q

Check for
updates

RingBoard 2.0 — A Dynamic Virtual Keyboard
Using Smart Vision

Taylor Ripke, Eric O’Sullivan, and Tony Morelli®™®
Central Michigan University, Mount Pleasant, MI 48859, USA
{ripkeltj, osullle,morella}@cmich. edu. com

Abstract. Computers have evolved throughout the digital era becoming more
powerful, smaller, and cheaper. However, they are still lacking basic accessi-
bility features that appeal to all users. They can be controlled with your voice
and eye movement, but there is still much work to be done. This paper presents
RingBoard 2.0, a dynamic virtual keyboard that uses computer vision to rec-
ognize and track hand movements and gestures. It allows for basic input to a
computer using a web camera. This application was built to provide additional
accessibility features for those who experience tremors or limited motor capa-
bility in their hands, which make it difficult to interact with a standard keyboard
and mouse. At the core, it is built to recognize any form of a hand and can
accurately track it, regardless of sporadic movement. This paper is an extension
of previous work describing touch input for a computer using the HP Sprout [2].

Keywords: Accessibility - Vision + Touch + Keyboard - Tracking

1 Introduction

The QWERTY keyboard patented by Sholes in 1878 is the defining keyboard still used
by many electronic devices, including smart phones and computers [1]. It provides a
convenient way to quickly transcribe manuscripts into print. The advent of the digital
era brought significant change to how information is conveyed and produced; however,
it was rapidly leaving many individuals behind. Although revolutionary for its time,
there is little information regarding additional accessibility features for those with
cognitive or motor impairments. Those individuals face similar challenges today when
interacting with modern technology, especially a keyboard and mouse which require
precise motor control and concentration.

This paper introduces additional enhancements to RingBoard, an application
designed by Wojcik et al. [2] as shown in Fig. 1. RingBoard was designed for use
“with a personal computer such that a person with a mobility disability who cannot
utilize a standard physical keyboard would be able to better interact with a standard
computer” [2]. The updated version integrates advanced computer vision algorithms to
track the user’s hand while interacting with the system. These additions facilitate those
who may have difficultly pressing on the mat with fingers due to limited motor control
or loss of limb. The system can adapt to virtually any input, compensating for a limited
range of motion or tremors. The paper will detail the algorithms and provide a com-
parison between different forms of input for the system.

© Springer Nature Switzerland AG 2019
M. Antona and C. Stephanidis (Eds.): HCII 2019, LNCS 11573, pp. 323-333, 2019.
https://doi.org/10.1007/978-3-030-23563-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23563-5_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23563-5_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23563-5_26&domain=pdf
https://doi.org/10.1007/978-3-030-23563-5_26

324 T. Ripke et al.

—
s abc
] |
shift
E (0)
—e 123

back

(2]
o
o
0
o

Fig. 1. RingBoard.

2 Related Work

Individuals with physical disabilities such as Cerebral Palsy, Spina Bifida, and tremors
may have difficulty interacting with a traditional computer keyboard and mouse. These
users may take longer to complete typing tasks and may experience various errors such
as holding a key too long, pressing adjacent keys, missing keys, failing to hold two
keys simultaneously, pressing the wrong key, or pressing more than one key at a time
on accident (Trewin 1999). It is possible to provide accommodations for some of the
errors by adjusting settings on the computer. Common solutions include “adjusting the
repeat time of a key, looking for sticky keys, and using CAPS Lock [2].

As stated previously, users with limited mobile capabilities may find it difficult to
interact with a standard keyboard. People who have limited capabilities in their hands
may be able to use a computer keyboard keyguard, which is specifically designed for
users with limited motor control. The design allows the user to increase typing accu-
racy and help stabilize fingers on the right keys [3]. Additional technologies include a
no hands mouse controlled by foot movement and keyboard control through foot
pedals, which allow the user to press important buttons such as shift, ctrl and alt [3].

AbleNet provides a variety of tools, such as switches, that can be used with a
computer to provide users with the capability to interact with the system. Some popular
switch devices include the Big Red, which is a large, red button users can press, and the
Blue2 Bluetooth Switch, which gives users the capability to press two large buttons [4].
The devices can be used to work with existing applications but are also well-suited to
be custom programmed to fit the user’s needs.

Another possible solution to allow the user to interact with the system if they have
limited control in their hands and arms is to use technology that tracks the position of
the head relative to the screen. For example, the SmartNav 4: AT provides a hands-free

RingBoard 2.0 — A Dynamic Virtual Keyboard Using Smart Vision 325

mouse solution that allows the user to control their computer using only head move-
ments. This solution provides a way to provide mouse input, as well as keyboard input
through the use of a virtual keyboard. It even supports switch or foot pedal input to
provide additional input [5]. Earlier versions of similar systems exist, which include
printing a copy of a keyboard onto a piece of paper and attaching a laser to the user’s
head. A computer vision algorithm interfaced with a web camera was used to determine
where the laser was on the keyboard and translate it into corresponding text input [8].
The second version of RingBoard presented in this paper was motivated from this
implementation.

However, if the user has very limited motor capabilities, another possible solution
is Eyegaze Edge, which is a eye-operated communication and control system that uses
advanced image processing techniques to track the position of the eye relative to the
screen at 60 frames per second, providing accuracy up to a 1/4 inch or less [6]. Users
are able to type on a keyboard and generate speech. To click a button, the user waits a
specified amount of time, such as half a second [6].

Similar systems also use a graphical keyboard that “allows the user to change the
size and location of virtual onscreen keyboard buttons” [9]. These onscreen keyboards
have also been used with specification applications, not just customizable character
input. For example, one solution was to populate an onscreen keyboard with commonly
type phrases specific to the active application [10]. The underlying system can deter-
mine a user’s commonly typed phrases and “prepopulate the keyboard with user
specific common words and phrases” [7].

Although this research is directly applicable for computers, it may also be possible
to apply these accessibility features to mobile computers with the addition of a
Bluetooth touch keyboard. Previous work has shown that users are okay using an
additional keyboard when interacting on a mobile device [8]. In the upcoming section
discussing future work, additional accessibility features are being considered that take
advantage of predictive text. For example, Gkoumas implemented a solution to pre-
dictive typing where the keyboard enlarges letters it thinks are likely to be next [9].
After some training to understand an individual’s diction, it may be possible to
implement a similar approach on RingBoard.

Furthermore, additional research concerning virtual keyboards has been done by
considering the position of the hand [10]. Similarly, as described in this paper, Ring-
Board is actively involved in tracking the user’s hand and using it as input to the
keyboard. Rashid proposed an additional enhancement by showing the benefits of
having the virtual keyboard be relative to where the user starts typing, rather than having
the keys remain in the same location on mobile devices [11]. This idea was considered
when implementing the first iteration of RingBoard by having the secondary keys
appear in the direction of the user’s hand movement [2].

3 Motivation

As previously described, the current iteration of RingBoard was motivated by previous
work done in [2]. It is developed on an HP Sprout computer running Windows 10
utilizing a touch sensitive mat, touch screen, and overhead camera and projector.

326 T. Ripke et al.

The projector displays a virtual keyboard on the touch mat that the user can interact
with using their fingers. In the original version, the best results were achieved using
fingers for touch input rather than using a fist. Due to the inherit design of the HP
Sprout, it is designed to ignore the fist when users are interacting with the touch mat.
This is inconvenient for people interacting with the system who have limited precision
of movement in their arms and hands.

The current iteration of RingBoard is designed to be more accessible for individuals
with limited motor capabilities. To overcome the challenges of fist-based touch input,
computer vision algorithms were implemented to track the user’s hand. As discussed in
the upcoming sections, this type of input provided a convenient solution applicable to
all users, compensating for sporadic movement or limited hand functionality.

4 Using the Keyboard

Interacting with the visual keyboard is quite easy. When the application is launched, a
black screen will appear for a few seconds while the system calibrates. During this
time, the camera is being prepared and the background image is captured. It is essential
that only the mat is present during these few seconds, as other objects, such as hands or
supplies, can interfere with subsequent processing. Next, the application will wait for
the user to put their hand into the frame. It will pause for five seconds, allowing the user
to position their hand. The keyboard will then become active and the user can interact
with the different keys and buttons.

As described in [2], the keyboard displays a set of primary keys as shown in Fig. 1.
These primary keys compose the default layout of the system. To access additional
letters, the user needs to move their hand between two letters to display a menu of
secondary keys as shown in Fig. 2. To return to the previous menu, the user must either
keep their hand stationary for five seconds or increase the surface area of their hand by
opening it, the details of which are discussed in the following section.

- Primary keys

- Secondary keys

Fig. 2. Secondary keys.

RingBoard 2.0 — A Dynamic Virtual Keyboard Using Smart Vision 327

Between each button press, a three-second delay is implemented to prevent the user
from accidently pressing a button while moving their hand to a new location. For
example, moving from the ring of letters to a button for punctuation may accidently
trigger a letter, which is an inconvenience to the user. To reset the keyboard, the user
can either keep their hand stationary for seven seconds or open their hand. The details
of the implementations of both techniques are detailed in the following section.

5 Implementation

As stated previously, RingBoard provides two forms of input: touch and vision. This
section will discuss the intricacies of how the application detects and tracks a user’s
hand or limb, while compensating for spurious muscle movement. The underlying
vision algorithms are designed to be accessible to all individuals, as long as they can
move their arm within view of the camera.

Our Vision

Fig. 3. Background image

The application was developed in Unity and programmed in C#. It is designed to
run on the HP Sprout, although it can be modified to work on a system with multiple
monitors and a downward facing camera. The Sprout has an interactive touch pad,
which also serves as an additional screen, however the touch pad is not utilized and
only acts as a background. Any relatively clear surface will work. The current version
projects the display on the bottom screen, directly below the overhead camera. The
Sprout’s overhead camera can be accessed and controlled directly in Unity with the
assistance of OpenCV. The OpenCV module provides an easy way to perform fun-
damental image processing tasks in Unity without having to run a separate program
that interfaces with Unity through TCP.

Llx,y] = |L[x]y — blx,y]| > T (1)

Eq. 1 Background Subtraction

328 T. Ripke et al.

The application begins by capturing an image of the touch pad without the user’s
hand present initially. This is done to calibrate the application for background sub-
traction. The image captured is taken at an angle due to the Sprout’s design. A com-
parison can be seen by comparing Fig. 1 to Fig. 2. Furthermore, the image captures the
sides of the touch mat, including the desk that it is sitting on. This interferes with image
processing and is removed by isolating the interest area with black polygons as shown
in Fig. 2.

During runtime, the application captures an image and compares it against the static
background image to determine if an object is present. To reduce additional unwanted
noise the images were converted to grey. Equation 1 depicts the equation used for
background subtraction. The result of the background subtraction image is a binary
image indicating areas where a change in pixel intensity was greater than the threshold
T as shown in Fig. 3. I, is the new image produced by taking the absolute value of the
current image subtracted from the background image within a given threshold to
produce a binary image.

As mentioned in the previous section, an important aspect of the keyboard is the
ability to reset it after the user has made a selection. The user can either keep their hand
stationary for five seconds or rapidly increase the surface area of their hand by opening
it, assuming their hand is in the shape of a fist. For the former method, the application
in constantly tracking and monitor the area of your hand. If after five seconds the area
remains relatively constant within a predefined threshold, it will reset the keyboard
bringing it back to the default screen. Similarly, if the user opens their hand suddenly,
the application is also looking for a sudden change in area, which is also a prede-
fined threshold. According to each user’s individual needs, these thresholds can be
modified in the settings menu of the keyboard as sensitivity levels may vary from
person to person.

Computer Vision

Fig. 4. Binary image with transform

RingBoard 2.0 — A Dynamic Virtual Keyboard Using Smart Vision 329

OpenCV implements a findContours module that “retrieves contours from the binary
image,” which is useful for “shape analysis and object detection and recognition” [7].
For each of the detected contours, its area was computed and used to find the largest
contour, which we assume to be the hand. To speed up the algorithm, only contours with
an area >T (we used 5000), were considered. The process of finding the area of a contour
is computed using image moments. Image moments are useful for describing properties
of the contour, including the calculate center and area. Equations 2 and 3 are derived
from OpenCV’s documentation found in [7]. The [x, y] coordinates computed from the
largest contour were assumed to be the hand.

_ My _ My
T=20 520 2
Moo Y Moo @)

Eq. 2 Centroid [7]

Area(My) = Z Zxoyol[x, y] (3)

Eq. 3 Contour Area (Adapted from [7])

This solution works assuming that only part of the hand is present at a given time.
In cases where the user extends their hand to span the entire vertical space of the mat,
using the X,y coordinates provides through image moments fails. Equation 2 computes
the centroid, which is the center coordinates of the contour. Thus, when the hand
extends the entirety of the hand, the coordinates will be centered around the wrist. To
compensate, a simple transformation function was applied. The result of the image
tracking can be seen in Fig. 4.

Our Vision

Fig. 5. User’s perspective

330 T. Ripke et al.

In certain situations, or behavioral input, the centroid coordinates may be incon-
sistent, generating sporadic movement that in turn triggers incorrect input to the key-
board. To counteract this behavior and provide stability for those with muscle tremors,
a trivial averaging function is applied to the input. The number of subsequent images
used to calculate the average can be changed to determine how much averaging should
be provided to minimize sporadic behavior. This was also useful to eliminate incon-
sistencies during image processing, which can be affected by lighting conditions or new
stimuli.

The actual centroid position is proportional to the amount of area present. More
area will affect how far the centroid is translated in the vertical direction. For example,
when the user has their hand near the top of the mat, the corresponding centroid will
also be at the top. We assume the approximate area for a hand at the top of the mat,
which came about to be about 80,000 pixels. Using this information, we compute the
area once the hand is visible as a proportion of the total pixels and apply it to the y-
coordinate of the centroid. A quadratic expression can also be substituted for increased
accuracy. As the area of the hand gradually increases, we want it to affect the y-
coordinate greater once it has surpassed the center of the image. The current imple-
mentation uses a quadratic transform.

As discussed previously, the keyboard pauses for three seconds between keypresses
to assure that the user does not accidently hit another button if they are moving their
hand across the screen. At any screen in the application, the user has the ability to reset
the keyboard back to the default screen by either keeping their hand stationary for
seven seconds or by opening their hand. The first method is computed by looking at the
area over a period of time. If the area did not change within a given threshold, the
keyboard will automatically reset. Similarly, if the area of the hand suddenly changes
by a decent amount, such as when opening their hand, it will also reset the keyboard.
Both of these settings can be directly configured in the keyboards settings.

6 Unity Interface

The coordinates generated by the centroid of the largest contour directly control the
cursor in the unity environment, which is used to interact with the keyboard. Each of
the buttons and letters projected on the mat have colliders that detect when the coor-
dinates of the cursor have overlapped onto the respective object, thus triggering the
event as shown in Fig. 5. The vision implementation added additional challenges not
present in the traditional touch version. For example, assuring that a button was pressed
only once and resetting the keyboard after ten seconds of inactivity were essential
features.

RingBoard 2.0 — A Dynamic Virtual Keyboard Using Smart Vision 331

Fig. 6. Colliders

7 Practical Applications

The current version of the keyboard provides the user the capability to type text and
control the mouse by tracking the location of the hand or arm. The initial release
provides users the functionality of a real keyboard, including ways to type letters,
numbers, and special characters. Additional buttons such as tab, shift, back, and space
were also included for a more streamlined experience. The keyboard currently only
supports these primary buttons as a method of input. Other buttons, such as the
function keys or volume control, will be added in the future.

In addition, the current version allows the user to control the mouse. Currently, if
the user stops moving the mouse, the program will delay for a specified amount of time,
such as half a second, and then perform a double click action. This is useful if the user
wants to open an application. The keyboard, which is displaying on the bottom screen,
has an application button which provides a list of common applications that can
launched by moving the mouse over the text, as shown in figure. The interface, which
is running as a Unity application, communicates with a python script over TCP that is
responsible for launching and putting the application into focus. Once in focus, the user
can interact with the application similar to how they would with a standard mouse. An
example of the system running can be seen in Fig. 6 (Fig. 7).

332 T. Ripke et al.

5]

Fig. 7. Controlling external applications

8 Future Work

Many additional accessibility features will be added to RingBoard in the near future.
The first will be the integration with the Windows OS. The Unity application will
connect to a script responsible for controlling the computer based on the users input.
For example, if the user presses the ‘mouse’ button, the user will be able to control the
cursor on the top screen, allowing them to interact with the computer. The coordinates
are mapped and sent using TCP to a script responsible for setting the position of the
cursor in real time.

Furthermore, the user will have the capability to interact with common applications
such as web-browsers and text-based entry applications. Current work at the time of
publishing has implemented the ability for the user to type the name of the application
in RingBoard, which is sent to the script responsible for spawning an instance of the
application and focusing the window on the top screen. From there, the user can
interact with the application using the mouse and keyboard.

Improvements to the tracking process will be continuously updated allowing for
smoother control of the application while interacting with the keyboard. We are cur-
rently developing methods to provide a seamless interaction with Windows. Common
challenges include handling situation requiring double-clicking events and handling
multiple instances of the same application. Our goal is to have the application run at
boot, which will automatically display the keyboard once the application reaches the
login screen.

RingBoard 2.0 — A Dynamic Virtual Keyboard Using Smart Vision 333

In addition, another area of improvement may be the addition of predictive text.

Overtime the keyboard should learn the user’s commonly typed phrases and be able to
suggest them as additional options to the letters presented. Thus, the users would only
have to navigate to the corresponding text to complete the word or phrase. These
features are still being evaluated for usability and accessibility.

RingBoard provides an accessible way for those with muscular or cognitive, and

verbal disabilities to interact with technology. Although current systems provide acces-
sibility features such as text-to-speech and visual enhancements, such as color contrast
and magnifying, there has not been much research in areas for manual input to a computer.
RingBoard seeks to provide an accessible solution that can be easily used by all.

References

10.

11.

12.

13.

14.

15.

. Sholes, C.S.: Type-Writing Machine. US Patent 207, 559, filed March 8, 1875, issued

August 27 (1878)

. Wojcik, B., Morelli, T., Hoeft, B.: RingBoard — a dynamic virtual keyboard for fist based

text entry. The Journal on Technology and Persons with Disabilities (2018)

. Fentek Industries: Computer Keyboard Keyguard Products. http://www.fentek-ind.com/

Keyguard.htm# Wy_SCqdKiUk. Accessed 23 June 2018

. Ablenet. https://www.ablenetinc.com/. Accessed 23 June 2018
. SmartNav by NaturalPoint: SmartNav 4: AT Overview. http://www.naturalpoint.com/

smartnav/products/4-at/. Accessed 23 June 2018

. LC Technologies, Inc.: Communicate with the world using the power of your eyes. http://

www.eyegaze.com/eye-tracking-assistive-technology-device/. Accessed 22 June 2018

. OpenCV. Web. Structural Analysis and Shape Descriptors (2018). https://docs.opencv.org/2.

4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcont
ours#findcontours

. Ahsan, H., et al.: Vision based laser controlled keyboard system for the disabled. In:

Proceedings of the 7th International Symposium on Visual Information Communication and
Interaction. ACM (2014)

. Missimer, E.S., et al.: Customizable keyboard. In: Proceedings of the 12th Interna-

tional ACM SIGACCESS Conference on Computers and Accessibility. ACM (2010)
Norte, S., Fernando, G.L.: A virtual logo keyboard for people with motor disabilities. In:
ACM SIGCSE Bulletin, vol. 39, no. 3 (2007)

Wandmacher, T., et al.: Sibylle, an assistive communication system adapting to the context
and its user. ACM Trans. Access. Comput. TACCESS 1(1), 6 (2008)

Armstrong, P., Wilkinson, B.: Test entry of physical and virtual keyboards on tablets and the
user perception. In: Proceedings of the 28th Australian Conference on Computer-Human
Interaction. ACM (2016)

Gkoumas, A., Komninos, A., Garofalakis, J.: Usability of visibly adaptive smartphone
keyboard layouts. In: Proceedings of the 20th Pan-Hellenic Conference on Informatics.
ACM (2016)

Yin, Y., et al.: Making touchscreen keyboards adaptive to keys, hand postures, and
individuals: a hierarchial spatial abckoff model approach. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM (2013)

Rashid, D.R., Smith, N.A.: Relative keyboard input system. Proceedings of the 13th
International Conference on Intelligent User Interfaces. ACM (2008)

http://www.fentek-ind.com/Keyguard.htm#.Wy_SCqdKiUk
http://www.fentek-ind.com/Keyguard.htm#.Wy_SCqdKiUk
https://www.ablenetinc.com/
http://www.naturalpoint.com/smartnav/products/4-at/
http://www.naturalpoint.com/smartnav/products/4-at/
http://www.eyegaze.com/eye-tracking-assistive-technology-device/
http://www.eyegaze.com/eye-tracking-assistive-technology-device/
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html%3fhighlight%3dfindcontours#findcontours
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html%3fhighlight%3dfindcontours#findcontours
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html%3fhighlight%3dfindcontours#findcontours

	RingBoard 2.0 – A Dynamic Virtual Keyboard Using Smart Vision
	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 Using the Keyboard
	5 Implementation
	6 Unity Interface
	7 Practical Applications
	8 Future Work
	References

