
Metrics for Temporal Text Networks

Davide Vega and Matteo Magnani

1 Introduction

The concept of communication is fundamental in the study of social systems
[13], and the approaches for modeling them as networks make no exception. For
example, if we focus on temporal social networks a large majority of the scenarios
studied in the literature are clearly describing communication processes, including
conversations on social media [14], mobile telephone calls [7], as well as face-to-
face interactions [22]. Even when we consider static models of social networks,
such as a friendship graphs without any associated temporal information, many
of the metrics used to analyze them are still based on the assumption that some
information is shared through the network. For example, we can measure the ability
of actors or groups of actors to efficiently spread information (closeness, diameter,
Page-Rank centrality), or we can identify actors with the ability to influence
existing information flows (betweenness centrality). In summary, the most typical
application of social network models and in particular temporal social networks is
to study systems of communication.

Despite the central role of information in communication systems, the informa-
tion exchanged through the social ties has often been neglected in network analysis.
The most popular methods for the analysis of social networks are only defined
on simple graph models, only including actors and their relationships, and hence
temporal network analysis methods only rely on the additional availability of time
annotations.

Information diffusion processes are often modeled including all three compo-
nents: the actors propagating the information, the times of the propagation and the
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content. In practice, however, the content propagated (e.g., the text itself) is used
only to define how actors are connected with each other based on, for example,
the order of links between blog posts [12], who re-shared the same content in
social media [5] or how actors interact with messages shared across multiple social
networks [18, 19]. In [23], the authors use the concept of polyadic conversation,
a model where chains of Twitter user interactions (replies, mentions and retweets)
during a time interval are first grouped into conversation trees, and then aggregated
into a static weighted graph of interactions between authors. This type of graph
aggregation has recurrently appeared in the literature of network modeling and
information retrieval [14], but there is no consensus on either what is the best
method to build such model (e.g., how to compute the length of a conversation
in terms of time and/or tree’s depth) or how the textual content affects the grouping
of actors. In summary, studying communication networks without considering what
is communicated can only allow a partial understanding of the underlying social
system.

To allow a more accurate representation of human communication, a model
for temporal text networks was recently proposed [25]. This model describes
communication events among actors, including the actors exchanging information,
the textual representation of this information and the times when the communication
happens. While this model is still limited to textual information, text is a very
common way to communicate (for example by email, or via Twitter posts) and can
also be used to represent other forms of expression, for instance oral communication
that can be translated to text either manually or semi-automatically through speech-
to-text algorithms, and also images, that can be turned into a set of keywords
describing them [24].

While mathematically temporal text networks can be seen as extensions of
temporal networks, which are themselves extensions of simple networks, there are
two important differences that require the introduction of specific analysis methods.
The most intuitive difference is of course the presence of text. An additional and
more subtle difference lies in the semantics of the temporal annotations.

In the literature on temporal social networks the time on edges is typically used
to indicate when an edge exists, e.g., that during that time the two actors are in
contact and can exchange information. An implicit assumption in existing works is
that information can be exchanged at any time when an edge is active, and that the
exchange of information is instantaneous.

When we explicitly model communication networks, we should make a dif-
ference between edges representing the possibility of communicating and edges
representing the actual production and consumption of information. In many cases
the first type of edges exist between all actors; for example, we can always send
an email to an existing email address. Therefore, in this chapter we focus on
edges representing communication acts, that is, the actual exchange of information.
These acts may have a non-negligible duration, therefore the time annotations in
a temporal text network indicate when the transmission of a (text) message starts
and when it finishes. Examples where this is important are messages exchanged
through physical networks, where the communication channel has a physical delay,
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and asynchronous communication such as by email and via social media, where the
text is sent at some time but in general only received at a later time.

This different semantics of the temporal edges in temporal networks and in
temporal text networks requires the re-definition of some central concepts, such as
time-consistent paths, which in turn leads to the definition of new specific metrics.

Finally, it is worth mentioning that NLP1 methods such as sentiment analy-
sis [3, 16] have been used in the past to study the evolution of tweets, songs,
blogs, presidential speeches without requiring information about the underlying
communication structure (who exchanges these data sources and how), using only
data from time-annotated documents and time series information [11]. The temporal
text network model does not only allow researchers to use NLP methods during the
analysis, but it provides specific metrics to combine them with other measures from
temporal networks.

This chapter introduces the concept of path in temporal text networks and various
metrics to characterize them. In Sect. 2 we introduce the temporal text network
model to encode communication networks. In Sect. 3 we introduce the concepts
of walk and path in temporal text networks, and in Sect. 4 we define alternative
ways of summarizing a path, based either on the times when the communication
acts happen or on the text exchanged through a path. Finally, in Sect. 5 we conclude
with an empirical comparison of some of the measures introduced in this chapter in
a sample network formed by the Twitter interactions between Swedish politicians.

2 Representing Temporal Text Networks

From a mathematical point of view, a temporal text network [25] can be represented
as a triple (G, x, t) where G = (A,M,E) is a directed bipartite graph representing
the communication network, x : M → X is a mapping between the messages in
M and a set of sequences of characters (text) in X and t : E → T represents the
time associated to each edge, where T is an ordered set of time annotations. The
edge directionality indicates the flow of the communication: (ai,mk) ∈ E indicates
that actor ai has produced text mk , while (mk, aj ) ∈ E indicates that actor aj is
the recipient of message mk . Actors with out-degree larger than 0 are information
producers, actors with in-degree greater than 0 are information consumers, and
actors with both positive in- and out-degrees are information prosumers.

Figure 1 describes a working example we will use during the remainder of
this chapter, representing a temporal text network with |A| = 8 actors, |M| = 6
messages and |E| = 15 edges. It is important to observe that, in most cases, the
edges to/from a message have different time attributes; the only restriction imposed
by the model is that (ai,m), (m, aj ) ∈ E ⇒ t (ai,m) ≤ t (m, aj ). In other words,
a message can be consumed at different times by each actor (e.g., different social

1NLP stands for “Natural Language Processing”.
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Fig. 1 A temporal text network model. Circles represent actors, squares represent messages and
the edges between them represent the production and reception of the messages by the actors.
Edges are also annotated with a time attribute ti ∈ T

media users can visit their notifications page at different times), but can never be
received before it has been generated (e.g., a user cannot access information that
has not been shared yet).

This simple model can be used to differentiate between so-called unicast
(messages m2 and m3 in the figure) and multicast (messages m1, m4 and m5)
communication. The model can also be used to represent a variety of communi-
cation platforms such as email and Twitter mention networks, and can be easily
extended adding edges between actors or between messages to represent additional
relationships such as a follower/followee network. Unless we explicitly mention it,
in the remainder of the chapter we will ignore these extensions.

A similar model to represent temporal interactions is the contact sequence [4,
6] model, which expresses temporal networks as a set of directed edges (called
contacts) during a finite span of time. While this model has been successfully used to
study spreading processes of information [1, 10] or the structural evolution of social
networks [8, 17, 26], the model ignores the role of the content of the messages.

A natural alternative to represent time in networks is to use a sequence of
time-annotated graphs, forming a so-called multi-layer network [2, 9]. In time-
sliced models [15], for example, each one of the aggregated networks represents
a fixed interval of time, and an edge eij is created if at least one contact has been
registered between nodes i and j in the corresponding time interval. The aggregated
graphs are sometimes weighted, in which case the edges have an assigned weight
attribute wij proportional to the number of original edges, their frequency or
another relevant time summarization function. In longitudinal networks, instead,
the relations between the same or similar actors are detected at different points of
time [20, 21]. From the modeling point of view there is not much difference between
the two models, apart from the fact that in time-sliced networks the time intervals
of two adjacent aggregated graphs are contiguous, which is not necessarily true for
longitudinal networks.
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3 Path-Based Metrics

Metrics for simple networks are based on basic concepts in graph theory, such as
adjacency and incidence, and on counting discrete objects such as edges. Temporal
networks extend simple networks with time. This requires the extension of some
basic concepts in graph theory, and as time is often represented as a real number or
interval, then temporal measures also require some additional simple arithmetical
operations, such as time difference.

Temporal text networks also contain a text attribute. Text is a much more
complex type of data, with a large number of possible operations. For example,
the comparison of two texts can be done using different models (edit distance,
word overlapping, vector representation, etc.), applying different “normalization”
operators (stemming, stop word removal, dictionary based word replacement) or
mapping the text to other domains (for example sentiments or topics). While these
choices are very important in practice, hard-coding all these details in the metrics
would make the model very complex.

Therefore, as discussed in [25], when dealing with temporal text networks we
assume to have at least one of the following two types of text functions. The first
type corresponds to a so-called continuous analysis approach, based on the idea
of having different grades of similarity between messages. In this case we assume
to have a distance function d : M × M → [0,∞), indicating how similar two
messages are; if d = 0, the two messages are considered indistinguishable (for
example because they contain the same text), and higher values of d indicate that the
two messages are less similar. Notice that one can then plug specific functions into
the model based on the text operations described above. An example of a message
distance function is the cosine of the angle between vector representations of the
two texts.

The second type of functions is targeted to a so-called discrete analysis approach,
where each message is assigned to 0, 1 or more classes. For each class i we have
a function ci : M → {0, 1}, which returns 1 if the message belongs to class i, 0
otherwise. One example is a topic modelling function with k topics, where ci(m) =
1 if m belongs to topic i. Notice that starting from a discretization function we can
also define a text distance function, for example based on how many common topics
are shared between the two input messages.

3.1 Incidence and Adjacency

In digraphs two vertices are adjacent if there is an edge between them, and two
edges are incident if the tail of the first is the head of the second. In temporal text
networks two vertices are adjacent at time t if there is an edge between them at
that time. The concept of adjacency has also been extended to edges (also known
as events or contacts): an edge entering a vertex is adjacent to an edge leaving the
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same vertex at a later time. This enables the definition of Δt-adjacency between
edges, which is satisfied when they are adjacent and the time between them is less
or equal than Δt . Note that this terminology is not completely consistent with the
one in digraphs, where only vertices can be adjacent.

Temporal text networks differ from the previous cases in two regards. First, we
do not need to extend the concept of adjacency to edges: we have two types of
vertices (actors and messages), so for example the concept of adjacency between
edges in temporal networks corresponds to adjacency between messages. This also
means that we can retain the concept of incident edges from the theory of digraphs.
Second, the idea of filtering those pairs of vertices that are close enough in time
can also be extended to actors. In summary, all the concepts discussed above can be
reduced to the following definitions.

Definition 1 (Edge Incidence) Let e1 = (vi, uk, t1) and e2 = (uk, vj , t2) be two
edges in a temporal text network. We say that e1 is incident to e2 if t1 ≤ t2.

Definition 2 (Adjacency) Let e1 = (vi, uk, t1) and e2 = (uk, vj , t2) be two edges
in a temporal text network. Then:

1. vi is adjacent to uk at time t1.
2. vi is Δt-temporally adjacent to vj if t2 − t1 ≤ Δt .
3. vi is Δx-textually adjacent to vj if vi, vj ∈ M and d(vi, vj ) ≤ Δx.

Notice that the definition of incidence and adjacency hold independently of the
type of vertices (vi, uk and vj ) involved. If vi, vj ∈ A are actors, then their temporal
adjacency is defined by the delay between the production and consumption of the
message uk ∈ M . We call an edge from an actor a to a message m a producer edge
(ep), while an edge from a message m to an actor a is called a consumer edge (ec).
If vi, vj ∈ M are messages, then their temporal adjacency is defined by the delay
between when the intermediate actor consumes (e.g., receives) the first message and
the time when it produces (e.g., sends) the second. For example, the producer edge
e4 = (al,m4) in Fig. 1 is incident to the consumer edge e10 = (m4, an), therefore
actor al is Δt-adjacent to actor an for all Δt ≥ t9 − t4.

3.2 Walks and Paths

Definition 3 (Walk) A walk in a temporal text network (also called a temporal
walk) is a sequence of edges e1, e2, . . . , el where ei is incident to ei+1 for all i from
1 to l − 1.

In the following we will write a ∈ w to indicate that a vertex (actor or message)
is present in walk w.

Notice that the definition above does not constrain the starting and ending
vertices of a path to be actors or messages. However, we will often be interested
in walks starting from an actor, because every message has a single producer in the
model used in this chapter.
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Definition 4 (Path) A path in a temporal text network (also called a temporal path)
is a walk where no vertex (message or actor) is traversed twice.

Each path establishes a precedence relation between actors indicating that
the network allows a flow of information between them. Similarly, we have a
precedence relation between messages indicating that the two messages can be part
of the same flow of information.

Definition 5 (Temporal Precedence) An actor ai temporally precedes another
actor aj if there is a path from ai to aj . A message mi temporally precedes another
message mj if there is a path from mi to mj .

Figure 2 represents the same temporal text network of Fig. 1 as a tempo-
ral sequence of edges between actors and messages. In this example, w1 =
[e4, e7, e8, e9] and w2 = [e4, e10, e11, e12, e14] are two walks of 4 and 5 edges.2

The second walk is also a path, starting at an actor and ending in a message m6, but
the first walk is not a path because the last edge e9 = (m2, al, t9) visits for a second
time the actor al . Finally, notice that in this example al precedes actor ak in path
p1 = [e4, e7] and vice-versa in path p2 = [e8, e9], while m3 precedes m6 but not
otherwise.

In some cases we may want to consider only those paths with a limited delay
and with a limited textual difference between adjacent messages. We can thus
use the definitions of Δ-adjacency introduced above to select specific paths where
sufficiently similar messages are exchanged often enough with respect to some user-
defined thresholds.

4 Path Lengths

From now on we will focus on paths starting at an actor and ending at an actor.
While a path can also start or end at a message, paths from and to actors are the
ones providing the most accurate description of an information flow, because for
every message there must always be an actor producing it, and messages that are
not consumed by anyone (as message m6 in our example) do not correspond to any
exchange of information.

The length of a path in a temporal text network can be defined based on the
topology, on time and on text.

The topological length is an unambiguous measure in simple and temporal
networks, which are only made of vertices and edges. In a temporal text network
a path contains actors, edges and messages, and the definition of length that is
compatible with the one used in temporal networks corresponds to the number of

2To simplify the notation, in this chapter we are assuming that i ≤ j ⇒ ti ≤ tj .
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Fig. 2 Temporal text network represented as a sequence of edges. The horizontal lines represent
the actors (gray color) and messages (green color) and vertical lines represent the transmission or
consumption of a message. The shaded lines indicate all existing paths beginning at actor al at the
exact time t = 4

messages in the path. This is because when a temporal network is translated into a
temporal text network every edge is transformed into a message.

The temporal length, instead, defines the overall duration of the communication
and is computed as the difference between the time of the last consumer edge and
the time of the first producer edge in the path.

The topological and temporal length measures we have just described can be
used to characterize the several paths that traverse our graph. In Fig. 2 we have
highlighted all the existing paths starting at actor al at exactly t = 4, including those
ending in a message. For example if we compare the path p1 = [e4, e10, e11, e13]
with the path p2 = [e4, e10, e11, e15] we can see that both have the same topological
length of 2 messages. However, while both paths start at the same time e4 =
(al,m4, t4), the time of the last consumer edge is different and so their temporal
length: t (e13) = t (m5, ap, t10) ≤ t (e15) = t (m5, am, t15).
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Interestingly, in temporal text networks the temporal length of a path measures
two different types of delays. On the one hand it measures the transmission time (δt)
as the difference between the time of the consumer edge t (ec) and the time when
the content has been produced t (ep). On the other hand, it indicates the idle time (τ )
of the actors involved in the communication between two consecutive edges.

Definition 6 (Transmission Time) Let e1 = (ai,m, t1) and e2 = (m, aj , t2) two
incident edges, with m ∈ M . Then the quantity t2 − t1 is called transmission time.

Definition 7 (Idle Time) Let e1 = (mi, a, t1) and e2 = (a,mj , t2) two incident
edges, with a ∈ A. Then the quantity t2 − t1 is called idle time.

Once one has defined transmission and idle times, one can also compute the sum
of all transmission times in a path, the sum of all idle times in a path, as well as the
ratio between these values and the temporal length of the path. Back to our previous
example, we can observe that the total transmission time of the messages in the first
path δ1 = (t9 − t4) + (t10 − t9) = 6 is three units smaller than in the second path
δ1 = (t9 − t4) + (t13 − t9) = 9 while their idle time is the same τF = t9 − t9 = 0;
which explains why the first path had a smaller temporal length.

The last type of length concerns the textual content in the path. Every time
a message is exchanged, this increases the temporal length of the corresponding
amount of time. Similarly, every time a new text is included in the path, this
increases the textual information in it.

Definition 8 (Textual Length)
Given a text distance function, the textual length of a communication path is

defined as the sum of the distances between the texts of all pairs of adjacent
messages in the path.

This definition quantifies the variations between adjacent messages. At the same
time, it is possible that the texts of the message keep being updated when transmitted
through the path, but never significantly deviates from the original message. In
this case, an alternative definition of length can be used to compute the maximum
distance between any pair or messages.

In the case of discrete text analysis, where each message can belong to some
classes (for example topics), this idea of estimating how homogeneous the text is
across the path can be computed using a classical measure of entropy, for example
the Shannon index:

Definition 9 (Entropy)
Let c1, . . . , cn be text discretization functions mapping text into one of n classes.

Given a path p, we define ρi(p) =
∑

m∈p ci (x(m))

Mp
, where Mp is the number of

messages in p. The textual entropy of path p is then defined as:

H(p) = −
L∑

i=1

ρi(p) ln ρi(p) (1)
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According to this definition, if all messages that are part of a path belong to the
same class (e.g., to the same topic), then the textual entropy will be 0, indicating a
homogeneous path when we look at its text. Higher values of entropy would indicate
that multiple classes (e.g., topics) are included in the path. This information can be
useful in various analysis tasks, including the identification of information flows
(when the same textual content is transferred through the network) or community
detection, where one wants a community to be homogeneous not only with respect
to the topology but also with the exchanged messages.

Once we decide which definition of length to use, this defines what are the
shortest paths between any pair of actors, which implies that we can compute
all the existing network measures based on shortest paths, including closeness
centrality, betweenness centrality, eccentricity, diameter, etc. For the definitions of
these metrics we refer the reader to any basic books on network analysis.

5 Empirical Study

In this section, we show an empirical comparison of the measures introduced in
this chapter in a real communication network. Our sample dataset consists of all the
public Twitter mentions (messages including another Twitter @username) written
by Swedish politicians during January, 2019. The period of observation takes place
4 months after the Swedish general elections in 2018, and includes the time when
the new government coalition was formed.3 Our final network consists of |A| =
886 actors, including 26 politicians (8 information producers and 18 prosumers)
and 860 mentioned users (all of them consumers), |M| = 1707 Twitter messages
with their corresponding text and |E| = 4, 882 edges between actors and messages.
Modelling the reception time is more difficult, because many social media platforms
like Twitter do not provide information about when and who consumed a piece
of information. In our experiments we assumed that the consumption time of all
messages is the same as the production time, which might not be necessarily true
(e.g., users are not always connected to all their social media and, even if they are,
the tweet might be lost in the myriad of information provided by the user’s wall).

Figure 3 shows, for each one of the 6773 pairs of actors temporally reachable, a
comparison of their topological and temporal shortest path length. It includes 5787
(85.4%) paths with only two edges, representing two Δ0-textually (and temporally)
adjacent actors who have been in direct communication. The average temporal
path length of the remaining paths increases with the number of hops (topological
length) while its statistical dispersion is reduced, as we usually observe in other
type of temporal networks (e.g., contact networks). For example, the 56 pairs of
actors connected through 3 messages (6 hops) have an average communication

3We considered only politicians who were either members of the parliament before the elections
or were part of an electoral ballot.
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Fig. 3 Temporal length.
Summary of the temporal
length distribution for all
shortest paths found in the
Swedish politicians network,
grouped by their topological
path length. All topological
paths involve an even number
of hops because we are
measuring only pairs of
reachable actors

time (shortest temporal length) of approximately 14 days. The order of magnitude
of these numbers can be explained by the skewed distribution of roles (producer,
consumer and prosumers) of the actors in the data and the small sample of the
original social network.

Another important component to understand communication networks is the
specific content their members intend to share with each other. For example, in a
conversation within a group of close people the content (text) of the messages will be
probably different between communications, while news spreading processes will
probably have a more similar topic distribution. The consistency of the topics in an
information cascade phenomenon, therefore, can be a good metric to describe the
dynamics of a complex system.

Following the methodology described in Sect. 4, we have first identified the
topics of the messages exchanged in our sample network and then, computed the
textual length using the Shannon index described in Eq. (1) to identify the shortest
paths of each pair of temporally reachable actors. While identifying the topics, we
have used the hashtags as proxies, which is a simple and well accepted solution in
many contexts; but as we will see, problematic in practice. As we mentioned in the
previous section, the definition of textual length assumes that there is a discretization
function mapping the text into at least one topic. Hence, because many tweets do
not contain any hashtag, their topic assignment is empty.

Figure 4 shows the empirical cumulative distribution function (ECDF) of the
textual shortest path in our sample network. In this particular example, only 420
observations of 6773 were computed, as many paths have an unidentified length,
either because none of the messages have a topic assigned or because they contain
only one message.
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Fig. 4 Empirical cumulative
distribution function (ECDF)
of the textual length

We can observe that more than 75% of the textual paths computed have 0 entropy,
indicating that there is one single topic in the messages of the path. A closer look
does not indicate any correlation of these results with the topological or temporal
length of the paths. The minimum textual length paths include, for example, all the
paths with 5 messages (10 hops) and 85.45% of the paths with 4 messages, but less
than 50% of the paths with 3 messages.

6 Final Remarks

In this chapter, we have revisited some of the fundamental graph measures for
temporal networks and extended them to be compatible with the temporal text
network model for communication systems. We have shown that using the proposed
model we can directly represent, in a simple but extensible way, all the elements
necessary to study communication (time, text and topology), without requiring
complex graph transformations. While mathematically temporal text networks are
not much different from time-varying graphs, the semantics of its interactions and
the presence of textual information in the model, require the introduction of specific
analysis methods. In particular, in this chapter we have focused on redefining the
idea of connectivity and most of its related measures such as incidence, adjacency,
paths and distance, providing alternative metrics for actors and messages when
we found it was relevant and necessary. Finally, we have shown how the different
distance measures can be used in practice to discover patterns of connectivity.
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We believe that, beyond their direct application to different analysis tasks,
these measures are fundamental to redefine other relevant measures for studying
communication systems such as centrality measures or developing analysis methods
like community detection algorithms.
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