L+

G G′ G+

T
T+

T⊕

4 Backward Propagation

In this section, we consider the same hierarchy with a rule r : L ← L− and a
restrictive instance m : L � T in T . We can immediately compute the PB of h
and m to obtain a span m̂ : G � LG → L : ĥ from the object LG that can be
seen as the sub-object of G whose typing can be modified by r.

LG L

G T

m̂

ĥ

m

h

(6)

4.1 The Strict Phase of Backward Rewriting

As for forward propagation, we must provide a factorization of r in order to
specify which changes to T are to be propagated to G.

Definition. Given a rule r : L ← L−, a backward factorization of r is an object
L′ and arrows r′ : L ← L′ and r− : L′ ← L− such that r = r− ◦ r′; and an
arrow ĥ′ : LG → L′ such that ĥ = r′ ◦ ĥ′. Note that LG (not G) plays the role
analogous to T in forward propagation.

L L−

LG L′

r

r−
ĥ

ĥ′

r′ (7)

The factorization of r splits its application into two phases: the strict phase,
which modifies only T , and the canonical phase, which modifies G and T . As
such, in the strict phase of restrictive rewriting, G and LG remain invariant.
This typically occurs during concept refinement where an element of T is cloned
and all its instances in G are reassigned a unique type in T ′.

150 R. Harmer and E. Oshurko

Definition. The strict rewrite of T is defined by taking the PBC of r′ and m.
By the definition (7) of backward factorization and an application of the UP
of the PBC (8a) to the PB (6) defining LG, we obtain the retyping of G as
h′ : G → T ′.

L L′

T T ′
m

r′

m′

t′

LG

G L L′

T T ′

m̂
ĥ

ĥ′

h′
h

(8a,8b)

Note that any element of T that is deleted must have no instances in G for
this to be possible—this is a consequence of the requirement that ĥ = r′ ◦ ĥ′.

4.2 The Canonical Phase of Backward Propagation

Definition. The rewrite of T is completed by taking the PBC of r− and m′. The
backward propagation to G is then defined by taking the PB of h′ and t−. The
final typing of G− by T− is simply h−.

L′ L− G G−

T ′ T− T ′ T−
m′

r−

m− h′

g−

h−

t− t− (9a,9b)

This construction is analogous to the direct construction of T+ as a PO in
forward propagation. If the strict phase of rewriting is trivial, i.e. L ∼= L′, this
corresponds exactly to the notion of (backward) propagation defined in [7]. Note
that any object typing T still types T− so there is no need to propagate forwards.

The propagated rewrite g− : G ← G− performs all the clones and deletions,
as specified by r− for T ′, in G to produce the new object G− typed by T−. We
can also obtain this rewrite by constructing a new rule applying directly to G.

Definition. The lifting r̂− : LG ← L−
G of r− to G is computed by taking the PB

of ĥ′ and r−. It immediately has the restrictive instance m̂, from (6), in G.

LG L−
G

L′ L−
ĥ′

r̂−

ĥ−

r−

(10)

In this case, we must construct the new typing of G− by T− by applying
the pasting lemma for PBs (11a) and the UP of the PBC defining T− (11b) to
obtain h− : G− → T−.

Knowledge Representation and Update in Hierarchies of Graphs 151

L′ LG L−
G

T ′ G G−

m′

ĥ′

m̂

r̂−

m̂−

h′
g−

L−
G

G− L′ L−

T ′ T−

m̂−
ĥ′◦r̂− ĥ−

h−
h′◦g−

(11a,11b)

The proof of the equivalence of the two definitions of G− is a little more
complex than for its analogue for forward propagation; it requires an application
of the UP of the PBC (9a) defining T− followed by two applications of the UP
of the PB (9b) defining G−. As for forward propagation, we must compute the
rule lifting explicitly ii G itself types further graphs in the original hierarchy.

Note how the strict phase of rewriting allows us to ‘protect’ elements of
G from being cloned; instead, it retypes those elements with the more refined
type T ′—a process called concept refinement or specialization in ER modelling
[3]—and clones only the remaining nodes, as specified by r−.

4.3 The Backward Clean-Up Phase

We can specify a clean-up phase of rewriting, only for G−, by providing a mono
r� : L−

G ← L�
G. Clearly, and analogously to the situation for forward propaga-

tion, in order to provide such an r�, we already need to know L−
G—which is

dependent on the typing G → T ′. As such, r� cannot be specified statically, at
the same time as the original r used to rewrite T , but should rather be provided
dynamically at the time that r’s rewrite is being propagated to G.

L−
G L�

G

G− G�

T−

m̂−

r�

m̂�

h−
g�

(12)

The clean-up phase allows us to remove undesired element clones that were
not specified during the strict phase of rewriting, e.g. a partial concept refinement
where some instances of a cloned element cannot be assigned a unique type in
T ′. However, if r� is not a mono, this phase can also create additional clones,
beyond what was specified by r, and we have no use case for this extra generality,
just as we have no use case for allowing the clean-up phase to add new elements
to T+ during forward propagation.

152 R. Harmer and E. Oshurko

4.4 Example

We again consider an example where our hierarchy represents a multi-set. The
rule specifies (i) the deletion of the circle; and (ii) the cloning of the square into
a (white) square and a black square. The fact that one square in G is to become
white while the other becomes black is expressed by the arrow from LG to L′.

LG L′

L L′ L−

T T ′ T−

LG

G G−

The strict phase of rewriting clones the square and retypes G, thus effecting
a concept refinement; the second phase deletes the circle and propagates to G.

If we have a third instance of the square in G for which we cannot assign
a unique new type in T ′, we must displace the cloning operation to the second
phase of rewriting and propagate to all instances of the square. In order to
recover the same retyping of (the first two) squares as above, we must apply a
clean-up rule to delete the unwanted clones.

LG L′

L�
G L−

G

L L′ L−

T T ′ T−

LG
L−

G L�
G

G G− G�

5 Rewriting General Hierarchies

The notions of forward and backward propagation described in the previous two
sections enable the unambiguous rewrite of a tree (or forest) hierarchy. However,
in a hierarchy containing an undirected cycle

Knowledge Representation and Update in Hierarchies of Graphs 153

G

T1

T2

h2

h1

h12

(13)

an expansive rewrite of G could, in general, propagate incoherently to T1 and
T2 in the sense that we cannot reconstruct a (unique) arrow h+

12 : T+
1 → T+

2

making the triangle commute.
Similarly, a restrictive rewrite of T in a hierarchy such as

G1

G2

T

h1

h12

h2

(14)

may propagate incoherently to G1 and G2.
In this section, we characterize the conditions under which the arrows h12

can be reconstructed in the rewritten hierarchy. We provide only the overall
structure of the argument, for reasons of space, but full details will be given
in the full version of this paper. We only need to consider the cases of the two
triangles above as all hierarchies can be decomposed into multiple such triangles.

5.1 Forward Composability

Definition. Given a rule r : L → L+, an expansive instance m : L � G and
factorizations

L L+ L L+

T1 L′
1 T2 L′

2

h1◦m

r

r′
1 h2◦m

r

r′
2r+

1

x1

r+
2

x2 (15a,15b)

that define the propagation of r to T1 and T2 respectively, we say that the two
propagations h+

1 : G+ → T+
1 and h+

2 : G+ → T+
2 are composable iff there exists

a unique h+
12 : T+

1 → T+
2 such that

G G+

T1 T+
1

T2 T+
2

h+
12

(16)

In order to construct h+
12, we need to apply the UP of the PO (3b) defining

T+
1 according to (17a) below. We can zoom in on the precise conditions that must

be satisfied to apply this UP by superimposing the span of the PO defining T+
1

with the PO defining T+
2 , as in (17b).

154 R. Harmer and E. Oshurko

G′

T1 G+

T2 T+
1

T+
2

h′
1 g+

1

h12

t+1 h+
1

h+
2

t+2

G′

T1 G′′

T2 G+

T+
2

h′
1

g+
1

h12
g+
2h′

2

t+2 h+
2

(17a,17b)

If we can construct an arrow g : G′ → G′′ such that

G′ T1

G+

G′′ T2

g+
1

g

h′
1

h12

g+
2

h′
2

(18)

then we can indeed apply the UP, as in (17a), and obtain a unique h+
12 : T+

1 → T+
2

satisfying the composability conditions.
The existence of a unique such g follows from the existence of an arrow

� : L′
1 → L′

2 satisfying

L′
1

L L+

L′
2

�

r+
1r′

1

r′
2 r+

2

L′
1 T1

L′
2 T2

�

x1

h12

x2

(19a,19b)

The proof is elementary and follows from two applications—to G′′ and G+—of
the UP of the PO defining G′. The existence of such an � means that all add and
merge operations performed by r′

1 are also performed by r′
2; otherwise g need

not be unique and may not even exist.
If we further perform clean-up phases, we must additionally ask for a unique

�⊕ : L⊕
1 → L⊕

2 such that

L+
1 L⊕

1

L+
2 L⊕

2

r⊕
1

�+ �⊕

r⊕
2

(20)

where �+ : L+
1 → L+

2 is defined by the UP of the PO (4) defining the rule
projection of r1 and therefore satisfies h+

12 ◦ m̂+
1 = m̂+

2 ◦ �+. We can then apply
the UP of the PO (5) defining T⊕

1 to obtain a unique arrow h⊕
12 : T⊕

1 → T⊕
2 .

Knowledge Representation and Update in Hierarchies of Graphs 155

Proposition. Given the forward factorizations (15a,15b) and � : L′
1 → L′

2 satis-
fying (19a,19b), there is a unique h+

12 : T+
1 → T+

2 satisfying (16); and given an
�⊕ : L⊕

1 → L⊕
2 satisfying (20), there is a unique h⊕

12 such that t⊕2 ◦h⊕
12 = h⊕

12 ◦ t⊕1 .

5.2 Backward Composability

Definition. Given a rule r : L ← L−, a restrictive instance m : L � T and
factorizations

L L−

L1 L′
1

r

r−
1ĥ1

ĥ′
1

r′
1

L L−

L2 L′
2

r

r−
2ĥ2

ĥ′
2

r′
2

(21a,21b)

that define the propagation of r to G1 and G2 respectively (where Li is shorthand
for LGi

as defined by the PB (6)), the two propagations h−
1 : G−

1 → T− and
h−
2 : G−

2 → T− are composable iff there exists a unique h−
12 : G−

1 → G−
2 such

that

G1 G−
1

G2 G−
2

T T−

h−
12

(22)

Analogously but dually to the case of forward composability, we can construct
the desired h−

12 by applying the UP of the PB (9b) defining G−
2 , as in (23a).

G−
1

G1 G−
2

G2 T−

T ′′

g−
1

h−
1

h12
g−
2

h−
2

h′
2 t−

2

G−
1

G1 T−

G2 T ′

T ′′

g−
1 h−

1

h12
t−
1

t−
2

h′
2

(23a,23b)

In order to prove that the outer square commutes, we therefore need an arrow
t : T ′ → T ′′ satisfying

T ′ G1

T−

T ′′ G2

t

h′
1

h12

t−
1

t−
2

h′
2

(24)

156 R. Harmer and E. Oshurko

We first apply the UP of the PB (6) defining L2 to obtain a unique arrow
ĥ12 : L1 → L2 satisfying

G1 L1

G2 L2

T L

ĥ12

(25)

By the inverse pasting lemma for PBs, the resulting square is moreover a PB.
The existence of a unique such t : T ′ → T ′′ now follows from the existence of an
arrow � : L′

1 → L′
2 satisfying

L′
1

L L−

L′
2

r′
1

�

r−
1

r−
2

r′
2

L′
1 L1

L′
2 L2

�

ĥ′
1

ĥ12

ĥ′
2 (26a,26b)

The proof is elementary and follows from three applications of the UP of the
PBC defining T ′′—to T ′, L1 and T−.

For the clean-up phase, we apply the UP of the PB defining L−
2 to obtain

an arrow �− : L−
1 → L−

2 and further require a unique arrow �� : L�
1 → L�

2 such
that r�

2 ◦ �� = �− ◦ r�
1 . We then apply the UP of the PBC defining G�

2 to obtain
the desired arrow h�

12 : G�
1 → G�

2 .

Proposition. Given the backward factorizations (21a,21b) and an � : L′
1 → L′

2

satisfying (26a,26b), there is a unique h−
12 : G−

1 → G−
2 satisfying (22); and given

an �� : L�
1 → L�

2 satisfying r�
2 ◦ �� = �− ◦ r�

1 , there is a unique h�
12 : G�

1 → G�
2

satisfying h−
12 ◦ g�

1 = g�
2 ◦ h�

12.

6 The ReGraph Library

The ReGraph Python library1 implements general hierarchies of simple graphs
with attributes. It supports both in-memory graphs, via the networkX library,
and persistent graphs, via the Neo4j graph database. Rules can be expressed
declaratively, essentially using the mathematical definition used in this paper,
or procedurally, using a simple language to express the primitive operations of
clone, delete, add and merge.

The principal difference between the theory presented in this paper and the
implementation lies in the specification of propagation: in ReGraph, a controlled
propagation is specified by a single relation that plays the same rôle as the strict
and clean-up phases presented here. For example, the partial concept refinement
of Sect. 4.4 is expressed by the same rule together with a relation that specifies,
1 https://github.com/Kappa-Dev/ReGraph.

https://github.com/Kappa-Dev/ReGraph

Knowledge Representation and Update in Hierarchies of Graphs 157

for the first two squares, how to retype them; nothing need be specified for the
third square which, as a result, is cloned. This alternative means of specifying
propagation can be formulated mathematically and shown to be equivalent to
the phased propagation presented in this paper; we will provide the details in
the full version of this paper.

The bio-curation tool KAMI2 [8], discussed in the introduction, is based on
the ReGraph library. It makes extensive use of forward propagation, in order to
aggregate new PPIs appropriately into an existing knowledge corpus, e.g. if it
identifies that a node mentioned in an input already exists in the action graph,
it constructs a strict rewrite, to reuse that node, rather than creating a new one
by canonical propagation. It also makes use of backward propagation in order
to contextualize knowledge to a particular collection of gene products. Indeed,
these were the original, informal use cases of propagation which motivated the
development of the theory presented in this paper.

The implementation3 of evolvable schemas for Neo4j [2] also uses ReGraph;
this implements the translation of the procedural language for specifying rules
into OpenCypher. In this setting, forward propagation constructs an automatic
update of the schema graph in the light of an update of the data graph that would
otherwise break schema validation, i.e. a descriptive update. Dually, backward
propagation constructs an automatic update of the data graph in the event of an
update of the schema, i.e. a prescriptive update. In order to build a fully general
front-end to Neo4j in this way, we need to extend ReGraph to work with non-
simple graphs. This poses no conceptual problem and the theory of propagation
described here applies without any changes to this more expressive setting.

7 Conclusions

We have presented a formalism for graph-based knowledge representation and
update that exploits SqPO rewriting to perform updates anywhere in a hierarchy
of objects (typically sets or graphs). For this extended abstract, we have chosen
a rigorous, but largely informal, presentation; the main contribution of the paper
can be stated as follows:

Given a hierarchy, a SqPO rule, an expansive (resp. restrictive) instance of
that rule into some object O and factorizations for every other object on a path
from (resp. to) O satisfying composability, we can uniquely rewrite the entire
hierarchy in a way that guarantees the validity of the result.

The requirement to specify all these factorizations—and also verify that they
satisfy composability if necessary—can, in principle, be very onerous. Nonethe-
less, our experience suggests that most updates need propagate only along single
edges or, at most, paths of length 2 so that, in practice, the requirement is not
too onerous.

The other principal open question concerns the characterization of the data
structures necessary to maintain an audit trail of all updates made to a system.
2 https://github.com/Kappa-Dev/KAMI.
3 https://github.com/Kappa-Dev/ReGraph/blob/master/regraph/neo4j/graphs.py.

https://github.com/Kappa-Dev/KAMI
https://github.com/Kappa-Dev/ReGraph/blob/master/regraph/neo4j/graphs.py

158 R. Harmer and E. Oshurko

This would enable us to determine whether an update can be undone or not,
a question that is greatly complicated by the fact of propagation, and, more
generally, provide support for maintaining different versions of the contents of
a KR. This requires a major generalization of the theory of causality between
SqPO rules; see [7] for example. We intend to investigate this question first in
the two concrete use cases discussed in this paper before attempting a full-blown
generalization to arbitrary hierarchies.

References

1. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D.: The
Description Logic Handbook: Theory, Implementation and Applications. CUP,
Cambridge (2003)

2. Bonifati, A., Furniss, P., Green, A., Harmer, R., Oshurko, E., Voigt, H.: Schema val-
idation and evolution for graph databases. arXiv preprint arXiv:1902.06427 (2019)

3. Chen, P.P.S.: The entity-relationship model–toward a unified view of data. ACM
Trans. Database Syst. (TODS) 1(1), 9–36 (1976)

4. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

5. Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback
complements. J. Pure Appl. Algebra 49(1–2), 103–116 (1987)

6. Francis, N., et al.: Cypher: an evolving query language for property graphs. In:
Proceedings of the 2018 International Conference on Management of Data, pp. 1433–
1445. ACM (2018)

7. Harmer, R.: Rule-based meta-modelling for bio-curation. Habilitation à Diriger des
Recherches, ENS Lyon, France (2017)

8. Harmer, R., Cornec, Y.-S.L., Légaré, S., Oshurko, I.: Bio-curation for cellular sig-
nalling: the KAMI project. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol.
10545, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-
1 1

http://arxiv.org/abs/1902.06427
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/978-3-319-67471-1_1
https://doi.org/10.1007/978-3-319-67471-1_1

Relating DNA Computing
and Splitting/Fusion Grammars

Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye(B)

Department of Computer Science and Mathematics, University of Bremen,
P.O.Box 33 04 40, 28334 Bremen, Germany

{kreo,kuske,lye}@informatik.uni-bremen.de

Abstract. Splitting/fusion grammars were recently introduced as
devices for the generation of hypergraph languages. Their rule appli-
cation mechanism is inspired by basic operations of DNA computing.
In this paper, we demonstrate that splitting/fusion grammars and well-
known computational approaches based on DNA computing are closely
related on a technical level beyond the mere motivation. This includes
Adleman’s seminal experiment, insertion-deletion systems, and extended
iterated 2-splicing systems.

1 Introduction

Adleman demonstrated in his seminal experiment [1] that the NP-hard Hamilto-
nian path problem can be solved by a polynomial number of biochemical opera-
tions on DNA strands with high probability exploiting the parallelism of chem-
ical reactions in tubes of molecules. This was the starting point of the area of
DNA computing that has been intensely developed since then. Inspired by DNA
computing, we introduced fusion grammars in [2] and splicing/fusion grammars
in [3]. In this paper, we rename the latter by splitting/fusion grammars as the
term “splicing” may be misleading.

The core of DNA computing is the biochemical processing on tubes of DNA
molecules. In the framework of splitting/fusion grammars, we exploit similar-
ities between hypergraphs and tubes of molecules, which are multisets from a
mathematical point of view. Each hypergraph is the disjoint union of its con-
nected components which corresponds to a multiset if one counts the isomor-
phic connected components. Therefore, connected components of hypergraphs
can be seen as counterparts of DNA molecules. To emphasize this analogy, we
call the connected components molecules. Furthermore, we reflect the Watson-
Crick complementarity of DNA nucleotides and single DNA strands by a com-
plementarity of hyperedges and the basic DNA operations ligation, restriction,
duplication by polymerase chain reaction, and reading by gel electrophoresis by
fusion, splitting, multiplication, and filtering of special connected components,
respectively. In this paper, we show that the relation between DNA comput-
ing and splitting/fusion grammars goes far beyond mere motivation. We model
three well-known DNA computing approaches in our framework. In Sect. 4, we
c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 159–174, 2019.
https://doi.org/10.1007/978-3-030-23611-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-23611-3_10

160 H.-J. Kreowski et al.

recreate Adleman’s experiment in terms of fusion grammars. In Sect. 5, insertion-
deletion systems as one of the prominent (string) language generating devices
based on DNA computing (cf., e.g., Chapter 6 of [4]) are transformed into split-
ting/fusion grammars. Another important DNA computing approach offers splic-
ing systems in many variants (cf., e.g., Chapters 7 to 11 of [4]). In Sect. 6, we
generalize extended iterated 2-splicing systems to 2-splicing grammars that are
special regulated splitting/fusion grammars. Section 2 provides preliminaries for
hypergraphs and the notion of splitting/fusion grammars is recalled in Sect. 3.
Section 7 concludes the paper. The proofs of all stated correctness results are
omitted because of the page limit.

2 Preliminaries

In this section, basic notions and notations of hypergraphs are recalled (see,
e.g., [5]).

Let Σ be a label alphabet. A hypergraph over Σ is a system H =
(V,E, att , lab) where V is a finite set of nodes, E is a finite set of hyperedges,
att : E → V ∗ is a function, called attachment (assigning a string of attachment
nodes to each edge), and lab : E → Σ is a function, called labeling.

The length of the attachment att(e) for e ∈ E is called type of e, and e is called
A-hyperedge if A is its label. Let Σ′ ⊆ Σ be a subalphabet of Σ and type : Σ′ → N

a function, called type function. Then we require that every A-hyperedge with
A ∈ Σ′ is of type type(A). The components of H = (V,E, att , lab) may also be
denoted by VH , EH , attH , and labH respectively. The class of all hypergraphs
over Σ is denoted by HΣ .

A (directed) graph is a hypergraph H = (V,E, att , lab) with att(e) ∈ V 2 for
all e ∈ E. In this case, the hyperedges are called edges. If att(e) = vv for some
v ∈ V , then e is also called a loop. A graph is called loop-free if for all e ∈ E
att(e) = vv′ with v �= v′. A graph is called simple if it is loop-free and no parallel
edges exist.

The set {1, . . . , k} for some k ∈ N is denoted by [k] which also denotes the
discrete graph with the nodes 1, . . . , k and an empty set of hyperedges.

In drawings, an A-hyperedge e with attachment att(e) = v1 · · · vk is depicted

by •v1 1

•v2
2 A

•vkk
. Moreover, a hyperedge of type 2 may be depicted as

an edge by • •A instead of • A •1 2 . If there are two edges with the same

label, but in opposite directions, we may draw them as an undirected edge. We
assume the existence of a special label ∗ ∈ Σ that is omitted in drawings. We
call a hypergraph unlabeled if lab(e) = ∗ for all e ∈ E.

Given H,H ′ ∈ HΣ , H is a subhypergraph of H ′ if VH ⊆ VH′ , EH ⊆ EH′ ,
attH(e) = attH′(e), and labH(e) = labH′(e) for all e ∈ EH . This is denoted by
H ⊆ H ′.

Let H ∈ HΣ . Then a sequence of triples (i1, e1, o1) . . . (in, en, on) ∈ (N ×
EH × N)∗ is a path from v ∈ VH to v′ ∈ VH if v = attH(e1)i1 , v

′ = attH(en)on

Relating DNA Computing and Splitting/Fusion Grammars 161

and attH(ej)oj
= attH(ej+1)ij+1 for j = 1, . . . , n − 1 where, for each e ∈ EH ,

attH(e)i = vi for attH(e) = v1 · · · vk and i = 1, . . . , k. In the case of simple
graphs, a path may be denoted by the sequence of visited nodes as the involved
edges are uniquely determined.

H is connected if each two nodes are connected by a path. A connected
subgraph M of H is called a molecule of H if it is maximal meaning that M ⊆
M ′ ⊆ H for a connected M ′ implies M = M ′. The set of molecules of H is
denoted by M(H).

Given H,H ′ ∈ HΣ , a (hypergraph) morphism g : H → H ′ consists of two
mappings gV : VH → VH′ and gE : EH → EH′ such that attH′(gE(e)) =
g∗V (attH(e)) and labH′(gE(e)) = labH(e) for all e ∈ EH , where g∗V : V ∗

H → V ∗
H′

is the canonical extension of gV , given by g∗V (v1 · · · vn) = gV (v1) · · · gV (vn) for
all v1 · · · vn ∈ V ∗

H . H and H ′ are isomorphic, denoted by H ∼= H ′, if there is
an isomorphism g : H → H ′, i.e., a morphism with bijective mappings. Clearly,
H ⊆ H ′ implies that the two inclusions VH ⊆ VH′ and EH ⊆ EH′ define a
morphism incl : H → H ′. Given a morphism g : H → H ′, the image of H in H ′

under g defines the subgraph g(H) ⊆ H ′.
Let H ′ ∈ HΣ as well as V ⊆ VH′ and E ⊆ EH′ . Then the removal of

(V,E) from H ′ given by H = H ′ − (V,E) = (VH′ − V,EH′ − E, attH , labH)
with attH(e) = attH′(e) and labH(e) = labH′(e) for all e ∈ EH′ − E defines
a subgraph H ⊆ H ′ if attH′(e) ∈ (VH′ − V)∗ for all e ∈ EH′ − E, i.e., no
remaining hyperedge is attached to a removed node. This condition is called
dangling condition. The dangling condition is fulfilled in the special case that
only hyperedges are removed.

Given H,H ′ ∈ HΣ , the disjoint union of H and H ′ is denoted by H + H ′.
A special case is the disjoint union of H with itself k times, denoted by k · H.
Let H ∈ HΣ and m : M(H) → N be a mapping, called multiplicity. Then the
multiplication of m and H is defined by m · H =

∑

M∈M(H)

m(M) · M . The

disjoint union is unique up to isomorphism. It is easy to see that the disjoint
union is commutative and associative. Moreover, there are injective morphisms
inH : H → H +H ′ and inH′ : H ′ → H +H ′ such that inH(H)∪ inH′(H ′) = H +
H ′ and inH(H)∩inH′(H ′) = ∅. Each two morphisms gH : H → Y and gH′ : H ′ →
Y define a unique morphism 〈gH , gH′〉 : H + H ′ → Y with 〈gH , gH′〉 ◦ inH = gH

and 〈gH , gH′〉 ◦ inH′ = gH′ . In particular, one gets g = 〈g ◦ inH , g ◦ inH′〉 for all
morphisms g : H + H ′ → Y and g + g′ = 〈inY ◦ g, inY ′ ◦ g′〉 : H + H ′ → Y + Y ′

for morphisms g : H → Y and g′ : H ′ → Y ′. The disjoint union is the coproduct
in the category of hypergraphs.

The merging of nodes is defined as a quotient by means of an equivalence rela-
tion ≡ on the set of nodes VH of H as follows: H/≡ = (VH/≡, EH , attH/≡, labH)
with attH/≡(e) = [v1] · · · [vk] for e ∈ EH , attH(e) = v1 · · · vk where [v] denotes
the equivalence class of v ∈ VH and VH/≡ is the set of equivalence classes.
Given two sequences d(1) · · · d(k) and d′(1) · · · d′(k) of nodes in VH for some
k ∈ N. Then the relation d(i) ∼ d′(i) for i = 1, . . . , k induces a particular equiv-
alence relation (by the reflexive, symmetric and transitive closure of ∼) that is
denoted by d = d′. This is employed in the next section to define the fusion of

162 H.-J. Kreowski et al.

hyperedges. It is easy to see that f : H → H/≡ given by fV (v) = [v] for all
v ∈ VH and fE(e) = e for all e ∈ EH defines a quotient morphism.

3 Splitting/Fusion Grammars

In this section, we recall the notion of splitting/fusion grammars which are called
splicing/fusion grammars in [3]. The grammars are renamed because we think
that “splitting” fits better. We begin with the concept of fusion considered as
application of fusion rules, and then continue with splitting which is converse to
fusion.

Definition 1. 1. Let F ⊆ Σ be a finite set of labels and k : F → N a type
function.F is called fusion alphabet, its elements fusion labels. Let a ∈ Σ
be a complementary fusion label for each a ∈ F such that a �= b for all
a �= b. The set of complementary fusion labels is denoted by F . The typing
function and the complementarity are extended to F by k(a) = k(a) and
a = a for all a ∈ F . Let H ∈ HΣ and e, e ∈ EH with a = labH(e) = labH(e)
for some a ∈ F . Then the fusion of e and e in H yields the hypergraph
Hfuse(e,e) = (H − (∅, {e, e}))/attH(e)=attH(e).

2. Let H,H ′ ∈ HΣ . Then H directly derives H ′ through fusion wrt a ∈ F if
H ′ ∼= Hfuse(e,e) for some e, e ∈ EH with a = labH(e) = labH(e). Here the
fusion label a ∈ F plays the role of a fusion rule indicated by the notation
fr(a). Its application is denoted by H =⇒

fr(a)
H ′.

Remark 1. 1. As each hyperedge belongs to a single molecule, the fusion of two
hyperedges changes either one molecule or two molecules. Moreover, a fusion
can have three different effects.

– It may be a kind of folding, e.g., • •a a =⇒
fr(a)

• ,

– two molecules may be joint, e.g.,

•

•
•

•

•
•b

1

2
b

1

2

=⇒
fr(b)

•
•

•
•

, or

– it can also result in disconnection, e.g.,

•

•
c

1

2

c

1

2

=⇒
fr(c)

•
• wrt one molecule

or • • • •d1 2
d

1 2 =⇒
fr(d)

• • wrt two molecules.

2. It is easy to see that fusion rules can be applied in parallel if their matchings
access pairwise different hyperedges (cf. [2]).

Definition 2. 1. Let H ′ ∈ HΣ and a ∈ F . Then H ∈ HΣ is a splitting of H ′ wrt
a if there are e, e ∈ EH with a = labH(e) = labH(e) such that H ′ ∼= Hfuse(e,e).

2. Such a splitting can be considered as a direct derivation H ′ =⇒
sr(a)

H, where

sr(a) indicates that the label a is used as a splitting rule.

Relating DNA Computing and Splitting/Fusion Grammars 163

Remark 2. 1. To get more flexibility, we use other complementary labels for
splitting than for fusion. For a ∈ F , the complementary splitting label of a is
denoted by â (instead of a).

2. An application of sr(a) to H ′ can be explicitly performed by (1) choosing a
matching morphism g′ : [k(a)] → H ′, i.e., a sequence of nodes g′(1) · · · g′(k(a))
in H ′, (2) for i = 1, . . . , k(a), either splitting g′(i) into two new nodes d(i)
and d̂(i) or replacing it by one new node v with d(i) = v = d̂(i), subject
to the condition: g′(i) = g′(j) for some i �= j if and only if d(i) = d(j)
and d̂(i) = d̂(j), (3) constructing the hypergraph I ′ = (VH′ \ {g′(i) | i =
1, . . . , k(a)} + {d(i), d̂(i) | i = 1, . . . , k(a)}, EH′ , attI′ , labH′) with attI′(e′)j =
d(i) or attI′(e′)j = d̂(i) for j = 1, . . . , k(a) provided that attH′(e′)j = g′(i) for
some i = 1, . . . , k(a) and attI′(e′) = attH′(e′) otherwise, (4) constructing H ′′

from I ′ by adding two new hyperedges e and ê with attH′′(e) = d(1) · · · d(k(a))
and attH′(ê) = d̂(1) · · · d̂(k(a)) as well as labH′′(e) = a and labH′′(ê) = â,
and (5) renaming nodes and hyperedges of H ′′ optionally. I ′ in (3) is called
intermediate hypergraph.

3. While the application of a fusion rule is unique up to isomorphism, splitting
is highly nondeterministic in general because each tentacle of a hyperedge
of H ′ that is attached to a matching node g′(i) may be attached to d(i) or
d̂(i) in H ′′. Consider, for example, a fusion symbol t of type 2 and a triangle

•
•1

•2 where the numbered nodes define the matching. Although this is a

very small graph with much symmetry, one gets five splittings:

•
•

•
t

1

2

•
•
t

1

2
, •

•
•
t

1

2

•
•
t

1

2
,

•
•
t

1

2 •
•

•
t

1

2
,

•
•
t

1

2 •
•

•
t

1

2
, •

•
•
t

1

2

t
1

2 .

As the high nondeterminism of splitting is not always desirable, we employ
some variants of context conditions to cut the nondeterminism down.

Definition 3. Let F be a fusion alphabet and a ∈ F .

1. A splitting rule with a fixed disjoint subcontext is a triple (sr(a), d : [k(a)] →
D, incl : D → C) where C,D ∈ HΣ are connected hypergraphs, d is a mor-
phism, and incl is an injective morphism. It can be applied to H ′ wrt the
matching morphism g′ : [k(a)] → H ′ if there is a morphism f : C → H ′ and
the intermediate hypergraph I ′ can be chosen as I ′′ + D with d(i) ∈ VI′′ and
d̂(i) ∈ VD for i = 1, . . . , k(a) and I ′′ ⊆ H ′ such that g′ = d ◦ incl ◦ f .

2. A splitting rule with double context is a triple (sr(a), c1 : [k(a)] →
C1, c2 : [k(a)] → C2) where C1 and C2 are connected hypergraphs and
c1 and c2 morphisms. It is applicable to H ′ wrt the matching morphism
g′ : [k(a)] → H ′ if there are morphisms fj : Cj → H ′, j = 1, 2, with
f1(C1) ∩ f2(C2) = g′([k(a)]) = f1(c1([k(a)])) = f2(c2([k(a)])) and the inter-
mediate hypergraph I ′ can be chosen as I1+I2 such that there are morphisms
f ′

j : Cj → Ij for j = 1, 2 and injective morphisms inj : Ij → H ′ for j = 1, 2
such that inj ◦ f ′

j = fj for j = 1, 2.

164 H.-J. Kreowski et al.

f(C) ⊇f(D) =⇒
r E a

1

k(a)

a f(D)

1

k(a)

Fig. 1. Application of a splitting rule r = (sr(a), d, incl) with fixed disjoint subcontext
where E = (f(C)− f(D)) + f([k(a)])

f1(C1) f2(C2) =⇒
r f ′

1(C1) a

1

k(a)

â f ′
2(C2)

1

k(a)

Fig. 2. Application of a splitting rule with double context r = (sr(a), c1, c2)

Remark 3. 1. The splitting rules with fixed disjoint subcontext are used in
Sect. 5 together with a variant for the special types of graphs considered
there. Splitting rules with fixed disjoint subcontext where context and sub-
context coincide were already used in [3]. While the context is required to
be present in the processed hypergraphs, the subcontext is required to be a
disjoint component after splitting. Figure 1 illustrates such a splitting for a
single molecule. This is not always possible as there may be a hyperedge in the
processed hypergraphs that does not belong to the matching of the subcon-
text, but one of its tentacles is attached to an inner node of the subcontext,
i.e., a node that is not matched by g′.

2. The splitting rules with double context are used in Sect. 6. An application of
such a rule is only possible if the processed hypergraph can be cut in two parts
which intersect in the splitting nodes only and where one context matches
in one part and the other context in the other part. As the contexts are
connected and intersect in the splitting nodes, only one molecule is cut while
the other molecules remain unchanged. Figure 2 illustrates such a splitting
for a single molecule.

Now we can define splitting/fusion grammars as used in this paper. Besides
fusion and splitting rules, such a grammar provides a start hypergraph, a set
of markers, and a set of terminal labels. The derivation process combines rule
applications with multiplications. A terminal hypergraph belongs to the gen-
erated language if it is obtained by removing all marked hyperedges from a
molecule that has at least one marked hyperedge and that is derived from the
start hypergraph. The markers allow one to partition the molecules of the start
hypergraph into marked and unmarked ones. As markers can not be generated,
the unmarked molecules can only contribute to the generated language if they
are fused with marked molecules so that they are of an auxiliary nature.

Definition 4. 1. A splitting/fusion grammar is a system SFG = (Z,F,M, T,SR)
where Z is a start hypergraph, F ⊆ Σ is a fusion alphabet, M ⊆ Σ with
M∩(F ∪F) = ∅ is a finite set of markers, T ⊆ Σ with T ∩(F ∪F) = ∅ = T ∩M

Relating DNA Computing and Splitting/Fusion Grammars 165

is a finite set of terminal labels, and SR is a finite set of splitting rules that
may have some type of context conditions.

2. A direct derivation H =⇒H ′ for some H,H ′ ∈ HΣ is either a rule application
H =⇒

r
H ′ for some rule in SR∪{fr(a) | a ∈ F} or a multiplication H =⇒

m
m·H

for some multiplicity m.
3. A derivation H

n=⇒H ′ of length n is a sequence H0 =⇒H1 =⇒· · · =⇒Hn

with H = H0 and H ′ = Hn. One may write H
∗=⇒H ′.

4. L(SFG) = {remM (Y) | Z
∗=⇒H,Y ∈ M(H)∩(HT∪M −HT)} is the generated

language of SFG where remM (Y) is the hypergraph obtained when removing
all hyperedges with labels in M from Y .

Remark 4. 1. A splitting/fusion grammar where SR = ∅ is called a fusion gram-
mar and SR can be omitted in the tuple.

2. The provision of markers is significant. In other generative devices initial
objects to start a generation and rules to perform the generation are sepa-
rated while in fusion grammars the corresponding information is integrated
in the start hypergraph. But it is necessary in some cases to distinguish
between marked connected components that can contribute directly to the
generated language and other components that can contribute to the gen-
erated languages by fusion with marked components only (cf., for example,
the transformation of hyperedge replacement grammars into fusion grammars
in [2]).

4 Adleman’s Experiment

In this section, we adapt Adleman’s famous experiment finding Hamiltonian
paths by DNA computing to fusion grammars.

A graph G with designated nodes start and end is said to have a Hamiltonian
path if and only if there exists a path from start to end that enters every node
of the graph exactly once. The Hamiltonian path problem asks if a graph has a
Hamiltonian path and has been proven to be NP-complete [6,7]. Adleman has
proposed a transformation of the Hamiltonian path problem into a molecular
biological process by encoding the graph by DNA molecules in order to generate
a solution by massive parallelism. The computation is performed by standard
DNA computing operations. In more detail, Adleman generated random paths
by encoding every node of the input graph into a DNA strand such that two
strands can be fused if and only if their corresponding nodes are connected via
an edge in the respective direction. Afterwards filtering operations are applied
to get rid of DNA strands that do not represent Hamiltonian paths from start
to end. Finally emptiness is tested (see [1] for details).

For every unlabeled and loop-free graph, a fusion grammar can be constructed
that generates paths from start to end by fusing smaller paths in parallel. Subse-
quent filter operations let only Hamiltonian paths remain. The start hypergraph
of the fusion grammar contains a molecule for each edge of the input graph. Addi-
tionally, there is a molecule with a marker for constructing paths that begin with
start and there is a molecule for the end node that allows to terminate paths
fusions at end. The grammar is defined as follows.

166 H.-J. Kreowski et al.

Definition 5. Let G = (V,E, att , lab) be an unlabeled simple graph, and let
start, end ∈ V with start �= end. Then FG(G) = (ZG, {outv | v ∈ V }, {μ}, V ∪
{∗}) is the fusion grammar of G, where

ZG = • outstart

start

µ + outend • +
∑

e∈E: att(e)=vv′
outv • • outv′

v′

.

Example 1. Consider Adleman’s sample graph, where bidirectional arrows rep-
resent two edges in opposite directions.

52
0

3
4 1

6

Select 0 as start and 6 as end. Then the start graph consists of the following
molecules:

• out0

0
µ out6 • out0 • • out1

1

out0 • • out3

3

out0 • • out6

6

. . . out5 • • out6

6

For example, the path starting from 0 and visiting then nodes 1 to 6 in this
order can be sequentially generated as follows.

• out0

0
µ =⇒

fr(out0)
• • out1

0
µ

1

=⇒
fr(out1)

• • • out2

0
µ

1 2

=⇒
fr(out2)

· · ·

· · · =⇒
fr(out5)

• • • • • • • out6

0
µ

1 2 3 4 5 6

=⇒
fr(out6)

• • • • • • •
0

µ

1 2 3 4 5 6

All involved fusions can be performed in parallel, because only pairwise
distinct edges are fused where each such path appears with some probability
depending on the number of copies of molecules of the start graph produced by
a respective multiplication before the fusion step. Hence, this path (as well as
all other paths) can be generated in a single step.

For each path p = v0 · · · vn we call the graph pg(p) = • • . . . • •
v0 v1 vn−1 vn

a path graph of p.

Relating DNA Computing and Splitting/Fusion Grammars 167

Theorem 1. L(FG(G)) = {pg(p) | p = start v1 · · · vn end is a path in G}.

In other words, the terminal graphs generated by FG(G) are all path graphs
from start to end.

The theorem follows directly from the following Lemma which can be proven
by induction on the lengths of derivations.

Lemma 1. Let ZG
∗=⇒H be a derivation in FG(G). Let M ∈ M(H). Then M

is either a molecule of ZG or it has one of the following forms:

• • . . . • •µ

begin v1 vn−1 end

v2
v1

vn+1• • . . . •outv1 outvn+1

v2 vn+1

• • . . . • outvnµ

begin v1 vn

• • . . . • •outv1

v2 vn end

where v1, . . . , vn+1 ∈ V, n ≥ 1.
In order to get only Hamiltonian paths, further filters are needed where the

number of elements of a finite set X is denoted by |X|.
1. lengthk(L) = {s ∈ L | |Vs| − 1 = k} for L ⊆ L(FG(G)),
2. simple(L) = {s ∈ L | |Vs| = |labG(EG)| − 1} for L ⊆ L(FG(G)) where

labG(E) = {labG(e) | e ∈ E}.

Corollary 1. The language simple(length|V |−1(L(FG(G)))) is equal to the set
of all path graphs pg(p), where p is Hamiltonian.

The corollary indicates that it may be meaningsful to employ more general
mechanisms to filter the members of the generated language from the derived
hypergraphs. In the definition in Sect. 3, the generated language contains the
terminal subhypergraph of a connected component of a derived hypergraph if
it has some marked hyperedge, but no fusion hyperedges. This yields for our
grammar that simulates Adleman’s experiment graph representations of all paths
from begin to end so that further filtering is needed to get the Hamiltonian
paths. In general, other and further filter mechanisms may be employed if it is
reasonable for a specific application.

5 Transformation of Insertion-Deletion Systems into
Splitting/Fusion Grammars

Insertion-deletion systems are (string) language generating devices the basic
operations of which are closely related to DNA computing (see, e.g., [8] and [4]).
In this section, we transform insertion-deletion systems into splitting/fusion
grammars. Our main result states that the transformation is correct meaning
that the language generated by an insertion-deletion system equals the language
of the corresponding splitting/fusion grammar up to the representation of strings
by graphs.

168 H.-J. Kreowski et al.

5.1 Insertion-Deletion Systems

An insertion-deletion system is a quadruple γ = (V, T,A,R) where V is a finite
alphabet, T ⊆ V is a subalphabet of terminal symbols, A ⊆ V ∗ is a finite
language of axioms, and R is a finite set of rules of the form r = (u, α/β, v)
with u, α, β, v ∈ V ∗ such that either α = λ or β = λ. The application of rules to
strings defines a binary relation of computation steps:

insertion : w = xuvy →
r

xuβvy for w, x, y ∈ V ∗ and r = (u, λ/β, v), and

deletion : w = xuαvy →
r

xuvy for w, x, y ∈ V ∗ and r = (u, α/λ, v).

The reflexive and transitive closure of all computation steps is called compu-
tation relation and denoted by ∗→

R
, its elements are the computations of γ. The

generated language of γ consists of all terminal strings that can be computed
from axioms: L(γ) = {w ∈ T ∗ | z

∗→
R

w, z ∈ A}.

5.2 String Graphs

A string is represented by a simple path where the sequence of labels along the
path equals the given string.

Let Σ be a label alphabet the elements of which are of type 2. Let w =
x1 . . . xn ∈ Σ∗ for n ≥ 1 and xi ∈ Σ for i = 1, . . . , n. Then the string graph of w is
defined by sg(w) = ({0}∪ [n], [n], attw, labw) with attw(i) = (i−1)i and lab(i) =
xi for i = 1, . . . , n. The string graph of λ, denoted by sg(λ), is the discrete graph
with a single node 0. Obviously, there is a one-to-one correspondence between
Σ∗ and sg(Σ∗) = {sg(w) | w ∈ Σ∗}.

Note that u ∈ Σ∗ is a substring of w ∈ Σ∗, i.e., w = xuy for some x, y ∈ Σ∗

if and only if there is a graph morphism xuy : sg(u) → sg(w).
Each string graph sg(w) for w ∈ Σ∗ gives rise to a special graph morphism

bw : [2] → sg(w) with bw(1) = 0 and bw(2) = n, where n is the length of w.
For technical reasons, we need the extension of a string graph by a labeled

edge bending from the begin node to the end node. Consider sg(w) for some
w ∈ Σ∗, and let s ∈ Σ. Then the s-handled string graph sg(w)s contains sg(w)
as subgraph and the edge 0 with the attachment 0n and the label s, where n is
the length of w.

5.3 The Transformation

Let γ = (V, T,A,R) be an insertion-deletion system. The corresponding split-
ting/fusion grammar SFG(γ) has a splitting rule for each rule of the insertion-
deletion system, where the context u, v of the rule (u, α/β, v) is reflected by the
context of the splitting rule. In the case of a deletion rule, the corresponding rule
has a fixed disjoint subcontext reflecting the string to be deleted. In the case
of an insertion rule, the corresponding rule has a fixed disjoint subcontext, too.
But its application includes an additional node stretching within the intermedi-
ate hypergraph I ′. Let r = (u, λ/β, v) be an insertion rule and let a ∈ Σ. Then

Relating DNA Computing and Splitting/Fusion Grammars 169

(sr(a), bλ, uλv) is a splitting rule with node stretching, and, for each w = xuvy,
its application to sg(w)μ with the matching sg(uv) xuvy−−−→ sg(w) ⊆ sg(w)μ yields
the molecules sg(xuavy)μ and sg(λ)â meaning that the node separating sg(u)
and sg(v) is stretched to an a-edge. Moreover, there is a fusion rule for each rule
of the insertion-deletion system.

Definition 6. SFG(γ) = (Zγ , R, {μ}, T, Pγ), where

– the rule set R is used as fusion alphabet with the complementary fusion
alphabet R and the complementary splitting alphabet R̂ chosen such that
V,R,R and R̂ are pairwise disjoint, the marker μ is an extra label, i.e., μ /∈
V ∪ R ∪ R ∪ R̂, μ and the fusion labels in R are of type 2,

– Zγ =
∑

z∈A

sg(z)μ +
∑

r=(u,α/β,v)∈R

sg(β)r, i.e., the start graph consists of the

μ-handled string graphs of the axioms, the r-handled string graphs of λ for
each deletion rule r, and the r-handled string graphs of the insertion string
of each insertion rule r, and

– Pγ contains two types of splitting rules:
1. for each deletion rule r = (u, α/λ, v) ∈ R, there is a splitting rule with

fixed disjoint subcontext rγ = (sr(r), bα, uαv),
2. for each insertion rule r = (u, λ/β, v) ∈ R, there is a splitting rule with

node stretching rγ = (sr(r), bλ, uλv).

To see how these rules work, consider sg(w)μ. The rule rγ for r = (u, α/λ, v)
is applicable if w = xuαvy for some x, y using the matching sg(uαv) xuαvy−−−−→
sg(w) ⊆ sg(w)μ. Then the splitting produces the two molecules sg(xurvy)μ

and sg(α)r̂. If the former molecule is fused with sg(λ)r applying the fusion rule
fr(r), one gets the molecule sg(xuvy)μ. In other words, the application of rγ to
sg(w)μ followed by the application of fr(r) coincides with the computation step
w →

r
xuvy in γ up to representation of strings by graphs. Similarly, the rule rγ

for r = (u, λ/β, v) is applicable to sg(w)μ if w = xuvy for some x, y using the

matching sg(uv) xuλvy−−−−→ sg(w) ⊆ sg(w)μ. The splitting with stretching yields the
molecules sg(xurvy)μ and sg(λ)r̂. If the former molecule is fused with sg(β)r

applying the fusion rule fr(r), then one gets sg(xyβvy)μ. This means that the
application of rγ to sg(w)μ followed by the application of fr(r) coincides with
the computation step w →

r
xuβuv in γ.

These observations allow to prove the following lemma that links computa-
tions in an insertion-deletion system to special derivations in the corresponding
splitting/fusion grammar. To formulate the lemma, we use three kinds of multi-
plication for a given insertion-deletion system γ = (V, T,A,R):

1. m(z) for z ∈ A removes all molecules sg(z′)μ (via multiplication by 0) for
z′ ∈ A with z′ �= z and keeps all others.

2. m(r) for r = (u, α/β, v) ∈ R duplicates the molecule sg(β)r and keeps all
others.

3. m(r̂) for r = (u, α/β, v) ∈ R removes the molecule sg(α)r̂ and keeps all
others.

170 H.-J. Kreowski et al.

Lemma 2. Let γ = (V, T,A,R) be an insertion-deletion system and SFG(γ) the
corresponding splitting/fusion grammar. Let d = (w0 →

r1
w1 →

r2
. . . →

rn

wn) be a

computation in γ with w0 ∈ A and ri = (ui, αi/βi, vi) ∈ R. Then there is a
derivation in SFG(γ) of the following form:

dγ = (Zγ =⇒
m(w0)

sg(w0)μ + Xγ
4=⇒ sg(w1)μ + Xγ

4=⇒· · · 4=⇒ sg(wn)μ + Xγ),

where Xγ =
∑

r=(u,α/β,v)∈R

sg(β)r. The sections sg(wi−1)μ +Xγ
4=⇒ sg(wi)μ +Xγ

for i = 1, . . . , n are defined by

sg(wi−1)μ + Xγ =⇒
(ri)γ

sg(xiuiriviyi)μ + Xγ + sg(αi)r̂i
=⇒
m(r̂i)

sg(xiuiriviyi)μ + Xγ

=⇒
m(ri)

sg(xiuiriviyi)μ + sg(βi)ri
+ Xγ =⇒

fr(ri)
sg(wi)μ + Xγ

for some xi, yi ∈ (V ∪ R)∗.

The derivation dγ is called insdel -derivation of d.
Conversely, the derivations in SFG(γ) can also be nicely related to the com-

putations in γ.

Lemma 3. Let γ = (V, T,A,R) be an insertion-deletion system and SFG(γ) the
corresponding splitting/fusion grammar. Let D = (Zγ

∗=⇒H) be a derivation in
SFG(γ) and sg(w)μ ∈ M(H) for some w ∈ V ∗. Then there is an insdel-derivation
dγ of some computation d = (w0

∗→w).

Using these lemmata, one can prove that an insertion-deletion system and
the corresponding splitting/fusion grammar generate the same language up to
the representation of strings as string graphs.

Theorem 2. Let γ = (V, T,A,R) be an insertion/deletion system and SFG(γ)
its corresponding splitting/fusion grammar. Then

sg(L(γ)) = {sg(w) | w ∈ L(γ)} = L(SFG(γ)).

6 2-Splicing Grammars

In the literature, one encounters many variants of splicing systems as they are
considered as a potential computational kernel of a future DNA computer (see
e.g., [4] for a comprehensive survey). Typically, a rule of a splicing system has the
form of a quadruple (u1, u2;u3, u4) of four strings. It is applicable to two strings
w and w′ if w = x1u1u2x2 and w′ = x3u3u4x4 for some strings x1, x2, x3, and
x4. Such a rule application splits w and w′ between u1, u2 and u3, u4 respectively
and recombines the parts into x1u1u4x4 and x2u2u3x3. The operation is an 1-
splicing if only the first result is further taken into account; it is a 2-splicing if
both results are further considered. In an iterated splicing system, the splicing

Relating DNA Computing and Splitting/Fusion Grammars 171

process is arbitrarily iterated on the resulting strings starting with a given set
of strings, called axioms. Finally, an extended iterated splicing system has an
additional alphabet of terminal symbols, and its generated language consists
of all terminal strings that result from the splicing process. In this section, we
introduce 2-splicing grammars generalizing extended iterated 2-splicing systems
to hypergraphs as underlying structures.

Definition 7. 1. A 2-splicing grammar is a system 2SG = (V, T,A,R) where V
is a finite label alphabet, T ⊆ V is a subalphabet of terminal labels, A ⊆ HV

is a finite set of connected hypergraphs, called axioms, and R is a finite set
of rules of the form r = (c1, c2; c3, c4) with ci : [k(r)] → Ci where Ci is a
connected hypergraph for each i = 1, 2, 3, 4 and some k(r) ∈ N, called type of
r.

2. The application of r to H ∈ HV is defined by the application of the two
splitting rules with double context (sr(r1), c1, c2) and (sr(r2), c3, c4) to two
different molecules of H followed by the application of the fusion rules fr(r1)
and fr(r2) where the complementary fusion and splitting labels satisfy the
condition r1 = r̂2 and r2 = r̂1.

3. A derivation in 2SG from H to H ′ is a sequence of rule applications and multi-
plications H = H0 =⇒H1 =⇒ . . . =⇒Hn = H ′, shortly denoted by H

∗=⇒H ′.
4. The generated language of 2SG consists of all terminal molecules of hyper-

graphs derived from the axioms: L(2SG) = {Y ∈ HT | ∑

Z∈A

Z
∗=⇒H,Y ∈

M(H)}.

Remark 5. 1. Focusing on rule application to the two changed molecules, it looks
as in Fig. 3 where the subgraphs f(Cj), f ′(Cj) and f ′′(Cj) for j = 1, 2 coincide
up to the distinguished nodes.

2. Without loss of generality, one can assume that none of the molecules involved
in a derivation disappears because one may duplicate the two molecules that
are cut by the rule application beforehand.

3. Note that the 2-splicing grammars are defined without markers. We refrain
from their use because all the molecules of the start hypergraph can contribute
to the generated language in the same way.

Example 2. To illustrate the concept of 2-splicing grammars, we specify a sample
grammar MOP that generates a certain type of maximal outerplanar graphs. An
undirected unlabeled graph is a maximal outerplanar graph (mop for short) if
it consists of a simple cycle that visits all nodes and a maximum number of
further edges such that the graph is planar, but any further edge would yield a
non-planar graph.

MOP = ({∗}, {∗}, { •
•

• , •••
• • }, {rM = (• •

•
2

1
, ••

•
1

2
; • •

•
2

1
, ••

•
1

2
)})

where the type of the single rule is 2 and the morphisms from the discrete
graph with two nodes to the contexts are indicated by the numbered nodes.

172 H.-J. Kreowski et al.

f1(C1) f2(C2) f3(C3) f4(C4)

f ′
1(C1) r1

1

k(r1)

r̂1 f ′
2(C2)

1

k(r)

f ′
3(C3) r2

1

k(r3)

r̂2 f ′
4(C4)

1

k(r4)

f ′′
1 (C1) f ′′

4 (C4) f ′′
3 (C3) f ′′

2 (C2)

(sr(r1), c1, c2) + (sr(r2), c3, c4)

fr(r1) + fr(r2)

Fig. 3. 2-splicing wrt two molecules

The start graph joins the mops with 3 and 5 nodes. The splitting rule with the
first two graphs of the rule as double context cannot be applied to the triangle
as the embedding of the two context graphs are required to intersect in the
distinguished nodes only. But the rule of MOP can be applied to two copies of
the mop with 5 nodes in the following way:

•••
• •

•••
• • =⇒

splitting

••
•

(rM)1
1

2

••
• •

(r̂M)1
1

2

••
• •

(rM)2
1

2

••
•

(r̂M)2
1

2

=⇒
fusion

•
•

•
•

•
••

•
• •

An alternative way of the splitting yields

••
•

(rM)1
1

2

••
• •

(r̂M)1
1

2

••
• •

(rM)2
2

1

••
•

(r̂M)2
2

1

Then the recombination of the third and the second molecule yields
•

••
•
• • .

This means that rule application in MOP can generate the mop with 4 nodes
and two mops with 6 nodes. Iterating the rule application, one can generarate
mops with an arbitrary number of nodes.

Let 2SGsg = (V, T,A,R) be a 2-splicing grammar such that A ⊆ sg(V ∗)
and each rule r ∈ R has the form (bu1 , bu2 ; bu3 , bu4) for some u1, u2, u3, u4 ∈ V ∗

(cf. Sect. 5.2). Then σ = (V, T,Aσ, Rσ) with Aσ = {z ∈ V ∗ | sg(z) ∈ A} and

Relating DNA Computing and Splitting/Fusion Grammars 173

Rσ = {(u1, u2;u3, u4) | (bu1 , bu2 ; bu3 , bu4) ∈ R} defines an extended iterated 2-
splicing system (on strings) that is also called extended H-system in [4]. This
means that there is an obvious relation between the string case and the hyper-
graph case on the syntactic level. In contrast to this, the generated language of
an extended iterated 2-splicing system is defined by means of an infinite iteration
on sets of strings and not by derivations. The iteration process can be carried
over to the hypergraph case.

Definition 8. Let 2SG = (V, T,A,R) be a 2-splicing grammar. Then its iterated
language L′(2SG) is defined as follows: L′(2SG) = σ∗

2(A) ∩ T ∗ with σ∗
2(A) =⋃

i∈N

σi
2(A) where σi

2(A) is inductively defined by σ0
2(A) = A, and σi+1

2 (A) =

σ2(σi
2(A)) for all i ∈ N with σ2(X) = {M3,M4 | M1 + M2 =⇒

r
M3 + M4, r ∈

R,M1,M2 ∈ X} for all sets X of connected hypergraphs in HV .

Nicely enough, it turns out that the generated language and the iterated
language of a 2-splicing grammar coincide.

Theorem 3. Let 2SG be a 2-splicing grammar. Then L(2SG) = L′(2SG).

This means that the hypergraph case is a proper generalization of the string
case on the semantic level, too.

7 Conclusion

In this paper, we have related three well-known DNA computing approaches
to the framework of splitting/fusion grammars. First, we have recreated Adle-
man’s seminal experiment that marks the origin of DNA computing by means of
fusion grammars (where no splitting is needed). Secondly, we have transformed
insertion-deletion systems into splitting/fusion grammars. And, thirdly, we have
generalized extended iterated 2-splicing systems, that process strings as underly-
ing data structure, by 2-splicing grammars that operate on hypergraphs. Future
research in this context may head in various directions:

Further approaches to DNA computing like sticker systems (cf., e.g., [4]) may
be related to splitting/fusion grammars.

In analogy to Adleman’s experiment, we have solved the Hamiltonian path
problem by fusion grammars with additional filter mechanisms in such a way
that the decision takes one multiplication step and one parallel fusion step
and is correct with high probability. It may be interesting to consider other
NP-complete problems and to investigate the computational capability of split-
ting/fusion grammars in more depth.

In addition to the transformation of insertion-deletion systems, it may be
worthwhile to generalize this kind of string processing to hypergraph processing
with the hope that interesting examples can be modeled in this way.

Besides extended iterated 2-splicing systems, one encounters many variants
based on splicing in the literature. To consider them from the point of view of
splitting/fusion grammars may lead to new insights.

174 H.-J. Kreowski et al.

In [9], graph multiset transformation was introduced as a computational app-
roach with massive parallelism inspired by DNA computing like splitting/fusion
grammars. There the traditional double-pushout rules are used rather than the
very special cases of splitting and fusion rules. As multisets and disjoint unions
are very similar data structures, a comparison of the two approaches may be
worthwhile.

Acknowledgment. We are grateful to the anonymous reviewers for their critical com-
ments that encouraged us to add some more explanations.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266, 1021–1024 (1994)

2. Kreowski, H.-J., Kuske, S., Lye, A.: Fusion grammars: A novel approach to the
generation of graph languages. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS,
vol. 10373, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61470-0 6

3. Kreowski, H.-J., Kuske, S., Lye, A.: Splicing/fusion grammars and their relation to
hypergraph grammars. In: Lambers, L., Weber, J. (eds.) ICGT 2018. LNCS, vol.
10887, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92991-
0 1

4. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing—New Computing
Paradigms. Springer, Heidelberg (1998)

5. Kreowski, H.-J., Klempien-Hinrichs, R., Kuske, S.: Some essentials of graph trans-
formation. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.) Recent Advances in
Formal Languages and Applications. Studies in Computational Intelligence, vol.
25, pp. 229–254. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-
33461-3 9

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, London (1979)

7. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W., (eds.) Proceedings of a Symposium on the Complexity of Computer Compu-
tations, The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York
(1972)

8. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf. Com-
put. 131(1), 47–61 (1996)

9. Kreowski, H.-J., Kuske, S.: Graph multiset transformation as a framework for mas-
sively parallel computation. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer,
G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 351–365. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87405-8 24

https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-319-92991-0_1
https://doi.org/10.1007/978-3-319-92991-0_1
https://doi.org/10.1007/978-3-540-33461-3_9
https://doi.org/10.1007/978-3-540-33461-3_9
https://doi.org/10.1007/978-3-540-87405-8_24

Transformation Rules Construction and
Matching

Constructing Optimized
Validity-Preserving Application

Conditions for Graph Transformation
Rules

Nebras Nassar(B) , Jens Kosiol , Thorsten Arendt ,
and Gabriele Taentzer

Philipps-Universität Marburg, Marburg, Germany
{nassarn,kosiolje,taentzer}@informatik.uni-marburg.de,

thorsten.arendt@uni-marburg.de

Abstract. There is an increasing need for graph transformations ensur-
ing valid result graphs wrt. a given set of constraints. In a model refac-
toring process, for example, each performed refactoring should yield a
valid model graph. At least, it has to remain an element of the underly-
ing modeling language. If a graph transformation rule always produces
valid output, it is called validity-guaranteeing; if only when applied to
an already valid graph, it is called validity-preserving. There is a formal
construction for graph transformation systems making them validity-
guaranteeing. This is ensured by adding a validity-guaranteeing appli-
cation condition to each of its transformation rules. This theory has
been implemented recently as an Eclipse plug-in called OCL2AC. Ini-
tial tests have shown that resulting application conditions can become
pretty large. As there are interesting application cases where transfor-
mations just need to be validity-preserving (such as model refactoring),
we started to investigate this case further. The results are optimizing-
by-construction techniques for application conditions for transformations
that just need to be validity-preserving. All presented optimizations are
proven to be correct. Implementing and evaluating them, we found that
the complexity of the resulting application conditions is considerably
reduced (by factor 7 on average). Moreover, our optimization yields a
speedup of rule application by approximately 2.5 times.

Keywords: Graph transformation · Constraints · Correctness

1 Introduction

Model transformations are the heart and soul of Model-Driven Engineering
(MDE). They are used for various MDE-activities including translation, opti-
mization, and synchronization of models [31]. Usually, a transformation (that
may consist of several transformation steps) should yield a valid result model,
especially if it has been applied to an already valid model. Intermediate models
c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 177–194, 2019.
https://doi.org/10.1007/978-3-030-23611-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_11&domain=pdf
http://orcid.org/0000-0002-0838-6513
http://orcid.org/0000-0003-4733-2777
http://orcid.org/0000-0002-4866-6405
http://orcid.org/0000-0002-3975-5238
https://doi.org/10.1007/978-3-030-23611-3_11

178 N. Nassar et al.

may not be required to be valid as, e.g., argued in [8]. But there are scenar-
ios where even intermediate models have to show validity, at least a basic one,
as the following example applications show: (1) Throughout a larger refactor-
ing process, each performed refactoring should preserve the model’s validity [3].
(2) More generally, any in-place model change should preserve a basic validity,
enough to view an edited model in its domain-specific model editor [16]. Model
editors typically ensure the creation of models with basic validity right from
the beginning. This is the application scenario we will use as running example
and for our evaluation. A similar scenario is considered in projectional editing
for textual editors [32]. (3) Modeling the behavior of concurrent and distributed
systems with model transformations, each model represents a system state that
should fulfill system invariants such as safety properties [17]. (4) When gener-
ating code from abstractly specified model transformations, the transformations
should be validity-preserving, especially for safety-critical systems [11].

State of the Art. From the formal point of view, the theory of algebraic graph
transformation constitutes a suitable framework to reason about model trans-
formations [9,10], in particular about rule-based transformation of EMF mod-
els [4]. Constraints are typically expressed as (nested) graph constraints [13,29],
into which a large and relevant part of OCL [24] can be translated [28]. Graph
constraints can be integrated as application conditions into graph transforma-
tion rules as shown in [13]. Given a rule and a constraint, there are two vari-
ants of integration, namely computing a constraint-preserving or a constraint-
guaranteeing rule. Both computations do not alter the actions of the rule but
equip it with an application condition. Graph validity is preserved, if applying an
equipped rule to a valid graph, the resulting graph is valid as well. Graph valid-
ity is guaranteed, if applying an equipped rule to a graph, the resulting graph
is valid. As for tool support, OCL2AC [19] automatically translates OCL con-
straints into graph constraints and integrates these as application conditions into
transformation rules specified in Henshin [1]. It computes guaranteeing rules.

Tests of OCL2AC have shown that resulting application conditions can
become very complex. Theoretically, application conditions of guaranteeing rules
grow over-exponentially in the worst case [26]. As there are interesting applica-
tion cases where transformations just need to be validity-preserving (as pointed
out above), it is worthwhile to investigate validity-preserving transformations
further. Habel and Pennemann [13] present a direct construction of the logi-
cally weakest application condition, enough to preserve validity. As this kind of
condition is logically weaker, our expectation was in the beginning that it can
be expressed in a simpler form. In contrast, the resulting application conditions
may contain even more elements than the validity-guaranteeing ones. This is due
to the approach taken: The premise that the model was already valid before rule
application is added to the computed validity-guaranteeing application condi-
tion. The resulting condition can be inherently difficult to simplify because of
the used material implication operator. An example is presented in [20].

Contribution and Structure. Focusing on validity preserving transformations
only, we develop optimizing-by-construction techniques to construct application

Constructing Optimized Validity-Preserving Application Conditions 179

conditions that preserve validity and are considerably less complex than the
results of the original construction.

1. In Sect. 4, we take a constraint and a rule as starting point and construct an
application condition that preserves validity. This construction is based on
the construction of the guaranteeing application conditions but simplifies it
by omitting parts that check for antecedent validity, while keeping parts that
prevent the introduction of violations. This automatic approximation of the
preserving application condition is conceptually new and quite general in
scope. While some of the simplifications are specific for EMF (Theorem2),
the others (Theorem 1) are proven for graph constraints in general and can
be easily lifted to adhesive categories [18]. We will argue how some of these
simplifications omit global checks that have to traverse the whole model
while keeping local ones, i.e., checks being performed in the context of a
rule match.

2. Practically, we have implemented the techniques on top of OCL2AC (Sect. 5)
and compared the application conditions of guaranteeing rules with those
of preserving ones. The results show a considerable loss in complexity of
application conditions (Sect. 6.1).

3. We provide an application case which shows that validity-preserving trans-
formations are useful in practice. In domain-specific model editing (pre-
sented as scenario (2) above), every state of the transformation process has
to ensure a basic model validity. The example comprises the MagicDraw
Statechart meta-model with 11 OCL constraints and 84 editing rules. The
optimizations do not only reduce the size of computed application condi-
tions considerably but also improve the performance of validity-preserving
transformations.
In addition, we have conducted several evaluations that do not specifically
test our optimization but the overall approach. We compared the run times
of validity checking after a transformation using existing OCL validators
(a posterori approach) with running a validity-preserving transformation
(being enriched with application conditions) with and without optimization
(a priori approach) (Sect. 6.2). Results show that both approaches are fast
in practice. Actually, it is the first time that the usability of OCL2AC, and
the implemented approach in general, is investigated.

We start our presentation with the running example in Sect. 2 and recall the
formal and technical background in Sect. 3. All proofs and more details about
the evaluation can be found in an extended version of the paper [20].

2 Running Example

In this section, we illustrate the effect of our optimizations on application con-
ditions computed by OCL2AC.

A simple Statecharts language serves as an example. Its meta-model is dis-
played in Fig. 1. A StateMachine contains at least one Region and Pseudostates

180 N. Nassar et al.

Fig. 1. A simple Statecharts meta-model

Fig. 2. Graph constraint for TransitionIn-
Region

Fig. 3. Graph constraint for no region

as connection points if they are of kind entryPoint or exitPoint. A Region con-
tains Transitions and Vertices. Vertex is an abstract class with concrete subclasses
State and Pseudostate. A State may contain Regions and Pseudostates to support
the specification of state hierarchies. FinalState inherits from State. Transitions
connect Vertices.

The UML definition specifies several constraints on statechart mod-
els. For example, each Transition is required to be contained in a Region
(TransitionInRegion) and a FinalState is forbidden to contain a Region (no Region).
Figures 2 and 3 show these constraints as graph constraints, respectively. In the
UML, however, these constraints are specified in OCL; the OCL constraint for
no region, for example, is specified as

context FinalState invariant no region : s e l f . region−>isEmpty()

Fig. 4. Transformation rule in Henshin

Figure 4 shows a simple transfor-
mation rule in Henshin taken from [16]
for specifying an edit operation in
MagicDraw [21]. The rule moves an
existing Region from an existing State
(the old source) to another existing
State (the new source). This is done by
deleting the containment edge region
from the old source and recreating it in
the new source. Rules specifying such
edit operations may be used, e.g., to recognize semantic change sets while com-
paring two model versions [15,16].

Constructing Optimized Validity-Preserving Application Conditions 181

The validity of basic constraints should be preserved throughout editing
because a typical model editor is not able to display an instance violat-
ing them. Since FinalState is a subtype of State, applying the rule moveRe-
gionFromStateToState might introduce a violation of the constraint no region.
Using OCL2AC [19], a language engineer can automatically integrate a con-
straint as an application condition into the rule and calculate the according
constraint-guaranteeing version of the rule. The guaranteeing application condi-
tion obtained by integrating constraint no region into rule moveRegionFromState-
ToState forbids matching this rule to a FinalState. It checks additionally if the
model already encompasses a FinalState containing a Region – either matched
by the rule or not. Figure 5 presents the resulting guaranteeing application con-
dition which is composed of 7 graphs (explained later in Sect. 4.1). Knowing
the input model to be valid, most of the checks are unnecessary. Especially the
checks which do not only involve elements being local to the rule application but
amount to traversing every existing node, i.e., the global checks.

Fig. 5. Non-optimized application condition for moveRegionFromStateToState after
integrating the constraint no region

In this paper, we develop and implement optimizations that allow for omit-
ting certain parts from the construction of a guaranteeing application condition.
In our example, we will arrive at the optimized application condition shown in
Fig. 6 which consists of only one graph that, moreover, only requires a local
check. It forbids the rule node newSource:State to be matched to a FinalState.

Fig. 6. Optimized application condition
for moveRegionFromStateToState still pre-
serving the constraint no region

As the rule moveRegionFromState-
ToState does not change any graph ele-
ment occurring in constraint Transi-
tionInRegion, this constraint cannot be
violated by a result model if it was not
violated before. Hence, the optimized

182 N. Nassar et al.

application condition is just true. The guaranteeing condition (not shown), how-
ever, consists of three graphs. Thus, assuming valid input models, guaranteeing
application conditions can be considerably simplified.

3 Formal Background and Tooling

Our approach is based on the theory of algebraic graph transformation [9]. EMF
models and model transformations are formalized as typed attributed graphs and
graph transformations as presented in [4]. In the following, we recall (i) nested
graph constraints and conditions as a means to express properties of graphs and
graph morphisms and (ii) graph transformation rules as our formal background.
Besides, we mention OCL2AC as a tool support.

3.1 Constraints, Conditions, and Rules

Nested graph constraints formulate properties of graphs whereas nested graph
conditions express properties of graph morphisms [13], i.e., type and structure-
preserving mappings between graphs. Graph conditions are mainly used to
restrict the applicability of rules. Constraints and conditions are defined recur-
sively as trees of injective morphisms.

Definition 1 (Graph condition). Given a graph P , a (nested) graph condi-
tion over P is defined recursively as follows: true is a graph condition over P
and if a : P ↪→ C is an injective morphism and c is a graph condition over C,
(a : P ↪→ C, c) is a graph condition over P again. Moreover, Boolean combina-
tions of graph conditions over P are graph conditions over P . A (nested) graph
constraint is a condition over the empty graph ∅.

Satisfaction of a graph condition d over P for a morphism p : P → G,
denoted as p |= d, is defined as follows: Every morphism satisfies true. The
morphism p satisfies a condition of the form d = ∃ (a : P ↪→ C, c) if there exists
an injective morphism q : C ↪→ G such that p = q ◦ a and q satisfies c. For
Boolean operators, satisfaction is defined as usual. A graph G satisfies a graph
constraint d, denoted as G |= d, if the empty morphism to G does so.

Graph constraints are expressively equivalent to a first-order logic on graphs [13,
29]. To ease notation, we drop the domain of morphisms in constraints and con-
ditions whenever they may be unambiguously inferred and indicate the mapping
by the names of nodes. We call constraints of the form ∃C positive and of the
form ¬∃C negative constraints. Examples for graph constraints and conditions
with informal explanation of their semantics are given in Sect. 2.

Rules are a technical means to declaratively define model transformations.

Definition 2 (Rule Transformation). A rule ρ = (p, lac, rac) consists of a
plain rule p and left and right application conditions lac and rac. The plain rule
p consists of three graphs L,K, and R, called left-hand side (LHS), interface, and
right-hand side (RHS) with two inclusion morphisms l : K ↪→ L, r : K ↪→ R.

Constructing Optimized Validity-Preserving Application Conditions 183

A rule p is monotonic if l : K ↪→ L is an isomorphism and only deletes if
r : K ↪→ R is an isomorphism. The application conditions lac and rac are graph
conditions over L and R, respectively.

Given a rule ρ = ((L
l←−↩ K

r
↪−→ R), lac, rac) and

an injective morphism m : L ↪→ G with m � lac,
called match, a (direct) transformation G ⇒ρ,m H
from G to H via ρ at match m is given by the dia-
gram to the right where both squares are pushouts.

L K R

G D H

l rm
�

la
c

n
�

ra
c

A rule p is applicable at match m if the first pushout square above exists,
i.e., if m ◦ l has a pushout complement D, and, moreover, the match morphism
m satisfies lac and the co-match n satisfies rac.

Note that the first pushout square exists if and only if the match m fulfills
the dangling edge check ensuring that a rule application at this match would
not let an edge dangle. Applying the rule, the elements of m(L\K) are deleted.
Then, at the chosen image of K in G, a copy of R\K is created. Afterwards,
the resulting mapping of the graph R into the new graph is checked to fulfill the
right application condition of the rule. In that case, the new graph is the result
of the rule application.

An example of a rule is shown in Fig. 4. Right application conditions are
important in theory but not necessary in practice as they may equivalently be
transformed into left application conditions. Therefore, application conditions
are understood to be left application conditions.

Computing Application Conditions from Graph Constraints. Given a rule and a
constraint, one computes all the different ways in which the constraint may be
satisfied after applying the rule. This is done by overlapping its RHS in all pos-
sible ways with the graphs of the constraint. This computation is iterated along
the nesting structure of the constraint. The result is a right application condition
for the rule that is satisfied only if the constraint is valid after rule application.
By applying the inverse rule to this right application condition, again along
its nesting structure, a left application condition is received still guaranteeing
validity w.r.t. the given constraint. Adding the premise that the constraint was
already valid before rule application yields the preserving application condition.

Starting in [14] for special cases in the category of graphs, this construction
has been generalized to arbitrary nested constraints in the general setting of
M-adhesive categories [13].

Fact 1 ([13]). Given a plain rule p = (L ←↩ K ↪→ R) and a graph constraint c
there are constructions Gua(p, c) and Pres(p, c) equipping p with an application
condition ac such that H � c for every transformation G ⇒Gua(p,c) H and H � c
for every transformation G ⇒Pres(p,c) H where G � c.

184 N. Nassar et al.

3.2 OCL2AC Tool

OCL2AC [19] is an Eclipse plug-in implementing the existing theory [13,28] for
adapting a given rule-based model transformation such that resulting models
guarantee a given constraint set. OCL2AC consists of two main components:
(1) OCL2GC takes a meta-model [7] and a set of OCL constraints as inputs
and automatically returns a set of semantically equivalent graph constraints
as output. (2) GC2AC takes a transformation rule defined in Henshin and a
graph constraint and automatically returns the Henshin rule with an updated
application condition guaranteeing the given graph constraint. Each component
can be used independently as an Eclipse-based tool.

Limitations. The general formal approach we are based on, and hence OCL2AC
as well, come with the following limitations: The supported logic is two-valued
and first-order and thus the expression oclIsUndefined and the operation iterate
are not supported, for example. Moreover, there is no support to translate user-
defined operations and there is only limited support to integrate constraints on
attributes into Henshin rules that perform complex attribute computations.

4 Optimizing Application Conditions

The application conditions being calculated by the approach of the tool OCL2AC
guarantee validity even if the input is not a valid EMF-model. Since we focus
on validity preservation of EMF-models in this paper, the calculated conditions
can be considerably simplified. In this section, we investigate several strategies
to construct optimized validity-preserving application conditions.

4.1 Approximating Preservation

In common application scenarios (like refactoring), a user can assume that rules
are applied to instances showing a certain validity. Hence, when applying a rule,
an already valid constraint does not need to be guaranteed but just preserved.
The construction Pres of a preserving rule (as mentioned in Fact 1) takes this into
account. Though being logically weaker, the resulting application condition can
be even more complex with respect to the structure and number of contained
graphs and simplification is inherently difficult. Nevertheless, it is possible to
simplify guaranteeing application conditions during the construction process if
they just need to preserve validity. In the following, we present three forms of
simplification.

1. We collect all rule elements being deleted or created and check if this set
overlaps with the set of all constraint elements. If this overlap is empty, the
resulting preserving application condition is just true.

2. If a rule creates new graph structure only, positive constraints ∃C do not
need to be integrated into such a rule. Analogously, if a rule only deletes
graph structure, negative constraints ¬∃C do not need to be integrated. In
both cases, applications of such a rule cannot introduce a new violation of
the constraint. Hence, the optimized application condition is just true.

Constructing Optimized Validity-Preserving Application Conditions 185

3. When calculating an application condition, a constraint graph is overlapped
with the RHS graph of a rule in all possible ways. For negative constraints
¬∃C it is not necessary to consider all possible overlappings. One may omit
all the cases where C and the RHS R do not overlap in at least one element
created. The parts of the application conditions arising from those cases
would just check that the input graph already fulfills the constraint.

Especially the third simplification omits cases where the arising graph in the
application condition contains nodes not connected to nodes of the LHS of the
rule, thus amounting to global checks upon application. We state the correctness
of these simplifications in the following theorem.

Theorem 1 (Correctness of simplifications). Let c be a graph constraint
and p = (L ←↩ K ↪→ R) be a plain rule. Let ρ = (p, ac) be the same plain rule
equipped with the application condition ac computed in one of the following ways:

1. If both the elements of L\K and the elements of R\K intersect emptily with
every graph C occurring in the constraint c, then ac = true.

2. If p is monotonic and c is a positive constraint, then ac = true. Analogously,
if p only deletes and c is a negative constraint, then ac = true.

3. If c = ¬∃C, let Gua(p, c) yield the right application condition rac :=
¬(

∨
i∈I ∃Pi) with morphisms ci : C ↪→ Pi and ri : R ↪→ Pi. Let racpres :=

¬(
∨

j∈J ∃Pj) with J ⊆ I including only those Pi where ci(C)∩ri(R\K) 	= ∅.
Then ac is the application condition that arises by translating the right appli-
cation condition racpres to the LHS of rule p.

Then for all transformations G ⇒ρ=(p,ac) H where G |= c also H |= c.

The proof follows a common pattern in all cases: Checking for the (non-)existence
of graphs occurring in the constraint in all these cases is sequentially independent
from application of the rule. Hence, checking the constraint for validity always
gives the same result, no matter if done before or after rule application.

Example 1 (compare Sect. 2). Constraint no region is required to be integrated
into rule moveRegionFromStateToState since a region-edge is created by this rule
and contained in this constraint. Figure 5 shows the guaranteeing application
condition. The first graph (the uppermost graph) results from a maximal over-
lapping of the constraint with the rule. Note that it is possible to identify nodes
of types State and FinalState since FinalState is a subtype of State (compare
Fig. 1). The second graph results from copying the graph of the constraint and
the RHS of the rule and putting them next to each other. The third graph results
from merging the nodes of type Region. The forth and the fifth graph result from
just merging nodes of type State and FinalState. The sixth and the seventh graph
result from merging the nodes of type State and the nodes of type Region. In
every case, the overlapping of the constraint with the RHS is then translated to
the LHS of the rule.

Our proposed optimizations lead to the result displayed in Fig. 6 by the appli-
cation of Theorem 1, 3.: Except for the subcondition containing the uppermost
graph, all other subconditions in Fig. 5 are omitted. The uppermost one has

186 N. Nassar et al.

to be saved because the region-edge created by the rule is overlapped with the
region-edge of the constraint. The omitted subconditions do not only involve ele-
ments being local to the rule application but amount to traversing every existing
FinalState leading to global checks. To conclude, only one local check remains.

Example 2 (compare Sect. 2). The constraint TransitionInRegion is not required
to be integrated into the rule moveRegionFromStateToState. Theorem 1, 1. justi-
fies this: the rule moveRegionFromStateToState does not have any effect on the
validity of the constraint since its application neither deletes nor creates elements
that occur in the constraint.

4.2 Dealing with EMF’s Built-in Negative Constraints

EMF has several built-in constraints [4]. Instance models that do not satisfy
these EMF-constraints cannot even be opened in the EMF-editor. Most of these
constraints are negative, i.e., they forbid certain patterns in instances to exist.
Concretely, cycles over containment edges, nodes with more than one container,
and parallel edges, i.e., two edges of the same type between the same two nodes,
are forbidden. Therefore, given an application condition ac of a rule p, each
occurrence of a subcondition of the form ∃A with A violating one of these EMF
constraints, may be replaced by false without altering the meaning. We know
that such patterns cannot appear in any EMF instance model. Thus, in the
context of EMF, the result is semantically equivalent to the actual guaranteeing
rule but may contain fewer subconditions.

Theorem 2 (Correctness of EMF-specific simplifications). Let c be a
graph condition over P and c′ be the condition that results from replacing every
occurrence of a subcondition ∃(a : C1 ↪→ C2) of c by false if the graph C2 con-
tains parallel edges or multiple incoming containment edges to the same node.
Then an injective morphism p : P ↪→ G into an EMF-model graph G satisfies c if
and only if it satisfies c′. In particular, if c is a graph constraint, any EMF-model
graph G satisfies c if and only if it satisfies c′.

Correctness of this theorem is proven by induction along the nesting struc-
ture of the constraint in the cases of parallel edges and multiple containment
nodes. The same argument also applies in the case of finite containment cycles.
But since containment cycles of arbitrary length cannot be expressed as graph
constraints, the correctness of replacing their occurrence by false is intuitive
but not amenable to a formal proof by induction.

Example 3 (compare Sect. 2). Theorem 2 would drop the third, sixth, and sev-
enth subcondition from the application condition in Fig. 5 by replacing it with
false since it contains a node with more than one container or parallel edges.

5 Tooling

We developed our optimizer as an Eclipse-plugin tool support on top of OCL2AC
implementing all of the proposed simplifications except for the elimination of

Constructing Optimized Validity-Preserving Application Conditions 187

containment cycles. The optimizer consists of two main components: (a) an ana-
lyzer that detects if a constraint needs to be integrated into a given rule at
all (Theorem 1, 1 and 2) and (b) a simplifier for eliminating unnecessary sub-
conditions from the guaranteeing application conditions during the construction
process (Theorems 1, 3 and 2). Given a Henshin rule and a graph constraint,
our optimizer automatically renders the rule to preserve the validity of the
constraint. Additionally, we implemented simplifications of application condi-
tions by applying well-known equivalence rules like ∃ (C1,∃C2) ≡ ∃C2 if C1 ⊆
C2, ∃C1 ∨ ∃C2 ≡ ∃C1 if C1 ⊆ C2, or ∃C1 ∧ ∃C2 ≡ ∃C2 if C1 ⊆ C2 [26].
Applying these, entire graphs may be omitted and even levels of nesting may be
collapsed. The tool support can be downloaded from our website1.

6 Evaluation

In this section, we show the highlights of our evaluation; a comprehensive
overview is given in [20] and the artifacts can be downloaded (see footnote 1).

Research Questions (RQs). Our evaluation aims to answer the following RQs
regarding the complexity and performance: (RQ 1:) How complex are the result-
ing application conditions with and without optimizations? How does this com-
pare to the complexity of the original graph constraints? To perform validity-
preserving steps, there are two basic approaches: We either test for validity
after each transformation step and rollback the step if its resulting model is not
valid (a posteriori check) or the transformation is designed to perform validity-
preserving steps only (a priori check). We, therefore, ask the following questions:
(RQ 2.1:) How fast is the a priori validity check compared to the a posteriori
check? (RQ 2.2:) Does the optimization of application conditions improve the
performance significantly?

General Set-Up. As an application case, we consider the scenario of in-place
model transformations that should preserve a basic consistency such that the
resulting instances can be opened in a domain-specific model editor through-
out. In [16], Kehrer et al. derive consistency-preserving editing rules from a
given meta-model. However, they support basic constraints like multiplicities
only. More complex OCL constraints are left to future work. In their evaluation,
this restriction has the most serious impact on the UML meta-model for Stat-
echarts [25]. Out of 17 original constraints they identified 11 to be enforced in
MagicDraw [21]. In total, they used 84 editing rules for Statecharts.

We translated those 11 OCL constraints into graph constraints and then
integrated them as application conditions into the 84 rules.

7 valid test models of sizes between 800 to 16 000 elements (nodes and refer-
ences) are used to conduct our performance experiments. These test models are
synthetic containing copies of an initial valid model composing 5 objects of each
non-abstract class of the meta-model. All evaluations were performed with a
desktop PC, Intel Core i7, 16 GB RAM, Windows 7, Eclipse Neon, Henshin 1.4.
1 https://ocl2ac.github.io/home/.

https://ocl2ac.github.io/home/opt/

188 N. Nassar et al.

6.1 Evaluating Complexity

In theory, the size of a computed application condition (the number of graphs)
can grow over-exponentially in the worst case compared to the size of the original
constraint [26]. In practice, however, the growth is moderate. Mainly due to node
typing, many node overlappings are not possible. To find out how far this blow
up of application conditions is a problem in practice, we conducted the following
experiments considering the number of graphs as well as the number of nesting
levels in application conditions. Additionally, we explore how far the complexity
can be reduced using our optimization. Table 1 gives an overview of the results.

Integration Without Optimization. Given the 11 OCL constraints of our applica-
tion case, we translated them to graph constraints containing 2 to 10 graphs (36
in total) and integrated all of these in each of the 84 rules using OCL2AC (i.e.,
computing the guaranteeing application conditions). The newly added applica-
tion conditions contain 77.3 graphs on average (with 36 being the best and 191
being the worst case) and 6 nesting levels. Thus, on average the number of graphs
more or less doubles which is far better than could be suspected from theory.
Nonetheless, the number of graphs is way too high and also the number of levels
should be smaller in most cases. Hence, there is a clear need to further optimize
the resulting application conditions.

Integration with Optimization. To find out how efficient our optimizations of
application conditions are, we conducted the same experiment as above using
our developed optimizer. In result, the average number of graphs in the appli-
cation condition is 10.8 (with 0 being the best and 35 being the worst case),
i.e., the complexity is reduced by factor 7 on average using our optimizer. Addi-
tionally, the deepest nesting level of 6 was often reduced to at most 2 levels.
Theorem 1,1 turns out to be the main reason behind this considerable loss of
complexity: Instead of integrating 11 constraints into each rule, on average only
1.7 constraints are integrated into a rule.

Table 1. Number of graphs of application conditions and deepest nesting levels before
and after optimization (with emphasis on extreme cases)

Rule w/o optimization w optimization

#graphs level #graphs level #integrated constraints

create Transition 191 6 1 1 1

create FinalState 44 6 31 6 11

delete Trigger 37 6 0 0 0

Average (84 rules) 77.3 6 10.8 2.6 1.7

Table 1 shows extreme cases: Considering all 84 rules and the 11 constraints,
the best optimization was reached with rule create Transition where the resulting

Constructing Optimized Validity-Preserving Application Conditions 189

application condition with 191 graphs was reduced to a condition with just one
graph. One of the lowest optimizations came along with rule create FinalState.
Since it is overlapped with all the 11 constraints, the number of the resulting
graphs is reduced by factor 1.4 only (using Theorem1, 3). Rule delete Trigger
started with one of the lowest number of graphs in its application conditions.
This condition is eliminated altogether using our optimization.

Across 10 runs, the average time of integrating the 11 graph constraints
for statecharts into all 84 rules was 2.3 s. without optimization and 1.03 s. with
optimization. In particular, calculation of our simplified application conditions
is even faster than computing the guaranteeing ones. In both cases, calculating
all needed application conditions for a given rule set is fast enough to be used
in practice.

To answer RQ 1, given graph constraints with 2–10 graphs (3.2 on average)
and 2–6 nesting levels (2.3 on average), non-optimized application conditions
have 36–191 graphs (77.3 on average) and 6 nesting levels, while optimized ones
have 0–35 graphs (10.8 on average) and 0–6 nesting levels (2.6 on average).
Hence, condition sizes are considerably reduced (by factor 7 on average).

6.2 Evaluating Performance

To answer RQ 2.1 and RQ 2.2, we set up two test scenarios comparing the
runtime of a posteriori and a priori validity checks.

Experiment Set-Up. Each test scenario (TS) consists of 15 test cases, one case
for 15 selected rules (out of 84). These 15 rules are representative w.r.t. sup-
ported editing actions and rule size, in particular, they cover all kinds of editing
actions. Their sizes range between 3 and 7 model elements. The average size of
an application condition of the 15 rules is 56.4 graphs with nesting level 6 (with-
out optimization) and 16.8 graphs with nesting level 3.1 (with optimization). A
test case of TS 1 consists of first applying an original rule to a test model at
a random match and then checking the validity of the resulting model (using
(a) the EMF validator [7] configured to employ the OCLinEcore validator [23]
to validate OCL constraints and (b) the OCL interpreter [22]). A test case of
TS 2 consists of applying an updated rule (with (a) the guaranteeing and (b)
the optimized application condition) to a test model at a random match. To
eliminate effects stemming from the choice of match, each test case of a test
scenario is performed 100 times. A test scenario in TS 1 (a) is performed in one
run time session such that caching of information can be used advantageously. A
second variant of TS 1 (a) performs each a posteriori check in a separate session
making caching useless. All the test scenarios have been performed on all the 7
valid test models.

The average run times are measured over altogether 15 000 applications for
each scenario. A timeout (TO) takes place if the average run time exceeds 5 min.
To evaluate an OCL constraint using the OCL interpreter, the context object has
to be given. Focusing on approach differences, the following times were excluded
from the evaluation time: The time needed to find the context objects of all

190 N. Nassar et al.

OCL constraints for the OCL interpreter, the loading time of a test model to
any validator, and the time needed to roll back to the state of a test model after
applying a rule whose resulting model does not satisfy the constraints.

Table 2. Average run time (in seconds) of a single rule application (and validation)
over 15 test cases with 100 random matches each using models of varying size

Scenario (Caching) Model size

800 1 500 3 000 6 000 10 000 13 000 16 000

TS 1(a) (yes) 0.01 0.01 0.01 0.02 0.04 0.05 0.06

TS 1(a) (no) 1.66 1.71 1.76 1.79 1.8 1.83 1.85

TS 1(b) (no) 128.97 185.08 254.17 TO TO TO TO

TS 2(a) (no) 0.01 0.01 0.04 0.13 0.3 0.5 0.79

TS 2(b) (no) 0.01 0.01 0.02 0.05 0.12 0.22 0.33

Experiment Results. Table 2 shows the following results: A posteriori checking
is performed in 3 variants. TS 1 (a) uses the EMF validator with and without
caching mechanism since we noted the followings: In the first validation check,
the EMF validator took 1.77 to 1.95 s to check a test model of size between 800
to 16 000, whereas in the next validation checks, it took only 5 to 63 ms. Our
understanding for this improvement is that the EMF validator saves the model
state after the first validity check. Thus, in the next checks at the same run time
session, the EMF validator is still able to reach the model in the cache such that
only the elements affected by rule application are considered. Without caching,
the average run times are less than 2 s; with caching they are even about two
magnitudes faster. Using the OCL interpreter (TS 1 (b)) instead leads to run
times over 2 min or even timeouts (after 5 min.). A priori checking is performed
in two variants: In TS 2 (a) rules with non-optimized application conditions
are used while the application conditions in TS 2 (b) are optimized. The run
times of both variants are below 1 second and hence slightly better than in
TS 1 (a) without caching. Using caching, however, TS 1 (a) is even faster. This
consideration yields the answer to RQ 2.1. To answer RQ 2.2 we can see that
using rules with optimized application conditions is two and a half times faster
than without optimization. Almost all of the times our rules were applicable
and thus the whole application condition of a rule was completely checked and
evaluated. To conclude, we can state that scenarios TS 1 (a) and TS 2 are both
fast enough to be usable in practice. However, a rollback step in the a posteriori
approach (TS 1) may not always be feasible. For example, if the rollback step is
defined by applying the inverse rule, this is might not always be applicable if the
rule computes attribute values. Furthermore, in the a posteriori approach, the
rule action is performed first which may cause dangerous situations in several
fields such as a railway system, self-driving cars and an e-health system.

Threats to Validity. External validity can be questioned since we consider a lim-
ited number of OCL constraints and rules. For our performance experiments, we

Constructing Optimized Validity-Preserving Application Conditions 191

selected 15 out of 84 editing rules which are representative concerning their kinds
(rules for creating, deleting, setting, unsetting, and moving model elements) and
sizes. Moreover, we reduced the effect of the rules’ matches by executing each
rule at 100 matches chosen randomly from each given model. For performance
evaluation, we restricted our studies to synthetic models. As we did not spot any
performance bottleneck, we are convinced that using realistic models would not
yield basically different results.

Concerning the considered OCL constraints it can be noticed that about half
of them are simple negative constraints. However, all core features of OCL (log-
ical operators, navigation expressions and collection operators) are covered and
at least one rather complex constraint is included. And, more importantly, this
kind of constraints seems to be quite typical for the chosen application case.
Constraints required by model editors are often negative to forbid input that is
not allowed anyway. Therefore, we are confident that the results are representa-
tive. Nevertheless, further case examples are interesting to be considered in the
future.

7 Related Work

Related works can be distinguished into two groups: (1) other works ensuring
transformation rules to be validity-preserving and (2) simplifying (application)
conditions and constraints.

Ensuring Transformation Rules to Be Validity-Preserving. In [2,27], Azab,
Pennemann et al. introduce ENFORCe, a prototype implementation that can
ensure the correctness of graph programs. It integrates graph constraints as left
application conditions of rules as well but supports (partially) labeled graphs,
not EMF models, and there is no translation from OCL to graph constraints
available.

Clarisó et al. present in [5] how to calculate an application condition for a
transformation rule and an OCL constraint, directly in OCL. The supported
subset of OCL is slightly larger than in OCL2AC because, staying with OCL,
they can support operations which are not first-order. The authors provide a
correctness proof for the presented translation into application conditions. In
addition, there is a partial implementation. Resulting application conditions are
not further optimized, neither by ENFORCe nor in the work by Clarisó et al. To
the best of our knowledge, our work is the only one which optimizes the resulting
application conditions considerably.

Simplifying (Application) Conditions and Constraints. Rules for semantic equiv-
alences in graph constraints and conditions have been reported in several
places [26–28] and their application can lead to considerable simplification in the
structure of a constraint. There are also approaches and implementations simpli-
fying OCL constraints, especially automatically generated ones [6,12]. Depend-
ing on the usage scenario, such simplifications could provide a valuable pre-
processing step to our approach.

192 N. Nassar et al.

8 Conclusion

Application scenarios where each graph transformation step has to preserve the
validity of models w.r.t. given constraints are needed in practice. As the con-
struction of application conditions in [13] yields validity-guaranteeing ones and
assuming that the preservation of graph validity is already sufficient, the result-
ing application conditions can be considerably optimized. We developed sev-
eral techniques (in Theorems 1 and 2) to construct optimized validity-preserving
application conditions and implemented them on top of OCL2AC. In our eval-
uation, the usability of OCL2AC was investigated for the first time, with and
without optimization. The evaluation results show that OCL2AC can lead to
quite large application conditions which can be significantly optimized by factor
7 (on average) using our developed techniques. Accordingly, while the perfor-
mance results of correct graph transformations are good in general, applying
rules with optimized application conditions is shown to be ca. 2.5 times faster
than applying non-optimized ones.

In future, we intend to further optimize resulting application conditions by
identifying redundant subconditions and by checking negative invariants of mod-
eling languages. Our ultimate goal is to obtain understandable application condi-
tions identifying exactly those portions of the given constraints that are relevant
for a given rule. This work is already an essential step into that direction. More-
over, our optimization of conditions could have some interesting applications
beyond MDE. We are interested, e.g., in assessing if our ideas can be benefi-
cially integrated into proof systems [27,30].

Acknowledgement. We are grateful to Annegret Habel, Christian Sandmann, and
Steffen Vaupel for their helpful comments on a draft version of this paper. This work
was partially funded by the German Research Foundation (DFG), projects “Generating
Development Environments for Modeling Languages” and “Triple Graph Grammars
(TGG) 2.0”.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9

2. Azab, K., Habel, A., Pennemann, K.H., Zuckschwerdt, C.: ENFORCe: a system for
ensuring formal correctness of high-level programs. In: Proceedings of 3rd Interna-
tional Workshop on Graph Based Tools (GraBaTs 2006), vol. 1, pp. 82–93 (2006)

3. Becker, B., Lambers, L., Dyck, J., Birth, S., Giese, H.: Iterative development
of consistency-preserving rule-based refactorings. In: Cabot, J., Visser, E. (eds.)
ICMT 2011. LNCS, vol. 6707, pp. 123–137. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21732-6 9

4. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. Softw. Syst. Model. 11(2), 227–
250 (2012)

https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-21732-6_9
https://doi.org/10.1007/978-3-642-21732-6_9

Constructing Optimized Validity-Preserving Application Conditions 193

5. Clarisó, R., Cabot, J., Guerra, E., de Lara, J.: Backwards reasoning for model
transformations: method and applications. J. Syst. Softw. 116(Suppl. C), 113–132
(2016)

6. Cuadrado, J.S.: Optimising OCL synthesized code. In: Pierantonio, A., Trujillo, S.
(eds.) ECMFA 2018. LNCS, vol. 10890, pp. 28–45. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92997-2 3

7. Eclipse Foundation: Eclipse Modeling Framework (EMF) (2019). http://www.
eclipse.org/emf/

8. Egyed, A.: Instant consistency checking for the UML. In: Proceedings of the 28th
International Conference on Software Engineering, New York, pp. 381–390 (2006)

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. MTCSAES. Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-31188-2

10. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation
- General Framework and Applications. EATCS. Springer, Berlin (2015). https://
doi.org/10.1007/978-3-662-47980-3

11. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards verified model
transformations. In: Proceedings of the 3rd International Workshop on Model
Development, Validation and Verification (MoDeV2a), Genova, pp. 78–93 (2006)

12. Giese, M., Larsson, D.: Simplifying transformations of OCL constraints. In: Briand,
L., Williams, C. (eds.) MODELS 2005. LNCS, vol. 3713, pp. 309–323. Springer,
Heidelberg (2005). https://doi.org/10.1007/11557432 23

13. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19, 245–296 (2009)

14. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph grammars. Elec-
tron. Notes Theor. Comput. Sci. 2(Suppl. C), 118–126 (1995)

15. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model
versioning. In: 2013 28th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2013, pp. 191–201. IEEE, Piscataway (2013)

16. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the specifi-
cation of model editing operations from meta-models. In: Van Gorp, P., Engels, G.
(eds.) ICMT 2016. LNCS, vol. 9765, pp. 173–188. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42064-6 12

17. Krause, C., Giese, H.: Probabilistic graph transformation systems. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp.
311–325. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33654-
6 21

18. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theor. Inform.
Appl. 39(3), 511–545 (2005)

19. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: OCL2AC: automatic translation of
OCL constraints to graph constraints and application conditions for transformation
rules. In: Lambers, L., Weber, J. (eds.) ICGT 2018. LNCS, vol. 10887, pp. 171–177.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92991-0 11

20. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: Constructing optimized validity-
preserving application conditions for graph transformation rules: extended version.
Technical report, Philipps-Universität Marburg (2019). https://uni-marburg.de/
fb12/arbeitsgruppen/swt/forschung/publikationen/2019/NKAT19-TR.pdf/

21. No Magic: Magic draw. https://www.nomagic.com/products/magicdraw
22. OCL: Eclipse OCL (2019). https://projects.eclipse.org/projects/modeling.mdt.ocl
23. OCLinEcore: Eclipse OCL (2019). https://wiki.eclipse.org/OCL/OCLinEcore

https://doi.org/10.1007/978-3-319-92997-2_3
https://doi.org/10.1007/978-3-319-92997-2_3
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/11557432_23
https://doi.org/10.1007/978-3-319-42064-6_12
https://doi.org/10.1007/978-3-319-42064-6_12
https://doi.org/10.1007/978-3-642-33654-6_21
https://doi.org/10.1007/978-3-642-33654-6_21
https://doi.org/10.1007/978-3-319-92991-0_11
https://uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2019/NKAT19-TR.pdf/
https://uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2019/NKAT19-TR.pdf/
https://www.nomagic.com/products/magicdraw
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://wiki.eclipse.org/OCL/OCLinEcore

194 N. Nassar et al.

24. OMG: Object Constraint Language (2014). http://www.omg.org/spec/OCL/
25. OMG: OMG Unified Modeling Language. Version 2.5 (2015). http://www.omg.

org/spec/UML/2.5/
26. Pennemann, K.H.: Generalized constraints and application conditions for graph

transformation systems. Diplomarbeit, Department für Informatik, Universität
Oldenburg (2004). https://bit.ly/2T4RV0A

27. Pennemann, K.H.: Development of correct graph transformation systems. Ph.D.
thesis, Carl von Ossietzky-Universität Oldenburg (2009)

28. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essen-
tial OCL invariants to nested graph constraints for generating instances of meta-
models. Sci. Comput. Program. 152, 38–62 (2018)

29. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2 23

30. Schneider, S., Lambers, L., Orejas, F.: Automated reasoning for attributed graph
properties. Int. J. Softw. Tools Technol. Transf. 20(6), 705–737 (2018)

31. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

32. Steimann, F., Frenkel, M., Voelter, M.: Robust projectional editing. In: Proceed-
ings of the 10th ACM SIGPLAN International Conference on Software Language
Engineering. SLE 2017, pp. 79–90. ACM, New York (2017)

http://www.omg.org/spec/OCL/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
https://bit.ly/2T4RV0A
https://doi.org/10.1007/978-3-540-30203-2_23

From Pattern Invocation Networks
to Rule Preconditions

Nils Weidmann1(B), Anthony Anjorin1, Florian Stolte2, and Florian Kraus1

1 Paderborn University, Paderborn, Germany
{nils.weidmann,anthony.anjorin,florian.kraus}@upb.de

2 itemis AG, Paderborn, Germany
fstolte@itemis.com

Abstract. Incremental (graph) pattern matchers provide a suitable,
high-level platform for implementing Graph Transformation (GT)
engines. All incremental pattern matchers we are aware of use a simi-
lar notion of Pattern Invocation Networks (PINs) as a specification lan-
guage. Leveraging an incremental pattern matcher for GT thus requires
a semantics-preserving transformation from GT rules to PINs. Although
graph queries have been formally related to generalised discrimina-
tion networks (a generalisation of PINs) in the literature, practical GT
engines typically support only a much more restrictive form of “flat”,
i.e., non-nested graph queries. We are not aware of any formalisation that
relates PINs to non-nested graph queries in a way that supports verifying
semantics preservation for GT-to-PIN transformations and PIN-to-PIN
optimisations in a fully automated manner. In this paper, we therefore
propose a formal semantics for a specific class of “flat-equivalent” PINs
by providing a flattening transformation to non-nested graph queries.

Keywords: Graph constraints · Pattern Invocation Networks ·
Incremental pattern matching

1 Introduction and Motivation

Graph pattern matchers (PMs) are essential core components for Model-Driven
Engineering (MDE) tools as they enable an abstraction from details of model
traversal. Incremental PMs provide the additional advantage of efficiently keep-
ing track of all available (partial) matches for a given set of patterns. As matches
are not calculated on demand but instead always maintained in memory, matches
can be updated efficiently instead of being recalculated from scratch when the
model changes, e.g., due to the application of a rule or due to changes made by
a user. This is particularly effective for small changes in large models, or when
most of the matches are eventually required for the transformation [4,15].

When building a Graph Transformation (GT) tool on top of an incremen-
tal PM, the preconditions of large GT rules can be decomposed into smaller
subpatterns connected in a network-like structure called a Pattern Invocation
c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 195–211, 2019.
https://doi.org/10.1007/978-3-030-23611-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-23611-3_12

196 N. Weidmann et al.

Network (PIN). If this decomposition is suitable, runtime and memory consump-
tion can be reduced by reusing and sharing common partial matches across the
network [18]. The challenge here is determining what constitutes a suitable PIN
in relation to the size and structure of the involved (meta)models, patterns, and
the specific incremental PM. While the task of finding an optimal PIN can be
fully delegated to end users, we believe that a (perhaps configurable) automation
of this process is desirable in most cases. To accomplish such an automation,
a GT tool developer must thus program and evaluate various decomposition
strategies into PIN structures for the same pattern. This, however, raises a new
question related to the correctness of a decomposition strategy: Is a given PIN
“equivalent” to the original “flat” pattern before the decomposition?

To support GT tool developers by automating the verification of PIN struc-
tures, we propose an algorithm for transforming a PIN into a unique flattened
form for a given root node, which can then be easily identified with the original
pattern. Our algorithm can be used to support the verification of decomposition
strategies and PIN-to-PIN optimisations.

The rest of this paper is structured as follows: An intuition for basic concepts
such as GT rules, rule preconditions and PINs is given in Sect. 2. To establish
a formal underpinning for working with PINs, we formalise the syntax of PINs
based on graphs and graph morphisms in Sect. 3. In Sect. 4, we provide a PIN
semantics via an algorithm that flattens a PIN with a distinguished root to a
unique form (Algorithm 1). We then map this flattened form to a rule precondi-
tion (graph constraint) in Algorithm2, establishing graph constraints from the
framework of algebraic graph transformation as a semantic domain for PINs. The
runtime performance of Algorithm 1 is evaluated in Sect. 5 with a case study. In
Sect. 6 we provide an overview of related work, before concluding and proposing
future work in Sect. 7.

2 Running Example and Basic Concepts

Fig. 1. Metamodel

Our example is inspired by the FamiliesToPersons
case, which has been used in many variants to bench-
mark model transformation tools (cf. e.g. [1]). Figure 1
depicts the Persons metamodel. A person register con-
tains multiple persons (male or female), while a person
can be responsible for another person, in the sense of
having a power of attorney for them.

In order to manipulate graphs, rules are used for
adding and deleting nodes and edges. Figures 2 and
3 depict two rules used to manipulate persons mod-
els. Black elements represent the required context
for applying a rule, grey elements represent Positive
Application Conditions (PACs) that extend this context and must be present for
the rule to be applicable. Blue elements (with a “!” mark-up) represent Negative
Application Conditions (NACs), i.e., a rule cannot be applied if these elements

From Pattern Invocation Networks to Rule Preconditions 197

are present. Green elements (with a “++” mark-up) are to be created, and red
elements (with a “--” mark-up) deleted. To simplify the diagrams, responsible
for and persons are abbreviated with rF and per, respectively.

The rule AddResponsibility adds an rF edge between two persons p1 and p2
of the same person register, but only if this edge does not already exist (first
NAC) and if no other person p3 is already responsible for p2 (second NAC).
DeletePerson deletes a person p2 together with a per edge and an rF edge, if
p2 is not responsible for any other person p3 (NAC).

Fig. 2. Rule: AddResponsibility (Color
figure online)

Fig. 3. Rule: DeletePerson (Color
figure online)

In this paper, we are primarily interested in pattern matching, i.e., determin-
ing a valid assignment (a match) of all elements required by a rule to model
elements in a host graph, but not actually in applying the rule. For this reason,
we shall focus in the following on the precondition of a rule, consisting of all
black and red elements, as well as all PACs and NACs.

Fig. 4. Precondition for AddResponsibility Fig. 5. Precond. for DeletePerson

Figures 4 and 5 depict the preconditions for AddResponsibility and Delete-
Person in a formal notation (all definitions are provided in Sect. 3) with top-
level objects as typed graphs, and top-level arrows as graph morphisms. The

198 N. Weidmann et al.

exact mappings for all graph morphisms are indicated by the node labels in the
diagrams (e.g., person p1 in L is mapped by arrow p to person p1 in P). L
denotes the left-hand side of each rule (all black and red elements), P the PAC
for AddResponsibility, N the NAC for DeletePerson, and N1, N2 the NACs for
AddResponsibility.

Figure 6 depicts a PIN for maintaining all matches for the rules AddRespon-
sibility and DeletePerson. The top-level objects in the diagram are referred to
as patterns, connected by either positive invocations (black arrows), or negative
invocations (dashed, blue arrows). When a pattern is positively invoked, this
means that the invoking pattern can only match if the invoked pattern matches;
A match of a negatively invoked pattern prevents the invoking pattern from
matching. The mappings for invocation arrows are indicated via labels on the
arrows of the form from → to. Inside the patterns, objects that have labels with
a bar (such as p3, r) and all their incident arrows are called local. Local elements,
as opposed to all other elements called signature elements, are not fixed by the
invoking pattern and can be bound freely to model elements in a match. Patterns
without incoming edges are called root patterns. Given a host graph, a PM main-
tains all matches for every pattern in the PIN whose positively invoked patterns
also match, and whose negatively invoked patterns do not match. Matches for
root patterns are reported by the PM as complete matches. All other matches
are partial and are only computed and maintained internally.

Fig. 6. Combined pattern invocation network for both rules (Color figure online)

The PIN depicted in Fig. 6 has two root patterns corresponding to the precon-
ditions for our two rules. As some patterns are shared, i.e., invoked by multiple

From Pattern Invocation Networks to Rule Preconditions 199

patterns, an incremental PM might be able to reuse partial matches and reduce
the overall pattern matching effort required to maintain all matches. Whether
this PIN is, however, actually advantageous in practice depends not only on how
the specific incremental PM works internally, but also on the patterns and mod-
els. As an example, although pattern sharing can be increased by reducing the
size of individual patterns, this often increases the number of partial matches
that are collected but later discarded when combining partial matches to form
complete matches, with a negative effect on runtime. Figure 7 depicts separate
PINs for both rules that avoid pattern sharing completely. These two PINs are
equivalent to the single PIN depicted in Fig. 6 in the sense that exactly the same
set of complete matches are maintained for the two rules.

Fig. 7. Flat PIN for AddResponsibility (left) and DeletePerson (right)

3 Semantics of Pattern Invocation Networks

As we aim to formalise a pattern as a graph morphism embedding its signature
in its body, we introduce the basic concepts of graphs and graph morphisms:

Definition 1 ((Typed) Graph and (Typed) Graph Morphism).
A graph G = (V,E, src, trg) consists of a finite set V of nodes, a finite set E
of edges, and two functions src, trg : E → V that assign each edge a source
and target node, respectively. The set elts(G) = V ∪̇ E1 denotes the union of
nodes and edges. Given graphs G = (V,E, src, trg), G′ = (V ′, E′, src′, trg′), a
graph morphism f : G → G′ consists of two total functions fV : V → V ′ and
fE : E → E′ such that src ; fV = fE ; src′ and trg ; fV = fE ; trg′. The ; (then)
operator used here denotes the composition of functions: (f ; g)(x) := g(f(x)).
A graph monomorphism is a graph morphism f = (fV , fE) with injective func-
tions fV and fE, denoted by f : G ↪→ G′. A type graph is a distinguished graph
TG = (VTG, ETG, srcTG, trgTG). A typed graph is a pair Ĝ = (G, type) of a

1 ∪̇ denotes the disjoint union of sets, ∅ the empty set.

200 N. Weidmann et al.

graph G together with a graph morphism type : G → TG. Given typed graphs
Ĝ = (G, type) and Ĝ′ = (G′, type′), a typed graph morphism f : Ĝ → Ĝ′ is a
graph morphism f : G → G′ such that f ; type′ = type.

To simplify the presentation, everything in the rest of the paper is typed unless
we explicitly state otherwise, i.e., we write graph but mean typed graph.

In analogy to a method with arguments and local variables, a pattern in
the context of PINs consists of two disjoint sets of signature elements and local
elements, which together make up the body of the pattern:

Definition 2 (Pattern).
A pattern p : S ↪→ B is a graph monomorphism with source graph S (called
its signature), and target graph B (called its body). The nodes and edges of S
are called signature elements, the nodes and edges of B body elements. Body
elements that are not in p(S) are called local elements, i.e., elts(B)\elts(p(S)).

In analogy to method invocation, one pattern can invoke another by embed-
ding the signature of the invoked pattern into the body of the invoking pattern:

Definition 3 (Pattern Invocation).
A pattern invocation i from a pattern p : S ↪→ B to a pattern p′ = S′ ↪→ B′ is
a graph monomorphism e : S′ ↪→ B, which we denote by i : p → p′.

Example 1 The figure to the right
depicts the PIN for DeletePerson
from Fig. 7 in formal notation. The
root pattern p : S ↪→ B has no local
elements so its signature and body
are identical. The pattern p′ : S′ ↪→
B′ only has one of the persons in
its signature as the other person is a
local node of the pattern. The pattern
invocation i : p → p′ is formalised
with the graph monomorphism e :
S′ ↪→ B. Note how the “arrows” i and
e go in different directions as the sig-
nature of the invoked pattern must be
embedded in the body of the invoking
pattern.

Definition 4 (Pattern Invocation Network (PIN)).
A PIN is a directed graph (Pt, I, src, trg) with a set Pt of patterns as nodes and
a set I = I+ ∪̇ I− of pattern invocations as edges, where ∀ i ∈ I. i : p → p′ ⇔
src(i) = p ∧ trg(i) = p′. We refer to I+ as the positive pattern invocations, I−

as the negative pattern invocations, {rt ∈ Pt | �i ∈ I. trg(i) = rt} as the roots,
and {lf ∈ Pt | �i ∈ I. src(i) = lf } as the leaves of the PIN. We also write (Pt, I)
for (Pt, I, src, trg) if the src and trg functions are not directly relevant.
A PIN is flat iff it has a single root rt, ∀i ∈ I. src(i) = rt, and I+ = ∅.

From Pattern Invocation Networks to Rule Preconditions 201

To flatten a PIN, we shall systematically merge invoked patterns with their
invoking patterns starting with the leaves of the network, i.e., patterns that do
not invoke any other patterns. This process of merging pattern bodies, whilst
taking signature elements into account, can be formalised as building a pushout.

Definition 5 (Pushout).
The pushout of graph monomorphisms e : S′ ↪→ B and p′ : S′ ↪→ B′ is defined
by (B∗, p∗, e∗) where: p∗ : B → B∗ and e∗ : B′ → B∗ are graph morphisms such
that the “pushout square” commutes, i.e., e; p∗ = p′; e∗, and ∀(B#, p# : B →
B#, e# : B′ → B#) with e; p# = p′; e#, there exists a unique x : B∗ → B#

such that (p∗;x = p#) ∧ (e∗;x = e#). This “binary” pushout construction can
be generalised to a multi-pushout [12] of a finite set of morphisms.

Not all PINs according to Definition 4 can be flattened, i.e., are in this sense
equivalent to a flat PIN according to Definition 4. With the following definition,
we thus characterise a subset of all PINs, namely flat-equivalent PINs, which
fulfil a set of conditions to ensure that they can be flattened by our algorithm.

Definition 6 (Flat-Equivalent PIN).
A PIN is flat-equivalent if it satisfies the following three conditions:
(C1) It is a directed acyclic graph (DAG), (C2) there exists no directed path
in the PIN containing more than one negative pattern invocation, and (C3) for
every pattern invocation i : p → p′ via e : S′ ↪→ B in the PIN, there exists no
local node n̄ in B′ that is of the same type of a node n ∈ B \ e(S′).

The first condition (C1) ensures termination by ruling out invocation cycles
in PINs. Although cyclic PINs can be assigned a meaningful semantics (cf. recur-
sive pattern matching [19]), we leave this extension to future work. The second
condition (C2) forbids nested negation, as we choose our semantics domain to
cover only NACs and not general nested graph conditions [10]. The third con-
dition (C3) ensures that the PIN can be represented as a single pattern that
can be matched injectively (cf. Definition 7). If non-injective matching is desired
then this condition can be omitted.

The final step in our flattening transformation is to interpret flat PINs as
preconditions for graph transformation rules (cf. Figures 4 and 5):

Definition 7 (Rule Precondition).
A rule precondition pre = (L, p : L → P,N) consists of a graph L, a monomor-
phism p : L ↪→ P (a PAC), and a set N = {ni : L ↪→ Ni | i ∈ I} of monomor-
phisms (NACs) for an index set I. For a given graph G, an arrow m : L ↪→ G
satisfies pre, denoted by m |= pre, iff [∃mp : P ↪→ G. m = p ;mp] ∧ [∀ i ∈
I.� mni

: Ni ↪→ G. m = ni ;mni
], where m,mp, (mni

)i∈I are monomorphisms.

4 The Flattening Algorithm

We provide a formal semantics for PINs via two algorithms FlattenNetwork
and CreateRulePrecondition. The former converts a flat-equivalent PIN
into a flat PIN, while the latter interprets the flat PIN as a rule precondition.

202 N. Weidmann et al.

FlattenNetwork (Algorithm 1), takes as input a flat-equivalent PIN and
one of its roots, and produces a flat PIN. It does this in three loops: the first loop
from Lines 6–10 recursively flattens all invocations of the chosen root, passing
the invoked child pattern (childi) as the new root for the algorithm.

As depicted in Fig. 8, the second loop from Lines 12–20 merges each positively
invoked and now flattened child with the root pattern. The inner loop from Lines
16–19 transfers all negative invocations of the child to the pattern that results
from the merge operation. On Lines 25–26, a multi-pushout (depicted in Fig. 9)
is used to combine all intermediate merge results into a single root pattern root∗.
In the final loop from Lines 29–33, all negative invocations are pulled up to this
new root, resulting in the flat PIN returned on Line 34.

Algorithm 1. FlattenNetwork(PIN, root)
1: input: (1) A flat-equivalent PIN = (Pt, I), and
2: (2) A chosen root of PIN, root : S ↪→ B, root ∈ Pt
3: output: (1) A flat PIN∗ := (Pt∗, I∗), and
4: (2) The unique root of PIN ∗, root∗ ∈ Pt∗

5: Let I ′ := ∅, P t′ := {root}
6: for all invocations i ∈ I, i : root → childi do
7: [(Pti, Ii), child∗

i] := FlattenNetwork(PIN, childi)
8: Pt′ := Pt′ ∪ Pti
9: I ′ := I ′ ∪ Ii ∪ {i∗ : root → child∗

i }
10: end for
11: Let PIN′ := (Pt′, I ′ = I+ ∪̇ I−), R# = ∅, I# = ∅
12: for all i ∈ I+, i : root → childi via ei : Si ↪→ B do
13: (B#

i , child#
i , e#i) := pushout(Si, ei, childi) � See Fig. 8

14: root#i := root ; child#
i

15: R# := R# ∪ {root#i }
16: for all j ∈ I−, j : childi → negi,j via ni,j : Si,j ↪→ Bi do
17: n#

i,j := ni,j ; e
#
i � See Fig. 8

18: I# := I# ∪ {i# : root#i → negi,j via n#
i,j : Si,j ↪→ B#

i }
19: end for
20: end for
21: Let R# = {root#1 , . . . , root#m}
22: if |R#| = 0 then root∗ := root
23: else if |R#| = 1 then root∗ := root#1
24: else
25: (B∗, root∗

1, . . . , root
∗
m) := pushout(S, root#1 , . . . , root#m) � See Fig. 9

26: root∗ := root#1 ; root∗
1

27: end if
28: Let Pt∗ = {root∗}, I∗ = {i ∈ I−, i : root → childi via ei : Si ↪→ B}
29: for all i# ∈ I# : root#i → negi,j via n#

i,j : Si,j ↪→ B#
i do

30: n∗
i,j := n#

i,j ; root
∗
i � See Fig. 9

31: I∗ := I∗ ∪ {i∗, i∗ : root∗ → negi,j via n∗
i,j : Si,j ↪→ B∗}

32: Pt∗ := Pt∗ ∪ {negi,j}
33: end for
34: return [(Pt∗, I∗), root∗]

From Pattern Invocation Networks to Rule Preconditions 203

Fig. 8. Merging positive invocations Fig. 9. Creation of new root pattern

Example 2. Figure 10 depicts a PIN for the rule AddResponsibility (cf. Fig. 2).
The root pattern with body B, positively invokes two patterns with bodies B1

and B2, and negatively invokes (indicated by dashed blue lines) two patterns
with bodies B3 and B4. Applying FlattenNetwork to this PIN and its single
root pattern results in all child patterns being converted into flat PINs. For this
simple example, however, this is already the case in the initial PIN.

Fig. 10. Initial PIN (Color figure online) Fig. 11. Resulting inter-
mediate bodies (cf. Fig. 8)

As a result of the pushout construction on Line 13, two intermediate bodies
B#

1 and B#
2 are constructed (Fig. 11), with a per edge inserted between the

register r and the persons p2 and p1, respectively. In a last step, a multi-pushout
(Line 25) is constructed from the two intermediate bodies, and connected to the
negatively invoked patterns (final loop). Figure 12 depicts the resulting flat PIN.

Fig. 12. Flattened network

204 N. Weidmann et al.

We now show that Algorithm 1 terminates with a unique result for valid input.
Lemma 1 is proven by induction over the PIN structure, proceeding from the leaf
nodes to the root. As the input PIN is a DAG according to (C1) of Definition 6
along with a distinguished root, the existence of leaf nodes with unique paths to
the root can be assumed.

Lemma 1.
FlattenNetwork (Algorithm1) produces a unique, flat PIN for valid input.

Proof (Sketch).

Base Case: Let PIN = ({root}, ∅) be a PIN which only consists of a single
pattern as root and leaf. As leaf patterns do not have invocations, the loop from
Lines 12 to 20 is skipped, |R#| = |∅| = 0, and thus root∗ is set to root on Line 22.
As I# is empty, the loop from Lines 29 to 33 is skipped, and FlattenNetwork
returns the input PIN = PIN∗, which is already flat according to Definition 4.

Induction Hypothesis: Given flat-equivalent PIN = (Pt, I), and root ∈ Pt as
input, FlattenNetwork(PIN, childi) terminates with a unique, flat PIN for
all i ∈ I, i : root → childi.

Inductive Step: As the input PIN is a DAG according to Condition (C1), all PINs
rooted in (childi)i∈I fulfil this condition. According to the induction hypothesis,
the PINs rooted in (childi)i∈I are flat PINs after invoking FlattenNetwork
on Line 7. The recursion terminates as the input is finite according to Defi-
nition 1, and every directed path ends in a leaf node for which the base case
applies.

For all positive invocations, intermediate patterns (root#i)i∈I+ are created
via the pushout construction on Line 13. The final root pattern root∗ is created
from these intermediate root patterns by the multi-pushout construction on Line
25. In both cases, the uniqueness of the pushout object [7] guarantees that the
result is unique, i.e., is independent on the order in which patterns are merged.

All negative invocations to the final root pattern root∗ are created by concate-
nating the arrows (n#

i,j)i∈I+,j∈I− to the intermediate root patterns (root#i)i∈I+ ,
and the arrows (root∗i)i∈I+ induced by the multi-pushout construction (Line
30). As Condition (C2) forbids nested negative invocations, i.e., there exists at
most one negative invocation on each path from root to leaf, negatively invoked
patterns cannot invoke further patterns at this point. The set I∗ contains one
invocation i∗ for each i# ∈ I#, which itself contains one invocation for each
j ∈ I−. The number of negative invocations, therefore, remains constant dur-
ing the flattening procedure, and are only recursively “pulled up” to the root
pattern. As all positive invocations are merged into the single root pattern, the
output of FlattenNetwork is a flat PIN according to Definition 7.
�

We now interpret a flattened PIN as a rule precondition (Definition 7), via
the following algorithm CreateRulePrecondition (Algorithm 2):

From Pattern Invocation Networks to Rule Preconditions 205

Algorithm 2. CreateRulePrecondition(PIN)
1: input: A flat PIN = (Pt, I = I−) with root ∈ Pt, root : S ↪→ B
2: output: A rule precondition pre := (L, p : L → P, N)
3: P := B, L := S, N := ∅
4: for all i ∈ I : root → negi via ei : Si ↪→ B do
5: (Ni, ni, e

′
i) = pushout(Si, ei, negi)

6: N := N ∪ {ni}
7: end for
8: for all elem ∈ B \ S do
9: if ∃ i : root → negi ∈ I via ei : Si ↪→ B such that elem ∈ ei(Si) then
10: L := L ∪ {elem}
11: end if
12: end for

13: p(x) :=

{
root(x) : x ∈ S

idB(x) : x ∈ B \ S

14: return (L, p, N)

Each negative invocation of the PIN is interpreted as a NAC in the rule pre-
condition by merging the bodies of the invoked patterns into the root (Lines 4–7).
To determine L as the minimal context of the precondition, we take all signature
elements S, but have to include additional elements from B \ S that are passed
to a negatively invoked pattern (Lines 8–12).

Example 3. To demonstrate CreateRulePrecondition, we apply it in the
following to the result of Example 2. Via the pushout construction on Line 5,
the two NACs N1 and N2 are created as depicted in Fig. 13. After creating these
NACs, the context L for the precondition is determined (Lines 8–12). In this
simple case, L is exactly the signature of the root pattern and all local elements
can be moved to the PAC P of the precondition. The resulting precondition is
exactly what was discussed in the motivation (cf. Fig. 4).

Fig. 13. NACs generated by pushout construction

206 N. Weidmann et al.

We show with the following Lemma 2 that CreateRulePrecondition pro-
duces a unique rule precondition for any flat pattern:

Lemma 2.
CreateRulePrecondition (Algorithm2) terminates with a unique rule pre-
condition for any flat PIN.

Proof (Sketch). The pushout construction used to create a NAC from a nega-
tive invocation on Line 5 guarantees that the result ni : L → Ni is a unique
monomorphism for every i ∈ I− [7]. In the loop from Lines 8–12, the context
L is formed by extending the signature by any local elements that are used
in a negative invocation. L is well-defined, i.e., a graph, because ei : Si ↪→ B
is a graph morphism and is thus structure preserving. It is thus impossible to
add edges to L without adding their incident nodes. As I and B are finite, the
algorithm terminates with a unique rule precondition according to Definition 7.

�

With Algorithms 1 and 2, we can now provide a semantics for flat-equivalent
PINs:

Definition 8 (Semantics of Flat-Equivalent PINs).
A flat-equivalent PIN = (Pt, I) with chosen root pattern rt ∈ Pt, is semanti-
cally equivalent to the rule precondition (L, p,N) = CreateRulePrecondi-
tion(FlattenNetwork(PIN, rt)).

5 Evaluation

To be of practical use, our proposed algorithm must be (i) implementable with
reasonable effort in a mainstream language, and (ii) must produce results in
acceptable time for a GT tool developer. These challenges lead to the following
research questions, which we shall investigate in a subsequent evaluation:

(RQ1) Can our algorithm be implemented in a mainstream programming lan-
guage with reasonable effort, i.e., via a direct mapping from formalisation
to code?

(RQ2) How does the implementation scale (runtime) with respect to PIN size?
(RQ3) Which steps in the algorithm are cheap, which are most costly?

In order to investigate (RQ1), we implemented Algorithm1 in Java. We were
able to implement the algorithm as a direct 1-1 mapping of the theory to code,
such that almost every pseudo code line in the algorithm can be mapped to a
corresponding line of Java code. This shows that our formalisation is constructive
in nature and can be directly implemented exactly as presented in Algorithm1.

To investigate (RQ2) and (RQ3), we constructed an example that is easy
to test and at the same time represents the worst case for the algorithm. Our
experiments revealed that “deep” pattern networks with a long chain of positive
invocations and negative invocations on the lowest level represent the worst case

From Pattern Invocation Networks to Rule Preconditions 207

for the algorithm, whereas for “broad” networks (smaller maximum depth of sub
trees, negative invocations close to the root, such they need not be pulled up
often), a better runtime performance was shown for the same number of patterns.
In comparison, the actual size (number of nodes and edges) of each pattern is
less important. Our chosen example is thus a series of pattern networks for linked
lists of increasing length. The recursion hierarchy thus grows linearly with the
length of the list, and all negative invocations have to be pulled up from each
level to the root. We measured the time required for flattening PINs of increasing
size, partitioned into four main steps of the algorithm.

Fig. 14. Metamodel
for a directed graph

Figure 14 depicts the minimalistic metamodel of a
directed graph, which is sufficient for our example.
Figure 15 depicts a PIN for a linked list of length 5. All
nodes are of type Node. Each pattern consists of two
nodes connected by a next edge. The positive invoca-
tions link the source nodes of the invoking patterns to
the target nodes of the invoked patterns. The negative
invocations prevent each node from having other outgoing edges, such that the
pattern matches for a single linked list and not a tree. The flattened network for
this example is depicted in Fig. 16. The positively invoked patterns were merged
into one list, whereas all negative invocations were recursively pulled up to the
root node.

Fig. 15. PIN for a linked list of 5 nodes

Fig. 16. Flattened PIN for size 5

Experiment Setup: Time measurements were conducted for flattening PINs
matching linked lists of length 100 to 5000 in steps of 100. The algorithm was
implemented as a Java 1.8 application, executed on a Windows machine using an

208 N. Weidmann et al.

Intel Core i7 processor with 16 GB main memory, of which 4 GB were reserved
for the JVM. The stack size was set to 16 MB. To reduce the effect of outliers,
the median values of three test runs were taken. Details of the runtime measure-
ments2 and the source code3 are available online.

Results: The measured runtime values are shown in Fig. 17. Each curve (1)–(4)
represents the time consumption of a different part of the code, while the bold,
blue line depicts the total runtime (cf. caption for details). Most time is consumed
by the second and third steps, whereas the runtime of the first and fourth step
is almost negligible. This indicates that the multi-pushout construction is the
most expensive task, whereas concatenation of arrows and set operations do not
have a significant impact on performance. While the overall runtime is just a
few seconds for lists with hundreds of nodes, it exhibits roughly cubic growth
and attains 40 min for lists with 5000 nodes.

Fig. 17. Runtime: (1) Collect flattened patterns and invocations after recursive call
(ll. 6–10), (2) Merge positively invoked patterns and pull up negative invocations (ll.
12–20), (3) Merge intermediates (ll. 22–27), (4) Construct flat PIN (ll. 29–33) (Color
figure online)

Let us briefly revisit our research questions: A straightforward implementa-
tion of Algorithm 1 is possible (RQ1). For PINs of depth 2000, the algorithm
requires only about 2–3 min, which is fast enough for a static analysis (RQ2).
Realistic PINs are hardly this deep, meaning that the analysis can be easily run
every time a PIN is generated or transformed. The bottleneck is certainly the
pushout construction (RQ3); this would thus be a good candidate to be highly
optimised and provided in a generic library for constructing GT-based static
analyses.

2 bit.ly/2VUWwjM.
3 github.com/eMoflon/pin-analysis-icgt2019.

http://bit.ly/2VUWwjM
http://github.com/eMoflon/pin-analysis-icgt2019

From Pattern Invocation Networks to Rule Preconditions 209

6 Related Work

Incremental (graph) pattern matching is an important enabling technology for
simplifying the development of various MDE tools: Democles [18] has been used
for model synchronisation [15], Drools4 has been used for model transforma-
tion [2,8], implementing a collaborative, event-based modelling framework [20],
and providing recommendations via auto-completion [14], Viatra [17] has been
used in numerous projects requiring reactive, and event-based programming. All
such approaches leveraging incremental pattern matchers can profit from our
formalisation as it provides a mapping to algebraic graph transformations for
which numerous analysis techniques exist [7]. Tools that support nested NACs
(e.g., Viatra), however, would require a corresponding extension of our approach.

Furthermore, for tools such as Viatra [17] that allow the end user to directly
influence the structure of the PIN, our flattening algorithm can still be used to
give feedback by showing the semantically equivalent flat pattern. For tools that
derive multiple patterns from a single specification [15], however, the process
must be fully automated and our algorithm can help to verify the correctness of
(configurable) decomposition strategies provided by the tool developers.

Similar to our work, Beyhl et al. [6] show that Generalised Discrimination
Networks (GDNs) [11], a generalisation of PINs, have the same expressive power
as nested graph conditions [10]. As both GDNs and PINs are nested structures,
however, the mapping provided by Beyhl et al. [6] cannot be applied to transform
PINs to our flat rule preconditions. Providing a mapping to simpler (flat) graph
conditions as we do is, however, important in practice as many graph transfor-
mation tools do not support the full power of nested graph conditions [16]. This
is due to the high price for this expressiveness: guaranteeing scalability becomes
difficult, and the analysis (satisfiability, tautology and equivalence) of nested
graph conditions is undecidable in general [10].

Finally, while there has been a substantial amount of work on establishing
algorithms and extensions for incremental graph pattern matching [3,5,13,18,
19], none of these works provide a formalisation that can be used to bridge graph
transformations and incremental graph pattern matchers.

7 Conclusion and Future Work

In this paper, we proposed a formal semantics for flat-equivalent PINs by pro-
viding a flattening transformation (FlattenNetwork) and a subsequent con-
version (CreateRulePrecondition) to a rule precondition. For both the flat-
tening and conversion algorithms, we show termination and uniqueness for valid
input. We have implemented our approach via a straightforward mapping of the
algorithm to a program in a mainstream programming language. The results
indicate that the only expensive part of the implementation is the pushout con-
struction for merging patterns. The overall runtime of a few seconds for up to
1000 recursive calls should be acceptable for most practical applications.
4 www.drools.org.

www.drools.org

210 N. Weidmann et al.

While our presentation uses typed, attributed graphs with node inheritance,
our formalisation is actually generic in the sense that our concepts for patterns,
pattern invocations, and most steps in our algorithms only require a category
for which the pushout construction is defined. As we do not fix the objects and
arrows in this category, our formalisation could be easily transferred to and used
for finite diagrams of graphs, hypergraphs, and many other structures.

As future work, our constructive formalisation could be extended to cover
nested negative invocations of a fixed maximum length, e.g., consisting of a
premise and conclusion (nesting level of one). This could lead to a better com-
promise between expressiveness, analysability, and scalability. It would also be
interesting to investigate the connections between multi-amalgamation [9] and
recursive PINs [19].

Concerning dedicated tool support, we are currently working on integrating
the approach in our model transformation tool eMoflon5, which already decom-
poses complex patterns into PINs in order to be able to exploit the advantages
of an underlying incremental pattern matcher [15]. Our formalisation and the
flattening algorithm proposed in this paper can be useful for ensuring that our
various decomposition and PIN optimisation strategies are semantics preserving.

Finally, we are working on a systematic evaluation of various incremental pat-
tern matchers that accept PIN-based input with respect to the effect of network
structure on scalability.

References

1. Anjorin, A., Buchmann, T., Westfechtel, B.: The families to persons case. In: TTC
2017, Marburg, Germany, 21 July 2017, pp. 27–34 (2017)

2. Bang, J.Y., et al.: CoDesign: a highly extensible collaborative software modeling
framework. In: ICSE 2010, pp. 243–246. IEEE (2010)

3. Bergmann, G.: Incremental model queries in model-driven design. Ph.D. the-
sis, Budapest University of Technology and Economics, Budapest, Octo-
ber 2013. http://home.mit.bme.hu/bergmann/download/phd-thesis-bergmann.
pdf. Accessed 16 Nov 2018

4. Bergmann, G., Horváth, Á., Ráth, I., Varró, D.: A benchmark evaluation of
incremental pattern matching in graph transformation. In: Ehrig, H., Heckel, R.,
Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 396–410.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87405-8 27

5. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern
matching in the VIATRA model transformation system. In: GRaMoT 2008, pp.
25–32. ACM, New York (2008)

6. Beyhl, T., Blouin, D., Giese, H., Lambers, L.: On the operationalization of graph
queries with generalized discrimination networks. In: Echahed, R., Minas, M. (eds.)
ICGT 2016. LNCS, vol. 9761, pp. 170–186. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40530-8 11

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. MTCSAES. Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-31188-2

5 www.emoflon.org.

http://home.mit.bme.hu/ bergmann/download/phd-thesis-bergmann.pdf
http://home.mit.bme.hu/ bergmann/download/phd-thesis-bergmann.pdf
https://doi.org/10.1007/978-3-540-87405-8_27
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
www.emoflon.org

From Pattern Invocation Networks to Rule Preconditions 211

8. Garzón, M.A., Lethbridge, T.C., Aljamaan, H., Badreddin, O.: Reverse engineering
of object-oriented code into Umple using an incremental and rule-based approach.
In: CASCON 2014, pp. 91–105. IBM Corp., Riverton (2014)

9. Golas, U., Ehrig, H., Habel, A.: Multi-amalgamation in adhesive categories. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
6372, pp. 346–361. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15928-2 23

10. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

11. Hanson, E.N., Bodagala, S., Chadaga, U.: Trigger condition testing and view main-
tenance using optimized discrimination networks. IEEE Trans. Knowl. Data Eng.
14(2), 261–280 (2002)

12. Hébert, M.: λ-presentable morphisms, injectivity and (weak) factorization systems.
Appl. Categ. Struct. 14(4), 273–289 (2006). https://doi.org/10.1007/s10485-006-
9024-9

13. Horváth, A., Bergmann, G., Ráth, I., Varró, D.: Experimental assessment of com-
bining pattern matching strategies with VIATRA2. Int. J. Softw. Tools Technol.
Transf. 12(3–4), 211–230 (2010)

14. Kuschke, T., Mäder, P., Rempel, P.: Recommending auto-completions for software
modeling activities. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P.
(eds.) MODELS 2013. LNCS, vol. 8107, pp. 170–186. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41533-3 11

15. Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging incre-
mental pattern matching techniques for model synchronisation. In: de Lara, J.,
Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 179–195. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61470-0 11

16. Leblebici, E., Anjorin, A., Schürr, A., Hildebrandt, S., Rieke, J., Greenyer, J.: A
comparison of incremental triple graph grammar tools. In: ECEASST 67 (2014)

17. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z.: Road
to a reactive and incremental model transformation platform: three generations of
the VIATRA framework. Softw. Syst. Model. 15(3), 609–629 (2016)

18. Varró, G., Deckwerth, F.: A rete network construction algorithm for incremen-
tal pattern matching. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol.
7909, pp. 125–140. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38883-5 13

19. Varró, G., Horváth, Á., Varró, D.: Recursive graph pattern matching. In: Schürr,
A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 456–470.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89020-1 31

20. Wang, S., Morin, B., Roman, D., Berre, A.J.: A semi-automatic transformation
approach for semantic interoperability. In: NATO Symposium and Workshop on
Semantic & Domain Based Interoperability (2011)

https://doi.org/10.1007/978-3-642-15928-2_23
https://doi.org/10.1007/978-3-642-15928-2_23
https://doi.org/10.1007/s10485-006-9024-9
https://doi.org/10.1007/s10485-006-9024-9
https://doi.org/10.1007/978-3-642-41533-3_11
https://doi.org/10.1007/978-3-319-61470-0_11
https://doi.org/10.1007/978-3-642-38883-5_13
https://doi.org/10.1007/978-3-642-38883-5_13
https://doi.org/10.1007/978-3-540-89020-1_31

Hybrid Search Plan Generation
for Generalized Graph Pattern Matching

Matthias Barkowsky(B) and Holger Giese

Hasso-Plattner Institute, University of Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{matthias.barkowsky,holger.giese}@hpi.de

Abstract. In recent years, the increased interest in application areas
such as social networks has resulted in a rising popularity of graph-based
approaches for storing and processing large amounts of interconnected
data. To extract useful information from the growing network structures,
efficient querying techniques are required.

In this paper, we propose an approach for graph pattern matching that
allows a uniform handling of arbitrary constraints over the query vertices.
Our technique builds on a previously introduced matching algorithm,
which takes concrete host graph information into account to dynamically
adapt the employed search plan during query execution. The dynamic
algorithm is combined with an existing static approach for search plan
generation, resulting in a hybrid technique which we extend by a more
sophisticated handling of filtering effects caused by constraint checks. We
evaluate the presented concepts empirically based on an implementation
for our graph pattern matching tool, the Story Diagram Interpreter, with
queries and data provided by the LDBC Social Network Benchmark.

1 Introduction

In recent years, the increased interest in application areas such as social networks
has resulted in a rising popularity of graph-based approaches for storing and
processing large amounts of information [2]. The considered graphs frequently
exhibit an inhomogeneous structure, which in the case of social networks can
be caused by the diverse behavior of different users, including extreme outliers
such as celebrities. In order to extract useful information from the growing,
heterogeneous network structures, efficient querying techniques are required.

In this paper, we focus on queries without nesting and paths of varying length,
which corresponds to the problem of graph pattern matching. Existing solutions
usually work by iteratively mapping elements from a query specification to ele-
ments in a host graph according to a search plan. Since the order in which the

This work was developed mainly in the course of the project modular and incremental
Global Model Management (GI 765/8-1), which is funded by the Deutsche Forschungs-
gemeinschaft.

c© Springer Nature Switzerland AG 2019
E. Guerra and F. Orejas (Eds.): ICGT 2019, LNCS 11629, pp. 212–229, 2019.
https://doi.org/10.1007/978-3-030-23611-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23611-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-23611-3_13

Hybrid Search Plan Generation for Generalized Graph Pattern Matching 213

individual elements are mapped has a substantial impact on performance, many
solutions employ sophisticated strategies for determining good search plans.

The majority of these techniques only considers structural information, that
is typing information and edges between nodes in the graph like relationships
between persons in a social network, for guiding the matching process. However,
in many realistic application scenarios, nonstructural information also plays an
important role. This includes attributes of nodes like the age of a person in the
network as well as external data structures such as indices, which are particu-
larly relevant in the context of graph databases or the evaluation of decomposed
queries [6]. Hence, a tighter integration of constraints specified over such non-
structural information into the matching process is desirable.

We therefore introduce a unified notion of constraints in a graph query. We
then propose a matching strategy that is based on an existing dynamic algorithm
[12], which generates a search plan on the fly as a query is being executed. On the
one hand, the dynamic technique allows tailoring the search to heterogeneities
in the host graph that cannot be handled by a static search plan. On the other
hand, this approach has the drawback of not being able to consider the over-
all structure of the query, which can lead to shortsighted decisions during the
matching process. To address this problem, we combine our adapted approach
with a static but model-sensitive technique for search plan generation [17]. The
resulting hybrid approach is subsequently evaluated empirically using queries
and datasets from the LDBC Social Network Benchmark [10].

The remainder of the paper is structured as follows: Sect. 2 briefly intro-
duces the basic notion of graphs, graph morphisms, and graph queries as used in
this paper. We then present our generalized approach for dynamic search plan
generation in Sect. 3. In Sect. 4, we first integrate an existing static technique
with our dynamic solution. The resulting hybrid approach is then extended to
allow a more sophisticated consideration of constraint checks during search plan
generation. The developed concepts are evaluated empirically in Sect. 5, using a
benchmark from the domain of social networks. Section 6 discusses related work
and Sect. 7 concludes the paper.

2 Prerequisites

We briefly reintroduce the notion of graphs and graph morphisms [9]. A graph
G = (GV , GE , sG, tG) consists of a set of vertices GV , a set of edges GE , a
source function sG : GE → GV and a target function tG : GE → GV . Given
two graphs G = (GV , GE , sG, tG) and H = (HV ,HE , sH , tH), a graph morphism
f : G → H is a pair of mappings fV : GV → HV and fE : GE → HE such that
fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE . If fV and fE are injective, f is called
a monomorphism.

A typed graph is a tuple (G, type), where G is a graph and type : G → TG
is a graph morphism into a type graph TG = (TGV , TGE , sTG, tTG). A typed
graph morphism f : GT

1 → GT
2 between typed graphs GT

1 = (G1, type1) and
GT

2 = (G2, type2) is a graph morphism f : G1 → G2 such that type2 ◦f = type1.

214 M. Barkowsky and H. Giese

A graph query is then specified by a typed query graph Q. A solution for a
graph query given a typed host graph H is a typed monomorphism m : Q → H
called match. Typically, explicit mappings are only computed for the query graph
vertices and edges are mapped implicitly [3,7], which we adopt in this paper.
The process of finding matches for a graph query in a given host graph is called
graph pattern matching and corresponds to the execution of the query.

This usually involves executing a sequence of primitive search operations
called search plan, which extends a partial, potentially empty monomorphism to
a complete match. A näıve search plan may first create a mapping for each query
vertex and subsequently check whether there is a corresponding host graph edge
for each edge in the query graph. However, the required computational effort
can vary substantially depending on the chosen plan. Hence the generation of
efficient search plans is an important subtask of graph pattern matching.

In practice, the specification of a graph query may also contain additional
constraints over the vertices of the query graph that further restrict the solution.
This includes constraints over possible attributes or external data structures such
as indices. Such information is called nonstructural information whereas the
information encoded in the graph structure is considered structural information.

Example 1. Figure 1 shows an example graph query from a social network
domain and the corresponding type graph, represented by a data model. The
query is presented in Story Diagram notation [12], using an UML object diagram
to denote the query graph Q and a box with shadow to indicate that all matches
should be found. Q consists of two vertices of type Person p1 and p2, one vertex
of type KnowsLink, and two edges. The query also contains a constraint that

Fig. 1. Example graph query containing different kinds of constraints and the corre-
sponding data model, which is an excerpt from the data model from [10]

Hybrid Search Plan Generation for Generalized Graph Pattern Matching 215

requires some indexing structure index11 to contain the tuple of mappings for
p1 and p2, and a constraint over the name attribute of the mapping for p2.

3 Search Model and Dynamic Search Plan Generation

In order to represent all possible kinds of constraints specified in a graph query in
a uniform manner, we developed a Search Model for graph queries. As displayed
in Fig. 2, a Search Model consists of three types of elements, some of which are
augmented with states to encode the state of a query execution.

Pattern Nodes represent vertices in the query graph Q and can either be
in state BOUND, indicating that a mapping for the Pattern Node has already
been determined, or UNBOUND otherwise. Pattern Nodes in state BOUND
also store the vertex in the host graph H which they are currently mapped
to. The configuration of a Search Model is given by the states of its Pattern
Nodes and hence encodes the domain of a partial graph morphism from the
encoded query graph into a host graph. The state of a Search Model comprises
its configuration as well as the mapping attributes of its Pattern Nodes and
therefore represents a partial graph morphism. We use C to denote the set of
possible configurations and S to denote the set of possible Search Model states.
The configuration of a Search Model state s ∈ S is denoted by config(s). The
configurations where all Pattern Nodes are in state UNBOUND respectively
BOUND are called the empty configuration c∅ and complete configuration cC .
We define the empty Search Model state s∅ such that config(s∅) = c∅ and the
set of complete Search Model states SC := {sC |sC ∈ S∧config(sC) = cC}. Each
sC ∈ SC then represents a typed monomorphism m : Q → H.

Constraints such as edges in the query graph or conditions over attributes
are represented by Pattern Constraints. Pattern Constraints may have a number
of dependencies that indicate over which Pattern Nodes the constraint is formu-
lated. A Pattern Constraint in state ACTIVE has already been checked, whereas

Fig. 2. Search Model metamodel and concrete syntax

216 M. Barkowsky and H. Giese

an INACTIVE Pattern Constraint still needs to be handled. Additionally, Pat-
tern Constraints are associated with Matching Actions, each of which encodes
an executable operation that can be performed by a pattern matcher to ensure
that the associated constraint is satisfied. Examples of Matching Actions include
looking up host graph vertices of a certain type or checking the existence of an
edge between two host graph vertices. For each Pattern Constraint, at most one
Matching Action can be qualified as that constraint’s active action, indicating
that it is currently appropriate for handling the associated constraint.

Our approach allows arbitrary constraints to be translated into Pattern Con-
straints. In this paper, we focus on four exemplary kinds of constraints. A domain
constraint restricts the type of a single vertex in the graph query. An edge con-
straint specifies that an edge of a certain type has to be present between a
source and target query vertex. Both domain constraints and edge constraints
are directly encoded in the query graph. Index constraints are formulated over
an external data structure, requiring that it either contains or excludes some
tuple. In this paper, we limit this to tuples of host vertices, which for example
are useful for storing intermediate matches in the context of decomposed com-
plex queries [6]. Lastly, we consider expression constraints, that is constraints
formulated over attributes of query vertices in some expression language. Here,
we restrict expression constraints to constraints over a single vertex.

Matching Actions may have requirement associations to Pattern Nodes. A
Matching Action m is applicable to a Search Model state s with host graph H
iff all of its requirements are in state BOUND in c = config(s). The application
of m then yields a set of states S′ ⊆ S denoted by s[m〉HS′. The application
of m to s always results in the same configuration (∀s′ ∈ S′ : config(s′) = c′)
and thus for config(s) = c we have the related application of m for configura-
tions denoted by c[m〉c′. Each s′ ∈ S′ thus encodes an extension of the graph
morphism represented by s by mappings for Pattern Nodes that are UNBOUND
in c and BOUND in c′. For a sequence of Matching Actions w = m1...mn and
configurations c0c1...cn with ci[mi+1〉ci+1 for i ∈ [0, n − 1], we write c0[w〉cn.

We distinguish two kinds of Matching Actions. A check me represents an
actual checking of a constraint. It requires all dependencies of its Pattern Con-
straint and its execution does not change the current state, thus s[me〉{s} iff the
check is successful and s[me〉∅ otherwise. An extension only has a subset of these
dependencies as its requirements and extends the current mapping by mappings
for all remaining dependencies such that the created overall mapping satisfies
the associated constraint. The check of a Pattern Constraint corresponding to
an edge constraint for instance checks whether an edge is present between a
source and target host graph vertex. The traversal of host graph edges to collect
candidate mappings for some Pattern Node on the other hand corresponds to
an extension action of an edge constraint.

Example 2. Figure 3 shows an example graph query and the corresponding
Search Model, using the concrete syntax from Fig. 2. Note that for readabil-
ity, domain constraints are not visualized and Matching Actions are labeled
with a set encoding their requirement links. The Search Model contains

Hybrid Search Plan Generation for Generalized Graph Pattern Matching 217

Pattern Constraints corresponding to the edge constraints e1 and e2, the index
constraint i1, and the expression constraint c1, as well as exemplary Matching
Actions. These include edge lookup, traversal, reverse traversal and check for e1
and e2, index enumeration and check for i1 and the check of c1. Initially, the
Search Model is in configuration c∅ and therefore state s∅. Because it requires
no Pattern Nodes to be BOUND, the Matching Action m1 is applicable. Its
application to c∅ then yields a configuration c1 where Pattern Nodes p1 and p2
are in state BOUND. Its application to s∅ hence yields a set of states S1 with
configuration c1 and all possible mappings for p1 and p2 that satisfy i1.

Fig. 3. Example query and corresponding Search Model

3.1 Search-Model-Based Matching Algorithm

In Algorithm 1, we outline our method for evaluating a graph query using a
corresponding Search Model, which is a generalization of the dynamic matching
algorithm introduced in [12]. The algorithm takes a Search Model state encoding
a potentially empty partial match as an input and emits all complete matches
that are extensions of that partial match.

The procedure starts with a check whether all of the Search Model’s Pattern
Constraints are in state ACTIVE. If the check is successful, the mapping cur-
rently encoded in the Search Model is a mapping for all vertices in the graph
query that satisfies all specified constraints and can be emitted. Otherwise, one
of the remaining Pattern Constraints in state INACTIVE that has an active
action is selected, its state is set to ACTIVE and its active action is applied.
The algorithm then loops over the generated set of extended Search Model states.

218 M. Barkowsky and H. Giese

For each element, the Search Model is first updated with the candidate state.
This includes updating the state and mapping of all affected Pattern Nodes and
the active action of Pattern Constraints that have a dependency to an updated
Pattern Node. Then a recursive call is performed to find all extensions of the
updated Search Model state to complete states that satisfy all constraints. At
the end of the procedure, the state of the selected Pattern Constraint is reset.

Procedure ExtendMapping(s)

Input : s: A Search Model state encoding a partial match
Output: All complete extensions of the encoded partial match

if AllConstraintsActive() then
EmitEncodedMapping(s);
return;

end
p ← SelectNextConstraint(s);
p.state ← ACTIVE;
S′ ← apply(p.activeAction, s);
foreach s′ ∈ S′ do

UpdateSearchModel(s′);
ExtendMapping(s′);

end
p.state ← INACTIVE;
return;

Algorithm 1: Recursively extend a partial match encoded in a Search Model
to a complete match

3.2 Dynamic Search Plan Generation

The algorithm presented in Sect. 3.1 provides a degree of freedom with respect
to the selection of the next Pattern Constraint to check, which corresponds to a
single step in a dynamically generated search plan for the query. Which Pattern
Constraint with active action m is chosen in each step has a significant impact
on the remaining effort, which can be defined recursively for the current Search
Model state s and host graph H for S′ uniquely defined by s[m〉HS′ as

costS(s,H) :=
∑

s′∈S′
(1 + costS(s′,H)) =

∑

s′∈S′
1 +

∑

s′∈S′
costS(s′,H), (1)

with costS(sC ,H) := 0 for sC ∈ SC .
Note that we exclude the cost for updating the Search Model, which is a

rather inexpensive operation for small queries over large host graphs [5] as con-
firmed by our experimental results in Sect. 5. The overall effort is then given by
costS(s∅,H). However, as this effort depends on the concrete recursive search
through H, it cannot directly be employed to choose the next Pattern Constraint.

Hybrid Search Plan Generation for Generalized Graph Pattern Matching 219

Instead, we compute the cost of a Matching Action m in s as the growth of
the search space resulting from its application by considering only the first part∑

s′∈S′ 1 of Eq. 1 for S′ uniquely defined by s[m〉HS′ using

costdynM (s,m,H) :=
∑

s′∈S′
1 = |S′|. (2)

Similar to the approach in [12], the matching algorithm can then choose the
next Pattern Constraint p in a greedy manner, such that the related Matching
Action m = p.activeAction has minimal cost costdynM (s,m,H). As an exception,
we execute any applicable check Matching Action as soon as possible according
to the fail-first principle [13].

4 Hybrid Search Plan Generation

The fully dynamic strategy for search plan generation described in Sect. 3.2 is
often able to determine a good search plan if the Search Model only contains
few Matching Actions with a potentially large candidate set size. However, it
disregards the overall structure of the query. In some cases, it may therefore
select Pattern Constraints with Matching Actions that seem appealing in the
context of the current candidate mapping, but are a suboptimal choice in the
context of the remainder of the query. This problem is addressed by matching
strategies that precompute a static search plan based on statistics collected from
the host graph, such as the average number of outgoing edges of a vertex. These
approaches however do not account for heterogeneities in the host graph where
for example a vertex has a significantly above average outdegree.

4.1 Combining Static and Dynamic Search Plan Generation

To leverage the more accurate information available during the execution of a
graph query while still considering the overall structure of the query, we propose
a hybrid strategy for search plan generation. The combined approach can easily
be integrated with the Search-Model-based matching algorithm presented in
Sect. 3.1 in the form of a strategy for Pattern Constraint selection and is based
on an adapted cost function for Matching Actions. The adapted cost function
no longer only considers the growth of the search space in each step as given
by Eq. 2. It rather computes an estimate for the size of the search space of the
entire remainder of the query. This computation is based on (i) the size of the
Matching Action’s candidate set and (ii) a precomputed estimate for the size of
the search space left after selecting one of the candidate mappings. The former
corresponds to the cost function for Matching Actions from Sect. 3.2. To obtain
the latter, we build on a static technique by Varró et al. [17].

Varró et al. use a dynamic programming algorithm to gradually generate
search plans that lead from an initial state to each reachable search state. A
search state in [17] corresponds to a Search Model configuration, whereas a search
plan corresponds to a sequence of extension Matching Actions w = m1...ml with

220 M. Barkowsky and H. Giese

a sequence of configurations c0c1...cl such that ∀i ∈ [1, l] : ci−1[mi〉ci. Each
plan is associated with a static estimate for the overall effort from Eq. 1, given
by coststaC (ci,H,m1...ml) := coststaM (mi,H) ∗ (1 + coststaC (ci+1,H,m1...ml)) and
coststaC (cl,H,m1...ml) := coststaM (ml,H), where coststaM (mi,H) is an estimate for
the cost of a Matching Action (|S′|) based on statistical data collected from the
host graph and the size of considered indices. This can be summarized for the
complete search plan with c0 = c∅ and cl = cC to

coststaC (c∅,H,m1...ml) :=
l∑

j=1

j∏

i=1

coststaM (mi,H). (3)

We can generalize Eq. 3 to coststaC (c,H,w) for an arbitrary configuration c
and search plan w with c[w〉c′ for target configuration c′ and thus obtain the
minimal cost for that transition by

coststaCC(c, c′,H) := min
w with c[w〉c′

coststaC (c,H,w). (4)

As a byproduct of finding the optimal search plan that leads from c∅ to cC ,
the dynamic programming algorithm by Varró et al. computes coststaCC(c∅, c,H)
for all reachable c ∈ C. However, for our hybrid approach we require the values
for coststaCC(c, cC ,H) for all configurations c ∈ C to the complete configuration cC .

Therefore, rather than performing search plan generation starting from c∅ as
in the approach by Varró et al., we compute search plans and their associated
cost backwards starting with cC . Intuitively, we use the dynamic programming
approach to undo Matching Action applications, creating configurations and
search plans that lead from these configurations to cC . Thus, we obtain a table
containing the best generated partial search plan starting in each configuration,
as well as the associated cost.

Based on costdynM and coststaCC , we construct a new, hybrid cost estimation
function for extension Matching Action m with configuration c′ uniquely defined
by c = config(s) and c[m〉c′

costhybM (s,m,H) := costdynM (s,m,H) ∗ (1 + coststaCC(c′, cC ,H)). (5)

Note that to compute an optimal search plan with respect to coststaCC , the
approach in [17] requires exponential effort in the size of the query. This is also
true for our hybrid technique, since it has to determine search plans for all
possible configurations. However, the table only has to be computed once before
the execution of the query in both cases. Furthermore, in many application areas
query graphs tend to be rather small, but are matched into large host graphs.
In these cases the actual execution time dominates the time for the preliminary
computations as demonstrated in Sect. 5.

Example 3. Consider the example query from [10] shown in Fig. 4. Assuming the
pattern matching has already determined a mapping for query vertex p2, there
are two viable search plans for the remainder of the query, either following the

Hybrid Search Plan Generation for Generalized Graph Pattern Matching 221

edges in clockwise or counterclockwise direction. A fully dynamic approach runs
the risk of choosing neither and enumerating a cartesian product of mappings for
p1 and m. An adequate static approach would decide for one plan and adhere to
it for every instance of Person. However, if the number of incoming knows2 and
outgoing likes1 associations varies for different mappings for p2, the search plan
with minimal actual effort as given by Eq. 1 may vary as well. The introduced
hybrid approach is able to switch between the plans dynamically while avoiding
the cartesian product.

Fig. 4. Query used for evaluation in Sect. 5 with multiple viable search plans

4.2 Hybrid Search Plan Generation with Filtering Effects

So far, the approach presented in [17] and our related hybrid approach only
consider extension actions in the cost function for search plans. Explicit check
actions are simply inserted into the search plan as soon as possible, without
effect on the overall cost. However, performing a check potentially cuts off part
of the remaining search space if the check fails. It is therefore useful to also
consider checks in the cost function to steer search plan generation. Hence, sim-
ilarly to the cost associated with extension Matching Actions, we associate Pat-
tern Constraints p with a filtering rate fp in [0, 1]. The filtering rate represents
an estimate of the portion of possible candidate mappings for the constraint’s
dependencies satisfying the constraint. It is thus also an estimate for the portion
of the search space remaining after cutting off the parts that fail the check of that
constraint. We define the combined filtering rate of a set of Pattern Constraints
P as flt(P) :=

∏
p∈P fp.

For a configuration c, we denote the set of Pattern Constraints for which all
dependencies are BOUND in c by chkC(c). For configurations c and c′ and an
extension Matching Action m with c[m〉c′, the set of Pattern Constraints for
which a check can be executed after applying m to c but not before is then given
by chk(c, c′,m) := chkC(c′) \ (chkC(c) ∪ {m.constraint}).

222 M. Barkowsky and H. Giese

To also consider the filtering rates, we adapt the cost function coststaC for
configuration c, host graph H and a search plan consisting of a sequence of
extension actions w = m1 . . .ml with configurations c0 . . . cl such that c0 = c,
ci[mi〉ci+1 for i ∈ [0, l − 1], and cl = cC as follows

coststa,fC (c,H,m1..ml) :=
l∑

j=1

j−1∏

k=1

flt(chk(ck−1, ck,mk))
j∏

i=1

coststaM (mi,H), (6)

as for each Matching Action, the filtering of all Pattern Constraints for which
checks were executed beforehand matters.

We can then as for Eq. 4 generalize Eq. 6 to obtain the minimal cost for a
transition from a configuration c to c′ by

coststa,fCC (c, c′,H) := min
w with c[w〉c′

coststa,fC (c,H,w). (7)

Based on coststa,fCC , we derive the adapted hybrid cost for extension Matching
Action m for c and c′ uniquely defined by c = config(s) and c[m〉c′ by

costhyb,fM (s,m,H) := costdynM (s,m,H)∗
(1 + flt(chkM (c, c′,m)) ∗ coststa,fCC (c′, cC ,H)).

(8)

We use the statistical data collected for estimating the cost of extension
actions and index sizes to compute estimates for the filtering rate of Pattern
Constraints. However, in addition to the data collected in [17], for each expression
constraint with dependency n, we check for each host graph vertex that matches
the type of the query vertex represented by n whether it satisfies the expression.
We store the number of successful checks to compute the filtering rate for the
constraint’s check Matching Action.

Example 4. Figure 5 shows another example query from [10] where filtering of
explicit constraint checks can have a substantial performance impact. If the

Fig. 5. Query used for evaluation in Sect. 5 with a check acting as a filter

Hybrid Search Plan Generation for Generalized Graph Pattern Matching 223

expression constraint c over query vertex t1 is only satisfied by a small number
of Tags, it is highly preferable to start the matching process there to rule out
large portions of the search space as early as possible. This is considered by our
extended cost function.

5 Evaluation

We implemented the presented concepts in our EMF-based Story Diagram Inter-
preter tool [12]. Since backwards traversal of edges and edge lookup are not gen-
erally supported by EMF [1], we extended our tool to allow the corresponding
Matching Actions. For performance evaluation of simple queries without nesting
and paths of varying length, we decomposed twelve of the 14 complex reading
queries of the Interactive Workload of the LDBC Social Network Benchmark [10]
according to their formulation in natural language. We omitted the two remain-
ing queries as they include paths of arbitrary length. For queries with paths
of varying but bounded length, we chose the maximum length. Similar to our
approach in [6], we encoded nesting as index constraints. This yielded a total of
32 partial queries corresponding to the task of matching simple graph patterns.

We then executed Story Diagram implementations of the partial queries over
five datasets of different size generated using the data generator of the bench-
mark, which we parametrized with different numbers of persons in the network
(500, 1000, 1500, 2000, 2500), obtaining host graphs with up to 1 500 000 vertices
and 4 300 000 edges. For search plan generation, we considered three strategies:

– DYNAMIC: fully dynamic approach as introduced in Sect. 3.2
– STATIC: static approach presented by Varró et al. [17]
– HYBRID: hybrid approach as introduced in Sect. 4.2

All experiments were performed on a Linux SMP Debian 4.9.18-1 machine with
Intel Xeon E5-2640 CPU (2.5 GHz clock rate) and 32 GB main memory running
OpenJDK version 1.8.0 181. All presented times correspond to the average time
measured in five runs of the respective experiment, each including a brief warm-
up. For all experiments with an average execution time greater than 1 s, the
standard deviation was less than 10% of the average time.

5.1 Experimental Results

Figure 6 shows the measured execution times. Note that for readability, we
included only those partial queries for which the performance of HYBRID was
better or worse than the performance of either reference strategy by at least fac-
tor 1.5 for at least one dataset and the execution took more than 1 s. DYNAMIC
outperforms STATIC for query 5.1.1, whereas STATIC achieves better results
than DYNAMIC for queries 8.1 and 10.1 and has a more stable performance
for query 11.1. The results of HYBRID are always at least close to the better
performing reference strategies and are significantly better in some cases.

224 M. Barkowsky and H. Giese

Fig. 6. Execution time of partial queries over datasets of increasing size

Fig. 7. Speedup of HYBRID compared to the better reference strategy

Hybrid Search Plan Generation for Generalized Graph Pattern Matching 225

Considering all 32 partial queries and all datasets, the execution time of
HYBRID is at most 2.1 times the execution time of the better reference strategy
(speedup 0.48), as shown in Fig. 7. At the same time, the HYBRID strategy
speeds up the execution of some queries by up to factor 100. The slight decrease
in performance for some cases can be explained by a small overhead associated
with the updating of the Search Model when comparing to the STATIC technique
and the time required to compute the cost tables when comparing to DYNAMIC.
The overhead is particularly pronounced for queries with a low execution time.

For queries 4.1.1, 5.1.1, 6.1.1 and 11.1, the performance gain of HYBRID
stems from the improved handling of filtering effects. These queries include
expression constraints, which are ignored by the DYNAMIC and STATIC strat-
egy until a mapping for the respective vertex is created. HYBRID considers these
constraints during search plan generation. In the case of query 6.1.1, which was
introduced in Example 4, this results in HYBRID matching the vertex t1 first.
This significantly cuts the search space compared to DYNAMIC and STATIC,
which both start with matching p1. The advantage of the hybrid generation of
search plans is visible for query 7.1, which was presented in Example 3. For fur-
ther evaluation, we executed this query over the largest dataset for each Person
vertex in the network, which we used as an initial mapping for p2. For each of
these roughly 2200 individual executions, we measured the size of the traversed
search space by counting the total number of candidate mappings created for all
query vertices. Figure 8 shows a histogram of the measurement results.

Figure 8 shows that the DYNAMIC strategy often achieves very small search
spaces, but produces outlier performances by sometimes employing an inade-
quate search plan that results in the enumeration of a large cartesian product.
This is illustrated by a number of mappings leading to very large search spaces.
The STATIC strategy adheres to a single, precomputed search plan for all map-
pings of p2, which results in a more stable performance. However, it misses out
on the opportunity to reduce search space size via a different search plan and
hence rarely achieves very small search spaces. By also considering concrete host
graph information, the HYBRID strategy is able to dynamically switch search
plans while using the static information to avoid plans that lead to cartesian
products. As a result, it creates fewer than 1000 candidate mappings for about
40% of the initial mappings and only creates more than 10 000 for less than 10%.

Fig. 8. Number of mappings for p2 leading to certain search spaces for query 7.1

226 M. Barkowsky and H. Giese

The collection of statistical data required for the preliminary computations of
the STATIC and HYBRID strategy can mostly be integrated with the construc-
tion of the indexing structures required for backwards traversal and lookup of
edges, causing no further overhead compared to the DYNAMIC strategy. Also,
these indices only have to be created once per host graph. The filtering rates
of expression constraints are an exception, since they are not required for the
DYNAMIC or STATIC strategy and have to be computed for each individual
constraint of a query that is executed for the first time. The time to compute
the filtering rates was below 500 ms for all partial queries. This seems feasible
for many partial queries where the overall execution time was much higher.

To obtain optimal static search plans, the computation of the search plan
tables for HYBRID and STATIC is required whenever a query is executed over
a changed dataset. This is potentially problematic since the computation has an
exponential runtime complexity. However, for our examples the required time
was always below 50 ms for both strategies and within 1.5 times of each other.

Our evaluation demonstrates that our technique is competitive and can out-
perform existing approaches for a realistic application scenario as represented
by the independent and widely accepted LDBC Social Network Benchmark.
Regarding threats to validity, we remark that the results are not necessarily
generalizable to different domains, which would require further experiments.

6 Related Work

A variety of model transformation tools each employ their own heuristics for
matching the left hand side of transformation rules, which corresponds to the
execution of a graph query. PROGRES [18] considers several kinds of matching
operations and offers a uniform representation in a Pattern Graph, but only
employs a simple greedy strategy for search plan generation. GrGen [11] builds
a Plan Graph for a query, which encodes matching actions related to domain and
edge constraints. A search plan is then determined by computing a minimum
spanning tree of the Plan Graph. In Henshin [3], the matching order is mainly
determined based on domain constraints, but the filtering effect of attribute
constraints is considered to some extent. The local search mechanism of EMF-
IncQuery [8] employs the technique for search plan generation presented in [17],
which we use as the foundation of our hybrid matching approach. All mentioned
tools however use a static search plan to execute the query over the entire model.

Our previous approach [12] employs a dynamic algorithm for search plan
generation and considers several kinds of matching operations [14]. However, it
does not provide a unified notion of these operations and search plan generation
is based exclusively on a cost function for single operations.

Horváth et al. [15] introduce an approach based on a so-called Search Graph
for representing generic constraints in graph queries. It is conceptually very sim-
ilar to the Search Model presented in this paper, but does not encode the current
state of the search. Their approach relies on precomputed, static search plans
and specifically addresses the timing of checks. However, they do not consider
filtering effects but focus on the cost of performing the check.

Hybrid Search Plan Generation for Generalized Graph Pattern Matching 227

In [7], a matching technique is proposed that is based on decomposing the
query into a core, forest and leaf structure. The core structure comprises the
dense part of a query and is matched first to exploit the filtering of edge con-
straints. Since the approach focuses on the pure subgraph matching problem, it
does not consider constraints other than edge and domain constraints.

Bak and Plump design an efficient algorithm for graph pattern matching [4]
based on designating certain vertices as roots. Roots are then used as starting
points for the search, thus restricting the search space. While the notion of roots
can be integrated with our approach in the form of Pattern Constraints and
Matching Actions, it is not appropriate in every application scenario.

Incremental graph pattern matching as implemented in VIATRA [16] offers
an alternative to local search. VIATRA stores all matches of a query in a cache,
which is updated when the host graph changes. The updating process is realized
via RETE networks, the structure of which corresponds to a search plan. This
enables an efficient enumeration of matches when a query is repeatedly executed
over an evolving host graph, but causes overhead in memory consumption.

7 Conclusion

In this paper, we developed an approach for graph pattern matching based on a
Search Model representation of a graph query and a generalized version of the
algorithm from [12]. We then integrated an existing static technique [17] with
our dynamic algorithm and extended the resulting hybrid strategy by a more
sophisticated handling of filtering effects. Finally, we empirically evaluated our
solution using our Story Diagram Interpreter tool with decomposed queries and
generated data from the LDBC Social Network Benchmark. Our results confirm
that considering static information significantly improves the performance of the
hybrid strategy compared to a fully dynamic approach. While the hybrid tech-
nique comes with an overhead in execution time compared to a static approach,
its dynamic nature can improve performance for heterogenous host graphs. Our
results also demonstrate the benefit of our improved handling of filtering effects.

As future work, we will study how the optimizations concerning the exponen-
tial execution time of table calculation introduced in [17] can be integrated with
our hybrid matching technique and how the overhead for the required statistics
can be decreased at the expense of accuracy, for instance by computing filtering
rates based on a sample of host graph vertices.

We also plan to investigate how to take further advantage of the dynamic
nature of our approach by integrating information about the concrete instance
situation into the precomputed search plan tables. Finally, we will extend our
evaluation by applying our technique to different application areas and compare
our realization to other existing tools.

228 M. Barkowsky and H. Giese

References

1. EMF: Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/.
Accessed 7 May 2019

2. Angles, R.: A comparison of current graph database models. In: 2012 IEEE 28th
International Conference on Data Engineering Workshops, pp. 171–177. IEEE
(2012). https://doi.org/10.1109/ICDEW.2012.31

3. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9

4. Bak, C., Plump, D.: Rooted graph programs. In: Proceedings of International
Workshop on Graph-Based Tools (GraBaTs 2012), vol. 54 (2012). https://doi.
org/10.14279/tuj.eceasst.54.780

5. Barkowsky, M.: Tight integration of indices into graph query execution. Master’s
thesis, Hasso Plattner Institute for Digital Engineering (2018)

6. Beyhl, T., Blouin, D., Giese, H., Lambers, L.: On the operationalization of graph
queries with generalized discrimination networks. In: Echahed, R., Minas, M. (eds.)
ICGT 2016. LNCS, vol. 9761, pp. 170–186. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40530-8 11

7. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph matching by
postponing Cartesian products. In: Proceedings of the 2016 International Confer-
ence on Management of Data, pp. 1199–1214. ACM (2016). https://doi.org/10.
1145/2882903.2915236

8. Búr, M., Ujhelyi, Z., Horváth, Á., Varró, D.: Local search-based pattern matching
features in EMF-IncQuery. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT
2015. LNCS, vol. 9151, pp. 275–282. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21145-9 18

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. MTCSAES. Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-31188-2

10. Erling, O., et al.: The LDBC social network benchmark: interactive workload. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, pp. 619–630. ACM (2015). https://doi.org/10.1145/2723372.2742786

11. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: a fast SPO-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006). https://doi.org/10.1007/11841883 27

12. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by inter-
preting story diagrams. Electron. Commun. EASST 18 (2009). https://doi.org/10.
14279/tuj.eceasst.18.268

13. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint sat-
isfaction problems. Artif. Intell. 14(3), 263–313 (1980). https://doi.org/10.1016/
0004-3702(80)90051-X

14. Hildebrandt, S.: On the performance and conformance of triple graph grammar
implementations. Ph.D. thesis, Hasso Plattner Institute at the University of Pots-
dam, June 2014

15. Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced
graph patterns. Electron. Commun. EASST 6 (2007). https://doi.org/10.14279/
tuj.eceasst.6.49

https://www.eclipse.org/modeling/emf/
https://doi.org/10.1109/ICDEW.2012.31
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.14279/tuj.eceasst.54.780
https://doi.org/10.14279/tuj.eceasst.54.780
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1145/2882903.2915236
https://doi.org/10.1145/2882903.2915236
https://doi.org/10.1007/978-3-319-21145-9_18
https://doi.org/10.1007/978-3-319-21145-9_18
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1007/11841883_27
https://doi.org/10.14279/tuj.eceasst.18.268
https://doi.org/10.14279/tuj.eceasst.18.268
https://doi.org/10.1016/0004-3702(80)90051-X
https://doi.org/10.1016/0004-3702(80)90051-X
https://doi.org/10.14279/tuj.eceasst.6.49
https://doi.org/10.14279/tuj.eceasst.6.49

Hybrid Search Plan Generation for Generalized Graph Pattern Matching 229

16. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z.: Road
to a reactive and incremental model transformation platform: three generations of
the VIATRA framework. Softw. Syst. Model. 15(3), 609–629 (2016). https://doi.
org/10.1007/s10270-016-0530-4

17. Varró, G., Deckwerth, F., Wieber, M., Schürr, A.: An algorithm for generating
model-sensitive search plans for EMF models. In: Hu, Z., de Lara, J. (eds.) ICMT
2012. LNCS, vol. 7307, pp. 224–239. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30476-7 15

18. Zündorf, A.: Graph pattern matching in PROGRES. In: Cuny, J., Ehrig, H., Engels,
G., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 454–468.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61228-9 105

https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/978-3-642-30476-7_15
https://doi.org/10.1007/978-3-642-30476-7_15
https://doi.org/10.1007/3-540-61228-9_105

Author Index

Anjorin, Anthony 131, 195
Arendt, Thorsten 177

Barkowsky, Matthias 212

Corradini, Andrea 93

Drewes, Frank 55

Fritsche, Lars 38

Giese, Holger 212

Harmer, Russ 141
Heckel, Reiko 93
Hoffmann, Berthold 55

Kosiol, Jens 38, 75, 177
Kraus, Florian 195
Kreowski, Hans-Jörg 159
Kuske, Sabine 159

Lambers, Leen 75
Löwe, Michael 21
Lye, Aaron 159

Makhlouf, Amani 111
Minas, Mark 55

Nassar, Nebras 177

Oshurko, Eugenia 141

Percebois, Christian 111

Robrecht, Patrick 131

Saadat, Maryam Ghaffari 93
Schürr, Andy 38
Stolte, Florian 195
Strüber, Daniel 75

Taentzer, Gabriele 38, 75, 177
Tomioka, Taichi 3
Tran, Hanh Nhi 111
Tsunekawa, Yutaro 3

Ueda, Kazunori 3

Varró, Gergely 131

Weidmann, Nils 131, 195

	Preface
	Organization
	Contents
	Theory
	Introducing Symmetry to Graph Rewriting Systems with Process Abstraction
	1 Introduction
	2 Related Work
	3 LMNtal: Graph Rewriting Language
	3.1 Syntax of LMNtal
	3.2 Relations Between Processes
	3.3 Semantics of LMNtal

	4 Symmetry Reduction
	4.1 Symmetric Group for Structural Congruence
	4.2 Soundness of Structural Congruence

	5 Process Abstraction
	5.1 UPE, Unused Process Elimination
	5.2 UPE for State Spaces
	5.3 Soundness of UPE

	6 Experiments
	7 Conclusion and Future Work
	References

	Double-Pushout Rewriting in Context
	1 Introduction
	2 Partial Arrow Classifier
	3 DPO-Rewriting in Context
	4 Rule Composition and Decomposition
	5 Analysis and Characterisation of Parallel Independence
	6 Conclusion
	References

	Adhesive Subcategories of Functor Categories with Instantiation to Partial Triple Graphs
	1 Introduction
	2 Introductory Example
	3 Preliminaries
	4 Adhesive Subcategories of Functor Categories
	5 The Category of Partial Triple Graphs
	6 Related Works
	7 Conclusion
	References

	Extending Predictive Shift-Reduce Parsing to Contextual Hyperedge Replacement Grammars
	1 Introduction
	2 Contextual Hyperedge Replacement Grammars
	3 Making Shift-Reduce Parsing Predictive
	4 IOC Normalform
	5 Lookahead Analysis
	6 Realization and Evaluation
	7 Conclusions
	References

	Analysis and Verification
	Exploring Conflict Reasons for Graph Transformation Systems
	1 Introduction
	2 Running Example
	3 Preliminaries
	3.1 Graph Transformation and Conflicts
	3.2 Conflict Reasons

	4 DR/DD Conflict Reasons
	5 Characterizing DR/DD Conflict Reasons
	6 Constructing DR/DD Conflict Reasons
	7 Related Work and Conclusion
	References

	Unfolding Graph Grammars with Negative Application Conditions
	1 Introduction
	2 Basic Definitions
	3 Occurrence Grammars
	4 Conditional Occurrence Grammars
	5 Unfolding Conditional Graph Grammars
	6 Incremental NACs
	7 Conclusion
	References

	Two-Level Reasoning About Graph Transformation Programs
	1 Introduction
	2 The Small-tALC Language
	2.1 Logic Foundation
	2.2 Small-tALC Graphs
	2.3 Small-tALC Statements
	2.4 Small-tALC Programs

	3 Small-tALC Program Verification
	3.1 Motivating Example
	3.2 Rule Verification Using ABox Layer
	3.3 Program Verification Using TBox Layer

	4 Static Analysis by Abstract Interpretation
	4.1 Interpretation of Small-tALC Statements
	4.2 Soundness of the Static Analysis

	5 Relation Between the ABox/TBox Verifications
	5.1 Dependence Between the ABox/TBox Verifications
	5.2 Complementarity Between the ABox/TBox Verifications

	6 Verifying Monadic Second-Order Properties
	7 Related Work
	8 Conclusion and Future Work
	References

	Tools and Applications
	Incremental (Unidirectional) Model Transformation with eMoflon::IBeX
	1 Introduction and a Brief History
	2 Motivation and Related Work
	3 Architectural Overview
	4 Evaluation
	5 Conclusion and Future Work
	References

	Knowledge Representation and Update in Hierarchies of Graphs
	1 Introduction
	2 Preliminaries
	2.1 Sesqui-Pushout Rewriting
	2.2 Hierarchies of Graphs

	3 Forward Propagation
	3.1 The Strict Phase of Forward Rewriting
	3.2 The Canonical Phase of Forward Propagation
	3.3 The Forward Clean-Up Phase
	3.4 Example

	4 Backward Propagation
	4.1 The Strict Phase of Backward Rewriting
	4.2 The Canonical Phase of Backward Propagation
	4.3 The Backward Clean-Up Phase
	4.4 Example

	5 Rewriting General Hierarchies
	5.1 Forward Composability
	5.2 Backward Composability

	6 The ReGraph Library
	7 Conclusions
	References

	Relating DNA Computing and Splitting/Fusion Grammars
	1 Introduction
	2 Preliminaries
	3 Splitting/Fusion Grammars
	4 Adleman's Experiment
	5 Transformation of Insertion-Deletion Systems into Splitting/Fusion Grammars
	5.1 Insertion-Deletion Systems
	5.2 String Graphs
	5.3 The Transformation

	6 2-Splicing Grammars
	7 Conclusion
	References

	Transformation Rules Construction and Matching
	Constructing Optimized Validity-Preserving Application Conditions for Graph Transformation Rules
	1 Introduction
	2 Running Example
	3 Formal Background and Tooling
	3.1 Constraints, Conditions, and Rules
	3.2 OCL2AC Tool

	4 Optimizing Application Conditions
	4.1 Approximating Preservation
	4.2 Dealing with EMF's Built-in Negative Constraints

	5 Tooling
	6 Evaluation
	6.1 Evaluating Complexity
	6.2 Evaluating Performance

	7 Related Work
	8 Conclusion
	References

	From Pattern Invocation Networks to Rule Preconditions
	1 Introduction and Motivation
	2 Running Example and Basic Concepts
	3 Semantics of Pattern Invocation Networks
	4 The Flattening Algorithm
	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Hybrid Search Plan Generation for Generalized Graph Pattern Matching
	1 Introduction
	2 Prerequisites
	3 Search Model and Dynamic Search Plan Generation
	3.1 Search-Model-Based Matching Algorithm
	3.2 Dynamic Search Plan Generation

	4 Hybrid Search Plan Generation
	4.1 Combining Static and Dynamic Search Plan Generation
	4.2 Hybrid Search Plan Generation with Filtering Effects

	5 Evaluation
	5.1 Experimental Results

	6 Related Work
	7 Conclusion
	References

	Author Index

