
Computational Thinking on the Way
to a Cultural Technique

A Debate on Lords and Servants

Andreas Bollin(&) and Peter Micheuz

Universität Klagenfurt, Klagenfurt, Austria
{Andreas.Bollin,Peter.Micheuz}@aau.at

Abstract. Based on a thorough literature review and on personal expertise in
different areas of computer science (education) fields, we reflect and debate on
computational thinking from different perspectives. One is that of an Austrian
teacher who is confronted with a curriculum for a new subject called ‘Basic
Digital Education’, with computational thinking as an explicit part of it. The
other view is that from a reflective software engineer with a holistic perspective
on computational thinking and concrete ideas about its limitations. The debate
concludes with an agreement on computational thinking as a cultural technique
and a mutual approach to a refined working definition.

Keywords: Computational thinking � Computer science � Life-long-learning �
Engineering � Curriculum development

1 Introduction

In an interview with the German “Süddeutsche Zeitung” at the end of January 2018,
Armin Grunwald, head of the Office of Technology Assessment at the German Bun-
destag, said that if “we just have to work to run after the technology, then something is
wrong. Hegel has already put this in a nutshell, with the relationship of master and
servant… The more the Lord relies on his servant, the more dependent he becomes on
him” [1]. Indeed, for decades, educators (and politicians) have had to deal with the
question of what to teach and how to be able to produce (or perhaps guarantee)
politically mature and technologically up-to-date people. But, what does this mean in
the context of current developments: robots, drones, artificial intelligence, smart
devices and, not to forget, the Internet of things and smart homes? Is digital education
following a scattergun approach?

With the publication of a CACM viewpoint article about computational thinking
(CT) in 2006, Jeanette Wing popularised the idea of a new fundamental skill used by
everyone in the world by the middle of the 21st century [2]. She defined computational
thinking as “the thought processes involved in formulating a problem and expressing
its solution(s) in such a way that a computer – human or machine – can effectively
carry out”. In the Gödel Lecture at Vienna University of Technology on June 9 2016,
she also shared many examples of where to find computational thinking aspects in
different disciplines, be it economics, law, healthcare or geosciences. So, together with

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
D. Passey et al. (Eds.): OCCE 2018, IFIP AICT 524, pp. 3–13, 2019.
https://doi.org/10.1007/978-3-030-23513-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23513-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23513-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23513-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-23513-0_1

introducing computer science to our classes, do we have a silver-bullet for dealing with
today’s challenges?

In her 2006 seminal paper, Wing did not primarily think of computational thinking
in primary and secondary education [2]. It was not foreseeable which worldwide
avalanche has been set off by her, especially among educationalists and teachers.
Maybe it goes too far to refer to it as a hype. But if not, it could be a worthwhile
endeavour to show that Gartner’s Hype Cycle can even be applied to this phenomenon,
with the peak of inflated expectations being apparently behind us. Currently, we find
ourselves at the slope of enlightenment, in the form of reasonable and viable definitions
of that all-in-all still fuzzy term. Reviews on existing literature strengthen some core
concepts of CT: logical and algorithmic thinking, decomposition, generalisation and
pattern recognition, modelling and abstraction [13].

CT is seen as a fundamental set of mental skills used by everybody, as fundamental
as reading, writing and arithmetic [12]. Martin describes CT simply in a few words: “It
is about connecting computing to the world” [9]. Moreover, it seems to be widely
accepted that coding is an indispensable part of CT [10]. It is seen as an aid to learning
software development [11], and is thus coupled with software engineering [20, 21].

The list of publications in the context of CT is amazing. But, even more surprising
is the fact that the debate about “How much of computer science and computational
thinking should be taught?” is camouflaged by the support from technology enthusi-
asts, industry, and politicians. So, though there are numerous different curricula and
definitions of computational thinking around [3–7], there still is no common under-
standing about how far we need to go. This paper, therefore, tries to answer the
question of what computational thinking (also at primary and secondary schools) is,
and elaborating on it closer, what it is not. We try to approach the border between
computational thinking (as a set of skills that is needed due to contemporary demands,
addressing the characteristics of a new cultural technique) and the skills of an engi-
neering education that are needed by professionals.

The idea behind this paper was born during a trip of the two authors from Kla-
genfurt to Vienna, where we were trying to define computational thinking in the
Austrian context. Both authors have years of teaching experience in computer science,
but the first author has a strong engineering background, whereas the second author is
involved in political discussions, adapting the school system in Austria for many years.
It seems natural to us to approach this topic in the form of a debate, where statements
are presented and redefined along the discussion, finally coming up with a reliable
definition of the border between CT and not-CT.

2 A Debate on CT in the (Austrian) Educational System

“Basic Digital Education” is the name for a new subject which will be introduced in all
Austrian lower secondary schools beginning in the school year 2018–2019. There is
one curriculum covering four years of lower secondary education (age groups from
10–14 years) and encompassing eight main topics:

4 A. Bollin and P. Micheuz

• Social aspects of media change and digitisation
• Information, data and media competence
• Operating systems and standard applications
• Media design
• Digital communication and social media
• Security
• Technical problem-solving
• Computational thinking

Obviously, these topics stand for a broad curriculum, which encompasses digital
competence, media competence, and political competence as well. Digital competence
in particular is expected to empower pupils, based on a comprehensive overview of
digital tools (hardware and software), for coping with certain scenarios in educational,
vocational and private contexts in a reflective manner.

At first sight, informatics (computer science) does not play a prevalent and visible
role. Media pedagogy and digital literacy are apparently better represented than core
informatics. At a second glance, computer science is represented explicitly as CT. This
term has not been translated into the German synonym “Informatisches Denken” and
appears in the curriculum as the (global) driving force for implementing elements of
core informatics into a seemingly overcrowded curriculum.

Table 1. CT in the Austrian curriculum for basic digital education [23]

Computational
thinking

Basic level
(2 h per week)

Advanced level 1
(+1 h)

Advanced level 2
(+1 h)

Working with
algorithms

Pupils
– name and describe
everyday processes

– use, build and reflect
codes (e.g. secret
writing, QR-Code)

– reproduce distinct
instructions
(algorithms) and carry
them out

– formulate distinct
instructions verbally
and in written form

Pupils
– discover similarities
and rules (patterns)
within instructions
(algorithms)

– discover the
importance of
algorithms in
automatic digital
processes (e.g.
automated proposal of
potentially interesting
information)

Pupils
– can evaluate
intuitive user
interfaces and its
underlying
processes

Creative use of
programming
languages

Pupils
– produce simple
programs or web
applications with
appropriate tools to
solve a problem or to
complete tasks

– know different
programming
languages and
production processes

Pupils
– master basic
programming
structures (decision,
loops, procedures)

Pupils
– reflect the
boundaries and
options of
simulations

Computational Thinking on the Way to a Cultural Technique 5

All topics of the curriculum are divided into further subtopics and detailed com-
petence descriptions and learning goals. The main topic CT is split into a basic and
advanced level (see Table 1 for more details).

For the first time in the history of computing education in Austria, all lower
secondary schools – “some” teachers and all pupils – are exposed to a binding cur-
riculum wherein computing, algorithms and programming play a more or less clearly
defined and specified role. Digital education in general and CT in particular are no
longer optional for a special cohort of pupils, but obligatory for all. It would be too
much to go into the details of the challenging organisational issues required to
implement the curriculum. All there is to say about it is that within the framework of
school autonomy, schools can change the number of hours within a certain range. They
have to decide autonomously to introduce the curriculum for ‘Basic Education’ as an
independent subject (2 to 4 h per week, which means an assumed 64 to 128 h of
lessons) within 4 years, in a completely integrative way in other subjects (64 to 128 h)
or all hybrid forms between these extremes. But independent from the justified question
of how to cover all topics, with, all-in-all, over one hundred learning goals in a very
limited time, the main questions are: to what extent is the Austrian definition of CT in
line with international views among experts including scientists and teachers, and does
it already answer the question of what CT is definitely not? The explicit topic CT in the
Austrian curriculum could lead to the assumption that it has nothing to do with the
other topics, like standard applications, technical problem-solving or security or even
media design.

2.1 Proper or Improper

The opening statement of A. Bollin: The article of Bocconi et al. [8] about computa-
tional thinking approaches and orientations in K-12 education brings us exactly to the
point: there are still different views on what computational thinking is. Some of them
include programming; some of them do not. For motivational reasons, curricula sooner
or later will introduce coding or programming in their lecture units. According to the
new Austrian curriculum, pupils should be able to produce simple programs or web-
applications and should know different programming languages. This seems to be in-
line with the current trend, but when it is not introduced for good reasons and correctly,
this is putting the cart before the horse.

In the vision of Wing, everyone should be able to use well-established techniques
that have been applied by engineers for a long time already. It is about formulating
problems in such a way that, maybe with the help of others (or even machines),
problems can be solved easier. Thus, it is not surprising that the problem-solving
activity includes logical reasoning, algorithmic thinking, abstraction, decomposition,
generalisation, pattern detection and languages (notations) for communication and
representing information. But, this is quite individualistic, and nowadays by far not
enough to solve larger (and more complex) problems. Missiroli et al. [14] thus suggest
combining computational thinking skills and team-based skills, as needed by software
developers, when developing software in an agile manner. Figure 1 summarises their
concept, combining problem solving and social skills to a new literacy they call “co-
operative thinking”.

6 A. Bollin and P. Micheuz

So, when introducing programming, it should not be done to just to illustrate how
algorithms can be used and executed. We should not be dumb Lords. One should be
honest and state that nowadays it is about solving real-world problems. But, this then
includes more than just being able to write some lines of (computer-readable) text. It is
also about including some software engineering skills.

2.2 Step-by-Step

The follow-up statement of P. Micheuz: “The secret of getting ahead is getting started.
The secret of getting started is breaking your complex overwhelming tasks into small
manageable tasks and starting on the first one.” This little-known quote from poet Mark
Twain on problem-solving can be seen as a remarkable historical precursor, long before
CT began to rack the brains of thousands of educational experts in the field. Every
software engineer working on solving so-called real-world problems in teams, and with
the aid of digital tools, has learned “simply to go” by practicing and internalising basic
concepts and, to a reasonable extent, also some (especially among many education-
alists), disreputable rote learning. There is another quote, “He who wants to build high
towers must dwell with the fundament for a long time” from the Austrian composer
Anton Bruckner. It supports the truism that CT as a cultural technique needs an early
beginning, a coherent and sustainable construction of skills and competences in the
form of a spiral curriculum.

Looking at the ambitious and overloaded curriculum, with CT as a comparatively
small part, and even under the assumption that motivated and CT-proven teachers
follow the intended curriculum, it is rather unlikely that all pupils can meet all goals of
the whole curriculum in 64 to 128 h of lessons within four years.

It is self-evident that CT for primary, lower/upper secondary and tertiary level
(must) have different characteristic forms. I can live with the fact that advanced aspects
of software engineering and bigger projects should play a role, at the earliest, at upper
and tertiary level, but for primary and lower secondary level that would go too far.
Nonetheless, cooperative thinking, or better, cooperative acting, can be harnessed as a

Fig. 1. Cooperative thinking as a combination of CT and agile development breakdown
(according to Missiroli et al. [14] and following Computing at School [15] and Beck [16])

Computational Thinking on the Way to a Cultural Technique 7

valuable general teaching method, especially in programming and CT-related lessons.
I doubt that software engineering in its full definition is an adequate term for lower age
groups. That would overstrain teachers who are already struggling with CT, but willing
to undergo professional development in that field. But, often things are not as bad as
they seem. From this perspective, the fact that CT lacks a precise definition must be
considered predominantly an advantage, as it is scalable and adaptable for various age
groups and even interdisciplinary implementations.

The explicit learning goal of producing (simple) programs confronts Austrian
teachers and pupils with a fait accompli. CT in the new curriculum covers more than
mere algorithmic thinking, but less than dealing with (complex) real-world problems.

2.3 Past and Future

The follow-up statement of A. Bollin: Interestingly, history is repeating. The intro-
duction of spreadsheets decades ago led to a situation where every user was using
sheets without noticing that he or she was (and is) in fact programming [19] (and not
following quality standards a software engineer would naturally follow). Debugging
aids for spreadsheets are getting better nowadays, but still a lot of erroneous spread-
sheets are around, forming the basis for (private as well as industrial) disastrous
decisions. We should not educate pupils in a way where oversimplifications potentially
lead to a misuse or misunderstanding of reality.

The “proper or improper” claim does not mean that even more skills are to be
packed into the tight schedule in schools under the umbrella of computational thinking,
but it is a hint toward a problem that we are running into. In one work, Hermans and
Aivaloglou [17] show that using block-oriented languages (which are quite often
chosen for novice programmers) dramatically hampers learning programming later at
universities. Without taking care of software engineering practices from the beginning
(as examined in their paper), a lot of effort, time and resources are needed to produce
the engineers that the industry is longing for. Now, not everybody will (and should)
strive for a career as a (software) engineer. But, this is not a reason for showing
programming in a way nobody ever would and should program. The problem focus and
the context are missing, and in our classrooms, we continue having a lot of bored
pupils.

This viewpoint is partially also supported by neuro-didactic findings: people have
enormous difficulty learning when either parts or wholes are neglected. Hence, the
learning brain needs the whole and the details; it requires both a big picture and paying
attention to the individual parts [18]. In our case, the real world is needed, and the
individual parts could be programming tasks or the meaningful use of technology.

To me, programming already is part of the engineering discipline, and CT covers
parts of the skills an engineer needs to successfully solve problems and to create
something new. Sure, for didactic reasons, one might start to introduce small programs
to show the application of CT techniques in a bigger context. It is also clear that one
has to start step-by-step. But, as another comparison with a cultural technique shows,
when we start learning to read, we do not stop after recognising the letters. We continue
with combining the letters together and with learning to recognise syllables, words,
etc., until we reach some level of proficiency.

8 A. Bollin and P. Micheuz

To summarise, when defining programming as not being part of CT, then we
definitely should add computer science (and software techniques) to our curricula in
order to show the whole picture. When we say that programming is part of CT, then we
should not do it in an inappropriate (context-neglecting) way and need to add more
hours to our syllabi. It also means investing more resources and training our teachers
(including all the lecturers at universities) accordingly. This is the only way that pupils
(and parents and teachers) will responsibly know why to decide either for or against a
technical study or technique-related working place later on. It is also the only way to
keep technological change being the servant and not allow it to take over.

2.4 In the Right Place at the Right Time with a Sense of Proportion –

P. Micheuz

The final statement of P. Micheuz: Digital education in its full complexity will remain a
big challenge in traditional formal educational settings. So will the recent decision from
an expert group to embed CT explicitly into the Austrian curriculum. It does not solve
the problem of age-appropriateness and does not even guarantee dedicated lessons for
computing. It transfers the responsibility for its implementation - to what extent and at
which age level - to schools and teachers. In contrast to traditional subjects such as
language education and mathematics, the drivers of the main cultural techniques of
reading, writing and arithmetic, currently CT cannot rely on sequenced and coherent
age appropriate lessons. Accordingly, there is legitimate concern that within 4 years of
lower secondary education, CT will not be taught properly. It may be assumed that in
the initial phase of executing the curriculum of ‘Basic Digital Education’ in some
schools, CT will play little role.

Regarding the introduction of programming with a block-based approach (Scratch
or similar development environments), I am quite optimistic. The question remains
when to switch to the first steps of textual coding. As for today, the Austrian curriculum
for ‘Basic Digital Education’ has no answer for that.

It cannot be expected that (m)any teachers at this school level see the whole picture
of software development. Basic CT education with first steps in problem-solving,
algorithmic thinking and first programming experiences on a small scale should be also
feasible without having deep experiences in software engineering.

But even these first steps cannot be taken for granted. CT education for pupils
needs CT-educated teachers and professional development in that field on a large scale.
In the next years, nationwide measures in the form of pre-service and in-service
training in various formats will need to be taken.

3 A Working Definition of Computational Thinking

In the previous section, we tried to take two positions, one from the viewpoint of a
software engineer, and one from the viewpoint of teachers who need to make the next
generations fit for exciting technological changes and current threats. Now, we try to
converge and to find a working definition in the context of the Austrian situation and
with regard to CT as a cultural technique.

Computational Thinking on the Way to a Cultural Technique 9

3.1 About Cultural Techniques

When reflecting on cultural techniques, we think primarily of the cognitively most
fundamental cultural techniques of reading, writing and arithmetic, and of its lengthy
and laborious acquisition in dedicated school subjects. But, in our increasingly digitally
penetrated culture, there are demands for extended skills and competences as widely
elaborated in the Digital Competence Framework for Citizens [22].

If we accept CT as a new cultural technique, it might be helpful to look closer at
what a cultural technique really is. Cultural techniques are a set of skills, concepts and
competences that help human beings “function properly” in a given culture. They help
in dealing with tasks and solving problems in different situations of life, like making a
fire, using a calendar, or being able to communicate in social networks.

As cultural techniques are solution concepts for tasks and problems of human
beings, we have to be clear about current human needs (cf. Maslow’s hierarchy). In the
context of new technological demands and secondary education, this list of needs
encompasses being able to:

• Communicate with others using state-of-the-art communication technology.
• Search for, assess and work with available information.
• Solve tasks in a sustainable manner with the help of new state-of-the-art technology.
• Protect him- or herself against fraud.

Apart from these needs, which are well covered also in the new Austrian cur-
riculum for ‘Basic Digital Education’ (see Sect. 2), one also needs to know about the
limits of the solution concepts and being able to protect oneself from a misuse, so the
list has to be extended by:

• Knowing what computer science and software engineering is about.
• Being aware of potential limitations and side-effects.

Last, but not least, computational thinking definitely does not include the cultural
technique of typewriting or information technology (IT)-literacy such as using office
software and digital devices at a cursory level. And, it is rather unthinkable that there
are computational thinkers who are not fluent in harnessing computers, but it is quite
possible that fluent computer users are not yet educated computational thinkers.

With all these reflections in mind, one can give a quite crisp definition of what
computational thinking in secondary education is and what it is not.

3.2 A Working Definition

Computational thinking is a cultural technique consisting of a set of skills needed to
complete a task in a responsible, sustainable manner including problem-solving, evo-
lutionary and reflection steps. These steps encompass logical reasoning, algorithmic
thinking, abstraction, generalisation, decomposition, design/solution patterns, evalu-
ation techniques, and as computers might be involved in the solution process, different
representation forms. It also includes knowing about related disciplines like computer
science and software engineering. As such, it should be thought about to its fullest
extent, but in an age-appropriate manner, at the secondary level in Austria.

10 A. Bollin and P. Micheuz

Computational thinking is not about being able to work like a software engineer or
computer scientist. It is not necessarily about finalising (software) products in a cor-
rect, efficient and cost-oriented manner. It is also not about proving and searching for
algorithmic properties or creating new physical devices. But, it is knowing about the
limits of one’s own solution ideas.

Now, as our debate was also about programming and coding, it is up to the educator
to what extent to include programming languages (in graphical or textual form) to
motivate for a technique or skill. However, it is then his or her responsibility to make
the difference to software engineering clear. The implications for a teacher (and for
teacher education) are obvious: he or she needs to know more about computer science
and software engineering, as at least a portion of teaching CT is about teaching the
differences/boundaries to neighbouring disciplines.

4 Summary and Outlook

In this paper, we tried to further the approach to defining computational thinking,
reflecting on discussion among scientific and educational experts in the educational
field of computing. It stresses the fact that CT is at the border of engineering disci-
plines, and, when coding is involved, it is also close to the border of software
engineering.

More than a decade after the seminal work of Jeanette Wing [2], the wave of its
public perception reached Austria. Since computational thinking is an explicit part of
the new curriculum ‘Basic Digital Education’, it will be a starting point of many
discussions and debates.

The debate in this paper results in a working definition from the perspective of
software engineering and CT as a cultural technique, having in mind the limits and
challenges of school education in general and the introduction of a new subject in
particular.

We agree that CT in the way we see it must be considered an important cultural
technique in the 21st century. But, we are realistic enough to know that CT as imagined
in the heads of many educational experts, including our abstract working definition
above, still has a long and difficult way to go from the conception stage to its
implementation.

There is hope that its future will not be that of the term and subject of informatics in
Austrian lower secondary schools where, according to a very broad interpretation of its
definition, the subject informatics in Austrian schools created its own reality. Maybe a
reality with some CT-related parts were included, but from a vast majority of teachers
they were not realised as CT defined above. Only when carefully knowing the borders,
were we able to deal with current and future human needs. And thus, it is more likely to
keep the role of a Lord not being dependent on his or her (technical) servants.

Computational Thinking on the Way to a Cultural Technique 11

References

1. Bauchmüller, M., Braun, S.: SZ Online. http://www.sueddeutsche.de/wirtschaft/gefahren-
der-digitalisierung-die-leute-merken-nicht-mehr-wie-fragil-das-system-ist-1.3842973-3.
Accessed 11 Jan 2019

2. Wing, J.: Computational thinking. CACM Viewpoint 49, 33–35 (2006)
3. Webb, M., et al.: Computer science in K-12 school curricula of the 2lst century: why, what

and when? Educ. Inf. Technol. 22(2), 445–468 (2017)
4. Gallenbacher, J.: Abenteuer Informatik. Hands-on exhibits for learning about computational

thinking. Paper Presented at WiPCSE 2012, Germany (2012)
5. Dierbach, C., et al.: A model for piloting pathways for computational thinking in general

education. In: SIGCSE 2011, pp. 257–262. ACM, New York (2011)
6. Seiter, L., Foreman, B., Carroll, J.: Modeling the learning progressions of computational

thinking of primary grade students. In: 9th International ACM Conference on International
Computing Education Research, pp. 59–66. ACM, New York (2013)

7. Cole, E.: On pre-requisite skills for universal computational thinking education.
In: Procceedings of ICER 2015, Omaha, NE, pp. 253–254 (2015)

8. Bocconi, S., Ferrari, A., Kampylis, P.: Developing computational thinking: approaches and
orientations in K-12 education. In: EdMedia 2016, Vancouver, BC, pp. 13–18 (2016)

9. Martin, F.: Rethinking Computational Thinking. http://advocate.csteachers.org/2018/02/17/
rethinking-computational-thinking. Accessed 11 Jan 2019

10. Prottsman, K., Krauss, J.: Computational Thinking and Coding for Every Student: The
Teacher’s Getting-Started Guide. SAGE Publications, Thousand Oaks (2017)

11. Beecher, K.: Computational Thinking. A Beginner’s Guide to Problem-Solving and
Programming. BCS Learning & Development Ltd., Swindon (2017)

12. Wing, J.: Computational Thinking Benefits Society. Social Issues in Society. http://
socialissues.cs.toronto.edu. Accessed 11 Jan 2019

13. Selby, C., Woollard, J.: Computational Thinking: the developing definition. University of
Southampton (2013). https://eprints.soton.ac.uk/356481. Accessed 11 Jan 2019

14. Missiroli, M., Russo, D., Ciancarini, P.: Cooperative thinking, or: computational thinking
meets agile. In: Proceedings of the 30th IEEE Conference on Software Engineering
Education and Training. Savannah, GA, pp. 187–191 (2017)

15. Beck, K., Andres, C.: Extreme Programming Explained. Addison-Wesley, Boston (2004)
16. Csizmadia, A., et al.: Computational thinking: a guide for teachers. Computing at Schools

E-Book (2015)
17. Hermans, F., Aivaloglou, E.: Do code smells hamper novice programming: a controlled

experiment on Scratch Programs. In: Proceedings of the 24th IEEE International Conference
on Program Comprehension, Austin, TX, pp. 1–10 (2016)

18. Caine, R.N., Caine, G.: Understanding a brain-based approach to learning and teaching.
Educ. Leadersh. 48(2), 66–70 (1990)

19. Mittermeir, R., Clermont, M., Hodnigg, K.: Protecting spreadsheets against fraud.
In: Proceedings of the European Spreadsheet Risks International Group (2005)

20. Bollin, A., Sabitzer, B.: Teaching software engineering in schools – on the right time to
introduce software engineering concepts. In: 6th IEEE Global Engineering Education
Conference, EDUCON, pp. 511–518 (2015)

21. Bollin, A., Pasterk, S., Antonitsch, P., Sabitzer, B.: Software engineering in primary and
secondary schools – informatics education is more than programming. In: IEEE 20th
Conference on Software Engineering Education and Training, CSEE&T, pp. 132–136
(2016)

12 A. Bollin and P. Micheuz

http://www.sueddeutsche.de/wirtschaft/gefahren-der-digitalisierung-die-leute-merken-nicht-mehr-wie-fragil-das-system-ist-1.3842973-3
http://www.sueddeutsche.de/wirtschaft/gefahren-der-digitalisierung-die-leute-merken-nicht-mehr-wie-fragil-das-system-ist-1.3842973-3
http://advocate.csteachers.org/2018/02/17/rethinking-computational-thinking
http://advocate.csteachers.org/2018/02/17/rethinking-computational-thinking
http://socialissues.cs.toronto.edu
http://socialissues.cs.toronto.edu
https://eprints.soton.ac.uk/356481

22. Digital Competence Framework for Citizens. https://ec.europa.eu/jrc/en/digcomp. Accessed
11 Jan 2019

23. Digital Basic Education. (in German). https://bildung.bmbwf.gv.at/schulen/schule40/dgb/
index.html. Accessed 11 Jan 2019

Computational Thinking on the Way to a Cultural Technique 13

https://ec.europa.eu/jrc/en/digcomp
https://bildung.bmbwf.gv.at/schulen/schule40/dgb/index.html
https://bildung.bmbwf.gv.at/schulen/schule40/dgb/index.html

	Computational Thinking on the Way to a Cultural Technique
	Abstract
	1 Introduction
	2 A Debate on CT in the (Austrian) Educational System
	2.1 Proper or Improper
	2.2 Step-by-Step
	2.3 Past and Future
	2.4 In the Right Place at the Right Time with a Sense of Proportion – P. Micheuz

	3 A Working Definition of Computational Thinking
	3.1 About Cultural Techniques
	3.2 A Working Definition

	4 Summary and Outlook
	References

