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Abstract. In order to personalize users’ recommendations, it is essential
to consider their personalized preferences on non-functional attributes
during service recommendation. However, to increase recommendation
accuracy, it is essential that recommendation systems include users’
evolving preferences. It is not sufficient to only consider users’ prefer-
ences at a point in time. Existing time-based recommendation systems
either disregard rich and useful historical user invocation information, or
rely on information from similar users, and thus, fail to thoroughly cap-
ture users’ dynamic preferences for personalized recommendation. This
work proposes a method to personalize users’ recommendations based on
their dynamic preferences on non-functional attributes. First, we com-
pose a user’s preference profile as a time series of his/her invocation pref-
erence and pre-invocation dependencies (i.e. the different services that
were viewed prior to invoking the preferred service). We model a user’s
invocation preference as a combination of non-functional attribute values
observed during service invocation, and topic distribution from WSDL
of the invoked service using Hierarchical Dirichlet Process (HDP). Next,
we employ long short-term memory recurrent neural networks (LSTM-
RNN) to predict the user’s future invocation preference. Finally, based
on the predicted future invocation preference, we recommend service(s)
to that user. To evaluate our proposed method, we perform experiments
using real-world service dataset, WS-Dream.

Keywords: Service recommendation · User preference profile ·
LSTM-RNN · User preference evolution · Topic modeling · HDP

1 Introduction

Recommendation systems are attracting much attention because they provide
users with prior knowledge of candidate choices to deal with information overload
on the Web [1,2]. Most traditional personalized preference-based recommenda-
tion systems usually consider user’s preferences at a point in time during service
recommendation [1–6]. However, it is important to note that, typical user pref-
erences change over time. It is therefore essential to incorporate users’ dynamic
preferences to provide accurate and timely personalized recommendations [7].
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For recommendation systems to provide personalized recommendations to
users, they must provide a way to: (1) accurately capture and model user
dynamic personalized preferences on non-functional attributes, (2) accurately
predict user future preferences, and (3) recommend relevant service(s) that sat-
isfies user dynamic preferences. Capturing user dynamic preferences on non-
functional attributes is challenging. Some existing works, that have attempted
to do so, have utilized either a session-based [8] or a time-series approach [3,7].
In these works, topic modeling such as Latent Dirichlet Allocation (LDA) [9]
are used to mine topic distributions from service description documents for a
user profile. However, LDA suffers from low efficiency, excessively long training
time and low accuracy, especially in applications where the input document is
relatively short.

There are some methods that use traditional recurrent neural networks
(RNN) to infer user’s future preferences for service recommendation [10,11].
These methods, however, suffer from vanishing and exploding gradient issue
inherent with RNNs when user historical data in sequence gets larger [12]. Oth-
ers use various linear predictors based on traditional statistical techniques, such
as Autoregressive Moving Average and Autoregressive Integrated Moving Aver-
age [13,14], and Gaussian Process [7] algorithms. These time series regression
approaches are very sensitive to outliers and depend on an unchanged cause and
effect relationships which makes them unsuitable to predict user future dynamic
preferences.

To address these limitations and provide accurate personalized recommenda-
tions, this work proposes a method that employs Hierarchical Dirichlet Process
(HDP) [15,16] and long short-term memory RNN (LSTM-RNN) [12] to capture
and predict user preferences for service recommendation. HDP and LSTM-RNN
deals with the limitations introduced by LDA and regression methods respec-
tively. The main contributions of this work are summarized as follows:

1. We model a user’s invocation preference as a combination of a set of topic
distribution, obtained from WSDL and non-functional attribute values, that
were observed when that user invoked a service. We employ HDP to extract
the topic distribution from the WSDL of the invoked service. In addition,
we obtain topic distribution from all WSDL documents from the user’s pre-
invocation services (i.e. the different service(s) that were viewed prior to
invoking the preferred service). This is to establish a relationship between
user’s intent and invoked service(s). We then aggregate invocation preferences
at each timestamp to build a time series of that user’s preference profile, which
depicts the changes in his/her preferences.

2. Using the user’s preference profile, we apply LSTM-RNN to learn and pre-
dict his/her future invocation preference, i.e. the topic distribution and non-
functional attribute values of a prospective service. To recommend top-K
services, we compute the similarity between the user’s future non-functional
attribute and candidate services. This similarity value is then used as weights
in the weighted Jensen-Shannon Divergence [17] to compute the similarity
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between user’s future invocation preference and topic distribution of candi-
date services. Top-ranked services are then recommended to the user.

3. We perform a series of experiments using real-world services, WS-Dream [18],
to evaluate and validate our proposed method.

The rest of the paper is outlined as follows. In Sect. 2 we discuss some of the
notable and significant service recommendation works based on user dynamic
preference. We present our proposed LSTM-RNN method in detail in Sect. 3
followed by our experiments, evaluations and analysis in Sect. 4. Finally, we
conclude our paper and discuss some of the open ended challenges as a part of
our future work in Sect. 5.

2 Related Work

To the best of our knowledge, this is the first recommendation technique that
models user invocation preference to include non-functional attributes and topic
distribution from WSDL documents extracted from user invocation and pre-
invocation services history. However, the idea of personalized service recommen-
dation and the importance of user intent has been exploited in some research
areas. Wu et al. [19] employs a deep recurrent neural network approach to exploit
current viewing history of the user to improve recommendation accuracy. The
main difference between their work and our proposed method is that they failed
to consider a user’s pre-invocation services history during service recommenda-
tion. In addition, their method employed collaborative filtering approach, which
primarily rely on information from similar users/items, thus failing to build per-
sonalized models for individual users with rich past information [7]. Other related
personalized recommendation models [20,21] also employ collaborative filtering
to make their recommendations.

Our use of topic modeling from user service invocations and pre-invocation
services is similar to the work of Liu [7] and Uetsuji et al. [22]. In her work, Liu [7]
proposed a method that uses LDA to model user’s preferences and then applied
the Gaussian Process to predict user’s future preference. Uetsuji et al. [22] consid-
ered capturing user’s intent in effecting service recommendation by using a topic
tracking model. A customer’s behavior was generated in a two-step probabilistic
process; in the first step a topic was selected according to a topic probability
distribution representing topic selection tendency. Then, in the next step the
user’s activity is determined according to activity probability distribution linked
to the selected topic in the first step. They however trained their model using a
probabilistic expectation maximization algorithm, which estimates parameters
in statistical models. The importance of user intent in recommendation systems
was further highlighted by Bhattacharya et al. [4]. They use tensor factorization
techniques to encode user activity and then create an intent score. A combina-
tion of the intent score and contextual information produces recommendation
scores. These recommendation scores are ranked through filtering and collabo-
rative recommendation techniques. The methods in this work largely focus on
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probabilistic statistical models and therefore also have limitations of statistical
regression mentioned in Sect. 1.

Another key consideration for service recommender systems is the concept
of user preference evolution in user preference modeling. This essential because
user preferences over time are rather dynamic than static. This renders tra-
ditional recommender systems, which considers user preferences at a point in
time, less accurate as time unfolds and user preferences evolve. Zhou et al. [17],
in their work, highlighted on the lack of automatic adaptiveness of the tradi-
tional user modeling systems to the dynamic nature of user preferences. They
approached this problem by analyzing the characteristics of memory through
ZGrapher. They then employed a Forgetting and Re-energizing User Prefer-
ence (FRUP) algorithm to trace the user preferences. These preferences are
divided into long-term, medium-term and short-term for the accurate descrip-
tion of memory patterns in different scenarios. In our work, however, we do not
categorize the preferences into short or long term based on the premise that
user preferences are dynamic. A short term preference could easily become a
long term one and vice versa based on user preference evolution. Our model
automatically captures these user dynamics by learning from the user’s past
invocations and pre-invocation dependencies.

Aside our difference in approach, the use of RNN has been exploited in other
related service recommendation works [10,11,23]. These researchers, have lever-
aged the strength of RNN in handling a sequence of input data to fully capture
user intent, patterns and behavior to accurately model the user profiles. Xia
et al. [10] explores the provision of an explainable recommendation based on the
sequential check-in data of the user. In their work, they make use of sequential
check-in data to capture users’ life pattern and intent, to describe the user’s
personal preference. They then employ a RNN, which they qualify as attention-
based, to make a series of recommendations instead of simply showing top-N
recommendations. RNNs have been applied to recommendation systems in the
movie industry Chu et al. [11]. Here, they highlight the inability for collaborative
filtering techniques to handle user changing habits. They subsequently built a
prediction model based on RNN to handle the temporal factor of user interests.
Their model treats a user’s recent ratings or behavior as a sequence with each
hidden layer modeling a user’s rating or behavior in order. Li et al. [23] proposed
a method for automatic Hashtag recommendation of new tweets. They used a
skip-gram model to generate distributed word representations and then initially
applied a convolutional neural network to learn semantic sentence vectors. After
this, they made use of the sentence vectors to train a long short-term memory
recurrent neural network (LSTM-RNN) and used the produced tweet vectors as
features to classify hashtags.
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3 Proposed Personalized Service Recommendation Based
on User Dynamic Preferences

This section first discusses an overview of our proposed method and subsequently
describes the main modules (engines) that drives our method. Figure 1 shows an
overview of our proposed method. The three main engines are:

1. User preference profile engine: Based on the Hierarchical Dirichlet Process
(HDP) [15], this engine is responsible for creating user preference profile,
which is a time series of the user’s invocation;

2. LSTM-RNN prediction engine: Takes user preference profile as an input and
based on a transformation function, predicts its future invocation preference;
and

3. Service ranking engine: Ranks services by computing similarity between
future invocation preference and candidate services. The similarity function
is based on weighted Jensen-Shannon Divergence [17]. Top-ranked services
are then recommended to the user.

Details of each of these engines are described in the sections that follow.

3.1 Problem Definition

Let U = {u1, u2, ..., ue} be a set of users and S = {s1, s2, ..., sf} be a set of
services. For each s ∈ S, there is a set of non-functional attributes, Q, that
describe the service s. When a user u ∈ U invokes a service s ∈ S, we record the
user’s invocation preference as a tuple:

Ius =< Λ, Q̆,Ω > (1)

User Preference 
Profile

LSTM-RNN 
Prediction Engine

Service 
Ranking Engine

Future Invocation 
Preference

Preference 
Profile Engine

Ranked List of Services 
(Top-K) Recommended

Services Repository 
with non-functional

attribute Values

User Service 
Invocation History

Fig. 1. Overview of the proposed LSTM-RNN method for personalized service recom-
mendation based on user dynamic preferences
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Hierarchical 
Dirichlet Process

Pre-invoked Services 
Topic Distribution

Pre-invoked Service(s) 
Description Documents

Invoked Service Non-
Functional Attribute Values

Invoked Service
Description Document

Hierarchical
Dirichlet Process

Invocation 
Preference

Invoked Service 
Topic DistributionService 

Repository with 
Non-Functional 
Attribute Data

Fig. 2. User invocation preference process

where Λ = {λ1, λ2, ..., λn} is the topic distribution extracted from the WSDL
document of s, Q̆ = {q̆1, q̆2, ..., q̆m} is the set of non-functional attribute values
observed when s was invoked, and Ω = {ω1, ω2, ..., ωk} is the set of topic distri-
bution recognized from u′s activities prior to invoking s. We model a user u′s
preference profile Pu as a time series of his/her invocation preferences as:

Pu = {IuS̄(t), t = 0, 1, 2, ...} (2)

where S̄ ⊂ S.
Given a user u′s preference profile, Pu, we predict the user’s future invocation

preference on a probable service s̃ ∈ S, using LSTM-RNN as:

f(Pu) :→ Îus̃ (3)

where Îus̃ , is the u′s future invocation preference i.e. the topic distribution and
non-functional attribute values of that user’s probable service.

Given S, Q and Îus̃ , the service top-K recommendation process can be mod-
eled as a ranking in terms of the similarity between the user’s future invocation
preference and candidate services [24], so that for any two services Si and Sj

and a similarity function, Sim, the following is true.

Si � Sj ⇐⇒ Sim(Îus̃ , Si) ≤ Sim(Îus̃ , Sj) (4)

3.2 User Preference Profile Model

We model a user preference profile as a time series of that user’s invocation pref-
erence. A user’s invocation preference is constructed from the topic distribution
obtained from the WSDL document together with the non-functional attribute
values of the invoked service. We also include the topic distribution of all services
a user visits prior to invoking the preferred service. Figure 2 describes the user
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invocation preference process. When a user u invokes a service s, we associate
the service invocation WSDL document, Ws and non-functional attribute, Q̆.
Using this document as a corpus, we employ HDP to extract topics such that
each word in the document has the probability of being assigned to a topic and
each Ws is associated to a topic distribution Λ. We then append Q̆ to Λs. We
complete u′s invocation preference I by also adding the topic distribution of all
u′s service interactions, Ω. To build u′s preference profile, we sort all invocation
preferences by timestamp, in a chronological order and model each invocation
preference with time as a time series (see Fig. 3).

User preference profile involves topic distribution modeling. Lately, proba-
bilistic topic models such as Latent Dirichlet Allocation (LDA) [9], have been
applied to extract and represent users’ preference in different application sce-
narios [7]. LDA has been applied successfully to identify topics in documents
and discover implicit semantic correlation among those documents. However, it
suffers from low efficiency, excessively long training time and low accuracy, espe-
cially in applications where the input document is relatively short (e.g. WSDL
document). Due to these limitations, we employ HDP for our topic modeling.
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Fig. 3. User preference profile

HDP, an extension of LDA, is a multi-layer form of the Dirichlet Process
(DP), designed to address cases in topic document modeling where the number
of topic terms is not known in advance. For each document, a mixture of topics
are drawn from a Dirichlet distribution, and then each word in the document
is treated as an independent draw from that mixture [15]. Figure 4 shows a
graphical model formalism of HDP. The global measure, G0 is distributed as
a Dirichlet Process (DP) with concentration parameter γ and base probability
measure H:

G0 | γ,H ∼ DP (γ,H) (5)

and the random measures Gj are conditionally independent given G0, with dis-
tributions given by a Dirichlet Process with base probability measure G0:

Gj | α0, G0 ∼ DP (α0, G0) (6)
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The hyperparameters of the Hierarchical Dirichlet Process consist of the base-
line probability measure H, and the concentration parameters γ and α0. The
baseline H provides the prior distribution for the topic of the ith word in the jth

WSDL document, θji. For each j let θj1, θj2, ... be independent and identically
distributed random topics distributed as Gj . Each θji is a topic corresponding
to a single observation xji. The likelihood is given by:

θji | Gj ∼ Gj

xji | θji ∼ F (θji) (7)

which is the Hierarchical Dirichlet Process mixture model [15].

G0GjϴjiXji H

γα0

Fig. 4. A Hierarchical Dirichlet Process mixture model. In the graphical model for-
malism, each node in the graph is associated with a random variable, where shading
denotes an observed variable. Rectangles denote replication of the model within the
rectangle [15].

3.3 LSTM-RNN Model for User Preference Prediction

In this section, we discuss our proposed LSTM-RNN model. A recurrent neural
network (RNN) is a type of artificial neural network (ANN) designed to rec-
ognize patterns in sequences of data [11]. Unlike traditional Neural Networks,
which assume that all inputs and outputs are independent of each other, RNNs
make use of sequential information. RNNs use their internal state to capture
information that has been previously calculated, based on which the next item
in the sequence is predicted. RNNs use back propagation algorithm [11], applied
for every time stamp and this is commonly known as back propagation through
time (BPTT). BPTT, however, introduces vanishing gradient and exploding gra-
dient issues in RNN, when the number of items in the sequence gets large (long
term dependencies) [12]. These limitations can be resolved by Long Short-Term
Memory networks (LSTM), which we will employ in this work. LSTM are a
special kind of RNN, capable of learning long-term dependencies. They were
introduced by Hochreiter and Schmidhuber [12] and were refined and popular-
ized by many people in following work [25–28]. An LSTM is composed of a
cell, an input gate, an output gate and a forget gate. The major component is
the cell state (“memory”) which runs through the entire chain with occasional
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information updates from the input(add) and forget(remove) gates. An LSTM
network computes a mapping from an input sequence x = (x1, ..., xT ) to an out-
put sequence y = (y1, ..., yT ) by calculating the network unit activations using
the following equations iteratively from t = 1 to T [29]:

it = σ(Wixxt + Wimmt−1 + Wicct + bi) (8)

ft = σ(Wfxxt + Wfmmt−1 + Wfcct−1 + bf ) (9)

ct = ft 
 ct−1 + it 
 g(Wcxxt + Wcmmt−1 + bc) (10)

ot = σ(woxxt + Wommt−1 + Wocct + bo) (11)

mt = ot 
 h(ct) (12)

yt = φ(Wymmt + by) (13)

Input Encoder 
Model

Decoder 
Model

Dense Output

Fig. 5. Encoder-decoder LSTM architecture

– f : forget gate’s activation vector
– i: input gate’s activation vector
– o: output gate’s activation vector
– h: output vector of the LSTM unit
– g: cell input activation function, generally tanh
– h: cell output activation functions, generally tanh
– c: cell activation vector
– W : weight matrices parameters
– b: bias vector parameters
– 
: element-wise product of the vectors
– σ: the logistic sigmoid function
– φ: the network output activation function

We model our predicting function by using the encoder-decoder LSTM archi-
tecture [23], which is comprised of two models: the first is to read the input
sequence and encode it into a fixed-length vector, and the second for decoding
the fixed-length vector and outputting the predicted sequence. Figure 5 shows a
simplified diagram of an encoder-decoder LSTM. Our prediction model takes as
input, the invocation preference at the various timestamps (t0, t1, t2, ...., tn) and
predicts as output, the future user invocation preference at time tn+1.

In this work, we use one LSTM to implement the encoder model and another
LSTM for the decoder model. The encoder learns the relationship between the
steps in the input sequence and develop an internal representation of those rela-
tionships. The decoder then transforms the learned internal representation of
the input sequence into the correct output sequence. Figure 6 shows a basic rep-
resentation of our sequence to sequence model with encoder-decoder LSTM.
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Input Sequence

Hidden Layer

Output Sequence

Fig. 6. Many-to-many RNN

3.4 Service Recommendation

To recommend a service to a user u, we calculate the weighed Jensen-Shannon
divergence [30] between u’s future invocation preference and the topic dis-
tribution of each candidate service using non-functional attribute values as
weights. Given two normalized distributions tj = {tj

1, tj
2, .., tj

K} and rj =
{rj

1, rj
2, .., rj

K}, where K is the number of the bins in each histogram. Then
the Jensen-Shannon Divergence (JSD) between tj and rj can be defined as:

JSD(rj‖tj) =
1
2
KLD(rj‖mj) +

1
2
KLD(tj‖mj) (14)

KLD(rj‖mj) =
K∑

k=1

rkj log
rkj
mk

j

(15)

where mj = 1
2 (rj + tj).

For a JSD, it is alway necessary to select the hypothesis that produces smaller
differences between the ideal and predicted distributions. Hence, the residual dis-
tribution is weighed using non-functional attribute values generated in a stan-
dard Gaussian function g = {g1, g2, ..., gK} (μ = 0, σ2 = 1) to generate the
Gaussian-weighted JSD (GJSD) [30]. The Gaussian weight function reinforces
the influence of JSD for data points. GJSD is formulated as:

GJSD(rj‖tj) =
1
2
GKLD(rj‖mj) +

1
2
GKLD(tj‖mj) (16)

GKLD(rj‖mj) =
K∑

k=1

gkrkj log
rkj
mk

j

(17)



Personalized Service Recommendation Based on User Dynamic Preferences 87

4 Experiments and Results

This section describes the experiments we conducted we conducted to evaluate
and validate our proposed LSTM-RNN method for personalized service recom-
mendation based on user dynamic preference. We also discuss our results.

4.1 Experimental Setup and Dataset Description

Our experiments were performed on WS-Dream dataset [18], a real-world web
service quality of service performance dataset. The data set contains about 2
million web service invocation records of 5,825 web services with about 339 users.
It contains the response time and throughput values for all invoked services. We
visited all the WSDL addresses in the dataset and out of the 5,825 web services,
3,544 were found to be valid. Therefore, we conducted our experiments with
these valid services.

From the 3,544 valid services, we identified 294 different groups of services
based on their similar WSDL addresses. For each group of n valid services, we
chose the first 1..n−1 and designated those as pre-invocation dependencies while
the nth service was designated as the invoked service. Based on this, we used
HDP to generate topic distributions and user profiles (timestamps of invoca-
tion preferences). We subsequently split the 294 different groups of services into
training, testing and validating sets for experiments.

4.2 Performance Metric

To quantitatively assess the overall performance of our LSTM-RNN model, Mean
Square Error (MSE) was used to estimate the prediction accuracy. MSE is a scale
dependent metric which quantifies the difference between the predicted values
and the actual values of the quantity being predicted by computing the average
sum of squared errors:

MSE =
1
N

N∑

N=1

(yi − ŷi)2 (18)

where yi is the observed value, ŷi is the predicted value and N represents the
total number of predictions.

4.3 Results

We conducted our experiment with two RNN based encoder-decoder models of
LSTM and Gated Recurrent Unit (GRU). The experiments were ran over 25
epochs for both models with 256 memory cells each for encoder and decoder
models. We employed rmsprop as optimizer and used categorical crossentropy
as the loss function for our LSTM and GRU models. Figures 7a and b show an
overlay distribution and a cumulative ogive of predicted and expected respec-
tively. From these two figures, we observe that our trained model is sensitive to
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Fig. 10. MSE of predicted and expected distributions

some distribution data points in our test set. This, we attribute to the dataset
on which we trained our model with. The graphs of validation accuracy and
validation loss of the LSTM and GRU are shown in Figs. 8 and 9 respectively.
It is evident from Fig. 8 that the performances of LSTMs and GRUs for our
experiment were comparable. This comes as no surprise as both LSTMs and
GRUs use memory to ensure that the gradient can pass across many time steps
without vanishing or exploding. We also checked the accuracy of our prediction.
For this experiment, the predicted distribution from our model is compared to
the expected distribution and the MSE recorded. Figure 10 shows different error
rates that we obtained for the 10 predictions we validated.

5 Conclusion and Future Work

Giving personalized recommendations is a very essential task for business and
individuals alike. However, to increase recommendation accuracy, it is essen-
tial that recommendation systems include users’ evolving preferences. It is not
sufficient to only consider users’ preferences at a point in time because user
preferences change with time. In addition, users leave behind rich and useful
historical invocation information, that could be employed to improve recom-
mendation accuracy. In this work, we have proposed a method to personalize
users’ recommendations based on their dynamic preferences on non-functional
attributes. Our proposed model creates a user preference profile as a time series of
his/her invocation preference and pre-invocation dependencies (i.e. the different
services that were viewed prior to invoking the preferred service). In our work, we
also modeled a user’s invocation preference as a combination of non-functional
attribute values observed during service invocation, and topic distribution from
WSDL of the invoked service using Hierarchical Dirichlet Process (HDP). We
employed long short-term memory recurrent neural networks (LSTM-RNN) to
predict the user’s future invocation preference to recommend service(s) to that
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user. To evaluate our proposed method, we have performed experiments with
WS-Dream dataset and results from our experiments were very promising.

As future work, we will expand our model in a new hypothesis and run
several experiments with a couple of relevant datasets. Specifically, we would
like to explore the advantages of including attention mechanisms in our LSTM
model.
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