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1 Overview

If we want to make sense of large, complicated systems via the data they leave
behind, we need ways of systematically simplifying them. Such simplifications
typically need to be very drastic. A common first step is to represent the system as
a network that only stores information on which units are connected to which other
units. In order to investigate the World Wide Web with this approach, one would
neglect the content, the owner, the time of creation, and the number of downloads
of a webpage, and instead, only consider individual webpages and how they are
linked together. The second step is to apply the methods of network science to find
important nodes or clusters of nodes with some special role or function, or to study
how the wiring of the network controls some dynamical system. The fundamental
idea of this book is that one can learn more about a system if one does not, at the first
step of simplification, discard information about when things happen. Consequently,
one needs to modify the second step and develop a science of temporal networks that
exploits this additional information.

The fundamental idea of retaining the information about time is evidently
not a hard one to get. Temporal networks have been invented and reinvented
many times. Researchers have proposed many mathematical and computational
frameworks—some equivalent, some not. This is probably inevitable for such an
extraordinarily interdisciplinary field of science—temporal networks have been
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Fig. 1 A schematic map of the chapters of this book, positioned with respect to the three main
research themes within the study of temporal networks

applied to neuroscience, transportation problems, social theory [13], control the-
ory [53], ecology [100], and many more areas. The many existing frameworks
could be frustrating for a newcomer to temporal networks. Part of our idea with
this book was to showcase this diversity, see the chapters “Fundamental Structures
in Temporal Communication Networks”, “Weighted, Bipartite, or Directed Stream
Graphs for the Modeling of Temporal Networks”, and “Dynamics and Control of
Stochastically Switching Networks: Beyond Fast Switching” for very different ways
of thinking about networks in time.

Even if you encounter a problem where both the network and the temporal
aspects should play a role, there is no general recipe to follow. The goal of this
introductory chapter is to provide a rough map of the field—what types of questions
researchers have been interested in, and what results there are out there. We will also
try to place the subsequent chapters on their correct locations on this map (Fig. 1).
This chapter is not a catalogue of techniques or an introduction to a comprehensive
and self-consistent theory. For readers interested in that, our review papers [33, 35]
the book by Masuda and Lambiotte [58] or by Batagelj et al. [10] will be a better
read.

2 Temporal Network Data

In this section, we discuss the many subtleties about how to represent a system as a
temporal network in a meaningful way.
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2.1 Events

The fundamental building blocks of temporal networks are events (or contacts, links,
or dynamic links). These represent units of interaction between a pair of nodes at
specified times. Often, they take the form of triples (i, j, t) showing that nodes i and
j are in contact at time t . Sometimes the time can be an interval, rather than just a
moment.

As we will see throughout this book, temporal-network modeling is far from
a straightforward generalization of static networks—often, it is fundamentally
different. As a first example, we note that events are not always a straightforward
generalization of links of the static networks. Take e-mail communication as an
example. In static network modeling, one typically assumes that the links (between
people that have exchanged email) indicate social relationships. These links can be
viewed as the underlying infrastructure for e.g. information spreading since people
who know each other exchange information. The links are there not only for one
email to be sent but represent persistent opportunities for spreading events for the
duration of the relationship. In contrast, an event in a temporal e-mail network is
simply one e-mail being sent, and this is something that usually happens for the
explicit purpose of spreading information. But there are also systems other than e-
mail communication where events are more like links of static networks. Consider,
for example, transportation systems, where the bus, train or flight connections are
really opportunities to travel that happen whether a certain person needs to use them
or not. As we will see, different approaches treat these two interpretations of events
differently.

2.2 Boundaries

In the natural sciences, we can sometimes model time as a dimension, if not exactly
like space then at least similar to it. For temporal networks, the binary connections
and the time are more fundamentally different concepts. The simplest way of seeing
this is to consider the network’s boundaries (between what is contained in a data set
and what is not). Regarding time, a temporal network data set almost always covers
a time interval, and the interval is the same for all nodes. The structural boundaries
of the network dimension are usually less controlled. Similar to cohort studies in the
social sciences, one would like to have a selection of nodes that is as tight-knit as
possible, typically defined by common features. For example, Ref. [93] is based on
data from voluntary participants among the freshmen of a university—better than a
random group of people, but worse than the complete group of freshmen.

Boundaries become a problem when one wants to control the size of a data set. If
a temporal network is too large to handle or one wants to understand the effects of
size, how should one reduce the size of the network without changing its structure?
One could reduce the number of nodes by random sub-sampling, or perhaps simply
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truncate the data in the temporal dimension. However, both these approaches would
introduce biases. While there are ways of correcting some of those [48], it is hard to
avoid problems. For example, if one truncates the data, there might not be enough
time for a spreading process to saturate before the sampling interval is over. If one
deletes nodes, or events, one introduces other biases. The proper way of resampling
a temporal network must simultaneously vary the number of nodes and the sampling
duration, but exactly how is still an open question.

2.3 Connectivity

It is fundamental to any kind of network modeling that being indirectly connected
through a path is relevant to dynamic processes. This is true for temporal networks
as well, but the connections have to happen along time-respecting paths of contacts
(with strictly increasing timestamps). Indirect connections through time-respecting
paths are not transitive (see Fig. 2)—even if one can get from A to B and B to C, it
might still be impossible to go from A to C because one would arrive at B too late
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Fig. 2 An illustration of two ways to visualize small temporal networks that can be convenient
for reasoning about measures and methods. Panel (a) shows a time-line graph where an epidemic
outbreak starting at node A is indicated by grey lines. In almost all cases, paths between nodes
(that follow events) in temporal networks need to go forward in time (to the right in the plot).
(b) shows the same data, but plotted projected onto a static graph. The latter visualization highlights
the underlying static network structure at the expense of the temporal information. The former,
the time-line plot, can capture many types of temporal structures but is inconvenient for network
structure
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Fig. 3 A time-node representation of the data in Fig. 2. This is a (directed, acyclic) static graph
containing the same information as in Fig. 2 but the meaning of nodes and edges is different

for a further connection to be possible. Contrary to this, all static networks, directed
networks included, are transitive.

Another important difference to static networks is that connectivity itself is
temporal: even if there is a path from A to B now, whether direct or indirect, there
might be none a second later. Therefore, the statement “A is connected to B” is not
necessarily even meaningful unless the time (interval) of this connection is specified.
The above issues mean that one can never reduce a temporal network into a static
one without losing information or changing the meaning of the nodes (cf. Fig. 3).

Since many static network tools are based on paths and distances, researchers
have sought to generalize these concepts to static networks. Once again, the addition
of a temporal dimension makes this task much more complicated. The most
common generalization of distance is latency (temporal distance) [50]—the time
it would take to reach j from i starting at time t and following only time-respecting
paths. For a longer discussion about paths and connectivity, see Refs. [33, 35, 58].

3 Simplifying and Coarse-Graining Temporal Networks

Even if representing data as a temporal network means that information has to
be discarded for the sake of simplification, this is often not enough to get an
understanding of the large-scale organization of the system. There are many ideas
how to further simplify a temporal network that we will discuss in this section.

3.1 Projections to Static Networks

Perhaps the most obvious way of simplifying a temporal network is to turn it into
a static network. In fact, many classical examples of static networks like citation
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networks or affiliation studies (like the “Southern Women” study of 1941 [18])
have temporal link information, but the time is ignored by simply only studying
the network of all aggregated contacts or separate “snapshot” graphs that represent
different times.

If one, from time-stamped data, constructs a binary static network where nodes
are only linked or not, it is obvious that a lot of information is lost. A better option
is to include information on the number or frequency of connections between pairs
of nodes, leading to weighted networks. In this case, the link weights can provide
important insights into the network structure (see, e.g., [7, 68]). However, including
links between all nodes that have been in contact can in some cases result in a very
dense network. In this case, one can threshold the network, discarding the weakest
links, or extract the backbone of the network [86].

It is obvious that the above weighted-network approach is not really temporal,
because if one manipulates the times of the contacts, the outcome will remain the
same. The simplest static networks that truly encode some temporal effects are
reachability graphs. These graphs have a directed edge (i, j) if one can reach j

from i via a time-respecting path.
Another way of creating sparser static networks than thresholding weighted

graphs is to aggregate contacts within a time window [49]. While the thresholded
graphs contain information about the contacts that are the most common in the
whole sampling interval, time-window graphs emphasize shorter time-scales, and
their sequence captures at least part of the network dynamics. Indeed, tuning the
duration of the time windows can be a way to understand the organization of the
data [85]. Yet a similar idea is to construct networks where links represent ongoing
relationships [30]—pairs of nodes that, at some point in time, have had contacts
before and will have them again.

One more elaborate way of reducing temporal networks to static ones is
the extraction of backbones specifically with respect to spreading processes on
temporal networks [103] and the chapter “Information Diffusion Backbone”. By
this approach, links in the resultant network correspond to node pairs that are likely
to infect each other in an epidemic outbreak.

As mentioned above, these approaches can never retain all temporal features of
the original data. Nevertheless, analyzing temporal networks by making them static
is rather attractive because there is a plethora of methods for static-network analysis.
One way of circumventing the problem of information loss is to use more elaborate
mappings, where temporal networks are mapped onto static network structures
whose nodes and links represent something else than the original network’s nodes
and links. One example is temporal event graphs, whose nodes correspond to the
original network’s events (see [47, 61] and the chapter “Weighted Temporal Event
Graphs” of this book).

One common approach that can also be interpreted as static-network projection is
to use multilayer networks, as in the chapter “Supracentrality Analysis of Temporal
Networks with Directed Interlayer Coupling” of this book: time is sliced into
consequent intervals, and the layers of a multilayer network correspond to networks
aggregated for each interval. Once the layers are coupled (e.g. with a directed
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link from a node to its future self), one can then apply (static) multilayer network
methods to the system. Importantly, the layers in such a projection are ordered by
time.

Finally, temporal network data can also be projected to higher-order network
models that retains some information of the flows over the network. The Chapter
“Modelling Temporal Networks with Markov Chains, Community Structures and
Change Points” discusses such approaches.

3.2 Separating the Dynamics of Contacts, Links and Nodes

Instead of reducing temporal network data to static networks, one can try to retain
some but not all of the temporal features. One example is the statistics of times
between contacts. It was early recognized that often, the times between events, both
for nodes and links, have heavy-tailed distributions [30, 40] (they are bursty [5, 42]).
Subsequent studies (e.g. Ref. [43, 63]) found that this burstiness of inter-event
times slows down spreading processes: simulated spreading that takes place on
bursty networks is slower than it is on networks where the burstiness has been
artificially removed. However, the result is the same when the heavy-tailed inter-
event times are part of the dynamical process itself: when a spreading process
with power-law distributed waiting times is placed on a static network [62], it
is slow too. This is related to how events are interpreted (see Sect. 2.1 and the
chapter “Continuous-Time Random Walks and Temporal Networks”): are they
separated from the process and just passive conduits for it, as in spreading on top
of bursty event sequences, or are the events actively generated by the process, as
one could interpret the combination of spreading with broad waiting times and
a static network? Figure 4a, b illustrate homogeneous and heterogeneous (bursty)
link dynamics on top of a static network. See also the chapter “Bursty Time Series
Analysis for Temporal Networks” that goes deeper into this issue. Note that under
some conditions, burstiness may also speed up spreading [37, 77].

Another way of simplifying temporal networks is to ignore contact dynamics and
just think of links as present between the first and last observation of a contact in
the data and ignore the precise timing of contacts [34]. Compared to simplifying
the system as bursty dynamics on top of static networks, this picture emphasizes
longer time structures such as the general growth and decline of activity in the
data. Figure 4c illustrates a data set that is well-modeled by links appearing and
disappearing, disregarding the interevent time statistics.

3.3 Mesoscopic Structures

In science in general, “mesoscopic” refers to the scales between macroscopic and
microscopic. In network science, this would mean structures larger than nodes but
smaller than the entire network, and indeed, the term is often used in the context of
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Fig. 4 Three scenarios of temporal edge structure. The figures show time lines of contacts along
edges in a four-node graph. Panel (a) shows a scenario with narrow distributed inter-event times;
(b) shows a bursty edge dynamics; (c) shows a scenario with a turnover of edges—where the time
between the beginning of the sampling to the first contact, or from the last contact to the end of the
sampling, is too long to be explained by the interevent time distributions

grouping nodes into classes based on how they are connected to each other and the
rest of the network. The primary example of mesoscopic structures is community
structure—that some networks have clear groups that are strongly connected within
and weakly connected between each other [84].

Most methods for community detection in static networks divide the network so
that every node belongs to one group only (the chapter “Challenges in Community
Discovery on Temporal Networks”). The straightforward extension of this idea to
temporal networks would be to let nodes belong to different groups at different
times, but only to a single group at each point in time [79]. This is also the most
common assumption in the literature, see e.g. Refs. [65, 69, 81]. This view focuses
on the individual nodes and seeks to group them in some principled way. If one,
on the other hand, focuses on the communities instead of the nodes and prioritizes
definitions that give interpretable communities (one temporal-network community
could for example represent one seminar, one concert, etc.), it makes sense not to
require every node to be member of a group at every point in time [85], as in the
chapter “Fundamental Structures in Temporal Communication Networks”.

Other mesoscopic structures, such as core-periphery structures [78], have been
less studied for temporal networks (even though there are some works—e.g. [75]
uses core-periphery analysis to understand ant-plant networks). Finally, temporally
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connected components (see chapter “Weighted Temporal Event Graphs” and [47])
span the structural scale from mesoscopic to macroscopic, both in terms of network
structure and with respect to time.

3.4 Fundamental Structures

In the chapter “Fundamental Structures in Temporal Communication Networks” and
Ref. [85], Lehmann et al. discuss the traces that the six fundamental interaction
types leave on temporal networks. Chapter “Fundamental Structures in Temporal
Communication Networks” presents a division of the interaction types in the
configuration of participants (one-to-one, one-to-many and many-to-many) and
synchronicity (synchronous and asynchronous). In the limit of a short time interval
projection of a temporal network data set, these different communication events
contribute with different subgraphs—synchronous one-to-many communication
yields a star graph, and synchronous many-to-many communication yields a clique.
By tuning the time window, one can identify the timescales of influence of these
“fundamental structures”.

4 Important Nodes, Links and Events

Perhaps the most common question for static networks is to find important nodes
(where “important” should be interpreted in a very broad sense). This question is
just as relevant for temporal networks. This is maybe the topic where the approaches
borrowed from the static-network toolbox are most applicable to temporal networks.
One major difference is that it is meaningful to talk about the importance of contacts
(in addition to nodes and links) for temporal networks [96]. Another difference is
that the most principled, general measures of importance are time-dependent, simply
because in most contexts a node can become more or less important in time.

4.1 Generalizing Centrality Measures

A huge number of papers have been devoted to the generalization of classical
centrality measures to temporal networks, see Refs. [70, 98] and the chapters “Met-
rics for Temporal Text Networks” and “Supracentrality Analysis of Temporal
Networks with Directed Interlayer Coupling”. In many cases—for distance-based
centrality measures—they have taken the obvious approach of replacing distances
by latency. Since temporal networks are typically less connected (in the sense
that the fraction of nodes that are reachable through time-respecting paths is
smaller than the corresponding quantity in static networks), centrality measures
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have to work in fragmented networks. This means that one needs to combine
information about how many nodes can be reached with information on how
easily they can be reached (or whatever rationale the corresponding static centrality
measure has). One example would be to generalize closeness centrality by averaging
reciprocal latencies, rather than taking the inverse of the averages [97]. This is,
however, an arbitrary combination of two aspects of centrality and quite typical
for straightforward generalizations of static concepts to temporal networks—they
become less principled that their static counterparts.

4.2 Controllability

The rationales of centrality measures comes from reasoning about dynamic
systems—you can reach other nodes quickly from central nodes; central nodes
are in the middle of heavy traffic; etc. The purpose of measuring centrality is
typically to rank the nodes and perhaps list the most central ones. Finding control
nodes involves a slightly different thinking. Instead of ranking the nodes, the control
nodes are minimal sets of nodes needed to be manipulated in order for the entire
network to reach a certain state. Ref. [53] and subsequent works show that temporal
networks can facilitate controllability—i.e. the system can be controlled with less
energy and by fewer nodes if it has temporal heterogeneities.

4.3 Vaccination, Sentinel Surveillance, and Influence
Maximization

The problems of vaccination, sentinel surveillance, and influence maximization are
related to questions about spreading phenomena. Similarly to controllability, one
assumes some objective and some sort of intervention to the underlying temporal-
network structure. In this case, however, the objective is typically to minimize or
maximize the number of nodes reached by some spreading dynamics (like infectious
disease, word-of-mouth marketing, etc.).

The vaccination problem is to select nodes that would minimize or slow down
disease spreading as much as possible. Typically one assumes that the vaccinated
nodes are deleted from the system so that they can no longer become infected and
spread the disease. Unlike centrality measures, but similarly to controllability, it
usually makes no sense to talk about the importance of individual nodes with respect
to the vaccination procedure—vaccinating one or a few nodes in a large network
would have no measurable effect on the epidemics. Instead, the importance of nodes
comes from the membership of a group that is vaccinated [27]. Another important
point is that one can typically not assume knowledge about the entire network
of contacts—only the interactions that could reliably be reported by individuals
can serve as input for vaccination protocols. For example, Refs. [24, 91] propose
vaccination protocols that exploit temporal structures.
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The influence maximization problem deals with finding seed nodes for spreading
dynamics that maximize the number of reached nodes [45]. The prime application is
viral marketing, but to protect against outbreaks that have not yet entered a popula-
tion influence maximization is also interesting for network epidemiology. The nodes
that are important for vaccination and influence maximization do not necessarily
have to be the same—optimal node sets for vaccination typically fragment the
network efficiently, whereas influence maximization emphasizes efficiently splitting
the network into subnetworks of influence. The first problem is akin to network
attack or network dismantling [11], and the second to finding a vertex cover [20]. To
exploit temporal structures, one can identify nodes in a heightened state of activity or
nodes that reliably influence others (chapter “Approximation Methods for Influence
Maximization in Temporal Networks”).

Sentinel surveillance assumes that one can put sensors (sentinels) on the nodes.
The task is to chose locations of the sensors such that disease outbreaks are
discovered as reliably or quickly as possible. This is probably the least studied of
these three problems on temporal networks—we are only aware of Ref. [4]. On the
other hand, it is practically a more important problem since it is currently in use
in health care systems [2]. Ref. [4] tests how efficient temporal network protocols
originally developed for vaccination are for the problem of sentinel surveillance.

4.4 Robustness to Failure and Attack

A problem that is very much overlapping with influence maximization etc. is net-
work robustness. The scenario is that some adversary is trying to destroy a network.
This adversary can have different amounts of information or resources to carry out
the attack, which yields different versions of the problem. With no information about
the network, the problem reduces to node percolation (or robustness to failure). With
perfect information but limited computational resources the problem is equivalent
to network dismantling. It is both interesting to study optimal heuristics for this
problem and what network structures that are contributing to the robustness of a
network. For temporal networks, this problem was studied in Refs. [83, 99], but
there should be several ways of extending their work and in general temporal-
network robustness seems to be an understudied area. This may have to do with
the fact that the temporal dimension makes the whole framework of percolation
more complicated (see chapter “Weighted temporal event graphs”).

5 How Structure Affects Dynamics

For models of disease spreading, heterogeneous, heavy-tailed degree distributions
are known to speed up the dynamics [9]. One line of research in temporal network
studies is to identify similar relations between the structure of the data and dynamics
taking place over the contacts.
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The types of dynamics people have been studying on underlying temporal
networks include disease spreading of different kinds (the chapters “Exploring
Concurrency and Reachability in the Presence of High Temporal Resolu-
tion”, “Information Diffusion Backbone”, “Spreading of Infection on Temporal
Networks: An Edge-Centered Perspective”, “The effect of concurrency on
epidemic threshold in time-varying networks”, and “The Effects of Local and
Global Link Creation Mechanisms on Contagion Processes Unfolding on Time-
Varying Networks”) [22], threshold models of complex contagion [3, 95],
random walks (the chapter “Continuous-Time Random Walks and Temporal
Networks”) [19, 58, 82, 89], navigation processes [51], synchronization (the
chapter “Dynamics and Control of Stochastically Switching Networks: Beyond
Fast Switching”) and even game-theoretic models [14, 104].

5.1 Simulating Disease Spreading

Disease spreading typically follows standard compartmental models developed by
applied mathematicians [12, 29]. Such models divide a population into classes with
respect to the disease and then state transition rules between the classes. The key
transition rule that exists in all compartmental models is the contagion event where
a susceptible individual becomes infected when in contact with an infectious indi-
vidual. In the two canonical and most well-studied models—the SIS (susceptible–
infectious–susceptible) and SIR (susceptible–infectious–recovered) models—the
contagion event is paired with the recovery of individuals (in SIS, recovered
individuals become susceptible again, whereas in SIR they become immune to the
disease or die). The probability that a contact between a susceptible individual and
an infectious individual results in contagion is usually a parameter of the model,
and it is assumed to be the same for all contacts (which is an assumption done for
convenience and not realism).

Many assumptions are needed for simulating compartmental model on a tempo-
ral network of contacts [21, 57]. Unless modelling bio-terrorism or the spread of
something else than a disease, it makes no sense to select more than one seed. With
no prior knowledge about the entry into the population, one should choose this seed
uniformly at random. By the same principle, one should choose the time of infection
uniformly randomly as well. This could of course lead to the outbreak not being able
to reach all nodes, so that the measured outbreak sizes are an average of outbreak
sizes of different times. For this reason, some authors choose to start the outbreak
early in the interval their data covers, even though that introduces a bias if e.g. the
activity in the data grows [76]. Another commonly used approach is to use periodic
boundary conditions and repeat the data from the beginning (e.g., in Ref. [43]).

Another important consideration is the duration of the infectious period. In
the mathematical epidemiology literature, it is usually taken to be exponentially
distributed to achieve the Markov property (that the probability to recover is
independent of the time since the infection). Markovian SIR and SIS are not only
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easier to analyze analytically, but also allow for some tricks to speed up simulation
code (see github.com/pholme for very fast, even-driven code for the Markovian SIR
on temporal networks). Some studies use a constant duration of infection for all
nodes. To the best of our knowledge, no studies have tried duration distributions
inferred from data.

Another decision that anyone simulating disease spreading (or random walks)
on temporal networks needs to make is what to do with contacts happening in the
same time step. There are, as we see it, two principled solutions. Either one assumes
that this allowed, in which case one then needs to pick contacts with the same time
stamp in a random order and average over different randomizations; or one assumes
the disease cannot spread via an intermediate node in a single time step. This is
effectively to assume an SEIS or SEIR model (E stands for exposed, which means
that the individual will become infectious in the future, but is not yet infectious),
with the duration of the E state being less than the time resolution of the temporal
network.

Another slight difference in approaches, especially in studies where the under-
lying temporal network is generated by a model, is that of link-centric and
node-centric compartmental models. In node-centric models [39, 59], the time to the
next contact that could spread the disease is determined at a contagion event. In link-
centric models [37, 101] the contacts are generated independently of the propagation
of the disease. The node-centric model simplifies analytical calculations whereas the
link-centric model is conceptually simpler and perhaps more realistic (even though
the assumption that the contact dynamics is independent of what spreads on the
network is probably often invalid).

Typically, papers about disease spreading have focused on understanding how
network structure affects the final outbreak size [34, 57, 62]. Some, however, have
studied early outbreak characteristics such at the basic reproductive number R0 (the
expected number of others an infectious individual would infect in a completely
susceptible population) [55, 76]. From a medical point of view, there is no obvious
choice between these two—even though the societal concern is to minimize the
outbreak size. The outbreak size is also a consequence of interventions that are not
modelled by the canonical disease-spreading models such as SIS and SIR, and thus
the early phase of the disease, which is better summarized by R0, could be more
informative.

Random-walk studies have focused on the mean first passage time—the
expected time since the beginning of a walk that the walker reaches a node—and
reachability—the probability a that node is reached by a walker starting at a random
node [58, 82]. Another topic of interest has been how topological and temporal
structure affects the speed of diffusion [19]. As opposed to spreading of disease,
there is no directly obvious real-world phenomenon that would be well-modeled
by random walks on temporal networks; however, random walks equal diffusion,
and diffusion. can be considered a fundamental process in any system. Often, the
random walk process is simply used as a probe of the temporal network structure.

github.com/pholme
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5.2 Tuning Temporal Network Structure by Randomization

The most straightforward way of understanding the impact of temporal network
structure on dynamic processes is of course to tune it an monitor the response
on some quantity describing the dynamics. There were important contributions
(also involving temporal structures) in this direction even before the turn-of-the-
millennium network boom. For example, Morris and Kretzschmar studied the effect
of concurrency, or overlapping relations, on outbreak sizes [64].

The most common way of investigating the effect of structures on temporal
network is to use randomization schemes. This approach starts with empirical
networks and then destroys some specific correlation by randomizing it away. For
example, one can randomly swap the time stamps of contacts or replace the time
stamps with a random time stamp chosen uniformly between the first and last of the
original data [31]. The former randomization is more restrictive in that it preserves
the overall activity pattern and per-node and per-link inter-event time statistics (see
Fig. 5). Randomization schemes turns out to be much more versatile for temporal
networks than for static ones. Ref. [23] gives a comprehensive theory of almost 40
different randomization schemes. By applying increasingly restrictive methods to
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Fig. 5 Illustrating two types of randomization procedures. Panel (a) shows a temporal network
that is randomized by randomly swapping time stamps (b) and by replacing time stamps by random
ones (c). The randomization in (b) preserves both the number of contacts per time (the numbers
above) and the number of contacts per pair of nodes (the numbers to the right). The randomization
procedure of panel (c) preserves the number of contacts per pair of nodes, but not the number of
contacts per time
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real data sets one can see how much structure is needed to recreate the behavior of
the original temporal network.

In general, the terminology of temporal networks is ambiguous. The topic itself
sometimes goes under the names “dynamic networks”, “temporal graphs”, or “time-
varying networks”. The randomization schemes above are no exception—Ref. [31]
calls the scheme of Fig. 5b “permuted times”, Ref. [43] calls it “shuffled times” and
Ref. [23] calls it “shuffled timetamps”.

5.3 Models of Temporal Networks

Another way of tuning temporal network structure, other than randomization, is
by generative models. Generative models of temporal networks serve a different
role than for static networks. Static network science, traditionally used models
of network evolution as proof-of concept models for theories about emergent
properties, like power-law degree distributions [6] or community structure [25]. For
temporal networks, there are common structures combining temporal and network
structures in a non-trivial way that also is non-trivial to explain. Nevertheless,
models of temporal networks are needed, if for nothing else then to generate
underlying data sets for controlled experimentation. In this section, we will mention
some of the central developments in this area. For a more complete overview, see
Ref. [33].

The most straightforward approach to generate a temporal network is to generate
a static network and assign a sequence of contacts to every link. For example,
Ref. [32] uses the following procedure:

1. Construct a simple graph by first generating an instance of the configuration
model [66] and merging multiple links and self-links from it.

2. For every link, randomly generate an interval when contacts can happen.
3. Generate a sequence of contacts following an interevent time distribution.
4. Match time sequence of contacts to the active intervals of the links.

This model is illustrated in Fig. 6.
Perra et al. [74] proposed a model of temporal networks—the activity driven

model—that is even simpler than the above with the advantage that it is analytically
tractable. Let Gt denote a simple graph at time t . Their generation algorithm
proceeds as follows:

1. Increment the time to t and let Gt be empty.
2. Activate a node i with probability aiΔt . Connect i to m other randomly chosen

distinct nodes.

This model has been fundamental to analytical studies of processes on temporal
networks, see e.g. Refs. [28, 44, 55, 56, 73, 92, 94].

Starnini et al. [90] use a two-dimensional random walk model where there
the chance of approaching node i is proportional to an increasing attractiveness
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Fig. 6 Illustrating a simple generative model for temporal networks, used in Refs. [32] and [76].
First one generates a static network from the configuration model by creating desired degrees
from a probability distribution (a) and matching them up in random pairs (b). Then one generates
intervals for the links showing when they are active (c). Finally, one generates a time series of
interevent times (d) and matches it to the active intervals. Panel (e) shows the final temporal
network. This figure is adapted from Ref. [33]
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parameter ai . This means that the more attracted a walker is to its neighbors, the
slower its walk becomes (simulating acquaintances stopping to talk when they
meet on the street). Furthermore, they also allow people not to socialize by having
occasional inactive periods. Zhang et al. [105] propose a similar model, but without
an explicit representation of space.

Another model of temporal networks of social contacts was proposed in
Ref. [102]. The authors introduced a model where both nodes and links can be
activated by temporal effects. In their model, a link can be active or inactive and
further characterized by the time τ(i,j) since the last time it changed state. Similarly,
node i uses the time τi since it last was involved in a contact as a basis for its
decisions. The network is initialized to N nodes and all links inactive. A node can
activate a link with probability depending on τ . The link is chosen from the nodes i

that are currently not in contact with i with a probability depending on the τ s of the
neighbors. An active link is inactivated with a rate that is also dependent on τ .

Refs. [60] and [15] use a Hawkes process to model a similar situation to the
one considered by Starnini et al. [90] above. Ref. [60] argue that there is a positive
correlation between consecutive interevent times in empirical data that cannot be
modeled by interevent times alone. Their model works by defining an event rate by

v +
∑

i:ti≤t

ϕ(t − ti ) (1)

where φ is an exponentially decreasing memory kernel and v is a base event
rate. Even with an exponentially decaying kernel, the interevent time distribution
becomes broader than exponential. Similar to Refs. [60] and [15], Ref. [16]
introduced a model of temporal networks based on stochastic point processes. In
their model, nodes form and break links following a Bernoulli process with memory.
Similar to the Hawkes process mentioned above, the probability of an event between
i and j increases with the number of recent events that happened between i and j .
Specifically, Ref. [16] takes the probability of a link to activate or deactivate at time
t to be proportional to the number of such events in a time window.

6 Other Topics

There are of course some themes in the temporal network literature that do
not fit into the above three categories. Two examples are generalizations of link
prediction [54] and network reconstruction [67, 72] to temporal networks. The
motivation of both these topics is that real data is often erroneous and incomplete.
In static networks, link prediction refers to the problem of finding the linkless pair
of nodes that is most likely to be a false negative (falsely not having a link). In the
context of temporal networks, this could be reformulated as either the question of
what will be the next contact (given the information up to a point), or which contact
was missing in the past. We are not aware of any paper addressing these particular
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problems. Instead of solving these purely temporal network questions, there is a
large body of literature on link prediction in static networks with a turnover of
nodes and links—see e.g. Ref. [1] and references therein—i.e., assuming a slower
changing network that elsewhere in this chapter.

Network reconstruction, in general, is the problem of inferring a network from
secondary, incomplete, or noisy data [67, 72]. So far, we are not aware of such
temporal-network studies similar to the static network case. There are papers about
the technical difficulties of inferring temporal network contacts from electronic
sensors [8, 93] and papers about how to reconstruct static networks from temporal
network data [32, 49], but we are aware of no papers that would predict false positive
and negative data in a contact sequence.

7 Future Perspectives

Temporal network studies has been a vivid sub-discipline of network science for
around a decade. Some issues of the early days have been settled, while others still
remain. This period has seen a shift from research that simply extends static-network
ideas to temporal networks to methods that are unique to temporal networks. Still,
the overall research directions are more or less the same as for static networks
(cf. Fig. 1)—questions about identifying important nodes, how to further simplify
temporal networks, and how their structure affect dynamics. Are there such larger
research directions that make sense for temporal networks but not static ones? An
obvious idea would be to focus on questions that involve time more directly. Yet
only rarely have researchers asked what the optimal time to do something is, or what
the optimal duration to expose the system to some treatment is, etc. Change-point
detection (finding the time when a system changes between qualitatively different
states) is one exception [71]. There are also papers about time series analysis of
temporal networks [38, 87], but these typically do not ask questions about time like
the ones above.

Perhaps the crudest assumption of temporal network modeling to date (as
mentioned in Sect. 2.1) is that the existence of a contact is independent of the
dynamic system of interest. As an example, there are many modeling studies of
information spreading on top of empirical temporal networks (e.g. mobile-phone
or e-mail data [3, 41, 43]). Of course, information spreading via e-mails or calls
does really happen, but one cannot usually view it as a random process on top of
some temporal contact structure that is independent of the information. While one
can imagine less important information spreading this way—“By the way, put on
that Finnish heavy metal when uncle Fredrik comes to visit, he will appreciate it”—
usually, calls are made and e-mails are sent with the explicit purpose of spreading
information. Therefore, information spreading influences or even drives the contact
structure. How should one then model information spreading on temporal networks?
One possibility would be to give up using empirical data as the basis for the analysis;
such an approach would be similar to adaptive networks [26]. One could also go for
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data that contains the content of the messages or conversations instead of only their
metadata; in this case, it might be possible to understand the relationship between
the temporal network of contacts and the spreading dynamics. Evidently, such data
is hard to come by for privacy reasons, but interestingly, early studies of electronic
communications did analyze both the content and the structure of spreading [17].
There are also communication channels where everything is public, such as Twitter.

One research direction with plenty of room for improvement is temporal-network
visualization. Figure 2 illustrates some of the challenges where Fig. 2a gives a
reasonable feeling for the temporal structures but none for the network structure, and
for Fig. 2b the situation is reversed. One can probably rule out a type of visualization
that manages to show all information and convey all different aspects of structure,
but there should be methods that discard some information but still reveal important
structures. Also animated visualization (that has the obvious limitation that not
all the information is shown at once) probably has room for improvement. Some
such methods are discussed in chapter “Visualisation of Structure and Processes on
Temporal Networks”. The “alluvial diagrams” of Ref. [80] are another interesting
approach. Evidently there are some available methods, but what we wish for is an
even wider selection to choose from.

Yet another fundamental challenge for temporal networks is how to properly
rescale or subsample a data set. Many methods, in particular those inspired by
statistical physics, rely on ways to consistently change the size of a network. This is
a challenge even for static networks—simply making subgraphs based on a random
set of nodes will most likely change the structure of a network (other than Erdős-
Rényi random graphs) [52]. The same goes for more elaborate ways of reducing
the size of a network by merging nodes [46, 88]—there is no guarantee that such
manipulation will retain the structure of networks. For temporal networks, one might
think that at least the temporal dimension could be rescaled by sampling windows
of different sizes, but this is not trivial either because it could change whether or not
a dynamic process has the time to reach a certain state or not. For the purpose of
finite-size scaling such as used in the study of critical phenomena [36], one would
need a way to link the size of the network and the duration of the temporal network.

Finally, as mentioned earlier in this chapter, we feel that there is a lot to do
regarding temporal-network robustness and fragility, with applications ranging from
network security to public health and to the efficient planning of robust public-
transport systems. This is an area where it is possible to go beyond static-network
analogies. As an example, while a static network may just fragment when chosen
nodes are attacked/immunized, the range of responses of a temporal network is
much broader: the network may remain temporally connected in principle but the
average latency of time-respecting paths may grow high enough to make them
useless. Or, the system’s latency could temporarily grow to make it temporarily
disconnected: consider, e.g., congestion in a public transport system. Furthermore,
the range of possible attack or immunization strategies can be much broader too:
interventions to events, attacks that aim to generally increase latency, interventions
at specific times, sequences of timed interventions at different nodes or contacts, and
so on. Likewise, when the aim is to improve network robustness, interventions are
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not limited to network topology alone. As an example, for improving the reliability
of public-transport systems, one could only modify the temporal sequences of
connections and their time-domain statistics to minimize the disruption caused
by random deviations from the planned schedules, or one could aim at maximal
synchronization of connections to minimize the latency of time-respecting paths.
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