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1 Introduction

Diffusion of rumors (or information) can be represented as information propagation
in a social network where its nodes are people and its edges are contacts among
the people. The scale of information propagation depends on where and when
to start the propagation. In order to propagate information as much as possible,
starting nodes should be carefully selected. Selecting starting nodes for large-scale
information propagation is important as one of the methods for viral marketing.

From given network, selecting such starting nodes for large-scale information
propagation was formalized as “influence maximization problem” by Kempe et al.
[20]. The original formalization is for static networks. However, nodes and edges
can be newly added or deleted in many real social networks. Therefore, influence
maximization problem in temporal networks should be considered. Since the
influence maximization problem in temporal networks is NP-hard, computing the
best solution in realistic time is computationally intractable. Therefore, many
approximation schemes based on Monte-Carlo simulation and other heuristic
methods have been proposed. Methods based on Monte-Carlo simulation are more
accurate but computationally expensive. On the other hand, other heuristic methods
are fast but they are less accurate.

In order to find better solutions for the information maximization problem, we
propose three new methods for temporal networks as the extension of the methods
for static networks. Dynamic Degree Discount is a heuristic method based on node
degree. Dynamic CI is a method based on a node’s degree and the degrees of
reachable nodes from the node within specific time. Dynamic RIS uses many similar
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networks generated by random edge removal. We compare the proposed methods
with previous methods. Although the performance of MC greedy was better than
the three methods, it was computationally expensive and intractable for large-scale
networks. The computational time of our proposed methods was more than 10 times
faster than MC greedy. When compared with Osawa, the performances of the three
methods were better for most of the cases.

We discuss extended methods for influence maximization in temporal networks
[25, 26]. This chapter includes detailed explanation of background knowledge,
discussions of the effect of different values of parameters in the proposed methods,
and detailed analysis of the advantages and disadvantages of the proposed methods.

The structure of this chapter is as follows. Section 2 shows related work.
Section 3 presents proposed methods (Dynamic Degree Discount, Dynamic CI and
Dynamic RIS), Sect. 4 explains our experiments, and Sect. 5 shows the experimental
results. Section 6 shows discussions about the experimental results, and Sect. 7
concludes the chapter.

2 Related Work

2.1 Model of Information Propagation

We use the SI model as the model of information propagation on networks. In
the SI model, each node in networks is either in state S (susceptible) or in state I
(infected). Nodes in state S do not know the information and those in state I know
the information. At the beginning of information propagation (at time t = 1), a
set of nodes in state I is fixed as the seed nodes. For all edges (t, u, v) at time
t = 1, 2, . . . , T , the following operations are performed. If node u is in state I and
node v in state S, information is propagated from u to v with probability λ, which
means the state of v is changed from S to I at time t+1. Probability λ is the parameter
of susceptibility, and it controls the percentage of information propagation. At time
t = T + 1, information propagation is terminated.

Based on the above notations, we can formulate influence maximization problem
as follows. We define σ(S) as the expected number of nodes of state I at time T + 1
when information propagation started at time 1 from seed nodes S of state I based
on SI model. (Please keep in mind that S in σ(S) is a set of seed nodes, and S in SI
model is susceptible state.) Influence maximization problem in a temporal network
is to search for a set of seed nodes S of size k that maximizes σ(S) when a temporal
network G, duration of the network T , susceptibility of SI model λ and the size of
seed nodes k are given.
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2.2 Problems Related to Influence Maximization in Temporal
Networks

There are some problems related to influence maximization in temporal networks.
Instead of giving item (or information) to seed nodes for free, revenue maximization
[2] is the problems of finding seed customers (nodes) and offering discounts to them
in order to increase total revenue. Although the problem is important in the field of
marketing, it is more complicated than influence maximization problem since seed
nodes are not treated as equal, and the amount of discount for each node may not be
equal. The number of possible parameters increases greatly especially in the case of
temporal networks.

Opinion formation [1, 16, 17] is another problem related to influence maximiza-
tion problem. Each agent (node) has an opinion which might be a continuous or a
discrete quantity. The underlying network represents the society where the agents
have interactions. Each agent has an opinion in the society that is influenced by
the society. Analyzing the increase and decrease of each opinion is important for
modeling the dynamics of opinion formation and for opinion polarization [10].

It is often pointed out that the properties of temporal networks are quite different
from those in static networks. Braha and Bar-Yam [4, 5] pointed out the overlap of
the centrality in temporal networks and that in the aggregated (static) network is very
small. Hill and Braha [13] propose dynamic preferential attachment mechanism that
reproduce dynamic centrality phenomena. Holme presents good surveys of temporal
networks [14, 15].

2.3 Influence Maximization Methods for Static Networks

Jalili presents a survey on spreading dynamics of rumor and disease based on
centrality [18]. There are roughly three approaches for influence maximization
problem in static networks. The first is Monte-Carlo simulation methods, the second
is heuristic-based methods and the third is the methods to generate a large number of
networks with random edge removal and select seed nodes based on the generated
networks.

Monte-Carlo simulation method is proposed by Kempe et al. [20]. In Kepme’s
method, σ(S) is estimated by repeating Monte-Carlo simulations. When S is given
as a set of seed nodes, simulations of information propagation are repeated R times
and the average number of infected nodes is defined as σ(S). Next, the node v which
maximizes the difference σ(S ∪ {v}) − σ(S) is added to seed nodes greedily based
on the estimated σ(S). This operation is repeated until |S| = k.



348 T. Murata and H. Koga

Since σ(·) is a monotonic and submodular function, when we denote strict
solution of seed nodes as S∗, the seed nodes obtained by the above greedy algorithm
Sgreedy are proved to satisfy σ(Sgreedy) ≥ (1 − 1/e)σ (S∗) [20]. Because of this
property, qualities of the solutions by Kempe’s method are good. However, more
and more repetition of Monte-Carlo simulation is needed in order to estimate σ(S)

accurately. Since the computational cost for finding seed nodes with this method is
high, it is not possible to find seed nodes in realistic time for large scale networks.

Heuristic methods are proposed in order to search for seed nodes at high speed.
Chen et al.[7] proposes PMIA to find seed nodes focusing on the paths with high
information propagation ratio. Jiang et al. [19] proposed SAEDV which searches
for seed nodes by annealing method to obtain σ(·) from adjacent nodes in seed
nodes. Chen et al. [8] proposed Degree Discount based on node degree where the
nodes adjacent to already selected node are given penalty. This is because when
node v is selected as one of seed nodes and u is its neighbor, it is highly likely that v

propagates information to u, so selecting nodes other than u as seed nodes is better
for information diffusion.

Algorithm of Degree Discount is shown as follows. ti in the algorithm shows the
penalty of node i. ddi is the degree of node i after giving penalty. ddi is smaller
when the value of ti is bigger.

Algorithm 1 Degree discount
Inputs

Static network G

The size of seed nodes k

Susceptibility λ

Outputs
Seed nodes S

Algorithm

(1) Initialize seed nodes as S = φ, and initialize ddi = ki , ti = 0 for each node i. ki is the degree
of node i in network G.

(2) Add node v to seed nodes S such that v = argmaxi{ddi |i ∈ V \S}. V is the nodes in network
G.

(3) Update ddu and tu for all nodes u adjacent to v.

tu = tu + 1

ddu = ku − 2tu − (ku − tu)tuλ

(4) Repeat (2) and (3) until |S| = k.
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Fig. 1 Example for
explaining CIl (v). When
l = 2, CIl(v) = 14

Morone and Makse [24] proposed a method for finding seed nodes considering
the degrees of distant nodes. The method calculates the following CIl (v) for each
node and selects seed nodes based on the values:

CIl (v) = (kv − 1)
∑

u∈∂Ball(v,l)

(ku − 1).

∂Ball(v, l) in the above formula represents nodes where the distance from node
v is l. The example of CIl (v) is explained in Fig. 1. ∂Ball(v, 2) when l = 2 are two
nodes with distance 2 from node v and the degrees of both nodes are 8. Therefore,
CI2(v) = (2 − 1) × {(8 − 1) + (8 − 1)} = 14.

The degree of node v itself is low in the network in Fig. 1, but the node v

is effective for information propagation because it is connected with some high
degree nodes with distance two. This method thus selects seed nodes causing wider
propagation compared with the cases when seed nodes are selected based on the
degree of node v only.

These heuristic methods compute seed nodes faster than the methods based on
Monte-Carlo simulation. However, it is experimentally confirmed that the scale of
propagation of the methods depends on network structures and parameters.

Ohsaka et al. [27] proposed a method to generate many networks with random
edge removal in order to solve this problem. Ohsaka’s method is based on “coin flip”
mentioned in Kempe’s paper [20]. The distribution of nodes to which information is
propagated from seed nodes S in static network G is set as DG(S). And distribution
of nodes where information is propagated from seed nodes S on network where
edges are removed at constant ratio from the network G is set as D′

G(S). “Coin
flip” states as DG(S) equals to D′

G(S) in this situation. σ(·) can be estimated by
generating many networks with edges removed at constant ratio, not by repeating
Monte-Carlo simulation. Ohsaka’s method estimates σ(·) by acquiring Strongly
Connected Component (SCC) in each network generated by RR numbers of
networks with edges removed at constant ratio. SCC is a subgraph where each node
in the subgraph can be reachable to and from any other nodes.

Borgs et al. [3] and Tang et al. [30] also propose methods similar to Ohsaka’s
method. The difference from Ohsaka’s method is σ(·), which is not estimated
directly from generated networks. Reachable nodes from randomly selected node
v are computed, and then seed nodes are selected based on the nodes. More
specifically, the algorithm is as follows.
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Algorithm 2 Algorithm by Borgs and Tang
Input

Static network G

The size of seed nodes k

Susceptibility λ

Generated number of networks θ

Outputs
Seed nodes S

Algorithm

(1) Initialize S = φ, U = φ. U is a set of all RR.
(2) Select node v at random.
(3) Remove edges with probability 1 − λ from network G and set as Gp .
(4) Acquire nodes RR reachable to v by Gp . Add RR to U .
(5) Repeat θ times from (2) to (4).
(6) Add node u with the highest frequency in U to S.
(7) Delete all RR containing u from U .
(8) Repeat (6) and (7) until |S| = k.

There are other approaches for influence maximization problem in different
problem setting. Chen et al. [6] proposed a method to solve the problem with time
limit. Feng et al. [9] solves the influence maximization problem in a situation where
freshness of the information degrades as it spreads. Mihara et al. [23] proposed a
method to influence maximization problem where the whole network structure is
unknown.

2.4 Degrees in Temporal Networks

Notations of edges and paths in temporal networks are the same as the ones in [28].
(t, u, v) represents an edge from node u to v at time t . A path from node v1 to vk

of length k−1 is represented as (t1, v1, v2), (t2, v2, v3), . . . , (tk−1, vk−1, vk), where
t1 < t2 < . . . < tk−1 and ∀i, j (i �= j), vi �= vj . Duration of time from the start to
the end of a path tk−1 − t1 is the length of time of the path, and the smallest one is
the minimum length of time.

Habiba et al. [12] define degrees in temporal network using symmetric differ-
ence of past connections and future connections. However, diffusion in temporal
networks is from past to future only, and it is not bidirectional. We therefore define
degree DT (v) of node v in temporal network as follows:

DT (v) =
∑

1<t≤T

|N(v, t − 1)\N(v, t)|
|N(v, t − 1) ∪ N(v, t)| |N(v, t)|,

where N(v, t) is a collection of nodes adjacent to node v at time t . Figures 2
and 3 illustrate the examples of degrees on temporal networks. In Fig. 2, adjacent
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Fig. 2 Example of low
degree nodes in a temporal
network. Nodes adjacent to
node A do not change over
time ({B,C} → {B,C} →
{B,C})

Fig. 3 Example of high
degree nodes in a temporal
network. Nodes adjacent to
node A change at each time
({B,C} → {D,E} →
{B,C})

nodes of node A do not change during the period. The difference of adjacent nodes
N(A, 1)\N(A, 2) and N(A, 2)\N(A, 3) are empty. Therefore, the degree of node
A in Fig. 2 is calculated as follows.

D3(A) = |N(A, 1)\N(A, 2)|
|N(A, 1) ∪ N(A, 2)| |N(A, 2)| + |N(A, 2)\N(A, 3)|

|N(A, 2) ∪ N(A, 3)| |N(A, 3)|

= 0

2
∗ 2 + 0

2
∗ 2 = 0

On the other hand, in Fig. 3, nodes adjacent to node A change over time. So the
degree of node A is bigger than that in Fig. 2.

D3(A) = |N(A, 1)\N(A, 2)|
|N(A, 1) ∪ N(A, 2)| |N(A, 2)| + |N(A, 2)\N(A, 3)|

|N(A, 2) ∪ N(A, 3)| |N(A, 3)|

= 2

4
∗ 2 + 2

4
∗ 2 = 2

In Figs. 2 and 3, the number of adjacent nodes of node A is the same every time,
so the average degree of node A is the same in Figs. 2 and 3. On the other hand, if we
employ DT (v) as the definition of node degree, D3(A) = 0 in Fig. 2 and D3(A) = 2
in Fig. 3. DT (v) captures the number of newly adjacent nodes, and this is important
for influence maximization problem. We therefore employ DT (v) as the definition
of node degree in temporal networks.

2.5 Influence Maximization Methods for Temporal Networks

There are two approaches for influence maximization problem in temporal net-
works: methods based on Monte-Carlo simulation and heuristic-based methods. The
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former method is proposed by Habiba. The method estimates the scale of propaga-
tion σ(·) by repeating Monte-Carlo simulation just the same as in static networks.
Since σ(·) is monotonic and deteriorated modular also in temporal networks, this
method achieves large-scale propagation. However, the computational cost of this
method is high as in static networks. Osawa [28] proposed a heuristic method for
calculating σ(·) at high speed. His algorithm for computing σ(S) for seed nodes S

is shown as follows.

Algorithm 3 Osawa’s algorithm
Input

Temporal network G

Duration of temporal network T

Seed nodes S

Susceptibility λ

Output
The number of state I nodes σ(S)

Algorithm

(1) Initialize p̂v(1) as follows where the probability of node v being in state I is p̂v(t) in time
t (1 ≤ t ≤ T + 1).

p̂v(1) =
{

1 v ∈ S

0 v /∈ S

(2) Update p̂v(t) in time t as follows.

p̂v(t + 1) = 1 − (1 − p̂v(t))Rv(t)

Rv(t) =
∏

u∈N(v,t)

(1 − p̂u(t)λ)

where Rv(t) is the probability of which information is not propagated to node v from any
adjacent nodes at time t . N(v, t) is the set of nodes adjacent to node v at time t .

(3) σ(S) is computed by adding probability p̂v(T + 1) of each node which is in state I at time
T + 1.

σ(S) =
∑

v∈V

p̂v(T + 1)

After σ(S) is computed, seed nodes are obtained by greedy algorithm as in the
method by Monte-Carlo simulation. Osawa’s method finds seed nodes in realistic
computational time. However, the quality of its solution depends on given networks
because σ(·) is calculated approximately, and it is worse compared with the
solutions by Monte-Carlo simulation.
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3 Proposed Methods

We propose new methods for influence maximization problem in temporal net-
works in this section. We propose three new methods (Dynamic Degree Discount,
Dynamic CI and Dynamic RIS) which are the extensions of static network methods
to temporal network methods. We use the following notations: G: temporal network,
T : duration of the temporal network, k: the size of seed nodes, λ: susceptibility, θ :
the number of generated networks, and S: seed nodes.

3.1 Dynamic Degree Discount

Dynamic Degree Discount is the extension of Degree Discount by Chen et al. [8] to
temporal networks. In Dynamic Degree Discount, definition of degrees and adjacent
nodes in the algorithm of Degree Discount are modified for temporal networks.
Algorithm 4 shows the algorithm of Dynamic Degree Discount. Underlines show
the parts modified from original Degree Discount.

3.2 Dynamic CI

Dynamic CI is an extension of Morone’s method [24] for temporal networks.
Morone’s method focuses on the degree of node v and the degrees of nodes with
distance l from v. Dynamic CI defines an index D_CIl (v) in which degree and
distance are extended to temporal networks.

D_CIl (v) = DT (v)
∑

u∈DBall(v,l)

DT (u)

The differences between CIl (v) and D_CIl (v) are: (1) the definition of degree
is changed to that for temporal networks and (2) ∂Ball(v, l) in CIl (v) is changed
to DBall(v, l). DBall(v, l) represents nodes where their shortest duration of time
from node v is l. l is a parameter which takes the value within the range 1 ≤ l ≤ T .
In the algorithm of Dynamic CI, D_CIl (v) is computed for each node and top k

nodes are selected as seed nodes.



354 T. Murata and H. Koga

Algorithm 4 Dynamic degree discount
Input

Temporal network G

Duration of temporal network T

The size of seed nodes k

Susceptibility λ

Output
Seed nodes S

Algorithm

(1) Initialize seed nodes as S = φ. Also initialize the values of each node i as ddi = DT (i) and
ti = 0.

(2) Add node v where v = argmaxi{ddi |i ∈ V \S} to S. V is the set of nodes in the network.
(3) For all nodes u where u ∈ NT (v), update ddu and tu as follows.

tu = tu + 1

ddu = DT (u) − 2tu − (DT (u) − tu)tuλ

NT (v) represents a set of all nodes adjacent to v during the whole period of the temporal
network.

NT (v) =
T⋃

t=1

N(v, t)

(4) Repeat (2) and (3) until |S| = k.

3.3 Dynamic RIS

Dynamic RIS is an extension of Borgs’s method [3] and Tang’s method [30] for
temporal networks.

The difference between Borgs’s and Tang’s algorithms and Dynamic RIS are
where RR in their algorithm is set as RR(v, d) in our algorithm. RR(v, d) is a
set of all nodes that are reachable to v within the shortest duration of time d in all
durations of temporal networks, which is defined as follows:

RR(v, d) =
T⋃

t=1

RRt(v, d).

RRt (v, d) is a set of nodes which are reachable to “node v at time t” within
the shortest period of d. The computational complexities of these methods are as
follows.
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Algorithm 5 Dynamic RIS
Inputs

Temporal network G

Duration of the temporal network T

Size of seed nodes k

Susceptibility λ

The number of generated networks θ

Output
Seed nodes S

Algorithm

(1) Initialize as S = φ,U = φ, where U is the set containing all RR(v, d).
(2) Select node v at random.
(3) Remove edges from temporal network G with probability 1 − λ and set as Gp .
(4) Acquire nodes RR(v, d) reachable to v on Gp . Add RR(v, d) to U .
(5) Repeat (2) to (4) θ times.
(6) Add the most frequent node u in U to S.
(7) Remove all RR(v, d) with u from U .
(8) Repeat (6) and (7) until |S| = k.

Dynamic Degree Discount
According to the paper of Chen et al. [8], the computational complexity of Degree
Discount is O(k · log n + m), where k is the number of seed nodes, n is the number
of nodes, and m is the number of edges, respectively. Dynamic Degree Discount
is an extension of Degree Discount. Static degree is replaced with dynamic one
(DT (i)) and Static neighbors is replaced with dynamic one (NT (v)). Computational
complexity for dynamic degree and dynamic neighbors are T ·m

n
, where T is the

total duration of time of given temporal network. Therefore, the total computational
complexity of Dynamic Degree Discount is O(k · log n + m + T ·m

n
).

Dynamic CI
According to the paper of Morone and Makse [24], the computational complexity
of CI is O(n · log n), where n is the number of nodes. Dynamic CI is an extension
of CI. Static degree is replaced with dynamic one (DT (i)), and its computational
complexity is T ·m

n
, where T is the total duration of time of given temporal network.

Therefore, the total computational complexity of Dynamic CI is O(n · log n+ T ·m
n

).

Dynamic RIS
According to the paper of Tang [30], the computational complexity of RIS is
O(k · l2(m + n)log2n/ε3) which returns (1 − 1

e
− ε)-approximate solution with

at least 1 − n−l probability, where l and ε are the constants. Computational
complexity of Dynamic RIS heavily depends on the parameters θ and d, which
are the number of generated networks and the duration of time for computing
RR(v, d), respectively. Therefore, the total computational complexity of Dynamic
RIS is O(θ · d · k · l2(m + n)log2n/ε3).
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4 Experiments

We perform experiments for comparing the proposed methods with previous ones
in order to confirm their effectiveness. Temporal networks used for the experiments
are shown in Table 1. These networks are the same as the ones used in previous
research. Average degree in Table 1 shows the average of all nodes in the network,
which is 1

|V |
∑

v∈V DT (v). Hospital [31] is a network about contacts of patients and
medical staffs at hospital with time. Primary School [11, 29] is a network about
contacts of students and teachers at school. High School 2013 [22] is a network of
contacts of students. The unit of the duration in these three datasets is 20 s. Each
dataset is available at SocioPatterns (http://www.sociopatterns.org).

Methods used in the experiments are previous two methods (Monte-Carlo
simulation (MC Greedy) and Osawa) for temporal network explained in Sect. 2.5
and our proposed methods (Dynamic Degree Discount, Dynamic CI and Dynamic
RIS) in Sect. 3. Given a network as input, each method computes seed nodes S. The
simulation of influence maximization based on SI model is repeated R times with
the obtained seed nodes and set the average of the number of nodes in state I as
σ(S). The values of σ(S) are compared in order to evaluate the methods.

Experiments are performed for the following purposes:

(1) Comparison of σ(S) when the size of seed nodes k changes
(2) Comparison of computational time when the size of seed nodes k changes

Parameters in the experiments are set as follows. The number of repetition of the
simulations for information propagation is set as R = 50. The number of repetition
of Monte-Carlo simulation in MC Greedy is set as 1000. These two parameters
are common in all experiments. The size of seed nodes k is set from 0 to 20%.
Susceptibility λ is set as λ = 0.01. It is difficult to perform experiments for all the
values as parameter l in Dynamic CI which takes the value of 1 ≤ l ≤ T . We use the
values l = 1, 5, 10, 20 in the experiments. As the parameters θ and d in Dynamic
RIS, θ is set as θ = 1000. As for d, values d = 0, 5, 10, 20 are used since it is
difficult to perform experiments for all the value as in l of Dynamic CI.

CELF [21] is used to speedup the experiments when greedy algorithms are used
in MC Greedy and Osawa. CELF is an algorithm used when the greedy algorithm
is applied to the problem with inferior modularity, and the solution is the same as
in normal greedy algorithm. According to the experiments by Leskovec et al. [21],
computational time is 700 times faster than normal greedy algorithm when CELF is
used.

Table 1 Dataset for the experiments

Nodes Edges Duration Ave. deg.

Hospital 75 32,424 9,453 69.3

Primary school 242 125,773 3,100 142.7

High school 2013 327 188,508 7,375 63.0

http://www.sociopatterns.org
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5 Experimental Results

5.1 Comparison of σ(S) When the Size of Seed Nodes k

Changes

The results of information propagation for each size of seed nodes k with fixed
susceptible λ = 0.01 of SI model are shown in Fig. 4. The x-axis of the Figure
shows the percentage of seed nodes, and the y-axis shows the number of infected
nodes. Values of the x-axis is k

|V | ∗ 100, the percentage of seed nodes to all nodes in

the network. Values of the y-axis is σ(S)
|V | ∗100, the percentage of σ(S) to all nodes in

the network. The best values of l in Dynamic CI and d in Dynamic RIS are used in
our experiments. As shown in Fig. 4, MC Greedy achieves the highest diffusion in
all dataset. Diffusion of the proposed methods, Dynamic Degree Discount, Dynamic
CI and Dynamic RIS are inferior to MC Greedy, but they are still better than Osawa.
The scale of diffusion of Dynamic RIS in High School 2013 achieves 1.5 times as
in Osawa.

Fig. 4 Comparison of σ(S) when the size of seed nodes k changes. Except (computationally
expensive) MC Greedy, three proposed methods are better than Osawa
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There is not much difference in the scale of diffusion among each of three
proposed methods. Dynamic RIS achieves the highest in High School 2013 for
example, but the difference among proposed methods is small compared with
the difference between proposed methods and previous methods (MC Greedy and
Osawa).

5.2 Comparison of σ(S) When Susceptibility λ Changes

Figure 5 shows diffusion when the size of seed nodes is fixed as 20% of all nodes
in the networks and susceptibility is changed as λ = 0.001, 0.01, 0.05. The x-axis
shows the value of λ, and the y-axis shows the percentage of diffusion. Parameters
l and d are the same as the ones used in the previous experiments. As shown in
Fig. 5, MC Greedy achieves the highest diffusion regardless of the value of λ. The
difference among three proposed methods are small.

As the result of comparison with proposed methods and Osawa, our proposed
methods achieve higher scale of diffusion than Osawa in Hospital and High School
2013 when λ = 0.05. Osawa achieves higher diffusion than Dynamic RIS only in

Fig. 5 Comparison of σ(S) when susceptibility λ changes. Except (computationally expensive)
MC Greedy, three proposed methods are better than Osawa for most of the cases
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Primary School. When λ = 0.001, the difference between proposed methods and
Osawa is very small compared with the cases of other λ values.

5.3 Comparison of Computational Time When the Size of Seed
Nodes k Changes

Figure 6 shows the computational time when λ is set as λ = 0.01 and the sizes of
seed nodes are changed. A PC of Intel Core i7 (3.4GHz) CPU and 8GB memory
is used for the experiments. X-axis shows the percentage of seed nodes, and y-axis
shows the computational time (log-scale).

Figure 6 shows that for all datasets, methods other than MC Greedy can compute
seed nodes in realistic time. MC Greedy needs several hours to compute seed nodes.
This shows that MC Greedy is intractable in realistic time for large scale networks.

Fig. 6 Comparison of computational time when the size of seed nodes k changes. Methods other
than MC Greedy can compute in realistic time
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Regarding the comparison among three proposed algorithm, computational time
of Dynamic Degree Discount and Dynamic CI are almost the same in all dataset.
Dynamic RIS is about the same computational time as the other two proposed
methods in Hospital, and is faster in Primary School and High School 2013.
Regarding the comparison with proposed methods and Osawa, Dynamic RIS is
approximately 7.8 times faster than Osawa except very small network (Hospital).

5.4 Parameters of Dynamic CI and Dynamic RIS

Diffusion of proposed methods with different parameters are shown in this section.
We change parameters l of Dynamic CI, and θ and d in Dynamic RIS.

5.4.1 Diffusion and Computational Time of Different l in Dynamic CI

Diffusion and computational time when l in Dynamic CI changes to 1, 5, 10, 20
are shown in Fig. 7. Left line graphs show the size of diffusion when l is changed
in each network. Right bar graphs show computational time. Left line graphs show
that diffusion depends on the value of l. Therefore, it is important to find appropriate
l in Dynamic CI. Since there is no simple correlation between the scale of diffusion
and the value of l (such as diffusion becomes larger as l becomes large), diffusion
for various values of l should be investigated and compared. Right bar graphs show
that there are no big differences of execution time when the value of l changes.

5.4.2 Diffusion and Computational Time of Different θ in Dynamic RIS

In Dynamic RIS, θ is a parameter for the number of generated graphs in
RR(v, d). Diffusion and computational time when parameter θ is changed to
500, 1000, 1500, 2000 are shown in Fig. 8. Left line graphs show that diffusion
does not change much when θ changes. However, the scale of diffusion is slightly
small when θ = 500 in Hospital and High School 2013. This means that bigger
θ is desirable from the viewpoint of diffusion. On the contrary, right bar graphs
show that higher value of θ results in the increase of computational time. From
the viewpoint of computational time, smaller θ is better. Regarding the value of θ ,
there is a trade-off between the scale of diffusion and the computational time. It is
important to find smaller θ for shorter computational time, but too small θ results in
small-scale diffusion.
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Fig. 7 Diffusion and computational time for different l in Dynamic CI. Left: there is no simple
correlation between the scale of diffusion and the value of l. Right: there are no big differences of
execution time when the value of l changes
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Fig. 8 Diffusion and computational time of different θ in Dynamic RIS. Left: diffusion does not
change much when θ changes. Right: higher value of θ results in the increase of computational
time
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5.4.3 Diffusion and Computational Time of Different d in Dynamic RIS

In Dynamic RIS, d is a parameter for the number of time steps for looking
back. Figure 9 shows diffusion and executing time when parameter d changes to

Fig. 9 Diffusion and computational time of different d in Dynamic RIS. Left: there is almost no
difference in diffusion when d changes. Right: computational time increases as the value of d

becomes bigger
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0, 5, 10, 20. Left line graphs show that there is almost no difference in diffusion
when d changes, while right bar graphs show that computational time increases as
the value of d becomes bigger. The scale of diffusion does not change even if the
value of d becomes bigger in our experiments.

6 Discussion

6.1 Analysis Focused on Diffusion of Each Node

In the experiments when susceptibility changes in Sect. 5.2, the difference between
the proposed methods and Osawa was small when λ = 0.001 compared with the
experiments with other values of λ. When λ = 0.05, Osawa outperforms proposed
methods only in Primary School. This section discusses these two points.

Figure 10 shows the distribution of diffusion σ({v}) of each node v when Monte-
Carlo simulation is used. X-axis shows the percentage of diffusion from node v to
the whole network (σ({v})), and Y-axis shows the frequency of the nodes with each
of the percentage in X-axis. When λ = 0.001, almost all nodes are less than 5% of
diffusion in all networks. This means that there is no big difference of the diffusion
from different seed nodes. This is the reason why the difference between proposed
methods and Osawa is small in the experiment in Sect. 5.2. On the contrary, there
are many nodes with more than 60% of diffusion in Primary School when λ = 0.05
compared with other two networks. In this case, large scale diffusion is easy to be
achieved even if the most appropriate seed nodes are not selected. This is the reason
why Osawa outperforms proposed method in Primary School in Sect. 5.2.

6.2 Advantages and Disadvantages of Each of Proposed
Methods

Advantages and disadvantages of each of proposed methods are discussed in this
section. An advantage of Dynamic Degree Discount is that it contains no parameter,
so there is no need to adjust parameter. Its disadvantage is that it is only for SI
model, so the method cannot be used for other models. This is because Dynamic
Degree Discount is an extension of Chen’s Degree Discount which is for SI model.
There are other information propagation models such as LT model and Triggering
models proposed by Kempe et al. Dynamic Degree Discount cannot be applied to
such models.

An advantage of Dynamic CI is that it can be applied to many information
propagation models in contrast to Dynamic Degree Discount because Dynamic CI
uses only degree information when it calculates seed nodes. Its disadvantage is
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Fig. 10 Distribution of diffusion σ({v}) of each node v. In the case of Primary School when
λ = 0.05, there are many nodes of high diffusion. Therefore, large scale diffusion is easy to
be achieved even if the most appropriate seed nodes are not selected. This is the reason Osawa
outperforms proposed method in Primary School

that the ability of diffusion depends on the value of parameter l as mentioned in
section 5.4.1. It is necessary to search for appropriate values of l for Dynamic CI.
The parameter l takes the value within the range 1 < l < T , so the search takes
time in general.

An advantage of Dynamic RIS is that its computational time is short. As shown
in the experimental results, its computational time is shorter than other methods in
all networks except Hospital. As the method can be applied to large networks due to
its short computational time, this is a big advantage. Disadvantage of Dynamic RIS
is that it needs to adjust parameters θ and d. As mentioned in the previous section,
computational time becomes bigger as the parameter θ becomes bigger, and the
scale of diffusion becomes smaller for too small θ . Therefore, it is necessary to set
appropriate value for θ . However, parameter sensitivity of θ and d is not so much
compared with the sensitivity of l in Dynamic CI.
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7 Conclusion

We propose three new methods for influence maximization problem in temporal
networks which are the extensions of the methods for static networks. As the result
of experiments for comparing with previous methods, MC Greedy and Osawa,
our three proposed methods are better than previous methods in the following
sense. Although the performance of MC greedy is better than these three methods,
it is computationally expensive and intractable for large scale networks. The
computational time of our proposed methods are more than 10 times faster than
MC greedy, so they can be computed in realistic time even for large scale temporal
networks. As the comparison with Osawa, the performances of these three methods
are almost the same as Osawa, but they are approximately 7.8 times faster than
Osawa. Based on these facts, the proposed methods are suitable for influence
maximization in temporal networks.

The comparison of Dynamic Degree Discount, Dynamic CI and Dynamic RIS is
as follows. The choice of the methods should be done based on the following pros
and cons.

Dynamic Degree Discount

• It requires no parameter.
• It is applicable to SI model only.

Dynamic CI

• It is applicable to other information propagation models.
• The performance heavily depend on parameter l.

Dynamic RIS

• It is relatively fast among these three methods.
• It requires two parameters to be adjusted (θ and d).

Finding the strategies of choosing suitable method for given temporal network
is practically important. It is a challenging open question and is left for our future
work. The problem of adjusting the parameters for Dynamic CI and and Dynamic
RIS is also left for our future work.
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