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Abstract. Client-independent Internet Protocol address (IP) geoloca-
tion is a critical problem in the Internet World, of which the accuracy
is based on highly reliable landmarks. However, most existing meth-
ods focus heavily on improving the location estimating method rather
than improving the quality and quantity of landmarks. Without suffi-
cient landmarks of high quality, they face difficulties when attempting
to further improve accuracy. Even though some existing mining based
methods dig massive landmarks from online web resources, most land-
marks are of low quality because they do not make full use of these open
resources. In this paper, we propose ONE-Geo, a methodology to mine
highly reliable landmarks as much as possible by extracting the owner
name of web servers. For a given target IP, ONE-Geo extracts the real
owner name from web page information and registration records. Uti-
lizing this clue, ONE-Geo determines the correct location by searching
address information on an organization knowledge graph and conduct
inference. Experimental results show that ONE-Geo achieves a median
error distance of 463 m on 165 web servers and a median error distance
of 7.7 km on 721 nodes that do not host a website. For web servers,
ONE-Geo outperforms existing methods and several commercial tools.
To be specific, 66.1% nodes are geolocated by ONE-Geo with an error less
than 1 km, which is two times as many as Street-level Geolocation(SLG),
which is one of the best existing methods on IP geolocating.

Keywords: IP geolocation · Network measurement ·
Landmark mining

1 Introduction

The ability to determine the geographical location of a networking device is
essential for many location-aware applications, such as content personalization,
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investigating crimes, and location-based access limitation. Even though exist-
ing client-dependent geolocation methods are able to achieve high accuracy on
locating client devices based on GPS, cellular or Wi-Fi, the client support is a
must, which makes them irrelevant in many applications, such as location-based
targeted advertising and location-based access restrictions.

As for client-independent methods, they mainly fall into two categories: (1)
data mining-based approaches and (2) network measurement-based geolocation
approaches. However, most existing approaches can only guarantee a coarse-
grained accuracy at city-level, which can hardly meet the demands mentioned
above. In most cases, the low precision of measurement-based methods results
from the scarceness of landmarks with high precision location. Even though data
mining-based IP geolocation approaches can provide solutions to get massive
landmarks, they can only provide landmarks of low quality. Since using cloud
hosts is a trend today, previous methods that generate landmarks by directly
mapping an address that is revealed on a web page to the web site’s IP is no
longer reliable anymore. Plus, as the structure of websites is becoming more
complicated, it is increasingly difficult to mine address information from web
pages.

In this paper, we propose ONE-Geo to mine as many highly reliable land-
marks as possible by extracting the owner names of web servers. ONE-Geo is
based on three findings. (1) Owner names are more commonly shown on web
pages than address information. Almost all web pages explicitly expose indica-
tions of the owner of the website, such as organization name in the title, copy-
right information and logo tag. (2) If a website is hosted on the cloud, the owner
name usually appears in WHOIS registration records. Even though the WHOIS
database only returns the address of the head office for the whole IP block,
the organization name can be utilized as a clue to the location. (3) Given the
owner name of an IP, it is easy to narrow down its location to several potential
coordinates by using organization-location knowledge graph (OKG).

The main contributions of this paper are summarized as follows:

(1) We propose an efficient method to mine landmarks of high quality without
any measurement (ONE-Geo Alpha). Because the structures of websites are
more complicated today than they have ever been in the past, it is becoming
increasingly difficult to mine address information from web pages. Hence,
our highly efficient method can be useful for a variety of IP geolocation
efforts.

(2) We propose a universally applicable approach which depends neither on
addresses on web pages, nor addresses in IP registration records, but owner
names which are common and easy to obtain. So, ONE-Geo is designed to
not only mine the locations of web servers that are hosted locally, but also
the ones that are hosted on the cloud. As the trend is shifting towards host-
ing more websites on the cloud, previous methods that generate landmarks
by directly mapping an address that revealed on a web page to the web
site’s IP is increasingly less reliable. ONE-Geo could play a large part in
filling this ever-increasing void of location-related information since it can
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deduce the location of a data center by using the OKG and the owner name
extracted from WHOIS database.

(3) Based on the landmarks mined by ONE-Geo Alpha, we designed a highly
fault-tolerant inference algorithm to mine as many landmarks as possible.
By this method, we were able to make full use of web resources available to
the public.

2 Related Work

Data Mining-Based Methods: GeoTrack [1], DRoP [2], rDNS-Geo [3] and
HLOC [4] mine location hints in domain names to geolocate an IP. Structon
[5] uses regular expressions to extract location information from web pages. By
mapping addresses to the corresponding IPs of the web servers, it generate hun-
dreds of thousands of landmarks. GeoCluster [1] uses the address prefixes in BGP
routing tables to cluster IP addresses and then deduce the geographical location
of the entire cluster by extracting location information from user registration
records in the Hotmail service. Checkin-Geo [6] leverages the location data that
users share in location-sharing services and logs of user logins from PCs for IP
geolocation. Dan et al. [7] constructs an IP geolocation database by collecting
location data from a subset of search engine logs that contain real time global
positioning information obtained from mobile devices.

Measurement-Based Methods: GeoPing [1] maps a node to a probe’s loca-
tion based on the measured delays from probes to the node. CBG [8] utilizes
measured delays to draw constraints and narrows down the possible region that
covers a target to a continuous area. TBG [9] proves that network topology can
be effectively used to achieve high geolocation accuracy. Octant [10] takes both
positive and negative measurement constraints into account. SLG [11] utilizes
zip codes on web pages to generate landmarks. An important contribution of this
work lies in introducing a method that indirectly estimates the delay between a
target and a landmark by finding the closest common router. Geo-NN [12] and
LBG [13] train prediction model to geolocate IPs. SBG [14] uses smartphones
as landmarks relying on crowdsourcing principles.

Data mining based methods are widely used in commercial systems due to
fast response time and easy deployment. However, they can usually only provide
city-level precision because some of them, such as Structon and various domain
name mining methods, use the open resources in an inefficient way. Furthermore,
methods that use the raw data, such as user registration records, are intrinsically
unreliable. As for measurement-based methods, they rely heavily on landmarks.
Most of them fail to improve accuracy further because of the lack of high-quality
landmarks.

Considering the problems mentioned above, we propose ONE-Geo which
relies on owner names which are common and easy to obtain. ONE-Geo is not
only a more efficient, convenient and universally applicable approach, compared
to previous data mining-based methods, but also an excellent solution to pro-
viding a considerable number of landmarks for measurement-based methods.
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3 Owner Name Extraction Based Algorithm

Briefly, our geolocation approach consists of three major steps. First, we scan an
IP segment and find all IPs that host websites. We crawl homepages and collect
their registration records from regional Internet registry databases. For a given
IP, we try to extract the owner name from the web pages and the registration
records. Second, we use the owner name as a clue to search for potential addresses
by an organization knowledge graph (OKG). If there is only one potential
address, we directly map it to the IP address and generate a new landmark. Oth-
erwise, by our election based inference algorithm, we infer the correct location
from all candidate geographic coordinates. Third, in order to expand the cover-
age further, we cluster IPs and map every IP in a cluster to the same location.

3.1 Owner Name Extraction

For registration information, we use the application programming interfaces
(APIs) provided by WHOIS databases to get the registration records of a given
IP and extract the organization name. For homepages, it is more complicated,
the details of which are explained in the following section.

Without a context, existing public name entity recognition (NER) tools
do not work well on extracting organization names from titles, logo tags, nor
copyright information. We tried Stanford NER and Natural Language Toolkit
(NLTK). Both of them return false positives in many cases. Take Stanford NER
for example, we feed “Palo Alto Research Center Incorporated; c© 2018. All
Rights Reserved” into the recognition function and it returns “Alto Research
Center Incorporated” back, which can lead to huge errors in the next inference
process.

Hence, we employ another two strategies to extract organization names: by
regular expression (RegEx) and by an organization name dictionary. Since there
are some conventions in displaying the copyright information, the RegEx is a
good choice for extracting organization names from copyright information. Dif-
ferent from copyright information, website titles and text in logo image tags are
usually organized in a variety of styles. In order to extract organization names
exactly and not to introduce redundant characters that can lead to negative
effects on the inference part, we collect organization names from public semi-
structured and structured knowledge databases, e.g. Wikipedia, yellow pages,
and recruiting websites. In case we get more than one organization name, we
determine the real owner name by scoring according to their position and fre-
quency.

3.2 Election-Based Inference Algorithm

To build our OKG, we first collected a large volume of pointer of interest (POI)
data from OpenStreetMap (OSM) [15], Data Center Map [16], and The Real
Yellow Pages [17] to generate organization-location links. Then, we crawled
Wikipedia [18] for headquarters-subsidiary links. Based on these links, we built
an organization knowledge graph for location searching.
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Given the owner name of a target IP, we use it as a clue to retrieve all relevant
locations of organizations and their subsidiaries from OKG. Before going to the
next step, we merge highly clustered locations to a single candidate location (see
C1 on Fig. 1) by calculating their average coordinate. For a given IP, if it has
only one owner name and there is only one candidate point for it, we map this
IP to the only location and get it into our landmark database. If there is more
than one candidate returned, we leave the rest of the job to the next inference
process. To our surprise, the number of IPs with only one possible location was
substantial (1.2 million of 8 million). In other words, by simply searching for
potential locations with the owner name, ONE-Geo got a massive number of
landmarks directly without any network measurement. We named the initial
ONE-Geo ONE-Geo Alpha. We added the initial landmarks collected by ONE-
Geo Alpha to the existing landmark set that were prepared for the next inference
part.

As for IPs with multiple candidate locations, we used CBG to filter out
points that were far less likely to be the correct location. To determine the
possible region of the given IP address, we first measured the network delay
time from probes to the target IP by ping. Then, we converted the network
delay into a geographical distance. Katz-Bassett et al. [9] and Wang et al. [11]
have shown that 4/9 is suitable to be adopted as the converting factor between
measured delay and geographical distance. Thus, we also adopted this ratio
as the converting factor in our calculations. After estimating the geographical
distances, by multilateration, we drew an intersection that covers the target IP.
Next, we defined a circular area that covers the intersection area and filters out
potential locations that are out of this circular area.

For a given target IP, if there is only one possible location left in the possible
area, we map the target IP to this location and add this new landmark to the
existing landmark set. If there are still more than one candidate locations, we
proposed an election-based inference algorithm to determine the final location.

CandidateLandmarkProbes

R

1C

2C

O

Fig. 1. An election example
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As shown in Fig. 1, for a target IP, we draw a circle centered at the centroid
of the constrained area, with a radius R

′
of the maximal error distance. The

area bounded by this circle is referred to as the electoral district. In the electoral
district, we define an election tuple E= (t,C,L,P) including the target IP t,
all candidate locations (squares) C, a set of landmarks (triangles) L, and a set
of probes (circles) P . The landmark set not only includes landmarks in the
district, but also the ones that are out of the district but still in the vicinity of
the candidates. For example, the striped triangle near the candidate C2 in Fig. 1
is also in the set. All the landmarks in the set were selected from the continuous-
expanding landmark set which consists of not only the initial landmarks that
were collected by ONE-Geo Alpha but also the ones that were generated in every
inference loop.

Probes are used to measure network delays and traceroutes from a probe to a
landmark or a target IP. Landmarks, in charge of distributing scores to candidate
locations, play the role of a bridge that links IPs to their real locations. To be
specific, by basing the measurements on probes, we can estimate the distance
from any landmark to a given target IP. The closer a landmark is to the target
IP, the higher the score the landmark will get. Also, we can calculate the distance
from a landmark to any candidate location by computing the great-circle distance
[19] between their coordinates. A location closer to a landmark gets a higher score
from that landmark. For each election, the candidate location with the highest
score wins the election and gets mapped to the target IP.

The final score of a candidate is defined below:

score(ci) =
∑

lj∈L
g(lj , ci)s(lj) (1)

In this equation, s(lj) is the individual score of a landmark lj and g(lj , ci) is a
redistributing gate which lets through a proportion of the individual score of the
landmark lj .

As mentioned before, a candidate should get a higher score from a landmark
if it is closer to the landmark than the others. Therefore, the redistributing gates
are defined below:

g(lj , ci) = 1 − edis(ci,lj)∑
lk∈L edis(ci,lk)

(2)

Here, ci represents a candidate, li represents a landmark, and dis(ci, vi) refers
to the great-circle distance between them.

As for the individual score of each landmark, we use the equation below to
calculate:

s(li) = αst(li) + βsd(li) (3)

Above, st(li) represents the score in the topology perspective and sd(li) repre-
sents the score in the perspective of pure network delay measurement.

The individual score of a landmark depends on the distance to the targeted
node. We estimate the distance by network measurement according to two impor-
tant insights from previous work: (1) Despite the fact that the direct relationship
between the real geographic distance and estimated distance is incredibly weak
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due to the inevitable circuitous path, queuing and processing delays, the indi-
rect relationship on distance is largely preserved [11]. I.e., the two nearest IP
addresses usually have the smallest network delay. (2) For geographically adja-
cent IP addresses, their network delay measurements resulting from the same
probe should be similar [11,20].

In the topology perspective, learning from [11], we manage to calculate the
indirect delay distance (IDD) from a landmark to a target IP by doing traceroute
measurement and finding the closest common router. Then, we combine IDDs
into a delay vector and normalize it. Each element can be calculated by the
following equation:

st(li) = 1 − ed(li,t)∑
lj∈L ed(lj ,t)

(4)

Here, d(li, t) represents the indirect delay time from a landmark to the target
IP.

Following this, in the perspective of pure network delay measurement, we
measured the pure delay between each probe and every landmark by ping. Then,
we embedded all delays into a delay vector. We employ the cosine similarity to
estimate the distance. The score of a landmark can be calculated by an equation
below:

sd(li) =
sim(li, t)∑

lj∈L sim(lj , t)
(5)

Above, sim(li, t) represents the cosine similarity of a landmark and the target.
Based on the initial landmarks that ONE-Geo Alpha collected, we first

deduced the coordinates of the IPs that had two candidate locations. After com-
pleting the inference of the two-candidate IPs, we stepped further into the infer-
ence of the ones that had three candidate locations. Every time the inference was
done, we mapped the target IPs to the estimated locations to generate a batch
of new landmarks. Recursively, we added the new landmarks into an existing
landmark set and repeat the inference algorithm until no more IPs that could
meet the launch condition of a new loop of inferences existed. A new launch is
conditional on the credibility of an election being higher than a threshold T .
The credibility is defined as shown below where size(P ) and size(L) represent
the number of the probes and the number of the landmarks separately:

c(Ei) = ln(1 + size(P )size(L))1/2 (6)

3.3 Expanding IP Coverage

We refer to the enhanced ONE-Geo as ONE-Geo Beta. After the inference pro-
cess, almost 4 million landmarks were generated from 8 million IPs. However, all
of them were web servers. Therefore, in order to empower ONE-Geo to geolocate
nodes that do not host a website, we must go further to enlarge the IP coverage.
Freedman et al. [21] claims that 97% of IPs in the same /24 segment are at
nearly the same location with a slight distance from each other. Inspired by this
finding, we adopted a /24 clustering method to expand the coverage. Instead
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of mapping all clustered IPs to the same location, we modified this expanding
method a little to avoid introducing errors.

In a /24 IP segment, we cluster existing landmarks and define the largest
cluster as the dominant group, which determines the dominant location of this
segment. The coordinate of the dominant location is defined as the average
coordinate of landmarks in the group. We named the landmarks in the vicinity
of the dominant location the followers, and the nearest one the leader. The rest
of the dispersed ones are labeled loners.

For the existing landmarks, we did not change their location because the
coordinates returned by OKG were very precise. For the rest of the location-
unknown IPs, we mapped them to the dominant location of a group, if and
only if, they met the requirements to get into the group. We designed 2 rules to
evaluate the qualification to join the group. First, we calculated a new node’s
IDD to the leader, and the IDD between the leader and every single follower.
If the IDD of the new IP was less than the IDD of the remotest follower to the
leader, it was included in the group. Second, if its IDD to the nearest follower
was far less (5 times less in our experiment) than the IDD to any of the loners,
it is in the group.

After the addition of the 2 rules mentioned above, a lot of new IPs were
selected and clustered into the dominant group. Following this, we mapped the
new nodes to the location of the dominant group and got new landmarks. By
this method, ONE-Geo expanded the IP coverage even further. We named the
fully-fledged ONE-Geo ONE-Geo Epsilon.

4 Evaluation

Our research indicates that, SLG [11] is a typical and one of the best existing
IP geolocation methods. Therefore, by primarily focusing on a comparison of
ONE-Geo with SLG, we can demonstrate the improvement of ONE-Geo on both
web server nodes and Internet of things (IOT) nodes. In addition, we compared
ONE-Geo with several commercial tools (ipstack [22], MaxMind’s GeoIP2 [23],
IPIP [24], and ipinfo [25]) to show ONE-Geo achieves much better estimation
precision than popular commercial tools on web servers, and achieves similar
precision to them on IOT nodes. In our experiments, we limited our dataset to
the US. This choice was made for 3 reasons. First, the time needed to deal with
cross-language problems when extracting organization names from web pages
made it impractical. Second, analysis of ONE-Geo through the lens of multiple
language is not focus of this paper. And third, we can get more ground-truth
information from the nodes in the United States.

In order to evaluate the accuracy of our method, we collected ground-truth
data from PlanetLab [26] and RIPE Atlas [27]. On these two platforms, nodes
with reported coordinates are shared with the public. The PlanetLab data set
is a commonly used data set in IP geolocation research (e.g. [9–11]), but the
quantity of nodes is limited and are all web servers. To complement this data
set, we collected data on IOT nodes from RIPE Atlas. In the end, after filtering
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out inaccessible nodes, we had 165 web servers and 980 IOT nodes left. As to
evaluating coverage and efficiency, we scanned 64.7 million IPs that host websites
and crawled 8,283,809 homepages from nodes in the United States.

4.1 Accuracy

As the average error distance is highly influenced by some abnormal errors from
a few nodes, the median error is more commonly used to indicate the accuracy
of geolocation systems. In the experiment on PlanetLab nodes, the median error
distance of ONE-Geo (Beta), SLG, IPIP, ipstack, ipinfo, and Geolite2 are 463 m,
1768 m, 3161 m, 1463 m, 1463 m, and 1272 m respectively. As we can see from
Fig. 2 on web servers, both ONE-Geo and SLG perform well; and ONE-Geo
performs much better than SLG. An important difference between SLG and
ONE-Geo is that SLG tries hard to find the closest locally-hosted node to the
target while ONE-Geo tries to find the web server itself by OKG. Therefore, it
is easier for ONE-Geo to control the errors within 1 km when geolocating web
servers. To be specific, 66.1% of nodes in this experiment were geolocated by
ONE-Geo with an error less than 1 km while only 28.8% were geolocated by
SLG within the same margin.

Fig. 2. Comparison of error distance
on PlanetLab nodes

Fig. 3. Comparison of error distance
on RIPE nodes

ONE-Geo (Epsilon) covers 721 of the 980 IPs after expanding. Even though
ONE-Geo can not cover all of them, this number is high enough to evaluate its
ability to geolocate nodes that do not host a website. For these 721 nodes, ONE-
Geo also performs well (see Fig. 3). This is not a surprise because of the large
number of students, teachers, and local community members that live around
schools, universities, and research institutions. Since ONE-Geo can cover most
nodes that host websites by these organizations, it can also estimate the location
of the nodes around the web servers in a precise way. To be specific, the median
error distance of ONE-Geo, SLG, IPIP, ipstack, ipinfo, Geolite2 are 7758 m,
14999 m, 8801 m, 5704 m, 6453 m and 6352 m respectively, in which SLG per-
formed the worst (median error 9295 m higher than the leader) while ONE-Geo
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had a more prominent position in the group (median error 2054 m higher than
the leader).

As the main idea of SLG is to associate the target’s location with the land-
mark with the minimum distance and they estimate the distance by the mini-
mum indirect delay, there are 3 reasons that lead to the low precision of SLG
on nodes (excluding those with web servers). First, it is not guaranteed to find
a common router or the closest common router because of the scarcity of land-
marks and probes. Second, the shortest network delay does not always mean
the shortest distance [6]. Third, SLG can only utilize local web servers as their
landmarks. Since there is a trend to use content delivery network (CDN) to dis-
tribute content or use cloud services to store archives, these kinds of local nodes
are decreasing, which leads to a lack of high-quality landmarks.

4.2 Coverage

Most existing mining methods, like Structon, focus on utilizing the address
information or zip codes on the pages to locate the web servers, like Structon.
However, our experiment indicates that these methods can hardly cover most
potential landmarks. We used 8 million web pages to estimate the proportion of
websites that reveal the addresses and zip codes on their homepage. The results
on Table 1 show that the coverage of methods mining address or zip codes are
much less than the methods that mine owner names, like ONE-Geo.

Table 1. Comparison of coverage

Clue Hit Pages Ratio

Address 1,037,271 8,283,809 0.125

Zip Code 203,673 8,283,809 0.024

Owner Name 3,900,443 8,283,809 0.471

Table 2. Comparison of efficiency

Methodology Landmarks Source Ratio

Structon 157,407 502,880,364 0.0003

Checkin-Geo 31,634 92,153 0.3432

ONE-Geo 3,900,443 8,283,809 0.4708

Our research suggests that, the best two landmark mining methods are Struc-
ton and Checkin-Geo. In their reports, Structon mines 157K landmarks from
502M web pages and Checkin-Geo mines 31K landmarks from 92K login records.
Compared to them, ONE-Geo is a more efficient method, which gets 3.9M land-
marks from 8.2M pages (Table 2). Structon spends too much time and computing
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resources on processing unnecessary pages on the same website. Correspondingly,
ONE-Geo can extract the owner names utilizing only the homepage, of which
the efficiency is three orders of magnitude higher than Structon. Checkin-Geo
has a relatively higher efficiency than Structon. However, Checkin-Geo is not
universally applicable because the raw material sources they use are the private
data of certain social network companies, which are not open to the public.

5 Conclusion

In this paper, we propose ONE-Geo, a methodology which exploits owner names
revealed on homepages and registration records to mine landmarks. Experimen-
tal results show ONE-Geo achieves fine-grained precision and large coverage.
ONE-Geo Alpha is an efficient method to mine landmarks of high quality with-
out any measurement. By constructing inference, ONE-Geo Beta makes full use
of web resources and registration records to mine as many landmarks as possible.
It is also a universally applicable approach which depends on neither addresses
on web pages nor addresses in IP registration records, but owner names which
are common and easy to obtain.
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