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Preface

Great minds think alike! Many researchers have gotten the idea that there is structure
in the times of when things happen, in addition to network structure, that can be
exploited in modeling and data analysis. This, we believe, is inevitable in any active,
interdisciplinary field and not necessarily a bad thing, especially because great
minds don’t think identically. There is a multitude of frameworks, mathematical
representations, data structures, and visualization methods that are, on the one hand,
equivalent (there are one-to-one mappings between them) and, on the other hand,
emphasizing different aspects of the data. The main motivation behind this book is
to show these different ways of thinking about temporal networks.

Our second motivation is to showcase the field of temporal networks 6–7 years
after our previous edited volume Temporal Networks (in the Springer Complexity
series). At the time that book was published, temporal networks felt like an
immature subfield that had just figured out that it was sufficiently different from
(static) network science and that it could not simply bake the same cake over and
over again, this time sprinkling temporal information on top. Now, 3/4 of a decade
later, temporal networks still feels like an immature subfield, struggling to break
free from the ideas of static network science. Where this will end is not completely
clear. Maybe some great mind, relaxing in the hammock with this book, will be
able to unify the many directions taken. Or there may be a future where the current
diversity of ideas will provide ingredients for cooking great science. Either way,
temporal networks is a field that is younger than its age.

We hope this book will inspire new methods and discoveries and perhaps guide
applied researchers to useful approaches. We also hope that this is the last time that
the preface of a Springer temporal networks volume claims that temporal networks
is a young field!

Tokyo, Japan Petter Holme
Espoo, Finland Jari Saramäki
August 2019
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A Map of Approaches to Temporal
Networks

Petter Holme and Jari Saramäki

1 Overview

If we want to make sense of large, complicated systems via the data they leave
behind, we need ways of systematically simplifying them. Such simplifications
typically need to be very drastic. A common first step is to represent the system as
a network that only stores information on which units are connected to which other
units. In order to investigate the World Wide Web with this approach, one would
neglect the content, the owner, the time of creation, and the number of downloads
of a webpage, and instead, only consider individual webpages and how they are
linked together. The second step is to apply the methods of network science to find
important nodes or clusters of nodes with some special role or function, or to study
how the wiring of the network controls some dynamical system. The fundamental
idea of this book is that one can learn more about a system if one does not, at the first
step of simplification, discard information about when things happen. Consequently,
one needs to modify the second step and develop a science of temporal networks that
exploits this additional information.

The fundamental idea of retaining the information about time is evidently
not a hard one to get. Temporal networks have been invented and reinvented
many times. Researchers have proposed many mathematical and computational
frameworks—some equivalent, some not. This is probably inevitable for such an
extraordinarily interdisciplinary field of science—temporal networks have been
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Fig. 1 A schematic map of the chapters of this book, positioned with respect to the three main
research themes within the study of temporal networks

applied to neuroscience, transportation problems, social theory [13], control the-
ory [53], ecology [100], and many more areas. The many existing frameworks
could be frustrating for a newcomer to temporal networks. Part of our idea with
this book was to showcase this diversity, see the chapters “Fundamental Structures
in Temporal Communication Networks”, “Weighted, Bipartite, or Directed Stream
Graphs for the Modeling of Temporal Networks”, and “Dynamics and Control of
Stochastically Switching Networks: Beyond Fast Switching” for very different ways
of thinking about networks in time.

Even if you encounter a problem where both the network and the temporal
aspects should play a role, there is no general recipe to follow. The goal of this
introductory chapter is to provide a rough map of the field—what types of questions
researchers have been interested in, and what results there are out there. We will also
try to place the subsequent chapters on their correct locations on this map (Fig. 1).
This chapter is not a catalogue of techniques or an introduction to a comprehensive
and self-consistent theory. For readers interested in that, our review papers [33, 35]
the book by Masuda and Lambiotte [58] or by Batagelj et al. [10] will be a better
read.

2 Temporal Network Data

In this section, we discuss the many subtleties about how to represent a system as a
temporal network in a meaningful way.
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2.1 Events

The fundamental building blocks of temporal networks are events (or contacts, links,
or dynamic links). These represent units of interaction between a pair of nodes at
specified times. Often, they take the form of triples (i, j, t) showing that nodes i and
j are in contact at time t . Sometimes the time can be an interval, rather than just a
moment.

As we will see throughout this book, temporal-network modeling is far from
a straightforward generalization of static networks—often, it is fundamentally
different. As a first example, we note that events are not always a straightforward
generalization of links of the static networks. Take e-mail communication as an
example. In static network modeling, one typically assumes that the links (between
people that have exchanged email) indicate social relationships. These links can be
viewed as the underlying infrastructure for e.g. information spreading since people
who know each other exchange information. The links are there not only for one
email to be sent but represent persistent opportunities for spreading events for the
duration of the relationship. In contrast, an event in a temporal e-mail network is
simply one e-mail being sent, and this is something that usually happens for the
explicit purpose of spreading information. But there are also systems other than e-
mail communication where events are more like links of static networks. Consider,
for example, transportation systems, where the bus, train or flight connections are
really opportunities to travel that happen whether a certain person needs to use them
or not. As we will see, different approaches treat these two interpretations of events
differently.

2.2 Boundaries

In the natural sciences, we can sometimes model time as a dimension, if not exactly
like space then at least similar to it. For temporal networks, the binary connections
and the time are more fundamentally different concepts. The simplest way of seeing
this is to consider the network’s boundaries (between what is contained in a data set
and what is not). Regarding time, a temporal network data set almost always covers
a time interval, and the interval is the same for all nodes. The structural boundaries
of the network dimension are usually less controlled. Similar to cohort studies in the
social sciences, one would like to have a selection of nodes that is as tight-knit as
possible, typically defined by common features. For example, Ref. [93] is based on
data from voluntary participants among the freshmen of a university—better than a
random group of people, but worse than the complete group of freshmen.

Boundaries become a problem when one wants to control the size of a data set. If
a temporal network is too large to handle or one wants to understand the effects of
size, how should one reduce the size of the network without changing its structure?
One could reduce the number of nodes by random sub-sampling, or perhaps simply
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truncate the data in the temporal dimension. However, both these approaches would
introduce biases. While there are ways of correcting some of those [48], it is hard to
avoid problems. For example, if one truncates the data, there might not be enough
time for a spreading process to saturate before the sampling interval is over. If one
deletes nodes, or events, one introduces other biases. The proper way of resampling
a temporal network must simultaneously vary the number of nodes and the sampling
duration, but exactly how is still an open question.

2.3 Connectivity

It is fundamental to any kind of network modeling that being indirectly connected
through a path is relevant to dynamic processes. This is true for temporal networks
as well, but the connections have to happen along time-respecting paths of contacts
(with strictly increasing timestamps). Indirect connections through time-respecting
paths are not transitive (see Fig. 2)—even if one can get from A to B and B to C, it
might still be impossible to go from A to C because one would arrive at B too late

0 5 10
time

A

B

C

D

A

B
C

D
1,3,4

1,6,7

9

8

(a)

(b)

Fig. 2 An illustration of two ways to visualize small temporal networks that can be convenient
for reasoning about measures and methods. Panel (a) shows a time-line graph where an epidemic
outbreak starting at node A is indicated by grey lines. In almost all cases, paths between nodes
(that follow events) in temporal networks need to go forward in time (to the right in the plot).
(b) shows the same data, but plotted projected onto a static graph. The latter visualization highlights
the underlying static network structure at the expense of the temporal information. The former,
the time-line plot, can capture many types of temporal structures but is inconvenient for network
structure
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Fig. 3 A time-node representation of the data in Fig. 2. This is a (directed, acyclic) static graph
containing the same information as in Fig. 2 but the meaning of nodes and edges is different

for a further connection to be possible. Contrary to this, all static networks, directed
networks included, are transitive.

Another important difference to static networks is that connectivity itself is
temporal: even if there is a path from A to B now, whether direct or indirect, there
might be none a second later. Therefore, the statement “A is connected to B” is not
necessarily even meaningful unless the time (interval) of this connection is specified.
The above issues mean that one can never reduce a temporal network into a static
one without losing information or changing the meaning of the nodes (cf. Fig. 3).

Since many static network tools are based on paths and distances, researchers
have sought to generalize these concepts to static networks. Once again, the addition
of a temporal dimension makes this task much more complicated. The most
common generalization of distance is latency (temporal distance) [50]—the time
it would take to reach j from i starting at time t and following only time-respecting
paths. For a longer discussion about paths and connectivity, see Refs. [33, 35, 58].

3 Simplifying and Coarse-Graining Temporal Networks

Even if representing data as a temporal network means that information has to
be discarded for the sake of simplification, this is often not enough to get an
understanding of the large-scale organization of the system. There are many ideas
how to further simplify a temporal network that we will discuss in this section.

3.1 Projections to Static Networks

Perhaps the most obvious way of simplifying a temporal network is to turn it into
a static network. In fact, many classical examples of static networks like citation
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networks or affiliation studies (like the “Southern Women” study of 1941 [18])
have temporal link information, but the time is ignored by simply only studying
the network of all aggregated contacts or separate “snapshot” graphs that represent
different times.

If one, from time-stamped data, constructs a binary static network where nodes
are only linked or not, it is obvious that a lot of information is lost. A better option
is to include information on the number or frequency of connections between pairs
of nodes, leading to weighted networks. In this case, the link weights can provide
important insights into the network structure (see, e.g., [7, 68]). However, including
links between all nodes that have been in contact can in some cases result in a very
dense network. In this case, one can threshold the network, discarding the weakest
links, or extract the backbone of the network [86].

It is obvious that the above weighted-network approach is not really temporal,
because if one manipulates the times of the contacts, the outcome will remain the
same. The simplest static networks that truly encode some temporal effects are
reachability graphs. These graphs have a directed edge (i, j) if one can reach j

from i via a time-respecting path.
Another way of creating sparser static networks than thresholding weighted

graphs is to aggregate contacts within a time window [49]. While the thresholded
graphs contain information about the contacts that are the most common in the
whole sampling interval, time-window graphs emphasize shorter time-scales, and
their sequence captures at least part of the network dynamics. Indeed, tuning the
duration of the time windows can be a way to understand the organization of the
data [85]. Yet a similar idea is to construct networks where links represent ongoing
relationships [30]—pairs of nodes that, at some point in time, have had contacts
before and will have them again.

One more elaborate way of reducing temporal networks to static ones is
the extraction of backbones specifically with respect to spreading processes on
temporal networks [103] and the chapter “Information Diffusion Backbone”. By
this approach, links in the resultant network correspond to node pairs that are likely
to infect each other in an epidemic outbreak.

As mentioned above, these approaches can never retain all temporal features of
the original data. Nevertheless, analyzing temporal networks by making them static
is rather attractive because there is a plethora of methods for static-network analysis.
One way of circumventing the problem of information loss is to use more elaborate
mappings, where temporal networks are mapped onto static network structures
whose nodes and links represent something else than the original network’s nodes
and links. One example is temporal event graphs, whose nodes correspond to the
original network’s events (see [47, 61] and the chapter “Weighted Temporal Event
Graphs” of this book).

One common approach that can also be interpreted as static-network projection is
to use multilayer networks, as in the chapter “Supracentrality Analysis of Temporal
Networks with Directed Interlayer Coupling” of this book: time is sliced into
consequent intervals, and the layers of a multilayer network correspond to networks
aggregated for each interval. Once the layers are coupled (e.g. with a directed
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link from a node to its future self), one can then apply (static) multilayer network
methods to the system. Importantly, the layers in such a projection are ordered by
time.

Finally, temporal network data can also be projected to higher-order network
models that retains some information of the flows over the network. The Chapter
“Modelling Temporal Networks with Markov Chains, Community Structures and
Change Points” discusses such approaches.

3.2 Separating the Dynamics of Contacts, Links and Nodes

Instead of reducing temporal network data to static networks, one can try to retain
some but not all of the temporal features. One example is the statistics of times
between contacts. It was early recognized that often, the times between events, both
for nodes and links, have heavy-tailed distributions [30, 40] (they are bursty [5, 42]).
Subsequent studies (e.g. Ref. [43, 63]) found that this burstiness of inter-event
times slows down spreading processes: simulated spreading that takes place on
bursty networks is slower than it is on networks where the burstiness has been
artificially removed. However, the result is the same when the heavy-tailed inter-
event times are part of the dynamical process itself: when a spreading process
with power-law distributed waiting times is placed on a static network [62], it
is slow too. This is related to how events are interpreted (see Sect. 2.1 and the
chapter “Continuous-Time Random Walks and Temporal Networks”): are they
separated from the process and just passive conduits for it, as in spreading on top
of bursty event sequences, or are the events actively generated by the process, as
one could interpret the combination of spreading with broad waiting times and
a static network? Figure 4a, b illustrate homogeneous and heterogeneous (bursty)
link dynamics on top of a static network. See also the chapter “Bursty Time Series
Analysis for Temporal Networks” that goes deeper into this issue. Note that under
some conditions, burstiness may also speed up spreading [37, 77].

Another way of simplifying temporal networks is to ignore contact dynamics and
just think of links as present between the first and last observation of a contact in
the data and ignore the precise timing of contacts [34]. Compared to simplifying
the system as bursty dynamics on top of static networks, this picture emphasizes
longer time structures such as the general growth and decline of activity in the
data. Figure 4c illustrates a data set that is well-modeled by links appearing and
disappearing, disregarding the interevent time statistics.

3.3 Mesoscopic Structures

In science in general, “mesoscopic” refers to the scales between macroscopic and
microscopic. In network science, this would mean structures larger than nodes but
smaller than the entire network, and indeed, the term is often used in the context of
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(A,B)
(A,C)
(B,C)
(C,D)

(A,B)
(A,C)
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(a)

(A,B)
(A,C)
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(C,D)

(c)

time

(b)

Fig. 4 Three scenarios of temporal edge structure. The figures show time lines of contacts along
edges in a four-node graph. Panel (a) shows a scenario with narrow distributed inter-event times;
(b) shows a bursty edge dynamics; (c) shows a scenario with a turnover of edges—where the time
between the beginning of the sampling to the first contact, or from the last contact to the end of the
sampling, is too long to be explained by the interevent time distributions

grouping nodes into classes based on how they are connected to each other and the
rest of the network. The primary example of mesoscopic structures is community
structure—that some networks have clear groups that are strongly connected within
and weakly connected between each other [84].

Most methods for community detection in static networks divide the network so
that every node belongs to one group only (the chapter “Challenges in Community
Discovery on Temporal Networks”). The straightforward extension of this idea to
temporal networks would be to let nodes belong to different groups at different
times, but only to a single group at each point in time [79]. This is also the most
common assumption in the literature, see e.g. Refs. [65, 69, 81]. This view focuses
on the individual nodes and seeks to group them in some principled way. If one,
on the other hand, focuses on the communities instead of the nodes and prioritizes
definitions that give interpretable communities (one temporal-network community
could for example represent one seminar, one concert, etc.), it makes sense not to
require every node to be member of a group at every point in time [85], as in the
chapter “Fundamental Structures in Temporal Communication Networks”.

Other mesoscopic structures, such as core-periphery structures [78], have been
less studied for temporal networks (even though there are some works—e.g. [75]
uses core-periphery analysis to understand ant-plant networks). Finally, temporally
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connected components (see chapter “Weighted Temporal Event Graphs” and [47])
span the structural scale from mesoscopic to macroscopic, both in terms of network
structure and with respect to time.

3.4 Fundamental Structures

In the chapter “Fundamental Structures in Temporal Communication Networks” and
Ref. [85], Lehmann et al. discuss the traces that the six fundamental interaction
types leave on temporal networks. Chapter “Fundamental Structures in Temporal
Communication Networks” presents a division of the interaction types in the
configuration of participants (one-to-one, one-to-many and many-to-many) and
synchronicity (synchronous and asynchronous). In the limit of a short time interval
projection of a temporal network data set, these different communication events
contribute with different subgraphs—synchronous one-to-many communication
yields a star graph, and synchronous many-to-many communication yields a clique.
By tuning the time window, one can identify the timescales of influence of these
“fundamental structures”.

4 Important Nodes, Links and Events

Perhaps the most common question for static networks is to find important nodes
(where “important” should be interpreted in a very broad sense). This question is
just as relevant for temporal networks. This is maybe the topic where the approaches
borrowed from the static-network toolbox are most applicable to temporal networks.
One major difference is that it is meaningful to talk about the importance of contacts
(in addition to nodes and links) for temporal networks [96]. Another difference is
that the most principled, general measures of importance are time-dependent, simply
because in most contexts a node can become more or less important in time.

4.1 Generalizing Centrality Measures

A huge number of papers have been devoted to the generalization of classical
centrality measures to temporal networks, see Refs. [70, 98] and the chapters “Met-
rics for Temporal Text Networks” and “Supracentrality Analysis of Temporal
Networks with Directed Interlayer Coupling”. In many cases—for distance-based
centrality measures—they have taken the obvious approach of replacing distances
by latency. Since temporal networks are typically less connected (in the sense
that the fraction of nodes that are reachable through time-respecting paths is
smaller than the corresponding quantity in static networks), centrality measures
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have to work in fragmented networks. This means that one needs to combine
information about how many nodes can be reached with information on how
easily they can be reached (or whatever rationale the corresponding static centrality
measure has). One example would be to generalize closeness centrality by averaging
reciprocal latencies, rather than taking the inverse of the averages [97]. This is,
however, an arbitrary combination of two aspects of centrality and quite typical
for straightforward generalizations of static concepts to temporal networks—they
become less principled that their static counterparts.

4.2 Controllability

The rationales of centrality measures comes from reasoning about dynamic
systems—you can reach other nodes quickly from central nodes; central nodes
are in the middle of heavy traffic; etc. The purpose of measuring centrality is
typically to rank the nodes and perhaps list the most central ones. Finding control
nodes involves a slightly different thinking. Instead of ranking the nodes, the control
nodes are minimal sets of nodes needed to be manipulated in order for the entire
network to reach a certain state. Ref. [53] and subsequent works show that temporal
networks can facilitate controllability—i.e. the system can be controlled with less
energy and by fewer nodes if it has temporal heterogeneities.

4.3 Vaccination, Sentinel Surveillance, and Influence
Maximization

The problems of vaccination, sentinel surveillance, and influence maximization are
related to questions about spreading phenomena. Similarly to controllability, one
assumes some objective and some sort of intervention to the underlying temporal-
network structure. In this case, however, the objective is typically to minimize or
maximize the number of nodes reached by some spreading dynamics (like infectious
disease, word-of-mouth marketing, etc.).

The vaccination problem is to select nodes that would minimize or slow down
disease spreading as much as possible. Typically one assumes that the vaccinated
nodes are deleted from the system so that they can no longer become infected and
spread the disease. Unlike centrality measures, but similarly to controllability, it
usually makes no sense to talk about the importance of individual nodes with respect
to the vaccination procedure—vaccinating one or a few nodes in a large network
would have no measurable effect on the epidemics. Instead, the importance of nodes
comes from the membership of a group that is vaccinated [27]. Another important
point is that one can typically not assume knowledge about the entire network
of contacts—only the interactions that could reliably be reported by individuals
can serve as input for vaccination protocols. For example, Refs. [24, 91] propose
vaccination protocols that exploit temporal structures.
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The influence maximization problem deals with finding seed nodes for spreading
dynamics that maximize the number of reached nodes [45]. The prime application is
viral marketing, but to protect against outbreaks that have not yet entered a popula-
tion influence maximization is also interesting for network epidemiology. The nodes
that are important for vaccination and influence maximization do not necessarily
have to be the same—optimal node sets for vaccination typically fragment the
network efficiently, whereas influence maximization emphasizes efficiently splitting
the network into subnetworks of influence. The first problem is akin to network
attack or network dismantling [11], and the second to finding a vertex cover [20]. To
exploit temporal structures, one can identify nodes in a heightened state of activity or
nodes that reliably influence others (chapter “Approximation Methods for Influence
Maximization in Temporal Networks”).

Sentinel surveillance assumes that one can put sensors (sentinels) on the nodes.
The task is to chose locations of the sensors such that disease outbreaks are
discovered as reliably or quickly as possible. This is probably the least studied of
these three problems on temporal networks—we are only aware of Ref. [4]. On the
other hand, it is practically a more important problem since it is currently in use
in health care systems [2]. Ref. [4] tests how efficient temporal network protocols
originally developed for vaccination are for the problem of sentinel surveillance.

4.4 Robustness to Failure and Attack

A problem that is very much overlapping with influence maximization etc. is net-
work robustness. The scenario is that some adversary is trying to destroy a network.
This adversary can have different amounts of information or resources to carry out
the attack, which yields different versions of the problem. With no information about
the network, the problem reduces to node percolation (or robustness to failure). With
perfect information but limited computational resources the problem is equivalent
to network dismantling. It is both interesting to study optimal heuristics for this
problem and what network structures that are contributing to the robustness of a
network. For temporal networks, this problem was studied in Refs. [83, 99], but
there should be several ways of extending their work and in general temporal-
network robustness seems to be an understudied area. This may have to do with
the fact that the temporal dimension makes the whole framework of percolation
more complicated (see chapter “Weighted temporal event graphs”).

5 How Structure Affects Dynamics

For models of disease spreading, heterogeneous, heavy-tailed degree distributions
are known to speed up the dynamics [9]. One line of research in temporal network
studies is to identify similar relations between the structure of the data and dynamics
taking place over the contacts.
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The types of dynamics people have been studying on underlying temporal
networks include disease spreading of different kinds (the chapters “Exploring
Concurrency and Reachability in the Presence of High Temporal Resolu-
tion”, “Information Diffusion Backbone”, “Spreading of Infection on Temporal
Networks: An Edge-Centered Perspective”, “The effect of concurrency on
epidemic threshold in time-varying networks”, and “The Effects of Local and
Global Link Creation Mechanisms on Contagion Processes Unfolding on Time-
Varying Networks”) [22], threshold models of complex contagion [3, 95],
random walks (the chapter “Continuous-Time Random Walks and Temporal
Networks”) [19, 58, 82, 89], navigation processes [51], synchronization (the
chapter “Dynamics and Control of Stochastically Switching Networks: Beyond
Fast Switching”) and even game-theoretic models [14, 104].

5.1 Simulating Disease Spreading

Disease spreading typically follows standard compartmental models developed by
applied mathematicians [12, 29]. Such models divide a population into classes with
respect to the disease and then state transition rules between the classes. The key
transition rule that exists in all compartmental models is the contagion event where
a susceptible individual becomes infected when in contact with an infectious indi-
vidual. In the two canonical and most well-studied models—the SIS (susceptible–
infectious–susceptible) and SIR (susceptible–infectious–recovered) models—the
contagion event is paired with the recovery of individuals (in SIS, recovered
individuals become susceptible again, whereas in SIR they become immune to the
disease or die). The probability that a contact between a susceptible individual and
an infectious individual results in contagion is usually a parameter of the model,
and it is assumed to be the same for all contacts (which is an assumption done for
convenience and not realism).

Many assumptions are needed for simulating compartmental model on a tempo-
ral network of contacts [21, 57]. Unless modelling bio-terrorism or the spread of
something else than a disease, it makes no sense to select more than one seed. With
no prior knowledge about the entry into the population, one should choose this seed
uniformly at random. By the same principle, one should choose the time of infection
uniformly randomly as well. This could of course lead to the outbreak not being able
to reach all nodes, so that the measured outbreak sizes are an average of outbreak
sizes of different times. For this reason, some authors choose to start the outbreak
early in the interval their data covers, even though that introduces a bias if e.g. the
activity in the data grows [76]. Another commonly used approach is to use periodic
boundary conditions and repeat the data from the beginning (e.g., in Ref. [43]).

Another important consideration is the duration of the infectious period. In
the mathematical epidemiology literature, it is usually taken to be exponentially
distributed to achieve the Markov property (that the probability to recover is
independent of the time since the infection). Markovian SIR and SIS are not only
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easier to analyze analytically, but also allow for some tricks to speed up simulation
code (see github.com/pholme for very fast, even-driven code for the Markovian SIR
on temporal networks). Some studies use a constant duration of infection for all
nodes. To the best of our knowledge, no studies have tried duration distributions
inferred from data.

Another decision that anyone simulating disease spreading (or random walks)
on temporal networks needs to make is what to do with contacts happening in the
same time step. There are, as we see it, two principled solutions. Either one assumes
that this allowed, in which case one then needs to pick contacts with the same time
stamp in a random order and average over different randomizations; or one assumes
the disease cannot spread via an intermediate node in a single time step. This is
effectively to assume an SEIS or SEIR model (E stands for exposed, which means
that the individual will become infectious in the future, but is not yet infectious),
with the duration of the E state being less than the time resolution of the temporal
network.

Another slight difference in approaches, especially in studies where the under-
lying temporal network is generated by a model, is that of link-centric and
node-centric compartmental models. In node-centric models [39, 59], the time to the
next contact that could spread the disease is determined at a contagion event. In link-
centric models [37, 101] the contacts are generated independently of the propagation
of the disease. The node-centric model simplifies analytical calculations whereas the
link-centric model is conceptually simpler and perhaps more realistic (even though
the assumption that the contact dynamics is independent of what spreads on the
network is probably often invalid).

Typically, papers about disease spreading have focused on understanding how
network structure affects the final outbreak size [34, 57, 62]. Some, however, have
studied early outbreak characteristics such at the basic reproductive number R0 (the
expected number of others an infectious individual would infect in a completely
susceptible population) [55, 76]. From a medical point of view, there is no obvious
choice between these two—even though the societal concern is to minimize the
outbreak size. The outbreak size is also a consequence of interventions that are not
modelled by the canonical disease-spreading models such as SIS and SIR, and thus
the early phase of the disease, which is better summarized by R0, could be more
informative.

Random-walk studies have focused on the mean first passage time—the
expected time since the beginning of a walk that the walker reaches a node—and
reachability—the probability a that node is reached by a walker starting at a random
node [58, 82]. Another topic of interest has been how topological and temporal
structure affects the speed of diffusion [19]. As opposed to spreading of disease,
there is no directly obvious real-world phenomenon that would be well-modeled
by random walks on temporal networks; however, random walks equal diffusion,
and diffusion. can be considered a fundamental process in any system. Often, the
random walk process is simply used as a probe of the temporal network structure.

github.com/pholme
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5.2 Tuning Temporal Network Structure by Randomization

The most straightforward way of understanding the impact of temporal network
structure on dynamic processes is of course to tune it an monitor the response
on some quantity describing the dynamics. There were important contributions
(also involving temporal structures) in this direction even before the turn-of-the-
millennium network boom. For example, Morris and Kretzschmar studied the effect
of concurrency, or overlapping relations, on outbreak sizes [64].

The most common way of investigating the effect of structures on temporal
network is to use randomization schemes. This approach starts with empirical
networks and then destroys some specific correlation by randomizing it away. For
example, one can randomly swap the time stamps of contacts or replace the time
stamps with a random time stamp chosen uniformly between the first and last of the
original data [31]. The former randomization is more restrictive in that it preserves
the overall activity pattern and per-node and per-link inter-event time statistics (see
Fig. 5). Randomization schemes turns out to be much more versatile for temporal
networks than for static ones. Ref. [23] gives a comprehensive theory of almost 40
different randomization schemes. By applying increasingly restrictive methods to
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Fig. 5 Illustrating two types of randomization procedures. Panel (a) shows a temporal network
that is randomized by randomly swapping time stamps (b) and by replacing time stamps by random
ones (c). The randomization in (b) preserves both the number of contacts per time (the numbers
above) and the number of contacts per pair of nodes (the numbers to the right). The randomization
procedure of panel (c) preserves the number of contacts per pair of nodes, but not the number of
contacts per time
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real data sets one can see how much structure is needed to recreate the behavior of
the original temporal network.

In general, the terminology of temporal networks is ambiguous. The topic itself
sometimes goes under the names “dynamic networks”, “temporal graphs”, or “time-
varying networks”. The randomization schemes above are no exception—Ref. [31]
calls the scheme of Fig. 5b “permuted times”, Ref. [43] calls it “shuffled times” and
Ref. [23] calls it “shuffled timetamps”.

5.3 Models of Temporal Networks

Another way of tuning temporal network structure, other than randomization, is
by generative models. Generative models of temporal networks serve a different
role than for static networks. Static network science, traditionally used models
of network evolution as proof-of concept models for theories about emergent
properties, like power-law degree distributions [6] or community structure [25]. For
temporal networks, there are common structures combining temporal and network
structures in a non-trivial way that also is non-trivial to explain. Nevertheless,
models of temporal networks are needed, if for nothing else then to generate
underlying data sets for controlled experimentation. In this section, we will mention
some of the central developments in this area. For a more complete overview, see
Ref. [33].

The most straightforward approach to generate a temporal network is to generate
a static network and assign a sequence of contacts to every link. For example,
Ref. [32] uses the following procedure:

1. Construct a simple graph by first generating an instance of the configuration
model [66] and merging multiple links and self-links from it.

2. For every link, randomly generate an interval when contacts can happen.
3. Generate a sequence of contacts following an interevent time distribution.
4. Match time sequence of contacts to the active intervals of the links.

This model is illustrated in Fig. 6.
Perra et al. [74] proposed a model of temporal networks—the activity driven

model—that is even simpler than the above with the advantage that it is analytically
tractable. Let Gt denote a simple graph at time t . Their generation algorithm
proceeds as follows:

1. Increment the time to t and let Gt be empty.
2. Activate a node i with probability aiΔt . Connect i to m other randomly chosen

distinct nodes.

This model has been fundamental to analytical studies of processes on temporal
networks, see e.g. Refs. [28, 44, 55, 56, 73, 92, 94].

Starnini et al. [90] use a two-dimensional random walk model where there
the chance of approaching node i is proportional to an increasing attractiveness
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Fig. 6 Illustrating a simple generative model for temporal networks, used in Refs. [32] and [76].
First one generates a static network from the configuration model by creating desired degrees
from a probability distribution (a) and matching them up in random pairs (b). Then one generates
intervals for the links showing when they are active (c). Finally, one generates a time series of
interevent times (d) and matches it to the active intervals. Panel (e) shows the final temporal
network. This figure is adapted from Ref. [33]
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parameter ai . This means that the more attracted a walker is to its neighbors, the
slower its walk becomes (simulating acquaintances stopping to talk when they
meet on the street). Furthermore, they also allow people not to socialize by having
occasional inactive periods. Zhang et al. [105] propose a similar model, but without
an explicit representation of space.

Another model of temporal networks of social contacts was proposed in
Ref. [102]. The authors introduced a model where both nodes and links can be
activated by temporal effects. In their model, a link can be active or inactive and
further characterized by the time τ(i,j) since the last time it changed state. Similarly,
node i uses the time τi since it last was involved in a contact as a basis for its
decisions. The network is initialized to N nodes and all links inactive. A node can
activate a link with probability depending on τ . The link is chosen from the nodes i

that are currently not in contact with i with a probability depending on the τ s of the
neighbors. An active link is inactivated with a rate that is also dependent on τ .

Refs. [60] and [15] use a Hawkes process to model a similar situation to the
one considered by Starnini et al. [90] above. Ref. [60] argue that there is a positive
correlation between consecutive interevent times in empirical data that cannot be
modeled by interevent times alone. Their model works by defining an event rate by

v +
∑

i:ti≤t

ϕ(t − ti ) (1)

where φ is an exponentially decreasing memory kernel and v is a base event
rate. Even with an exponentially decaying kernel, the interevent time distribution
becomes broader than exponential. Similar to Refs. [60] and [15], Ref. [16]
introduced a model of temporal networks based on stochastic point processes. In
their model, nodes form and break links following a Bernoulli process with memory.
Similar to the Hawkes process mentioned above, the probability of an event between
i and j increases with the number of recent events that happened between i and j .
Specifically, Ref. [16] takes the probability of a link to activate or deactivate at time
t to be proportional to the number of such events in a time window.

6 Other Topics

There are of course some themes in the temporal network literature that do
not fit into the above three categories. Two examples are generalizations of link
prediction [54] and network reconstruction [67, 72] to temporal networks. The
motivation of both these topics is that real data is often erroneous and incomplete.
In static networks, link prediction refers to the problem of finding the linkless pair
of nodes that is most likely to be a false negative (falsely not having a link). In the
context of temporal networks, this could be reformulated as either the question of
what will be the next contact (given the information up to a point), or which contact
was missing in the past. We are not aware of any paper addressing these particular
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problems. Instead of solving these purely temporal network questions, there is a
large body of literature on link prediction in static networks with a turnover of
nodes and links—see e.g. Ref. [1] and references therein—i.e., assuming a slower
changing network that elsewhere in this chapter.

Network reconstruction, in general, is the problem of inferring a network from
secondary, incomplete, or noisy data [67, 72]. So far, we are not aware of such
temporal-network studies similar to the static network case. There are papers about
the technical difficulties of inferring temporal network contacts from electronic
sensors [8, 93] and papers about how to reconstruct static networks from temporal
network data [32, 49], but we are aware of no papers that would predict false positive
and negative data in a contact sequence.

7 Future Perspectives

Temporal network studies has been a vivid sub-discipline of network science for
around a decade. Some issues of the early days have been settled, while others still
remain. This period has seen a shift from research that simply extends static-network
ideas to temporal networks to methods that are unique to temporal networks. Still,
the overall research directions are more or less the same as for static networks
(cf. Fig. 1)—questions about identifying important nodes, how to further simplify
temporal networks, and how their structure affect dynamics. Are there such larger
research directions that make sense for temporal networks but not static ones? An
obvious idea would be to focus on questions that involve time more directly. Yet
only rarely have researchers asked what the optimal time to do something is, or what
the optimal duration to expose the system to some treatment is, etc. Change-point
detection (finding the time when a system changes between qualitatively different
states) is one exception [71]. There are also papers about time series analysis of
temporal networks [38, 87], but these typically do not ask questions about time like
the ones above.

Perhaps the crudest assumption of temporal network modeling to date (as
mentioned in Sect. 2.1) is that the existence of a contact is independent of the
dynamic system of interest. As an example, there are many modeling studies of
information spreading on top of empirical temporal networks (e.g. mobile-phone
or e-mail data [3, 41, 43]). Of course, information spreading via e-mails or calls
does really happen, but one cannot usually view it as a random process on top of
some temporal contact structure that is independent of the information. While one
can imagine less important information spreading this way—“By the way, put on
that Finnish heavy metal when uncle Fredrik comes to visit, he will appreciate it”—
usually, calls are made and e-mails are sent with the explicit purpose of spreading
information. Therefore, information spreading influences or even drives the contact
structure. How should one then model information spreading on temporal networks?
One possibility would be to give up using empirical data as the basis for the analysis;
such an approach would be similar to adaptive networks [26]. One could also go for
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data that contains the content of the messages or conversations instead of only their
metadata; in this case, it might be possible to understand the relationship between
the temporal network of contacts and the spreading dynamics. Evidently, such data
is hard to come by for privacy reasons, but interestingly, early studies of electronic
communications did analyze both the content and the structure of spreading [17].
There are also communication channels where everything is public, such as Twitter.

One research direction with plenty of room for improvement is temporal-network
visualization. Figure 2 illustrates some of the challenges where Fig. 2a gives a
reasonable feeling for the temporal structures but none for the network structure, and
for Fig. 2b the situation is reversed. One can probably rule out a type of visualization
that manages to show all information and convey all different aspects of structure,
but there should be methods that discard some information but still reveal important
structures. Also animated visualization (that has the obvious limitation that not
all the information is shown at once) probably has room for improvement. Some
such methods are discussed in chapter “Visualisation of Structure and Processes on
Temporal Networks”. The “alluvial diagrams” of Ref. [80] are another interesting
approach. Evidently there are some available methods, but what we wish for is an
even wider selection to choose from.

Yet another fundamental challenge for temporal networks is how to properly
rescale or subsample a data set. Many methods, in particular those inspired by
statistical physics, rely on ways to consistently change the size of a network. This is
a challenge even for static networks—simply making subgraphs based on a random
set of nodes will most likely change the structure of a network (other than Erdős-
Rényi random graphs) [52]. The same goes for more elaborate ways of reducing
the size of a network by merging nodes [46, 88]—there is no guarantee that such
manipulation will retain the structure of networks. For temporal networks, one might
think that at least the temporal dimension could be rescaled by sampling windows
of different sizes, but this is not trivial either because it could change whether or not
a dynamic process has the time to reach a certain state or not. For the purpose of
finite-size scaling such as used in the study of critical phenomena [36], one would
need a way to link the size of the network and the duration of the temporal network.

Finally, as mentioned earlier in this chapter, we feel that there is a lot to do
regarding temporal-network robustness and fragility, with applications ranging from
network security to public health and to the efficient planning of robust public-
transport systems. This is an area where it is possible to go beyond static-network
analogies. As an example, while a static network may just fragment when chosen
nodes are attacked/immunized, the range of responses of a temporal network is
much broader: the network may remain temporally connected in principle but the
average latency of time-respecting paths may grow high enough to make them
useless. Or, the system’s latency could temporarily grow to make it temporarily
disconnected: consider, e.g., congestion in a public transport system. Furthermore,
the range of possible attack or immunization strategies can be much broader too:
interventions to events, attacks that aim to generally increase latency, interventions
at specific times, sequences of timed interventions at different nodes or contacts, and
so on. Likewise, when the aim is to improve network robustness, interventions are
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not limited to network topology alone. As an example, for improving the reliability
of public-transport systems, one could only modify the temporal sequences of
connections and their time-domain statistics to minimize the disruption caused
by random deviations from the planned schedules, or one could aim at maximal
synchronization of connections to minimize the latency of time-respecting paths.
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Fundamental Structures in Temporal
Communication Networks

Sune Lehmann

1 Introduction

Temporal networks provide an important methodology for modeling a range of
dynamical systems [31–33]. A central category of temporal networks is commu-
nication networks, which—in this context—I define to be networks that facilitate or
represent communication between human beings. Frequently analyzed examples of
communication networks are networks of face-to-face contacts between individuals
[18, 95], phone calls and text messages [71], online social networks such as
Facebook [106, 107] or Twitter [69], and networks of email messages [26]. But
communication networks could also represent other types of human communication,
such as broadcast networks (e.g. television or newspapers) or communication
via letters or books. While the framework discussed here is presented in the
context of human communication networks, in many cases the validity of the
framework extends beyond networks of human communication to describe networks
of machine-machine communication, biological signaling, etc.

2 Network Structure of Communication Events

The main realization underlying the ideas presented here is that each human
communicative act is shaped by the medium in which it takes place. As modern
communication tools have developed, the richness of the ways human beings can
communicate with one another has grown. What is perhaps less recognized in the
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Table 1 Six prototypical communicative practices and real-world examples of each practice

Synchronous Asynchronous

One-to-one Phone calla, voice chat Text message, letter

One-to-many Broadcast radio and TV Book, newspaper, webpage

Many-to-many Face-to-face, online chatroom Online social network, wiki
aIt is, of course, possible to set up a conference call, but one-to-one calls are so prevalent within
this medium of communication that I allow myself to use phone calls as an example of one-to-one
communication

field of network theory is that each new medium for communication sets its own
particular constraints for the network structure of communication events within that
medium. In the field of communication studies, a key question is to understand how
the technological evolution impacts human communication. Therefore, within that
field, the many possible types of human communication—old and new—have been
boiled down to six fundamental prototypical communicative practices1 [36] shown
in Table 1.

2.1 Synchronous vs. Asynchronous

In the vertical split, Table 1 makes a distinction between synchronous and asyn-
chronous communication. In the case of synchronous communication, both parties
are active and engaged. E.g. during a phone call. Conversely, in the case of
asynchronous communication, a message is initiated at some time by the sender
and then received later at some time by the recipient(s). For example, in the case of
one-to-one communication, the recipient reading a text message or a letter.

2.2 One-to-One, One-to-Many, Many-to-Many

Along the horizontal splits, each row in Table 1 refers to the configuration of
participants in a given communication act and the nature of their interaction.
This division of communicative behaviors into one-to-one, one-to-many, and many-
to-many is quite natural and recognized beyond communication theory; these
distinctions are used, for example, in the analysis of computer networks [6, 39],
when negotiating contracts [83], within marketing [28], or as design patterns/data
models in database design [38].

1In their formulation within the field of communication these practices are not connected to
the underlying communication networks (or their dynamics); rather, the prototypical practices
are used as a way to categorize real-world communication and understand their impact on,
e.g. communication practices.
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2.3 Connecting to Network Theory

Bringing this framework, which was developed to organize different types of
communication, into the realm of temporal network theory, I propose that we think
of each prototypical type of communication as defining a dynamic class of network
and that very real-world communication network can be modeled as belonging to
one of these six classes.

The key concept which distinguishes the six classes is their fundamental
structures. We arrive at the fundamental structures by first noticing that each row
in Table 1, corresponds to an archetypal network structure: one-to-one interactions
correspond to dyads, one-to-many interactions can be represented as star graphs (or
trees), and the many-to-many interactions match the network structure of cliques.
When also incorporating the temporal aspect (synchronous/asynchronous), we arrive
at the network representations of the six prototypical communicative practices, the
fundamental structures.

The fundamental structures are temporal-topological network patterns, with each
pattern corresponding to a communication event (a phone call, a meeting, a text
message) in that network. We can then model the entire network as sequences of
instances of fundamental structures. Since each class is characterized by its funda-
mental structure, we name the each class according to their fundamental structure:
synchronous, one-to-one, synchronous, one-to-many, . . . asynchronous, many-to-many.

Let me provide some examples to give a sense of what I mean. In the synchronous,
one-to-one class (e.g. the phone call network, see Fig. 1A), fundamental structures
are individual dyads, with some duration given by its start and end time. In
synchronous, one-to-many networks (e.g. a live-stream), the duration of the com-
munication event is set by the node which is broadcasting, whereas receiving nodes
may participate for only part of the communication event’s duration. Finally, in

Fig. 1 Cross-sections of fundamental structures are revealed in brief snapshots of networks from
the SensibleDTU project [100]. (a) A 1 min time-slice from the phone call network at peak activity;
the network is entirely composed of dyads. (b) Social interactions over 5 min in the face-to-face
contact network. Here the network is disconnected and well-approximated by non-overlapping
cliques
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Fig. 2 Three views of the contact network. Left (green), all interactions aggregated over 24 h.
Middle (orange), interactions during 1 h. Right (blue), interactions in a 5-min window

the synchronous, many-to-many class (Fig. 1B), where the fundamental structure is a
sequence of cliques (see Fig. 2 for another example), the start of the communication
event is set by the first participant(s) connecting—and the end occurs when the
last participants(s) stop communicating. An example of this class is face-to-face
networks, where a fundamental structure could represent a group of friends meeting
for dinner at a restaurant.

In all of the synchronous classes, infinitesimally thin temporal slices of the
communication event reveal the network pattern characteristic of that class. That
is, a dyad, tree, or clique for the one-to-one, one-to-many, and many-to-many class
respectively. I illustrate this point in Fig. 1, where I show brief snapshots (thin
temporal slices) of the network of phone-calls (synchronous, one-to-one) which
consists of disconnected dyads, each dyad corresponding to an ongoing conversation
(see Fig. 1a), whereas a slice of face-to-face meetings is well approximated as
disconnected cliques (see Fig. 1b). Getting a bit ahead of myself, I note that, already
at this point, it is clear from inspection that from the point of view of a dynamical
process, the possible network flows in the two networks shown in Fig. 1 are going
to be very different.

Let us now consider examples of networks from the asynchronous classes.
Here one-to-one communication events still involves dyads, and an event starts,
when a person sends a message. The communication ends when the recipient
receives the message at some later time. In the asynchronous, one-to-many class,
a communication event starts when some communication is initiated (and that
node becomes active): a book is published, a web-page is launched, etc. Now,
recipients can engage with that active node at any point until the sender-node is
no longer active/available—and thus ending that fundamental structure. Finally the
asynchronous, many-to-many class. Here, again a node becomes active (starting the
communication event), and other nodes can engage with the active node as well as
all other nodes in that conversation. The fundamental structure ends when original
post ceases to be available (although activity may end sooner than that). Examples
of networks from the asynchronous, many-to-many class is a post on a message board,
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or a post on Facebook.2 In the case of the asynchronous classes, infinitesimally
thin time-slices of the fundamental structures are empty, only revealing the active
nodes, since the interactions themselves typically are instantaneous and do not have
a duration.

Summarizing the discussion above, the key concepts are

• Dynamic Classes. Each dynamic class is the set of networks characterized
by a certain type of fundamental structure. There are six dynamic classes,
cf. Table 1.

• Fundamental Structures. A fundamental structure is the topological-
temporal network representation the archetypical communication pattern
within a class of network. Each communication event corresponds to an
instance of the fundamental structure characterizing that network.

A useful way to think about real-world communication networks is as a
sequences of instances of fundamental structure from a single class. In this
sense we can think of each of the fundamental structures as generating a class
of networks.

These distinctions prove to be important because while two networks originating
from different classes aggregated over time may have similar topological properties,
a difference in network class may have profound impact on the network dynamics
and for processes unfolding on the network (cf. Fig. 1). Stated differently: When we
consider the networks on much shorter time-scales than those typically considered
in the literature, networks from the six classes are radically different.

I cover this point in detail below, arguing that there are a number of advantages
associated with thinking about temporal networks as sequences of fundamental
structures—and that while the impact is on many aspects of how we model temporal
networks, the unfolding of dynamics are particularly important. Further, I argue
below that when we compare analyses of various real-world networks, we should
only expect similar behavior when we compare networks within the same dynamic
class, and that we should aggregate statistics within each class of network separately.

2.4 The Case of Many-to-Many, Synchronous Networks

Before we move on, let me start by showing how the fundamental structures can
lead to clean, simple descriptions of temporal communication networks. A few years

2It is not guaranteed that all posts become a full discussion between all readers—and if no-one
comments, such posts could display a one-to-many structure. I discuss this below.
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ago—without realizing the connection to a larger framework—my group analyzed a
network from the class of synchronous, many-to-many interactions [95], arising from
person-to-person interactions (estimated using Bluetooth-signal strength [94]) in a
large, densely connected network [100].

The key realization arose from simply plotting the contact-network at increas-
ingly higher temporal resolution. The green hairball (Fig. 2, left panel) shows
connections between everyone who has spent time together, aggregated across an
entire day. The orange network (Fig. 2, middle panel) shows contacts aggregated
over an hour, and the blue network (Fig. 2, right panel) shows the interactions
during a 5-min time slice. The discovery originates from the blue network. There,
we can directly observe cross-sections of the fundamental structures: groups (well
approximated by cliques) of people spending time together.

This was a case where analyzing the network became easier by including higher
resolution temporal data (in our case, no community detection was necessary).
Usually it is the opposite. Usually, our descriptions become more complex when
we have to account for more detailed data, especially temporal data [31, 33, 60]. I
take the fact that more data simplified this particular problem to mean that we were
on to something: in this case, the fundamental structures constitute a quite natural
representation of the network.

This way of representing the network also provided a way to understand
the temporal evolution of the network. Simply matching up cross-sections of
the fundamental structures across time-slices, we could then construct the full
fundamental structures (the individual communication events) for this class of
network. We called the result gatherings—the temporal representation of a meeting
between a group of individuals (see Fig. 3 for an examples of gatherings in two

Fig. 3 An example of fundamental structures in real-time, many-to-many networks. In both
panels, time runs from left to right, and each horizontal colored band represents a fundamental
structure in that network (a sequence of cliques matched up over time). Therefore, each horizontal
colored band is basically a representation of a group of people meeting, with the width of each band
proportional to the number of participants at that time. Here we show these fundamental structures
in two social settings (a) a Workplace network [24], (b) in the SensibleDTU data [100]
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real-world networks). Gatherings represent the fundamental structure of many-to-
many, synchronous networks. Studying the properties of gatherings allowed us to
estimate the relevant time-scales and spatial behaviors of the fundamental structures
in this systems, e.g. how individual nodes interact with the gatherings. Turning
our attention to time-scales of weeks and months, we could study the patterns of
meetings (gatherings) among the same people beyond single meetings. Thus, we
could model the network dynamics as sequences of—and relationships between—
such gatherings. This provided a dramatic simplification allowing us, for example,
to make predictions about the temporal trajectories of individual nodes through
the social network [95]. We have since developed more sophisticated methods for
identifying communities in this class of networks [1].

I include this example here to showcase the potential of the fundamental
structures to organize our modeling of a certain network, and I hope that it will be
possible to make similar progress for the remaining five dynamic classes. Connect-
ing to the more general point of within-class versus between-class comparisons, it is
also important to emphasize, that while the descriptions and algorithms developed
in Refs. [1, 95] are excellent when analyzing networks in the synchronous, many-to-
many class, they are not suited for describing networks in the remaining network
classes (because they assume an underlying many-to-many, synchronous network
structure).

3 Frequently Asked Questions

In this Frequently Asked Questions (FAQ) section, I go over a few questions that
have come up frequently when I have discussed the ideas in the paper with other
researchers.

3.1 What Do You Mean ‘Framework’!?

It is important to point out that the dynamic classes and associated fundamental
structures are emphatically not a mathematical framework (for example, the classes
are neither disjoint, nor complete). Instead what I aim to do here, is to point out new,
meaningful structures in dynamic networks. These structures are organized around
the idea of communication events, which in turn can be roughly classified into six
prototypical forms of communication. In this sense, aspects of the framework are
qualitative, focusing on providing useful taxonomy of classes of networks in the
real world.

Nevertheless, as I argue in detail below, the fundamental structures impose a set
of important constraints on dynamics for networks belonging to each class (with
different constraints in different classes). These constraints impact many aspects of
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how we currently model and analyze temporal networks, and therein lies the value
of the framework. Much more on this in the epilogue.

3.2 Is the Framework All Done and Ready to Use?

A very important point to make in this FAQ section is to admit that there is still
a big piece of the framework missing. Specifically, that, while in the case of the
synchronous classes, understanding the temporal evolution of single communication
events is relatively straightforward (as witnessed by our progress in the case of
synchronous, many-to-many networks [95]), the temporal structure of fundamental
structures of networks from the asynchronous classes is non-trivial since identifica-
tion of (and method of analysis for) individual acts of communication is less clear.

In these cases, for example, while there is a well-defined end-time for a each
fundamental structure (when the active node ceases to be available), structures
themselves can still cease to show any link-activity much before that, for example an
old Facebook post which it is technically possible to comment on, but which nobody
will ever find again. Or a book, which nobody will ever read again, but which is
still available on many bookshelves. Further, in the many-to-many, asynchronous
classes (which includes many important online social networks, such as Twitter
and Facebook), there seems to be almost a spectrum running from one-to-many to
many-to-many, depending on the amount of discussion associated with a post: posts
without activity resembling trees, while vigorous discussions result in more clique-
like structures.

3.3 Is It Just for Communication Networks?

While we focus here on modeling communication networks, it is likely that the
distinctions, concepts, and methods developed for each of the classes summarized in
Table 1 are valid in domains outside human communication, for example dynamics
of signaling networks in biology such as protein–protein interaction networks [90],
gene regulatory networks [105], and metabolic networks [37]. I also expect that
the results developed in this project can be extended to networks of computer-to-
computer communication [93].

3.4 Isn’t All This Obvious?

The distinctions pointed out in Table 1 may appear so self-evident that a reader
might ask why they are currently not a part of modeling temporal networks. I
believe that the reason the network classes have remained unnoticed in the context of
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Fig. 4 Three networks defined on the same set of approximately 500 nodes from the SensibleDTU
project [100], with links aggregated over 1 week; node-positions are the same in all three panels.
From left to right the three panels show networks of physical proximity, telecommunication, and
Facebook interactions. Data from [67]. While from different dynamic classes, in aggregated form,
all three networks have similar topological properties

network science because time aggregation has obscured the fundamental differences
in generating processes between networks with distinct fundamental structures.

As noted above, at the level of aggregation used in the literature, the many
distinct networks (face-to-face, phone calls, text messages, emails, Twitter, Face-
book, Snapchat, Instagram, discussion forums, etc.) that we participate in have
common properties (see Fig. 4). These common properties are due to the simple
fact that all these networks reflect the same underlying object: the social network
of relationships between human beings. But as the cross sections of fundamental
structures displayed in Fig. 2 shows, these networks are fundamentally different
from each other on short time-scales. These differences are due to the characteristics
of (and design-choices behind) each communication platform, which inevitably
encodes one of the prototypical forms of communication in Table 1.

There are many traces of the fundamental structures in the recent literature.
My group’s work on communities in face-to-face networks [1, 95] discussed above
proposes a new way of analyzing the class of synchronous, many-to-many networks,
but does not realize its place in a larger framework. Elsewhere, recent work focusing
on simplicial complexes explores the same class, both in terms of network structures
[80] and implications for spreading processes [35], again without noting that these
networks are not necessarily representative of temporal networks generally; without
explicitly pointing out that networks from different classes need different methods
of analysis. From another angle, it has been pointed out by many authors, see
for example [49, 85], that time integrating techniques can introduce biases in
understanding spreading processes as we will discuss later.

In the next section, we explore the consequences of the presence of the six
classes on selected topics within temporal network analysis. Because each structure
severely constrains possible network configurations, the fundamental motifs have a
profound impact on the current state-of-the-art in temporal networks research.
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4 Consequences for Analysis and Modeling

An immediate and important realization that flows from constraints imposed by the
fundamental structures is that many important high-order network structures are
strongly influenced by their network class.

I include an overview of five key topics below to illustrate the implications for
existing temporal network theory. This list is not exhaustive, but simply intended to
give the reader some examples of where I think the dynamic classes could be useful
for developing new descriptions of temporal networks.

4.1 Randomization

A common approach to understand the effect of temporal structure in networks is
to use randomization techniques to probe the impact of a structural feature of the
network.

A simple example from static network theory to explain the logic of random-
ization: In their seminal paper [110], Watts and Strogatz argued that real world
networks are ‘small worlds’, characterized by high clustering and short path lengths.
But what does ‘high’ and ‘short’ mean in the sentence above? To make their
point, Watts and Strogatz created ‘random’ counterparts to their real-world networks
which contained the same number of nodes and links as the empirical networks, but
with links placed randomly among nodes. They found that the empirical networks
had both clustering and path-lengths that were orders of magnitude different (higher
and lower, respectively) from their random counterparts. In static networks, the
degree distribution is also often conserved [59].

The purpose of randomization is similar in temporal networks, but the possible
randomization schemes are much richer [20, 32]. The idea is still: We want to
estimate the effect of a specific temporal network property and remove that property
(through randomization) to measure the effect. One may shuffle time-stamps (to
understand the importance of ordering), replace time-stamps with random times
drawn from a uniform distribution (to understand the importance of circadian
patterns), shuffle links (in order to destroy topological structures), reverse time
(to understand importance of causal sequences), etc. The idea is then to simulate
a process of interest on the temporal network and compare the dynamics of that
process with the same process run on ensembles of networks that are increasingly
randomized relative to the original network [31].

Because the fundamental structures (as I have argued above) correspond to
individual communication events, it is not always meaningful to randomize the
networks according to the strategies mentioned above—this generally results in
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configurations of links that could not possibly appear in real communication
networks.3

Thus, a fruitful area for future research is to develop randomization schemes
which respect the fundamental structures and understand how the fundamental
structures impact the existing work on network randomizations [20]. A framework
for randomization that respects the network classes would be analogous to the way
that most randomizations in static networks respect degree distributions [59] (or
higher-order structures [57, 72]), the key topological feature in these networks.

4.2 Generative Models

Closely related to randomization is the idea of using the fundamental structures to
build new synthetic networks.

The idea of using simple models that reproduce some properties of the system
under study and its dynamics, has been another important method for understanding
complex dynamical systems [64]. Realistic synthetic data is important because we
can use such synthetic temporal networks to study dynamic processes. The synthetic
networks provide access to arbitrary amounts of data where we (a) understand
the network’s temporal changes (because we have created them) and (b) create
ensembles of networks to study variability in outcome given a particular dynamic
(contrary to the case of real-networks, we typically only have a single instance).

Thus, a plethora of models that generate temporal networks have also been
investigated. The simplest approach is probably the ‘graph sequence approach’,
which—time-slice by time-slice—selects nodes according to a heavy-tailed prob-
ability distribution and connect them to a fixed number of neighbors [79]. Due to
its simplicity, this model has been the subject of much analytical work [43, 54,
55, 78, 99, 101] and extended in a number of ways [13, 52, 58, 66, 102]. Another
simple approach is to generate a static network using an algorithm for generating
static network (e.g. the configuration model [70]) and define activation patterns for
links [30, 86]. Yet another approach is the work on simplicial complexes [35, 80],
discussed above. Networks can also be generated based on an ensemble of two-
dimensional random walkers with links forming when walkers are nearby each
other [98, 112]. Other interesting approaches ‘grow’ network topologies according
to local rules [4, 109] Although they focus on larger (meso-scale) structures, we
can even think of generative models for communities as models for networks
[21, 62, 75–77, 108]. Adding temporal correlations, based on the notion that there is
a positive correlation between inter-event times in empirical data is the motivation

3Another, related issue is that the communication events (fundamental structures) themselves, often
are the very thing that spread information/opinions. They are not always (as many modeling papers
assume) an underlying infrastructure on which the spreading occurs.
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behind using Hawkes processes [10, 61], an approach which has also been used for
predicting, for example, retweet dynamics [47].4

In the case of all these existing generative models, analyses based on synthetic
datasets may have little relevance for real-world problems because the models do not
incorporate the constraints on dynamics imposed by the fundamental structures.

The framework of dynamic classes, however, offers a completely new way of
generating synthetic temporal networks. Since the fundamental structures are a man-
ifestation of each network’s real-world generative process, we can create network
models by simply creating time-sequences of realistic fundamental structures for a
given. The usefulness of such models can be tested using statistical methods [12].

4.3 Link Prediction and Link Activity

Another dynamic network property strongly influenced by network class is the
pattern of how links are active/non-active, and activity correlations between sets
of links in a network [19, 42]. In face-to-face networks, these patterns are typically
dominated by long-duration meetings between groups of individuals [95], whereas
in text message networks back-and-forth dynamics are common [92].

Closely related the link-activities is temporal link prediction [53]. Here, the
objective is to model patterns of link occurrences and use machine-learning to
predict subsequent occurrences of links in the network based on local/global
features of nodes/links. In static network theory, link prediction (espcially within
computer science) is a large topic [56], which focuses on predicting the presence of
links that have been artificially removed or removed due to noise of some kind. In
temporal networks, the objective is rephrased to—for example—predict all or some
links in the next time-step [17].

Based our understanding of the differences in link-activities in different classes,
it is clear that the fundamental structures offer a way to understand why features
for link-prediction can vary strongly from network to network. There is simply a
massive difference between predicting future links in a synchronous, many-to-many
network, where temporal cross-sections are cliques and structures typically persist
for hours, relative to e.g. text chat networks (asynchronous, one-to-one), where
individuals can be in multiple ongoing conversations and text-snippets are short.
In turn, this means that link prediction algorithms [53, 56] trained on one class of
networks will fare poorly on networks belonging to other classes, since features will
change dramatically depending on network class. These caveats become especially
important when link-prediction is used to infer values for missing data [11, 27, 45]

4These latter models are closely related to the inter-fundamental structure activity in asyn-
chronous, many-to-many networks.
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Fig. 5 Impossible links and link prediction performance. In this one-to-many scenario, the only
possible links connects central node to the three neighbors. In the left panel we see the ground
truth network. In the middle panel, we see the links that we are, in fact, relevant to consider
when evaluating the performance of link-prediction. In the rightmost panel, we show the ‘padded’
network, which most current algorithms base their performance metrics on. The padded task,
however, includes a number of links that could not possibly occur. We are not interested in the
classifier’s performance on these links, and therefore an algorithm’s ability to predict/not predict
their presence, should not be a part of the performance evaluation

Another consequence for link prediction is that current performance estimations
may be misleading. This is because, depending on the dynamic class of network,
not all links are possible to realize.

When performing a link prediction task, we feed the classifier examples of
removed links (‘true’ examples) and examples of links that never existed (‘false’
examples), we then evaluate whether the classifier can tell which links exist and
which do not. What we learn from the dynamic classes, is that there are, in fact, two
types on non-links: actual false examples and ‘impossible’ links—links that cannot
occur because they are not possible given the constraints imposed by fundamental
structures in that network. This problem is important in one-to-many networks,
where message recipients cannot communicate amongst each other, and there are
many such impossible links. Link prediction algorithms should only consider actual
false examples and not the impossible links, see Fig. 5 for an illustration of this
problem in a one-to-many network.

4.4 Spreading Processes

Spreading processes are profoundly impacted by the fundamental structures. Let us
begin the discussion on spreading by considering epidemic spreading. Perhaps the
most studied type of dynamical systems on temporal networks is epidemic spread-
ing, realizing compartment models, such as SIS (susceptible-infected-susceptible),
SIR (susceptible-infected-recovered), etc on the temporal network [31, 32]. In terms
of disease spreading, the key quantity is the fraction of available Susceptible-
Infected links at any given time. This fraction varies strongly depending on the
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network class [67], which in turn means that we can expect spreading dynamics to
unfold differently within different classes.

For example, a central finding when simulating epidemics on temporal networks
is that adding the temporal dimension has a strong impact on disease spreading in
nearly all networks, relative to simulating the disease on a static network. In some
cases the disease speeds up (relative to null models) and in others it slows down,
depending on a complex interplay between structure and topology (see [31] for a
discussion). This raises the intriguing possibility that perhaps some classes (e.g. one-
to-one networks) might have slower epidemics than their randomized counterparts,
while other classes (e.g. many-to-many networks) might have more rapidly spreading
epidemics than their randomized versions.

If we look beyond epidemic spreading, there is experimental evidence that there
are subtle differences in spreading processes across various domains [3, 7, 88, 111]
and that opinions, behaviors, and information spread in different ways than diseases
[8, 88]. When multiple sources of exposure to an innovation are required for a
transmission to take place, we call the process complex contagion. In terms of
modeling complex contagion processes on temporal networks, a key framework is
threshold models, [25] where infection probability increases as a function of the
fraction of infected neighbors. These have been generalized to temporal networks
[2, 40, 41, 63, 103].

The class of network has an even more profound impact on complex contagion
processes than on simple disease spreading. Consider, for example, a threshold
model [25], where the probability of infection depends on which fraction of a node’s
neighbors are infected. Compared to phone-call networks, for example, threshold
models have fundamentally different outcomes in face-to-face networks, where
large groups of individuals routinely gather [35]. In the phone call network, forming
connections to a large fraction of one’s network might take several months. See
Fig. 6 for an illustration of this discussion. Thus, if we want to understand contagion
on a specific network, we must first understand the class of fundamental structures
to which the network belongs.

4.5 Communities

Communities in static networks are groups of nodes with a high density of internal
connections. Community detection in static networks never settled on a common
definition of the term community (there is a strong analogy to clustering in
machine learning [46]). Thus, generalizations to temporal networks also allow for
substantial variability in approaches. The simplest strategy for identifying temporal
communities is to first separate the list of time-stamped edges into sequence of static
snapshots, independently cluster each layer, and then match the communities across
the layers to find the temporal communities [29, 44, 73, 81, 95, 104]. A number
of approaches can directly cluster the entire stack of temporal layers; these include
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Fig. 6 A cartoon illustrating why complex contagion (e.g. the threshold model) behaves differ-
ently in different classes of networks. (a) Shows the meetings in a many-to-many realtime network
(face-to-face meetings). (b) Shows phone calls (one-to-one synchronous network) among the
same nodes at some point in time. Imagine that blue nodes are infected. In the many-to-many
network, simultaneous information about a large set of neighbors is available for extended periods
of time allowing for an accurate overview of opinions in the network. In the phone network nodes
might need to wait extensively to access the state of some neighbors, allowing for much more
difficulty in establishing an accurate state of knowledge

three-way matrix factorization [21], time-node graphs [96], and stochastic block
models [21, 62, 76].5

From the perspective of the temporal structures, the central issue with community
detection is that the appropriate community detection method varies strongly
depending on a network’s dynamic class. In synchronous, many-to-many networks,
temporal continuity is a key feature of communities. And as we have already
discussed, communities in face-to-face networks (dynamic class: synchronous,
many-to-many) form more or less instantaneously as a group of fully connected
nodes that connect at a certain time [95] and form gatherings that can be easily
tracked over time. In this sense, communities in face-to-face networks are straight-
forward to identify—they are literally the fundamental structures of such systems.

Identifying communities in other dynamic classes, is a completely different
exercise. For example, in the phone call (dynamic class: synchronous, one-to-one)
or Facebook networks (dynamic class: asynchronous, many-to-many), communities
become gradually observable as calls or messages aggregate over time. In the latter
case, communities have to do with other network properties than the temporal

5These methods, however, do not incorporate explicit dependencies between layers. To take into
account interdependencies, some methods cluster multilayer networks using interlayer links that
represent specific causal or correlational dependencies between the layers [5, 9, 14, 15, 51, 68, 97].
These interlayer dependencies are of key importance in the context of modeling fundamental
structures since the temporal aspect of the fundamental structures impose important (and class
dependent) interlayer correlations among nodes belonging to the same fundamental structure over
time. Using the Infomap framework [89], we have recently developed a model for interlayer
dependencies for synchronous, many-to-many networks [1].
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sequence. Here, my interactions are driven by the order in which posts were
published rather than organized by social context (as is the case in the synchronous
networks). To give a concrete example, I might retweet a work-related post about p-
values, then ‘like’ a post about the Finnish heavy metal band Nightwish, published
by a friend, and finally comment on a political statement from a family member.
Thus, in most asynchronous systems, activity aggregates around active nodes (posts)
rather than social contexts. This means that interactions within communities are not
necessarily correlated in time. A fact which must be taken into consideration when
we construct methods for detecting communities. At the same time, we know from
the literature that communities do exist in these networks [73, 82, 106].

As in the FAQ, the temporal evolution of the fundamental structures within the
asynchronous classes is under-determined in the framework as it currently stands.
Similarly, exactly how to identify communities in these dynamical classes is not
clear to me. The central point I wish to make related to communities, however, is
that methods related to identifying communities in temporal networks will likely
need to be different depending on the network’s dynamical class.

5 Conclusion

The lesson that i hope arises across the five key examples above is that networks
within each of the dynamic classes must be analyzed and modeled separately;
that comparisons of statistics between networks are only meaningful for networks
belonging to the same class. This is because the class itself (and not just the actual
systems that are represented through the temporal network), strongly impacts almost
all known temporal network metrics.

Zooming out further, three key points emerge from the full discussion of the
dynamic classes and their fundamental structures.

1. Firstly, I argued that it is meaningful to divide all communication networks into
six dynamic classes (Fig. 1). This distinction originates from communication
studies [36] but is not yet recognized within network science.

2. Secondly, I pointed out that a networks class strongly influences its temporal
evolution and alters dynamic processes on that network. This implies that we
cannot meaningfully compare results for networks belonging to different classes.

3. Thirdly, I tried to motivate the idea that the dynamic classes provide a promis-
ing new framework for modeling temporal communication networks. This is
because every communication network can be seen as sequences of individual
communication events. Thus, we can model every such network as generated by
many instances of a single fundamental structure. In this sense, the six classes
provide us the foundation for a new framework for both measuring and modeling
temporal networks.

These three key take-homes lead me to consider the role that I hope the dynamical
classes will play in the field of temporal networks. An important element that is
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currently missing from the field of temporal network theory is a set of topological
properties to measure and devise statistics for. This lack of agreed-upon-structures is
eloquently pointed out by Petter Holme in his excellent review of temporal network
science [31], where he writes:

In the history of static network theory, measuring network structure has been driving
the field. For example, after Barabási and coworkers discovered how common scale-free
(i.e. power-law-like) degree distributions are (. . . ), there was a huge effort both to measure
degree distribution and to model their emergence.

For temporal networks, similar ubiquitous structures are yet to be discovered,
perhaps they do not even exist. This has led the research in temporal networks down a
slightly different path, where the focus is more on dynamic systems on the network and
how they are affected by structure, and less on discovering common patterns or classifying
networks. [my emphases]

Now, allow me to speculate wildly for a bit. I do not think that it is impossible
that the fundamental structures could be analogues to the ‘ubiquitous structures’
mentioned in the quote for the case of temporal networks. Perhaps the six dynamic
classes will allow us to think about structure in temporal networks in a new and
more principled way.

Finding such structures is important because, in static networks, a deeper
understanding of the structure of the network, has allowed us to reason in principled
ways about their function—and for most applications outside pure science, function
is what we care about. As the quote illustrates, temporal network science has had to
follow a different path, focused more on simulation, for example observing how
dynamical processes unfold. As a consequence, we still do not have a coherent
picture of the key mechanisms in temporal networks. While still unproven at
this point, I think that the fundamental structures carry the promise of being the
ubiquitous structures that Holme posits are ‘yet to be discovered’. Therefore I hope
that the new perspective provided by the dynamic classes will give rise to new
statistical models, algorithms and research questions.

Epilogue: More FAQs

There’s a couple of more questions that have come up frequently in discussions of
the framework, but which slowed down the flow of the paper, so I have moved them
here, to the epilogue, for readers who might share these particular questions.

What About Mathematical Completeness?

A graph-theory inclined reader may to ask: ‘In what sense is this a mathematical
framework?’ With follow-ups such as ‘Are the classes disjoint? Can a dynamic
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network belong to multiple classes? Can a network’s class change over time?’ They
might proceed ‘Are the classes complete? Can all possible networks be divided
into one of the six classes? Is it possible to construct networks that fall outside
the taxonomy in Table 1?’

Here, the answer is that this is not a framework/theory in a graph theoretical
sense. I think of the six classes as a model in the physics sense of the word.

Let me explain by way of an analogy. In the early days of quantum mechanics,
Geiger and Marsden (directed by Rutherford), decided to shoot some α-particles
into a thin sheet of gold foil [22, 23]. They noticed that a vast majority of the
particles went straight through the gold foil, but that a small fraction were scattered
at a wide range of angles. This was a highly unexpected and very non-classical
behavior. To explain these strange experimental observations, Rutherford proposed a
new model, qualitative at first, that atoms have a tiny and heavy nucleus, surrounded
by a cloud of electrons (departing from the then popular ‘plum pudding model’6 of
the atom, proposed in 1904 by J.J. Thompson). Based on Rutherford’s model for the
atom’s structure, other scientists were able to develop better descriptions, eventually
leading to the quantum mechanical framework that we teach undergrads today.

I think of the framework presented here as a model in the same sense as
Rutherford’s (no comparison otherwise). Just like the model of a dense core with
mostly empty space around it was a way to organize subsequent observations and
provide structure to the theories/models to follow it, the dynamical classes are a way
to organize our study of networks and to provide constraints/structure for the next
steps of theory-building.7

But How Is This Different from Temporal Motifs?

Motifs are a structural characteristic closely connected to fundamental structures,
and have been the focus of much research. This area features multiple general-
izations of the motifs in static networks [65]—small subgraphs that occur more
or less frequently than one might expect in an appropriate null model. Typically,
the strategy is to count the temporal subgraphs occurring within some interval Δt

[48, 113]. Findings suggest that certain tit-for-tat motifs and triangles are over-
represented in phone networks (dynamic class: synchronous, one-to-one networks)
and may shape processes such as spreading [16, 58, 87, 91]. Recently, highly
efficient methods have resulted in accurate motif-counts for very large networks
[74]. Other motif-like structures have been explored, for example graphlets, which
are equivalence classes of Δt-causal subgraphs [34]. Of particular relevance to

6Yes, that was real thing.
7By the way, as far as I can tell, the classes are not disjoint and not complete. Further, real networks
are not necessarily a perfect fit to their classes. But as I hope to have convinced the reader by way
of the analogy above . . . that’s not the point.
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the framework presented here is work on structure prediction [50] and related
algorithms for efficiently counting isomorphic temporal subgraphs [84].

From the perspective of fundamental structures, there are two issues with
temporal sub-graph counting approaches. The key issue is that current methods
do not measure individual communication events. The sliding window based
approach, which identifies the network structures that arise within some time Δt

does not recognize that the fundamental structures have a natural beginning and
end. As a consequence, these methods do not identify and aggregate statistics for
the fundamental structures, rather ending up with aggregate statistics for smaller
structures which are incidental to the fundamental structures. To be concrete: In
the example we discussed above (Fig. 2), a motif-based method would find many
triangles in the face-to-face networks, but not realize that the network consists of
disjoint cliques, which could be matched up over time. A second problem in some of
the large comparative studies is that the notion of network classes are not considered.
This can lead to non-meaningful comparisons of motif-counts between networks
belonging to separate classes (see [74] for an example).
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Weighted, Bipartite, or Directed Stream
Graphs for the Modeling of Temporal
Networks

Matthieu Latapy, Clémence Magnien, and Tiphaine Viard

1 Introduction

Graph theory is one of the main formalisms behind network science. It provides
concepts and methods for the study of networks, and it is fueled by questions and
challenges raised by them. Its core principle is to model networks as sets of nodes
and links between them. Then, a graph G is defined by a set of nodes V and a set of
links E ⊆ V ⊗ V where each link is an undordered pair of nodes.1 In many cases,
though, this does not capture key features of the modeled network. In particular,
links may be weighted or directed, nodes may be of different kinds, etc. One key
strength of graph theory is that is easily copes with such situations by defining
natural extensions of basic graphs, typically weighted, bipartite, or directed graphs.
Classical concepts on graphs are then extended to these more complex cases.

Stream graphs were recently introduced as a formal framework for temporal
networks [27], similar to what graph theory is to networks. A stream graph S is
defined by a time set T , a node set V , a set of temporal nodes W ⊆ T × V

and a set of temporal links E ⊆ T × V ⊗ V . See Fig. 1 for an illustration.
Each node v ∈ V has a set of presence times Tv = {t, (t, v) ∈ W }. Likewise,
Tuv = {t, (t, uv) ∈ E} is the set of presence times of link uv. Conversely,
Vt = {v, (t, v) ∈ W } and Et = {uv, (t, uv) ∈ E} are the set of nodes and links

1Given any two sets X and Y , we denote by X× Y the cartesian product of X and Y , i.e. the set of
all ordered pairs (x, y) such that x ∈ X and y ∈ Y . We denote by X ⊗ Y the set of all unordered
pairs composed of x ∈ X and y ∈ Y , with x �= y, that we denote by xy = yx.
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d

0 2 4 6 8 time

Fig. 1 An example of stream graph: S = (T , V ,W,E) with T = [0, 10] ⊆ R, V = {a, b, c, d},
W = [0, 10] × {a} ∪ ([0, 4] ∪ [5, 10]) × {b} ∪ [4, 9] × {c} ∪ [1, 3] × {d}, and E = ([1, 3] ∪
[7, 8]) × {ab} ∪ [4.5, 7.5] × {ac} ∪ [6, 9] × {bc} ∪ [2, 3] × {bd}. In other words, Ta = [0, 10],
Tb = [0, 4] ∪ [5, 10], Tc = [4, 9], Td = [1, 3], Tab = [1, 3] ∪ [7, 8], Tac = [4.5, 7.5], Tbc = [6, 9],
Tbd = [2, 3], and Tad = Tcd = ∅

present at time t , leading to the graph at time t : Gt = (Vt , Et ). The graph induced
by S is G(S) = ({v, Tv �= ∅}, {uv, Tuv �= ∅}).

Stream graphs encode the same information as Time Varying Graphs (TVG) [13],
Relational Event Models (REM) [11, 47], Multi-Aspect Graphs (MAG) [52, 53], or
other models of temporal networks. Stream graphs emphasize the streaming nature
of data, but all stream graph concepts may easily be translated to these other points
of views.

A wide range of graph concepts have been extended to stream graphs [27].
The most basic ones are probably the number of nodes n = ∑

v∈V
|Tv |
|T | and

the number of links m = ∑
uv∈V⊗V

|Tuv |
|T | . Then, the neighborhood of node v

is N(v) = {(t, u), (t, uv) ∈ E} and its degree is d(v) = |N(v)|
|T | . The average

degree of S is the average degree of all nodes weighted by their presence time:
d(S) = ∑

v∈V
|Tv |
|W |d(v).

Going further, the density of S is δ(S) = m∑
uv∈V⊗V |Tu∩Tv | . It is the probability,

when one chooses at random a time instant and two nodes present at that time, that
these two nodes are linked together at that time. Then, a clique is a subset C of W
such that for all (t, u) and (t, v) in C, u and v are linked together at time t in S, i.e.
(t, uv) ∈ E. Equivalently, a subset of W is a clique of S if the substream it induces
has density 1.

This leads to the definition of clustering coefficient in stream graphs: like in
graphs, cc(v) is the density of the neighborhood of v. Equivalently, cc(v) =∑

uw∈V⊗V
|Tvu∩Tvw∩Tuw |

|Tvu∩Tvw | . Likewise, the transitivity of S is the fraction of all 4-uplets
(t, u, v,w) with (t, uv) and (t, vw) in E such that (t, vw) is also in E.

These concepts generalize graph concepts in the following sense. A stream S is
called graph-equivalent if it has no dynamics: Gt = G(S) for all t . In this case,
each stream property of S is equal to the corresponding graph property of G(S). For
instance, the density of S is equal to the one of G(S). Graphs may therefore be seen
as special cases of stream graphs (the ones with no dynamics).
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Fig. 2 The global positionning of this contribution with respect to state-of-the-art. Left: weighted,
bipartite and directed extensions of graph properties are available in the scientific literature.
Top: a generalization of graphs to stream graphs was proposed in [27]. Dotted rectangle: in this
contribution, we extend weighted, bipartite and directed graph concepts to weighted, bipartite, and
directed stream graphs, as well as standard stream graph concepts to the weighted, bipartite and
directed cases, in a consistent way

Like for graphs, the stream graph formalism was designed to be readily extend-
able to weighted, directed, or bipartite cases. However, these extensions remain to
be done, and this is the goal of the present contribution, summarized in Fig. 2.

Before entering in the core of this contribution, notice that the set of available
graph concepts is huge, much larger than what may be considered here. We therefore
focus on a the set of key properties succintly summarized above. In particular, we do
not consider path-related concepts, which would deserve a dedicated work of their
own. Rather than being exhaustive, our aim is to illustrate how weighted, bipartite,
or directed graph concepts may be generalized to stream graphs in a consistent way,
and to provide a ground for further generalizations.

2 Weighted Stream Graphs

A weighted graph is a graph G = (V ,E) equipped with a weight function ω

generally defined over E, and sometimes on V too. Then, ω(v) is the weight of
node v and ω(uv) the one of link uv. Link weights may represent tie strength (in a
friendship or collaboration network for instance) [35, 45], link capacity (in an road
or computer network, for instance) [12, 45], or a level of similarity (in document
or image networks, or gene networks for instance) [25, 54]. Node weights may
represent reliability, availability, size, etc. As a consequence, weighted graphs are
very important and they are used to model a wide variety of networks. In most cases,
though, nodes are considered unweighted. We will therefore only consider weighted
links in the following, except where specified otherwise.
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Even when one considers a weighted graph G = (V ,E) equipped with the
weight function ω, the properties of G itself (without weights) are of crucial interest.
In addition, one may consider thresholded versions of G, defined as Gτ = (Vτ , Eτ )

where Vτ = {v ∈ V,ω(v) ≥ τ } and Eτ = {uv ∈ E,ω(uv) ≥ τ }, for
various thresholds τ . This actually is a widely used way to deal with graph weights,
formalized in a systematic way as early as 1969 [16]. However, one often needs to
truly take weights into account, without removing any information. In particular,
the importance of weak links is missed by thresholding approaches. In addition,
determining appropriate thresholds is a challenge in itself [17, 45, 46].

As a consequence, several extensions of classical graph concepts have been
introduced to incoporate weight information and deal directly with it. The most
basic ones are the maximal, minimal, and average weights, denoted respectively by
ωmax, ωmin and 〈ω〉. The minimal weight ωmin is often implicitely considered as
equal to 0, and weights are sometimes normalized in order to ensure that ωmax = 1
[1, 20, 37, 54].

In addition to these trivial metrics, one of the most classical property probably
is the weighted version of node degree, known as node strength [4, 5, 36]: s(v) =∑

u∈N(v) ω(uv). Notice that the average node strength is equal to the product of the
average node degree and the average link weight.

Strength is generally used jointly with classical degree, in particular to investigate
correlations between degree and strength: if weights represent a kind of activity
(like travels or communications) then correlations give information on how activity
is distributed over the structure [5, 42]. One may also combine node degree and
strength in order to obtain a measure of node importance. For instance, [39] uses

a tuning parameter α and compute d(v) ·
(

s(v)
d(v)

)α
, but more advanced approaches

exist [12].
Generalizing density, i.e. the number of present links divided by the total number

of possible links, raises subtle questions. Indeed, it seems natural to replace the
number of present links by the sum of all weights

∑
uv∈E ω(uv) like for strength,

but several variants for the total sum of possible weights make sense. For instance,
the literature on rich clubs [2, 40] considers that all present links may have the
maximal weight, leading to

∑
uv∈E ωmax, or that all links may be present and have

the maximal weight, leading to
∑

uv∈V⊗V ωmax. In the special case where weights
represent a level of certainty between 0 and 1 for link presence (1 if it is present
for sure, 0 if it is absent for sure), then the weighted density may be defined as∑

uv∈E ω(uv)

|V⊗V | [57].
Various definitions of weighted clustering coefficients have been proposed, and

[4, 44, 49] review many of them in details. The most classical one was proposed in
[5]: cc(v) = 1

s(v)(d(v)−1)

∑
i,j∈N(v),ij∈E

ω(vi)+ω(vj)
2 . A general approach was also

proposed in [41]. Given a node v, it assigns a value to each triplet of distinct nodes
(i, v, j) such that iv and jv are in E and to each such triplet such that ij is also
in E. Then, cc(v) is defined as the ratio between the sum of values of triplets in
the second category and the one of triplets in the first category. In [41], considered
values are the arithmetic mean, geometric mean, maximal value or minimal value
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Fig. 3 An example of weighted stream graph. In this example, nodes are unweighted but links are
weighted. Instead of just a straight horizontal line indicating link presence over time, we plot the
weight value (assuming that 0 is indicated by the horizontal line)

of weights of involved links, depending on the application. One may also consider

the product of weights, leading to cc(v) =
∑

i,j∈N(v),ij∈E ω(vi)·ω(vj)·ω(ij)∑
i �=j∈N(v) ω(vi)·ω(vj)

as proposed

in [1, 25, 54] with normalized weights.
Transitivity is generalized in a very similar way [41] by considering all triplets

of distinct nodes (i, j, k) such that ij and jk are in E and each such triplet such
that ik is also in E, instead of only the ones centered on a specific node v. If the

associated value is the product of weight, this leads to tr =
∑

(i,j,k) ω(ij)·ω(jk)·ω(ik)∑
(i,j,k) ω(ij)·ω(jk)

.

If all weights are equal to 1 ( i.e. the graph is unweighted) this is nothing but the
transitivity in G.

Various other concepts have been generalized to weighted graphs, like for
instance assortativity [5], and specific weighted graph concepts, like closeness and
betweenness centralities [39], connectability [3], eigenvector centrality [36], or rich
club coefficient [2, 40, 56]. We do not consider them here as our focus is on the most
basic properties.

We define a weighted stream graph as a stream graph S = (T , V,W,E)

equipped with a weight function ω defined over W and E: if (t, v) ∈ W then ω(t, v)

is the weight of node v at time t , and if (t, uv) ∈ E then ω(t, uv) is the weight of
link uv at time t . See Fig. 3 for an illustration.

If a stream graph represents money transfers, then node weights may represend
available credit and link weights may represent transfer amounts; if a stream
represents travels, then node weights may represent available fuel, and link weights
may represent speed; if a stream represents contacts between mobile device, node
weights may represent battery charge and link weights may represent signal strength
or link capacity; if a stream represents data transfers between computers then link
weights may represent throughput or error rates; like for weighted graphs, countless
situations may benefit from a weighted stream graph modeling.

As we will see in Sect. 3, weighted stream graphs also widely appear within
bipartite graph studies. In addition, as explained in [27], Sect. 19, one often resorts
to 	-analysis for stream graph studies. Given a stream graph S = (T , V,W,E)

with T = [x, y] and a parameter 	, it most simple form consists in transforming
S into S	 = (T ′, V ,W ′, E′) such that T ′ = [x + 	

2 , y − 	
2 ], T ′

v = T ′ ∩ {t, ∃t ′ ∈
[t − 	

2 , t + 	
2 ], t ′ ∈ Tv}, and T ′

uv = T ′ ∩ {t, ∃t ′ ∈ [t − 	
2 , t + 	

2 ], t ′ ∈ Tuv}.
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Then, one may capture the amount of information in S leading to node and link
presences in S	 with weights: ω(t, v) = |{t, ∃t ′ ∈ [t − 	

2 , t + 	
2 ], t ′ ∈ Tv}| and

ω(t, uv) = |{t, ∃t ′ ∈ [t − 	
2 , t + 	

2 ], t ′ ∈ Tuv}|.
Like for weighted graphs, in addition to S itself (without weights), one may

consider the thresholded (unweighted) stream graphs Sτ = (T , V,Wτ ,Eτ ) where
Wτ = {(t, v) ∈ W,ω(t, v) ≥ τ } and Eτ = {(t, uv) ∈ E,ω(t, uv) ≥ τ }, for various
thresholds τ . One may then study how the properties of Sτ evolve with τ .

The graph obtained from S at time t , Gt = (Vt , Et ), is naturally weighted by the
function ωt(v) = ω(t, v) and ωt(uv) = ω(t, uv). Likewise, the induced graph G(S)

is weighted by ω(v) = 1
|T |

∫
t∈Tv ω(t, v) dt and ω(uv) = 1

|T |
∫
t∈Tuv ω(t, uv) dt .

These definitions correspond to the average weight over time of each node and link.
One may define similarly the minimal and maximal node and link weights, and go
further by studying S through the weighted graph G(S) and the time-evolution of
weighted graph properties of Gt .

These approaches aim to take both the weight and the temporal aspect into
account: from a weighted stream graph, the first one provides a family of
(unweighted) stream graphs, one for each considered value of the threshold; the
second one provides a series of (static) weighted graphs, one for each instant
considered. In both cases, the actual combination of weight and time information
is poorly captured. We will therefore define concepts that jointly deal with both
weights and time. Like with weighted graphs, we simplify the presentation by
assuming that only links are weighted (nodes are not).

Since the degree of node v in a stream graph S is d(v) = ∑
u∈V

|Tuv ||T | and
since the strength of node v in a weighted graph G is s(v) = ∑

u∈N(v) ω(uv),
we define the strength of node v in a weighted stream graph S as s(v) =∑

u∈V
∫
t∈Tuv

ω(t,uv)
|T | dt . It is the degree of v where each neighbor is counted with

respect to the weight of its links with v at the times when it is linked to v. It is
related to the strength st (v) of v in Gt as follows: s(v) = 1

|T |
∫
t∈Tv st (v); it is the

average strength of v over time.
With this definition, one may study correlations between degree and strength

in stream graphs, as with graphs, and even directly use their combinations, like

d(v) ·
(

s(v)
d(v)

)α
where α is a parameter.

Unsurprisingly, generalizing density to weighted stream graphs raises the same
difficulties as for weighted graphs. Still, proposed definitions for weighted graphs
easily apply to weighted stream graphs. Indeed, the sum of all weights becomes∑

uv∈V⊗V

∫
t∈Tuv ω(t, uv) dt , and the maximal weight of possible links may be

defined as
∑

uv∈V⊗V

∫
t∈Tuv ωmax dt = ωmax · |E| or

∑
uv∈V⊗V

∫
t∈T ωmax dt =

ωmax · |V ⊗ V |. Like with weighted graphs, if all weights are in [0, 1] then the

weighted density may be defined by
∑

uv∈V⊗V

∫
t∈Tuv ω(t,uv) dt

|T⊗V⊗V | .
Then, one may define the clustering coefficient of v as the weighted density

(according to one of the definitions above or another one) of the neighborhood
of v. One may also consider the time-evolution of one the weighted clustering
coefficient in Gt , according to previously proposed definitions surveyed above.
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Interestingly, one may also generalize the classical definition [5] as follows: cc(v) =
1

2s(v)(d(v)−1)

∫
t∈Tv

∑
i,j∈Nt (v),(t,ij)∈E ω(t, vi) + ω(t, vj) dt , which is the product of

link weights of v with its pairs of neighbors when these neighors are linked together.
The general approach of [41] also extends: one has to assign a value to each

quadruplet (t, i, j, k) with i, j , and k distinct such that (t, ij), (t, jk) are in E, and
to each such quadruplet such that (t, ik) also is in E. As in the weighted graph
case, the weighted stream graph clustering coefficient of node v, cc(v) is then the
ratio between the sum of values of quadruplets in the second category such that
j = v and the one of quadruplets in the first category such that j = v too. If
the value of a quadruplet is the product of the weights of involved links, we obtain

cc(v) =
∫
t∈Tv

∑
i,j∈Nt (v),(t,ij)∈E ω(t,vi)·ω(t,vj)·ω(t,ij) dt∫
t∈Tv

∑
i �=j∈Nt (v)

ω(t,vi)·ω(t,vj)
.

Likewise, we define the weighted stream graph transitivity as the ratio between
the sum of values of all quadruplets in the second category above and the one of
quadruplets in the first category. If the value of quadruplets is defined as the product

of weights of involved links, this leads to tr =
∫
t

∑
(i,j,k) ω(t,ij)·ω(t,jk)·ω(t,ik) dt∫
t

∑
(i,j,k) ω(t,ij)·ω(t,jk) dt

. If all

weights are equal to 1 (i.e. the stream is unweighted), this is nothing but the stream
graph transitivity defined in [27].

If S is a graph-equivalent stream weighted by a constant function over time, i.e.
ω(t, v) = ω(t ′, v) and ω(t, uv) = ω(t ′, uv) for all t and t ′, then it is equivalent
to the weighted graph G(S) weighted by ω(v) = ω(t, v) and ω(uv) = ω(t, uv)

for any t ; we call it a weighted graph-equivalent weighted stream. The strength of
v in S is equal to its strength in G(S) if S is a weighted graph-equivalent weighted
stream. The same is true for the different notions of density or clustering coefficient:
the density of S is equal to the density of G(S) and the clustering coefficient of a
vertex v or the transitivity are equal to the clustering coefficient or transitivity in
G(S).

3 Bipartite Stream Graphs

A bipartite graph G = (�∪⊥, E) is defined by a set of top nodes �, a set of bottom
nodes ⊥ with � ∩ ⊥ = ∅, and a set of links E ⊆ � ⊗ ⊥: there are two different
kinds of nodes and links may exist only between nodes of different kinds. Like
weighted graphs, but maybe less known, bipartite graphs are pervasive and model
many real-world data [23, 26]. Typical examples include relations between client
and products [7], between company boards and their members [6, 43], and between
items and their key features like movie-actor networks [33, 51] or publication-author
networks [34, 35], to cite only a few.

Bipartite graphs are often studied through their top or bottom projections [10]
G� = (�, E�) and G⊥ = (⊥, E⊥), defined by E� = ∪v∈⊥N(v) ⊗ N(v) and
E⊥ = ∪v∈�N(v)⊗N(v). In other words, in G� two (top) nodes are linked together
if they have (at least) a (bottom) neighbor in common in G, and G⊥ is defined
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symmetrically. Notice that, if v ∈ � (resp. v ∈ ⊥), then N(v) always is a (not
necessarily maximal) clique in G⊥ (resp. G�).

Projections induce important information losses: the existence of a link or a
clique in the projection may come from very different causes in the original bipartite
graph. To improve this situation, one often considers weighted projections: each link
uv in the projection is weighted by the number ω(uv) = N(u)∩N(v) of neighbors
u and v have in common in the original bipartite graph. One may then use weighted
graph tools to study the weighted projections [5, 22, 36], but information losses
remain important. In addition, projection are often much larger than the original
bipartite graphs, which raises serious computational issues [26].

As a consequence, many classical graph concepts have been extended to deal
directly with the bipartite case, see [8–10, 19, 26]. The most basic properties are
n� = |�| and n⊥ = |⊥|, the number of top and bottom nodes. The definition of the
number of links m = |E| is the same as in classical graphs. The definitions of node
neighborhoods and degrees are also unchanged. The average top and bottom degrees
d� and d⊥ of G are the average degrees of top and bottom nodes, respectively.

With these notations, the bipartite density of G is naturally defined as δ(G) =
m

n�·n⊥ : it is the probability when one takes two nodes that may be linked together
that they indeed are. Then, a bipartite clique in G is a set C� ∪ C⊥ with C� ⊆ �
and C⊥ ⊆ ⊥ such that C� × C⊥ ⊆ E. In other words, all possible links between
nodes in a bipartite clique are present in the bipartite graph.

Several bipartite generalizations of the clustering coefficient have been proposed
[26, 28, 29, 38, 55]. In particular:

• Latapy et al. [26] and Lind et al. [28] rely on the Jaccard coefficient defined over
node pairs both either in � or ⊥: cc(uv) = |N(u)∩N(v)|

|N(u)∪N(v)| or close variants. One then
obtains the clustering coefficient of node v by averaging its Jaccard coefficient

with all neighbors of its neighbors: cc(v) =
∑

u∈N(N(v)),u�=v cc(uv)
|N(N(v))| .

• for each node v, [26] and [29] consider all triplets (u, v,w) of distinct nodes with
u and w in N(v) and define the redundancy rc(v) as the fraction of such triplets
such that there exists an other node in N(u) ∩N(w).

• similarly, [38] proposes to consider all quintuplets (a, b, v, c, d) of distinct nodes
with b, c ∈ N(v), a ∈ N(b) and d ∈ N(c) and defines cc∗(v) as the fraction of
them such that there exists another node in N(a) ∩N(d).

Transitivity is usually extended to bipartite graphs [26, 38, 43] by considering
the set N of quadruplets of nodes (a, b, c, d) such that ab, bc and cd are in E

and the set �� of such quadruplets with in addition ad in E. Then, the transitivity is
tr(G) = |��|

|N| . Like above, [38] also propose to consider the fraction of all quintuplets
(a, b, c, d, e) of distinct nodes with ab, bc, cd, de in E such that there exists an other
node f with af and ef in E.

We define a bipartite stream graph S = (T ,�∪⊥,W,E) from a time interval
T , a set of top nodes �, a set of bottom nodes ⊥ with � ∩ ⊥ = ∅, and two sets
W ⊆ T × (� ∪ ⊥) and E ⊆ T × � ⊗ ⊥ such that (t, uv) ∈ E implies (t, u) ∈ W

and (t, v) ∈ W . See Fig. 4 (left) for an illustration. Each instantaneous graph Gt , as
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Fig. 4 Left: a bipartite stream graph S = (T ,� ∪ ⊥,W,E) with T = [0, 10], � = {u, v},
⊥ = {a, b, c}, W = T × (� ∪ ⊥), and E = ([0, 2] ∪ [3, 9]) × {ua} ∪ ([4, 5] ∪ [8, 10]) × {ub} ∪
[1, 5] × {uc} ∪ [2, 7] × {v, b} ∪ [0, 8] × {vc}. Right: its ⊥-projection S⊥. For instance, a and c

are linked together from time 3 to 5 because they both have u in their neighborhood for this time
period in S

well as the induced graph G(S), are bipartite graphs with the same top and bottom
nodes.

Bipartite stream graphs naturally model many situations, like for instance
presence of people in rooms or other kinds of locations, purchases of products by
clients, access to on-line services, bus presence at stations [15], traffic between a set
of computers and the rest of the internet [48], or contribution of people to projects,
such as software.

The classical definition of projections is easily extended, leading to S� =
(T ,�,W�, E�) and S⊥ = (T ,⊥,W⊥, E⊥), where W� = W ∩ (T × �), W⊥ =
W ∩ (T × ⊥), E� = ∪(t,v)∈W⊥{(t, uw) s.t. (t, uv) ∈ E and (t, wv) ∈ E} and
E⊥ = ∪(t,v)∈W�{(t, uw) s.t. (t, uv) ∈ E and (t, vw) ∈ E}. In other words, in S�
two (top) nodes are linked together at a given time instant if they have (at least) a
(bottom) neighbor in common in S at this time, and S⊥ is defined symmetrically.
See Fig. 4 for an illustration. Notice that, if v ∈ � (resp. v ∈ ⊥) then N(v) always
is a (not necessarily maximal) clique in S⊥ (resp. S⊥).

One may also generalize weighted projections by considering the number
ω(t, uv) = |Nt(u) ∩ Nt(v)| of neighbors u and v have in common at time t

in the original bipartite stream graph. One then obtains weighted stream graphs,
and may use the definitions proposed in Sect. 2 to study them. Still, this induces
much information loss, which calls for the generalization of bipartite properties
themselves.

The most immediate definitions are the numbers of top and bottom nodes: n� =∑
v∈�

|Tv |
|T | = |W∩(T×�)|

|T | and n⊥ = ∑
v∈⊥

|Tv |
|T | = |W∩(T×⊥)|

|T | , respectively. We
then have n = n� + n⊥. Like with graphs, the number of links, neighborhood of
nodes, and their degree do not call for specific bipartite definitions. We however
define the average top and bottom degrees d� and d⊥ of S as the average degrees of
top and bottom nodes, respectively, weighted by their presence time in the stream:
d�(S) = ∑

v∈�
|Tv |
|W |d(v) and d⊥(S) = ∑

v∈⊥
|Tv |
|W |d(v).

We define the bipartite density of S as δ(S) = m∑
u∈�,v∈⊥ |Tu∩Tv | : it is the

probability when one takes two nodes when they may be linked together that they
indeed are. A subset C = C� ∪ C⊥ of W , with C� ⊆ T × � and C⊥ ⊆ T × ⊥, is
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a clique in S if all possible links exist between nodes when they are involved in C:
for all t , if (t, u) is in C� and v is in C⊥ then uv is in E.

Like with graphs, defining a bipartite stream graph clustering coefficient is
difficult and leaves us with several reasonable choices:

• Extending the Jaccard coefficient to node pairs in a stream graph leads to an
instantaneous definition: cct (uv) = |Nt (u)∩Nt (v)|

|Nt (u)∪Nt (v)| , which is nothing but cc(uv) in

Gt . It also leads to a global definition: cc(uv) = |N(u)∩N(v)|
|N(u)∪N(v)| =

∑
w∈�∪⊥ |Tuw∩Tvw |∑
w∈�∪⊥ |Tuw∪Tvw | .

We may then define the bipartite clustering coefficient of node v by averaging
its Jaccard coefficient with all neighbors of its neighbors, weighted by their co-
presence time: 1

|N(N(v))|
∑

u∈�∪⊥
|Tu∩Tv |

|T | cc(uv). Notice that cc(uv) = 0 if the
neighborhoods of u and v do not intersect. This means that the sum actually is
over nodes that are at some time neighbor of a neighbor of v, which is consistent
with the bipartite graph definition.

• Redundancy is easier to generalize to stream graphs: for each node v, we consider
all triplets (t, u, v,w) composed of a time instant t , a neighbor u of v at time t , v
itself, and another neighbor w of v at time t , and we define rc(v) as the fraction
of such quadruplets such that there exists an other node linked to u and w at time
t . In other words, rc(v) = |{(t,u,v,w),u�=w,u,w∈Nt (v),∃x∈Nt (u)∩Nt (w),x �=v}|

|{(t,u,v,w),u�=w,u,w∈Nt (v)}| .
• Similarly, we propose a stream graph generalization of cc∗(v) as the fraction of

sextuplets (t, a, b, v, c, d) with a, b, v, c, and d all different from each other,
b ∈ Nt(v), c ∈ Nt(v), a ∈ Nt(b) and d ∈ Nt(c) for which in addition there
exists an other node in Nt(a) ∩Nt(d).

Finally, if we denote by N the set of quintuplets (t, a, b, c, d) such that (t, ab),
(t, bc) and (t, cd) are in E and the set �� of such quintuplets with in addition
(t, ad) in E, then the bipartite transitvity for stream graphs is tr(G) = |��|

|N| as
before. Like for bipartite graphs, one may also consider the fraction of all sextuplets
(t, a, b, c, d, e) where a, b, c, d, and e are distinct nodes with (t, ab), (t, bc), (t, cd),
(t, de) in E such that there exists an other node f with (t, af ) and (t, ef ) in E.

If S is a graph-equivalent bipartite stream, then its projections S� and S⊥ are also
graph-equivalent streams, and their corresponding graphs are the projections of the
graph corresponding to S: G(S⊥) = G(S)⊥ and G(S�) = G(S)�. In addition, the
bipartite properties of S are equivalent to the bipartite properties of its corresponding
bipartite graph: the density, Jaccard coefficient, redundancy, and cc∗, as well as
transitivity values, are all equal to their graph counterpart in G(S) if S is a graph-
equivalent bipartite stream.

4 Directed Stream Graphs

A directed graph G = (V ,E) is defined by its set V of nodes and its set E ⊆
V × V of links: while links of undirected graphs are unordered pairs of distinct
nodes, links in directed graphs are ordered pairs of nodes, not necessarily distinct:
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(u, v) �= (v, u), and (v, v) is allowed and called a loop. Then, (u, v) is a link from
u to v, and if both (u, v) and (v, u) are in E then the link is said to be symmetric.

Directed graphs naturally model the many situations where link asymmetry is
important, like for instance dependencies between companies or species, citations
between papers or web pages [31], friendship relations in many on-line social
networks [32], or hierarchical relations of various kinds.

Directed graph are often studied as undirected graphs by ignoring link directions.
However, this is not satisfactory in many cases: having a link to a node is very
different from having a link from a node and, for instance, having links to many
nodes is very different from having links from many nodes. As a consequence,
many directed extensions of standard graph properties have been proposed to take
direction into account, see for instance [50] Sect. 4.3 and [18, 24].

First, a node v in a directed graph has two neighborhoods: its out-going
neighborhood N+(v) = {u, (v, u) ∈ E} and its in-coming neighborhood N−(v) =
{u, (u, v) ∈ E}. This leads to its out- and in-degrees d+(v) = |N+(v)| and
d−(v) = |N−(v)|. These definitions make it possible to study the role of nodes
with high in- and out-degrees, as well as correlations between these metrics [21, 32].
Notice that

∑
v∈V d+(v) = ∑

v∈V d−(v) = m is the total number of links, and so
the average in- and out-degrees are equal to m

n
.

The directed density of G is m
n2 since in a directed graph (with loops) there are

n2 possible links. Then, a directed clique is nothing but a set of nodes all pairwise
linked together with symmetrical links, which, except for loops, is equivalent to an
undirected clique. One may also consider the fraction of loops present in the graph
|{(v,v)∈E}|

n
, as well as the fraction of symmetric links |{(u,v)∈E s.t. (v,u)∈E}|

m
.

With this definition of density, one may define the in- and out-clustering
coefficient of node v as the density of its in-coming and out-going neighborhood.
However, this misses the diversity of ways v may be linked to its neighbors and
these neighbors may be linked together [18, 50]. Table 1 in [18] summarizes all
possibilities and corresponding extensions of clustering coefficient. We focus here
on two of these cases, that received more attention because they capture the presence
of small cycles and the transitivity of relations. Given a node v, the cyclic clustering
coefficient is the fraction of its pairs of distinct neighbors u and w with (u, v) and
(v,w) in E, such that (w, u) also is in E, i.e. u, v and w form a cycle. The transitive
coefficient of v consists in the fraction of its pairs of distinct neighbors u and w with
(u, v) and (v,w) in E, such that (u,w) also is in E, i.e. the relation is transitive.

Finally, these extensions of node clustering coefficient directly translate to
extensions of graph transitivity ratio. In the two cases explained above, this leads
to the fraction of all triplets of distinct nodes (u, v,w) with (u, v) and (v,w) in E,
such that in addition (w, v) is in E, or (v,w) is in E, respectively.

We define a directed stream graph S = (T , V,W,E) from a time interval T ,
a set of nodes V , a set of temporal nodes W ⊆ T × V , and a set of temporal links
E ⊆ T × V × V : (t, u, v) in E means that there is a link from u to v at time t ,
which is different from (t, v, u). We therefore make a distinction between Tu,v the
set {t, (t, u, v) ∈ E} and Tv,u the set {t, (t, v, u) ∈ E}. A loop is a triplet (t, v, v)
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Fig. 5 An example of directed stream graph S = (T , V ,W,E) with T = [0, 10] ⊆ R, V =
{a, b, c, d}, W = [0, 10] × {a} ∪ ([0, 4] ∪ [5, 10]) × {b} ∪ [4, 9] × {c} ∪ [1, 3] × {d}, and E =
[1, 3] × {(a, b)} ∪ [2.5, 3.5] × {(b, a)} ∪ [4.5, 7.5] × {(c, a)} ∪ [6, 9] × {(b, c)} ∪ [2, 3] × {(d, b)}.
Notice that Ta,b = [1, 3] �= Tb,a = [2.5, 3.5], and that links between a and b are symmetrical from
time 2.5 to time 3

in E. If both (t, u, v) and (t, v, u) are in E, then we say that this temporal link is
symmetric. See Fig. 5 for an illustration.

Directed stream graphs model the many situations where directed links occur
over time and their asymmetry is important, like for instance money transfers,
network traffic, phone calls, flights, moves from a place to another, and many others.
In all theses cases, both time information and link direction are crucial, as well
as their interplay. For instance, a large number of computers sending packets at a
given computer in a very short period of time is a typical signature of denial of
service attack [30]. Instead, a computer sending packets to a large number of other
computers in a short period of time is typical of a streaming server.

The directed stream graph S = (T , V,W,E) may be studied through the
standard stream graph (T , V,W, {(t, uv), (t, u, v) ∈ E or (t, v, u) ∈ E}) obtained
by considering each directed link as undirected. Likewise, S may be studied through
its induced directed graph G(S) = ({v, ∃(t, v) ∈ W }, {(u, v), ∃(t, u, v) ∈ E})
and/or the sequence of its instantaneous directed graphs Gt = ({v, (t, v) ∈
W }, {(u, v), (t, u, v) ∈ E}). However, these approaches induce much information
loss, and make it impossible to make subtle distinctions like the one described above
for network traffic. This calls for generalizations of available concepts to this richer
case.

We define the out-going neighborhood of node v as N+(v) = {(t, u), (t, v, u) ∈
E} and its in-coming neighborhood as N−(v) = {(t, u), (t, u, v) ∈ E}. Its in-

and out-degrees are d+(v) = |N+(v)|
|T | = ∑

u∈V
|Tv,u|
|T | and d−(v) = |N−(v)|

|T | =
∑

u∈V
|Tu,v |
|T | . Like with directed graphs, the total number of links m is equal to∑

v∈V d+(v) as well as to
∑

v∈V d−(v).
We extend the standard stream graph density m∑

uv∈V⊗V |Tu∩Tv | into the directed

stream graph density m∑
(u,v)∈V×V |Tu∩Tv | : it is the fraction of possible links that indeed

exist. Then, a clique in a directed stream graph is a subset C of W such that for all
(t, u) and (t, v) in C, both (t, u, v) and (t, v, u) are in E. These definitions are
immediate extensions of standard stream graph concepts.
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One may then define the in- and out-clustering coefficient of a node v as the
density of its in- and out-neighborhoods in the directed stream graph. However,
like for directed graphs, there are many possible kinds of interactions between
neighors of a node, which lead to various generalizations of clustering coefficient
to directed stream graph. We illustrate this on the two definitions detailed above for
a given node v. First, let us consider the set of quadruplets (t, u, v,w) with u, v
and w distinct, such that (t, u, v) and (t, v, w) are in E. Then one may measure the
cyclic clustering coefficient as the fraction of these quadruplets such that in addition
(t, w, u) is in E, and the transitive clustering coefficient as the fraction of these
quadruplets such that in addition (t, w, u) is in E.

Like with directed graphs, this leads to directed stream graph extensions of
transitivity. In the two cases above, we define it as the fraction of quadruplets
(t, u, v,w) with u, v and w distinct and with (t, u, v) and (t, v, w) in E, such that
in addition (t, w, v) is in E, or (t, v, w) is in E, respectively.

If S is a directed graph-equivalent directed stream graph, i.e. Gt = G(S) for
all t , then all the properties of S defined above are equal to their directed graph
counterpart in G(S).

5 Conclusion

Previous works extended many graph concepts to deal with weighted, bipartite or
directed graphs. In addition, graphs were generalized recently to stream graphs in
order to model temporal networks in a way consistent with graph theory. In this
contribution, we show that weighted, bipartite or directed graphs concepts may
themselves be generalized to weighted, bipartite or directed stream graphs, in a way
consistent with both their graph counterparts and the stream graph formalism. This
opens the way to a much richer modeling of temporal networks, and more precise
case studies, in a unified framework.

Such case studies may benefit from improved modeling with either weights,
different sorts of nodes, or directed links, but may also combine these extensions
together. For instance, money transfers between clients and sellers are best modeled
by weighted bipartite directed stream graphs. The concepts we discussed then have
to be extended even further, like what has already been done for graphs for instance
with the directed strength s+(v) = ∑

u∈N+(v) ω(u, v) [39], the directed weighted
clustering coefficient [14, 18], or for the study of weighted bipartite graphs [21].

One may also consider other kinds of graph extensions, like multigraphs, labelled
graphs, hypergraphs, or multi-layer graphs for instance, which model important
features of real-world data and already received much attention. We focused on
weighted, bipartite and directed cases because they seem to be the most frequent in
applications.

Likewise, we selected only a few key weighted, bipartite or directed properties
in order to extend them to stream graphs. Many others remain to generalize, in
particular path-related concepts like reachability, closeness, or betweenness, to cite
only a few [39].
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Modelling Temporal Networks with
Markov Chains, Community Structures
and Change Points

Tiago P. Peixoto and Martin Rosvall

1 Introduction

Recent advances in temporal network theory include modelling of the time-varying
network structure [1, 2] as well as processes that take place on the dynamic
structure, such as epidemic spreading [3–6]. However, most approaches rely on a
characteristic time scale at which they describe the dynamics. These can be roughly
divided into approaches that model temporal correlations of interactions through
Markov chains with short-term memory [7, 8], and those that model the dynamics
at longer times, usually through network snapshots [9–14] or discrete change points
when the dynamics changes abruptly [15–17]. For example, when the network
evolution is represented as a static Markov chain, such that new edges are placed
based on the placement of the last few edges with fixed transition probabilities, the
system eventually reaches equilibrium and cannot maintain any long-term memory.
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Conversely, when the network evolution is represented by a sequence of snapshots,
there is no attempt to model any short-term memory. Consequently, focus on one
timescale blurs the other whereas in reality most systems exhibit dynamics in a
wide range of timescales. Moreover, most systems also exhibit dynamics at multiple
structural scales, including large-scale dynamic communities [8, 10].

In this chapter, we review two approaches that attempt to capture multiple
aspects of temporal network dynamics with Markov chains inferred from data.
The first approach identifies large-scale structures by parametrising the transition
probabilities as well as the nodes into communities. The second approach describes
non-stationary dynamics based on abrupt change points. Both approaches can detect
short-term dynamical memory through arbitrary-order Markov chains and use a
nonparametric Bayesian inference framework that prevents overfitting and yields
efficient and effective algorithms.

We employ the multi-aspect approaches on empirical data and show that the most
plausible models tend to combine short-term memory with large-scale structural and
dynamical modular patterns and also many change points. The communities and
change points work synergistically with the Markov chains, typically uncovering
higher-order memory that is washed out by less flexible models. This effect suggests
that a full dynamical description of large-scale modular structures that combines
community structure and change points would further our understanding of temporal
networks.

2 Temporal Networks as Markov Chains

We consider dynamical networks that can be represented as sequence of edges that
are observed in time. This includes, for example, proximity events where an edge
denotes when two individuals come in close contact at a specific point in time. More
formally, we describe a sequence of discrete tokens, s = {xt }, with t ∈ {1, . . . , E}
being by the relative time ordering of the tokens, and xt ∈ {1, . . . , D} the set of
unique tokens with cardinality D. This description is applied to dynamical networks
by considering each token as an edge, i.e., xt = (i, j)t , and hence D = (

N
2

)
is

the total number of possible edges in a network with N nodes (see Fig. 1 for an
illustration).

This sequential representation lends itself naturally to be modelled as a stationary
Markov chain of order n, i.e., the sequence s occurs with probability

P(s|p, n) =
∏

t

pxt ,xt−1 =
∏

x,x

p
ax,x
x,x , (1)

where p corresponds to the transition matrix, with elements pxt ,xt−1 being the prob-
ability of observing token xt given the previous n tokens xt−1 = {xt−1, . . . , xt−n}
in the sequence, and ax,x is the number of observed transitions from memory x

to token x. Despite its simplicity, this model is able to reproduce arbitrary edge
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Fig. 1 The modelling of dynamical networks as Markov chains describe the transitions between
“tokens” in a sequence, where the tokens are observed edges in the network. For example, (a)
illustrates the transitions in the sequence “It�was�the�best�of�times” with letters as
tokens and (b) illustrates the sequence {(1, 2), (4, 3), (5, 2), (10, 8), (7, 2), (9, 3), (3, 4)}

frequencies, determined by the steady-state distribution of the tokens x and temporal
correlations between edges. This means that the model should be able to reproduce
properties of the data that can be attributed to the distribution of number of contacts
per edge, which are believed to be important, e.g. for epidemic spreading [18, 19].
However, due to its Markovian nature, the dynamics will eventually forgets its
history, and converge to the limiting distribution (assuming the chain is ergodic
and aperiodic). This latter property means that the model should be able to capture
nontrivial statistics of waiting times only at a short timescale, comparable to the
Markov order.

Given the above model, the simplest way to proceed would be to infer transition
probabilities from data using maximum likelihood, i.e., maximizing Eq. (1) under
the normalization constraint

∑
x px,x = 1. This yields

p̂x,x = ax,x

kx
, (2)

where kx = ∑
x ax,x is the number of transitions originating from x. However, if

we want to determine the most appropriate Markov order n that fits the data, the
maximum likelihood approach cannot be used, as it will overfit, i.e., the likelihood
of Eq. (1) will increase monotonically with n, favouring the most complicated
model possible, and thus confounding statistical fluctuations with actual structure.
Instead, the most appropriate way to proceed is to consider the Bayesian posterior
distribution

P(n|s) = P(s|n)P (n)

P (s)
, (3)

which involves the integrated marginal likelihood [20]

P(s|n) =
∫

P(s|p, n)P (p|n) dp, (4)
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where the prior probability P(p|n) encodes the amount of knowledge we have on
the transitions p before we observe the data. If we possess no information, we can
be agnostic by choosing a uniform prior

P(p|n) =
∏

x

(D − 1)!δ (1 −∑
x px,x

)
, (5)

where D is again the total number of tokens, and δ(x) is the Dirac delta function,
which assumes that all transition probabilities are equally likely. Inserting Eqs. (1)
and (5) in Eq. (4), and calculating the integral we obtain

P(s|n) =
∏

x

(D − 1)!
(kx +D − 1)!

∏

x

ax,x !. (6)

The remaining prior, P(n), that represents our a priori preference to the Markov
order, can also be chosen in an agnostic fashion in a range [0, N ], i.e.,

P(n) = 1

N + 1
. (7)

Since this prior is a constant, the upper bound N has no effect on the posterior of
Eq. (3), provided it is sufficiently large to include most of the distribution.

Differently from the maximum-likelihood approach described previously, the
posterior distribution of Eq. (3) will select the size of the model to match the
statistical significance available, and will favour a more complicated model only
if the data cannot be suitably explained by a simpler one, i.e., it corresponds to an
implementation of Occam’s razor that prevents overfitting.

Although elegant, this modelling approach turns out to be limited in capturing
the dynamics observed in real systems. For example, when applied to a proximity
network between students in a high school [21], it favours a “zero-order” n = 0
Markov chain, indicating that the edges occur independently at random in the
sequence, as can be seen in Fig. 2. Rather than concluding that this uncovers a lack
of temporal structure in the data, it is in fact a lot more plausible that this description
is too simplistic and ill-suited to capture the actual underlying dynamics. One
way of seeing this is by comparing properties of the data with artificial sequences
generated by the fitted model. For example, if we generate temporal networks using
the maximum-likelihood transition probabilities p̂x,x = ax,x/kx , and simulate an
epidemic spreading dynamic on them, the observed behaviour is quite different from
the same dynamics simulated on the empirical time-series, as can be seen in Fig. 3.
Importantly, independently of the Markov order n-even those values that overfit—
the simulated dynamics lacks the abrupt changes in the infection rate observed with
the empirical data. This discrepancy exposes the inadequacy of simple Markov
assumption considered above. However, as we will show below, this model can
nevertheless be used as the basis for higher-order models that are in fact capable
of capturing important aspects of the underlying dynamics. In the following, we
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Fig. 2 Posterior distribution of the Markov order P(n|x) (Eq. (3)) for a temporal network between
students in a high school [21]

present two ways in which this can be done: (1) by parametrising the Markov
chain using community structures [8], and (2) by introducing non-stationary Markov
chains with latent change points [22].

3 Markov Chains with Communities

One of the main limitations of the Markov chain model considered previously is
its relatively large number of parameters. For a network of N nodes, the transition
matrix p has O(N2(n+1)) entries, which means that even for n = 1 we would still
need to infer O(N4) parameters from data, requiring the length of the observed
sequence to be compatible in size. If the size of the data is insufficient given the
parameter space, overfitting is unavoidable, and the Bayesian posterior of Eq. (3)
appropriately prefers a smaller model, e.g. with n = 0 for which the number of
parameters is much smaller, O(N2). This situation can be improved by imposing
latent structure in the transition matrix p, which can be used to adaptively match
the dimension of the model, for any given Markov order n, according to what
is compatible with the data. The alternative we propose is to assume that both
memories and tokens are distributed in disjoint groups (see Fig. 4). That is, bx ∈
[1, 2, . . . , BN] and bx ∈ [BN+1, BN+2, . . . , BN+BM] are the group memberships
of the tokens and memories uniquely assigned in BN and BM groups, respectively,
such that the transition probabilities can be parametrised as

px,x = θxλbxbx . (8)
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Fig. 3 Number of infected nodes over time X(t) for a temporal network between students in a
high-school [21] (N = 126), considering both the original data and artificial time-series generated
from the fitted Markov model of a given order n, using (a) SIR and (b) SIS epidemic models. In
all cases, the values were averaged over 100 independent realizations of the network model (for
the artificial datasets) and dynamics. The shaded areas indicate the standard deviation of the mean.
The values of the infection and recovery rates were chosen so that the spreading dynamics spans
the entire time range of the dataset

Here θx is the relative probability at which token x is selected among those that
belong to the same group, and λrs is the overall transition probability from memory
group s = bx to token group r = bx . Note that, in principle, the number of
parameters in this model can be larger than the previous model, however this
depends on the numbers of groups BN and BM, which is something that needs to
be chosen to match the data, as will be done in our method.

In the case of Markov order n = 1 each token appears twice in the model, both
as token and memory. An alternative and often useful approach for n = 1 is to
consider a single unified partition for both tokens and memories, as shown in Fig. 4b
and described in more detailed in Ref. [8]. In any case, the maximum likelihood
parameter estimates are

λ̂rs = ers

es
, θ̂x = kx

ebx
, (9)

where ers is the number of observed transitions from group s to r , es = ∑
t ets is the

total outgoing transitions from group s if s is a memory group, or the total incoming
transition if it is a token group. The labels r and s are used indistinguishably
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Fig. 4 Schematic representation of the Markov model with communities. The token sequence
{xt } = “It�was�the�best�of�times” represented with nodes for memories (top row) and
tokens (bottom row), and with directed edges for transitions in different variations of the model. (a)
A partition of the tokens and memories for an n = 1 model. (b) A unified formulation of an n = 1
model, where the tokens and memories have the same partition, and hence can be represented as a
single set of nodes. (c) A partition of the tokens and memories for an n = 2 model

to denote memory and token groups, since it is only their numerical value that
determines their kind. Finally, kx is the total number of occurrences of token x.
Putting this back in the likelihood of Eq. (1), we have

ln P̂ (s|b,λ, θ , n) =
∑

r<s

ers ln
ers

eres
+
∑

x

kx ln kx. (10)

As before, this maximum likelihood approach cannot be used if we do not know
the order of the Markov chain, otherwise it will overfit. In fact, this problem is
now aggravated by the potential larger number of model parameters. Therefore, we
employ a Bayesian formulation and construct a generative process for the model
parameters themselves. We do this by introducing prior probability densities for
the parameters P(θ |α) and P(λ|β) for tokens and memories, respectively, with
hyperparameter sets α and β, and computing the integrated likelihood

P(s|b, n, α, β) =
∫

P(s|b, λ, θ)P (θ |α)P (λ|β) dθdλ. (11)

where we used b as a shorthand for {bx} and {bx}. Now, instead of inferring the
hyperparameters, we can make a noninformative choice for α and β that reflects our
a priori lack of preference towards any particular model [23]. Doing so in this case
yields a likelihood (for details, see Ref. [8]),

P(s|b, n) =
[
∏

r

(nr − 1)!
(er + nr − 1)!

][
∏

s

(BN − 1)!∏r ers !
(es + BN − 1)!

]
∏

x

kx !, (12)
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where nr = ∑
x δbx,r is the number of tokens in group r . The Markov order and

partitions can now be inferred from the posterior distribution

P(b, n|s) = P(s|b, n)P (b)P (n)

P (s)
, (13)

where P(s) = ∑
b,n P (s|b, n)P (b)P (n) is an intractable constant, that fortunately

does not need to be determined when either maximizing or sampling from the
posterior distribution.

Before proceeding further with this model, we note that it still treats each possible
edge as an individual token. However, this can be suboptimal if the networks are
sparse, that is, if only a relatively small subset of all possible edges occur, and thus
there are insufficient data to reliably fit the model. Furthermore, although it puts the
tokens and memories into groups, it does not take into account any community
structure present in the network, i.e., groups of nodes with similar connection
patterns. In order to alleviate both problems, we adapt the model above by including
an additional generative layer between the Markov chain and the observed edges.
We do so by partitioning the nodes of the network into groups, that is, ci ∈ [1, C]
determines the membership of node i in one of C groups, such that each edge (i, j)

is associated with a label (ci, cj ). Then we define a Markov chain for the sequence
of edge labels and sample the actual edges conditioned only on the labels. Since
this reduces the number of possible tokens from O(N2) to O(C2), it has a more
controllable number of parameters that can better match the sparsity of the data. We
further assume that, given the node partitions, the edges themselves are sampled in
a degree-corrected manner, conditioned on the edge labels,

P((i, j)|(r, s), κ, c) =
{
δci ,r δcj ,sκiκj if r �= s

2δci ,r δcj ,sκiκj if r = s,
(14)

where κi determines the probability of a node being selected inside a group, with∑
i∈r κi = 1. The total likelihood conditioned on the label sequence becomes

P({(i, j)t }|{(r, s)t }, κ, c) =
∏

t

P ((i, j)t |(r, s)t , κ). (15)

Since we want to avoid overfitting the model, we once more use noninformative
priors, but this time on {κi}, and integrate over them,

P({(i, j)t }|{(r, s)t }, c) =
∫

P({(i, j)t }|{(r, s)t }, κ, c)P (κ) dκ, (16)

=
∏

i di !
∏

r 2mrr

∏
r mr !

∏

r

((
nr

mr

))−1

, (17)

where di is the degree of node i, and mrs is the total number of edges between
groups r and s, and mr = ∑

s mrs .
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Combining this result with Eq. (12), we have the complete likelihood of the
temporal network,

P(s|c, b) = P({(i, j)t }|{(r, s)t }, c)P ({(r, s)t }|b), (18)

conditioned only on the partitions, and remembering that s = {(i, j)t }. Finally, the
full posterior distribution involves both kinds of partitions considered,

P(c, b, n|s) = P(s|c, b)P (c)P (c)P (n)

P (s)
. (19)

For details on the priors P(c) and P(b) and the algorithmic approach to maximise
the posterior distribution, we refer to Ref. [8].

We employ this model in a variety of dynamic network datasets from different
domains (for details, see Table 1 and Ref. [8]). In all cases, we infer models with
n > 0 that identify many groups for the tokens and memories, meaning that the
model succeeds in capturing temporal structures. In most cases, models with n = 1
best describe the data, implying that there is not sufficient evidence for higher-order
memory, with exception of the network of chess moves, which is best described by

Table 1 Summary of inference results for empirical temporal networks

High school proximity (N = 327, E = 5, 818) Enron email (N = 87, 273, E = 1, 148, 072)

n C BN BM Σ C BN BM Σ

0 10 – – 89, 577 1, 447 – – 19, 701, 405

1 10 9 9 82, 635 1, 596 2, 219 2, 201 13, 107, 399

2 10 6 6 86, 249 324 366 313 16, 247, 904

3 9 6 6 103, 453 363 333 289 26, 230, 928

APS citations (N = 425, 760, E = 4, 262, 443) prosper.com loans (N = 89, 269, E = 3, 394, 979)

0 3, 774 – – 131, 931, 579 318 – – 96, 200, 002

1 4, 426 6, 853 6, 982 94, 523, 280 267 1039 1041 59, 787, 374

2 4, 268 710 631 144, 887, 083 205 619 367 109, 041, 487

3 4, 268 454 332 228, 379, 667 260 273 165 175, 269, 743

Hospital contacts (N = 75, E = 32, 424) Infectious sociopatterns (N = 10, 972, E = 415, 912)

0 68 – – 484, 121 4695 – – 8, 253, 351

1 60 58 58 245, 479 5572 2084 2084 4, 525, 629

2 62 29 26 366, 351 5431 3947 3947 7, 503, 859

3 50 11 7 644, 083 1899 829 783 12, 527, 730

Internet AS (N = 53, 387, E = 500, 106) Chess moves (N = 76, E = 3, 130, 166)

0 187 – – 19, 701, 403 72 – – 66, 172, 128

1 185 131 131 10, 589, 136 72 339 339 58, 350, 128

2 132 75 43 14, 199, 548 72 230 266 58, 073, 342

3 180 87 79 22, 821, 016 72 200 205 76, 465, 862

Description length Σ = − log2 P({(i, j)t }, c, b) in bits and inferred number of node groups C,
token groups BN, and memory groups BM for different data sets and different Markov order n.
Values in grey correspond to the minimum of each column
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a model with n = 2. We note that this only occurs when we use the intermediary
layer where the Markov chain generates edge types instead of the edges. If we fit
the original model without this modification, we indeed get much larger description
lengths and we often fail to detect any Markov structure with n > 0 (not shown).

To illustrate how the model characterizes the temporal structure of these systems,
we focus on the proximity network of high school students, which corresponds
to the voluntary tracking of 327 students for a period of 5 days [24]. Whenever
the distance between two students fell below a threshold, an edge between them
was recorded at that time. In the best-fitting model for these data, the inferred
groups for the aggregated network correspond exactly to the known division into
9 classes, except for the PC class, which was divided into two groups (Fig. 5). The
groups show a clear assortative structure, where most connections occur within each
class. The clustering of the edge labels in the second part of the model reveals the
temporal dynamics. We observe that the edges connecting nodes of the same group
cluster either in single-node or small groups, with a high incidence of self-loops.
This means that if an edge that connects two students of the same class appears
in the sequence, the next edge is most likely also inside the same class, indicating
that the students of the same class are clustered in space and time. The remaining
edges between students of different classes are separated into two large groups.
This division indicates that the different classes meet each other at different times.
Indeed, the classes are located in different parts of the school building and they
typically go to lunch separately [24]. Accordingly, our method can uncover the
associated dynamical pattern from the data alone.
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Fig. 5 Inferred temporal model for a high school proximity network [24]. (a) The static part of
the model divides the high school students into C = 10 groups (square nodes) that almost match
the known classes (text labels). (b) The dynamic part of the model divides the directed multigraph
group pairs in (a) into BN = BM = 9 groups (grey circles). The model corresponds to an n = 1
unified Markov chain on the edge labels, where the memory and tokens have identical partitions,
as described in detail Ref. [8]
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4 Markov Chains with Change Points

The model considered previously succeeds in capturing both temporal and structural
patterns in empirical dynamic networks, but it is still based on a Markov chain
with stationary transition probabilities. As discussed before, this means long-term
correlations are not used to inform the model, which can only aggregate temporal
heterogeneities into a effective model that averages out possible changes in the tran-
sition probabilities over time. In this section we describe how to model changes in
the dynamics by considering non-stationary transition probabilities px,x that change
abruptly at a given change point, but otherwise remain constant between change
points. The occurrence of change points is governed by the probability q that one is
inserted at any given time. The existence of M change points divide the time series
into M + 1 temporal segments indexed by l ∈ {0, . . . ,M}. The variable lt indicates
to which temporal segment a given time t belongs among the M segments. Thus,
the conditional probability of observing a token x at time t in segment lt is given by

P(xt , lt |xt−1, lt−1) = plt
x,x[q(1 − δlt ,lt−1)+ (1 − q)δlt ,lt−1 ], (20)

where p
lt
x,x is the transition probability inside segment lt and q is the probability to

transit from segment l to l + 1. The probability of a whole sequence s = {xt } and
l = {lt } being generated is then

P(s, l|p, q) = qM(1 − q)E−M
∏

l,x,x

(
pl
x,x

)alx,x
(21)

where alx,x is the number of transitions from memory x to token x in the segment
l. Note that we recover the stationary model of Eq. (1) by setting q = 0. The
maximum-likelihood estimates of the parameters are

p̂l
x,x = alx,x

klx
, q̂ = M

E
(22)

where klx = ∑
x a

l
x,x is the number of transitions originating from x in a segment

l. But once more, we want to infer the model the segments l in a Bayesian way, via
the posterior distribution

P(l|s, n) = P(s, l|n)
P (s|n) , (23)

where the numerator is the integrated likelihood

P(s, l|n) =
∫

P(s, l|p, q, n)P (p|n)P (q) dp dq (24)
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using uniform priors P(q) = 1, and

P(p|n) =
∏

l

P (pl |dl, n)P (dl), (25)

with the uniform prior

P(pl |dl, n) =
∏

x

(Dl − 1)!δ(∑x p
l
x,x − 1

)
. (26)

and

P(dl) = 2−D (27)

being the prior for the alphabet dl of size Dl inside segment l, sampled uniformly
from all possible subsets of the overall alphabet of size D. Performing the above
integral, we obtain

P(x, l|n) = 2−D(M+1)M!(E −M)!
(E + 1)!

∏

l

∏

x

(Dl − 1)!
(klx +Dl − 1)!

∏

x

alx,x !. (28)

Like with the previous stationary model, both the order and the positions of the
change points can be inferred from the joint posterior distribution

P(l, n|x) = P(x, l|n)P (n)

P (x)
, (29)

in a manner that intrinsically prevents overfitting. This constitutes a robust and
elegant way of extracting this information from data, that contrasts with non-
Bayesian methods of detecting change points using Markov chains that tend to be
more cumbersome [25], and is more versatile than approaches that have a fixed
Markov order [26].

The exact computation of the posterior of Eq. (23) would require the marginaliza-
tion of the above distribution for all possible segments l, yielding the denominator
P(x|n), which is unfeasible for all but the smallest time series. However, it is
not necessary to compute this value if we sample l from the posterior using
Monte Carlo. We do so by making move proposals l → l′ with probability
P(l′|l), and accepting it with probability a according to the Metropolis-Hastings
criterion [27, 28]

a = min

(
1,

P (l′|x, n)P (l|l′)
P (l|x, n)P (l′|l)

)
, (30)

which does not require the computation of P(x|n) as it cancels out in the ratio. If the
move proposals are ergodic, i.e., they allow every possible partition l to be visited
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Fig. 6 Integrated joint likelihood P(x, l|n) (Eq. (28)) for a temporal network between students in
a high school [21], for the stationary (i.e., zero change points) and nonstationary models. For all
values of n the likelihoods are higher for the nonstationary model (yielding a posterior odds ratio
Λ > 1)

eventually, this algorithm will asymptotically sample from the desired posterior. We
refer to Ref. [22] for more details about the algorithm, including the move proposals
used.

Once a fit is obtained, we can compare the above model with the stationary one
by computing the posterior odds ratio

Λ = P(l, n|x)
P (l0, n0|x) = P(x, l|n)

P (x, l0|n0)
, (31)

where l0 is the partition into a single interval (which is equivalent to the stationary
model). A value Λ > 1 [i.e., P(x, l|n) > P(x, l0|n0)] indicates a larger evidence
for the nonstationary model. As can be seen in Fig. 6, we observe indeed a larger
evidence for the nonstationary model for all Markov orders. In addition to this,
using this general model we identify n = 1 as the most plausible Markov order, in
contrast to the n = 0 obtained with the stationary model. Therefore, identifying
change points allows us not only to uncover patterns at longer timescales, but
the separation into temporal segments enables the identification of statistically
significant patterns at short timescales as well, which would otherwise remain
obscured with the stationary model—even though it is designed to capture only
these kinds of correlations.

The improved quality of this model is also evident when we investigate the
epidemic dynamics, as shown in Fig. 7. In order to obtain an estimate of the number
of infected based on the model, we generated different sequences of edges using
the fitted segments and transition probabilities p̂l

x,x = alx,x/k
l
x in each of the

segments estimated with Markov orders going from 0 to 3. We simulated SIR and
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Fig. 7 Number of infected nodes over time X(t) for a temporal network between students in a
high-school [21] (N = 126), considering both the original data and artificial time-series generated
from the fitted nonstationary Markov model of a given order n, using (a) SIR (β = 0.41, γ =
0.005) and (b) SIS (β = 0.61, γ = 0.03) epidemic models. The vertical lines mark the position of
the inferred change points. In all cases, the values were averaged over 100 independent realizations
of the network model (for the artificial datasets) and dynamics. The shaded areas indicate the
standard deviation of the mean

SIS processes on top of the networks generated and averaged the number of infected
over many instances. Looking at Fig. 7, we see that the inferred positions of the
change points tend to coincide with the abrupt changes in infection rates, which
show very good agreement between the empirical and generated time-series. For
higher Markov order, the agreement improves, although the improvement seen for
n > 1 is probably due to overfitting, given the results of Fig. 6. The fact that n = 0
provides the worst fit to the data shows that it is not only the existence of change
points, but also the inferred Markov dynamics that contribute to the quality of the
model in reproducing the epidemic spreading.

In order to examine the link between the structure of the network and the
change points, we fitted a layered hierarchical degree-corrected stochastic block
model [11, 29] to the data, considering each segment as a separate edge layer.
Figure 8 shows that the density of connections between node groups vary in a
substantial manner, suggesting that change point marks an abrupt transition in the
typical kind of encounters between students—representing breaks between classes,
meal time, etc. This yields an insight as to why these changes in pattern may
slow down or speed up an epidemic spreading: if students are confined to their
classrooms, contagion across classrooms is inhibited, but as soon they are free to
move around the school grounds, so can the epidemic.



Modelling Temporal Networks with Markov Chains 79

Fig. 8 Network structure inside the first nine segments of a temporal network between students
in a high-school [21]. The segments were captured by a layered hierarchical degree-corrected
stochastic block model [11] using the frequency of interactions as edge covariates [29] (indicated
by colors), where each segment is considered as a different layer. The values of the infection and
recovery rates were chosen so that the spreading dynamics spans the entire time range of the dataset

5 Conclusion

In this chapter, we reviewed two data-driven approaches to model temporal net-
works based on arbitrary-order Markov chains, while at the same time incorporating
two kinds of higher-order structures: (1) the division of the transition probabilities
and the nodes in the network into communities, and (2) the abrupt transition of
the Markov transition probabilities at specific change points. In each case, we have
described a Bayesian framework that allows the inference of communities, change
points and Markov order from data in a manner that prevents overfitting, and enables
the selection of competing models.
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We have applied our approach to a variety of empirical dynamical networks,
and we have evaluated the inferred models based on their capacity to compress the
data and to reproduce the epidemic spreading observed with the original data. We
have seen that the model with communities uncovers modular structure both in the
network itself and in its dynamical patterns. In turn, the nonstationary model with
change points accurately reproduces the highly-variable nature of the infection rate,
with changes correlating strongly with the inferred change points.

Both modelling approaches can be extended to data with continuous time and
with bursty dynamics by introducing waiting times as additional covariates, as
described in Ref. [8].

There is no reason why community structure and change points cannot be
considered together, which would allow, among other things, for a fully dynamical
description of large-scale modular structures. In fact, there are approaches not based
on Markov chains that do just that [15]. However, combining both models described
here seems at first challenging, as the most direct approach yields a cumbersome
model that is difficult to operate algorithmically. An elegant approach that combines
both aspects simultaneously—thus allowing for the synergistic combination of
multiple timescales and dynamic community structure—is a desirable area for future
work.

Finally, it would be interesting to investigate how the approaches presented here
can be extended from dynamics represented as a sequence of edges to scenarios
where edges are allowed both to appear and disappear from the network.
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Visualisation of Structure and Processes
on Temporal Networks
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Bruno A. N. Travençolo, and Luis E. C. Rocha

1 Introduction

Networks have been extensively used to model the connections and inter-
dependencies between the parts of a system by using nodes and edges. Network
models and measures are used to reproduce and identify patterns, or extract
information, from the structure of connections in a multitude of disciplines,
ranging from the social sciences to technologies, passing through biology, medicine,
economics, business and engineering [1–3]. Network visualisation complements the
network science toolbox by providing means to translate mathematical abstraction
to visual patterns. It helps to understand the network structure, the network
evolution, and processes taking place on the network [4]. The challenge however
is to make visualisations that are informative and insightful.1 Since Ramon Llull
first introduced his ideas of connecting concepts to derive consequences by lines
back in the twelfth century [5], we have been coping well with small and ordered
networks (or graphs) such as those on road maps, companies’ flight route maps, the
London tube (arguably) or simple lattices (Fig. 1a). However, visual information
scales with network size and density, and sociograms used to provide an intuitive
graphic representation of social relations [6, 7] can quickly turn into ridiculograms

1Art-conscious researchers may also call for aesthetic visualisations.
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Fig. 1 The diagrams correspond to (a) a meaningful sociogram where some information about the
structure can be retrieved and (b) a ridiculogram where no meaningful information can be retrieved

that are a bunch of crossing lines resembling a cat’s hairball2 (Fig. 1b). This effect is
called visual clutter (i.e. excessive information or items in an image) in information
visualisation [8]. Several methods exist to improve network visualisation to avoid or
at least minimise the hairball curse and other issues [9]. Nevertheless, visualisation
per se has its own limitations and is at risk of manipulation or unconscious bias.
Simply changing the order of drawing nodes and edges, or making a 3D projection,
may highlight or hide relevant features such as node clustering, the strength of
connections, or the distance between nodes.

The increasing availability of high quality time-evolving network data revealed
that structure may change faster than previously acknowledged. Such findings
encouraged researchers to study more in-depth the temporal evolution of these
complex networks. Such networks are characterised by the timings that nodes and
edges are active. Although some networks are rather stable (e.g. road networks)
or vary slowly in time (e.g. flight networks [10]), a number of social networks are
highly dynamic, with an inflow and outflow of nodes and edges, periods of inactivity
and bursts of interaction at small temporal scales in respect to the observation
time [3, 11–13]. The temporal dimension adds an extra layer of complexity in
such already hard-to-visualise patterns. The most rudimentary yet useful approach
is to simply draw a sequence of snapshots containing the network structure at
subsequent times [14, 15]. This method highlights the structure of connections at
given times and gives insights about the activation of specific edges (and nodes)
over time. It is particularly informative if nodes are (artificially or empirically) fixed
in space. However, if layout strategies [9] are applied at each time step, patterns
become less intuitive. Furthermore, the same issues of static network drawings,

2To our knowledge, the oldest available online record suggests that the term ridiculogram
was coined by Marc Vidal as early as 2007 (www.cs.unm.edu/~aaron/blog/archives/2007/05/
ipam_random_and.htm).

www.cs.unm.edu/~aaron/blog/archives/2007/05/ipam_random_and.htm
www.cs.unm.edu/~aaron/blog/archives/2007/05/ipam_random_and.htm
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such as node and edge overlaps, are observed. In addition, the mental map of
the historical evolution of the network is lost due to the form of presenting the
network. For example, in a movie generated using temporally ordered network
snapshots, the screen updates at each time step and a viewer has to rely on his
or her memory to recall previous network patterns. The use of transparency and
three dimensional visualisation have been suggested to improve such methods [16].
This snapshot method is possibly mostly appropriate to study networks with weak
temporal activity, e.g. when structural changes occur at a slower pace or when edges
and nodes are persistently active, but may also aid identifying parts of the network
that are more active at certain times (e.g. flashing broadcast) irrespective of the speed
of structural changes.

Not only the quality but also the size of network data has increased. Some
strategies have been proposed to handle larger evolving networks and include
reducing their complexity by pre-processing the networks before visualisation. For
example, one can observe the movement of nodes between network communities
through alluvian diagrams where groups of nodes are clustered in communities,
represented by temporally ordered blocks of varying sizes connected by stream
fields representing the nodes moving between communities over time [17]. A
number of variations of the alluvian diagrams have been used to visualise evolving
communities [18]. Another methodological attempt focuses on visualising the
evolution of the adjacency matrix of the network. The so-called matrix cube method
draws a 2D grid (i.e. the adjacency matrix) where occupied cells represent an
active edge between two nodes and then stacks up subsequent chessboards in the
third dimension to show the evolving activity as blocks (i.e. cubes, instead of 2D
occupied cells) [19]. The shortcoming of this (juxtaposed) snapshot method is to
visualise the historical evolution of the network since internal blocks are frequently
hidden in sparse networks. An intuitive approach to overcome this limitation is to
create a 2D visualisation where all active nodes and edges are shown simultaneously
with different nodes in different rows (as horizontal lines) and temporal edges (as
vertical lines) connecting these nodes in the respective time steps that they are active.
Although information about the connectivity is partly lost due to overlap of edges,
it is then possible to get an overview of the node activity in time [20, 21].

In this Chapter, we first define the temporal networks (Sect. 2) and then introduce
key concepts of information visualisation in the context of temporal networks
with particular emphasis on algorithms to reduce edge overlap and methods to
highlight the node activity over time (Sect. 3). These methods are then applied
to real-world temporal networks to identify non-trivial activity patterns and are
also used to visualise trajectories of random walkers and transmission paths of
infection dynamics taking place on these evolving networks (Sect. 4). Key visual
and computational scalability issues are discussed in Sect. 5 and conclusions and
future research directions in Sect. 6.
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2 Temporal Networks

This section introduces the concept of temporal networks, including the definition
of essential parameters and measures that will be used throughout the Chapter. A
temporal network with N nodes and E edges is defined by a set of nodes i connected
by edges active at times t , i.e. (i, j, t) [3, 22]. Since t is discrete, an edge activation
at time t means that the activation occurred in the interval [t, t + δ) where δ is the
temporal resolution. Each of these intervals is called snapshot, or time step τ , and
Υ = T/δ is the total number of time steps.3 To simplify, here we remove multiple
edges and self-edges per snapshot. Multiple edges could be summed and assigned
as weight to a single edge at each snapshot. The times t = 0 and t = T indicate
respectively the start and end of the observation period. The adjacency matrix is
dynamic with aij (t) = 1 if there is an edge between i and j at time t , and aij (t) = 0
otherwise. The set of nodes j connected to i forms the neighbourhood of i. The
degree of node i at time t is given by ki(t), the accumulated degree is ki and the
strength is si :

ki(t) =
N∑

j=0

aij (t) (1)

ki =
N∑

j=0

a′
ij where : a′

ij = ∪T
t=0aij (t) (2)

si =
T∑

t=0

N∑

j=0

aij (t) (3)

3 Visualisation on and of Temporal Networks

This section introduces the concept of layout and the use of Gestalt theory in the
context of visualisation of temporal networks. It also discusses the main issue of
visual clutter on network visualisation and directions to quantify and reduce this
recurrent problem, including node re-ordering techniques, removal of edges and
colouring of nodes.

3.1 Layouts

The layout is a fundamental visualisation concept that defines the way in which
the parts of something are arranged in the visual space. In the case of a network,

3The snapshot τ coincides with time t if δ = 1.
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Fig. 2 Methods for representation of temporal networks: (a) tabular or ordered list; (b) node-edge
diagram, the standard layout for static networks, with time stamps; (c) temporal or sequence view
layout

the parts would be nodes and edges. An ordered list of contacts is a common way
of representing temporal network data (Fig. 2a). Though convenient and optimal to
store information and input statistical analysis, this tabular format is unhelpful if
one wishes to visually identify temporal patterns for qualitative analysis. A number
of more appropriate layouts, such as space-time cubes [23], circular methods [21],
structural (the classic node-edge diagrams, see Fig. 2b) and sequence views [24,
25] (Fig. 2c), have been designed to facilitate visual analysis of temporal network
data. There is no consensus on the best layout because each one has advantages and
disadvantages on particular tasks. For example, matrix-based techniques are more
suitable than node-edge diagrams for low-level tasks such as the estimation of the
network density [26]. The structural and temporal layouts on the other hand are
typically used to analyse the distribution of connections.

The structural layout is the conventional network representation in which the
nodes (called instances in the discipline of information visualisation) are spatially
placed on the layout with edges connecting them (Fig. 2b). Edges may contain a list
of numbers representing the times they are active. This layout is recommended to get
a global picture of the network since it facilitates identifying multiple structures at
the same time. If the network has several nodes and edges, visual clutter may affect
the perception of patterns. Visual clutter refers to excessive items or information
close together due to edge and node overlap [8] (See Sect. 3.2). In network
visualisation, it indicates excessive overlap of edges and nodes on the layout. To
reduce clutter, a number of strategies can be employed to change nodes’ positions.
Popular methods include force-based and circular algorithms [25, 27, 28]. Such
techniques are generally hopeless for temporal networks even if combined with
animated graphs because it is difficult to maintain the mental map representation
using the structural layout with networks that change in time [29]. In this layout, it
is recommended to use nodes with fixed positions.

One effective layout for temporal networks places different nodes on non-
overlapping horizontal lines with vertical lines (i.e. edges) linking different nodes.
Nodes only appear as circles (or squares) at times they are active. The temporal
evolution of the network structure follows the x-axis (Fig. 2c). In this case, the
positions of nodes are fixed on space and are time-invariant to maintain the mental
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Fig. 3 Gestalt principles applied to structural and temporal complex network layouts: (a) struc-
tural layout with node overlap and multiple node colours; (b) Temporal layout with multiple
colours, positions and lengths of edges

map necessary to identify relevant patterns. Originally introduced by Jerding and
Stasko [20], this method is sometimes called massive sequence view (MSV) [30].
In this temporal layout, the edge length varies according to the distance between
the two nodes in the layout (compare for example nodes A and B, and B and D in
Fig. 2c). The varying edge length may mislead the interpretation of the visualisation
since simple edge overlap frequently suggests regions with high connectivity where
in fact only a few edges may be overlapping.

The Gestalt theory from psychology attempts to explain the human perception
of the world and is a fundamental tool for optimal visual design and consequently
information visualisation [31]. The most relevant principles of Gestalt theory that
applies to the temporal layout is proximity, closure and similarity (Fig. 3). The
proximity principle suggests that things that are close to one another lead us to
perceive them as grouped together [31], as illustrated by nodes A and C in the
static layout of Fig. 3a and the gray blocks in the temporal layout of Fig. 3b.
However, the closure principle states that “a closed contour tends to be seen as
an object” [31]. The same nodes A and C partially overlap but the brain visually
separates them as distinct objects because of the closure of the contours (Fig. 3a).
Similarly, the spatially close gray lines in the temporal layout are seen as separated
blocks distinguishable due to white lines (Fig. 3b). Complementary, the similarity
principle states that “similar elements tend to be grouped together” [31]. Even
though nodes B and E are spatially distant, the human brain is able to distinguish
them from the other nodes due to the common colour (Fig. 3a). For the same reason,
the vertical lines in the temporal layout are also segregated by colour and easily
distinguishable (Fig. 3b).

Redundant coding is typically used to improve the visualisation [31]. In the
structural layout, for example, it can be implemented by combining the edge
thickness with a gray-scale such that thicker lines indicate more connections
between a pair of nodes and darker gray indicate higher edge overlap. Colours can
be also used to highlight node features such as the network structure (e.g. degree) or
node labels (e.g. political parties [32]). In the temporal layout, the colour gradient
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technique is used to visualise the relationships among nodes within the same group
(if nodes are labelled) or within the same network community, and to indicate
the level of edge overlap at each time step. Furthermore, the state of nodes (e.g.
occupied or not) or trajectories in the network can be highlighted through the use of
different colours in the respective nodes and edges.

3.2 Visual Clutter

The main limitation of the temporal (and also of the structural) layout is the often
excessive overlap of edges that creates visual clutter. Visual clutter is the excessive
amount of information within a small area of an image. As pointed out in the
previous section, visual clutter due to edge similarity and edge overlap limits any
meaningful visualisation of information and visual analysis. This section describes
algorithms to highlight visual information taking into account Gestalt principles to
reduce clutter. There are 3 major classes of methods in the temporal layout: (1). node
re-ordering (Fig. 4b), (2). smart sampling or filtering (partial removal) of edges or
nodes (Fig. 4c), and (3). complete removal of edges (Fig. 4d).
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Fig. 4 Strategies to reduce visual clutter in the temporal layout: (a) Original temporal layout; (b)
Node re-ordering; (c) Sampling edges; (d) Temporal activity map with all edges removed. The
darker square indicates that node B has a higher degree (i.e. kB(2) = 2) than the other nodes at
other times (i.e. ki(t) = 1, for i �= B and t �= 2)
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The baseline reference strategy is to place nodes in rows uniformly chosen at
random. To highlight the order of appearance, nodes are sorted (e.g. from top to
bottom) according to the timings of first connection (Fig. 4a). Similarly, nodes can
be sorted according to the last time they are observed. These ordering strategies help
to identify the birth, death and lifetime of nodes and edges [33], and to identify if
node and edge activities are concentrated in time or spread all over the observation
period [24]. Another useful strategy is to sort nodes according to labels or values
(called lexicographic ordering [21, 24]). Labels may come from meta-data, e.g. same
ward patients, classmates, age or income bands, or from the network structure, e.g.
accumulated degree/strength (Sect. 2) [21], centrality or community structure [34].
The main advantage of such approach is to cluster nodes with similar features
to facilitate cross-comparisons. For example, two nodes with similar (cumulative)
degree may have different activity patterns, e.g. one node may concentrate activity
within short periods (relatively lower persistence) whereas another may have a more
uniform distributed pattern of connections (higher persistence). These strategies
explore activity patterns for ordering without taking into account visual clutter.

Advanced strategies aim to reduce edge overlap to maximise the visual structural
information. One strategy is to place nodes that are frequently in contact, or whose
connections are recurrent in time, spatially close in the layout. This is named
recurrent neighbours strategy (RN). In the RN strategy, the node i with highest
strength si is initially placed in the centre and then the most connected neighbour
j to i is placed right above i followed by placing the second most connected
neighbour k to i right below i and so on until all neighbours of i are added on
the layout. The next node j with highest strength is now selected and the same
routine is repeated. The algorithm proceeds until all nodes are positioned on the
layout. This iterative process keeps the highest density of edges in the central part
of the layout,4 minimising the average length of edges and consequently the visual
clutter [24]. In this solution, least important (i.e. least frequent) edges end up with
relatively longer lengths that may be interpreted as more important. An inverted
recurrent neighbour solution could solve this issue but then would add substantial
edge overlapping, that should be avoided. An alternative hierarchical strategy (HS)
for node ordering aiming to minimise both edge block overlap and average edge
length has been also proposed in the literature [21]. In this case, the algorithm first
uses a simulated annealing optimisation process to find the shortest combination
of edges length based on the standard deviation of the lengths and then minimises
the block overlapping, i.e. the groups of overlapping edges (vertical lines) [21].
Finally, edge overlap can be also minimised by filtering, i.e. by removing or hiding
selected edges. Naive strategies include random removal of a fraction of edges
to depopulate the layout yet keeping some structure (Fig. 4c) or simply reducing

4Somewhat similar to the force-directed graph drawing algorithm for the structural layout [9],
except that in our case nodes’ positions are fixed.
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the temporal resolution δ to collapse edges [12]. In fact, small variations of the
temporal resolution do not affect substantially network structure [12, 35] but can
substantially decrease visual clutter. Another strategy consists in creating a sample
of edges maintaining the edge distribution over time [36].

Since edges bring little information in the temporal layout, they can sometimes be
completely removed to decrease the density of elements in a layout called temporal
activity map (TAM)5 [24]. To improve the visualisation, nodes are drawn using
squares instead of circles to provide a sense of continuity [31] and colours are
used to show structural of dynamic information, as for example the degree ki(t)

(Fig. 4d). The network structure is then used in the re-ordering algorithms, as those
discussed above, or to assign values to nodes (e.g. network centrality) presented by
colour gradients. This layout emphasises node activity since high activity is readily
identified through the frequency of appearances (inactive nodes are not shown in
the respective time steps). Activity can be further highlighted by assigning colours
to nodes according to their level of connectivity (e.g. their degree ki(t) or strength
si). This method and variations are particularly suitable to visualise communities in
temporal networks [18].

3.3 Estimating Clutter on Temporal Networks

To quantify the performance of algorithms employed to reduce visual clutter in
temporal networks, one can measure different image features like the number of
overlapping edges, the edge length, and the number of edge intersections for one re-
ordering algorithm and compare to the random case, i.e. when nodes are randomly
placed in rows. The most intuitive measure is to count the number of overlapping
edges in each time step τ (θ(τ )) and take the average 〈θ〉 over all time steps Υ .6

If two edges overlap more than one time in the same time step, only one overlap
is counted. The maximum overlap per time is thus equal to the number of edges at
that time. This measure does not take into account that edges have different lengths
and longer edges populate the layout more than shorter ones. To capture this feature,
we define the length of edge (i, j) as lij = n + 1, where n is the number of nodes
in-between the connected nodes i and j and estimate the average edge length 〈l〉
and standard deviation of edge lengths σl . Nevertheless, the edge length does not
indicate whether a region of the image is visually dense. The average number of
intersections 〈γ 〉 is then used to count the number of times γ (τ) that two edges
cross each other at each time step τ (in each horizontal line):

5This method is similar to heatmap grids [37].
6We use the notation of snapshots τ rather than time t to emphasise that measures take into account
snapshots, see Sect. 2 for definitions.
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Fig. 5 Measuring the performance of re-ordering algorithms. In this sample temporal network,
the number of snapshots is Υ = 5. The average overlap is 〈θ〉 = (0+ 2+ 0+ 0+ 4)/5 = 1.2. The
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Two edges with several intersections result on more visual clutter and thus larger
and denser networks are expected to have a higher number of intersections and
consequently higher visual clutter (Fig. 5).

4 Visual Insights

The visualisation techniques discussed in the previous sections can be applied to
real-world network data to support visual analysis for insights about the evolution of
the network structure and to identify patterns to guide further quantitative statistical
analysis. The visualisation of the temporal network is particularly helpful when
combined with the visualisation of node activity and dynamic processes taking place



Visualisation of Structure and Processes on Temporal Networks 93

on the network. This section shows a few case studies to illustrate the visualisation
techniques based on three layouts containing (1) both nodes and edges (focus on
structure), (2) nodes attributes (focus on temporal activity), and (3) nodes states
linked to dynamic processes (focus on processes).

4.1 Network Data

Two different network data sets of social contacts will be used to illustrate the
application of the methods. They correspond to face-to-face spatial proximity
(within 1.5 m) interactions between two people wearing RFID badges and include
typical real-world temporal structures. In both cases, contacts are scanned every
20 s (that is the maximum temporal resolution δ). The first network data set contains
E = 188,508 contacts between N = 327 students collected during 5 days (between
the 2nd and 6th of December 2013) in a high-school in Marseille, France [38]. The
second network data set contains E = 6980 contacts between N = 72 people
visiting the Science Gallery in Dublin, Ireland, during 1 day in 2009 [39].

4.2 Temporal Structure

The temporal or sequence view layout is a projection of the network on the plane
where nodes are located in fixed horizontal lines and then linked by vertical edges
at certain times. Therefore, edges on each time (i.e. at each temporal snapshot)
necessarily overlap. Due to spatial constrains, a few active nodes per time step
are already sufficient to produce a layout with high clutter due to edge overlap.
Edges between spatially distant nodes also cost too much information in such layout
since they occupy much space. The colour intensity correlates with the level of edge
overlap such that lighter edges indicate relatively fewer connections at that time step
in comparison to darker edges. For example, in the museum network, for random
node location, the first part of the observation window shows dense information
and suggests relatively higher activity followed by some periods of medium activity
(Fig. 6a). An effective strategy to reduce information while keeping all edges on
the layout is to simultaneously reduce overlap and the length of recurring edges.
This is done by putting together nodes that interact often (i.e. recurrent neighbour—
RN—strategy, see Sect. 3.2). The RN algorithm highlights the frequent interaction
by positioning the most active nodes in the centre of the layout whereas less active
nodes stay peripheral (Fig. 6b). It produces a cleaner layout that facilitates the
identification of clusters of temporal activity. Since the longer the edge, the less
frequent is the contact, one can readily see that activity in earlier times is less intense
and involve less nodes than suggested by the random ordering. It is also visible that
only a few pairs of nodes have intense activity (i.e. repeated connections) over time
(e.g. before the period of high activity, there is a pair of nodes between the bottom
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high medium low inactivity

(a)

(b)

Fig. 6 Temporal layout for (a) random and (b) recurrent neighbour ordering of nodes for the
museum data set. The re-ordering of nodes removes noise and helps to emphasise periods with
different levels of activity over time. The temporal resolution is δ = 1 min

and the mid-part of the layout, and after the period of high activity, there is a pair of
nodes at the mid-part of the layout with recurrent contacts, Fig. 6b).

Reducing visual clutter (and thus layout information) is an essential step in
network visualisation. To quantify the improvement of the RN algorithm, we
apply measures of visual clutter (Sect. 3.3) in both data sets (museum and high-
school) for various temporal resolutions δ (Table 1). In some cases, RN provides an
improvement of up to 87% (and frequently above 40%) for both data sets. In the
museum data, performance tend to decrease for lower temporal resolutions whereas
in the school network, performance is generally maintained for most measures
for various δ. This is likely a consequence of the persistent of edge activity in
the high school case where all students arrive and leave at the same time and
subsequent contacts are common (lower resolution simply collapse similar edges),
whereas museum visitors, at least in this particular case, tend to come in groups,
moving around (subsequent contacts are not so common and collapsing subsequent
edges generate different visual patterns) and spending roughly the same time in the
museum but starting at different times.

4.3 Temporal Activity

Another strategy to reduce information due to edge overlap is to completely remove
the edges and focus on the nodes. In the temporal activity map strategy, the position
of nodes can be defined by their connectivity through node re-ordering algorithms
(e.g. degree or centrality) but edges are removed before showing the network. This
layout reveals several relevant patterns during the network evolution, as for example,



Visualisation of Structure and Processes on Temporal Networks 95

Ta
bl

e
1

St
at

is
tic

al
m

ea
su

re
s

of
vi

su
al

cl
ut

te
r

fo
r

th
e

m
us

eu
m

an
d

hi
gh

-s
ch

oo
ld

at
a

se
ts

us
in

g
di

ff
er

en
tt

em
po

ra
lr

es
ol

ut
io

ns
δ

M
us

eu
m

da
ta

se
t

δ
=

20
s

δ
=

1
m

in
δ
=

5
m

in

R
an

do
m

R
N

Δ
(%

)
R

an
do

m
R

N
Δ
(%

)
R

an
do

m
R

N
Δ
(%

)

〈θ〉
5.

04
±

0.
03

4.
43

−1
2

10
.8

3
±

0.
04

10
.3

3
−5

29
.9

9
±

0.
03

29
.7

3
−1

〈l〉
24

±
1

10
−5

7
23

±
2

13
−4

5
25

±
1

14
−4

3

σ
l

17
±

1
14

−1
4

17
±

1
16

−5
18

±
1

16
−9

〈ι〉
14

7.
04

±
10

.0
9

48
.4

9
−6

7
62

9.
55

±
74

.2
1

35
5.

40
−4

4
56

39
.7

5
±

54
3.

05
30

05
.2

6
−4

7

H
ig

h-
sc

ho
ol

da
ta

se
t

δ
=

20
s

δ
=

3
m

in
δ
=

10
m

in

R
an

do
m

R
N

Δ
(%

)
R

an
do

m
R

N
Δ
(%

)
R

an
do

m
R

N
Δ
(%

)

〈θ〉
0.

99
8
±

0.
00

2
0.

92
−8

2.
86

±
0

2.
82

−1
56

.9
7
±

0
56

.8
4

−0
.2

〈l〉
10

9
±

5
33

−6
9

10
8
±

3
38

−6
5

11
0
±

2
33

−7
0

σ
l

77
±

3
64

−1
7

76
±

2
71

−7
77

±
2

60
−2

2

〈ι〉
35

6.
4
±

24
.3

47
.0

−8
7

33
81

.8
±

16
8.

7
64

0.
8

−8
1

15
13

20
±

33
95

19
78

4
−8

7

W
e

m
ea

su
re

th
e

pe
rf

or
m

an
ce

of
R

N
re

-o
rd

er
in

g
al

go
ri

th
m

in
co

m
pa

ri
so

n
to

th
e

ra
nd

om
ca

se
,
Δ

=
10

0(
x
R
N

−
x
R
a
n
d
o
m
)/
x
R
a
n
d
o
m

w
he

re
x

re
pr

es
en

ts
on

e
m

ea
su

re
fo

r
R

N
an

d
th

e
sa

m
e

m
ea

su
re

fo
r

th
e

ra
nd

om
pl

ac
em

en
to

f
no

de
s.

T
he

ra
nd

om
ca

se
s

ar
e

av
er

ag
ed

ov
er

10
re

al
is

at
io

ns
w

ith
±

in
di

ca
tin

g
th

e
st

an
da

rd
de

vi
at

io
n.

T
he

va
lu

es
of

Δ
ar

e
ro

un
de

d



96 C. D. G. Linhares et al.

4   dayth2   daynd 3   dayrd

day night

break

missing students

Fig. 7 Temporal activity map for high-school students for 3 days using RN re-ordering strategy.
A coloured square indicates that the respective student had a social contact at that time (with the
colour gradient indicating the degree ki(τ )) whereas a white square indicates absence of contact
with any other students at the respective time. For all three days, contacts are typically more
concentrated in the mornings and no contacts occur at nights. The temporal resolution is δ = 3 min

periods of activity vs. inactivity. The main difference to the previous layout is that
node activity is highlighted here. Figure 7 shows the interactions between students
(high-school data set) during 3 subsequent days. Sharp transitions are observed
when students start (or go home after) their studies with no interactions before
or after classes. Interactions after school time could indicate strong friendship
ties existing beyond the school environment.7 Defining the start/end times is not
straightforward in real networks because one cannot easily identify when the first
(or last) contact happened (this is called censoring in statistics [40]). Visualisation
may improve by using the re-ordering strategy based on the first appearance of the
edge (Sect. 3.2). Figure 7 also shows clusters of high activity, capturing the fact
that students are divided into various classrooms and thus interactions mostly occur
among classmates at certain times. Nevertheless, a relatively higher level of social
interactions is observed a few hours after the start of the activity at each day that

7In this particular face-to-face experiment, badges were not allowed outside the school.
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Time

N
od

es

Fig. 8 Temporal activity map for museum visitors during 1 day using appearance re-ordering
strategy. A coloured square indicates that the respective visitor had a social contact at that time
(with the colour gradient indicating the degree ki(τ )) whereas a white square indicates absence of
contact with any other visitors at the respective time. The red bar in the x-axis indicates the period
of most network activity (most nodes are interacting). The red bar in the y-axis indicates 2 very
active nodes that have relatively less intense activity during the period of high network activity
(lighter gray). The temporal resolution is δ = 2 min

is likely related to mandatory morning break, for playing and socialising. In day 2
and day 3, the visual analysis suggests that a group of students (not the same in
each day) is missing in afternoon sessions, possibly due to self-study time or other
activities in which the badges were temporarily removed. A gradient colour scale,
linking temporal connectivity (ki(τ )) to node colour, helps to identify highly active
nodes. Figure 8 shows for example that during a period of high connectivity in the
museum (several active nodes), a few nodes interacted relatively more than others
(see gradients of gray colour), even though less active nodes at those times were
active at several other times (their activity is spread over time).

4.4 Dynamic Processes

A useful application of temporal visualisation is the analysis of dynamic processes
on networks [22]. For example, the evolution of a diffusion process can be
monitored by colouring nodes according to their dynamic state or by colouring
edges to highlight specific paths. Two fundamental dynamic processes of theoretical
and practical interest are the random walk and the infection (information) spread
dynamics. In the random walk model, a node i can be in one out of two states at
each time step τ , i.e. occupied φi(τ ) = O or empty φi(τ ) = E. All network nodes
but one randomly chosen node i0 start empty at time t0. At each τ , the walker decides
whether to move via an existing active edge to a neighbour with probability (1 −p)

or to remain in the current node with probability p. If there are no active neighbours
at τ , the walker simply remains in the node [41, 42]. The process unfolds until
tf = T . In the infection dynamics, a node i can be in one out of three states at each
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(a)

(c)

(b)

(d)

Fig. 9 Random walk trajectories for various stay probability (a) p = 1, (b) p = 0.75, (c) p = 0.5
and (d) p = 0, for the museum contact network with δ = 2 min. The x-axis represents the temporal
dimension. The colour red indicates the nodes occupied by the walker and the edges used to move
between nodes at given times. Light gray indicates unoccupied nodes and white indicates absence
of activity. Nodes are sorted by order of appearance. The seed is the same for all cases

time step τ , susceptible φi(τ ) = S, infected φi(τ ) = I , or recovered φi(τ ) = R. In
this case, all nodes start susceptible and one random node is chosen to be initially
infected i0 at time t0 (patient zero or seed). In case of active neighbours at time
t , an infected node i infects a neighbour j with probability β. An infected node
remains infected for tinf ec time steps and then recovers. Recovered nodes cannot be
re-infected or turn back to susceptible state [43, 44].

Figure 9 shows various trajectories of a random walker starting from the same
node (seed i0) but using various probabilities p of staying in the node. In the trivial
case, p = 1 and the walker simply remains in the initial node i0 indefinitely. The
occupancy of this node by the walker is thus seen until the last activation of the
hosting node, that happens well before the end of the observation time T (Fig. 9a).
However, for p �= 1, the walker hops between nodes through active edges and a
richer diffusion dynamics unfolds in time (Figs. 9b–d). Note that p = 0 implies
that a walker hops as soon as an active edge becomes available and less hoping (and
simpler trajectories) is observed for larger p, as expected. In these particular random
cases, the walker is able to reach longer times for p �= 1 in comparison to p = 1, and
ends up in nodes that entered later in the network (compare last appearance of the
walker for different p in Fig. 9). For any p �= 1, the walker remains trapped between
two nodes for relatively long periods, an unlikely scenario in static networks where
walkers explore larger regions of the network [41]. Since nodes are ordered by
time of first activation, one can also identify potential correlations between lifespan
and frequency of walker visits. Similar visualisation ideas could be applied to trace
higher-order random walks on temporal networks [45].
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 Susceptible Infected Recovered

(a)

(c)

(b)

(d)

(e) (f)

(g) (h)

Fig. 10 Infection dynamics for (a) β = 0 and tr = 20, (b) β = 1 and tr = ∞, (c) β = 0.01 and
tr = 10, (d) β = 1 and tr = 10, (e) β = 0.01 and tr = 20, (f) β = 1 and tr = 20, (g) β = 0.01
and tr = 100 and (h) β = 1 and tr = 100, for the museum contact network with δ = 2 min. Nodes
are sorted by order of appearance. The infection seed is the same for all cases

In more elaborated dynamic processes as the infection dynamics, a visualisation
may focus on the state of nodes or on transmission paths, or even both but then
likely causing cognitive overload [46]. The TAM layout emphasises the node state
and is particularly helpful to identify the timings of infection events and how groups
of same-state nodes evolve. Figure 10 shows the evolution of the state of all network
nodes (for the museum data set) in the SIR infection dynamics for various values of
β and tr . In the trivial case (β = 0), the infection seed becomes active one more time
before turning to the recovery (yellow) state (Fig. 10a). In the worst case scenario
(β = 1 and tr = ∞, Fig. 10b), some nodes remain susceptible for a while after
joining the network however everyone eventually becomes infected in this particular
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network configuration. Overall, this layout facilitates a global understanding of the
impact of certain parameters in the dynamics. One may explore variations in the
infection period tr when β is fixed (Fig. 10c, e, g or Fig. 10d, f, h) or fix tr and study
the infection probability β (Fig. 10c, d, e, f or Fig. 10g, h). For example, a small
increase in β or tr generated a temporal cluster of active infected nodes (see bottom
arrows in Fig. 10e, f). In the case of β = 1, one node (see top arrows in Fig. 10d,
f) was active and susceptible before the epidemic outbreak and remained active and
susceptible after the end of the outbreak.

The limitation of the previous layout is that information of the transmission
paths, i.e. the edges through which infection events occurred, are unavailable. Those
edges can be included to create a layout of transmission trees, i.e. the sequence
of nodes and edges in which the infection (or information) propagates from the
seed, with transparency used on non-infected nodes to reduce information load yet
allowing a global view of the nodes’ states (see Fig. 11 and compare with Fig. 10c–f
using the same parameters). This new layout helps to identify who infected whom
and the timings of these infection events. It is particularly useful to visualise the
importance of certain nodes and edges to regulate the infection spread, for example,
by visualising the transmission trees before and after vaccination, i.e. removal of
those nodes or edges. The intensity of edge colour is also used to identify edge
overlap but since infection events are rarer than the chance of having a contact in a
given time step, overlap (and thus visual clutter) is less of a problem than if all active
edges were shown. The layout can be further optimised by ordering nodes according
to timings of infection, with earlier infected nodes positioned on the central part of

(a) (b)

(c) (d)

Fig. 11 Infection dynamics for (a) β = 0.01 and tr = 10, (b) β = 1 and tr = 10, (c) β = 0.01
and tr = 20, (d) β = 1 and tr = 20 for the museum contact network with δ = 2 min. Nodes are
sorted by order of appearance. The infection seed is the same for all cases, and the same as for
Fig. 10
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the layout and those infected later at more peripheral positions. This is similar to the
RN algorithm (see Sect. 3.2) however using timings of infection events for ordering
nodes.

5 Visual and Computational Limitations

In the temporal layout, node re-ordering methods optimise the distribution of edges,
reducing edge overlap (visual clutter) and improving the visualisation. Nevertheless,
2 dimensional spatial constrains also create lengthy edges crossing several in-
between nodes and hindering relevant structural information. If activity is relatively
high (e.g. a couple of edges active at the same time step) and the network is large
(some hundreds of nodes), re-ordering techniques may be insufficient to provide
meaningful visualisation [47]. Alternative solutions under development include
identifying and removing specific edges, e.g. those edges between or within network
communities. Moving to 3D layouts (with 2 dimensions for space and 1 dimension
for time) may also improve visualisation by disentangling overlapping edges at the
cost of more information being available. The temporal activity map solution is
more scalable with network size and density since it removes the issue of edges
overlap. Combined with node re-ordering techniques to improve the placement of
nodes, this solution may highlight relevant activity and structural patterns with
thousands of nodes and any edge density (without showing the edges). The main
advantage is the possibility to embed information about the network structure,
dynamic processes or meta-data in each node through a colouring scheme with low
computational cost.

A crucial step when studying temporal networks is the choice of the observation
period (T ) and the temporal resolution (δ). Both parameters affect the visualisation
since the viewer is effectively looking at a static network on screen. The observation
period is in principle less critical since one can zoom in/out or move the network
around but since some re-ordering algorithms are based on the cumulative network
measures, this period may affect the location of nodes (e.g. longer periods may
imply on more edges and thus higher strength [12]). On the other hand, variations in
the temporal resolution may substantially change the network structure [12, 35] and
thus the information (network structure) being viewed. Although node re-ordering
algorithms work for any resolution and easily accommodate all these cases, the
viewer has to keep in mind the potential limitations or variations in the structure
and activity when performing qualitative visual network analysis.

Since the visualisation per se is static (though can be interactive in a software,
see below), the computational bottleneck is the algorithm to calculate node re-
ordering, edge removal, or the dynamic process, that are done in a pre-processing
stage. Therefore, computational scalability depends more on the specific choice of
algorithms than on the visualisation stage. For example, the recurrent neighbours
strategy is faster for small-to-medium size networks than the optimised MSV
because the first is deterministic and the second runs over several configurations
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(simulated annealing) to find the optimal solution [21]. For larger networks (with
thousands of nodes), both methods require intensive calculations and naive solutions
(e.g. appearance or lexicographic) may work relatively faster. Such computational
limitations may also hamper the applicability of such methods on online visualisa-
tion of real-time data.

A free software developed in JavaTMimplements all methods discussed in this
chapter and is available online (www.dynetvis.com). It is multiplatform and runs
over the JGraphX library.8 The DyNetVis system allows the user to perform
interactive visual analysis of temporal networks using either structural (node-edge
diagram) or temporal layout, and allows node re-ordering, changes in edge and node
colours among other practical functions via interaction tools.

6 Conclusion

Network visualisation provides qualitative visual insights about the network struc-
ture to support identifying non-trivial connectivity patterns and developing new
statistical measures. The visualisation of dynamic processes unfolding on the
network also helps to trace trajectories, transmission paths and the evolution of
the states of nodes. The visualisation of temporal networks are particularly helpful
since patterns of node and edge activity are typically highly irregular in time.
Various visual layouts have been proposed to view temporal networks but all
have limitations due to their multiple degrees of freedom. The main challenge is
that visual information scales with network size and edge density causing visual
clutter due to edge overlap, node proximity and fine temporal resolution. In this
chapter we explored a 2D layout where active nodes appear as circles or squares
in horizontal lines and vertical lines represent active edges at specific time steps.
To avoid edge overlap and to highlight connectivity patterns, colour gradients and
node re-ordering strategies were implemented. An effective strategy called recurrent
neighbours places highly connected nodes more centrally in the 2D layout and the
less active nodes in peripheral locations. Another strategy consists on complete
removal of edges and visualisation of node properties (e.g. node activity, structure
or states) using colours and gradients on nodes. This layout named temporal activity
map is useful to identify activity patterns such as temporal clusters of activity and
periods of inactivity. The temporal activity map was also used to simultaneously
visualise temporal networks and dynamic processes. This method revealed non-
trivial random walker trajectories (e.g. being trapped between two nodes over
time), allowed mapping of infection transmission paths and the identification of
timings and directions of infection events. The temporal layouts discussed in this
chapter are naturally limited to a few thousand nodes, hence alternative scalable
strategies are necessary to handle Big network data. Nevertheless, these solutions

8Available at https://github.com/jgraph/jgraphx. No need of separate installation to run DyNetVis.

www.dynetvis.com
https://github.com/jgraph/jgraphx
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have a range of applications on mid-size network data such as those frequently used
in social systems (friendship, proximity contacts, opinion dynamics), economics
(inter-bank loan networks, transportation, cascade failures), business (enterprise
partnerships, corporate board directors), public health (contact tracing, impact of
vaccination/intervention, epidemics), or biology (neuronal activity, signaling), to
name a few possibilities. Some ideas developed in this chapter may also help to
visualise multiplex networks that can be seen as temporal networks containing a few
snapshots. Future research efforts however aim to improve methods to filter edges
to highlight particular temporal structures, to improve the visual analysis of larger
network data sets (scalability issue) and to handle streaming networks, in which the
distribution of incoming edges is unknown. The analysis of such cases may require
innovative multidimensional layouts involving grouping of nodes and the complete
removal of edges.
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Weighted Temporal Event Graphs

Jari Saramäki, Mikko Kivelä, and Márton Karsai

1 Introduction

There are two key reasons behind the success of the temporal networks frame-
work [1, 2]. Both have to do with the rich additional information brought by knowing
the specific times of interactions between nodes. First, the times of interaction
events and their correlations contain detailed information about the dynamics of the
entities that form the network. Consider, as an example, studies in computational
social science that build on data of human communication: the time stamps of
communication events carry far more information on human behaviour than any
static network mapping would (see, e.g., [3–7]). Second, the times of events
and their correlations can strongly influence dynamical processes taking place on
networks. Their effect can be so strong that the static-network picture can become
invalid for some dynamical processes [3, 8, 9]. Therefore, more often than not, the
times of interactions simply have to be taken into account if one wants to obtain
an accurate understanding of the dynamics of processes that unfold on temporal
networks.

For both of the above goals—extracting information from the network itself
and understanding how the network affects dynamical processes—new kinds of
mathematical and computational tools are required. While many static-network
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concepts can be extended to temporal networks (at least roughly), the additional
degree of freedom due to the temporal dimension complicates things. Computing
network measures for temporal networks often requires approaches that are very
different from the static case. But even simply defining the measures properly may
be less than straightforward. Consider, e.g., shortest paths between nodes: in a static,
unweighted network, the only attribute of a shortest path (if it exists) is its length,
and it is readily discovered by a breadth-first search. In temporal networks, when
considering shortest paths, one has to define “short” first—does it mean the fastest
path, or the one with the smallest number of events, or maybe corresponding to the
shortest static-network path? Then, additionally, one has to choose the time frame
that one is interested in, as paths are fleeting entities that are only brought about
by their constituent events: even if there is a path now, there may be none a second
later. And then, finally, one has to devise a computational method for empirical data
that extracts the shortest temporal paths in a reasonable amount of time.

Nevertheless, it would be convenient to repurpose computational and theoretical
methods developed for analyzing static networks for temporal-network studies,
because there is an abundance of such methods. This would become possible, e.g.,
if one was able to cast temporal networks as static entities so that the properties
of those static entities correspond to the properties of the original temporal
networks (though not necessarily in an one-to-one way). Generally speaking, this
is not straightforward; some approaches have been introduced in the literature that
typically focus on some chosen subset of the properties of temporal networks (see,
e.g., [10]).

In this Chapter, we discuss an approach that maps temporal-network structure
onto a weighted static event graph [11] that is directed and acyclic and whose
weights encode the time differences between events. This mapping is done so
that time-respecting paths of the original network are preserved. Temporal-network
event graphs are analogous to line graphs of static networks [12]. In the type of event
graphs discussed here, nodes represent events of the original temporal network,
directed links connect events that share a node in the temporal network so that
their direction follows the direction of time, and the link weights indicate the time
difference between the two events that the link connects. As a concrete example, if
A calls B who then calls C, the weighted event graph would have two nodes (the
AB call and the BC call), so that the AB node is connected to the BC node with a
directed link whose weight is the waiting time from the AB call to the BC call.

As its main strength, this approach encodes temporal information as a static
network structure. This then allows extraction of temporal-network structures that
are constrained by the time differences Δt between successive events, from temporal
motifs to time-respecting paths whose events have to follow one another within
some time limit and to temporal components defined by connectivity through such
time-respecting paths. Additionally, one can use known static-graph-based methods
and find these structures in a way that is computationally extremely efficient as
compared to brute-force methods applied to the original temporal network. For
example, one can use the method developed for percolation studies [13] where
one performs sweeps of activating one connection at a time, in this case in the
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order of increasing time difference Δt . This method is computationally much more
efficient compared to brute-force breadth-first-search approaches, which have been
used in temporal-network studies. Such approaches were also used in conventional
percolation studies before more efficient methods were discovered [14].

Being able to quickly obtain temporal-network paths and components and sweep
through a range of constraints is particularly useful for studying spreading or
transportation processes that have to leave a node within some time limit Δt . To
mention a few, such processes include variants of the common models of contagion,
such as Susceptible-Infectious-Recovered and Susceptible-Infectious-Susceptible,
where the recovery/infectiousness time is assumed to be constant or has a clear
upper bound. Other types of dynamics include social contagion where information
or rumours age, ad-hoc message passing by mobile agents that keep the message
only for a limited time, and routing of passengers in transport networks, where both
lower and upper limits on the possible or acceptable transfer time may exist.

Once the weighted event graph has been constructed from the temporal network,
one can quickly extract subnetworks that correspond to chosen values of Δt ; we
shall discuss how this is done below. These subgraphs, being static, can then be
approached using static-network methods and algorithms. There can be additional
computational advantages because these subnetworks are directed and acyclic, and
there are fast methods developed for directed acyclic graphs. Further, as discussed
above, because the event graph encodes all time differences between events, one
can quickly sweep through a range of differences to see how the maximum (or
minimum) difference affects the outcome, for example the existence of temporally
connected components.

This Chapter is structured as follows. We begin by providing definitions for
concepts related to temporal adjacency and connectivity that are required for con-
structing the event graphs. We then continue by discussing how temporal networks
can be mapped to weighted event graphs, both in theory and in practice. We next
talk about how to interpret the structural properties of weighted event graphs: how
their topological features (such as directed paths or weakly connected components)
map back onto the original temporal networks. This discussion is followed by
an examples of applications of this framework to temporal motif analysis and
to temporal-network percolation studies. Finally, we present our conclusions and
discuss possible future directions.

2 Mapping Temporal Networks Onto Weighted Event
Graphs

2.1 Definitions: Vertices, Events, Temporal Network

Let us consider a temporal network G = (VG,EG, T ), where VG is the set of
vertices and EG ⊂ VG×VG×[0, T ] is the finite set of interaction events between the
vertices with known times, so that the interactions take place within some limited
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period of observation [0, T ] that can also be considered to be the lifetime of G.
We denote an interaction event—simply called an “event” from now on—between
vertices i and j at time t with e(i, j, t). Please note that in the following, we require
that one node is only allowed to participate in one event at any given point in time.

Note that depending on the context, the events may be directed (e.g., representing
an email from i to j in email data) or undirected (e.g., representing a face-to-face
conversation between two persons). This choice has consequences on dynamical
processes taking place on top of the temporal network: in the case of social
contagion, for example, one email or one text message carries information one way
only, while a face-to-face conversation can carry information both ways.

There are also cases where the events have a non-zero duration that has to be
taken into account in temporal-network studies. Examples include the flights in a
passenger’s route in an air transport network and phone calls in a communication
network—in both cases, a new event (the connecting flight, the next phone call)
cannot begin before the first event is finished. When the event duration needs to be
taken into account, events are defined as quadruples, e(i, j, t, τ ), where τ indicates
the duration of the event.

Depending on the type of events in a temporal network, the time difference is
defined in slightly different way:

Definition 1 Time difference between events. Given two events e1 and e2, their time
difference δt (e1, e2) is either the difference in times δt (e1, e2) = t2 − t1 for events
without duration or the time from the end of the first event to the start of the second
one δt (e1, e2) = t2 − t1 − τ1 for events with duration.

Note that these two definitions become the same if the events have zero duration.

2.2 Definitions: Adjacency and Δt-Adjacency

Our goal is to investigate larger temporal-network structures, from mesoscopic to
macroscopic entities, that arise out of the topological and temporal correlations of
the network’s constituent events. We begin by defining criteria for events being
topologically and temporally close to one another and then move on to defining
larger entities based on these criteria. The following concepts of temporal adjacency,
temporal connectivity, and temporal subgraphs are the building blocks for temporal-
network event graphs as well as their substructures from components to temporal
motifs. The concept of temporal adjacency also leads straighforwardly to the notion
of time-respecting paths.

Definition 2 (Temporal Adjacency) Two events e1(i, j, t1) and e2(k, l, t2)

are temporally adjacent, denoted e1 → e2, if they share (at least) a node,
|{i, j} ∩ {k, l}| > 0, and they are consecutive (but not simultaneous) in time,
i.e. δt (e1, e2) > 0.
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Definition 3 (Δt-Adjacency) Two events e1 and e2 are Δt-adjacent, denoted

e1
Δt−→ e2, if they are temporally adjacent and the time difference between them

is δt (e1, e2) ≤ Δt .

Temporal adjacency and Δt-adjacency are always directed regardless of whether
the events themselves are directed or not, and their direction follows the direction
of time, from the event that took place first to the event that took place next. Please
note that here we use a directed definition of adjacency unlike in [15–17] for reasons
that will become apparent later.

Depending on the problem at hand, one may wish to include additional con-
straints in the definition of temporal adjacency. If the original events are directed
and this directionality is important, e.g., because it affects information flows, it can
be directly incorporated into the definition of temporal adjacency, so that e(i, j, t)
and e(j, k, t + 1) are considered adjacent, while e(i, j, t) and e(k, j, t + 1) are not
(see Definition 2). This will also affect time-respecting paths defined according to
Definition 10. It is possible to introduce further constraints, e.g., ignoring return
events (non-backtracking events only) which might be useful for modelling certain
types of spreading dynamics. In this case, the pair e(i, j, t) and e(j, i, t + 1) should
not be added to G.

One can also consider allowing simultaneous interactions of the same node
by introducing hyper-events and an adjacency relationship between them for the
definition of a hyper-event graph. In this extension, events happening at the same
time and sharing nodes may be grouped in a hyper-event, which this way represents
a set of simultaneous events as a single object. Two hyper-events taking place at
times t and t ′ are adjacent if they are consecutive (t < t ′) and share at least one
node from the set of nodes they involve [18].

2.3 Definitions: Temporal Connectivity and Temporal
Subgraphs

To study the mesoscopic building blocks of temporal structures, we need to use their
local connectivity patterns for identifying meaningful temporal subgraphs in their
fabric. Following the approach of [15], we’ll use the concept of temporal adjacency
defined above to introduce temporal connectivity and temporal subgraphs.

Definition 4 (Weak Temporal Connectivity) Two events ei and ej are temporally
weakly connected, if without considering the directionality of adjacency, there is a
sequence of temporally adjacent events between them.

Definition 5 (Weak Δt-Connectivity) Two events ei and ej are weakly Δt-
connected if they are temporally connected through Δt-adjacent events, without
considering the directionality of Δt-adjacency.



112 J. Saramäki et al.

The above definitions of temporal connectivity are weak in the sense that the
directions of adjacency do not matter. Their motivation is to ensure that temporal
subgraphs—as defined below—are connected both topologically and temporally.

Definition 6 (Connected Temporal Subgraphs) A connected temporal subgraph
consists of a set of events where all pairs of events are weakly temporally connected.

Note that in the above definition we have left out the word “weak” because there
cannot be strong connectivity between temporal network events (there cannot be
any loops in time).

Definition 7 (Δt-Connected Temporal Subgraphs) A Δt-connected temporal
subgraph consists of a set of events where all pairs of events are weakly Δt-
connected. The subgraph is called valid if no events are skipped when constructing
the subgraph; i.e., for each node’s time span in the subgraph, all events that can be
included are included.

Definition 8 (Maximal Valid Connected Subgraphs) A maximal valid connected
temporal subgraph is a connected temporal subgraph that contains all events that can
be added to it such that all its event pairs are temporally connected.

Definition 9 (Maximal Valid Δt-Connected Subgraphs) A maximal valid Δt-
connected temporal subgraph is a Δt-connected temporal subgraph that contains all
events that can be added to it such that all its event pairs are Δt-connected.

Note that by definition, maximal valid Δt-connected subgraphs are themselves
subgraphs of maximal valid temporal subgraphs.

2.4 Definitions: Time-Respecting Path and Δt-Constrained
Time-Respecting Path

As the final building block before discussing weighted event graphs, we will next
focus on temporal-network paths that define which nodes can reach one another
and when. Similarly to static-network paths that are sequences of nodes joined by
edges, the events of temporal networks form paths in time that connect nodes. For a
temporal-network path to be meaningful, it has to respect the direction of time:

Definition 10 (Time-Respecting Path) An alternating sequence of nodes and
undirected events P = [v1, e1(i1, j1, t1), . . . , en(in, jn, tn), vn+1] is a time-
respecting path if the events are consecutive in time and each consecutive pair
of events is temporally adjacent, ek → ek+1 for all k < n, and vk, vk+1 ∈ {ik, jk},
such that vk �= vk+1. If the events are directed, then additionally each event’s
target node must be the source node of the next event on the path, jk = ik+1. For
notational convenience, we can omit the nodes, defining a time-respecting event
path Pe = [e1(i1, j1, t1), . . . , en(in, jn, tn)].
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For events with zero duration, Pe = [e1(i, j, t1), e2(j, h, t2), e3(h, l, t3)] is a
time-respecting path if t1 < t2 < t3, in other words, if δt = tk+1 − tk >

0 ∀k = 1, 2, ek ∈ Pe. The inequality follows from the requirement that vertices
only participate in at most one event at a time. For events with durations, the
next event on the path cannot begin before the first event is finished: Pe =
[e1(i, j, t1, τ1), e2(j, h, t2, τ2), e3(h, l, t3, τ3)] is a time-respecting path when t1 +
τ1 < t2 and t2 + τ2 < t3. That is, if δt = tk+1 − tk − τk > 0 ∀k = 1, 2, ei ∈ Pe.
Note that time-respecting paths are always directed, no matter whether the events
themselves are directed or not, and their direction follows the arrow of time.

Finally, as a special case of time-respecting paths, we define a subset of them
where the events have to follow one another within some specific time limit Δt .

Definition 11 (Δt-Constrained Time-Respecting Paths) A time-respecting path
is Δt-constrained if all its consecutive pairs of events are Δt-adjacent, i.e., all
consecutive events follow one another with a time difference of no more than Δt :
δt (ek, ek+1) ≤ Δt ∀k < n.

2.5 The Weighted Event Graph D

Armed with the above definitions, our aim is now to map the original temporal
network onto a static representation that retains information of the time-respecting
paths of the network (Definition 10) as well as the time differences δt between events
on such paths. For a temporal network G = (VG,EG, T ), let AG = {(ei, ej )|ei →
ej ; ei, ej ∈ EG} ⊂ EG×EG be the set of all temporal adjacency relations between
the events EG of G (see Definition 2). We are now ready to define the weighted
event graph:

Definition 12 (Weighted Event Graph) The weighted event graph of a temporal
network G is a weighted graph D = (VD,LD,w), where the nodes VD = EG, links
LD = AG, and the weights of the edges are given by w(ei, ej ) = δt (ei, ej ).

In other words, the weighted event graph D is a directed graph whose vertices
map to the events of G, whose directed links LD map to the adjacency relations
e → e′ between G’s events, and whose link weights W indicate for each adjacency
relation the time difference δt between the two events. For a schematic example of
how D is constructed, see Fig. 1.

Because of how the weighted event graph D is constructed, it is directed, with
the direction of its links following the direction of time. Consequently, because there
cannot be any loops in time, it is also acyclic and therefore a DAG (Directed, Acyclic
Graph). This provides certain computational advantages.

Note that in this mapping, isolated events, that is, single events connecting pairs
of nodes that have no other events in G, become isolated zero-degree nodes of the
event graph D. It may be convenient to entirely remove such zero-degree nodes
from D.
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Fig. 1 Constructing the weighted event graph D. Panel (a) shows the timeline representation of
the original temporal network G with vertices v1, v2, v3, and v4, and events e1 . . . e5. Panel (b)
shows the weighted event graph D that corresponds to G. Panel (c) displays the thresholded version
DΔt with Δt = 1

2.6 Constructing the Weighted Event Graph Computationally

The weighted event graph presentation D of an empirical temporal network G can
be constructed computationally by inspecting the timeline of the events of each
of G’s nodes separately. For practical purposes, to save memory, we recommend
setting a maximum value of the time difference between events, Δtmax, above which
two events will not be connected in D. Typically, the problem at hand yields a
natural time scale, e.g. when studying processes of contagion it is not necessarily
meaningful to connect events that take place several months apart. However, if
memory consumption is not a problem, one can use the entire available time range
and set Δtmax = T , where T is the largest time in the data set.

As the temporal adjacency of two events requires that the events share at least a
single temporal-network node, it is convenient to compute the adjacencies around
each of these nodes separately. For instantaneous events (that is, events that have no
durations), one can construct a time-ordered sequence of events containing node i:
{ei1, ei2, . . . , eik}. Then, it is straightforward to iterate over this sequence: begin at
each event eil and scan forward until the time cap Δtmax is met, that is, tin − til >

Δtmax. While scanning, connect each intermediate event eim with the focal event
with the weight wil,im = δ (eil, eim) = tim − til (unless they are already connected
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by a previous sweep, which is possible for repeated events between the same pair
of nodes). Rather similar but slightly more complicated algorithms can be used for
temporal networks with events that have durations or even higher-order events that
contain more than two nodes.

Creating these sequences of events and sorting them can be done in
O(|EG| log |EG|) time. Because each step of the algorithms yields one connection
in D (note that some links may be visited twice), the total runtime of the algorithm
is O(|EG| log |EG| + |ED|). However, even though the computation of event
graphs is quite economic, this representation can have significantly higher memory
complexity than the original temporal network representation. While a temporal
network can be represented as an event sequence, which requires O(|EG|) of
memory, event graphs can occupy way more memory than such sequences. In the
worst case, their memory complexity is O(|EG|a), where a is the maximum number
of events a node participates in.

If one is only interested in the connectivity, that is, in knowing whether there is a
path between two events regardless of the rest of the paths, then it is possible to use
the directed and acyclic nature of the event graph D as an advantage when doing
the computations. The directed connectivity in a DAG is a transitive relationship,
which means that one can always remove edges whose source and target nodes are
connected by some other path without affecting the overall connectivity (weak or
directed). Taken to the extreme, this will lead to the transitive reduction of D. For
all edges removed in this way, the weight of the removed edge is smaller than the
weights of the edges in the indirect path. This is a useful fact when thresholding the
network (as is done in Sect. 2.7).

A computationally convenient way of removing some (but not necessarily all)
of the transitively redundant edges from D is to simply stop the above described
algorithm after the first iteration for each node [12]. This trick will only work for
weighted temporal event graphs built with undirected adjacency relations, but it will
bound the out-degree of the nodes to 2, which can dramatically reduce the time and
memory complexity of the network creation algorithms in some cases.

2.7 Thresholding the Weighted Event Graph

A key strength of the weighted event graph approach is that the event graph D can
be quickly thresholded so that the resulting graph DΔt only contains directed links
between events that follow one another within a time Δt in the original temporal
network G. Formally, DΔt is defined as follows: let G = (VG,EG, T ) be a temporal
network and AG,Δt ⊂ EG × EG the set of all Δt-adjacency relations between its
events EG. We can now define thresholded event graph Δt :

Definition 13 (Thresholded Event Graph DΔt ) The thresholded event graph DΔt

of G is the graph DΔt = (VDΔt , LDΔt , w) with vertices VDΔt , directed links LDΔt ,
and link weights WDΔt , so that VDΔt = EG, LDΔt = AG,Δt , and w(ei, ej ) =
δt (ei, ej ) ≤ Δt .
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In other words, DΔt ’s nodes are again vertices of G, its directed links are Δt-
adjacency relations between the events of G, and its link weights are the time
differences δt between Δt-adjacent events where by definition δt ≤ Δt . Therefore,
DΔt is a subgraph of D that only contains links between events that follow one
another within δt ≤ Δt .

While DΔt can in principle be constructed directly from G using Δt-adjacency
relations from the beginning, this is not the fastest approach if one wants to vary
Δt . Rather, it is much faster to first construct D up to the maximum Δtmax and then
threshold it to DΔt by discarding all links with weights above the chosen value of
Δt . This is how the thresholded weighted event graph DΔt is always constructed in
practice.

Typical use cases for the thresholded event graph DΔt include setting maximal
values of the allowed time difference between events to account for processes
such as deterministic SIR (Susceptible-Infectious-Recovered) or SIS (Susceptible-
Infectious-Susceptible), defined so that an infectious node can only infect other
nodes through events that take place within a certain constant time since the time of
its infection. For modelling certain transport processes, e.g. passenger trips through
public transport networks or the air transport network, limiting the allowed range of
δt from both above and below might be appropriate instead of using an upper limit
Δt only. In such cases, the lower limit would indicate the shortest possible transfer
time between vehicles, and the upper limit would correspond to the maximum time
that the passengers are willing to wait for their connection.

It is often useful to sweep through a range of allowed values of δt , as in
the temporal-network percolation studies discussed later in this Chapter. When
thresholding so that all links of D with weights below the limit Δt are retained while
varying Δt , one can obtain huge savings in computational time by the following
procedure: (1) order the links of D in increasing order of weight, (2) begin with
an empty network, (3) add links one by one, (4) after each link addition, mark
down current the threshold value Δt and compute the quantities of interest such
the sizes of components in the network. Here, one can easily and quickly keep track
of component sizes by initially assigning each node to its own component and then
always checking if the newly entered link merges two components or not. In fact,
with the help of disjoint-sets forest data structure, one does not even need to actually
construct the network: it is enough to keep track of the component mergings and
their sizes. This procedure is similar to the ones used for analysing connectivity of
static networks in percolation studies [13, 19].
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3 How to Interpret and Use Weighted Event Graphs

3.1 How the Basic Features of D and DΔt Map onto Features
of G

Let us begin dissecting the weighted event graphs by mapping out simple corre-
spondences between some features of D and features of G. In the following, for
the sake of simplicity, we shall consider the original temporal network G’s events
as undirected and instantenous. Further, we assume that the weighted event graph
D has been constructed using the whole available time range, that is, with time
differences up to Δtmax = T . By definition, the thresholded version of the event
graph DΔt only contains links between Δt-adjacent events, that is, events with time
differences less than Δt .

First, as already evident, the elements of D map to the elements of G so that the
nodes of D are events in G, the links of D are temporal adjacency relations between
the events of G, and the link weights of D indicate the times between adjacent events
in G. The in- and out-degrees of a node of D indicate the numbers of temporal
adjacency relations between the corresponding event of G and previous/future
events of the two nodes that the event connects: the in-degree of node ei of D

(event ei of G) is the number of events that took place earlier than ei and involved
either or both of the connected nodes. The out-degree is the number of similar future
events. For DΔt , the in- and out-degrees of nodes correspond to the numbers of past
and future events of the event’s endpoint nodes in G within a time Δt . This latter
property could be useful, e.g., for studying temporal threshold models (see, e.g.,
[20–22]) where the process of contagion is triggered by infection from multiple
sources within some short time range.

Due to D’s construction, a directed path in D is a time-respecting path in G, and
vice versa. If we define (without the loss of generality) a vertex path Pv in a graph
as a sequence of vertices joined by an edge, then we can formalize this relationship:

Theorem 1 (Path Equivalence) A path P is a vertex path in D if and only if P is
a time-respecting event path in G.

Put in another way, if Pv(D) is the set of all vertex paths in the graph D, and
Pe(G) is the set of all time-respecting event paths in G, then Pv(D) = Pe(G).

For DΔt , the corresponding time-respecting path in G is in addition Δt-
constrained and so the time difference between its consecutive events is always less
than Δt (see Definition 11).

Theorem 2 (Constrained Path Equivalence) A path P is a vertex path in DΔt if
and only if P is a Δt-constrained time-respecting event path in G.

Now, if in addition we denote by Pe(G,Δt) the set of all Δt-constrained time-
respecting event paths in G, then Pv(DΔt ) = Pe(G,Δt).

If the events are instantaneous, then, additionally, the sum of link weights of
a path in D equals the latency or temporal distance of the corresponding path
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in G, i.e., its duration. This property can be rather useful: e.g. for undirected,
instantaneous events, the lowest-weight path from ei to ej in D equals the fastest
time-respecting path in G from event ei to event ej (again, expressing time-
respecting paths in terms of events rather than nodes). Hence, it is possible to
directly use D for computing centrality measures that are defined in terms of time-
respecting paths or shortest time-respecting paths.

Because of the above, the set of downstream nodes in D reached by following
the directed links of D from its node ei equals the reachable set of event ei in
G, in other words, the set of all events in G that can be reached from ei through
time-respecting paths (its “future light-cone”). Likewise, the set of upstream nodes
that can be reached by following D’s links in reverse direction equals the set of
all events in G that can lead to ei through time-respecting paths: the set of events
that may influence ei (“past light-cone”). For Δt , the sets of upstream/downstream
nodes come with the additional constraint that they must be reachable through Δt-
constrained time-respecting paths.

Finally, the weakly connected components of D (more on components later)
correspond by definition to maximal valid temporal subgraphs in G (Definition 8);
for DΔt , the weakly connected components correspond to maximal valid Δt-
connected subgraphs (Definition 9).

All the above correspondences are summarized in Table 1 for D and in Table 2
for DΔt .

3.2 Temporal Motifs and D

The concepts of Δt-adjacency, Δt-connectivity and temporal subgraphs are inti-
mately related to temporal motifs [15–17]. The concept of network motifs was
originally introduced for static networks by Milo et al. [23] in 2002. They defined

Table 1 Correspondence between features of the weighted event graph D and the original
temporal graph G

Feature in D Feature in G

Node VD Event EG

Link LD Temporally adjacent pair of events e1 → e2

Link weight w Time difference δt between adjacent events

In-degree kin # of previous events of the event’s endpoint nodes

Out-degree kout # of future events of the event’s endpoint nodes

Directed vertex path Pv Time-respecting event path Pe

Sum of weights on path P Duration of time-resp. path P (if events instantaneous)

Set of downstream nodes for vD Set of events reachable from eG (“future light-cone”)

Set of upstream nodes for vD Set of events that can influence event eG (“past light-cone”)

Weakly connected component Maximal valid temporal subgraph



Weighted Temporal Event Graphs 119

Table 2 Correspondence between features of the Δt-thresholded event graph DΔt and the
original temporal graph G

Feature in DΔt Feature in G

Node vD Event eG

Link lD Δt-adjacent pair of events e1
Δt−→ e2

Link weight w Time difference δt between adjacent events

In-degree kin # of previous events of the event’s endpoint nodes within
Δt

Out-degree kout # of future events of the event’s endpoint nodes within Δt

Directed vertex path Pv Δt-constrained time-respecting path Pe

Sum of weights on path P Duration of time-resp. path P (if events instantaneous)

Set of downstream nodes for vD Set of events reachable from eG through Δt-constrained
time-respecting paths

Set of upstream nodes for vD Set of events that can influence event eG through
Δt-constrained time-respecting paths

Weakly connected component Maximal valid Δt-connected subgraph

network motifs as classes of isomorphic induced subgraphs with cardinality higher
in the data than in a reference system, usually the configuration model. Milo et al.
showed that similar networks had similar characteristic network motifs, suggesting
that motif statistics are informative of the function of the system and could be used
to define universality classes of networks [24].

Similarly to static-network motifs, temporal motifs are one way of looking at
frequent, characteristic patterns in networks. In this case, the patterns are defined in
terms of both topology and time. For temporal motifs, a natural starting point is to
use the definition of Δt-connected subgraphs (Definition 7), and to look at temporal-
network entities where a sequence of interaction events unfolds in the same way. As
an example, the sequence where A calls B calls C calls A forms a triangular Δt-
connected subgraph if all calls follow one another with a time difference of no more
than Δt . Note that here we consider the events to be directed, but using undirected
events is also possible.

Such temporal-topological patterns reflect the dynamics of the system in ques-
tion. Therefore, their characterization can improve our understanding of various
complex systems, e.g., of temporal networks whose structure reflects the nature
of human social interactions and information processing by groups of people. As
an example, Ref. [17] showed that there is a tendency of similar individuals to
participate in temporal communication patterns beyond what would be expected
on the basis of their average interaction frequencies or static-network structure, and
that the temporal patterns differed between dense and sparse regions of the network.
These observations relied on the timings of the communication events, reflected in
their Δt-connectivity.

Temporal motifs are formally defined as equivalence classes of isomorphic Δt-
connected, valid temporal subgraphs (Definition 7), where the isomorphism takes
into account both the topology of the subgraph and the temporal order of events.
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With this definition, the two-call sequences A calls B calls C and D calls E calls F
both belong to the same two-event equivalence class (if the Δt-adjacency condition
is met).

The temporal-topological isomorphism problem can be solved using a trick that
combines the event graph approach presented in this Chapter with the topology of
the subgraph in the original network: a “virtual” node is added onto each (event)
link, analogous with an event node in D. This virtual node is then connected with
a directed arrow to the event that immediately follows it [15, 16]; this is a limited
version of temporal adjacency, as only the next event is considered. The directed
arrows between the virtual nodes determine the order of events in the subgraph. The
virtual nodes are then assigned a “color” different than the original nodes, and the
isomorphism problem is finally solved using static-network algorithms for directed,
coloured graphs, such as Bliss [25].

The procedure for obtaining temporal-motif statistics from empirical temporal
networks with time-stamped events is as follows [15], for a given value of Δt and a
chosen motif size s measured in events:

i Find all maximal Δt-connected subgraphs E∗
max of G.

ii Find all valid temporal subgraphs E∗ ⊂ E∗
max of size s.

iii Solve the isomorphism problem to find equivalence classes for all E∗.
iv Count the number of motif instances in each equivalence class, and compare

against a chosen null model.

For details including pseudocode for the required algorithms, we refer the reader
to [15, 16].

Here, if one wants to compare motif statistics for a range of values of Δt , as
is often the case, the weighted event graph approach helps to substantially reduce
computational time for step (i) of the above procedure. While it is possible to
generate the maximal Δt-connected subgraphs for each value of Δt separately from
G’s events using brute force, the threshold sweep approach outlined in Sect. 2.7 is a
much better solution.

With this approach, one simply needs to generate the weighted event graph D

and then threshold it by discarding all edges with weights above each Δt . If one
wants to compute motif statistics for, say Δt1 < Δt2 < . . . < Δtmax, the fastest
way is to begin with an empty network and sort links by increasing weight. Then,
one add links up to link weight Δt1 and either store DΔt1 or compute the quantities
of interest, then add more links up to Δt2 and do the same, and repeat up to Δtmax.
Note that here, one does not initially need to construct the whole D which might
cause memory problems: building it up to δt = Δtmax is sufficient.
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3.3 Components of D and Temporal-Network Percolation

3.3.1 Measuring Component Size

Let us next discuss the components of D (and DΔt ) in more detail. First, because
the event graph D is directed, the usual complications of defining components in
directed networks apply. However, because D is also acyclic, there cannot be any
strongly connected components, where all nodes are reachable from all other nodes.
Therefore, connected components of D (DΔt ) can only be weakly connected by
definition.

For the purposes of our interest, we can focus on three types of components:
(i) maximal weakly connected components of D, where all nodes of D are joined
by a path if the directions of D’s links are ignored and no more nodes can be
added, corresponding to maximal valid temporal subgraphs of G (Definition 6); (ii)
maximal out-components, uniquely defined for each node vD of D, so that all nodes
in the out-component can be reached from the focal node vD , and (iii) maximal
in-components, again defined uniquely for each vD , so that the focal node can be
reached from all of the component’s nodes. These definitions do not change if we
use DΔt (however, the thresholded DΔt is of course expected to have a different
component structure, generally with more components than D). In the following,
we will for simplicity talk about D only, but everything holds for DΔt as well.

Let us next discuss the properties—in particular, the concept of size—for
components of D defined using any of the above definitions.

First, the most straightforward way to define component size is to count the
number SE(C) of the event graph D’s nodes that belong to the component C. This is
equal to the number of events in the original temporal network G that belong to the
same component, and SE(C) ∈ [0, |EG|]. For a schematic illustration, see Fig. 2,
panel a.

Second, one can map the nodes of D in component C back to the events of
the temporal network G and count the number of vertices involved in the events,
SV (C) ∈ [0, |VG|]. This is the “spacelike” definition of size (see Fig. 2, panel b).

Third, because the event nodes in D come with time stamps—the events take
place at specified times—one may think of a “timelike” size: the duration (that is,
the lifetime) of the component St (C) ∈ [0, T ], the time difference between C’s last
and first event. This is illustrated in Fig. 2, panel c.

Note that these measures of size may or may not be correlated in a temporal
network. In a random, Erdős-Rényi-like temporal network they on average are (see
Ref. [11]). In this case, one can think of a single “giant” temporal component that
encompasses most of the events in D and nodes in G and that lives for the entire
observation period of the temporal network. However, this is a special case, and one
can equally well think of networks where the different types of “giant” components
are separated. As an example, there can be a short-lived, “spacelike” component that
spans most of the nodes in G but contains only a small fraction of the nodes in D

because of its short lifetime. There may also be several such components during the
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Fig. 2 Panel a: The shaded area indicates the size SE of a component of D, measured in the
number of nodes of D (events of G) involved in the component. Panel b: the size SV of the same
component, measured as the number of involved vertices in the original graph G as indicated by the
shaded area. Panel c: The third way of measuring component size, the lifetime St of the component
measured as the time difference between its last and first events

lifetime of the network. Further, one can also envision a persistent component that
spans the whole time range but involves only a small number nodes that repeatedly
and frequently interact: this component is large in St but vanishingly small in SE
and SV . Again, multiple such components may coexist.

3.3.2 Temporal-Network Percolation Analysis with DΔt

When the event graph D is thresholded, its component structure depends on the
threshold weight. If the criterion for retaining D’s edges is that their weight is
below some chosen value of the time difference Δt , then this parameter can be
viewed as the control parameter of a percolation problem. The value of the control
parameter Δt determines the event graph’s component structure, in particular its
largest component, similarly to the edge weight threshold used in percolation studies
on static, weighted networks (see, e.g., [19]).

In network percolation, there is a critical value of the control parameter that
separates the connected and disconnected phases of the network. When the control
parameter reaches this value, connectivity suddenly emerges, reflected in the
emergence of a giant connected component that spans a finite fraction of the
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network. This is measured either as the fraction of nodes or links included in the
largest component; whichever measure is used, it is called the the order parameter
of the percolation problem.

Here, since the control parameter Δt operates on the event graph D, the most
obvious choice for the order parameter would be the relative size of D’s largest
(weakly connected) component. As discussed above, its size can be measured as
the number SE of its constituent event nodes in D, so that the corresponding order
parameter

ρE(Δt) = 1

|E| max SE, (1)

where |E| is the number of (event) nodes in D and we’ve made the dependence on
Δt explicit. As such, this definition works in a straightforward way and ρE(Δt) can
be expected to behave as a typical order parameter would.

The size of the components other than the largest component is often used in
percolation studies to detect the critical point. Using the above definition of size SE ,
one can define the susceptibility

χE = 1

|E|
∑

SE<max SE

nSES
2
E, (2)

where nSE is the number of components of size SE and the sum is over all
components except the largest. The susceptibility diverges at the critical point that
separates the connected and fragmented phase, as small components are absorbed
into the emerging giant component.

However, as discussed above, one can measure the size of a component of D in
two other ways. The “spacelike” way is to count the number of nodes SV of the
original network G that are involved in the component through D’s event nodes.
Using this definition of component size, we arrive at the order parameter that
measures what fraction of G is associated with D’s component:

ρV (Δt) = 1

|V | max SV , (3)

where |V | is the number of nodes in G. For this order parameter, while one could
naïvely define the corresponding susceptibility-like measure as

χV = 1

|V |
∑

SV <max SV

nSV S
2
V , (4)

which may behave in hard-to-predict ways at the critical point—if something
that can be called a critical point even exists. This is because a node v ∈ VG

that participates in multiple connected events will appear multiple times in the
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corresponding component of D. The nodes of the original network G may, for
similar reasons, also belong to multiple components occurring at different times.
In other words, the sum

∑
SV <max SV

nSV is not a conserved quantity.
The third component size definition captures the time length of components in

D, leading to an order parameter:

ρt (Δt) = 1

T
max St , (5)

where T is the observation period, i.e., the lifetime of G. While one could in
principle again define a susceptibility-like measure for this control parameter, as in
Eq. (4), this measure would not be too useful. This is because multiple components
of D can easily co-exist, overlapping in time, and there can be a number of long-
lived simultaneous components.

When interpreting the results of percolation studies using weighted event graphs,
one should bear in mind that the components of D are weakly connected, that is,
all pairs of nodes in the component are connected through a path if the directions of
the links are discarded. This means that, in the context of spreading processes, the
interpretation of component structure and percolation points is that the component
size is an upper bound for the number of nodes that can be infected by the process if
it begins inside the component. So for processes constrained from above so that the
spreading agent has to move forward from a node within δt , the observed critical
Δt is a lower bound: one can only be certain that the spreading process would not
percolate below this threshold.

3.3.3 Temporal-Network Percolation: Empirical Examples

To illustrate the behaviour of the order parameter and the susceptibility as a
function of the event-graph threshold Δt , we’ll next recap some of the results
originally published in [11], obtained for three data sets: a large dataset of time-
stamped mobile-telephone calls [3], a dataset on sexual interactions from a study
of prostitution [26], and an air transportation network in the US [27]. See [11] for
more details on the datasets.

Two versions of relative largest component size (order parameter) and the
susceptibility are shown for all datasets in Fig. 3. The first version is based on the
event-graph component size SE and the second on the number of involved vertices
in the original graph, SV . For these data sets, the critical points indicated by the
diverging susceptibility are fairly similar for both measures, with the exception
of small difference for the air transport network where χV peaks slightly earlier
than χE . For these datasets, the “timelike” order parameter of Eq. (5) (not shown)
does not produce meaningful results; it does not behave like an order parameter for
reasons discussed in Sect. 3.3.2.

The identified critical points are related to characteristic time scales in the
systems in question; as an example, they indicate how long a spreading process
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Fig. 3 The behaviour of the relative largest component size ρ and the susceptibility χ as a function
of Δt , for three data sets and two variants of the measures. ρE and χE are for component size
measured in event-graph nodes and ρV and χV for size measured in the number of temporal-
network nodes involved in the component’s events. Panel a: mobile telephone calls, displaying a
critical point at around 4 h 20 min. Panel b: sexual interactions, with a critical point at around 7
days (followed by a second peak at ∼ 16 days). Panel c: US air transport, with a critical point at
∼ 20 min. Figure adapted from the original in [11]

would typically need to survive in order to eventually reach most of the network. In
the case of mobile communication networks, if we imagine, e.g. a rumour spreading
through the phone calls, the cascade will die out unless the rumour is still relevant
and worth spreading for each node after 4 h and 20 min have passed since the
node received it. For the sexual contact network, a sexually transmitted disease can
become an epidemic and spread through the network if it remains infectious for
longer than 7 days since being infected. For the air transport network, the identified
characteristic time of approximately 20 min is related to the synchronization of
connecting flights at airports.

4 Discussion and Conclusions

Because temporal networks carry information of the times of the interactions
between the network’s nodes, they allow for the detection of patterns that would
be lost were the networks aggregated into static structures. This has led to increased
understanding of the dynamics of network structures and processes that unfold on
top of networks. The downside of this framework is that it naturally complicates
network analysis, because of the additional degrees of freedom brought by the
temporal dimension. Temporal networks are, in a way, mixtures of graphs and time
series: therefore, if one is not satisfied with studying one of these aspects only,
entirely new ways of looking at their structure are required.

In this Chapter, we have presented an approach that projects important features
of temporal network dynamics into a static line graph structure: the weighted event
graph. Weighted event graphs can be used both to understand the structural features
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of the temporal networks they encode, as well as to investigate dynamical processes
taking place on temporal networks. The weighted event graph framework maps
temporal-topological structures onto weighted, directed, acyclic graphs. This is an
information-lossless representation of temporal networks, which preserves the time-
respecting paths of the original network as well as the timing differences between
consecutive events on those paths. Weighted event graphs are particularly useful for
studying paths, structures, and processes where one wants to set constraints to the
times between successive events (Δt-connectivity), in other words, where the events
have to follow one another quickly enough.

Beyond the examples discussed in this Chapter (temporal motifs, temporal-
network percolation), one can envision many uses for weighted event graphs. In
theory, any method or approach, which has been developed around the concepts of
paths or walks could benefit from being viewed as a topological problem in weighted
event graphs instead of a dynamical problem in temporal networks. Looking beyond
the surface, it is clear that many important topics and measures in network science
are at least partly based on the path structure of networks, including several
approaches in dynamic models on networks, community detection, and centrality
measures. As is evident from the cases of percolation analysis and temporal motifs,
weighted temporal event graphs can be useful for both defining understandable
concepts and measures as well as providing access to computationally efficient
methods for solving temporal-network problems.

There is one rather obvious use of weighted event graphs that we have not dis-
cussed yet: the issue of centrality measures. The computation of various temporal-
network centralities should greatly benefit from weighted event graphs, as they
encapsulate the whole set of time-respecting paths (or their Δt-constrained subset).
Such centralities could straightforwardly be computed using definitions and algo-
rithms developed for static networks but in this case, applied to the event graphs
instead. As a bonus, because of the event graph’s construction, these measures
would be computed for events of the original network instead of its vertices. It can
be argued that this is—at least in some cases—more meaningful than computing
quantities for the nodes. Any centrality measure for a node should come with the
additional constraint on its valid time range: e.g., because time-respecting paths
constantly change, should the “temporal betweenness centrality” of a node be a
quantity that characterizes the node’s properties over some time range (up to the
entire range of observation of the temporal network), or at some specific point
in time, building on the paths that pass through the node at that point? However,
with events, the definition is more straightforward: temporal betweenness centrality
should depend on the number of (fastest) temporal paths passing through the event.
Therefore, at least for instantaneous events, it can be directly and simply calculated
from the event graph’s directed path structure.
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Exploring Concurrency and Reachability
in the Presence of High Temporal
Resolution

Eun Lee, James Moody, and Peter J. Mucha

1 Introduction

Variation in epidemic spreading stems in part from the diversity of temporal
contact patterns between subjects, whether such changes are a direct result of
individual state changes (as in, e.g., [2, 22, 23]) or more general temporal variation
(see, e.g., [11, 20]). For example, the distribution of the lifespan of edges can
significantly affect the speed and eventual spread of an infection [10, 17, 21].
The increased availability of detailed, digitized temporal contact patterns supports
and accelerates new investigations about the effects of temporal details, including
analysis of properties such as fat-tailed inter-event time distributions [7, 13, 32, 33].
Indeed, the ‘burstiness’ of inter-event times can either slow down [13] or speed up
dynamics [7, 32]. Meanwhile, such apparently contradictory effects provide a clue
that there may be other elements controlling the dynamics beyond the bursty inter-
event times.

Holme and Liljeros [10] investigated the changes to the observed outbreak
sizes from various selected shifts to the contact histories: “beginning intervals
neutralized” (BIN) shifts all contact pairs to first appear at the same time, “end
intervals neutralized” (EIN) shifts the last contact between all pairs to the same time,
and “interevent intervals neutralized” (IIN) replaces the heterogeneous intervals of
contact between a pair to a uniform step size in time (keeping start and end times the
same). For 12 empirical temporal networks, they found that BIN and EIN resulted in
more significant differences in the outbreak size compared with differences obtained
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from IIN. A possible explanation for the relatively larger effect of these BIN and
EIN modifications could be in the resulting changes in the concurrency of contacts.
That is, by shifting all contacts to start (BIN) or end (EIN) at the same time,
there is presumably greater temporal overlap between different contact intervals,
augmenting the temporally consistent paths in the network over which the infection
may spread.

Further supporting this possible interpretation, Li et al. [17] analyzed the
transient behavior of reference models with randomly permuted times that either
preserve the lifetimes of edges or of the nodes, focusing on changes in spreading
speed according to the selected reference model. Their results demonstrate the
dependence between the ability of an edge to help spread the infection and the time
interval of its lifetime. Together, these results highlight the importance of the overall
time interval over which a given pair is in contact, as opposed to the detailed timings
of the contacts in those intervals.

Such studies point to the crucial function of the concurrency of edges in infection
dynamics. In this chapter, we summarize previous studies related to issues of
concurrency and the overall reachability constrained by the network timing details.
We then explore the impact of concurrency on reachability by rescaling the start
times in a set of empirical temporal networks. Using these empirical networks we
then demonstrate the accuracy with which reachability is correctly calculated using
a simplified interval representation for each edge that ignores the detailed timings
of interevent contacts.

2 Previous Studies on Concurrency and Reachability

Although there exist various definitions for concurrency, its essence is clear: the
extent of temporal overlap among the contacts. The significance of concurrency in
a temporal network is immediately obvious for governing the reachable extent of
any information or infection. Consider for example a simple situation with only
three actors {A,B,C} with B and C connected by an edge at some early time
and A and B connected at a later time. If the temporal extent of these two edges
do not overlap, then there is no way for any infection or information that spreads
from A to B to continue on to C. However, if the two edges temporally overlap,
then C is indeed “accessible” or “reachable” from A. The reachable extent allowed
by the edge timings in a temporal network immediately impacts the real spread
and modeling of an infectious disease, independent of the details of the dynamical
process (e.g., SI, SIR, SEIR, complex contagion, etc.). The expected size of the
maximally reachable set can be quantified by “reachability”, defined as the fraction
of ordered node pairs with at least one temporally consistent path from the source
node to the target node. Such ordered node pairs are “accessable.”

Because the reachability is an underlying property of a temporal network,
independent of the spreading process taking place on that network, and since it
naturally constrains all spreading processes on the temporal network, reachability
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has been used in multiple previous studies [1, 9, 16, 25, 26, 30]. For example,
Holme [9] numerically investigated two types of reachability called reachability
time and reachability ratio, to categorize the effectiveness of the real-world contact
networks in terms of time and spreading size. Lentz et al. [16] also explored
accessibility in empirical networks, proposing the use of causal fidelity, defined as
the fraction of network paths that can be followed by a sequence of events of strictly
increasing times. That is, if all of the temporal contact information is agglomerated
into a static network (collecting all edges that ever exist in the data but ignoring their
timings), causal fidelity is the fraction of paths in this agglomerated static network
that are also available in the full temporal network, thereby quantifying how well
the static network representation might approximate the full dynamics.

In a related line of inquiry, the effect of concurrent partnerships has been
of key interest for the spread of sexually transmitted diseases (STDs) such as
HIV/AIDS [14, 25, 28]. Moody [25] emphasized the substantial effect of concur-
rency on the reachability in an adolescent romantic network, in that reachability
plays the role of an upper bound on the expected outbreak size of an infection
spreading on the network. An array of studies have assessed the effect of concurrent
relationships for modeling infectious spreading on synthetic networks [3, 4, 24, 30].
The merit in studying synthetic networks is that it enables researchers to control
the network’s structural properties and the extent of the concurrent partnerships,
which are obviously impossible to control in real-life networks. Despite consider-
able emphasis by different investigators about the role of temporally overlapping
contacts, we still lack a general definition of concurrency in that slightly dif-
ferent definitions have been used across these studies. For example, Gursky and
Hoffman [8] assumed concurrency based on the lifetime of an edge, following
the definition in [34]. Doherty et al. [3] defined concurrency as the proportion of
subjects engaging in concurrent relationships within a population. Onaga et al. [30]
set concurrency as a fixed number of connections of an individual in time.

Onaga et al. [30] proposed a theoretical framework for the epidemic threshold
induced by concurrency. In general, a low epidemic threshold can indirectly
indicate a high probability of infection prevalence. Further, the relationship between
concurrency and the epidemic threshold can help explain the relationship between
concurrency and reachability. Onaga et al. defined the concurrency as a fixed number
of links emanating from a node in unit time, and the activation of the links are
decided by a node’s activity level. The activity level is drawn from uniform and
power-law probability distributions. Then, they applied the analytically tractable
activity-driven model. Given the star-like network in unit time, the authors derived
differential equations for an SIS model to estimate the epidemic threshold. They
compared the analytically derived threshold to the numerically estimated threshold,
confirming a close match. From the results, the authors found that the transition
of the epidemic threshold depended strongly on the extent of the concurrent
connections. The results, again, stress the importance of concurrency in adjusting
infectious potential.

In the present work, we are motivated by the framework investigated by
Moody and Benton [26], which focused on the roles of concurrency and structural
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cohesion. They performed numerical experiments simulating edge start times and
durations on network structures sampled with a four-step random walk from a
collaboration network. Moody and Benton thus obtained 100 sample networks with
which they explored different levels of structural cohesion, defined as the average
number of node-independent paths between node pairs [27]. The authors controlled
the concurrency—quantified by the fraction of connected edges whose temporal
intervals overlap in time—by adjusting the distributions of the start times and
durations of the edges. Given the sample networks with random start and duration
times on each edge, they then measured reachability as a function of concurrency
and modeled the relationships with general linear regression models. Moody and
Benton showed that the concurrency and structural cohesion both affect reachability
in their examples, finding that the role of concurrency is particularly important in
low structural cohesion networks because a slight increase in concurrency sharply
increases the number of accessible node pairs (that is, ordered node pairs connected
via temporally consistent paths). When one considers that networks of low structural
cohesion are common in many sexual contact networks, Moody and Benton’s
findings stress the importance of concurrency for STD transmission.

Recently, Lee et al. [15] developed tree-like model approximations for the rela-
tionship between concurrency and reachability, to further elucidate numerical results
like those of Moody and Benton [26]. Lee et al. compared their approximations with
numerically-computed reachability in temporal networks obtained with simulated
edge timings on various network structures: balanced and unbalanced trees, Erdős–
Rényi (ER) networks, exponential degree distribution networks, and four of the
sampled networks highlighted in [26]. Because of the nature of their tree-like
assumptions, these models well approximate the relationship between reachability
and concurrency for small values of structural cohesion, doing particularly well also
at small values of concurrency. But their existing models do not do as well in the
presence of larger numbers of available alternate paths between nodes. Nevertheless,
this study further demonstrates how the overall level of reachability emerges through
an interplay between concurrency and structural cohesion.

3 Effects of Concurrency: Empirical Examples

In the remainder of this chapter, we focus on a set of empirical examples to further
explore reachability and concurrency, complementing the results in [26] and [15].
As part of our exploration, we transform the detailed contact time information
of the edges into an interval representation wherein the distinct contacts between
each connected node pair is instead represented simply by a start time (the first
observed contact) and an end time (the last contact). That is, we treat each edge
as if it was present for the entirety of the interval between the first and last
observed contacts. We then measure concurrency and reachability on this simpler
interval representation. To perform numerical experiments under different values of
concurrency, we modify these time intervals by rescaling the total range of the start
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Table 1 Four empirical
temporal networks used in the
present work

Name of the data N Mc Md Δ

High school 180 45,047 2220 20 s

Conference 113 20,818 2196 20 s

DNC email 1890 39,263 4463 1 s

Brazil 6576 8497 8056 5 days

The networks are of size N (number of nodes) with
Mc distinct temporal contacts between Md different
node pairs (the number of edges). The resolution of
the temporal contacts is denoted by Δ

times in the temporal network while keeping the duration of each edge constant. By
doing so, we investigate how concurrency affects reachability and examine whether
reachability on the simpler interval representation matches that measured from the
original contact times.

The basic characteristics of the four example empirical networks used in this
study are described below and in Table 1. In the following subsections, we then
describe the transformation to the interval representation, the measurement of
concurrency and our method for modifying it in our present simulations, and the
calculation of reachability. Using the empirical examples, we then demonstrate the
impact of concurrency on reachability as well as the relative accuracy of computing
reachability with the simplified interval representation in these examples.

3.1 Data

We used four empirical networks in the present study. The first data set (denoted
“High School” here) contains the temporal network of contacts between students
in a high school in Marseilles, France, including contacts between the students
in five classes during a seven day period (from a Monday to the Tuesday of the
following week) in November 2012 [6]. The network includes N = 180 nodes and
Mc = 45,047 distinct contacts between Md = 2220 different node pairs (that is,
yielding Md different edges in the interval representation). The time resolution of
the measured contacts is Δ = 20 s.

The second data set (“Conference”) corresponds to the contacts among attendees
of the ACM Hypertext 2009 conference [12]. The conference spanned 2.5 days, with
the network sampled every Δ = 20 s. The network consists of N = 113 attendees
and Mc = 20,818 contacts between Md = 2196 node pairs.

The third data set (“DNC Email”) is the Democratic National Committee email
network, as hacked from the DNC in 2016 (data available online at http://konect.uni-
koblenz.de/networks/dnc-temporalGraph). Nodes in the network correspond to
persons, with each contact along an edge representing an email sent to another
person. Although the data are originally directed, we treat edges here as undirected
for simplicity. The network includes N = 1890 nodes and Mc = 39,263 email
contacts, connecting Md = 4463 node pairs.



134 E. Lee et al.

The fourth data set (“Brazil”) is a sexual contact data set obtained from a
Brazilian web forum exchanging information about sex sellers between anonymous,
heterosexual, male sex buyers between September 2002 and October 2008 [31]. In
this web forum, male members grade and categorize their sexual encounters with
female escorts in posts using anonymous nicknames. From the posts, Rocha et
al. [31] constructed a network connecting every community member (sex buyer)
to an escort. The time information of the posts are used here as the temporal contact
between a seller and buyer. The entire network’s size is 16,730. However, to save
computational cost, we ignored temporal contacts that occurred during the first 1000
days of the data. Additionally, whereas the original data is resolved at the level of
days, we down-sampled the resolution of the contacts to Δ = 5 days. As a result,
the data we consider includes N = 6576 nodes and Mc = 8497 distinct contacts
along Md = 8056 edges.

3.2 Change to the Interval Representation

The empirical networks include detailed temporal contact patterns like that rep-
resented in Fig. 1a: an edge representing the connection between nodes i and j

has potentially several time stamps that represent the distinct contacts between i

and j . The detailed transmission of any infection occurs during these contacts.
However, instantaneous contacts are not necessarily the best way to think about
concurrency in these relationships. Consider the motivation to study the spread of
STDs: the appropriate notion of concurrency does not require that the contacts occur
at precisely the same time, only that they are interleaved in time.

As such, in our present investigation of concurrency and reachability we employ
a simplification obtained by transforming the temporal details in the contacts into
an interval representation, keeping only the start (ts) and end time (te) of each edge,
as shown in Fig. 1b. In panel (b), the contacts of the edge between A and D—which
includes contacts at times {3,4,6} (see. Fig. 1a)—are converted to the time interval
[3, 6+Δ). In this transformation, we explicitly add the time resolution Δ to the last

A B

C D

{1}

{2,5}
{3,4,6}

{4,7}

A B

C D

[1,1+    )Δ

[2,5+    )Δ
[3,6+    )Δ

[4,7+    )Δ

(a) Contact representation (b) Interval representation

Fig. 1 A toy temporal-network example represented by (a) distinct contacts and (b) the corre-
sponding interval representation. The interval of each edge starts with the first observed contact.
To account for temporal resolution, we set a strict inequality (open interval) end time equal to the
last observed contact plus the temporal resolution Δ
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contact time so that every edge includes a non-zero time interval even if it represents
only a single contact at time t [for example, the edge (A,B) in panel (a)]. Consistent
with this addition, in our convention the edge only persists for times strictly less
than the end time of the interval (open interval on the right).

3.3 Measuring and Controlling Concurrency

In the present work, we measure concurrency as the fraction of edge pairs that
overlap in time. In so doing, we first emphasize that the key mechanism through
which concurrency plays out is at the level of connected edges (that is, two edges
that share a common node). However, in simulations where edge timings are
independent and identically distributed, such as those in [26] and [15], the expected
measurement of concurrency over all edge pairs is equivalent to that over the subset
of connected edge pairs. In practice, in the real world, whether one more naturally
defines concurrency over all edge pairs or only connected edge pairs may be directly
determined by the nature of surveyed information. For example, if distributions
of start times and durations of edges are measured, then the resulting estimate
is effectively over all pairs. In contrast, if participants are directly queried about
their numbers of concurrent relationships, then the restriction to connected edge
pairs may be more natural. For the purposes of the present article, we measure
concurrency as the fraction of all edge pairs that overlap in time. This definition
enables us to more easily analyze the effect of concurrency on the reachability,
particularly in developing models for the effect as in [15].

In our numerical experiments, we control the concurrency by rescaling the edge
start times without changing their durations. We identify the minimum start time ts,li
of each edge—that is, each pair of nodes that are ever in contact—where li indicates
the ith edge, i ∈ [0, 1, . . . , L− 1], and L is the total number of edges. (Connecting
the notation of this section to our data analysis, we note that L = Md .) For notational
convenience, we identify the very first start time ts,min = min ts,li among all edges
and define τi = ts,li − ts,min. We can then rescale the distribution of these start times
with the parameter r by ts,l′i = ts,min + rτi , as depicted in Fig. 2a. Meanwhile, we
maintain the duration of each edge with te,l′i = ts,l′i + td,li where td,li = te,li − ts,li is
the edge duration. For example, when we set r = 0.5, the interval representation of
the original timings depicted in Figs. 1b and 2b (corresponding to r = 1) shift to the
intervals in Fig. 2c. In particular, note that the edges in panel (c) overlap each other
more than the original edges in panel (b).

3.4 Measuring Reachability

Given the interval representation of each edge, we can evaluate the average
reachability of the network corresponding to that representation. Consider the
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Fig. 2 Controlling concurrency in our toy example. (a) The very first link to appear, l0, sets the
minimum starting time in the empirical data, ts,min = ts,l0 , and the temporal axis in panel (a) is
expressed in time since ts,min. A later link, l1, has an empirical start and end time: here ts,l1 = 2
and te,l1 = 6, that is, with duration td,l1 = 4. The grey line l′1 represents the new l1 after rescaling
the start time distribution by r = 0.5, with new start time ts,l′1 obtained by pulling the original start
time forward by a factor of r . In this rescaling of the start times, the duration of the edge remains
the same. Under this rule, the original intervals in panel (b) with time resolution Δ = 1 change
under the rescaling r = 0.5 to those in panel (c). The concurrency of the intervals in the two panels
are Cr=1.0 = 3/6 = 0.5 and Cr=0.5 = 4/6 = 0.67. Further increases in r increase C here until
C = 1 for r < 1/3

(different) toy example in Fig. 3a. In general, all direct contacts such as those
connecting (A,B) yield accessible node pairs. Additional pairs like (A,C) and (D,C)
in Fig. 3c are accessible because of the temporal ordering of the edges. For example,
an infection starting from D at t = 1 can reach C by either moving first to A and
then on to B, or moving directly to B, and then having B infect C at a later time.
However, an infection seeded at C cannot ever reach A or D because of an absence
of available connections after the appearance of the (B,C) link at t = 4. That is,
neither A nor D is accessible from C. (We again emphasize our convention of open
intervals on the right, so in the example here the edge between B and D disappears
immediately before the edge between B and C starts.) We identify the accessible
ordered node pairs with the elements of the accessibility matrix R, with R(i, j) = 1
if and only if j is accessible from i, as shown in Fig. 3d.

To quantify the overall average accessibility across the whole network, we
calculate the reachability R as the density of the accessibility graph (i.e., the density
of the off-diagonal elements of the accessibility matrix),
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[1,2)
[0,3)

[2,4)

A
B

C
D [4,5)

(d)

A B C D
A - 1 1 1
B 1 - 1 1
C 0 1 - 0
D 1 1 1 -

(a) Temporal Network

Accessibility Matrix

A
B

C
D

(c) Accessible Network

A
B

C
D

Aggregated Static Network(b)

Fig. 3 Schematic representations for establishing accessibility. (a) Each edge in the network
of nodes {A,B,C,D} is denoted by a start and end time, e.g., the contact between A and D

starts at t = 1 and continues until (just before) t = 2. (b) The static network representation
aggregates all contacts that ever appear in the temporal network. (c) The corresponding directed
graph of accessibility demonstrates that asymmetric accessibilities (red arrows) are possible. (d)
The accessibility matrix encodes whether node j is accessible from node i

R = 1

N(N − 1)

∑

i �=j

R(i, j) . (1)

To calculate the accessibility matrix R and reachability, we follow the same steps
as in [15], generating temporal layers corresponding to the moment immediately
before the end of each edge:

1. Sort edges by their end times te,lw . Here, w ∈ [0, L − 1] indexes edges by their
end time in ascending order and L is the total number of edges. (We again
note L = Md here.) For example, l0 is the edge with the earliest end time
and lL−1 is the last edge to end. (Breaking ties is unimportant for calculating
reachability, except it can be used to reduce the number of calculations here,
under an appropriate change of notation.)

2. Construct the adjacency matrix Tw for the wth temporal layer by including edge
lw and all other edges lw′ with w′ > w (that is, that end after the wth edge) that
are also present just before the end time of the wth edge. That is, Tw includes lw
and all lw′ satisfying both ts,lw′ < te,lw and te,lw′ ≥ te,lw .

3. By repeating step 2, the full set of temporal layer matrices T0,T1, . . . ,TL−1
may be prepared.

4. Multiply the matrix exponentials of each temporal matrix: R = ∏L−1
w=0 e

Tw .
5. Binarize R: For all Rij > 0, set Rij = 1.
6. By using Eq. (1), evaluate the average reachability R.
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The matrix exponentials in step 4 provide a simply-expressed formula to
indicate connected components within each temporal layer. Multiplying the matrix
exponentials from consecutive layers yields (after binarizing) the reachable network
associated with that set of layers. While the matrix exponential works conveniently
for small data sets, for larger networks a more computationally tractable procedure
is to instead directly calculate the connected components of Tw and replace the
matrix exponential in step 4 with the binary indicator matrix whose elements specify
whether the corresponding pair of nodes are together in the same component at that
time. In practice, steps 3 and 4 can be trivially combined to separately consider
each temporal layer in isolation from the others. That is, with this procedure the
calculation can be performed without forming and holding the entire multilayer
representation at one time (cf. breadth-first search on the full multilayer network).
For even larger networks whose adjacency matrices must be represented as sparse
matrices in order to even fit in memory, the corresponding accessibility graph could
instead be constructed one row at a time, updating the running average of the density
R to calculate the overall reachability.

The above-described procedure for calculating reachability for the interval
representation can be used for the full temporal contact information with only minor
modification. Instead of sorting edges by their end times, the reachability due to
detailed temporal contacts proceeds by taking each possible contact interval as a
separate temporal layer. The adjacency matrix and its exponential (or component
indicator) is computed for each temporal layer, multiplying the latter together as in
step 4 except that the index runs over all unique contact times.

3.5 Reachability with Concurrency

After transforming the temporal contact information into the interval representation
(as described in Sect. 3.2), we measure reachability versus concurrency in the
empirical network data sets. We use the parameter r to rescale the start times in order
to vary concurrency. In general, reachability increases with increasing concurrency
(see Fig. 4) although the details of this relationship between reachability and
concurrency depends on the topology of the underlying network.

The High School and Conference examples display only a slight increase in
reachability with increasing concurrency for the simple reason that reachability is
already so high at zero concurrency. There are so many alternative paths between
node pairs in these two networks that almost all pairs have at least one temporally
consistent path, even for very small concurrency, and so reachability is almost
always close to 1 in these cases (see the inset of Fig. 4). The interval representation
of the original edge timings—that is, before we rescale the distribution of start times
with the r parameter described above—corresponds to C = 0.25 (High School) and
C = 0.4 (Conference).

In contrast, the DNC email network has larger concurrency in its original edge
timings (C = 0.6) but much smaller reachability, as seen in Fig. 4. Even as the start
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Fig. 4 Reachability of the empirical networks as a function of concurrency. Different levels of
concurrency have been obtained here by rescaling the distribution of start times in the original data
sets. The inset zooms in on the small deviations of reachability from 1 for the High School and
Conference examples. Note that the lines here are only to connect the data points; the lines do not
represent a functional relationship

time distribution is compressed (small r), to make the concurrency approach 1, the
reachability only approaches 0.94 (not 1). This apparent discrepancy is because the
data set includes separate connected components. That is, increasing concurrency all
the way to 1 reduces the question of accessibility to connected components in the
temporally-aggregated network, with reachability then equal to the fraction of node
pairs in the same connected component. In the temporally-aggregated DNC email
network, the largest connected component is of size 1833, with another component
of size 58.

Similarly, the relatively small value of reachability for the Brazil network as C →
1 is because the largest connected component includes 5193 (of the 8056 total)
nodes. At r = 1, the Brazil data has concurrency 0.0172. As such, we can see that
increasing the level of concurrency (that is, r < 1) can dramatically increase the
reachability for this network.

We note in particular the behavior of the High School and the Conference
data sets in having reachability values near 1 for all values of concurrency. We
point the interested reader back to [26] and [15], where the important role of
structural cohesion in the temporally-aggregated graph is demonstrated. We note
that the structural cohesion calculated [35] for these two networks are 18.3 (High
School) and 28.5 (Conference), quantifying the large number of node-independent
paths typically available in these networks. In contrast, the structural cohesion of
the DNC email network is 1.28, directly quantifying that it is much more tree-
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like, and as such there are typically few (or in many cases no) available detours
between nodes. Similarly, the structural cohesion of the Brazil network is 1.21.
Given the particularly large values of structural cohesion for the High School
and Conference networks, reachability values near 1 are not surprising, even as
concurrency approaches zero.

3.6 Accuracy of Reachability from the Interval Representation

To further explore reachability and its dependence on the temporal details of the
contacts, we calculate reachability in the four empirical temporal networks, tracing
the change in reachability over time in the original data sets (i.e., without modifying
start times). Figure 5 demonstrates the different increasing trends of reachability
with time t across these networks, setting t = 0 in the figure at the appearance of
the very first contact. Figure 5 also visualizes this increase in reachability relative to
the number of edges m(t) that have appeared by that time (i.e., the number of distinct
node pairs that have had contact by that time). The figure includes calculations using
the original contact times as well as those from the interval representation wherein
each edge is assumed to be present for the full duration from its first appearance to
its last. We use subscripts to distinguish between the calculations using the distinct
temporal contacts (c) versus the interval representation (d, indicating each edge is
assumed to be present for its total duration).

In addition to reachability (Rd , Rc), Fig. 5 includes the largest connected
component size (Sd , Sc) and normalized edge count (md/Md , mc/Mc) as a function
of time, considering all edges that have appeared since the very first contact. For
ease of comparing different time scales, we re-plot these results for reachability and
the size of the largest connected component versus the edge densities in Fig. 6. As
observed in the figures, the differences between the calculated values based on full
contacts versus the interval representation are relatively small, and in many cases
barely distinguishable.

Of course, any error in computing the accessibility of an ordered node pair in
the interval representation can only overestimate reachability. That is, an ordered
node pair identified as accessible in the full contact representation is necessarily
also accessible in the interval representation. However, it is possible that particular
paths that appear to be temporally consistent in the interval representation do not
actually have an allowed set of distinct contacts. That said, because our reachability
calculation in the interval representation only computes results at the end times of
edges, a new edge that appears (the node pair have their first contact) at time t

does not get accounted for in the interval representation until the first end time that
occurs after t . (At that time, this new edge is accounted for, even if its end time
is much later.) By showing the results of both calculations, we demonstrate how
accurately the interval representation describes reachability in these examples, with
good agreement throughout Figs. 5 and 6.
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Fig. 5 Temporal traces of reachability (R), the size of the largest component (S) and the
normalized edge count (m/M) in four empirical networks as calculated from the contacts
(subscripted with c, plotted as dashed lines) and the interval representation (subscripted with d,
solid lines). In many cases, the dashed lines are not distinguishable from the corresponding solid
lines

In line with the very high structural cohesion of the High School and Conference
networks, we observe very sharp increases in reachability at early times, with
reachability values only slightly behind the fraction of nodes in the largest connected
component. In contrast, we observe in the figure that the reachability of the DNC
email and Brazil networks increase more slowly with time, even after redisplaying
reachability versus normalized edge count. Remarkably, reachability calculated
from the interval representation deviates only slightly from the full calculation using
the complete temporal contact details. The most notable differences between the
two calculations apparent in Fig. 6 is in the High School data, with the interval
representation slightly overestimating reachability through its increase over time.
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Fig. 6 Temporal traces of reachability (R) and the size of the largest component (S) in the four
empirical networks, previously plotted in Fig. 5 are re-plotted here versus the number of edges
that have appeared to that point in time. Once again, some of the dashed lines corresponding to
calculations with the contacts are indistinguishable from the solid lines obtained from the interval
representations

A smaller overestimate is also apparent in the panels for the Conference and DNC
email networks.

Considering the importance of reachability as the average of the maximum
possible outbreak size (averaging over “patient zero” source nodes), these results
provide hope that reachability can be well estimated from the simpler interval
representation in most cases, even though the detailed dynamics of a spreading
infection surely varies between the true contacts and the interval representation.
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4 Final Remarks

The details of edge timings in a temporal network can affect the speed and extent
of the spread of diffusive dynamics such as infections or information propagation
on the network. But because including temporal details greatly increases the
complexity of the system, there has been a much greater amount of study and
successful modeling of spreading processes on static networks. With ever greater
emphasis on temporal network data, focusing on the role of concurrency appears to
be one productive way to accurately summarize the population-level effects of the
edge timing details. We here collected references to some previous studies related to
the impact of concurrency on spreading processes, including in particular the rela-
tionship between concurrency and the average reachability in the temporal network.
We have further demonstrated this relationship by calculation of reachability on
empirical examples, rescaling the start time distributions in the original edge timing
data to consider different levels of concurrency and reachability.

In so doing, we also compare the calculation of reachability on the full contact
information against that using a simplified interval representation that treats each
edge as present for the entire interval between the appearance of its first contact
and its last. We demonstrate with these examples that the level of reachability
calculated in the interval representation is nearly identical to that calculated with
the full temporal contact information. We note that this result is similar at least in
spirit to the findings of [10] where the detailed inter-event timings did not affect the
results in their model simulations as much as the start times and end times.

In terms of the temporal trace of reachability, the High School and Conference
networks show simultaneous increase of reachability with the size of the largest
connected component at early times. In contrast, the DNC email and Brazil networks
display a much slower increase in reachability, lagging behind the connected
component size, and the reachability in these networks remains relatively low. We
confirm with these empirical examples that the effect of concurrency can be quite
large in some networks, as seen for the DNC email and Brazil networks.

The importance of concurrency was first identified in the context of the spread of
HIV [28]. Conflicting observational works at the national and individual levels have
since raised questions about the value of concurrency in the public health context
(see, e.g., [5, 18, 19, 29]), but most of this work misunderstands the necessary
relation between reachability and diffusion risk highlighted here (and in, e.g.,
[15, 26]). Whereas increased concurrency increases temporal path accessibility, and
this increased reachability must increase diffusion potential, the amount of increase
in reachability depends on other network factors, as we have demonstrated. While
we have no data to speak directly to these questions about the value of concurrency
in the public health context, our results suggest that one contributing factor might
be high variance in the levels of structural cohesion in the underlying networks. As
such, by analyzing the extent of concurrency in a temporal network and its impact
on reachability given the structural properties of the underlying network, one might
be able to better choose between different intervention strategies to best mitigate the
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spread of an infectious disease or enhance the extent of positive behaviors. We hope
this chapter serves to gather relevant previous studies and motivate future work.
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Metrics for Temporal Text Networks

Davide Vega and Matteo Magnani

1 Introduction

The concept of communication is fundamental in the study of social systems
[13], and the approaches for modeling them as networks make no exception. For
example, if we focus on temporal social networks a large majority of the scenarios
studied in the literature are clearly describing communication processes, including
conversations on social media [14], mobile telephone calls [7], as well as face-to-
face interactions [22]. Even when we consider static models of social networks,
such as a friendship graphs without any associated temporal information, many
of the metrics used to analyze them are still based on the assumption that some
information is shared through the network. For example, we can measure the ability
of actors or groups of actors to efficiently spread information (closeness, diameter,
Page-Rank centrality), or we can identify actors with the ability to influence
existing information flows (betweenness centrality). In summary, the most typical
application of social network models and in particular temporal social networks is
to study systems of communication.

Despite the central role of information in communication systems, the informa-
tion exchanged through the social ties has often been neglected in network analysis.
The most popular methods for the analysis of social networks are only defined
on simple graph models, only including actors and their relationships, and hence
temporal network analysis methods only rely on the additional availability of time
annotations.

Information diffusion processes are often modeled including all three compo-
nents: the actors propagating the information, the times of the propagation and the
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content. In practice, however, the content propagated (e.g., the text itself) is used
only to define how actors are connected with each other based on, for example,
the order of links between blog posts [12], who re-shared the same content in
social media [5] or how actors interact with messages shared across multiple social
networks [18, 19]. In [23], the authors use the concept of polyadic conversation,
a model where chains of Twitter user interactions (replies, mentions and retweets)
during a time interval are first grouped into conversation trees, and then aggregated
into a static weighted graph of interactions between authors. This type of graph
aggregation has recurrently appeared in the literature of network modeling and
information retrieval [14], but there is no consensus on either what is the best
method to build such model (e.g., how to compute the length of a conversation
in terms of time and/or tree’s depth) or how the textual content affects the grouping
of actors. In summary, studying communication networks without considering what
is communicated can only allow a partial understanding of the underlying social
system.

To allow a more accurate representation of human communication, a model
for temporal text networks was recently proposed [25]. This model describes
communication events among actors, including the actors exchanging information,
the textual representation of this information and the times when the communication
happens. While this model is still limited to textual information, text is a very
common way to communicate (for example by email, or via Twitter posts) and can
also be used to represent other forms of expression, for instance oral communication
that can be translated to text either manually or semi-automatically through speech-
to-text algorithms, and also images, that can be turned into a set of keywords
describing them [24].

While mathematically temporal text networks can be seen as extensions of
temporal networks, which are themselves extensions of simple networks, there are
two important differences that require the introduction of specific analysis methods.
The most intuitive difference is of course the presence of text. An additional and
more subtle difference lies in the semantics of the temporal annotations.

In the literature on temporal social networks the time on edges is typically used
to indicate when an edge exists, e.g., that during that time the two actors are in
contact and can exchange information. An implicit assumption in existing works is
that information can be exchanged at any time when an edge is active, and that the
exchange of information is instantaneous.

When we explicitly model communication networks, we should make a dif-
ference between edges representing the possibility of communicating and edges
representing the actual production and consumption of information. In many cases
the first type of edges exist between all actors; for example, we can always send
an email to an existing email address. Therefore, in this chapter we focus on
edges representing communication acts, that is, the actual exchange of information.
These acts may have a non-negligible duration, therefore the time annotations in
a temporal text network indicate when the transmission of a (text) message starts
and when it finishes. Examples where this is important are messages exchanged
through physical networks, where the communication channel has a physical delay,
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and asynchronous communication such as by email and via social media, where the
text is sent at some time but in general only received at a later time.

This different semantics of the temporal edges in temporal networks and in
temporal text networks requires the re-definition of some central concepts, such as
time-consistent paths, which in turn leads to the definition of new specific metrics.

Finally, it is worth mentioning that NLP1 methods such as sentiment analy-
sis [3, 16] have been used in the past to study the evolution of tweets, songs,
blogs, presidential speeches without requiring information about the underlying
communication structure (who exchanges these data sources and how), using only
data from time-annotated documents and time series information [11]. The temporal
text network model does not only allow researchers to use NLP methods during the
analysis, but it provides specific metrics to combine them with other measures from
temporal networks.

This chapter introduces the concept of path in temporal text networks and various
metrics to characterize them. In Sect. 2 we introduce the temporal text network
model to encode communication networks. In Sect. 3 we introduce the concepts
of walk and path in temporal text networks, and in Sect. 4 we define alternative
ways of summarizing a path, based either on the times when the communication
acts happen or on the text exchanged through a path. Finally, in Sect. 5 we conclude
with an empirical comparison of some of the measures introduced in this chapter in
a sample network formed by the Twitter interactions between Swedish politicians.

2 Representing Temporal Text Networks

From a mathematical point of view, a temporal text network [25] can be represented
as a triple (G, x, t) where G = (A,M,E) is a directed bipartite graph representing
the communication network, x : M → X is a mapping between the messages in
M and a set of sequences of characters (text) in X and t : E → T represents the
time associated to each edge, where T is an ordered set of time annotations. The
edge directionality indicates the flow of the communication: (ai,mk) ∈ E indicates
that actor ai has produced text mk , while (mk, aj ) ∈ E indicates that actor aj is
the recipient of message mk . Actors with out-degree larger than 0 are information
producers, actors with in-degree greater than 0 are information consumers, and
actors with both positive in- and out-degrees are information prosumers.

Figure 1 describes a working example we will use during the remainder of
this chapter, representing a temporal text network with |A| = 8 actors, |M| = 6
messages and |E| = 15 edges. It is important to observe that, in most cases, the
edges to/from a message have different time attributes; the only restriction imposed
by the model is that (ai,m), (m, aj ) ∈ E ⇒ t (ai,m) ≤ t (m, aj ). In other words,
a message can be consumed at different times by each actor (e.g., different social

1NLP stands for “Natural Language Processing”.
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Fig. 1 A temporal text network model. Circles represent actors, squares represent messages and
the edges between them represent the production and reception of the messages by the actors.
Edges are also annotated with a time attribute ti ∈ T

media users can visit their notifications page at different times), but can never be
received before it has been generated (e.g., a user cannot access information that
has not been shared yet).

This simple model can be used to differentiate between so-called unicast
(messages m2 and m3 in the figure) and multicast (messages m1, m4 and m5)
communication. The model can also be used to represent a variety of communi-
cation platforms such as email and Twitter mention networks, and can be easily
extended adding edges between actors or between messages to represent additional
relationships such as a follower/followee network. Unless we explicitly mention it,
in the remainder of the chapter we will ignore these extensions.

A similar model to represent temporal interactions is the contact sequence [4,
6] model, which expresses temporal networks as a set of directed edges (called
contacts) during a finite span of time. While this model has been successfully used to
study spreading processes of information [1, 10] or the structural evolution of social
networks [8, 17, 26], the model ignores the role of the content of the messages.

A natural alternative to represent time in networks is to use a sequence of
time-annotated graphs, forming a so-called multi-layer network [2, 9]. In time-
sliced models [15], for example, each one of the aggregated networks represents
a fixed interval of time, and an edge eij is created if at least one contact has been
registered between nodes i and j in the corresponding time interval. The aggregated
graphs are sometimes weighted, in which case the edges have an assigned weight
attribute wij proportional to the number of original edges, their frequency or
another relevant time summarization function. In longitudinal networks, instead,
the relations between the same or similar actors are detected at different points of
time [20, 21]. From the modeling point of view there is not much difference between
the two models, apart from the fact that in time-sliced networks the time intervals
of two adjacent aggregated graphs are contiguous, which is not necessarily true for
longitudinal networks.
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3 Path-Based Metrics

Metrics for simple networks are based on basic concepts in graph theory, such as
adjacency and incidence, and on counting discrete objects such as edges. Temporal
networks extend simple networks with time. This requires the extension of some
basic concepts in graph theory, and as time is often represented as a real number or
interval, then temporal measures also require some additional simple arithmetical
operations, such as time difference.

Temporal text networks also contain a text attribute. Text is a much more
complex type of data, with a large number of possible operations. For example,
the comparison of two texts can be done using different models (edit distance,
word overlapping, vector representation, etc.), applying different “normalization”
operators (stemming, stop word removal, dictionary based word replacement) or
mapping the text to other domains (for example sentiments or topics). While these
choices are very important in practice, hard-coding all these details in the metrics
would make the model very complex.

Therefore, as discussed in [25], when dealing with temporal text networks we
assume to have at least one of the following two types of text functions. The first
type corresponds to a so-called continuous analysis approach, based on the idea
of having different grades of similarity between messages. In this case we assume
to have a distance function d : M × M → [0,∞), indicating how similar two
messages are; if d = 0, the two messages are considered indistinguishable (for
example because they contain the same text), and higher values of d indicate that the
two messages are less similar. Notice that one can then plug specific functions into
the model based on the text operations described above. An example of a message
distance function is the cosine of the angle between vector representations of the
two texts.

The second type of functions is targeted to a so-called discrete analysis approach,
where each message is assigned to 0, 1 or more classes. For each class i we have
a function ci : M → {0, 1}, which returns 1 if the message belongs to class i, 0
otherwise. One example is a topic modelling function with k topics, where ci(m) =
1 if m belongs to topic i. Notice that starting from a discretization function we can
also define a text distance function, for example based on how many common topics
are shared between the two input messages.

3.1 Incidence and Adjacency

In digraphs two vertices are adjacent if there is an edge between them, and two
edges are incident if the tail of the first is the head of the second. In temporal text
networks two vertices are adjacent at time t if there is an edge between them at
that time. The concept of adjacency has also been extended to edges (also known
as events or contacts): an edge entering a vertex is adjacent to an edge leaving the
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same vertex at a later time. This enables the definition of Δt-adjacency between
edges, which is satisfied when they are adjacent and the time between them is less
or equal than Δt . Note that this terminology is not completely consistent with the
one in digraphs, where only vertices can be adjacent.

Temporal text networks differ from the previous cases in two regards. First, we
do not need to extend the concept of adjacency to edges: we have two types of
vertices (actors and messages), so for example the concept of adjacency between
edges in temporal networks corresponds to adjacency between messages. This also
means that we can retain the concept of incident edges from the theory of digraphs.
Second, the idea of filtering those pairs of vertices that are close enough in time
can also be extended to actors. In summary, all the concepts discussed above can be
reduced to the following definitions.

Definition 1 (Edge Incidence) Let e1 = (vi, uk, t1) and e2 = (uk, vj , t2) be two
edges in a temporal text network. We say that e1 is incident to e2 if t1 ≤ t2.

Definition 2 (Adjacency) Let e1 = (vi, uk, t1) and e2 = (uk, vj , t2) be two edges
in a temporal text network. Then:

1. vi is adjacent to uk at time t1.
2. vi is Δt-temporally adjacent to vj if t2 − t1 ≤ Δt .
3. vi is Δx-textually adjacent to vj if vi, vj ∈ M and d(vi, vj ) ≤ Δx.

Notice that the definition of incidence and adjacency hold independently of the
type of vertices (vi, uk and vj ) involved. If vi, vj ∈ A are actors, then their temporal
adjacency is defined by the delay between the production and consumption of the
message uk ∈ M . We call an edge from an actor a to a message m a producer edge
(ep), while an edge from a message m to an actor a is called a consumer edge (ec).
If vi, vj ∈ M are messages, then their temporal adjacency is defined by the delay
between when the intermediate actor consumes (e.g., receives) the first message and
the time when it produces (e.g., sends) the second. For example, the producer edge
e4 = (al,m4) in Fig. 1 is incident to the consumer edge e10 = (m4, an), therefore
actor al is Δt-adjacent to actor an for all Δt ≥ t9 − t4.

3.2 Walks and Paths

Definition 3 (Walk) A walk in a temporal text network (also called a temporal
walk) is a sequence of edges e1, e2, . . . , el where ei is incident to ei+1 for all i from
1 to l − 1.

In the following we will write a ∈ w to indicate that a vertex (actor or message)
is present in walk w.

Notice that the definition above does not constrain the starting and ending
vertices of a path to be actors or messages. However, we will often be interested
in walks starting from an actor, because every message has a single producer in the
model used in this chapter.



Metrics for Temporal Text Networks 153

Definition 4 (Path) A path in a temporal text network (also called a temporal path)
is a walk where no vertex (message or actor) is traversed twice.

Each path establishes a precedence relation between actors indicating that
the network allows a flow of information between them. Similarly, we have a
precedence relation between messages indicating that the two messages can be part
of the same flow of information.

Definition 5 (Temporal Precedence) An actor ai temporally precedes another
actor aj if there is a path from ai to aj . A message mi temporally precedes another
message mj if there is a path from mi to mj .

Figure 2 represents the same temporal text network of Fig. 1 as a tempo-
ral sequence of edges between actors and messages. In this example, w1 =
[e4, e7, e8, e9] and w2 = [e4, e10, e11, e12, e14] are two walks of 4 and 5 edges.2

The second walk is also a path, starting at an actor and ending in a message m6, but
the first walk is not a path because the last edge e9 = (m2, al, t9) visits for a second
time the actor al . Finally, notice that in this example al precedes actor ak in path
p1 = [e4, e7] and vice-versa in path p2 = [e8, e9], while m3 precedes m6 but not
otherwise.

In some cases we may want to consider only those paths with a limited delay
and with a limited textual difference between adjacent messages. We can thus
use the definitions of Δ-adjacency introduced above to select specific paths where
sufficiently similar messages are exchanged often enough with respect to some user-
defined thresholds.

4 Path Lengths

From now on we will focus on paths starting at an actor and ending at an actor.
While a path can also start or end at a message, paths from and to actors are the
ones providing the most accurate description of an information flow, because for
every message there must always be an actor producing it, and messages that are
not consumed by anyone (as message m6 in our example) do not correspond to any
exchange of information.

The length of a path in a temporal text network can be defined based on the
topology, on time and on text.

The topological length is an unambiguous measure in simple and temporal
networks, which are only made of vertices and edges. In a temporal text network
a path contains actors, edges and messages, and the definition of length that is
compatible with the one used in temporal networks corresponds to the number of

2To simplify the notation, in this chapter we are assuming that i ≤ j ⇒ ti ≤ tj .
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Fig. 2 Temporal text network represented as a sequence of edges. The horizontal lines represent
the actors (gray color) and messages (green color) and vertical lines represent the transmission or
consumption of a message. The shaded lines indicate all existing paths beginning at actor al at the
exact time t = 4

messages in the path. This is because when a temporal network is translated into a
temporal text network every edge is transformed into a message.

The temporal length, instead, defines the overall duration of the communication
and is computed as the difference between the time of the last consumer edge and
the time of the first producer edge in the path.

The topological and temporal length measures we have just described can be
used to characterize the several paths that traverse our graph. In Fig. 2 we have
highlighted all the existing paths starting at actor al at exactly t = 4, including those
ending in a message. For example if we compare the path p1 = [e4, e10, e11, e13]
with the path p2 = [e4, e10, e11, e15] we can see that both have the same topological
length of 2 messages. However, while both paths start at the same time e4 =
(al,m4, t4), the time of the last consumer edge is different and so their temporal
length: t (e13) = t (m5, ap, t10) ≤ t (e15) = t (m5, am, t15).
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Interestingly, in temporal text networks the temporal length of a path measures
two different types of delays. On the one hand it measures the transmission time (δt)
as the difference between the time of the consumer edge t (ec) and the time when
the content has been produced t (ep). On the other hand, it indicates the idle time (τ )
of the actors involved in the communication between two consecutive edges.

Definition 6 (Transmission Time) Let e1 = (ai,m, t1) and e2 = (m, aj , t2) two
incident edges, with m ∈ M . Then the quantity t2 − t1 is called transmission time.

Definition 7 (Idle Time) Let e1 = (mi, a, t1) and e2 = (a,mj , t2) two incident
edges, with a ∈ A. Then the quantity t2 − t1 is called idle time.

Once one has defined transmission and idle times, one can also compute the sum
of all transmission times in a path, the sum of all idle times in a path, as well as the
ratio between these values and the temporal length of the path. Back to our previous
example, we can observe that the total transmission time of the messages in the first
path δ1 = (t9 − t4) + (t10 − t9) = 6 is three units smaller than in the second path
δ1 = (t9 − t4) + (t13 − t9) = 9 while their idle time is the same τF = t9 − t9 = 0;
which explains why the first path had a smaller temporal length.

The last type of length concerns the textual content in the path. Every time
a message is exchanged, this increases the temporal length of the corresponding
amount of time. Similarly, every time a new text is included in the path, this
increases the textual information in it.

Definition 8 (Textual Length)
Given a text distance function, the textual length of a communication path is

defined as the sum of the distances between the texts of all pairs of adjacent
messages in the path.

This definition quantifies the variations between adjacent messages. At the same
time, it is possible that the texts of the message keep being updated when transmitted
through the path, but never significantly deviates from the original message. In
this case, an alternative definition of length can be used to compute the maximum
distance between any pair or messages.

In the case of discrete text analysis, where each message can belong to some
classes (for example topics), this idea of estimating how homogeneous the text is
across the path can be computed using a classical measure of entropy, for example
the Shannon index:

Definition 9 (Entropy)
Let c1, . . . , cn be text discretization functions mapping text into one of n classes.

Given a path p, we define ρi(p) =
∑

m∈p ci (x(m))

Mp
, where Mp is the number of

messages in p. The textual entropy of path p is then defined as:

H(p) = −
L∑

i=1

ρi(p) ln ρi(p) (1)
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According to this definition, if all messages that are part of a path belong to the
same class (e.g., to the same topic), then the textual entropy will be 0, indicating a
homogeneous path when we look at its text. Higher values of entropy would indicate
that multiple classes (e.g., topics) are included in the path. This information can be
useful in various analysis tasks, including the identification of information flows
(when the same textual content is transferred through the network) or community
detection, where one wants a community to be homogeneous not only with respect
to the topology but also with the exchanged messages.

Once we decide which definition of length to use, this defines what are the
shortest paths between any pair of actors, which implies that we can compute
all the existing network measures based on shortest paths, including closeness
centrality, betweenness centrality, eccentricity, diameter, etc. For the definitions of
these metrics we refer the reader to any basic books on network analysis.

5 Empirical Study

In this section, we show an empirical comparison of the measures introduced in
this chapter in a real communication network. Our sample dataset consists of all the
public Twitter mentions (messages including another Twitter @username) written
by Swedish politicians during January, 2019. The period of observation takes place
4 months after the Swedish general elections in 2018, and includes the time when
the new government coalition was formed.3 Our final network consists of |A| =
886 actors, including 26 politicians (8 information producers and 18 prosumers)
and 860 mentioned users (all of them consumers), |M| = 1707 Twitter messages
with their corresponding text and |E| = 4, 882 edges between actors and messages.
Modelling the reception time is more difficult, because many social media platforms
like Twitter do not provide information about when and who consumed a piece
of information. In our experiments we assumed that the consumption time of all
messages is the same as the production time, which might not be necessarily true
(e.g., users are not always connected to all their social media and, even if they are,
the tweet might be lost in the myriad of information provided by the user’s wall).

Figure 3 shows, for each one of the 6773 pairs of actors temporally reachable, a
comparison of their topological and temporal shortest path length. It includes 5787
(85.4%) paths with only two edges, representing two Δ0-textually (and temporally)
adjacent actors who have been in direct communication. The average temporal
path length of the remaining paths increases with the number of hops (topological
length) while its statistical dispersion is reduced, as we usually observe in other
type of temporal networks (e.g., contact networks). For example, the 56 pairs of
actors connected through 3 messages (6 hops) have an average communication

3We considered only politicians who were either members of the parliament before the elections
or were part of an electoral ballot.
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Fig. 3 Temporal length.
Summary of the temporal
length distribution for all
shortest paths found in the
Swedish politicians network,
grouped by their topological
path length. All topological
paths involve an even number
of hops because we are
measuring only pairs of
reachable actors

time (shortest temporal length) of approximately 14 days. The order of magnitude
of these numbers can be explained by the skewed distribution of roles (producer,
consumer and prosumers) of the actors in the data and the small sample of the
original social network.

Another important component to understand communication networks is the
specific content their members intend to share with each other. For example, in a
conversation within a group of close people the content (text) of the messages will be
probably different between communications, while news spreading processes will
probably have a more similar topic distribution. The consistency of the topics in an
information cascade phenomenon, therefore, can be a good metric to describe the
dynamics of a complex system.

Following the methodology described in Sect. 4, we have first identified the
topics of the messages exchanged in our sample network and then, computed the
textual length using the Shannon index described in Eq. (1) to identify the shortest
paths of each pair of temporally reachable actors. While identifying the topics, we
have used the hashtags as proxies, which is a simple and well accepted solution in
many contexts; but as we will see, problematic in practice. As we mentioned in the
previous section, the definition of textual length assumes that there is a discretization
function mapping the text into at least one topic. Hence, because many tweets do
not contain any hashtag, their topic assignment is empty.

Figure 4 shows the empirical cumulative distribution function (ECDF) of the
textual shortest path in our sample network. In this particular example, only 420
observations of 6773 were computed, as many paths have an unidentified length,
either because none of the messages have a topic assigned or because they contain
only one message.
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Fig. 4 Empirical cumulative
distribution function (ECDF)
of the textual length

We can observe that more than 75% of the textual paths computed have 0 entropy,
indicating that there is one single topic in the messages of the path. A closer look
does not indicate any correlation of these results with the topological or temporal
length of the paths. The minimum textual length paths include, for example, all the
paths with 5 messages (10 hops) and 85.45% of the paths with 4 messages, but less
than 50% of the paths with 3 messages.

6 Final Remarks

In this chapter, we have revisited some of the fundamental graph measures for
temporal networks and extended them to be compatible with the temporal text
network model for communication systems. We have shown that using the proposed
model we can directly represent, in a simple but extensible way, all the elements
necessary to study communication (time, text and topology), without requiring
complex graph transformations. While mathematically temporal text networks are
not much different from time-varying graphs, the semantics of its interactions and
the presence of textual information in the model, require the introduction of specific
analysis methods. In particular, in this chapter we have focused on redefining the
idea of connectivity and most of its related measures such as incidence, adjacency,
paths and distance, providing alternative metrics for actors and messages when
we found it was relevant and necessary. Finally, we have shown how the different
distance measures can be used in practice to discover patterns of connectivity.
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We believe that, beyond their direct application to different analysis tasks,
these measures are fundamental to redefine other relevant measures for studying
communication systems such as centrality measures or developing analysis methods
like community detection algorithms.
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Bursty Time Series Analysis
for Temporal Networks

Hang-Hyun Jo and Takayuki Hiraoka

1 Introduction

Characterizing the interaction structure between constituents of complex systems is
crucial to understand not only the dynamics of those systems but also the dynamical
processes taking place in them. The topological structure of interaction has been
modeled by a network, where nodes and links denote the constituents and their
pairwise interactions, respectively [1, 2]. When the interaction is temporal, one can
adopt a framework of temporal networks [3–5], where links are considered being
existent or activated only at the moment of interaction. The temporal interaction
pattern of each link can be described by a series of interaction events or an event
sequence. Many empirical event sequences are known to be non-Poissonian or
bursty [6–8], e.g., as shown in human communication patterns [9–16], where bursts
denote a number of events occurring in short active periods separated by long
inactive periods. Such bursty event sequences can be fully understood both by
heterogeneous interevent times (IETs) and by correlations between IETs [17, 18].
Here the IET, denoted by τ , is defined by the time interval between two consecutive
IETs. The heterogeneities of IETs have been extensively studied in terms of heavy-
tailed or power-law IET distributions [8], while the correlations between IETs have
been far from being fully explored.
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In this Chapter, we introduce various measures for bursty time series analysis,
such as the IET distribution, the burstiness parameter, the memory coefficient, the
bursty train sizes, and the autocorrelation function, to discuss the relation between
those measures. Then we show that the correlations between IETs can affect the
speed of spreading taking place in temporal networks. Finally, we discuss possible
research topics regarding bursty time series analysis for temporal networks.

2 Bursty Time Series Analysis

2.1 Measures and Characterizations

Non-Poissonian, bursty time series or event sequences have been observed not only
in the human communication patterns [8], but also in other natural and biological
phenomena, including solar flares [19], earthquakes [20, 21], neuronal firings [22],
and animal behaviors [23, 24]. Temporal correlations in such event sequences
have been characterized by various measures and quantities [8], such as the IET
distribution, the burstiness parameter, the memory coefficient, the bursty train sizes,
and the autocorrelation function. Each of these five measures captures a different
aspect of the bursty time series, while they are not independent of each other.
Here we discuss the relation between these five measures, which is conceptually
illustrated in Fig. 1.

Fig. 1 Conceptual diagram for the relation between the autocorrelation function A(td), the
interevent time distribution P(τ), and the burst size distribution for a given time window QΔt (b),
together with the burstiness parameter B and the memory coefficient M . The relation between
these five measures is discussed in Sect. 2: In particular, for the dependence of γ on α and β, refer
to Sect. 2.3, and for the relation between M and QΔt (b), refer to Sect. 2.4
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1. The autocorrelation function for an event sequence x(t) is defined with delay
time td as follows:

A(td) ≡ 〈x(t)x(t + td )〉t − 〈x(t)〉2
t

〈x(t)2〉t − 〈x(t)〉2
t

, (1)

where 〈·〉t means a time average. The event sequence x(t) can be considered to
have the value of 1 at the moment of event occurred, 0 otherwise. For the event
sequences with long-term memory effects, one may find a power-law decaying
behavior with a decaying exponent γ :

A(td) ∼ t
−γ

d . (2)

Temporal correlations measured by A(td) can be understood not only by the
heterogeneous IETs but also by correlations between them.

2. The heterogeneous properties of IETs have often been characterized by the
heavy-tailed or power-law IET distribution P(τ) with a power-law exponent α:

P(τ) ∼ τ−α, (3)

which may already imply clustered short IETs even with no correlations between
IETs. In the case when IETs are fully uncorrelated with each other, i.e., for
renewal processes [25], the power spectral density was analytically calculated
from power-law IET distributions [26]. Using this result, one can straightfor-
wardly derive the scaling relation between α and γ :

α + γ = 2 for 1 < α ≤ 2,
α − γ = 2 for 2 < α ≤ 3.

(4)

This relation was also derived in the study of priority queueing models [27].
The relation α + γ = 2 for 1 < α ≤ 2 has been derived in the context of
earthquakes [28] as well as of the hierarchical burst model [29].

3. The degree of burstiness in the event sequence can be measured by a single value
derived from the IET distribution, namely, the burstiness parameter B, which is
defined as [17]

B ≡ σ − 〈τ 〉
σ + 〈τ 〉 , (5)

where σ and 〈τ 〉 are the standard deviation and mean of IETs, respectively. For
the regular event sequence, all IETs are the same, leading to B = −1, while
for the totally random, Poisson process, since σ = 〈τ 〉, one gets B = 0. In the
extremely bursty case, characterized by σ � 〈τ 〉, one finds B → 1. However,
when analyzing the empirical event sequences of finite sizes, the value of σ is
typically limited by the number of events n such that the maximum value of σ
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turns out to be σmax � 〈τ 〉√n− 1, allowing to propose an alternative burstiness
measure [30]:

Bn ≡
√
n+ 1σ − √

n− 1〈τ 〉
(
√
n+ 1 − 2)σ +√

n− 1〈τ 〉 , (6)

which can have the value of 1 (0) in the extremely bursty case (in the Poisson
process) for any n.

4. The correlations between IETs have been characterized by several measures [8].
Among them, we focus on the memory coefficient and bursty train sizes. The
memory coefficient M is defined as the Pearson correlation coefficient between
two consecutive IETs, whose value for a sequence of n IETs, i.e., {τi}i=1,··· ,n,
can be estimated by [17]

M ≡ 1

n− 1

n−1∑

i=1

(τi − 〈τ 〉1)(τi+1 − 〈τ 〉2)

σ1σ2
, (7)

where 〈τ 〉1 (〈τ 〉2) and σ1 (σ2) are the average and the standard deviation of the
first (last) n − 1 IETs, respectively. Positive M implies that the small (large)
IETs tend to be followed by small (large) IETs. Negative M implies the opposite
tendency, while M = 0 is for the uncorrelated IETs. In many empirical analyses,
positive M has been observed [17, 31–33].

5. Another notion for measuring the correlations between IETs is the bursty
trains [7]. A bursty train is defined as a set of consecutive events such that IETs
between any two consecutive events in the bursty train are less than or equal to
a given time window Δt , while those between events in different bursty trains
are larger than Δt . The number of events in the bursty train is called bursty train
size or burst size, and it is denoted by b. The distribution of b would follow an
exponential function if the IETs are fully uncorrelated with each other. However,
b has been empirically found to be power-law distributed, i.e.,

QΔt(b) ∼ b−β (8)

for a wide range of Δt , e.g., in earthquakes, neuronal activities, and human
communication patterns [7, 31, 34, 35]. This indicates the presence of higher-
order correlations between IETs beyond the correlations measured by M .1 We
note that the exponential distributions of QΔt(b) have also been reported for
mobile phone calls of individual users in another work [36].

1The generalized memory coefficient has also been suggested as the Pearson correlation coefficient
between two IETs separated by k IETs [17]. The case with k = 0 corresponds to the M in
Eq. (7). The relation between the generalized memory coefficients and burst size distributions
can be studied for better understanding the correlation structure between IETs.
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We show that the statistics of IETs and burst sizes are interrelated to each
other [18]. Let us consider an event sequence with n + 1 events and n IETs,
denoted by T ≡ {τ1, · · · , τn}. For a given Δt one can detect m bursty trains
whose sizes are denoted by B ≡ {b1, · · · , bm}. The sum of burst sizes must be
the number of events, i.e.,

∑m
j=1 bj = n+1. With 〈b〉 denoting the average burst

size, we can write

m〈b〉 = n+ 1 � n, (9)

where n � 1 is assumed. The number of bursty trains is related to the number of
IETs larger than Δt , i.e.,

m = |{τi |τi > Δt}| + 1. (10)

It is because each burst size, say b, requires b − 1 consecutive IETs less than or
equal to Δt and one IET larger than Δt . In the case with n,m � 1, we get

m � nF(Δt), (11)

where F(Δt) ≡ ∫∞
Δt

P (τ ′)dτ ′ denotes the complementary cumulative distri-
bution function of P(τ). By combining Eqs. (9) and (11), we obtain a general
relation as

〈b〉F(Δt) � 1, (12)

which holds for arbitrary functional forms of P(τ) and QΔt(b) [18].

2.2 Correlation Structure and the Bursty-Get-Burstier
Mechanism

We pay special attention to the empirical observation that the tail parts of burst size
distributions are characterized by the same power-law exponent for a wide range of
time windows, e.g., ranging from a few minutes to the order of 1 h in mobile phone
communication patterns [7]. To better understand this observation, let us begin with
a simple example in Fig. 2. For each given time window Δtl with “level” l = 0, 1, 2,
one can obtain the corresponding set of burst sizes, denoted by {b(l)}. Here we
observe that several bursty trains at the level l are merged to make one bursty train
at the level l + 1. In other words, one burst size in {b(l+1)} is typically written as
a sum of several burst sizes in {b(l)}. By characterizing this merging pattern one
can get insight into the correlation structure between IETs. In particular, we raise
a question: In order to find the power-law tail as QΔtl (b

(l)) ∼ b(l)−β for every l,
which burst sizes in {b(l)} should be merged to make one burst size in {b(l+1)}?
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Fig. 2 Schematic diagram for the hierarchical organization of bursty trains at various timescales
with 15 events, denoted by vertical lines. These events are clustered using time windows Δtl with
l = 0, 1, 2, and the sizes of bursty trains or burst sizes are denoted by b(l), e.g., {b(1)} = {4, 6, 1, 4}

One possible answer to this question has recently been suggested, which is called
the bursty-get-burstier (BGB) mechanism [18], indicating that the bigger (smaller)
bursty trains tend to follow the bigger (smaller) ones.

We introduce one implementation method of the BGB mechanism following
Ref. [18], where P(τ) and QΔt0(b

(0)) are assumed to be given. Although this
method has been suggested for arbitrary forms of P(τ) and QΔt0(b

(0)), we focus
on the case with power-law tails for both distributions. Precisely, we consider a
power-law P(τ) with a power-law exponent α > 1 and a lower bound of IET τmin,
i.e.,

P(τ) = (α − 1)τα−1
min τ−αθ(τ − τmin), (13)

and a power-law distribution of burst sizes at the zeroth level (l = 0) as

QΔt0(b
(0)) = ζ(β)−1b(0)−β for b(0) = 1, 2, · · · , (14)

where θ(·) denotes the Heaviside step function and ζ(·) does the Riemann zeta
function.

We first prepare a set of n IETs, T = {τ1, · · · , τn}, that are independently drawn
from P(τ) in Eq. (13). This T is partitioned into several subsets, denoted by Tl , at
different timescales or levels l = 0, 1, · · · , L:

T0 ≡ {τi |τmin ≤ τi ≤ Δt0},
Tl ≡ {τi |Δtl−1 < τi ≤ Δtl} for l = 1, · · · , L− 1, (15)

TL ≡ {τi |τi > ΔtL−1},

where Δtl < Δtl+1 for all ls. For example, one can use Δtl = τmincs
l with constants

c, s > 1. This partition readily determines the number of bursty trains at each level,
denoted by ml , similarly to Eq. (10):

ml =
∣∣{τi |τi > Δtl}

∣∣+ 1. (16)
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Then the sizes of bursty trains for a given Δtl are denoted by Bl ≡ {b(l)}, with ml =
|Bl |. To generate B0, m0 burst sizes are independently drawn from QΔt0(b

(0)) in
Eq. (14). Partitioning B0 into subsets and summing up the burst sizes in each subset
leads to B1. Precisely, for each l, Bl is sorted, e.g., in a descending order, then
it is sequentially partitioned into ml+1 subsets of the (almost) same size. The sum
of b(l)s in each subset leads to one b(l+1), implying that the bigger bursty trains
are merged together, so do the smaller ones. This procedure is repeated until the
level L is reached. Using the information on which burst sizes at the level l are
merged to get each of burst sizes at the level l + 1, one can construct the sequence
of IETs by permuting IETs in T and finally get the event sequence. See Ref. [18]
for details. Numerical simulations have shown that the generated event sequences
show QΔtl (b

(l)) ∼ b(l)−β at all levels [18].
We remark that the above method lacks some realistic features observed in the

empirical analyses. For example, by the above method the number of burst sizes in
each partition at the level l is almost the same as being either  ml

ml+1
" or  ml

ml+1
" + 1,

which is not always the case. Therefore more realistic merging processes for the
correlation structure between IETs could be investigated as a future work.

2.3 Temporal Scaling Behaviors

The scaling relation between α and γ for the uncorrelated IETs in Eq. (4) implies
that the autocorrelation function is solely determined by the IET distribution. We
can consider a more general case that the IETs are correlated with each other, in
particular, in terms of the power-law burst size distributions. Then the temporal
correlations measured by the autocorrelation function A(td) can be understood
by means of the statistical properties of IETs, P(τ), together with those of the
correlations between IETs, QΔt(b). In terms of scaling behaviors, one can study
the dependence of γ on α and β.

The dependence of γ on α and β has been investigated by dynamically
generating event sequences showing temporal correlations, described by the power-
law distributions of IETs and burst sizes in Eqs. (3) and (8). These generative
approaches have been based on two-state Markov chain [7] or self-exciting point
processes [37]. One can also take an alternative approach by shuffling or permuting
a given set of IETs according to the BGB mechanism described in Sect. 2.2, where
power-law distributions of IETs and burst sizes are inputs rather than outputs of
the model. Then one can explicitly tune the degree of correlations between IETs to
test whether the scaling relation in Eq. (4) will be violated due to the correlations
between IETs.

For this, the event sequences are generated using the BGB mechanism for
the power-law distributions of IETs and burst sizes, which are then analyzed by
measuring autocorrelation functions A(td) for various values of α and β. The
decaying exponent γ of A(td) is estimated based on the simple scaling form of



168 H.-H. Jo and T. Hiraoka

 0.2

 0.4

 0.6

 0.8

 1

 2.5  3  3.5  4

(a)

γ

β

α=1.6
1.9
2.0

 0.2

 0.4

 0.6

 0.8

 1

 2.5  3  3.5  4

(b)

γ

β

2.6
2.3
2.1

Fig. 3 The values of γ estimated from the numerically obtained autocorrelation functions, for
various values of α and β, with horizontal dashed lines corresponding to those for the uncorrelated
cases. Reprinted figure with permission from Ref. [18] Copyright (2017) by the American Physical
Society

A(td) ∼ t
−γ

d . The estimated values of γ for various values of α and β are presented
in Fig. 3. When α ≤ 2, it is numerically found that the autocorrelation functions
for β < 3 deviate from the uncorrelated case, implying the violation of scaling
relation between α and γ in Eq. (4). Precisely, the smaller β leads to the larger γ ,
implying that the stronger correlations between IETs may induce the faster decaying
of autocorrelation. On the other hand, in the case with α > 2, the estimated γ

deviates significantly from that for the uncorrelated case for the almost entire range
of β, although γ approaches the uncorrelated case as β increases as expected.

One can argue that the deviation (or the violation of α + γ = 2) observed for
β < 3 is due to the fact that the variance of b diverges for β < 3. This argument
seems to explain why α+ γ = 2 is observed even when β = 3, for event sequences
generated using two-state Markov chain [7].

For better understanding the above results, more rigorous studies need to be
done. As the analytical calculation of γ as a function of β is a very challenging
task, one can tackle a simplified problem. For example, the effects of correlations
only between two consecutive IETs on the autocorrelation function have been
analytically studied to find the M-dependence of γ [38].

2.4 Limits of the Memory Coefficient in Measuring
Correlations

The memory coefficient, measuring the correlations only between two consecutive
IETs, has been used to analyze event sequences in natural phenomena and human
activities as well as to test models for bursty dynamics [17, 31, 33, 37]. It has been
found that M ≈ 0.2 for earthquakes in Japan, while M is close to 0 or less than 0.1
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for various human activities [17]. In another work on emergency call records in a
Chinese city, individual callers are found to show diverse values of M , i.e., a broad
distribution of M ranging from −0.2 to 0.5 but peaked at M = 0 [31]. Based on
these empirical observations, one might conclude that most of human activities do
not show strong correlations between IETs. On the other hand, the empirical value of
β for the burst size distributions varies from 2.5 for earthquakes in Japan to 2.8–3.0
for Wikipedia editing patterns [35] and 3.9–4.2 for mobile phone communication
patterns [7, 34], while it is found that β ≈ 2.21 in the emergency call dataset [31].
Since the power-law behaviors of burst size distributions for a wide range of time
windows imply the complex, higher-order correlations between IETs, this seems
to be inconsistent with the weak correlation implied by the observation M ≈ 0 in
human activities.

This puzzling issue has been resolved by deriving the analytical form of M as
a function of parameters describing P(τ) and QΔt(b) [39]. Here we introduce the
derivation of M following Ref. [39]. By considering bursty trains detected using one
time window or timescale Δt , we divide T = {τ1, · · · , τn} into two subsets as

T0 ≡ {τi |τi ≤ Δt}, (17)

T1 ≡ {τi |τi > Δt}. (18)

The set of all pairs of two consecutive IETs, {(τi, τi+1)}, can be divided into four
subsets as follows:

Tμν ≡ {(τi, τi+1)|τi ∈ Tμ, τi+1 ∈ Tν}, (19)

where μ, ν ∈ {0, 1}. By denoting the fraction of IET pairs in each Tμν by tμν ≡
〈|Tμν |〉/(n− 1), the term 〈τiτi+1〉 in Eq. (7) can be written as

〈τiτi+1〉 =
∑

μ,ν∈{0,1}
tμντ

(μ)τ (ν), (20)

where

τ (0) ≡
∫ Δt

0 τP (τ)dτ
∫ Δt

0 P(τ)dτ
, τ (1) ≡

∫∞
Δt

τP (τ)dτ
∫∞
Δt

P (τ)dτ
. (21)

Here we have assumed that the information on the correlation between τi and τi+1
is carried only by tμν , while such consecutive IETs are independent of each other
under the condition that τi ∈ Tμ and τi+1 ∈ Tν . This assumption of conditional
independence is based on the fact that the correlation between τi and τi+1 with
τi ∈ Tμ and τi+1 ∈ Tν is no longer relevant to the burst size statistics, because the
bursty trains are determined depending only on whether each IET is larger than Δt

or not. Then M in Eq. (7) reads in the asymptotic limit with n � 1
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M �
∑

μ,ν∈{0,1} tμντ (μ)τ (ν) − 〈τ 〉2

σ 2 . (22)

Here we have approximated as 〈τ 〉1 � 〈τ 〉2 � 〈τ 〉 and σ1 � σ2 � σ , with 〈τ 〉 and
σ denoting the average and standard deviation of IETs, respectively. Note that τ (0)

and τ (1) are related as follows:
(

1 − 1

〈b〉
)
τ (0) + 1

〈b〉τ
(1) � 〈τ 〉. (23)

For deriving M in Eq. (22), tμνs need to be calculated. Since each pair of IETs
in T11 implies a bursty train of size 1, the average size of T11 is mQΔt(1), with m

denoting the number of bursty trains detected using Δt . Thus, the average fraction
of IET pairs in T11 becomes

t11 ≡ 〈|T11|〉
n− 1

� QΔt(1)

〈b〉 , (24)

where Eq. (9) has been used. The pair of IETs in T10 (T01) is found whenever a
bursty train of size larger than 1 begins (ends). Hence, the average fraction of T10,
equivalent to that of T01, must be

t10 ≡ 〈|T10|〉
n− 1

� 1

〈b〉
∞∑

b=2

QΔt(b) = 1 −QΔt(1)

〈b〉 , (25)

which is the same as t01 ≡ 〈|T01|〉/(n − 1). Finally, for each bursty train of size
larger than 2, we find b − 2 pairs of IETs belonging to T00, indicating that the
average fraction of T00 is

t00 ≡ 〈|T00|〉
n− 1

� 1

〈b〉
∞∑

b=3

(b − 2)QΔt (b) = 〈b〉 − 2 +QΔt(1)

〈b〉 . (26)

Note that t00 + t01 + t10 + t11 � 1. Then by using Eqs. (21) and (23) one obtains

∑

μ,ν∈{0,1}
tμντ

(μ)τ (ν) = [〈b〉QΔt(1)− 1](〈τ 〉 − τ (0))2 + 〈τ 〉2, (27)

finally leading to

M � [〈b〉QΔt(1)− 1](〈τ 〉 − τ (0))2

σ 2 . (28)

This solution has been derived for arbitrary forms of P(τ) and QΔt(b).
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We investigate the dependence of M on QΔt(b), while keeping the same P(τ).
As for the burst size distribution, we consider a power-law distribution as follows:

QΔt(b) = ζ(β)−1b−β for b = 1, 2, · · · . (29)

We assume that β > 2 for the existence of 〈b〉, i.e., 〈b〉 = ζ(β−1)/ζ(β). As for the
IET distribution, a power-law distribution with an exponential cutoff is considered:

P(τ) = τα−1
c

Γ (1 − α, τmin/τc)
τ−αe−τ/τc θ(τ − τmin), (30)

where τmin and τc denote the lower bound and the exponential cutoff of τ ,
respectively. Here Γ (·, ·) denotes the upper incomplete Gamma function. Figure 4
shows how M varies according to the power-law exponent β for a given α for
both cases with diverging and finite τc, respectively. For the numerical simulations,
the event sequences were generated using the implementation method of the BGB
mechanism in Sect. 2.2, but using Eq. (30). We confirm the tendency that the larger
positive value of M is associated with the smaller value of β, i.e., the heavier
tail. This tendency can be understood by the intuition that the smaller β implies
the stronger correlations between IETs, possibly leading to the larger M . We also
find that M ≈ 0 for β ≈ 4, whether τc is finite or infinite. This implies that
the apparently conflicting observations in human activities are indeed compatible.
Hence, we raise an important question regarding the effectiveness or limits of M

in measuring higher-order correlations between IETs. Although the definition of
M is straightforward and intuitive, it may not properly characterize the complex
correlation structure between IETs in some cases.
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Fig. 4 The analytical solution of M in Eq. (28) as a function of β in Eq. (14) for several values of
α in Eq. (30) (solid lines), compared with corresponding numerical results (symbols with error
bars). In panel (a) we use the pure power-law distribution of P(τ) in Eq. (30), with infinite
exponential cutoff, i.e., τc → ∞, while the general form of P(τ) with τc = 103τmin is used
in panel (b). The inset shows the same result as in panel (b), but in a semi-log scale. Each point
and its standard deviation are obtained from 50 event sequences of size n = 5 × 105. Reprinted
figure with permission from Ref. [39] Copyright (2018) by the American Physical Society
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3 Effects of Correlations Between IETs on Dynamical
Processes

The dynamical processes, such as spreading, diffusion, and cascades, taking place
in a temporal network of individuals are known to be strongly affected by bursty
interaction patterns between individuals [40–53]: In particular, spreading processes
in temporal networks have been extensively studied. An important question is what
features of temporal networks are most relevant to predict the speed of propagation,
e.g., of disease or information. One of the crucial and widely studied features
is the heterogeneities of IETs in the temporal interaction patterns. It was shown
that the bursty interaction patterns can slow down the early-stage spreading by
comparing the simulated spreading behaviors in some empirical networks and in
their randomized versions [40, 41, 49]. The opposite tendency was also reported
using another empirical network or model networks [44, 45, 48].

In contrast to the effects of heterogeneous IETs on the spreading, yet little is
known about the effects of correlations between IETs on the spreading, except for
few recent works [52, 54]. This could be partly because the contagion dynamics
studied in many previous works, e.g., susceptible-infected (SI) dynamics [51], has
focused on an immediate infection upon the first contact between susceptible and
infected nodes, hence without the need to consider correlated IETs. In another
work [55], probabilistic contagion dynamics, which naturally involves multiple
consecutive IETs, was studied by assuming heterogeneous but uncorrelated IETs.
Therefore, the effects of heterogeneous and correlated IETs on the spreading need
to be systematically studied for better understanding the dynamical processes in
complex systems.

To study the spreading dynamics, one can consider one of the extensively studied
epidemic processes, i.e., susceptible-infected (SI) dynamics [51]: A state of each
node in a network is either susceptible or infected, and an infected node can infect
a susceptible node by the contact with it. Here we assume that the contact is
instantaneous. One can study a probabilistic SI dynamics, in which an infected
node can infect a susceptible node with probability η (0 < η < 1) per contact,
as depicted in Fig. 5a. Due to the stochastic nature of infection, multiple IETs can
be involved in the contagion, hence the correlations between IETs in the contact
patterns can influence the spreading behavior. The case with η = 1 corresponds
to the deterministic version of SI dynamics: A susceptible node is immediately
infected after its first contact with an infected node, see Fig. 5b. Finally, for studying
the effect of correlations between IETs on the spreading in a simpler setup, we
introduce two-step deterministic SI (“2DSI” in short) dynamics [53] as a variation
of generalized epidemic processes [56–59], see Fig. 5c. Here a susceptible node first
changes its state to an intermediate state upon its first contact with an infected node;
it then becomes infected after the second contact with the same or another infected
node. Below we only introduce the results for 2DSI dynamics from Ref. [53].

For modeling the interaction structure in a population, we focus on Bethe lattices
as networks of infinite size, where each node has k neighbors. As for the temporal
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Fig. 5 Schematic diagrams for (a) the probabilistic susceptible-infected (SI) dynamics, (b) the
one-step deterministic SI dynamics, and (c) the two-step deterministic SI dynamics. For each node,
the susceptible or intermediate state is represented by a dashed horizontal line, while the infected
state is by a solid horizontal line. In each panel, a node u gets infected in the time denoted by an
upper vertical arrow, then it tries to infect its susceptible neighbor v whenever they make contact
(vertical lines). The successful infection of v by u is marked by a lower vertical arrow. The time
interval between the infection of u and that of v (striped band) defines the transmission time r . For
the definitions of r0 and τ s, see the text. Figure in Ref. [53] by Takayuki Hiraoka and Hang-Hyun
Jo is licensed under CC BY 4.0

contact patterns, we assume that the contacts between a pair of nodes or on a link
connecting these nodes are instantaneous and undirected. Moreover, the contact
pattern on each link is assumed to be independent of the states of two end nodes as
well as of contact patterns on other links. The contact pattern on each link is modeled
by a statistically identical event sequence with heterogeneous and correlated IETs.
For this, the shape of IET distribution P(τ) and the value of memory coefficient
M are given as inputs of the model. As for the IET distribution, we adopt P(τ)

in Eq. (30). We fix τmin = 1 without loss of generality and set τc = 103 in
our work. Based on the empirical findings for α [8], we consider the case with
1.5 ≤ α ≤ 3. Secondly, only the positive memory coefficient M is considered,
precisely, 0 ≤ M < 0.4, based on the empirical observations [17, 31–33].

Precisely, for each link, we draw n random values from P(τ) to make an IET
sequence T = {τ1, · · · , τn}, for sufficiently large n. Using Eq. (7), we measure
the memory coefficient from T , denoted by M̃ . Two IETs are randomly chosen
in T and swapped only when this swapping makes M̃ closer to M , i.e., the target
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Fig. 6 Two-step deterministic SI dynamics in Bethe lattices: (a) Average numbers of infected
nodes as a function of time, 〈I (t)〉, in Bethe lattices with k = 4 for the same IET distribution
with power-law exponent α = 1.5 in Eq. (30), but with various values of memory coefficient M .
For each value of M , the average (dashed curve) and its standard error (shaded area) were obtained
from 103 runs with different initial conditions. (b–g) Estimated exponential growth rates a, defined
in Eq. (31) (top panels) and their relative growth rates a/a0 with a0 ≡ a(M = 0) (bottom panels)
are plotted for various values of k, α, and M . The lines are guides to the eye. Figure in Ref. [53]
by Takayuki Hiraoka and Hang-Hyun Jo is licensed under CC BY 4.0

value. By repeating the swapping, we obtain the IET sequence whose M̃ is close
enough to M , and from this IET sequence we get the sequence of contact timings
for each link.2 Then the temporal network can be fully described by a set of contact
timings for all links. Each simulation begins with one node infected at random in
time, which we set as t = 0, while all other nodes are susceptible at this moment.
For each simulation, we measure the number of infected nodes as a function of time,
I (t). The average number of infected nodes 〈I (t)〉 is found to exponentially increase
with time, e.g., as shown in Fig. 6a:

〈I (t)〉 ∼ eat , (31)

where a = a(k, α,M) denotes the exponential growth rate, known as the Malthu-
sian parameter [61]. a turns out to be a decreasing function of M , indicating the
slowdown of spreading due to the positive correlation between IETs, see Fig. 6b–d.
The slowdown can be more clearly presented in terms of the relative growth rate
a/a0 with a0 ≡ a(M = 0) for all cases of k and α, as shown in Fig. 6e–g. We
summarize the main observations from the numerical simulations as follows:

1. a decreases with M .
2. a increases with α.

2Another algorithm for generating bursty time series using the copula has recently been sug-
gested [60].
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3. a increases with k.
4. The deviation of a/a0 from 1 tends to be larger for smaller α.

For understanding these observations, we provide an analytical solution for the
transmission time in a single link setup. Let us consider a link connecting nodes u

and v, see Fig. 5. If u gets infected from its neighbor other than v in time tu, and later
it infects v in time tv , the time interval between tu and tv defines the transmission
time r ≡ tv − tu. Here we assume that v is not affected by any other neighbors than
u, for the sake of simplicity. In order for the infected u to infect the susceptible v, u
must wait at least for the next contact with v. This waiting or residual time is denoted
by r0. For the 2DSI dynamics, the transmission process involves two consecutive
IETs. If the infection of u occurs during the IET of τi , then the transmission time is
written as

r = r0 + τi+1, (32)

with τi+1 denoting the IET following τi . Information on the correlations between τi
and τi+1 is carried by the joint distribution P(τi, τi+1) or the conditional distribution
P(τi+1|τi). Using P(τi+1|τi) with τi+1 = r − r0, the transmission time distribution
is written as

R(r) = 1

〈τ 〉
∫ r

0
dr0

∫ ∞

r0

dτiP (τi)P (r − r0|τi), (33)

where it is obvious from Eq. (32) that τi ≥ r0 and 0 ≤ r0 ≤ r . The average
transmission time is calculated as

〈r〉 ≡
∫ ∞

0
drrR(r) = 1

2

(
〈τ 〉 + σ 2

〈τ 〉
)

+ 1

〈τ 〉 〈τiτi+1〉, (34)

where

〈τiτi+1〉 ≡
∫ ∞

0
dτi

∫ ∞

0
dτi+1τiτi+1P(τi, τi+1). (35)

In order to relate this result to the memory coefficient in Eq. (7), we define a
parameter as

M ≡ 〈τiτi+1〉 − 〈τ 〉2

σ 2 (36)

to finally obtain the analytical result of the average transmission time:

〈r〉 = 3

2
〈τ 〉 +

(
1

2
+M

)
σ 2

〈τ 〉 . (37)
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We remark that our result in Eq. (37) is valid for arbitrary functional forms of IET
distributions as long as their mean and variance are finite. M is coupled with σ 2/〈τ 〉,
implying that the impact of correlations between IETs becomes larger with broader
IET distributions. More importantly, we find that a stronger positive correlation
between consecutive IETs leads to a larger average transmission time. This can be
understood in terms of the role of the variance of IETs in the average transmission
time. That is, the variance of the sum of two consecutive IETs is amplified by
the positive correlation between those IETs. Based on the result of the single-link
analysis, we can undersand the numerical results in Fig. 6: The decreasing a with
M is expected from Eq. (37), so is the increasing a with α as both 〈τ 〉 and σ 2/〈τ 〉
decrease with α. The observation that the deviation of a/a0 from 1 tends to be larger
for smaller α implies that the effect of M becomes larger for smaller α, which can be
roughly understood by a larger value of σ 2/〈τ 〉 coupled to M in Eq. (37). Finally,
the increasing a with the degree k is trivial, while the analytical approach to this
dependency is not trivial, calling for more rigorous investigation.

4 Discussion

In this Chapter, we have introduced various measures and characterizations for
bursty time series analysis and showed how they can be related to each other. Yet
more rigorous studies need to be done for understanding such relation comprehen-
sively. In the context of temporal networks, the superposition of event sequences
of links incident to a node can result in the event sequence of the node. Then
bursty behaviors of a node can be understood in terms of those of links incident
to the node. For analyzing the relation between bursty behaviors in nodes and
links, one can adopt the notion of contextual bursts by which the scaling behaviors
of IET distributions of nodes and links can be systematically understood [62].
Researchers can also study how the correlations between IETs in one node or
link are related to those in other nodes or links, how such inter-correlations can
be properly characterized, and how they can affect the dynamical processes taking
place in temporal networks.
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Challenges in Community Discovery
on Temporal Networks

Remy Cazabet and Giulio Rossetti

1 Introduction

The modular nature of networks is one of the most studied aspects of network
science. In most real-world networks, a mesoscale organization exists, with nodes
belonging to one or several modules or clusters [29]: think of groups in social
networks (groups of friends, families, organizations, countries, etc.), or biological
networks such as brain networks [27]. The term community is commonly used
in the network science literature to describe a set of nodes that are grouped for
topological reasons (e.g., they are strongly connected together and more weakly
connected to the rest of the network. Other topological criteria exist, such as having
a high internal clustering, similar connection patterns, etc. See Sect. 3 for more on
this topic). The literature on the topic is large and diverse, not only on the topic
of automatic community discovery but also on community evaluation, analysis, or
even generation of networks with realistic community structure. In the last 10 years,
many works have focused on adapting those problems to temporal networks [36].
In this chapter, we present an overview of the active topics of research on dynamic
communities. For each of these topics, when relevant, we highlight some current
challenges.

The chapter is organized into five parts. In the first one, we discuss the definition
of dynamic clusters in temporal networks, and how to represent them. In the
second section, we concentrate on the specificity of dynamic communities, in
particular focusing on smoothness, identity and algorithmic complexity. Section 4
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focuses on the differences between communities in different types of dynamic
networks such as link streams or snapshot sequences. In Sect. 5, we discuss
the evaluation of dynamic communities, using internal and external evaluation—
requiring appropriate synthetic benchmarks. Finally, in Sect. 6, we briefly introduce
existing tools to work with dynamic communities.

2 Representing Dynamic Communities

The first question to answer when dealing with communities is: what is a good
community? There is no universal consensus on this topic in the literature; thus, in
this article, we adopt a definition as large as possible:

Definition 1 (Community) A (static) community in a graph G = (V ,E) is (i) a
cluster (i.e., a set) of nodes C ⊆ V (ii) having relevant topological characteristics
as defined by a community detection algorithm.

The second part of this definition will be discussed in Sect. 3, and is concerned by
the question of the quality of a set of nodes as a community, based on a topological
criterion. On the contrary, this section discusses the transposition of the first part
of this definition to temporal networks, i.e., the definition of dynamic node clusters
themselves, independently of any quality criteria. We use the term cluster in its data
analysis meaning, i.e., clusters are groups of items defined such as those items are
more similar (in some sense) to each other than to those in other groups (clusters).

To define dynamic clusters, we first need to define what is a temporal network.
This question will be discussed in detail in Sect. 4. For now, let’s adopt a generic
definition provided in [22], representing in an abstract way any type of temporal
network:

Definition 2 (Temporal Network) A temporal network, or stream graph, is
defined as S = (T , V,W,E), with V a set of nodes, T a set of time instants
(continuous or discrete), W ⊆ T × V , and E ⊆ T × V ⊗ V .

2.1 Fixed Membership Cluster in Temporal Networks

The first possible transposition of static clusters to temporal networks is to consider
memberships as fixed:

Definition 3 (Fixed Membership Cluster) A fixed membership cluster is defined
on a temporal network S = (T , V,W,E) as a cluster of nodes C ⊆ V

In fixed membership clusters, nodes cannot change community along time. Commu-
nities identified using this definition in a temporal network are usually considered
relevant when the clustering they induce would be considered relevant according to
a static definition of communities (e.g., modularity) in most times t of the temporal



Challenges in Community Discovery on Temporal Networks 183

network. Those communities are different from static ones found in the aggregated
graph in that they take into account the temporal order of edges. Note that in some
algorithms such as stochastic block models, in which communities are defined not
only by sets of nodes but also by properties of relations between communities, those
properties might evolve, while membership themselves stay unchanged (e.g., [26]).
This approach can also be combined with change point detection to find periods of
the graph with stable community structures [32].

2.2 Evolving-Membership Clusters in Temporal Networks

In this second transposition of the definition of cluster, nodes can change member-
ship along time. Note that, for methods based on crisp communities, each node must
belong to one (and only one) community at each step, while less constrained meth-
ods allow having nodes not belonging to any community (conversely, belonging to
several communities), in some or all steps.

Definition 4 (Evolving-Membership Cluster) An evolving-membership cluster
is defined on a temporal network S = (T , V,W,E) as a cluster C = {(t, v),
(t, v) ⊆ W }
Dynamic communities using this type of clusters are usually considered relevant
when (i) the clusters it defines at each t would be considered relevant according to a
static definition of communities (e.g., modularity) at each step t , and (ii) the clusters
it defines at time t are relatively similar to those belonging to the same dynamic
cluster at t − 1 and t + 1. This is related to the notion of dynamic community
smoothness discussed in Sect. 3.1.

2.2.1 Persistent-Labels Formalism

The usual way to implement this definition is by using what we call the persistent
labels formalism: community identifiers—labels—are associated with some nodes
over some periods. There is, therefore, no notion of being an ancestor/descendent
of another community: two nodes can either share a common label, and therefore
be part of the same dynamic community, or not. This representation is the most
widespread, used for instance in [11, 28].

2.3 Evolving-Membership Clusters with Events

One of the most interesting features of dynamic communities is that they can
undergo events. Their first formal categorization was introduced in [31], which
listed six of them (birth, death, growth, contraction, merge, and split). A seventh
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operation, continue, is sometimes added to these. In [6], an eighth operation was
proposed (resurgence). These events, illustrated in Fig. 1, are the following:

• Birth: The first appearance of a new community composed of any number of
nodes.

• Death: The vanishing of a community: all nodes belonging to the vanished
community lose this membership.

• Growth: New nodes increase the size of a community.
• Contraction: Some nodes are lost by a community, thus reducing its size.
• Merge: Two communities or more merge into a single one.
• Split: A community, as a consequence of node/edge vanishing, splits into two or

more components.
• Continue: A community remains unchanged in consecutive time steps.
• Resurgence: A community vanishes for a period, then comes back without

perturbations as if it has never stopped existing. This event can be seen as a fake
death-birth pair involving the same node set over a lagged period (e.g., seasonal
behaviors).

Not all operations are necessarily handled by a generic Dynamic Community
Detection algorithm.

Let’s consider a situation in which two communities merge at time t . Using the
persistent-labels formalism introduced previously, this event can be represented in
two ways: either both clusters disappear at time t and a new one—the result of the
merge—is created, or one of the clusters becomes the merged one from time t , and
the other—considered absorbed—disappear. In both cases, important information is
lost. A third definition of evolving membership can be used to solve this problem:

Definition 5 (Evolving-Membership Clusters with Events) Evolving member-
ship cluster with events are defined on a temporal network S = (T , V,W,E) as
a set of fixed-membership Cluster defined at each time t (or as a set of evolving-
membership clusters), and a set of community events F . Those events can involve
several clusters (merge, split), or a single one (birth, death, shrink, etc.)

2.3.1 Event-Graph Formalism

In practice, most algorithms that do detect events record them in an ad-hoc manner
(e.g., the same event can be recorded as: “a split event occurred to community c1 at
time t , yielding communities c1 and c2” or “community c2 was born at time t , spawn
from c1”). Different representations might even be semantically different. A few
works, notably [17], have used an alternative way to represent dynamic communities
and events, using what we call here an event-graph. We define it as follows:

Definition 6 (Event Graph) An event graph is an oriented graph representing
dynamic communities of the temporal network S = (T , V,W,E), in which each
node corresponds to a pair 〈C, t〉, with C ⊆ V, t ⊆ T , and each directed edge
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Fig. 1 Different types of community events
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represents a relation of continuity between two communities, directed from the
earlier to the latter.

Using this representation, some events can be characterized using nodes in/out
degrees:

• In-degree= 0 represents new-born communities
• In-degree≥ 2 represents merge events
• Out-degree= 0 represents death events
• Out-degree≥ 2 represents split events

Events represented by an event graph can be much more complex than simple
merge/split, since, for instance, a node-community can have multiple out-going
links towards node-community having themselves multiple incoming ones.

Both representations, event-graph and persistent labels, have advantages and
drawbacks. The former can represent any event or relation between different
communities at different times, while the later can identify which community is
the same as which other one in a different time.

2.4 Community Life-Cycle

Identified events allow to describe for each cluster the life-cycle of its corresponding
community:

Definition 7 (Community Life-Cycle) Given a community C, its life-cycle
(which univocally identifies C’s complete evolution history) is composed of the
directed acyclic graph (DAG) such that (i) the roots are birth events of C, and of
its potential predecessors if C has been implicated in merge events; (ii) the leafs
are death events, corresponding to deaths of C and of its successors, if C has been
implicated in split events; and (iii) the central nodes are the remaining actions of C,
its successors, and predecessors. The edges of the tree represent transitions between
subsequent actions in C life.

Challenges
Usual events such as birth, merge or shrink were designed to describe a few steps
of evolution in the context of snapshot graphs, but are not well suited to describe
complex dynamics in networks studied at a fine temporal granularity. In real
scenarios, communities are susceptible to evolve gradually. A shrink event might
corresponds to different scenarios, such as a node switching to another community,
a node leaving the system (disappearing), or the community spouting a newborn
community composed of a subset of its nodes—and maybe, of other nodes. The
usual representation with only labels, even with the addition of some simple events,
might be too limited to represent the full range of possible community life-cycle.
Defining a complete framework to represent formally complex community evolution
scenarios therefore represents a challenge for researchers in the field.
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3 Detecting Dynamic Communities

Defining what are good communities in networks is already a challenge in itself.
Community discovery is often used as an umbrella term for several related problems,
not sharing the same formal objective. It stems from earlier, well-defined problems,
in particular, graph partitioning, which consists, for a graph and given properties
of a partition (number and size of clusters), to find affiliations of nodes minimizing
the number of inter-cluster edges. This problem is well-defined, in that its objective
can be expressed unequivocally in mathematical terms, and has no trivial solution.
But having to provide the number and size of communities was considered too
constraining when working with real networks having unknown properties. New
methods were therefore introduced, based on ideas such as the modularity [30],
compression of random walks [38], stochastic block models (SBM) and minimal
description length (MDL) [34], intrinsic properties of communities, and so on.
While some of them—e.g., modularity—are based on the same principle of keeping
(exceptionally) low the number of inter-community edges, other techniques are
searching for completely different things, such as methods based on the Stochastic
Block Model framework, in which blocks are groups of nodes sharing a similar
pattern of connections with nodes belonging to other groups. Furthermore, com-
munities are often categorized in overlapping—one node can belong to several
communities—and non-overlapping (crisp) clustering methods. In this chapter, we
make abstraction of those differences: each algorithm has a definition of what are
good static communities, and what we focus on are challenges introduced when
going from static to dynamic ones, in particular the notions of temporal smoothness,
of identity preservation, and finally the problem of scalability of existing algorithms.

3.1 Different Approaches of Temporal Smoothness

In the process of searching for communities over an evolving topology, one of the
main questions that need to be answered is: how can the stability of the identified
solution be ensured? In static contexts, it has been shown that a generic algorithm
executed on the same network that experienced a few topological variations—or
even none in case of stochastic algorithms—might lead to different results [1].
The way Dynamic Community Discover (henceforth, DCD) algorithms take into
account this problem plays a crucial role in the degree of stability of the solutions
they can identify, i.e., on their smoothness. In [36] DCD algorithms were grouped
in three main categories, depending on the degree of smoothness they aim for:

• Instant Optimal: it assumes that communities existing at time t only depend
on the current state of the network at t . Matching communities found at
different steps might involve looking at communities found in previous steps,
or considering all steps, but communities found at t are considered optimal
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concerning the topology of the network at t . By definition, algorithms falling in
this family are not temporally smoothed. Examples of Instant Optimal algorithms
are [9, 31, 39, 43].

• Temporal Trade-off: it assumes that communities defined at time t depend not
only on the topology of the network at t but also on the past topology, past
identified partitions, or both. Communities at t are therefore defined as a trade-
off between an optimal solution at t and the known past. They do not depend on
future topological perturbations. Conversely, from Instant Optimal approaches,
the Temporal Trade-off ones are incrementally temporally smoothed. Examples
of Temporal Trade-off algorithms are [7, 12, 15, 37].

• Cross-Time: algorithms of this class focus on searching communities relevant
when considering the whole network evolution. Methods of this class search
a single temporal partition that encompasses all the topological evolution of
the observed network: communities identified at time t depend on both past
and future network structures. Methods in this class produce communities that
are completely temporally smoothed. Examples of Cross-Time algorithms are
[2, 13, 20, 25, 44].

All three classes of approaches have advantages and drawbacks; none is superior
to the other since they model different DCD problem definition. Nevertheless, we
can observe how each one of them is more suitable for some specific use cases.
For instance, if the final goal is to provide on-the-fly community detection on
a network that will evolve in the future, Instant Optimal and Temporal Trade-
off approaches represent the most suitable fit since they do not require to know
in advance all the topological history of the analyzed network. Moreover, if the
context requires working with a fine temporal granularity, therefore modeling the
observed phenomena with link streams instead of snapshots, it is suggested to
avoid methods of the first class, which are usually defined to handle well defined—
stable—topologies.

Temporal smoothness and partition quality often play conflicting roles. We can
observe, for instance that, usually:

• Instant Optimal approaches are the best choice when the final goal is to provide
communities that are as good as possible at each step of the evolution of the
network;

• Cross-Time approaches are the best choice when the final goal is to provide
communities that are coherent in time, particularly over the long term;

• Temporal Trade-off approaches represent a trade-off between these other two
classes: they are the best choice in the case of continuous monitoring, rapidly
evolving data, and in some cases, limited memory applications. However, they
can be subject to “avalanche” effects due to the limited temporal information they
leverage to identify communities (i.e., partitions evolve based on local temporal-
optimal solutions that, on the long run may degenerate).
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3.2 Preservation of Identity: The Ship of Theseus Paradox

The smoothness problem affects the way nodes are split into communities at each
time. A different notion is the question of identity preservation along time, which
arises in particular in case of a continued slow evolution of communities. It is well
illustrated by the paradox of the ship of Theseus. It is originally an ancient thought
experiment introduced by Plutarch about the identity of an object evolving through
time. It can be formulated as follows:

Let’s consider a famous ship, the ship of Theseus, composed of planks, and kept
in a harbor as a historical artifact. As time passes, some planks deteriorate and need
to be replaced by new ones. After a long enough period, all the original planks of
the ship have been replaced. Can we consider the ship in the harbor to still be the
same ship of Theseus? If not, at which point exactly did it ceased to be the same
ship?

Another aspect of the problem arises if we add a second part to the story. Let’s
consider that the removed planks were stored in a warehouse, cleaned, and that a
new ship, identical to the original one, is built with them. Should this ship, just built
out, be considered as the real ship of Theseus, because it is composed of the same
elements?

Let’s call the original ship A, the ship that is in the harbor after all replacements
B, and the reconstructed from original pieces, C. In terms of dynamic commu-
nity detection, this scenario can be modeled by a slowly evolving community
c1 (c1 =A), from which nodes are removed one after the others, until all of them
have been replaced (c1 =B). A new community c2 appearing after that, composed
of the same nodes as the original community (c2 = C). See Fig. 2 for an illustration.
A static algorithm analyzing the state of the network at every step would be able to
discover that there is, at each step, a community (c1, slowly evolving), and, at the

Time

Nodes

A

B

C

Fig. 2 Illustration of the ship of Theseus paradox. Each horizontal line represents a node. A same
color represents nodes belonging to the same community according to a topological criterion
(e.g., SBM). The community A is progressively modified until reaching state B. Community C
is composed of the same nodes as the other community at its start. Which cluster (B or C) has the
same identity as A? What if all details of the evolution are not known?
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end of the experiment, two communities (c1 and c2). But the whole point of dynamic
community detection is to yield a longitudinal description, and therefore, to decide
when two ships at different points in time are the same or not.

This problem has barely been considered explicitly in the literature. However,
each algorithm has implicitly to make a choice between which ship is the true
ship of Theseus. For instance, methods that are based on a successive match of
communities, such as [17], consider that A and B are the same boats, but not A and
C. On the contrary, a method that matches similar clusters without the constraint of
being consecutive, such as [11], consider that C is more likely than B to be the same
ship than A. Finally, methods such as [28] allow to set what is the influence of time
on similarity, and therefore, to choose between those two extreme solutions.

Challenges
The question of identity preservation in dynamic communities has been little
discussed and experimented in the literature. For the sake of simplicity, most
proposed methods use a mechanism of iterative matching or update of communities
and therefore ignore the similarity between ships A and C. However, this situation
is probably very common in real networks, for instance, when confronted with
seasonal or other cyclical patterns, where groups can disband and reform later.
Developing new methods aware of the choice made in terms of identity preservation
is, therefore, a challenge for the community.

3.3 Scalability and Computational Complexity

Early methods for community detection in static graphs had high computational
complexity (e.g., [14]), thus were not scalable to large graphs. One part of the
success of methods such as louvain [4] or infomap [38] is that they can handle
networks of thousands of nodes and millions of edges.

Dynamic graphs represent a new challenge in terms of complexity. Among
existing algorithms, we can distinguish different categories

• Those whose complexity depends on the average size of the graph
• Those whose complexity depends on the number of graph changes.

Let’s consider the example of a (large) graph composed of n nodes and m

edges at time t , and which is evolving at the speed of k changes every step, for
s steps. Algorithms in the first category, such as identify & match methods, needs
to first compute communities at every step, thus their complexity is proportional to
sOCD(n,m)+(s−1)O→(n) with OCD(n,m) the complexity of the algorithm used
at each step, and O→(n) the complexity of the matching process for communities
found on the n nodes.

Conversely, the complexity of an algorithm that update communities at each
step such as [7] is roughly proportional (after the initial detection) to sO+=(k),
with O+=(k) the complexity of updating the community structure according to k
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changes. As a consequence, the first category is more efficient in situations where k

is large, and n/m are small, while the second is more efficient when n/m are large
and k small. The complexity is not necessarily imposed by the adopted definition
of community. For instance, algorithms proposed in [31] and [5] yields rigorously
the same dynamic communities, but they belong respectively to the first and second
categories, as studied in [5].

Another aspect to consider is parallelization. Although the computation of OCD

on many steps might seem expensive, this task can straightforwardly be processed
in parallel. On the contrary, methods involving smoothing, or updating the structure
in order, cannot be parallelized, as they need to know the communities at time t to
compute communities at time t + 1. One must, therefore, consider the properties
of a temporal network to know which method will or will not be computationally
efficient on it.

Challenges
The complexity of DCD algorithms has barely been explored and represents an
important challenge to consider in future works. It is important to note that when
dynamic networks are considered at a fine temporal resolution as in link streams,
the number of edges (interactions) can be much larger than the number of nodes.
For instance, in the SocioPatterns Primary School dataset [42], more than 77,000
interactions are observed in a period spanning 2 days, despite having only 242
nodes. Algorithms developed for static algorithms use the sparsity of networks to
improve their efficiency, but such an approach might be less rewarding in temporal
networks. Analyzing the complexities of existing algorithms and developing new
ones adapted to fine temporal resolution is, therefore, a challenge for researchers of
the field.

4 Handling Different Types of Temporal Networks

Temporal networks can be modeled in different ways. Among the most common
framework, we can cite:

• Snapshot sequences, in which the dynamic is represented as an ordered series
of graphs

• Interval graphs (or series of change) [19], in which intervals of time are
associated with edges, and sometimes nodes

• Link streams [22], in which edges are associated with a finite set of transient
interaction times.

Each DCD algorithm is designed to work on a particular type of network repre-
sentation. For instance, Identify & Match approaches consists of first identifying
communities in each snapshot, and then matching similar communities across
snapshots. Such a method is therefore designed to work (only) with snapshot
sequences. However, as it has been done in several articles, datasets can be
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transformed from one representation to the other, for instance by aggregating link
streams into snapshots (e.g., [28]), or into interval graphs (e.g., [8]); thus the
representation of the dynamic graph does not necessarily limit our capacity to use a
particular algorithm on a particular dataset.

We think however, that one aspect of the problem, related to representation,
has not yet been considered in the literature. Methods working with snapshots
and with interval graphs make the implicit assumptions that the graph any point
in time is well defined, i.e., that each snapshot—or the graph defined by all
nodes and edges present at any time t—is not null, has a well-defined community
structure, and is somewhat similar to neighboring snapshots. Said differently, those
methods expect progressively evolving graphs. To the best of our knowledge, this
question has not been studied in the literature. A practitioner creating a snapshot
sequence from a link stream using a too short sliding window (e.g., a window of
1 h in a dataset of email exchanges) might obtain a well-formed dynamic graph
on which an Identify & Match method can be applied, but the results would be
inconsistent, as the community structure would not persist at such scales. The same
dataset analyzed using longer sliding windows might provide insightful results. The
problem is particularly pregnant for interval graphs, that can represent real situations
of very different nature. For instance, an interval graph could represent relations
(friend/follower relation in social networks) as well as interactions (phone calls,
face-to-face interactions, etc.). It is clear that both networks should not be processed
in the same way.

Challenges
A challenge in the field will be to define the conditions of applicability of
different methods better, and theoretical grounds to define when a network needs
transformation to become suitable to be analyzed by a given method.

5 Evaluation of Dynamic Communities

We have seen in previous sections that several approaches and methods exist to
discover communities in temporal networks. In this section, we first discuss the
evaluation of community quality. This process often requires the generation of
dynamic networks with community structures, the topic of the second part of the
section.

5.1 Evaluation Methods and Scores

As already discussed, there is not a single, universal definition of what is a
good community and, consequently, no unique and universal way to evaluate their
quality. Nevertheless, for static communities, many functions have been proposed,
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to evaluate them either (i) intrinsically (internal evaluation), by means of quality
functions, (e.g., Modularity, Conductance, etc.) and (ii) Relatively to a reference
partition (external evaluation), using a similarity function (e.g., NMI, aNMI, etc.).
Both approaches have pros and cons that have been thoroughly discussed in the
literature [33, 45]. Few works have been done to extend those functions to the
dynamic case.

5.1.1 Internal Evaluation

In most works, static quality functions are optimized at each step, often adding a
trade-off of similarity with temporally adjacent partitions to improve community
smoothness (see Sect. 3.1). Some works are based on a longitudinal adaptation of
the modularity [1, 28], but they require to create a new graph with added inter-
snapshot edges, and therefore cannot be used to evaluate algorithms based on
different principles. Works based on Stochastic Block Model [25, 46] also optimize
a custom longitudinal quality function.

5.1.2 External Evaluation

Articles doing external evaluation requires to have a reference partition. Since few
annotated datasets exist, a synthetic generator is used (see Sect. 5.2. The comparison
often uses the average of a static measure (e.g., NMI) computed at each temporal
step [3], eventually weighted to take into account the evolution of network properties
[35]. A notable exception is found in [16], where windowed versions of similarity
functions (Jaccard, NMI, NVI) are introduced, by computing their contingency table
on two successive snapshots at the same time.

Challenges
The evaluation of the quality of dynamic communities, both internally and exter-
nally, certainly represents a challenge for future works in dynamic community
detection. Methods directly adapted from the static case do not consider the
specificity of dynamic communities, in particular, the problems of smoothness and
community events. This question is of utmost importance, since, despite the large
variety of methods already proposed, their performances on real networks besides
the ones they have been designed to work on is still mostly unknown.

5.2 Generating Dynamic Graphs with Communities

Complex network modeling studies gave birth to a new field of research: synthetic
network generators. Generators allow scientists to evaluate their algorithms on
synthetic data whose characteristics resemble the ones that can be observed in
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real-world networks. The main reason behind the adoption of network genera-
tors while analyzing the performance of a dynamic community detection (DCD)
algorithm is the ability to produce benchmark datasets that enable (i) Controlled
environment testing, e.g., in term on network size, dynamics, structural properties,
etc., and (ii) comparison with a planted ground-truth.

Two families of network generators have been described to provide benchmarks
for DCD algorithms: generators that produce static graphs-partitions and generators
that describe dynamic graphs-partitions. Static graphs are used to evaluate the
quality of the detection at a single time t , and cannot inform about the smoothness
of communities. The most known are the GN benchmark [14], the LFR benchmark
[21] and planted partitions according to the stochastic block model.

Several methods have been proposed to generate dynamic networks with com-
munities. The network can be composed of a sequence of snapshots, as in [3], in
which, at each step, the community structure (based on an SBM) drifts according
to a user-defined inter-layer dependency. Another approach consists in having an
initial partition yielded by a static algorithm (LFR in [17], GN in [24]), and to make
it evolves randomly [17] or until reaching an objective network with a different
community structure [24].

Finally, another class of methods generates slowly evolving networks whose
changes are driven by community events—merge, split, etc.—that can be tuned with
parameters such as the probability of event occurrences. One of these methods is
RDyn [35], whose communities are based on a similar principle than LFR. Another
method has been proposed in Sengupta et al. [41], which has the particularity of
generating overlapping community structures.

Challenges
As we have seen, various methods already exist to generate dynamic graphs with
slowly evolving communities. They have different properties, such as community
events, stable edges, or overlapping communities. Active challenges are still open
in this domain, among them (i) The generation of link streams with community
structures, (ii) The empirical comparison of various DCD methods on those
benchmarks, and (iii) An assessment on the realism of communities generated with
such benchmarks, compared with how empirical dynamic communities behave.

6 Libraries and Standard Formats to Work with Dynamic
Communities

In recent years, many tools and software have been developed to manipulate and
process network data. Many of those tools have implemented community detection
algorithms. Among the best known, we can cite networkx [18], iGraph [10] and
snap [23], which propose a wide variety of network analysis tools, among them
community detection algorithms, and related quality functions and scores. Some
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libraries are even designed specifically for community detection such as CDlib.1

However, none of them can deal with dynamic networks. Very recently, a few
libraries have been introduced to work with dynamic networks, such as tacoma2

and pathpy [40] but do not include community detection algorithms.
Furthermore, no standard format has yet emerged to represent dynamic com-

munities and their evolution, which is particularly a problem to compare solutions
yielded by different methods. This lack of common tools and standard represen-
tation certainly represents an obstacle, and a challenge to overcome for the DCD
research community.

7 Conclusion

In this chapter, we have introduced the theoretical aspects of dynamic community
detection and highlighted some of the most interesting challenges in the field.
Among them, we think that a better formalism to represent the evolution of
dynamic clusters and their events, in particular in the context of gradually evolving
communities, would facilitate the comparison and the evaluation of communities
and detection methods. The scalability of existing approaches is also a concern,
again, in the context of link streams or other temporal networks studied at fine
temporal scales. Finally, a recently introduced technique graph embedding, has
attracted a lot of attention in various domains. Applications exist to temporal
networks, although no work has focused on the dynamic community detection
problem yet, to the best of our knowledge. Using this new technique to propose
scalable methods could be another challenge worthy of investigation.
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Information Diffusion Backbone

From the Union of Shortest Paths to the Union
of Fastest Path Trees

Huijuan Wang and Xiu-Xiu Zhan

1 Introduction

Many types of complex networks are designed to serve the diffusion of information,
traffic, epidemic or behavior, ranging from telecommunications networks, social
networks to railway transportation networks. How information (traffic or epidemic)
propagates on a network has been modeled by various processes whereas the
underlying network can be static or evolving over time i.e. temporal. For example,
transport on e.g. the Internet and transportation networks such as railway, airline
and roadway networks is mainly carried along the shortest paths. In a weighted
network, the shortest path between two nodes is the path the minimizes the sum
of the weights along the path, where the weight of a link may represent the time
delay, distance or cost when information traverses the link. We consider the Internet
and transportation networks static since the evolution of their topology is far slower
than the information diffusion process. Social networks can be considered to be
static where nodes represent the individuals and where links indicate the relationship
between nodes such as friendship [1]. The information diffusion process on
a social network has been modeled by e.g., independent cascade models [43],
threshold models [13] and epidemic spreading models [21, 28, 29, 31, 42, 45].
Take the Susceptible-Infected (SI) model as an example. Each individual can be
in one of the two states: susceptible (S) or infected (I) where the infected state
means that the node possesses the information. An infected node could spread
the information to a susceptible neighbor with a rate β. An infected individual
remains infected forever. Recently, the temporal nature of contact networks have
been taken into account in the spreading processes, i.e., the contacts or connection
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between a node pair occur at specific time stamps (the link between nodes is time
dependent) and information could possibly propagate only through contacts (or
temporal links) [15, 16, 34, 37, 46]. In the SI spreading process on a temporal
network [28, 45], a susceptible node could get infected with an infection probability
β via each contact with an infected node.

Significant progress has been made in understanding how the network topology
affects emergent properties such as the distribution of the shortest path length [6],
the prevalence of (percentage of nodes reached by) an epidemic or information [28,
30, 31]. In this work, we explore another, less-studied problem: which links (i.e.
the static or temporal connection of which node pairs) are likely to contribute to
the actual diffusion of information, i.e., appear in a diffusion trajectory? To solve
this problem, we will firstly introduce how to construct the information diffusion
backbone, a weighted network to represent the probability for each link to appear
in an information diffusion trajectory. Our research question is equivalent to how
the probability that a link appears in an diffusion trajectory (the weight of the link
in the backbone) is related to local network properties of the link or its two ending
nodes.

To address this question, we consider two scenarios as examples: (i) the shortest
path transport on a static network and (ii) the SI spreading process on a temporal
network. These scenarios correspond to a deterministic process on a static network
and a stochastic process on a temporal network. Information is assumed to diffuse
along the shortest path and the fastest path trees respectively.

2 Network Representation

The topology of a static network G can be represented by an adjacency matrix A

consisting of elements A(i, j) that are either one or zero depending on whether node
i is connected to j or not. If the network is weighted, the adjacency matrix is also
weighted. In this case, each element A(i, j) is equal to the weight of the link if i is
connected to j or is equal to zero when i is not connected to j .

A temporal network G = (N ,L ) records the contacts between each node pair
at each time step within a given observation time window [0, T ]. N is the set of
nodes, whose size, i.e., the number of nodes is N = |N |, and L = {l(j, k, t), t ∈
[0, T ], j, k ∈ N } is the set of contacts, where the element l(j, k, t) indicates that
the nodes j and k have a contact at time step t . A temporal network can also be
described by a three-dimensional binary adjacency matrix AN×N×T , where the
elements A (j, k, t) = 1 and A (j, k, t) = 0 represent, respectively, that there is
a contact or no contact between the nodes j and k at time step t .

An integrated weighted network GW = (N ,LW) can be derived from a
temporal network G by aggregating the contacts between each node pair over the
entire observation time window T . In other words, two nodes are connected in GW if
there is at least one contact between them in G . Each link l(j, k) in LW is associated
with a weight wjk counting the total number of contacts between node j and k in G .
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Fig. 1 (a) A temporal network G with N = 5 nodes and T = 8 time steps. (b) The integrated
weighted network GW , in which a link exists between a node pair in GW as long as there is at least
one contact between them in G . The weight of a link in GW is the number of contacts between the
two nodes in G . (c) Diffusion or fastest path tree Ti (β), where node i is the seed and infection rate
is β = 1. (d) Diffusion backbone GB(1), where the infection probability β = 1 in the SI diffusion
process. The weight of a node pair represents the number of times it appears in all the diffusion
path trees

The integrated weighted network GW can therefore be described by a weighted
adjacency matrix AN×N , with its element

A(j, k) =
T∑

t=1

A (j, k, t) (1)

counting the number of contacts between a node pair. An example of a temporal
network G and its integrated weighted network GW are given in Fig. 1a, b,
respectively.

3 Shortest Paths in Static Networks

3.1 Construction of the Backbone

We construct the information diffusion backbone as the union of links that possibly
appear in an information diffusion trajectory where the weight of each link in the
backbone represents the probability that the link appears in an information diffusion
trajectory. In case of the shortest path transport on a weighted network G, the
information diffusion trajectory between a node pair is the shortest path, the path
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that minimizes the sum of the weights over all the links in that path. The topology
of the information diffusion backbone GB is the union of the shortest paths between
all possible node pairs. The betweenness of a link in the underlying network is
the total number of shortest paths between all node pairs that traverse this link
[11, 40]. Hence, the link weight in the backbone is the betweenness of that link in
the underlying network normalized by the total number of node pairs (N(N−1))/2.

If the underlying network is unweighted, the topology of the backbone is the
same as the topology of the underlying network, because every link in the static
network is the shortest path between its two ending nodes. If the underlying network
is weighted, the topology of the backbone is possibly a sub-graph of the underlying
network. Links in the underlying network that have a zero betweenness do not
appear in the backbone.

3.2 Network with i.i.d./Polynomial Link Weights

As an example, we consider the weight w of each link in G is an independently
identically distributed (i.i.d.) random variable, that follows the polynomial distribu-
tion,

Fw(x) = Pr[w ≤ x] = xα1x∈[0,1) + 1x∈[1,∞), α > 0, (2)

where the indicator function 1z is one if z is true else it is zero. The corresponding
probability density is fw(x) = αxα−1, 0 < x < 1. The exponent

α = lim
x↓0

logFw (x)

log x

is called the extreme value index of the probability distribution. One motivation
to consider the polynomial distribution is that link weights around zero primarily
influence shortest paths. The polynomial distribution can capture distinct behavior
for small values by tuning the α. If α → ∞, we can obtain w = 1 almost surely for
all links according to Eq. (2). We can consider the network as unweighted. When
α → 0, all link weights will be close to 0, but, relatively, they differ significantly
with each other. When α = 1, the polynomial distribution becomes a uniform
distribution.

The Minimum Spanning Tree MST on a weighted network is a tree that spans
over all the nodes and for which the sum of the weights of all its links is minimal.
If the weight of each link is independently identically distributed and if the link
weight distribution is sufficiently broad that it reaches the strong disorder region,
the backbone topology equals the MST on the underlying network G. Van Mieghem
and Magdalena [38] have found that, by tuning the extreme value index α of the
polynomial link weight distribution, a phase transition occurs around a critical
extreme value αc. The critical extreme value αc is defined through the relation
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H(αc) = 1
2 where H (α) = Pr

[
G∪spt(α) = MST

]
and GB = G∪spt(α) is the

backbone topology i.e. the union of all the shortest path trees. When α > αc, the
backbone contains more than N − 1 links whereas for α < αc, the backbone equals
the MST, consisting of N − 1 links.

Van Mieghem and Wang found the same phase transition curve H(α) =
Pr[GB = MST] versus α/αc, in diverse types of networks (see Fig. 2) [39]. As α

increases, the transport is more likely to traverse over more links and the backbone
G∪spt(α) will less likely become a tree. This finding strengthens the belief that the

curve FT (α) ≈ 2
−
(

α
αc

)2

is universal for all networks that are not trees.
Which kind of links in G tend to have a high link betweenness, equivalently

a high weight in the backbone? Does a low link weight implies a high link
betweenness in G? Table 1 shows the linear correlation coefficient between the
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Fig. 2 The probability H(α) = Pr[GB = MST ] that the backbone topology equals the MST as
a function of α/αc. Three classes of networks are considered: complete graphs KN with N nodes,
2D- and 3D lattice and Havel-Hakimi power law networks [4, 5]

Table 1 The correlation coefficient between weight and betweenness of a link

α = 0.2 α = 1.0 α = 2.0 α = 4.0 α = 8.0 α = 16.0

G∪spt on G0.4(100) −0.06 −0.61 −0.70 −0.78 −0.84 −0.84

G∪spt on 2D-lattice N = 100 −0.22 −0.53 −0.54 −0.53 −0.53 −0.53

G∪spt on 3D-lattice N = 125 −0.18 −0.60 −0.66 −0.67 −0.68 −0.68

G∪spt on BA N = 100,m = 3 −0.12 −0.53 −0.66 −0.60 −0.50 −0.49
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weight and betweenness of a link in different network models for different index
values α [40]. The critical extreme value index αc ≤ 0.1 in 2D-lattice with N = 100
nodes and 3D-lattice with N = 125 nodes [39] and αc = 0.2 in Erdős-Rényi
random graphs [38]. When link weights are relatively weakly disordered, i.e.,
α ≥ 1, the link weight and betweenness are evidently and negatively correlated,
implying a link with a low weight tends to have a high betweenness, a high weight
in the backbone. When link weights are in relatively strong disorder e.g. when
αc = 0.2, the correlation strength is relatively weak, because the weight of a path
i.e. the sum of the link weight over all the links in that path is dominated by the
largest link weight [2]. Furthermore, the correlation is shown to be dependent on
the underlying graph as well as on the extreme value index α. For homogeneous
network models such as the Erdős-Rényi random graphs, the correlation strength
increases monotonically as α increases. When α → ∞, all links have the same
weight and almost the same betweenness. As α decreases, or equivalently as the
strength of the disorder in link weight increases, a link with a low link weight tends
to have a high betweenness. However, in a non-homogeneous topology such as the
Barabási-Albert (BA) power law networks, the betweenness of a link depends on
both the weight and the connectivity of the link. That is why the correlation strength
decreases after a maximum has been reached as α increases. When the underlying
network is unweighted, i.e., α → ∞, how the betweenness of link is related to the
local network features, e.g., of the two end nodes of the link is still far from well
understood [11, 40].

Besides the number of links and the link weights in the backbone that we
focus on in this chapter, other network properties of the backbone such as the
degree distribution, the spectrum and the path length of a shortest path have been
explored [6, 39].

3.3 Link Weight Scaling

We assume information diffuses along the shortest path, where the weight of a link
may represent the distance, delay, monetary cost etc. In functional brain networks,
the correlation between the activities measured at any two brain regions by e.g.
magnetoencephalography (MEG) can be defined and derived [41]. To compute the
shortest paths, the weight of the link between the two regions/nodes can be defined
as e.g. one minus the correlation value or the reciprocal of the correlation value [33].
Different choices of the link weight including the correlation may lead to different
features of the backbone. We will illustrate the choice of the link weight by the
following theorem.

Let w > 0 be a weight of an arbitrary link in a given weighted network G(N,L)

with N nodes and L links. We construct a new graph Gα1(N,L) by scaling the

weight w of each link as w
1
α1 , where α1 > 0 but without changing the network

topology. The backbone of Gα1(N,L) is denoted as GB(α1). Similarly, we can
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obtain weighted network Gα2(N,L) by scaling each link weight as w
1
α2 , whose

backbone is GB(α2) and α2 > 0. The following theorem shows that backbone with
a smaller value of α is always included in the backbone with a larger value of α. In
other words, all links in GB(α2) belong to GB(α1) if α1 ≥ α2 > 0.

Theorem 1 If α1 ≥ α2 > 0, then GB(α2) ⊂ GB(α2).

Proof We order the original set of link weights in G(N,L) as w(1) ≥ w(2) ≥ . . . ≥
w(L), where w(i) denotes the i − th smallest link weight and 1 ≤ i ≤ L. The
ordering of the link weights in Gα1 after link weight transformation with parameter
α1 is unchanged, wα1

(1) ≥ w
α1
(2) ≥ . . . ≥ w

α1
(L). The same holds for Gα2 . The ordering

of the weight of all the links is independent of α > 0. Our proof is by contradiction.
Assume that there exist a link with rank k in Gα2 that belongs to GB(α2), but this
link in Gα1 does not belong to GB(α2). The link with rank k connects the nodes
A and B in both GB(α1) and GB(α2). The fact that k /∈ GB(α1) means that there
exists a path PAB between nodes A and B, such that

w

1
α1
k >

∑

i∈PAB ;i<k

w

1
α1
i (3)

where, importantly, the rank condition i < k for a link implies that each link in PAB

must have a smaller weight than the link with rank k. Since w

1
α1
(i) = w

1
α2
(i) w

α2−α1
α1α2

(i) ,
inequality (3) can be rewritten as

w

1
α1
(k) = w

1
α2
(k)w

α2−α1
α1α2

(k) >
∑

i∈PAB ;i<k

w

1
α2
(i) w

α2−α1
α1α2

(i)

Since i < k, α1 ≥ α2, it holds that w
α2−α1
α1α2

(i) > w

α2−α1
α1α2

(k) and

∑

i∈PAB ;i<k

w

1
α2
(i) w

α2−α1
α1α2

(i) > w

α2−α1
α1α2

(k)

∑

i∈PAB ;i<k

w

1
α2
(i)

Hence,

w

1
α2
(k) >

∑

i∈PAB,i<k

w

1
α2
(i)

which contradicts the hypothesis that the link with rank k ∈ GB(α2).

This inclusion theorem illustrates the effect of the choice of the link weights,
specifically the scaling of the link weights on the link density of the backbone. This
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finding is in line with what we have observed before: link weights in strong disorder
or with a high variance tends to lead to a sparse backbone or heterogeneous traffic
distribution.

4 SI Spreading Process on Temporal Networks

We explore further the other extreme scenario, where a stochastic process, e.g., the
SI spreading process unfolds on a temporal network [44].

4.1 Construction of the Backbone

We first construct the backbone when the infection probability of the SI spreading
process is β = 1. At time step t = 0, the seed node i is infected and all the other
nodes are susceptible. The trajectory of the SI diffusion on G started from root i
can be recorded by a diffusion path tree Ti (β), also called the fastest path tree.
The diffusion path tree Ti (β) records the union of contacts, via which information
reaches each of the rest N −1 nodes in the earliest time. A diffusion tree, composed
of maximally N − 1 contacts is actually the union of fastest paths to reach the rest
N−1 nodes. We define the diffusion backbone GB(β) = (N ,LB(β)) as the union

of all diffusion/fastest path trees, i.e.,
N⋃
i=1

Ti (β), that start at each node as the seed

node. The node set of GB(β) equals the node set N in the underlying temporal
network G = (N ,L ). Nodes are connected in GB(β) if they are connected in
any diffusion path tree. Each link in LB(β) is associated with a weight wB

jk , which
denotes the number of times link (j, k) (i.e. contact between j and k) appears in
all diffusion path trees. An example of how to construct the diffusion backbone is

given in Fig. 1c, d for β = 1. The ratio
wB

jk

N
indicates the probability that link (j, k)

appears in a diffusion trajectory starting from an arbitrary seed node.
When 0 < β < 1, the diffusion process is stochastic. In this case, we construct

the backbone as the average of a number of realizations of the backbones. In
each realization, we perform the SI process starting from each node serving as the
seed for information diffusion, obtain the diffusion path trees and construct one
realization of the diffusion backbone. The weight wB

jk of a link in GB(β) is the
average weight of this link over the h realizations. The computational complexity
of constructing GB(β) is O(N3T h), where T is the length of the observation time
window of the temporal network in number of time steps.
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4.2 Real-World Temporal Networks

4.2.1 Description and Basic Features

We consider a large number of empirical temporal networks that capture two types
of contacts, i.e., (face-to-face) proximity and electronic communication (mailing
and messaging) contacts. These temporal networks and their basic statistical
properties are provided in Table 2. The networks are measured at discrete time steps,
whereas the duration of a time step differs among the datasets. We have removed
the time steps without any contact in order to consider the steps that are relevant for
information diffusion and to avoid the periods that have no contact due to technical
errors in measurements.

4.2.2 Observation Time Windows

We aim to understand which node pairs are likely to be connected in the backbone,
thus to contribute to a diffusion process and how such connection in the backbone
is related to this node pair’s local temporal connection properties. However, real-
world temporal networks are measured for different lengths T of time windows as
showing in Table 2. If a diffusion process has a relatively high spreading probability
and the temporal network has a relatively long observation time window, most nodes

Table 2 Basic properties of a list of empirical networks: The number of nodes (N ), the original
length of the observation time window (T in number of steps), the total number of contacts (|C |),
the number of links (|LW |) in GW and contact type

Network N T |C | |LW | Contact type

Reality mining (RM) [8, 32] 96 33,452 1,086,404 2539 Proximity

Hypertext 2009 (HT2009) [17, 19] 113 5246 20,818 2196 Proximity

High school 2011 (HS2011) [9] 126 5609 28,561 1710 Proximity

High school 2012 (HS2012) [9] 180 11,273 45,047 2220 Proximity

High school 2013 (HS2013) [23] 327 7375 188,508 5818 Proximity

Primary school (PS) [36] 242 3100 125,773 8317 Proximity

Workplace (WP) [10] 92 7104 9827 755 Proximity

Manufacturing email (ME) [22, 24] 167 57,791 82,876 3250 Electronic
communication

Email eu (EEU) [20] 986 207,880 332,334 16,064 Electronic
communication

Haggle [3, 14] 274 15,662 28,244 2124 Proximity

Infectious [18] 410 1392 17,298 2765 Proximity

DNC email (DNC) [7] 1866 18,682 37,421 4384 Electronic
communication

Collegemsg [27] 1899 58,911 59,835 13,838 Electronic
communication
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can be reached within a short time. The temporal contacts happened afterwards will
not contribute to the diffusion process. Hence, we will select the time windows
such that all contacts within each selected time window could possibly contribute,
or equivalently, are relevant to a diffusion process. On the other hand, we will
consider several time windows for each temporal network. This will allow us to
understand how the time window of a temporal network may influence the relation
between the backbones of different spreading probabilities and relation between
a node pair’s local connection properties and its connection in the backbone. We
select the observation time windows for each measured temporal network within its
original time window [0, T ] as follows. On each measured temporal network with
its original observation time window [0, T ], we conduct the SI diffusion process
with β = 1 by setting each node as the seed of the information diffusion process
and plot the average prevalence ρ as a function of time, which is the time step
t normalized by the original length of observation window T (see Fig. 3). The
average prevalence at the end of the observation is recorded as ρ(t/T = 1). The
time to reach the steady state varies significantly across the empirical networks. The
prevalence curves ρ of the last four networks in the list (i.e., Haggle, Infectious,
DNC and Collegemsg) increase slowly and approximately linearly over the whole
period. In the other networks, however, the diffusion finishes or stops earlier and
contacts happened afterwards are not relevant for the diffusion process.

For each real-world temporal network with its original length of observation time
window T , we consider the following lengths of observation time windows: the
time Tp% when the average prevalence reaches p%, where p ∈ {10, 20, . . . , 90}

Fig. 3 Average prevalence ρ of the SI spreading process with β = 1 on each original empirical
temporal network over time. The time steps are normalized by the corresponding observation time
window T of each network
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and p% < ρ(t = T ). For a given empirical temporal network G = (N ,L ),
we consider maximally nine observation time windows. For each length Tp%, we
construct a sub-temporal network, Gp% = (N ,Lp%), in which Lp% include
contacts in L that occur earlier than Tp%. The lengths of observation time window
Tp% for the empirical networks are given in [44]. For a network like RM, we can
get nine sub-networks and for network like Infectious, we can only obtain five sub-
networks. In total, we obtain 106 sub-networks. Contacts in all these sub-networks
are possibly relevant for a SI diffusion process with any spreading probability β.
Without loss of generality, we will consider all these sub-networks with diverse
lengths of observation time windows and temporal network features to study the
relationship between diffusion backbones and temporal connection features.

4.3 Relationship Between Diffusion Backbones

What are the relationships among the backbones GB(β) with different spreading
probabilities β ∈ [0, 1] on the same temporal network? When the infection
probability β → 0, the backbone GB(β → 0) approaches the integrated weighted
network GW if the network is finite regarding to its size and number of contacts, as
proved in [44].

We denote GB(β → 0) � GB(β = 0) = GW except that the weight of
each node pair in the two networks are scaled. When the infection probability β

is small, node pairs with more contacts are more likely to appear in the backbone.
The backbone GB(β) varies from GB(0) = GW when β → 0 to GB(1) when
β = 1. GB(β = 0) well approximates the backbones with a small β. Similarly,
GB(1) well approximates the backbones with a large β. When the observation time
window of a temporal network is small, the backbones with different β are relatively
similar in topology.

4.3.1 Degree of a Node in Different Backbones

From now on, we focus on the two extreme backbones GB(0) = GW and GB(1). A
node pair that has at least one contact may not necessarily contribute to a diffusion
process. Hence, the degree of a node in GB(0) is larger or equal to its degree in
GB(1). A universal finding is that the degree of a node in these two backbones tend
to be linearly and positively correlated in all the empirical networks, where the linear
correlation coefficient between the degree of a node in these two backbones is above
0.7 for all networks [44]. Since GB(1) is a sub-graph of GW , the degrees of a node
in these two backbones tend to be correlated if these two backbones have a similar
number of links. However, the two backbones may differ much in number of links in
many temporal networks, especially those with a long observation window. Figure 4
shows the scatter plot of the degree of each node in GW and GB(1) respectively for
the network with the longest observation window from two datasets respectively. In
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Fig. 4 Scatter plots of each node’s degree in GW and in GB(1) for networks PS and Infectious
with the longest observation window respectively

both cases, the backbone GW and GB(1) differ much in the number of links. Our
observation suggests that a node that has contacts with many others tends to be able
to propagate the information directly to many others.

4.4 Identifying the Diffusion Backbone GB(1)

In this section, we investigate how to identify the (large weight) links in the
backbone GB(1) based on local and/or temporal connection properties of each node
pair. The key objective to understand how local and temporal connection features of
a node pair are related to its role in the diffusion backbone GB(1). Our investigation
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may also allow us to approximate the backbone, whose computational complexity
is high (O(N3T )) base on local temporal features whose computational complexity
is low.

We propose to consider systematically a set of local temporal features of a node
pair and examine whether node pairs having a higher value of each feature/metric
tend to be connected in the backbone GB(1). Some of these properties are derived
from the integrated network GW whereas the feature Time-scaled Weight that we
will propose encodes also the time stamps of the contacts between a node pair.
These node pair properties or metrics are:

• Time-scaled Weight of a node pair (j, k) is defined as

φjk(α) =
n∑

m=1

(
1

t
(m)
jk

)α (4)

where n is the total number of contacts between j and k over the given
observation window and t

(i)
jk is the time stamp when the i’th contact occurs and

α is the scaling parameter to control the contribution of temporal information.
For the node pairs that have no contact, their temporal weights are assumed to
be zero. The motivation to consider this metric is that when each node is set as
the seed of a diffusion process at time t = 0, contacts that happen earlier have
a higher probability to contribute to the actual diffusion, i.e. appear in GB(1).
When α = 0, φjk(0) = wB

jk(β = 0) degenerates to the weight of the node pair
in GW . When α is larger, node pairs with early contacts have a relatively higher
time-scaled weight.

• Degree Product of a node pair (j, k) is the product dj (β = 0) · dk(β = 0) of
the degrees of j and k in the integrated network GW . Two nodes that are not
connected in GW , have a degree product zero. Given the degree of each node in
GB(1) and if the links are randomly placed as in the configuration model [26],
the probability that a node pair (j, k) is connected in GB(1) is proportional to
dj (β = 1) · dk(β = 1), which approximates dj (β = 0) · dk(β = 0) since
the degrees of a node in GW and GB(1) are found to be strongly and positively
correlated and only node pairs connected in GW are possible to be connected in
GB(1).

• Strength Product of a node pair (j, k) is defined as the product sj (β = 0)·sk(β =
0) of the node strengths of j and k in GW , where the strength sj (β = 0) =∑

i∈N A(j, i) of a node in GW equals the total weight of all the links incident
to this node [12, 41]. Two nodes that are not connected in GW are considered to
have Strength Product zero.

• Betweenness of a link in GW counts the number of shortest paths between all
node pairs that traverse the link. The distance of each link, based on which the
shortest path is computed, is considered to be 1

wB
jk(β=0)

, inversely proportional to

its link weight in GW , because a node pair with more contacts tend to propagate
information faster [25, 40]. If two nodes are not connected in GW , they have a
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zero betweenness. Although betweenness is not a local topological property, we
consider it as a benchmark property that has been widely studied.

We explore further whether these node pair features could well identify the links
in GB(1). According to the definition of the aforementioned metrics, a higher value
of a metric may suggest the connection of the corresponding node pair in GB(1).
According to each metric, we rank the node pairs and the |LB(1)| node pairs with
the highest values are identified as the links in GB(1). The identification quality of
a metric, e.g. the time-scaled weight φjk(α), is quantified as the overlap r between
the identified link set LB(φjk(α)) and the link set LB(1) in GB(1)

r = r(LB(φjk(α)),LB(1))) = |LB(φjk(α)) ∩ LB(1)|
|LB(1)| , (5)

We focus first on the time-scaled weight φjk(α) and explore how the quality
of identifying links in GB(1) by using this metric is influenced by the scaling
parameter α. As shown in Fig. 5, the quality differs mostly when 0 ≤ α ≤ 2 and

Fig. 5 The quality of identifying links in GB(1) by using the time-scaled weight φjk(α) in
relation to α in temporal networks derived from datasets (a) RM, (b) HT2009, (c) HS2011 and
(d) HS2012
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Fig. 6 The quality of
identifying links in GB(1) by
using each metric for (a) all
the networks with all possible
observation windows; (b) all
the networks with longest
observation windows. The
time-scaled weight with
different α values are
considered

remains relatively the same when α ≥ 2 in all temporal networks. Hence, we will
confine ourselves to the range 0 ≤ α ≤ 2.

The identification quality r by using each metric versus the ratio |LB(1)|
|LW | of the

number of links in GB(1) to that in GW are plotted in Fig. 6 for all the empirical
temporal networks, with different lengths of the observation time windows. The
diagonal curve r = |LB(1)|

|LW | corresponds to the quality of the random identification,
where |LB(1)| links are randomly selected from the links in GW as the identified
links in GB(1). Degree product, strength product and betweenness perform, in
general, worse than or similarly to the random identification. Even if the connections
in GB(1) were random given the degree of each node in GB(1), the quality r

of identifying links in GB(1) by using the degree product can be close to the
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quality of the random identification, if the distribution of the degree product is
relatively homogeneous or if the |LB(1)|

|LW | is large. The degree distribution in GB(1) is

indeed relatively homogeneous and |LB(1)|
|LW | is large in most empirical networks. This

explains why the degree product performs similarly to the random identification.
The link weight in GW , equivalently, φjk(α = 0), outperforms the random
identification, whereas the time-scaled weight φjk(α) with a larger α performs
better. Node pairs with many contacts that occur early tend to contribute to the actual
information propagation, i.e., be connected in GB(1). This observation suggests that
the temporal information is essential in determining the role of nodes in a spreading
process.

We investigate further whether these metrics can identify the links with the
highest weights in GB(1). We choose the top f |LB(1)| node pairs according to each
metric as the identification of the top f fraction of links in GB(1) with the highest
weights. The quality r of identifying the top f fraction of links with the highest
weight in GB(1) is plotted in Fig. 7 for the networks with the longest observation

Fig. 7 The quality r of identifying top f fraction weighted links in GB(1) by using each metric
for each network with the longest observation window in each dataset. We consider the time-scaled
weight with α ∈ [0, 2]
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window from each dataset. The line r = f
|LB(1)|
|LW | corresponds to the quality of

the random identification. Similar to the identification of all the links in GB(1), the
time-scaled weight φjk(α) with a large α performs the best in identifying highly
weighted links in GB(1), emphasizing again the important role of the temporal
information of contacts.

5 Conclusion and Discussions

In this chapter, we address a generic question, namely, which links (either static
or temporal) are more likely to appear in an information diffusion trajectory. We
construct the backbone as the union of links that possibly appear in a diffusion
trajectory. Each link in the backbone is associated with a weight representing the
probability that the link appears in a diffusion trajectory. When information diffuses
along the shortest path on a static weighted network, the backbone is the union of
shortest paths. Both numerical simulations and our theory point out the importance
of the link weight in determining the a link’s probability to appear in a diffusion
trajectory. When information propagates through the fastest path trees governed by
the SI spreading model, the backbone is the union of the fastest path trees rooted at
every possible seed node. The temporal information of the contacts between a node
pair turns out to be crucial in determining the node pair’s weight in the backbone.
A node pair with many early contacts tends to have a high weight in the backbone.
Still, using such local topological properties to predict the links that tend to appear
in the backbone or have a high weight in the backbone is far from accurate.

The backbones can be defined or constructed differently to capture various roles
of links in diverse types of diffusion trajectories. Grady et al. [35] considered the
shortest path routing on a weighted network. They defined the salience of a link as
the probability that it appears in a shortest path tree rooted at an arbitrary node.
The difference between link salience and link betweenness has been discussed
in [35]. Considering unweighted static networks, Zhang et al. [47] defined the
link transmission centrality, which can be used to identify weak ties in social
networks and is shown to be correlated with link betweenness. How link salience
and transmission centrality are related to local topological properties remains a
non-trivial question. Our question which links are more likely to appear in an
information diffusion trajectory is challenging and interesting for the Susceptible-
Infected-Susceptible epidemic spreading process on a static network. An epidemic
spreads through a link only when one end node of the link is susceptible whereas
the other is infected. The relation between the infection probability of a node and
its local topological properties is still far from well understood. The correlation
between the states (infected or not) of two neighboring nodes introduces extra
complexity.
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Continuous-Time Random Walks
and Temporal Networks

Renaud Lambiotte

1 Introduction

Random walks are a paradigmatic model for stochastic processes, finding appli-
cations in a variety of scientific domains [1, 2], and helping to understand how
the random motion of particles leads to diffusive processes at the macroscopic
scale. Classically defined on infinitely large regular lattices or on continuous media,
random walks have long been studied on non-trivial topologies, as different parts
of the system, adjacent or not, are connected through a predefined transition
probability. In a finite and discrete setting, random walks are equivalent to Markov
chains [3], whose behaviour is entirely encoded in their transition matrix. The matrix
allows to characterise the succession of states visited by the walker, whose dynamics
is seen as a discrete-time process and where time is measured by the number of
jumps experienced by the walker. However, the complete description of a trajectory
requires an additional input about the statistical properties of the timings at which
the jumps take place, usually under the form of a waiting-time distribution for the
walker. Taken together, the modelling of whereto and when the next step will be
forms the core of the theory of continuous-time random walks.

Random walks also play a central role within the field of network science, and
provide a simple framework for understanding the relation between their structure
and dynamics. Random walks on networks have been used to model diffusion of
ideas in social networks, or diffusion of people in location networks, for instance
[4]. In their dual form, they are also used for the modelling of decentralised
consensus [5]. In addition, random walks have been exploited to extract non-local
information from the underlying network structure. Take Pagerank for instance,
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defined as the density of walkers on a node at stationarity [6]; or random walk-
based kernels defining a similarity measure between nodes, and embedding nodes
in low-dimensional space [7]; or community detection where clusters are defined
in terms of their tendency to trap a walker for long times [8–10]. In each of these
examples, the properties of the process at a slow time scale are essentially used to
capture large-scale information in the system. Importantly, these works usually rely
on discrete-time random walks or on basic Poisson processes in their continuous
counterpart.

The structure of networks has been the subject of intense investigation since the
early works on small-world or scale-free networks [11]. This activity has originally
been driven by the availability of large relational datasets in a variety of disciplines,
leading to the design of new methods to uncover their properties and of models to
reproduce the empirical findings. Yet, a vast majority of datasets have only provided
static snapshots of networks, or information about their growth in certain conditions.
It is only more recently that the availability of fine-grained longitudinal data has
motivated the study of the temporal properties of networks [12–14]. Several works
have shown that the dynamics of real-world networks are non-trivial and exhibit a
combination of temporal correlations and non-stationarity.

In this chapter, we will focus on a particular aspect that has attracted much
attention in the literature, the presence of burstiness in the temporal series of
network activity [15]. Take a specific node, or a specific edge, and look at the
sequence of events associated to that object. The resulting distribution of inter-
event times has been shown to differ significantly from an exponential, even after
discarding confounding factors [16]. After a short introduction on relevant concepts,
and a clarification of the differences between active and passive diffusion, we will
use the language of continuous-time random walks to identify how the shape of
temporal distributions affects diffusion. In analogy with static networks, where
deviations from a binomial degree distribution play a central role, we will focus on
renewal processes whose inter-event time distribution differs from an exponential.
Finally, we will widen the scope and discuss possible generalisations of the models,
for instance in the case of non-conservative spreading processes.

2 Models of Graphs and of Temporal Sequences

Random models play an important role when analysing real-world data. The main
purpose of this section is to introduce simple random models for graphs and for
temporal sequences. Both sub-sections are organised in mirror to highlight the
similarities between the models.
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2.1 Random Graphs

The most fundamental model of random graph is the Erdős-Rényi model. Usually
denoted by G(N, q), it takes as parameters the number of nodes N , and the
probability q that two distinct nodes are connected by a link. By construction, each
pair of node is a Bernoulli process, whose realisation is independent from that of
other pairs in the graph. The Erdős-Rényi model, as any random graph model, has to
be considered as an ensemble of graphs, whose probability of being realised depends
on the model parameters. Due to the independence between the processes defined on
each edge, several properties of the model can be computed exactly. This includes
the degree distribution, expected to take the form of the binomial distribution

p(k) =
(
N − 1

k

)
qk(1 − q)N−1−k, (1)

but also the number of cliques of any size, or the percolation threshold. The
underlying assumptions of a Erdős-Rényi model are often violated in empirical data.
Take connections in a social network, where triadic closure induces correlations
between neighbouring edges for instance. Yet, the model’s simplicity and analytical
tractability naturally make it a baseline model, and more realistic network models
can be developed systematically by relaxing its assumptions. Well-known examples
include:

• The configuration model. Real-life networks tend to present a strong heterogene-
ity in their degrees, associated to fat tailed distributions very different from a
binomial. The configuration model is defined as a random graph in which all
possible configurations appear with the same probability, with the constraint that
each node i has a prescribed degree ki , that is with a tuneable degree distribution.

• Stochastic block models. Real-life networks are not homogeneous and their nodes
tend to be organised in groups revealing their function in the system. These
groups may take the form of assortative of disassortative communities and may
be reproduced by stochastic block models where the nodes are divided into k

classes, and the probability pij for two nodes i, j , belonging to class ci and cj ,
to be connected is encoded in an affinity matrix Ωcicj .

Note that both models can be combined to form so-called degree-corrected stochas-
tic block models [17]. In essence, both models assume that the processes on each
edge are independent but break the assumption that they are identical. Certain pairs
of nodes are more or less likely to be connected within this framework. Models
questioning the independence of different edges include

• The preferential attachment model. In this mechanistic model for growing
networks, nodes are added one at a time and tend to connect with a higher
probability to high degree nodes. The resulting networks naturally produce fat-
tailed degree distributions and exhibit correlations building in the course of the
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process. Variations of the model include divergence-duplication models [18], or
copying models [19], whose correlations produce a high density of triangles, and
cliques of all size, that are negligible in the afore-mentioned models.

2.2 Poisson and Renewal Processes

Let us now turn our attention to the modelling of temporal sequences of events.
Examples include the sequences of retweets of an original tweet, of meeting a cat
in the street, or of nuclei to disintegrate in a radioactive material. As a first order
approximation, these systems can be modelled by a Poisson process, assuming that
events are independent of each other and that their rate is constant over time. As
in case of the Erdős-Rényi model, these assumptions are often unrealistic, but the
resulting simplicity allows us to derive analytically its statistical properties. For
Poisson processes, the inter-event time between two consecutive events, usually
denoted by τ , is exponentially distributed according to

ψ(τ) = λe−λτ , (2)

where λ is the rate at which events occur. Likewise, the distribution of the number
of events observed within a given time window is readily found to be

p(n, t) = (λt)n

n! e−λt (3)

for any n ≥ 0. Deviations from these distributions in empirical data indicate that the
assumptions of a Poisson process are not verified and that a more complicated pro-
cess is at play. Generalised models relaxing some of these assumptions include:

• Renewal processes. Empirical data often show fat-tailed inter-event time dis-
tributions, which can be captured by renewal processes. In a renewal process,
inter-event times are independent of each other and drawn from the same
distribution ψ(τ). When ψ(τ) = λe−λτ , we recover a Poisson process. The
properties of renewal processes are usually best analysed in the frequency
domain. After defining the Laplace transform

ψ̂(s) =
∫ ∞

0
ψ(τ)e−sτdτ (4)

and noting that a convolution in time translates into a product in the Laplace
domain, one readily finds the probability of having observed n events at time t

p̂(n, s) =
[
ψ̂(s)

]n 1 − ψ̂(s)

s
. (5)
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As we will see below, this quantity is critical, as it relates two ways to count time:
one in terms of the number of events, n, and the other in terms of the physical
time, t .

• Non-homogeneous Poisson processes. Real-life time series are often non-
stationary, which can be incorporated in a Poisson process with a time-dependent
event rate λ(t). For a non-homogeneous Poisson process, (3) is extended as

p(n, t) = Λ(t)n

n! e−Λ(t), (6)

where

Λ(t) =
∫ t

0
λ(t ′)dt ′. (7)

Similarly, the distribution of inter-event times is given by

ψ(τ) = λ(τ)e−Λ(τ), (8)

and leads to time-dependent, non-exponential distributions in general.

The previous two generalisations assume that successive inter-event times are
independent processes, which is expected to be invalid in many situations. Take
discussion threads between individuals for instance, or cascades of events in social
media. This type of situation can instead be modelled by

• Self-exciting processes. The underlying idea is that an event induces an additional
event rate for future events. This property is at the core of Hawkes processes
[20, 21] where, in their simplest form, the event rate at time t is given by

λ(t) = λ0 +
∑

�,t�≤t

χ(t − t�), (9)

where t� is the time of the �th event. The model incorporates a baseline rate λ0
independent of self excitation and a memory kernel χ(t) describing the additional
rate incurred by an event. It is generally assumed that χ(t) peaks at t = 0 and
monotonically decay towards zero as t increases.

As in the case of random graph models, different generalisations can be combined
to form more realistic models. This is the case of TideH, for instance, a model
for retweet dynamics combining ingredients from Hawkes processes and non-
homogeneous Poisson processes [22].
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3 Trajectories on Networks

3.1 Discrete-Time Dynamics

Let us now turn to the case of static networks and the description of trajectories
on their nodes. A canonical example could be one-dollar bill transiting between
individuals forming a large social network [23]. For the sake of simplicity, we will
assume that social interactions are undirected and unweighted, and that the whole
network forms a connected component. The structure of the network is encoded
through its adjacency matrix A, whose element Aij determines the presence of an
edge between nodes i and j . As a first step, we consider the case when the random
walk process takes place at the discrete times n. A trajectory on the network is thus
characterised by a sequence X0, X1, . . ., Xn, . . ., where Xn is a random variable
denoting the node visited by the walker at time n. In general, the state Xn+1 may
depend on all preceding states of the dynamics and the probability of visiting a
certain node i requires information about the full history of the process

p(Xn+1 = in+1|Xn = in, . . . , X1 = i1, X0 = i0). (10)

The process simplifies drastically in situations when the system is stationary and the
conditional probability depends only on the state at time n. The process then takes
the form of a Markov chain, and is fully described by its initial state and the N ×N

transition matrix

p(Xn+1 = j |Xn = i) ≡ Tij = Aij

ki
, (11)

where ki is, as before, the degree of node i. For instance, the probability that state i

is visited at time n, denoted by Pi(n), evolves according to

Pj (n+ 1) =
N∑

i=1

Pi(n)Tij (12)

or, in matrix notations,

P(n+ 1) = P(n)T , (13)

yielding the formal solution

P(n) = P(0)T n. (14)

When the underlying network is connected and the corresponding Markov chain is
ergodic, it can be shown that any initial condition converges to the stationary density
P ∗
i = ki/2m solution of

P ∗ = P ∗T . (15)
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3.2 Fourier Modes

The solution, Eq. (14), involves products of matrices, which can be simplified by
rewriting the system in the basis formed by the eigenvectors of the transition matrix.
This operation is sometimes called the graph Fourier transform [24], and it allows to
replace the matrix products by algebraic products for amplitudes associated to the
different dynamical modes. To show this, we consider the symmetric matrix

Ãij = Aij√
kikj

, (16)

and its spectral decomposition

Ãij =
N∑

�=1

λ�u�u
�
� , (17)

where u� is the normalised eigenvector of eigenvalue λ�, and where we have
assumed that all eigenvalues are distinct to avoid unnecessary complications. By
construction, the eigenvectors verify 〈u�, u�′ 〉 = δ��′ and form a proper basis
for signals defined on the nodes of the network. One should also note that the
eigenvalues are in the interval [−1, 1], that the multiplicity of the dominant
eigenvalue 1 gives the number of connected components in the graph, and that an
eigenvalue equal to −1 indicates that the graph is bipartite. It is straightforward to
show that the left and right eigenvectors of T are given by

uL
� =

(
(u�)1

√
k1 · · · (u�)N

√
kN

)
, (18)

uR
� =

(
(u�)1/

√
k1 · · · (u�)N/

√
kN

)�
(19)

respectively which implies, after some algebra, that the state of the random walk
after n steps is given by a linear combination of the eigenmodes

Pi(n) =
N∑

�=1

a�(n)(u
L
� )i , (20)

where the amplitude of the modes evolves as

a�(n) = λn�a�(0). (21)

and a�(0) ≡ 〈P(0), uR
� 〉 is given by the initial condition.
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The spectral decomposition (20) helps to understand how the structure of a
network affects the diffusion of a random walker. The stationary density corresponds
to the mode with λ� = 1, assumed to be unique as the network is connected. In
addition, in situations when the network is non-bipartite, and no eigenvalue is equal
to −1, all the other modes asymptotically decay to 0, each one with a time-scale
associated to its eigenvalue. The long-time relaxation to the stationary density is
determined by the eigenmode associated to λ2nd, the second largest eigenvalue,
which is related to the spectral gap 1 − λ2nd. A small spectral gap entails slow
relaxation and the presence of a bottleneck between communities in the network, as
shown by the Cheeger inequality [25].

3.3 Continuous-Time Dynamics

We have described the trajectory of the walker in terms of the number of jumps
so far. We now turn to the situation when the jumps take place in continuous time,
which motivates the use of continuous-time random walk processes. The passage
from discrete to continuous time is usually done by modelling the sequence of
jumps of the walker as a renewal process: the walker waits between two jumps
for a duration τ given by the probability density function ψ(τ) before performing
a transition according to the Markov chain. We have assumed here that the waiting
time distribution is identical on each node. The position of the walker at time t is
given by

Pi(t) =
∞∑

n=0

Pi(n)p(n, t), (22)

where we have used the fact that arriving at node i in n steps, and performing n

steps in time t are independent processes.
By going into the Laplace domain and combining (5) and (14), we find

P̂ (s) = 1 − ψ(s)

s
P (0)

[
I − T ψ̂(s)

]−1
, (23)

whose inverse Laplace transform provides the probability Pi(t) for the walker to be
on node i at time t . The latter usually involves convolutions in time, reflecting the
lack of Markovianity of the process for general renewal process. (23) also takes the
equivalent form

(
1

ψ(s)
− 1

)
P̂ (s) =

(
1

ψ(s)
− 1

)
1

s
P (0)+ P̂ (s)L (24)

where L = T − I is the normalised Laplacian of the network. This expression
simplifies drastically in the case when the renewal process is a Poisson process, and
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ψ(τ) = λe−λτ , leading to the standard rate equation

dP(t)

dt
= P(t)L. (25)

It is important to emphasise that (24) provides an exact solution to the problem and

that it departs from (25) through its causal operator
(

1
ψ(s)

− 1
)

, which translates

the input from the neighbours of a node into a change of its state, different from a
usual d

dt
. Note that this operator asymptotically behaves like a fractional derivative

in situations when the waiting time distribution has a power-law tail [26].
This solution also helps us to clarify the impact of the shape of the waiting

time distribution on the speed of diffusion. In the basis of the eigenvectors of the
transition matrix, it is straightforward to generalise (21) to obtain

P̂ (s) = 1 − ψ̂(s)

s

N∑

�=1

a�(0)

1 − λ�ψ̂(s)
uL
� . (26)

In other words, the time evolution of the amplitude of each mode is given by

â�(s) = 1 − ψ̂(s)

s
[
1 − λ�ψ̂(s)

]a�(0), (27)

which is, in general, different from an exponential decay. The asymptotic behaviour
can be obtained by performing a small s expansion

ψ̂(s) = 1 − 〈τ 〉s + 1

2
〈τ 2〉s2 + o(s2) (28)

and assuming a finite mean and variance, yielding the dominant terms

a�(s) = 〈τ 〉
1 − λ

[
1 − s

(
λ�〈τ 〉
1 − λ�

+ 〈τ 2〉
2〈τ 〉

)]
(29)

and thus a characteristic time t�,

t� = 〈τ 〉
(

1

ε�
+ β

)
, (30)

where ε� = 1 − λ� is an eigenvalue of the normalised Laplacian and

β = σ 2
τ − 〈τ 〉2

2〈τ 〉2
(31)
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is the variance of τ . Poisson processes yield β = 0 and this expression clearly shows
that negative values of β tend to accelerate the relaxation of each mode, while larger
values slow them down. The former happens in the case of discrete-time dynamics
for instance, when ψ(τ) is a delta distribution. The latter is when the distribution
has a fat tail. Importantly, (30) shows that a combination of structural and temporal
information determines the temporal properties of the process.

4 Diffusion on Temporal Networks

4.1 Active Versus Passive Walks

What about temporal networks? The results derived in the previous section focus
on random walks on static networks. They are nonetheless instructive to model and
understand diffusion on temporal networks. As a first step, we should emphasise
that the distinction between the dynamics on the network and the dynamics of the
network is not always clear-cut [27, 28]. The temporal nature of a network usually
comes from time series of events taking place on nodes or edges. There are situations
when it is the diffusive process itself that defines the temporal network. Take the
action of sending an email or an SMS to a friend, and the modelling of information
diffusion in the resulting network. In this case of active diffusion, the motion of
the random walker is defining the temporal patterns of activity on links existing, as
transition trigger the activation of a potential edge. The model of Sect. 3.3 is then
a good candidate to explore the interplay between structure and dynamics in the
resulting temporal network. Note that even the Poisson model described by (25) can
then be seen as generating a temporal network, even if it is not a very interesting
one.

There are other situations, however, when the motion of the walker does not
trigger the connections between nodes, but it is instead constrained by their
temporal patterns. A good example would that of a person random walking a public
transportation network, or of a disease spreading in a contact network. In that case,
the temporal sequence of edges restrains the time-respecting paths that are available
for the walker and one talks of passive diffusion. As we will see, passive random
walks can also be mapped to continuous-time random walks to some extent, but
this operation must be performed more carefully. As a simple model of temporal
networks supporting diffusion, let us consider a stochastic temporal network. The
network is modelled as a set of potential edges between nodes, each one evolving
as an independent renewal process, with a distribution of inter-event times φ(τ). A
random walker located on a node i performs a jump as soon as an edge appears, for
instance to node j , where it waits until the next available edge.
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4.2 Bus Paradox and Backtracking Transitions

When considering passive random walks, it is critical to clearly distinguish the
waiting-time distribution ψ(τ) from the inter-event time distribution φ(τ). The
former characterises the times that a walker has to wait on a node before its next
move. The latter gives the time between edge activations in the renewal process
defining the stochastic temporal network. The inter-event time distribution is a
parameter of the network model but the motion of the walker is directly affected
by the waiting-time distribution, and it should thus be estimated. To do so, let us
first focus on the case of a walker arriving at a node j from i and calculating the
time before an edge to another edge k appears. Assuming the independence between
the act of arriving at node j and the appearance of the edge to k, one finds that both
distributions are related as

ψ(τ) = 1

〈τ 〉φ
∫ ∞

τ

φ(τ
′
)dτ

′
, (32)

where 〈τ 〉φ is the average inter-event time distribution. Most strikingly, the average
waiting time is

〈τ 〉ψ = 1

2

〈τ 2〉φ
〈τ 〉φ (33)

and it depends on the variance of the inter-activation time. At a fixed value of 〈τ 〉φ ,
the waiting time can thus be arbitrarily large if the variance of φ(τ) is sufficiently
large. The waiting-time paradox is a standard result in queuing theory [29] and is
an example of length-biased sampling. It is often called the bus paradox, after the
observation that the average waiting time at a bus stop tends to be longer than half
of the average interval between two buses expected from the timetable.

As a second step, it is important to note that the approximation behind the
derivation of (32) is, in general, not respected if the walker passes several times by
the same edge, as information about the previous passage time may help to predict
the next activation time. This effect is most apparent in (but is not limited to) the case
of undirected networks. Consider a walker taking an edge from node i to node j .
The time before the next activation of the edge back to i is clearly not given by ψ(τ)

in (32), but simply by φ(τ). The waiting time for a backtracking edge is therefore
typically different, and shorter for fat-tailed distributions, than the waiting time of
a non-backtracking edge. This difference is particularly critical because edges are
in competition with each other [27]. When a walker waits on a node, the model
specifies that it takes the first edge to appear. For this reason, the prevalence of an
edge over another may bias the trajectory of the walker, and make the process non-
Markovian [28].

Let us quantify this effect when the walker arrives on a node j with degree
kj , and consider the probability of the time t at which the walker takes a specific
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edge. As before, the inter-event times of the links are identically and independently
distributed according to φ(τ). Starting from the time when the walker arrived on
j , the time of the next activation for a backtracking step is simply φ(τ). The time
for another edge to activate is instead determined by the waiting-time distribution
ψ(τ), where we assume that the approximation (32) is valid. For the walker to take
an edge at time t , no other edge can have appeared in [0, t]. Therefore, we obtain

fback(t) ≈ φ(t)

[∫ ∞

t

ψ(τ )dτ

]ki−1

(34)

fnon−back(t) ≈ ψ(t)

[∫ ∞

t

ψ(τ )dτ

]ki−2 ∫ ∞

t

φ(τ )dτ (35)

As we discussed, if ψ has a fat tail, the waiting time is larger than the inter-event
time on average and the walker preferentially backtracks, thereby leading to non-
Markovian trajectories. Here, we should clarify the distinction between two types of
non-Markovianity that can be induced on temporal networks. In (24), the sequence
of nodes visited by the walker is described by a Markov chain, but the statistical
properties of the timings induce long-term memory effects. In (34), instead, the
sequence of nodes visited by the walker cannot be produced by a first-order Markov
process.

To summarise, when considering passive diffusion on a stochastic temporal
network, the rate at which the random walker explores the network is slowed down
in three ways when the inter-event time distribution has a fat tail, namely through:

• the bus paradox, because the waiting time of the walker on the nodes tends to
be longer on average. As the speed of diffusion is controlled by the sum of the
waiting times of the walker, this effect leads to a slow down of diffusion.

• the backtracking bias. The random walker tends to backtrack, which hinders its
exploration of the network and can be shown to increase the mixing time of the
process [30, 31].

• the variance of the waiting-time distribution. On top of the slow down due to
the bus paradox, and an increase of the average waiting time, the variance of
the waiting time also slows down diffusion through the same mechanisms as for
active random walks, in (30).

5 Perspectives

The main purpose of this chapter was to provide an overview on theoretical
results for diffusion on temporal networks. As we discussed, the problem may
be understood through the lens of continuous-time random walks, after carefully
distinguishing between waiting time and inter-event time, on the one hand, and
active versus passive walks, on the other hand. An analytical approach allows us to



Continuous-Time Random Walks and Temporal Networks 231

identify unambiguously the mechanisms accelerating or slowing down the diffusion,
and also helps to warn against caveats that could be met with numerical simulations.
A good example concerns the use of null models to determine how the temporal
nature of a real-world network affects diffusion. A popular solution consists in
comparing numerical simulations of diffusion on the original data and on different
versions of randomised data [32]. The results from Sect. 4.2 show that randomised
null models in which temporal correlations are removed yet have the tendency
towards backtracking, and thus to slow down the exploration of the network.

The results presented in this chapter also open different perspectives for future
research. As we discussed in Sect. 2.1, different types of random graph models
have been proposed for static networks. A model like the stochastic temporal
network incorporates temporal activity on a given network structure, which opens
the question of how to properly define generalisations of the configuration model
or stochastic block model in this context. Answers may be found by clarifying
the connections with activity-driven models, where the dynamics can also be
generated by general renewal processes [33, 34]. The temporal networks presented
in this chapter also suffer from limitations that may hinder their applicability.
Those include their stationarity, the absence of correlations between edges and the
instantaneity of the interactions. To address the last two limitations, we point the
reader to the possibility to use higher-order Markov models for the data [35, 36],
and recent generalisations based on continuous-time random walks allowing for
interactions with a finite duration [37]. The latter emphasises a critical aspect
of temporal networks, which are characterised by different processes and their
corresponding time scales. Those time scales include one associated to the motion
of the random walker, one to the time between successive activity periods of
the edges and another to the duration of the activity periods. Depending on the
model parameter, one process may dominate the others and lead to mathematical
simplifications for the dynamics.

As a final comment, we would also like to come back on our observation that
temporal networks may be generated by active diffusive processes. This chapter was
limited to conservative spreading processes, where the number of diffusing entities
is preserved in time. There are many practical situations, however, when this is
not the case. Take the spreading of viruses in human populations or of hashtags in
online social networks for instance. In that case, other spreading models should be
considered to generate more realistic temporal networks. A promising candidate is
multivariate Hawkes processes, generalising (9) to interacting entities, and whose
equation of evolution takes a form very similar to (24):

λ(s) = λ0

s
+ χ(s)λ(s)A, (36)

where the vector λ(s) is the Laplace transform of the average rate of activity
on each node, χ(s) of the memory kernel and A is the adjacency matrix of the
network. The presence of the adjacency matrix instead of the Laplacian is a clear
sign of the epidemic nature of the spreading. Note also that a heterogeneous mean-
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field, à la configuration model, version of the model has been considered for the
modelling of retweet cascades [38]. Alternatively, the related family of Bellman-
Harris branching processes could be used, where a node i remains infected for
a duration t , determined by a distribution ρ(t), before infecting its neighbours,
leading to

λ(s) = 1 − ρ(s)

s
+ ρ(s)λ(s)A. (37)

In each case, the active process allows for the formation of a growing cascade of
infections, and includes a non-trivial causal operator.
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Spreading of Infection on Temporal
Networks: An Edge-Centered Perspective

Andreas Koher, James P. Gleeson, and Philipp Hövel

1 Introduction

The foundation of modern theoretical epidemiology was established at the begin-
ning of the twentieth century, mainly by health physicians such as Ross, Hamer,
McKendrick, and Kermack who introduced the compartment model [1–3]. This
approach separates individuals within a population into epidemic categories or
compartments, depending on their health status such as susceptible, infected,
and recovered. Since the early years, development in the field of mathematical
epidemiology has accelerated, not least due to the seminal works of Bailey [4],
Anderson & May [5] and Hethocote [6]. Modern models include stochasticity
[7–10], non-Markovian dynamics [11–15], demographic structures, vaccinations,
disease vectors and quarantine (see references in [6] for details). Thus, the field of
research ranges from simple explanatory models that reveal hidden patterns and
reproduce fundamental observations to elaborate numerical models that provide
realistic predictions [16].

In recent years, we witnessed a second golden age [17] of epidemiological
modeling. The driving forces behind this development are increasing computing
power and an unprecedented amount of mobility data. The combination of both
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allows scientists to simulate the behavior of entire populations at the level of single
individuals [18–24] and thus to advise policy makers by means of quantitative
models.

One of the cornerstones of network-based disease models is the individual-based
(IB) approach. It is a drastic simplification of the exact description using a master
equation, because it assumes that the epidemiological states of neighboring nodes
are statistically independent. Under this approximation, one can define a set of
dynamic equations for the marginal probability to find a node in a given disease
state [10, 25–31]. This method is widely employed, because it offers an intuitive
and analytically tractable approach to integrate the underlying contact network. As a
particularly important result, we mention that the largest eigenvalue of the adjacency
matrix, which represents the topology of the network, determines the critical disease
parameters that separate local and global outbreaks [26, 28].

Karrer & Newman substantially improved previous models of uni-directional
diseases, such as the generic susceptible-infected-recovered (SIR) model, using
the message-passing framework [13]. This approach dates back to the computer
scientist Pearl [32], who formulated an exact inference algorithm on trees. Karrer
& Newman proposed an integro-differential equation as a model for non-Markovian
disease dynamics and improved previous estimates of the critical disease parameters
on static networks [33]. A crucial conceptual difference to earlier works is that edges
instead of nodes appear as central elements of the model. This idea has influenced
considerably further research on network epidemiology [12, 34–37].

The dynamic message-passing model [35] is a particularly application-oriented
variant for Markovian SIR dynamics and has been extended recently to networks
with time-varying topologies [37]. This novel approach for epidemics on temporal
networks, termed the contact-based (CB) model, focuses on edge-based quantities
that are updated in discrete time and thus allows for a seamless integration of
temporal networks that are sampled at a constant rate. Importantly, the authors in
[37] derive a critical condition that improves previous estimates of the epidemic
threshold [26], which is an valuable risk measure for public health institutions.

Another important research branch in theoretical epidemiology focuses not on a
single realization of a graph but on an ensemble of random networks. A particularly
accurate and compact model of epidemic spreading on this class of random networks
has been proposed in [34] and is termed edge-based compartmental (EBC) model.
The original work focused not only on the configuration model for static networks,
but also on different classes of random graphs with time-varying topologies. Since
then, several extensions have been proposed, such as non-Markovian recovery
dynamics [12] and arbitrary initial conditions [38]. Moreover, studies in [39, 40]
investigated links to other existing models such as pair-approximations [41], the
effective degree model [42] and message-passing [13].

In this chapter, we will derive a continuous-time formulation of the CB model for
temporal networks, analyze the low-prevalence limit and explore links to previously
proposed models. To this end, we will briefly summarize in Sect. 2 the discrete-
time version proposed in [37]. Then, we extend the dynamic equations to the
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continuous-time case in Sect. 3 and determine in Sect. 4 the epidemic threshold
from a stability analysis of the disease-free fixed point. Moreover, we will link
the continuous-time results to existing models and in particular to the edge-based
compartmental model in Sect. 5 and the message-passing framework in Sect. 6.

2 Discrete-Time Description

The dynamic equations of the contact-based model appeared first in [35] and [37]
for static and temporal networks, respectively. In the following, we will briefly re-
derive the discrete-time model, which will then serve as the starting point for a
continuous-time formulation in the main part of this chapter.

We begin by introducing our notational convention and consider a network G(t),
whose topology can change at any time t ∈ [0, T ]. Next we sample Ts snapshots of
the graph with a constant interval Δt . The resulting sequence [G0,G1, ...,GTs−1]
is an approximation of the continuous-time network, which approaches the exact
representation in the limit Δt → 0.

Let us denote with N and C ⊂ T × N × N the set of all nodes (|N | = N )
and time-resolved contacts, respectively, where T = {0, 1, . . . , Ts − 1} represents
the set of sampling times. To emphasize the difference between temporal and static
elements, we will refer to edges as static links (k, l) ∈ E ⊂ N × N of the
time-aggregated graph and denote the number of edges with E = |C |. In other
words, an edge exists if and only if at least one contact was recorded between the
corresponding nodes. We assume a directed network and hence represent a potential
undirected contact through two reciprocal elements. Finally, it is helpful to define an
indicator function that returns whether or not a contact from k to l exists at sampling
time t :

ak→l (t) =
{

1, if (t, k, l) ∈ C

0, otherwise.
(1)

Here we use the notation k → l to denote quantities defined on the set of edges E ,
thus preventing potential confusion with node-based elements.

As a model for disease spreading, we consider the generic susceptible-infected-
recovered (SIR) dynamic as a paradigmatic model for infections that lead to
permanent immunity. In this modeling framework, a susceptible node (S) contracts
the disease from an infected neighbor (I) with a constant and uniform rate β. The
transition to the recovered state (R) follows with a likewise universal rate μ.

After this formal introduction we can now start with the actual modeling and to
this end, we begin with the marginal probability PS

l (t) that node l is susceptible at
time t . We observe that l is susceptible if it has been so already at the beginning t = 0
(with a corresponding probability of zl) and hence did not contract the infection
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from any of its neighbors up to the observation time t . We denote the probability of
the latter event with Φl(t), which leads to the following relation:

PS
l (t) = zlΦl(t). (2)

In order to determine the central quantity Φl(t), we make the simplifying
assumption that the undirected, time-aggregated graph has a tree structure. In other
words, ignoring the directionality, the static backbone does not contain loops and
hence all branches emanating from the root node l can be considered independently
of each other.

In order to factorize the probability Φl(t), we also need to introduce a concept
that is sometimes referred to as test node [34], cut-vertex [43], or cavity state
[13, 35]. To understand why this concept is helpful, imagine the case that a disease
appears in one branch and hence may spread into another branch via the root node
l. As a consequence, the probability that l will be infected by either of the two
infected neighbors is clearly correlated and therefore cannot factorize. However, this
case requires l to be already infected and hence appears as an artefact. In order to
exclude this event we remove (virtually) all edges emanating from l, which prevents
a disease transmission from one branch to another. We refer to vertex l as being
in the cavity state or simply a cavity node. This intervention does not change the
dynamics of l, as the node can still be infected and once it is, it recovers regardless
of the network structure. Furthermore, we call this modification virtual because we
restore the topological modification as soon as we focus on the dynamics of another
node. This method ensures that Φl(t) factorizes and thus we arrive at

PS
l (t) = zl

∏

k∈Nl

θk→l(t). (3)

Here, the product iterates through all neighbors k ∈ Nl of node l and with θk→l(t)

we denote the probability that cavity node l has not contracted the disease from k

up to the observation time.
The conceptual change from a node-based to an edge-based modeling approach

requires new auxiliary dynamic variables. Besides θk→l (t), we will introduce
additional quantities that are defined on the set of edges E and following our
convention, we use the index notation source → target. In order to avoid repetition,
we also note that in all cases the target node is considered to be in the cavity state.

To set up a dynamic equation for θk→l (t), we observe that the value can only
decrease precisely when (i) a contact indicated by ak→l (t) exists and (ii) the source
node k is infected and has not yet transmitted the disease to l. We denote the
corresponding probability for event (ii) with Ik→l (t). Together with the probability
βΔt to contract the disease within the time step Δt , we obtain our first, discrete-time
dynamic equation:

θk→l (t +Δt) = θk→l (t)− βΔtak→l (t)Ik→l(t). (4)

As the initial condition we choose θk→l (t) = 1 for all edges (k, l) ∈ E .
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Next, we investigate Ik→l (t) and observe that the value can change due to three
independent events: (i) Node k recovers, with probability μΔt ; (ii) Node l contracts
the disease from k upon a contact, with probability βΔt , whereby both events, i.e.
(i) and (ii), can also occur simultaneously with probability βμ(Δt)2; (iii) Source
node k is newly infected by one of its incident neighbors, excluding the cavity node
l with probability −ΔSk→l (t) = Sk→l (t+Δt)−Sk→l(t). Here, Sk→l (t) denotes the
probability to find k in the susceptible state. Balancing all probabilities, we obtain
the following dynamic equation:

Ik→l (t +Δt) = (1 − μΔt)[1 − βΔtak→l (t)]Ik→l(t)−ΔSk→l (t). (5)

The initial condition is given by Ik→l (0) = 1 − zk for all edges.
We determine the probability Sk→l (t) in the same manner as Eq. (2), i.e., we

find that k is susceptible if (i) it has been initially with probability zk and (ii) with
probability Φk→l no pathogens were transmitted from one of its neighbors j ∈
Nk \{l}, excluding the cavity node l. Hence, we find Sk→l (t) = zkΦk→l . Moreover,
the authors in [44] demonstrated that Φk→l factorizes under the assumption of a tree
topology and thus, similar to Eq. (3), we obtain:

Sk→l (t) = zk
∏

j∈Nk\{l}
θj→k(t). (6)

We can now substitute Eq. (6) into Eq. (5) and together with Eq. (4) we thus
obtain a closed system of 2E dynamical equations that determine the disease
progression.

Finally, we return to node-centric quantities. To this end, we follow [13] and note
first that Eq. (3) determines already the probability PS

l (t) that node l is susceptible
at the time t . Then, we obtain the corresponding probability P I (t) for the infected
state from the conservation condition, i.e., a node can assume only one of the three
possible states X ∈ {S, I, R}:

P I
l (t) = 1 − PS

l (t)− PR
l (t). (7)

The remaining marginal probability PR(t) can only increase due to a transition from
the infected to the recovered state, which is given by μΔtP I (t). Hence, the third
node-centric equation reads

PR
l (t +Δt) = PR

l (t)+ μΔtP I
l (t). (8)

After this brief review of the discrete-time case that has been first derived in [37],
we will elaborate on a continuous-time version next.
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3 Continuous-Time Description

In the continuous-time limit Δt → 0, Eq. (4) leads to

d

dt
θk→l (t) = −βak→l (t)Ik→l (t). (9)

We focus on Sk→l (t + Δt) from Eq. (6) and using the definition of θj→k(t + Δt)

(cf. Eq. (4)), we obtain:

Sk→l (t +Δt) = zk
∏

j∈Nk\{l}
θj→k(t +Δt) (10a)

= zk
∏

j∈Nk\{l}

[
θj→k(t)− βΔtak→l (t)Ij→k(t)

]
. (10b)

For a sufficiently small sampling interval Δt , such that θj→k(t) � βΔtak→l (t)

Ik→l (t), we can linearize Eq. (10b) and thus arrive at:

Sk→l (t +Δt) = zk
∏

j∈Nk\{l}
θj→k(t) ·

⎡

⎣1 −
∑

j ′∈Nk\{l}

βΔtak→l (t)Ij ′→k(t)

θj ′→k(t)

⎤

⎦

(11a)

= Sk→l (t)

⎡

⎣1 − βΔt
∑

j ′∈Nk\{l}
ak→l (t)

Ij ′→k(t)

θj ′→k(t)

⎤

⎦ . (11b)

In Eq. (11b) we inserted the definition of Sk→l (t) from Eq. (6) and this leads directly
to our second continuous-time dynamic equation

d

dt
Sk→l (t) = −βSk→l (t)

∑

j∈Nk\{l}
ak→l (t)

Ij→k(t)

θj→k(t)
. (12)

The quotient Ij→k(t)/θj→k(t) can be interpreted as the conditional probability that
j is infected given that cavity node k has not yet contracted the disease from j . It is
worth noting that Eq. (12) is well defined because we start from the initial condition
θj→k(t) = 1 for all edges k → j and Eq. (9) asserts positivity for θj→k(t) for all
finite observation times t . The remaining discrete-time Eq. (5) can be immediately
written down in terms of a difference quotient ΔX(t) = [X(t +Δt)−X(t)]/Δt :

ΔIk→l (t)

Δt
= [−μ− βak→l (t)+ μβΔtak→l (t)] Ik→l (t)− ΔSk→l (t)

Δt
. (13)
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In the continuous-time limit, the higher order term μβΔtak→l (t) vanishes, lead-
ing to

d

dt
Ik→l (t) = [−μ− βak→l (t)]Ik→l(t)− d

dt
Sk→l (t). (14)

At last it is also instructive to formulate the dynamic equation for Rk→l (t),
i.e., the probability that node k has recovered at time t without transmitting the
disease to cavity node l. The value of Rk→l (t) can only increase over time and the
corresponding in-flux at time t is given by (i) the probability Ik→l (t) that node k is
in state I and has not infected its neighbor l together with (ii) the probability μΔt

to recover within the time step Δt . With this, we obtain:

Rk→l (t +Δt) = Rk→l(t)+ μΔtIk→l (t). (15)

The corresponding continuous-time equation thus reads

d

dt
Rk→l (t) = μIk→l (t). (16)

Unlike the discrete-time model, it is now obvious that the dynamic Eqs. (9), (12),
(14), and (16) satisfy the conservation condition

θk→l (t) = Sk→l (t)+ Ik→l (t)+ Rk→l (t) (17)

at every time t . Moreover, we can rescale time according to μt &→ t and rewrite
the continuous-time contact-based model in terms of the dimensionless epidemic
parameter γ = β/μ:

d

dt
θk→l (t) = −γ ak→l (t)Ik→l(t) (18a)

d

dt
Sk→l (t) = −γ Sk→l (t)

∑

j∈Nk\{l}
aj→k(t)

Ij→k(t)

θj→k(t)
(18b)

d

dt
Ik→l (t) = −[1 + γ ak→l (t)]Ik→l(t)− d

dt
Sk→l (t) (18c)

d

dt
Rk→l (t) = Ik→l (t). (18d)

We can further reduce the set of dynamic equations using the conservation
condition in Eq. (17). To this end, we first substitute Sk→l (t) in Eq. (17) with the
definition from Eq. (6):

Ik→l (t) = θk→l (t)− zk
∏

j∈Nk\{l}
θj→k(t)− Rk→l(t). (19)
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With this, we replace Ik→l (t) in Eqs. (18a) and (18d) and thus we obtain a closed set
of 2E dynamic equations that determine the disease progression of the continuous-
time CB model.

Returning to node-centric quantities, i.e., the probability that a given node l is
susceptible, infected or recovered, the continuous-time equivalent formulation to
Eqs. (3), (7), and (8) reads

PS
l (t) = zl

∏

k∈Nl

θk→l (t) (20a)

P I
l (t) = 1 − PS

l (t)− PR
l (t) (20b)

d

dt
P R
l (t) = P I

l (t). (20c)

4 Spectral Properties of the Continuous-Time Model

In this section, we evaluate the low prevalence limit of Eq. (18) in order to derive
a spectral criterion that determines the epidemic threshold. To this end, we assume
θk→l (t) = 1 − δk→l(t), where δk→l (t) ' 1 as well as Ik→l ' 1. With this, we
linearize Eq. (18b) and obtain

d

dt
Sk→l (t) = −γ

⎡

⎣1 −
∑

j∈Nk\{l}
δj→k(t)

⎤

⎦ ·
∑

j∈Nk\{l}
ak→l (t)

Ij→k(t)

1 − δk→l (t)
(21a)

= −γ
∑

j∈Nk\{l}
ak→l (t)Ij→k(t). (21b)

In Eq. (21b), we keep only linear terms in δk→l (t) and Ij→k(t). This allows us
to decouple the set of dynamic equations and express Eq. (18c) only in terms of
Ik→l (t):

d

dt
Ik→l (t) = [−1 − γ ak→l (t)]Ik→l(t)+ γ

∑

j∈Nk\{l}
ak→l (t)Ij→k(t). (22)

Next, we vectorize Eq. (22) and to this end, we define the vectors I (t) and
a(t) with elements Ik→l (t) and ak→l (t), respectively. In order to rewrite∑

j∈Nk\l aj→k(t)Ik→l (t) from Eq. (22) in terms of a matrix that acts on the state
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vector I (t), we introduce the time-dependent non-backtracking operator B(t) as in
[37]:

Bk→l,j→k′(t) =
{
aj→k′(t), if k′ = k, and j �= l

0, otherwise.
(23)

Expressed in words, we find Bk→l,j→k′(t) = 1 if the contact (t, j, k′) is incident
on the edge (k, l), implying k′ = k, and additionally j �= l. The latter constraint
prevents a probability flow back to the initially infected node and constitutes the
non-backtracking property. In all other cases, we find Bk→l,j→k′(t) = 0. Unlike
the static definition in [33, 45], we have to differentiate between the first and
second index of the L × L dimensional matrix B: The first index, i.e. (k, l) ∈ E ,
corresponds to an edge in the aggregated graph, thus reflecting a potential path for
future infections. The second index (t, j, k′) ∈ C , however, is a (temporal) contact
from node j to k′ at time t .

Moreover, we define the diagonal matrix diag(a(t)) with elements ak→l (t) for
all edges (k, l) ∈ E on the diagonal and, additionally, we denote with 1 the identity
matrix. Similar to the discrete-time derivation in [37], we thus obtain:

d

dt
I (t) = [−1− γ diag(a(t))+ γB(t)

]
I (t). (24)

The only structural difference to the discrete-time result in [37] is that the higher
order term βak→lμ does not appear, because the simultaneous event of infection
and recovery does not need to be accounted for in the continuous-time formulation.

Within the open interval [tn, tn+1) where the boundaries tn and tn+1, respectively,
mark subsequent change points of the network topology, we integrate Eq. (24) and
obtain

I (tn+1) = Mn(γ )I (tn) (25a)

Mn(γ ) = exp

(∫ tn+1

tn

dτ [−1− γ diag(a(τ ))+ γB(τ )]
)
. (25b)

Using the initial condition I (0), we can formally state the explicit solution as
follows:

I (T ) =
NG−1∏

n=0

Mn(γ )I (0). (26)

Here, NG is the total number of discrete changing points of the network topology.
Following [46] we can state the propagator M(γ ) = ∏N−1

n=0 Mn(γ ) in a compact
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notation using Dyson’s time ordering operator TB(τ1)B(τ2) = B(τ1)B(τ2)Θ(τ1 −
τ2)+ B(τ2)B(τ1)Θ(τ2 − τ1), where Θ(x) denotes the Heaviside function:

M(γ ) = T exp

(∫ t

0
dτ

[−1− γ diag(a(τ ))+ γB(τ )
])

. (27)

Any small initial perturbation will decrease exponentially if the largest eigenvalue
λ1, i.e., the spectral radius satisfies λ1[M(γ )] < 1. This result corresponds to [46]
where the epidemic propagator M(γ ) has been derived within the IB framework
and reads

M(γ ) = T exp

(∫ t

0
dτ [−1+ γA(τ )]

)
. (28)

In Eq. (28), we denote with A(τ ) the time-dependent adjacency matrix and here, 1
is the N ×N dimensional identity matrix.

In many cases, the temporal network is sampled with equidistant time steps Δt

and in this case, we can simplify the propagator Eq. (28) to

M(γ ) =
NG−1∏

n=0

exp
(
Δt

[−1− γ diag(a(n))+ γB(tn)
])
. (29)

The CB result in Eq. (29) is akin to the IB formulation that was first derived in [47].
In the quenched limit, when the disease evolves on a much faster time scale than
the temporal network, we can assume a static underlying topology and thus identify
diag(a(t)) ≡ 1 and B(t) ≡ B(1) ≡ B. Then, the linearized result in Eq. (24)
simplifies to

d

dt
I (t) = [−(1 + γ )1+ γB] I (t). (30)

Finally, Eq. (30) is asymptotically stable if the largest eigenvalue λ1 of the infection
operator M(γ ) = (1+γ )1+γB is negative. Hence, we recover the continuous-time
threshold as previously derived within the more general message-passing framework
on static networks [13, 33]:

γ

γ + 1
= 1

λ1(B)
. (31)

For non-Markovian infection and recovery processes the generalized criticality
condition reads T = 1/λ1(B) (see [13, 33]), where the transmissibility T is given by

T =
∫ ∞

0
s(τ )

(∫ ∞

τ

r(τ ′)dτ ′
)

dτ. (32)
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Intuitively, T can be interpreted as the probability that a newly infected node
transmits the disease to a given neighbor prior to recovery [13, 48]. Within this
general formulation s(τ )dτ is the probability that an infected node passes the
disease to a neighbor within a time interval [τ, τ + dτ ] after contracting the
infection. Similarly, we define the probability r(τ )dτ that a node recovers in the
interval [τ, τ + dτ ] after it has been infected. For a constant infection and recovery
rate, i.e., for the Markovian dynamics that we assumed in this article, we find
s(τ ) = β exp(−βτ) and s(τ ) = μ exp(−μτ). This particularly simple and widely
studied choice then leads to T = γ /(γ + 1) and thus to Eq. (31).

For temporal networks, we cannot separate in general the transmissibility T from
the network topology in order to find a similarly elegant results like Eq. (31). The
reason is that the probability to infect a given neighbor depends on the timing of
contacts and as a consequence the transmissibility T would have to be both edge-
and time-dependent even in the Markovian case.

5 Relation to the Edge-Based Compartmental Model

An important branch in theoretical epidemiology focuses on random graphs, i.e.,
an ensemble of networks derived from a generating model, instead of a single
realization. In this context, the edge-based compartmental (EBC) model [34] is a
particularly compact and accurate approach to model infections with permanent
immunity. In this section, we will explore the relation between the CB model
presented in Sect. 3 and the EBC framework for static random graphs.

To this end, we will focus on random networks with unweighted and undirected
edges that are derived from the configuration model [49, 50]. This widely used
generative model allows to study the effect of the degree distribution on the spread
of infections [48]. For this, we have to create an ensemble of networks with the
same degree distribution that are otherwise maximally random. This can be done
according to the Bender-Canfield algorithm [49], which begins with a set of N

vertices. To each node we assign a number of k (undirected) stubs, i.e., edges with
no target node that are drawn independently from the given degree distribution p(k).
In the next step, we connect two randomly chosen stubs which then form a proper
edge between the corresponding nodes. The step is repeated until no more stubs are
available and if initially the number of stubs were found to be odd then the we would
replace one node repeatedly until the sum is even.

Before we proceed with the ensemble average, we restate for convenience the
relevant dynamic equations of the continuous-time model, i.e., Eqs. (18a) and (18d),
for a network with a static topology. In this case, ak→l ≡ 1 for all edges (k, l) ∈ E
and thus we obtain

d

dt
θk→l (t) = −γ Ik→l (t) (33a)
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d

dt
Rk→l (t) = Ik→l (t) (33b)

and close the set of equations with the conservation condition from Eq. (19):

Ik→l (t) = θk→l (t)− zk
∏

j∈Nk\{l}
θj→k(t)− Rk→l(t). (34)

For static networks, we can further simplify the dynamic equations by substituting
Ik→l (t) in Eq. (33a) with Eq. (33b) and integrating the result:

d

dt
Rk→l (t) = − 1

γ

d

dt
θk→l (t) (35a)

Rk→l (t) = 1

γ
(1 − θk→l (t)). (35b)

From Eqs. (33a), (34), and (35b), we obtain a coupled set of E dynamic equations
that determine the progression of an SIR epidemic on a static graph:

d

dt
θk→l (t) = 1 − (1 + γ )θk→l (t)+ γ zk

∏

j∈Nk\{l}
θj→k(t). (36)

The result in Eq. (36) constitutes a message-passing equation as derived in [13].
We will explore the connection to the more general message-passing framework
for epidemics with non-Markovian dynamics in Sect. 6. Here, we continue instead
with the ensemble average over random networks, thereby following closely the
approach outlined in [13]. We start with the following crucial observation: The state
of a given edge k → l in a single realization of a graph displays a characteristic
trajectory in state space, i.e., a time-dependent curve given by θk→l (t) from Eq. (36).
As we perform an average over the ensemble of graphs, our selected edge k → l

will assume every position within a network. As a consequence the averaged state
trajectory is identical to the one that we would obtain if we had started with a
different edge initially and then performed the average. In other words, it is sufficient
to determine the ensemble averaged probabilities for one representative edge:

d

dt
θ(t) ≡ d

dt
〈θk→l (t)〉 (37a)

= 1 − (1 + γ )θ(t)+ γ

〈
zk

∏

j∈Nk\{l}
θj→k(t)

〉
. (37b)

Next, we focus on the second term in Eq. (37b). A crucial property of large networks
that are generated by the configuration model is that they are locally tree-like in the
sense that the average length of the smallest cycle diverges with increasing network
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size. Hence, we can assume in the limit N → ∞ that different branches emerging
from k can be treated independently. The average over the product thus equals the
product over averages. Moreover, we remember that ensemble averaged dynamic
quantities are equal for all edges and in particular θj→k(t) ≡ θ(t) for all edges
(j, k) ∈ Nk \ {l}. With this the product in Eq. (37b) simplifies to [θ(t)]ke , where ke
is the average number of next nearest neighbors, or equally, the excess degree [13].
From a given degree distribution pn in the configuration model, we can derive the
excess degree distribution qn according to qn = (n+1)pn+1/k [50], where k = 〈n〉
denotes the average degree. Finally, we make use of the corresponding generating
function G1(x) = ∑

n qnx
n and thus the second term in Eq. (37b) simplifies to

〈
zk

∏

j∈Nk\{l}
θj→k(t)

〉
= z

N∑

n=0

qn[θ(t)]n (38a)

= zG1(θ(t)). (38b)

Here, z = 〈zk〉 denotes the probability that a randomly chosen node is initially
susceptible. With Eqs. (37b) and (38b), we obtain the following ensemble averaged
dynamic equation for θ :

d

dt
θ(t) = 1 − (1 + γ )θ(t)+ γ zG1(θ(t)). (39)

This compact result captures the disease dynamic with high accuracy as demon-
strated in [13] within the message-passing framework and later in [34] as a special
case of the edge-based compartmental model. The authors in [34] also investigated
alternative random graph models with time-varying topologies.

We close the section with a linear stability analysis of Eq. (39). Similar to the
derivation in Sect. 4, we start with a small initial perturbation: θ(t) = 1 − δ(t) with
δ(t) ' 1 and z = 1. We then expand the generating function G1(1 − δ(t)) to the
first order in δ(t):

G1(1 − δ(t)) =
∑

n

pn(1 − δ(t))n (40a)

= 1 + 〈n〉q(1 − δ(t))+ O(δ(t)2). (40b)

Here, we used two properties of the generating function, namely G1(1) = ∑
n qn =

1 and G′
1(1) = ∑

n nqn = 〈n〉q , where 〈n〉q = ke denotes the mean excess degree.
With this, the linearization of Eq. (39) around the disease-free stable fixed point
reads:

d

dt
δ(t) = −(1 + γ − γ 〈n〉q)δ(t). (41)
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From Eq. (41) we can easily see that a transition occurs from local to global
outbreaks if 1+γ−γ 〈n〉q < 0. Commonly, 〈n〉q is expressed in terms of the first and
second moment of the degree distribution, i.e. 〈n〉 = ∑

n npn and 〈n2〉 = ∑
n n

2pn,
respectively. For that we take the definition 〈n〉q = ∑

n nqn and substitute the
relation qn = (n + 1)pn+1/〈n〉 (see [50] for details). With this, we recover the
well-known criticality condition from [48, 51]:

γ

γ + 1
= 〈n〉

〈n2〉 − 〈n〉 . (42)

This result is related to the epidemic threshold in Eq. (31), where we studied a single
realization of a static graph and hence expressed the right hand side of Eq. (42)
through the spectral radius λ1(B) of the non-backtracking matrix B.

6 Relation to the Message-Passing Framework

In the seminal work of Karrer & Newman [13], the authors proposed a gen-
eral model for SIR spreading processes on sparse networks with non-Markovian
infection and recovery dynamics. The integro-differential formulation in [13] is a
foundation of our CB model and therefore we will discuss in this section the relation
to their message-passing approach. For that we first propose a generalization of the
CB model to non-Markovian dynamics and then, taking the static network limit, we
will arrive at the previously proposed result.

As a first step, we transform the dynamic equations in Eqs. (9), (12), (14), and
(16) that define the continuous-time CB model to an integro-differential equation.
To this end, we notice first that Eq. (14) is of the form

d

dt
Ik→l (t) = −λk→l(t)Ik→l (t)− d

dt
Sk→l (t). (43)

For notational convenience, we use the short-hand notation λk→l(τ ) = μ +
βak→l (τ ) and Λk→l (t, tk) = exp[− ∫ t

tk
λk→l(τ )dτ ]. The former denotes the

probability that node k recovers or infects the cavity node l within the time interval
[τ, τ + dt) after contracting the disease and the latter corresponds to the probability
that no such event took place between the time of infection and the observation time
tk and t , respectively. Here, we denote the absolute and relative time after infection
with t and τ , respectively. Together with the initial condition Ik→l (0) = 1 − zk the
solution to the differential equation is given by

Ik→l (t) = (1 − zk)Λk→l (t, 0)+
∫ t

0

[
− d

dtk
Sk→l (tk)

]
Λk→l (t, tk)dtk. (44)
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In words, Eq. (44) states that node k has contracted the disease but not infected its
neighbor l by absolute time t if (i) node k was infected initially but has neither
recovered nor passed the infection or (ii) it was susceptible initially, contracted the
disease at time tk and has then neither recovered nor infected its neighbor up to the
observation time t .

Next, we integrate Eq. (9) and using the initial condition θk→l (0) = 1 we get

1 − θk→l (t) =
∫ t

0
βak→l (t

′)Ik→l (t
′)dt ′ (45a)

=(1 − zk)

∫ t

0
dt ′fk→l (t

′|0) (45b)

+
∫ t

0

∫ t ′

0
dt ′dtk

[
− d

dtk
Sk→l (tk)

]
fk→l (t

′|tk).

In Eq. (45b) we used Ik→l (t) from Eq. (44) and we also introduced the transmission
probability fk→l (t

′|tk) = βak→l (t
′)Λk→l (t

′, tk): Given that node k contracted the
infection at absolute time tk , fk→l (t

′|tk) gives the probability that the same node
passes the disease to its neighbor l at absolute time t ′. In the context of static
networks the quantity

∫∞
tk

fk→l (t
′|tk)dt ′ is frequently referred to as transmissibility

and plays a crucial role in linking epidemic spreading to a percolation process
[13, 48]. Note that the transmissibility can be smaller than one as node k might
recover before passing on the infection and for temporal networks, unlike the static
case, the value is edge- and time-dependent as we discussed already at the end of
Sect. 4.

The message-passing framework in [13] assumes a non-Markovian infection and
recovery process. Similarly, our result in Eq. (45b) demonstrates how a general
epidemic model on temporal networks can be formulated by redefining fk→l (t

′|tk)
as proposed in [13] (see also Eq. (32)).

In order to demonstrate the reduction to the message-passing formulation of [13],
we reformulate Eq. (45b) for a static underlying topology. With ak→l (t) ≡ 1 the
transmission probability fk→l (t |tk) → f (τ) depends only on the relative time τ =
t − tk after infection and becomes an identical function for all edges k → l. Using
this simplification we obtain

1 − θk→l (t) =(1 − zk)

∫ t

0
dτf (τ)

+
∫ t

0

∫ τ

0
dτdτif (τ − τi)

[
− d

dτi
Sk→l (τi)

]
. (46)

Integrating the second term in Eq. (46) by parts, and using the fact that the double
integral can be reordered as

∫ t

0
dτ

∫ τ

0
dτi =

∫ t

0
dτi

∫ t

τi

dτ, (47)
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we arrive at the message-passing formulation equivalent to that in [13]:

θk→l (t) = 1 −
∫ t

0
dτf (t)(1 − Sk→l (t − τ)). (48)

With this we have linked the continuous-time CB model with a previously intro-
duced message-passing framework for general non-Markovian epidemic models in
the case of a static underlying graph.

7 Summary

We have presented a continuous-time description of a contact-based model. The
discussed theoretical framework allows us to study the spreading of epidemics and
extends the dynamic message-passing approach to networks with a time-varying
topology. At the center of the contact-based model is a shift in perspective from
node- to edge-centric quantities. This allows to accurately model, e.g., susceptible-
infected-recovered outbreaks on time-varying trees, that is, temporal networks with
a loop-free underlying topology. We have shown that on arbitrary graphs, the
proposed contact-based (edge-centric) model incorporates potential structural and
temporal heterogeneities of the underlying contact network and improves analytic
estimations with respect to the individual-based (node-centric) approach at a low
computational and conceptual cost. Within this new framework, we have derived an
analytical expression for the epidemic threshold on temporal networks.

We have taken a decidedly theoretical and analytical approach to the proposed
framework. This will facilitate the application to both empirical data sets and generic
classes of networks.
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The Effect of Concurrency on Epidemic
Threshold in Time-Varying Networks

Tomokatsu Onaga, James P. Gleeson, and Naoki Masuda

1 Introduction

How infectious diseases and information spread on contact networks may consid-
erably depend on temporal dynamics as well as static structural properties of the
underlying networks. While earlier research has focused on the understanding of
epidemic processes on static networks, an overarching aim of what one could call
“temporal network epidemiology” is to reveal qualitative and quantitative changes
that the time-dependent nature of the network introduces to epidemic processes on
networks [1–4].

Concurrency in epidemiology is a notion proposed in mid 1990s that concerns
the number of contacts that a node has simultaneously [5–7]. In a static network,
all edges exist concurrently (i.e., at the same time) such that if a node has degree k,
the k edges incident to the node are simultaneously present over time. This is not
necessarily the case for temporal networks, in which edges appear and disappear. In
a temporal network in which each node never has more than one edge at any point
of time, one can say that the temporal network completely lacks concurrency. In
general, although it depends on how to measure the concurrency, temporal networks
are considered to have lower concurrency than the corresponding static networks.
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However, different temporal networks can have different levels of concurrency even
if they are reduced to the same aggregate static network when the time information
about the edges is ignored. Consider two temporal networks shown in Fig. 1a, b,
both of which have N = 5 nodes and 10 discrete time points. The temporal network
shown in Fig. 1a lacks concurrency because all edges appear in isolation. Each node
has at most m = 1 edge at any given time. In contrast, the temporal network shown
in Fig. 1b has high concurrency because some time points contain a star network
and the hub in the star has m = 4 edges that exist simultaneously. In fact, these two
temporal networks have the same aggregated network, which is defined as the time-
averaged network (Fig. 1c). In Fig. 1c, the edges are shown by thin lines because
they should have smaller weights than the edges shown in Fig. 1a, b to ensure that
each edge is used for the same “weight × time”. Specifically, assume that each edge
in Fig. 1a, b is of unit weight and each edge in Fig. 1c is of weight 1/5. In Fig. 1a, b,
an edge of unit weight appears between each node pair in two out of the 10 discrete
time points. In Fig. 1c, an edge of weight 1/5 appears between each node pair in
all the 10 discrete time points. Then, in each of the three networks shown in Fig. 1,
each edge in the complete graph is used for a total of two “weight × time” units
across the ten discrete time points.

In the present chapter, we pose the following question: how do different levels
of concurrency in temporal networks (e.g., Fig. 1a versus b) impact epidemic
spreading in temporal networks? We address this question by theoretically analysing

(b)

(a)

(c)

time

Fig. 1 (a) A temporal network lacking concurrency. (b) A temporal network having a high
concurrency. (c) The aggregate network corresponding to the temporal networks shown in (a)
and (b)
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a susceptible-infected-susceptible (SIS) model on a temporal network model based
on activation of cliques (rather than stars as in Fig. 1).

2 Model

We consider the following continuous-time SIS model on a variant of the activity-
driven model of temporal networks (see [8] for the original activity-driven model),
which we call the clique-based activity-driven network. For the modelling and
analysis of the epidemic threshold in the case of the original activity-driven network
model, see Ref. [9].

We denote the number of nodes by N . We assign each node i (1 ≤ i ≤ N) an
activity potential ai , drawn from a probability density F(a) (0 < a ≤ 1). Activity
potential ai is the probability with which node i is activated in each time window of
constant period τ and is fixed over time. If activated, node i creates a clique with m

uniformly randomly selected other nodes in the network (Fig. 2), modelling a group
conversation event [10–12]. If two cliques overlap and share at least two nodes, we
only create a single edge between each pair of the nodes shared by the different
cliques. However, for large N and relatively small ai , such events seldom occur.
At the end of each time window of length τ , all cliques are discarded. Then, in the
next time window, each node is again activated with probability ai , independently
of the activity in the previous time window, and creates a clique with m uniformly
randomly selected nodes. We repeat this procedure. The present network model is
an example of a switching network [13–16]. A large τ implies that the dynamics
of network structure are slow compared to epidemic dynamics. In the limit of
τ → 0, the network changes infinitesimally fast, enabling the dynamical process
on networks to be approximated by that on the time-averaged static network [15].

In the SIS model, each node takes either the susceptible or infected state. At any
time, each susceptible node contracts infection according to the Poisson process
with rate β per infected neighbouring node. Each infected node recovers to transit
to the susceptible state at rate μ irrespectively of the neighbours’ states. Changing τ

to cτ (c > 0) is equivalent to changing β and μ to β/c and μ/c, respectively, while
leaving τ unchanged. Hence, we set μ = 1 without loss of generality.

0 τ 2τ 4τ3τ 5τ t

Fig. 2 Schematic of a clique-based activity-driven network with m = 2
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3 Analysis

In this section, we calculate the epidemic threshold for the SIS model on the clique-
based activity-driven network as follows. First, we analyse SIS dynamics on a
static clique spanning a single time window of length τ by explicitly considering
extinction effects (Sect. 3.1). Second, we obtain a linear mapping that transforms the
network state at the beginning of the time window to that at the end of the time win-
dow, which coincides with the beginning of the next time window (Sect. 3.2). Third,
we obtain the epidemic threshold as the root of an implicit function using a moment
closure method. For expository purposes, we confine ourselves to a simplified model
where the activity potential of all nodes is the same (Sect. 3.3). In Sect. 3.4, we
consider the general case in which the activity potential depends on the node.

For the sake of the theoretical analysis, we assume that cliques generated by
an activated node are disjoint from each other. Because a clique created by node i

overlaps with another clique with probability ≈ m
∑

j �=i aj (m + 1)/N ∝ m2〈a〉,
where 〈a〉 ≡ ∫

daF(a)a is the mean activity potential, we impose m2〈a〉 ' 1 for
this assumption to be valid.

3.1 SIS Dynamics on a Clique and Extinction Effects

In this section, we examine the SIS dynamics of a clique of size m + 1. We
explicitly calculate the effect of stochastic extinction in the following analysis. For
demonstration purposes, we consider SIS dynamics on a clique of size 3 (Fig. 3a).
We denote the probability with which there are i infected nodes on a clique at time
t by ρ

clique
i (t). The master equation for ρclique

i (t) is given by

d

dt

⎛

⎜⎜⎜⎝

ρ
clique
0

ρ
clique
1

ρ
clique
2

ρ
clique
3

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎝

0 1 0 0
0 −2β − 1 2 0
0 2β −2β − 2 3
0 0 2β −3

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎝

ρ
clique
0

ρ
clique
1

ρ
clique
2

ρ
clique
3

⎞

⎟⎟⎟⎠ . (1)

By solving Eq. (1), one can obtain {ρclique
0 (t), ρ

clique
1 (t), ρ

clique
2 (t), ρ

clique
3 (t)}

as a function of the state of the clique at the beginning of the time window, i.e.,
{ρclique

0 (0), ρ
clique
1 (0), ρ

clique
2 (0), ρ

clique
3 (0)}. With β = 2, the values of ρclique

i (t)

for a range of t are shown in Fig. 3b. Because the employed infection rate is
relatively large, infection initially spreads over a clique, causing the increase in
ρ

clique
2 and ρ

clique
3 . However, at larger t , ρ

clique
0 grows dramatically. Because the

present dynamics are a Markov process with a unique, disease-free absorbing state,
ρ

clique
0 approaches 1 for any infection rate. Therefore, on the clique-based activity-

driven network, an infection would die out, for any infection rate if the length of the
time window, τ , is large.
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Fig. 3 Stochastic SIS dynamics on a clique of size 3. (a) Four possible states of the clique and the
transitions between them. (b) Time course of the probability of each state of the clique. The initial
condition is set to ρ

clique
1 (0) = 1 and ρ

clique
i (0) = 0 for i �= 1. We set β = 2

The most common approach to SIS dynamics in statistical physics and mathemat-
ical biology is perhaps the mean-field theory [17]. However, in temporal networks,
only a small number of contacts may be simultaneously present such that stochastic
extinction effects are not negligible. In this case, we need to use the master equation
or other approaches that explicitly deal with the stochastic dynamics including
extinction effects [18–22]. We note that the so-called individual-based mean-field
approximation is also a method aiming to track the evolution of the probability
that each node is infected [17, 21]. That method assumes that the state of each
node is independent from each other. For this reason, the approximation may fail
to capture the probability of the extinction state. Note that the extinction effect
becomes stronger for smaller m and that the mean-field theory and the individual-
based mean-field approximation are accurate in the limit m → ∞, where the
extinction effects can be safely ignored. Within the present modelling approach, the
master-equation approach as opposed to the mean-field approaches is better when m

is roughly less than ten in practice. The analysis presented in this section suggests
that, for large values of τ , infection tends to vanish even if the infection rate is large.
Therefore, the epidemic threshold βc for the clique-based activity-driven networks
is expected to be large when τ is large.
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3.2 Linear Mapping of the Network State Across a Time
Window of Length τ

To calculate the epidemic threshold for the entire SIS model, we first formulate SIS
dynamics on a static clique with m+1 nodes using a master equation. Let us denote
the state of the clique by {x, y, z} (x, y ∈ {S, I }, 0 ≤ z ≤ m − 1), where x and
y are the states of the activated node and another specific node, respectively, and z

is the number of infected nodes among the other m − 1 nodes. Although a general
network with m+ 1 nodes has 2m+1 states, using this notation, we can describe SIS
dynamics on a clique by a continuous-time Markov process with 4m states [19].

We denote the 4m × 4m transition rate matrix of the Markov process by M . By
definition, the element M{x′,y′,z′},{x,y,z} of M is equal to the rate of transition from
state {x, y, z} to state {x′, y′, z′}. The diagonal elements of M are given by

M{x,y,z},{x,y,z} = −
∑

{x′,y′,z′}�={x,y,z}
M{x′,y′,z′},{x,y,z}. (2)

The transition rates owing to a recovery event are given by

M{S,y,z},{I,y,z} = 1 , (3)

M{x,S,z},{x,I,z} = 1 , (4)

M{x,y,z−1},{x,y,z} = z (z ≥ 1), (5)

because the recovery rate μ has been set to 1. The transition rates owing to an
infection event are given by

M{I,S,z},{S,S,z} = zβ, (6)

M{S,I,z},{S,S,z} = zβ, (7)

M{I,I,z},{S,I,z} = (z + 1)β, (8)

M{I,I,z},{I,S,z} = (z + 1)β, (9)

M{S,S,z+1},{S,S,z} = z(m− 1 − z)β (z ≤ m− 2), (10)

M{I,S,z+1},{I,S,z} = (z + 1)(m− 1 − z)β (z ≤ m− 2), (11)

M{S,I,z+1},{S,I,z} = (z + 1)(m− 1 − z)β (z ≤ m− 2), (12)

M{I,I,z+1},{I,I,z} = (z + 2)(m− 1 − z)β (z ≤ m− 2). (13)

The remaining elements of M are equal to 0.
Let p{x,y,z}(t) be the probability for a clique to be in state {x, y, z} at time t .

Because

ṗ(t) = Mp(t), (14)
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where p(t) is the 4m-dimensional column vector whose elements are p{x,y,z}(t),
one obtains

p(t) = exp(Mt)p(0). (15)

Using Eq. (15), we obtain a linear mapping for the state of the entire temporal
network, i.e., mapping from the network state before a time window to the network
state after the time window, as follows.

Let c1 be the probability that the activated node in an isolated clique is infected at
time t+τ , when the activated node is the only infected node at time t and a new time
window of length τ is started exactly at time t . Note that c1 is the probability with
which x = I at time τ when the initial state is {I, S, 0}. Therefore, using Eq. (15),
one obtains

c1(β, τ,m) =
∑

y,z

[
exp(Mτ){I,y,z},{I,S,0}

]
. (16)

Let c2 be the probability that the activated node is infected at t + τ when another
single node but no other node is infected at t . One obtains

c2(β, τ,m) =
∑

y,z

[
exp(Mτ){I,y,z},{S,I,0}

]
. (17)

Let ρ(a, t) be the probability that a node with activity potential a is infected at
time t . The fraction of infected nodes in the entire network at time t is given by

〈ρ(t)〉 ≡
∫

daF(a)ρ(a, t). (18)

Denoting by ρ1 the probability that an activated node with activity potential a is
infected after the duration τ of the clique, one obtains

ρ1(a, t + τ) = c1ρ(a, t)+ c2m〈ρ(t)〉, (19)

where the first term on the right-hand side of Eq. (19) corresponds to the situation in
which the activated node with activity potential a is infected after duration τ , when
only that node is infected at time t . The second term corresponds to the situation in
which the activated node is infected after duration τ , when only another single node
in the clique is infected at time t . In deriving Eq. (19), we assumed that the value of
β is selected close to the epidemic threshold such that at most one node is infected
in the clique at time t (and hence ρ(a, t), 〈ρ(t)〉 ' 1).

Let ρ2 be the probability that a node with activity potential a in a clique triggered
by activation of a different node with activity potential a′ is infected after time τ .
One obtains

ρ2(a, a
′, t + τ) = c1ρ(a, t)+ c2ρ(a

′, t)+ c2(m− 1)〈ρ(t)〉, (20)
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where the first term on the right-hand side of Eq. (20) corresponds to the situation in
which the node with activity potential a is infected after duration τ , when that node
is the unique infected node in the clique at time t . The second term corresponds to
the situation in which the node with activity potential a is infected after duration τ ,
when the activated node with activity potential a′ is the unique infected node in the
clique at time t . The third term corresponds to the situation in which the node with
activity potential a is infected after duration τ , when a different node is infected at
time t .

Finally, the probability that an isolated node with activity potential a is infected
after time τ is given by e−τ ρ(a, t).

By combining these contributions, one obtains

ρ(a, t + τ) = aρ1(a, t + τ)+
∫

da′F(a′)ma′ρ2(a, a
′, t + τ)

+(1 − a −m〈a〉)e−τ ρ(a, t)

= [
e−τ + (a +m〈a〉)(c1 − e−τ )

]
ρ(a, t)

+ [ma +m(m− 1)〈a〉] c2〈ρ(t)〉 +mc2〈aρ(a, t)〉. (21)

3.3 Epidemic Threshold When All Nodes Have the Same
Activity Potential

Consider the special case in which all nodes have the same activity potential a. In
this case, Eq. (21) is reduced to the one-dimensional map given by

ρ(t + τ) = T (β, τ,m)ρ(t), (22)

where

T (β, τ,m) = e−τ +(m+1)a
[
c1(β, τ,m)− e−τ

]+m(m+1)ac2(β, τ,m) (23)

and we have omitted the argument a from ρ(a, t). A positive prevalence ρ(t) (i.e.,
a positive fraction of infected nodes in the equilibrium state) occurs only if scalar
T exceeds 1. Therefore, the epidemic threshold βc is given by the solution of the
following implicit function:

f (βc, τ,m) ≡ T (βc, τ,m)− 1 = 0. (24)

Equation (24) in the limit τ → 0 is reduced to

βc = 1

m(m+ 1)a
= 1

k̄
, (25)
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where k̄ = m(m + 1)a is the degree of a node averaged over realisations of
the network structure generated by clique-based activity-driven networks. When
the network blinks infinitesimally fast (i.e., τ → 0), the epidemic dynamics are
equivalent to those occurring on the time-averaged network [15]. The time-averaged
network of the clique-based activity-driven network is the complete graph with edge
weight k̄/(N−1). Therefore Eq. (25) is consistent with the result for the well-mixed
population.

For m = 1, Eq. (24) for any τ value is reduced to

2ae
(βc−1)τ

2

[
cosh

(κcτ

2

)
+ 1 + 3βc

κc
sinh

(−κcτ

2

)]
− eτ + 1 − 2a = 0, (26)

where κc = √
β2

c + 6βc + 1.
We calculated the epidemic threshold by numerically solving Eq. (24) for m = 10

and Eq. (26) for m = 1. The epidemic threshold for a range of τ is indicated by the
solid lines in Fig. 4a, b. Note that we have kept the mean number of edges in the
network the same between m = 1 and m = 10. Therefore, βc at τ → 0 is the same
between the two cases and is given by Eq. (25). The prevalence values obtained by
direct numerical simulations of the stochastic SIS model are also shown in the same
figures in different colours. The figures suggest that Eqs. (24) and (26) describe
results obtained by numerical simulations fairly well.

For m = 1, the epidemic threshold increases with τ and diverges at τ ≈ 0.1
(Fig. 4a). The network dynamics (i.e., larger values of τ ) reduce the prevalence for
all values of β. In contrast, for m = 10, the epidemic threshold initially decreases,
then increases and finally diverges, as τ increases (Fig. 4b). Depending on the level
of concurrency (i.e., m = 1 versus m = 10), the network dynamics impact the
epidemic threshold in qualitatively different manners.

The phase diagram for the epidemic threshold when τ and m are varied is shown
in Fig. 5a. The colour indicates the βc values that we calculated by numerically
solving Eq. (24). Note that βc has the same value for all m at τ = 0. Depending on
the value of m, network dynamics (i.e., finite τ ) increase or decrease the epidemic
threshold as τ increases from zero.

Two boundaries partitioning the different phases are given as follows. First, we
derive the boundary between the “hindered” and “extinct” phases, which is shown
by the solid line in Fig. 5a. In Fig. 5a, the epidemic threshold diverges at τ = τ∗. In
the limit βc → ∞, infection seeded by a single infected node immediately infects
the entire clique, leading to c1 → 1 and c2 → 1. By substituting c1, c2 → 1 in
Eq. (23), we obtain f (βc → ∞, τ∗,m) = 0, where

τ∗ = ln
1 − (1 +m)a

1 − (1 +m)2a
≈ k̄. (27)

In Eq. (27), we used the approximation ln(1 − x) ≈ −x for x ' 1. For τ > τ∗
(i.e., “extinct” phase), infection always dies out even if the infection rate is infinite.
This is because, in a finite network (i.e., a finite clique in the present case), infection
always dies out after a sufficiently long time because of stochasticity (Sect. 3.1).
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Fig. 4 Epidemic threshold and the numerically simulated prevalence when m = 1 ((a) and (c))
and m = 10 ((b) and (d)). In (a) and (b), all nodes have the same activity potential value a. In
(c) and (d), the activity potential (ε ≤ ai ≤ 0.9, 1 ≤ i ≤ N ) is assumed to obey a power-
law distribution with exponent 3. The solid lines represent the analytical estimate of the epidemic
threshold given by Eq. (26) in (a), Eq. (24) in (b) and Eq. (35) in (c) and (d). We set N = 2000
and adjust the values of a and ε such that the mean degree is the same (i.e., 〈k〉 = 0.1) for the
four cases. We simulated the stochastic SIS dynamics using the quasistationary state method [23],
as we did in our previous studies [9, 16], and calculated the prevalence as an average over 100
realisations after discarding the first 15,000 time steps (Δt = 0.005)

Second, there may exist τc such that βc at τ < τc is smaller than the βc value at
τ = 0. The comparison between the behaviour of βc at m = 1 and m = 10 (Figs. 4a,
b) leads us to hypothesise that τc(> 0) exists only for m > mc for a positive value
of mc between 1 and 10. We should obtain

dβc

dτ
= 0 (28)

at (τ,m) = (0,mc). The derivative of Eq. (24) with respect to τ gives

∂f

∂τ
+ ∂f

∂βc

dβc

dτ
= 0. (29)
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Fig. 5 Epidemic threshold βc for the clique-based activity-driven network model. In (a), we set
the activity potential to a for all nodes. In (b), the activity potential (ε ≤ ai ≤ 0.9, 1 ≤ i ≤ N )
obeys a power-law distribution with exponent 3. We set 〈k〉 = 0.1 for m = 1 and adjusted the
values of a (in (a)) or ε (in (b)) such that the value of βc at τ = 0 is independent of m. In the
“extinct” phase, the epidemic threshold βc is effectively infinity such that infection eventually dies
out for any finite β. In the “hindered” phase, βc is finite and is larger than the value at τ = 0. In
the “promoted” phase, βc is smaller than the value at τ = 0. The solid and dashed lines represent
τ∗ (Eq. (27)) and τc, respectively. The “extinct” regions are determined as the regions in which
βc > 100

By combining Eqs. (28) and (29), one obtains ∂f
∂τ

= 0, leading to

mc = 2. (30)

When m ≤ mc, any finite value of τ increases the epidemic threshold and reduces
the risk of the prevalence. When m > mc, a small positive τ reduces the epidemic
threshold and increases the risk of the prevalence, whereas a larger τ increases the
epidemic threshold and reduces the prevalence.

3.4 General Activity Distributions

To obtain the epidemic threshold for general distributions of the activity potential,
we use a moment closure method in this section. Note that a generating function
approach, which is more complicated than the present moment closure method,
yields the epidemic threshold without approximations [9]. By averaging Eq. (21)
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over the nodes having various activity potentials distributed according to F(a), we
obtain

〈ρ(t + τ)〉 =
[
e−τ +m〈a〉(c1 − e−τ )+m2〈a〉c2

]
〈ρ(t)〉

+(c1 − e−τ +mc2)〈aρ(a, t)〉. (31)

By multiplying Eq. (21) by a and averaging over a, we obtain

〈aρ(a, t + τ)〉 =
[
m〈a2〉 +m(m− 1)〈a〉2

]
c2〈ρ(t)〉

+ [
e−τ +m〈a〉(c1 − e−τ )+m〈a〉c2

] 〈aρ(a, t)〉
+(c1 − e−τ )〈a2ρ(a, t)〉. (32)

To close the system of equations given by Eqs. (31) and (32), we approximate
〈a2ρ(a, t)〉 by 〈a〉〈aρ(a, t)〉. Then, we obtain

( 〈ρ(t + τ)〉
〈aρ(a, t + τ)〉

)
= T

( 〈ρ(t)〉
〈aρ(a, t)〉

)
, (33)

where

T =
(
e−τ +m〈a〉(c1 − e−τ )+m2〈a〉c2 c1 − e−τ +mc2[

m〈a2〉 +m(m− 1)〈a〉2
]
c2 e−τ + (m+ 1)〈a〉(c1 − e−τ )+m〈a〉c2

)
.

(34)

A positive prevalence 〈ρ(t)〉 is expected if and only if the largest eigenvalue
of T (βc, τ,m) exceeds 1. This condition results in the implicit equation for the
epidemic threshold given by

f (βc, τ,m) ≡ m(m+ 1)〈a〉2q2 +
[(

m2 +m+ 1
)
〈a〉2 − 〈a2〉

]
qr +

[
〈a〉2 − 〈a2〉

]
r2

−(2m+ 1)〈a〉q − (m+ 1)〈a〉r + 1 = 0, (35)

where

q(β, τ,m) = c1(β, τ,m)− e−τ

1 − e−τ
, (36)

r(β, τ,m) = mc2(β, τ,m)

1 − e−τ
. (37)
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By solving the Eq. (35), one can obtain the epidemic threshold βc for any com-
bination of τ and m. If the activity potentials of all nodes are the same such that
〈a2〉 = 〈a〉2, Eq. (35) is reduced to Eq. (24).

In Fig. 4c, d, the epidemic threshold given as the numerical solution of Eq. (35)
(solid lines) is compared with the prevalence obtained by direct numerical simula-
tions of the stochastic dynamics of the model. Although we employed the moment
closure approximation, our theory describes the numerical results fairly well. The
dependence of βc on τ and m is similar to when the activity potential is the same
for all nodes (Fig. 4a, b).

The phase diagram of epidemic threshold is shown in Fig. 5b. The figure indicates
that the network dynamics (i.e., finite positive τ ) always suppress epidemics when
m < 2, whereas small positive values of τ enhance epidemics when m > 2. If τ is
large enough, infection always vanishes.

4 Clique-Based Activity-Driven Networks
with Attractiveness

In this section, we consider a generalisation of the clique-based activity-driven
networks. In social networks, the chance for nodes to be selected by active nodes,
i.e., attractiveness, may depend on the nodes. As a variant of the activity-driven
network model, we consider the model in which each node is assigned a positive
attractiveness bi (1 ≤ i ≤ N) [24, 25]. When a node is activated, it creates a
clique with m nodes randomly selected with probability bi/(〈b〉N). In general, a
node is assigned with activity ai and attractiveness bi that are drawn from the joint
probability density H(a, b). We focus on the special case in which activity and
attractiveness have a deterministic relationship given by b ∼ aγ , i.e., H(a, b) =
F(a)δ(b−aγ ), where δ(x) is the Dirac delta function [24, 25]. We also assume that
ai is distributed according to the same power law as that used in Fig. 4c, d.

The prevalence obtained by direct numerical simulations is shown in Fig. 6 for
two values of m, three values of γ and a range of τ and β. When the activity potential
and attractiveness are negatively correlated (Fig. 6a, b), the results are qualitatively
the same as the cases without attractiveness (Fig. 6c, d), which are equivalent to
the colour maps shown in Fig. 4c, d. In contrast, a positive correlation between the
activity potential and attractiveness yields larger prevalence (Fig. 6e, f). In this case,
for a wider range of τ , the prevalence is positive for both m = 1 and m = 10. In
addition, for m = 10 (Fig. 6f), the prevalence is positive even at relatively small
values of β. These results imply that the epidemic threshold is smaller when the
activity potential and attractiveness are positively correlated than otherwise. This
is consistent with the previous result that positive correlation between the activity
potential and attractiveness facilitates epidemics [25].
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Fig. 6 Numerically simulated prevalence on clique-based activity-driven networks with attractive-
ness of nodes. (a) γ = −1, m = 1. (b) γ = −1, m = 10. (c) γ = 0, m = 1. (d) γ = 0, m = 10.
(e) γ = 1, m = 1. (f) γ = 1, m = 10. The activity potential (ε ≤ ai ≤ 0.9, 1 ≤ i ≤ N ) obeys
a power-law distribution with exponent 3. The colour indicates the prevalence. We set N = 2000
and adjust the value of ε such that the mean degree 〈k〉 is the same in all the cases
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5 Conclusions

We introduced a theoretical approach to stochastic SIS dynamics on a switching
temporal network model and its extension, which are variants of the activity-driven
network model. We found that the epidemic threshold and prevalence, and how they
compare with the case of static networks, mainly depend on the level of concurrency
and the distribution of attractiveness.
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Dynamics and Control of Stochastically
Switching Networks: Beyond Fast
Switching

Russell Jeter, Maurizio Porfiri, and Igor Belykh

1 Introduction

Collective behavior within networks has received a considerable amount of attention
in the literature, from animal grouping to robotic motion [71, 77]. One type of
collective behavior, synchronization, is particularly important in how prevalent it is
in real-world systems [3, 10, 59]. Synchronization is one of the most basic instances
of collective behavior, and one of the easiest to diagnose: it occurs when all of the
nodes in a network act in unison. Typically, it manifests in ways similar to a school
of fish moving as one larger unit to confuse or escape from a predator [15], or a
collection of neurons firing together during an epileptic seizure [53].

Significant attention has been devoted to the interplay between node dynamics
and network topology which controls the stability of synchronization [6, 46, 54, 57].
Most studies have looked at networks whose connections are static; networks with a
dynamically changing network topology, called temporal or evolving networks, are
only recently appearing into the scientific literature [1, 5, 7, 17–20, 20–22, 24, 27,
28, 28, 30–32, 38, 47–51, 60, 61, 63, 67, 69, 70, 72–74, 76, 79, 80] (see the recent
books [36, 37] for additional references).
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A particular class of evolving dynamical networks is represented by on-off
switching networks, called “blinking” networks [5, 69] where connections switch
on and off randomly and the switching time is fast, with respect to the characteristic
time of the individual node dynamics. As summarized in a recent review [8],
different aspects of synchronization, consensus, and multistability in stochastically
blinking networks of continuous-time and discrete-time oscillators have been stud-
ied in the fast-switching limit where the dynamics of a stochastically switching net-
work is close to the dynamics of a static network with averaged, time-independent
connections. While a mathematically rigorous theory of synchronization in fast-
switching blinking networks is available [5, 7, 30–32, 39, 60, 61, 63, 67, 69, 70, 72],
the analysis of synchronization in non-fast switching networks of continuous-time
oscillators has proven to be challenging and often elusive.

Non-fast switching connections yield a plethora of unexpected dynamical phe-
nomena, including (i) the existence of a significant set of stochastic sequences and
optimal frequencies for which the trajectory of a multistable switching oscillator
can converge to a “wrong” ghost attractor [7] and (ii) bounded windows of interme-
diate switching frequencies (“windows of opportunity”) in which synchronization
becomes stable in a switching network over bounded intervals of the switching
frequency, which may not include the fast switching limit [39]. As a result, networks
that do not synchronize in the fast switching limit may synchronize for non-fast
switching, and then lose synchronization as the frequency is further reduced. Found
numerically in networks of continuous-time Rössler and Duffing oscillators [39]
and Rosenzweig-MacArthur food chain models [40], the emergence of windows
of opportunity calls for a rigorous explanation of unexpected synchronization from
non-fast switching. Blinking networks of discrete-time systems (maps) with non-
fast switching offer such a mathematical treatment [26, 41, 42, 62, 66]. More
precisely, the switching period in discrete-time networks can be quantified as a
number of the individual map’s iterates such that rescaling of time yields a new,
multi-iterate map that is more convenient to work with. This enables the formulation
of a rigorous mathematical framework for the analysis of the stochastic stability of
synchronization as a function of the switching period.

The purpose of this chapter is to give a detailed overview of this rigorous
mathematical framework and reveal the central role of non-fast switching which
may provide opportunity for stochastic synchronization in a range of switching
periods where fast switching fails to synchronize the maps. We start with a historical
perspective and a short review of the existing fast-switching theory for networks of
continuous-time oscillators and discuss a motivating example of coupled Rössler
oscillators with non-fast switching (Sect. 2). Then, we present the stochastic model
of coupled maps and introduce the mean square stability of the transverse dynamics.
To isolate the delicate mechanisms underpinning stochastic synchronization, we
consider two coupled maps with independent identically distributed stochastic
switching and study the stability of synchronization as a function of the switching
period (Sect. 3). In Sect. 4, we extend our rigorous toolbox to assess the mean-
square stability of controlled synchronization in broadcaster-network systems. We
examine the feasibility of on-off broadcasting from a single reference node to
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induce synchronization in a target network with connections from the reference
node that stochastically switch in time with an arbitrary switching period. Internal
connections within the target network are static and promote the network’s resilience
to externally induced synchronization. Through rigorous mathematical analysis,
we uncover a complex interplay between the network topology and the switching
period of stochastic broadcasting, fostering or hindering synchronization to the
reference node. With coupled chaotic tent maps as our test-bed, we prove the
emergence of “windows of opportunity” where only non-fast switching periods are
favorable for synchronization. The size of these windows of opportunity is shaped
by the Laplacian spectrum such that the switching period needs to be manipulated
accordingly to induce synchronization. Surprisingly, only the zero and the largest
eigenvalues of the Laplacian matrix control these windows of opportunities for tent
maps within a wide parameter region.

2 The Blinking Network Model: Continuous-Time Systems

“Blinking” networks were originally introduced for continuous-time oscillators in
the context of network synchronization in [5]. A blinking network consists of N

oscillators interconnected pairwise via a stochastic communication network:

dxi

dt
= Fi (xi )+ ε

N∑

j=1

sij (t)P
(
xj − xi

)
, (1)

where xi (t) ∈ R
d is the state of oscillator i, Fi : R

d → R
d describes the

oscillators’ individual dynamics, ε > 0 is the coupling strength. The d × d matrix
P determines which variables couple the oscillators, sij (t) are the elements of the
time-varying connectivity (Laplacian) matrix G(t). The existence of an edge from
vertex i to vertex j is determined randomly and independently of other edges with
probability p ∈ [0, 1]. Expressed in words, every switch in the network is operated
independently, according to a similar probability law, and each switch opens and
closes in different time intervals independently. All possible edges sij = sji are
allowed to switch on and off so that the communication network G(t) is constant
during each time interval [kτ, (k + 1)τ ) and represents an Erdős-Rényi graph of N
vertices. Figure 1 gives an example of a “blinking” graph.

The switching network (1) is a relevant model for stochastically changing
networks such as information processing cellular neural networks [30] or epidemio-
logical networks [24, 40, 70]. For example, independent and identically distributed
(i.i.d.) stochastic switching of packet networks communicating through the Internet
comes from the fact that network links have to share the available communication
time slots with many other packets belonging to other communication processes and
the congestion of the links by the other packets can also occur independently.
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Fig. 1 (Top). Two
subsequent instances of the
switching network.
Probability of an edge
p = 0.5, the switching time
step τ = 0.01. (Bottom). The
corresponding averaged
network where the switching
connections of strength ε are
replaced with static all-to-all
connections of strength pε,

representing their mean value

t = 0.05 t = 0.06

As far as network synchronization is concerned, local computer clocks, that are
required to be synchronized throughout the network, are a representative example.
Clock synchronization is achieved by sending information about each computer’s
time as packets through the communication network [5]. The local clocks are
typically implemented by an uncompensated quartz oscillator. As a result, the clocks
can be unstable/inaccurate and need to receive synchronizing signals, that aim to
reduce the timing errors. These signals must be sufficiently frequent to guarantee
sufficient precision of synchronization between the clocks. At the same time, the
communication network must not be overloaded by the administrative signals. This
is a compromise between the precision of synchronization and the traffic load on
the network. Remarkably, this blinking network administration can provide precise
functioning of a network composing of imprecise elements. It also indicates the
importance of optimal switching frequencies that ensure this compromise.

2.1 Historical Perspective: Fast Switching Theory

Over the years, various aspects of synchronization in fast switching networks
of continuous-time oscillators have been extensively investigated [5, 39, 61, 63,
67, 69, 70, 72]. In particularly, it was rigorously proved in both continuous and
discrete-time cases that if the switching frequency is sufficiently high, with respect
to the characteristic time of the individual oscillators (fast switching limit), the
stochastically blinking network can synchronize even if the network is disconnected
at every instant of time.

Beyond synchronization, a rigorous theory for the behavior of stochastic switch-
ing networks of continuous-time oscillators in the fast switching limit was devel-
oped in [7, 30–32]. In general, it was proved in [31, 32] that for switching dynamical
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systems of this type, if the stochastic variables switch sufficiently fast, the behavior
of the stochastic system will converge to the behavior of the averaged system in
finite time, where the dynamical law is given by the expectation of the stochastic
variables. These studies have also helped clarify a number of counterintuitive
findings about the relationship between the stochastic network and its time-averaged
counterpart. While intuition suggests that the switching network should follow the
averaged system in the fast switching limit, this is not always the case, especially
when the averaged system is multistable and its attractors are not invariant under the
switching system. These attractors act as ghost attractors for the switching system,
whereby the trajectory of the switching system can only reach a neighborhood of
the ghost attractor, and remains close most of the time with high probability when
switching is fast. In a multistable system, the trajectory may escape to another ghost
attractor with low probability [32]. This theory uses the Lyapunov function method
along with large deviation bounds to derive explicit conditions that connect the
probability of converging towards an attractor of a multistable blinking network,
the fast switching frequency, and the initial conditions. As the switching frequency
decreases, it was shown that there is a range of “resonant” frequencies where the
trajectory of a multistable switching oscillator receives enough kicks in the wrong
direction to escape from the ghost attractor against all odds [7].

Indeed, there are circumstances for which not converging to the averaged system
is favorable, and the present fast-switching theory is not able to make definitive
claims about the behavior of the stochastic system. This leads us to explore the
effects of non-fast-switching on the dynamics of the switching network.

2.2 Beyond Fast Switching: A Motivating Example

We begin with a numerical example of the stochastic Erdős-Rényi network (1)
composed of ten x-coupled Rössler oscillators:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi = −(yi + zi)+ ε
10∑
j=1

sij (t)(xj − xi)

ẏi = xi + ayi

żi = b + zi(xi − c).

(2)

Hereafter, the intrinsic parameters are chosen and fixed as follows: a = 0.2,
b = 0.2, c = 7. The averaged network is an all-to-all network with a fixed
coupling strength pε. Synchronization in a network of x-coupled Rössler systems
is known [57] to destabilize after a critical coupling strength ε∗, which depends on
the eigenvalues of the connectivity matrix G. We choose the coupling strengths in
the stochastic network such that the coupling in the averaged network is defined by
one of the three values, marked in Fig. 2. In particular, for ε = 1, synchronization in
the averaged network is unstable. As a result, synchronization in the fast-switching
network is also unstable. Surprisingly, there is a window of intermediate switching
frequencies for which synchronization becomes stable (see Fig. 3). In fact, the
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Fig. 2 Transversal stability of synchronization in the averaged ten-node x-coupled Rössler
system, expressed via the largest transversal Lyapunov exponent. Synchronization is stable within
the interval ε− < ε < ε+ [not shown]. The values of ε used in Fig. 3 are marked with dot in red,
light blue, and navy

Fig. 3 Probability of synchronization in the ten-node stochastic Rössler network with differing
coupling strengths, showing the effects of varying τ . These are coupling strengths for which
synchronization in the averaged system is stable (red), weakly unstable (light blue), and strongly
unstable (navy), respectively (cf. Fig. 2 for the values marked with appropriately colored dots).
The bell-shaped curve corresponds to an optimal range of non-fast switching 0.6 < τ < 2.2
(the “window of opportunity”), where synchronization in the stochastic network becomes stable
with high probability, whereas synchronization in the corresponding averaged system is unstable
(ε = 1). Switching probability p = 0.5. Probability calculations are based on 1000 trials
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Fig. 4 Probability of synchronization in the two-node Rössler network (2) as a function of the
switching probability p and switching period τ . Yellow (lighter) colors correspond to higher
probability of convergence (with light yellow at probability 1) and blue (darker) colors correspond
to lower probabilities (dark blue at probability 0). The coupling strength of the connection is
fixed at ε = 7. As p increases, pε, the effective coupling in the averaged/fast-switching network
progresses through the window of synchrony indicated in Fig. 2. For the two-node network this
interval is pε ∈ [0.08 2.2], yielding the stability range p ∈ [0.011 0.31] (the yellow interval on
the y-axis) for ε = 7 and small τ . Probability calculations are based on 1000 trials

stochastic network switches between topologies whose large proportion does not
support synchronization or is simply disconnected.

To better isolate the above effect and gain insight into what happens when
switching between a connected network in which the synchronous solution is
unstable, and a completely disconnected network in which the nodes’ trajectories
behave independently of one another, we consider a two-node Rössler network
(2). Figure 4 demonstrates the emergence of synchronization windows for various
intermediate values of τ for which the fast-switching network does not support
synchronization. In essence, the system is switching between two unstable systems,
and yet when the switching period τ is in a favorable range within a window of
opportunity, the system stabilizes.

Observed numerically in the network of continuous-time oscillators, this phe-
nomenon calls for a more rigorous study to isolate the principal mechanisms
underpinning unexpected synchronization from non-fast switching. The following
sections aim at establishing such an analytical insight in more analytically tractable
networks of discrete-time oscillators.
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3 Revealing Windows of Opportunity in Two Stochastically
Coupled Maps

We focus on a discrete-time setting, where the coupling between the maps is held
fixed for a finite number of time steps (switching period) and then it stochastically
switches, independent of the time history. In this case, non-fast switching can be
studied by re-scaling the time variable and consequently modifying the individual
dynamics of the coupled maps. This enables the formulation of a rigorous mathe-
matical framework for the analysis of the stochastic stability of synchronization as
a function of the switching period. We restrict our analysis to two coupled maps
with the two-fold aim of: (i) providing a clear demonstration for the origin of this
phenomenon, which may be hidden by topological factors in large networks and
(ii) establishing a toolbox of closed-form results for the emergence of windows of
opportunity.

3.1 Network Model

We study the stochastic synchronization of two maps characterized by the state
variables xi ∈ R, i ∈ {1, 2}. We assume that the individual dynamics of each node
evolves according to xi(k + 1) = F(xi(k)), where k ∈ Z

+ is the time step and
F : R → R is a smooth nonlinear scalar function. The maps are linearly coupled
through the stochastic gains ε1(k), ε2(k) ∈ R, such that

[
x1(k + 1)
x2(k + 1)

]
=
[
F(x1(k))+ ε1(k)(x2(k)− x1(k))

F (x2(k))+ ε2(k)(x1(k)− x2(k))

]
. (3)

Each of the sequences of coupling gains, ε1(0), ε1(1), ε1(2), . . . and ε2(0), ε2(1),
ε2(2), . . ., is assumed to be switching stochastically with the same period m ∈
Z
+ \ {0}. Every m time steps, the coupling gains simultaneously switch, such that

ε1(mk) = ε1(mk+1) = . . . = ε1(mk+m−1) = ε̃1(k) and ε2(mk) = ε2(mk+1) =
. . . = ε2(mk + m − 1) = ε̃2(k) for every time step k, where ε̃1(0), ε̃1(1), . . .
and ε̃2(0), ε̃2(1), . . . are two sequences of independent and identically distributed
random variables.

The evolution of the coupled maps in Eq. (3) is determined by the random
variables ε̃1 and ε̃2, from which the coupling gains are drawn. In general, these
random variables may be related to each other and may not share the same
distribution. For example, in the case of uni-directional stochastic coupling, one
of the random variables is zero; on the other hand, for bi-directional interactions,
the two random variables coincide.

The majority of the work on stochastic synchronization of coupled discrete maps
is largely limited to the case m = 1, for which the coupling gains switch at every
time step [60]. In this case, the random variables εi(0), εi(1), εi(2), . . ., for i ∈
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{1, 2}, are mutually independent. For each value of k, x1(k + 1) and x2(k + 1)
are functions only of the previous values x1(k) and x2(k), and Eq. (3) reduces to a
first order Markov chain with explicit dependence on time through the individual
dynamics. In the case of m > 1, the random variables εi(0), εi(1), εi(2), . . ., for
i ∈ {1, 2}, are no longer independent, which poses further technical challenges for
the analysis of the system, while opening the door for rich behavior to emerge from
the stochastically driven coupling.

The oscillators synchronize at time step k if their states are identical, that is,
x1(k) = x2(k). From Eq. (3), once the oscillators are synchronized at some time
step, they will stay synchronized for each subsequent time step. The common
synchronized trajectory s(k) is a solution of the individual dynamics, whereby
s(k + 1) = F(s(k)). The linear stability of synchronization can be studied
through the following variational equation, obtained by linearizing Eq. (3) in the
neighborhood of the synchronization manifold:

ξ(k + 1) = [
F ′(s(k))− d(k)

]
ξ(k), (4)

where prime indicates differentiation, d(k) = ε1(k) + ε2(k) is the net coupling,
and ξ(k) = x1(k) − x2(k) is the synchronization error at time step k. Equation (4)
defines the linear transverse dynamics of the coupled oscillators, measured with
respect to the difference between their states ξ(k). This quantity is zero when
the two oscillators are synchronized. Equation (4) relies on the assumption that
the mapping governing the individual dynamics, F , is differentiable everywhere.
This assumption can be relaxed, however, to functions that are differentiable almost
everywhere [58].

Only the sum of the two coupling gains ε1(k) and ε2(k) affects the transverse
dynamics, thereby only the statistics of the random variable d(k) modulate the linear
stability of the synchronization manifold. To simplify the treatment of the variational
problem in Eq. (4), we can rescale the time variable with respect to the switching
period as follows:

ξ̃ (k + 1) =
m−1∏

i=0

(F ′(s(mk + i))− d̃(k))ξ̃ (k), (5)

where ξ̃ (k) = ξ(mk) and d̃(k) = ε̃1(k) + ε̃2(k). Equation (5) casts the variational
dynamics in the form of a first order time-dependent Markov chain, generated by a
linear time-varying stochastic finite difference equation [23, 44].

It is important to emphasize that the synchronization manifold x1(k) = x2(k) is
an invariant set of the stochastic Eq. (3). Therefore, the dynamics of the synchro-
nization manifold is governed by an attractor of the mapping function F(s(k)).
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3.2 Mean Square Stability of Synchronization

In determining the stability of the synchronous state, various criteria can be
considered, such as almost sure, in probability, and mean square [23, 44, 66]. The
concept of mean square stability is particularly attractive, due to its practicality of
implementation and its inclusiveness with respect to other criteria. Mean square
stability of the synchronous state is ascertained through the analysis of the temporal
evolution of the second moment of the error E[ξ̃2], where E[·] indicates expectation
with respect to the σ -algebra generated by the switching. By taking the square of
each side of Eq. (5) and computing the expectation, we obtain

E
[
ξ̃2(k + 1)

]
= E

[
m−1∏

i=0

(F ′(s(mk + i))− d̃(k))2

]
E
[
ξ̃2(k)

]
. (6)

This recursion is a linear, time-varying, deterministic finite difference equation
whose initial condition is ξ̃2(0), which is treated as a given value and not as a
random variable. We say that Eq. (5) is mean square asymptotically stable if Eq. (6)
is asymptotically stable, that is, if the Lyapunov exponent λ of Eq. (6) is negative.
This implies that any small difference between the states of the oscillators will
converge to zero in the mean square sense as time increases.

The Lyapunov exponent is a function of the switching period m and can be
computed from Eq. (6) as follows [58]:

λ(m) = lim
k→∞

1

k
ln

k−1∏

j=0

E

[
m−1∏

i=0

(F ′(s(mj + i))− d̃(j))2

]
. (7)

In general, the stability of the synchronization manifold depends on the under-
lying synchronous solution, whereby λ(m) in Eq. (7) explicitly depends on s(k). In
what follows, we focus on the case where s(k) is a chaotic trajectory. We comment
that our approach is based on the linearized dynamics in Eq. (4), which describes
small perturbations from the synchronous state. Thus, our analysis is only applicable
to the study of local stability of the synchronization manifold, and initial conditions
cannot be arbitrarily selected in the basin of attraction.

3.3 Preliminary Claims

We assume that d̃(k) takes values on a finite sample space D = {d1, d2, . . . , dn} of
cardinality n. For l = 1, . . . , n, the probability that the net coupling is equal to dl
is chosen to be equal to pl . For example, in the case of simple on-off connections,
the individual coupling gains take values 0 and ε with corresponding probabilities
p and 1 − p. Therefore, the net coupling gain d̃(k) takes values d1 = 0, d2 = ε,
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and d3 = 2ε with corresponding probabilities p1 = p2, p2 = 2p(1 − p) and
p3 = (1 − p)2.

From the individual values of the net coupling and their probabilities, we can
evaluate the Lyapunov exponent in Eq. (7) as

λ(m) = lim
k→∞

1

k

k−1∑

j=0

ln

[
n∑

l=1

pl

m−1∏

i=0

(F ′(s(mj + i))− dl)
2

]
. (8)

One of the central objectives of this study is to understand the relationship
between the synchronizability of the coupled maps when statically coupled through
the net coupling gains in D and their stochastic synchronizability when the net
coupling randomly switches at a period m. Toward this aim, we adjust Eq. (8) to
the case of statically coupled maps with a net coupling d#

λst(d#) = lim
k→∞

1

k

k−1∑

j=0

ln
[
(F ′(s(j))− d#)2

]
. (9)

For convenience, we write λst
l = λst(dl) for l = 1, . . . , n. Depending on the value of

dl , the statically coupled systems may synchronize or not, that is, the corresponding
error dynamics may be asymptotically stable or unstable.

If all of the Lyapunov exponents of the statically coupled systems are finite, then
we can establish the following relationship between the Lyapunov exponent of the
stochastic error dynamics (8) and {λst

r }nr=1:

λ(m) = mλst
r + lim

k→∞
1

k

k−1∑

j=0

ln

[∑n
l=1 pl

∏m−1
i=0 (F ′(s(mj + i))− dl)

2

∏m−1
i=0 (F ′(s(mj + i))− dr)2

]
. (10)

Equation (10) is derived from Eq. (8) by: (i) dividing and multiplying the argument
of the logarithm by

∏m−1
i=0 (F ′(s(mj + i)) − dr)

2; (ii) using the product rule of
logarithms; and (iii) applying Eq. (9) upon rescaling of the time variable by the
period m.

By multiplying both sides of Eq. (10) by pr and summing over r , we obtain the
following compact relationship between the Lyapunov exponent of the stochastic
dynamics and the individual Lyapunov exponents for statically coupled maps:

λ(m) = m

n∑

l=1

plλ
st
l + lim

k→∞
1

k

k−1∑

j=0

ln

∑n
l=1 plζl(j)∏n
l=1 ζ

pl

l (j)
. (11)
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Here, we have introduced:

ζl(j) =
m−1∏

i=0

(F ′(s(mj + i))− dl)
2, (12)

which we assume to be different than zero to ensure that the Lyapunov exponent
stays finite.

The first summand on the right-hand side of Eq. (11) is linearly proportional to
the switching period m and the “effective” Lyapunov exponent λ̄ = ∑n

l=1 plλ
st
l ,

which corresponds to the average of the Lyapunov exponents associated with the
statically coupled maps, weighted by the probability of the corresponding switching.
The second summand is a residual quantity, which is always nonnegative and
encapsulates the complex dependence of the transverse dynamics on the switching
period beyond the linear dependence associated with the first summand.

3.4 Necessary Condition for Mean Square Synchronization

Proposition 3.1 The synchronization of the stochastic system (3) is mean square
stable only if the effective Lyapunov exponent λ̄ is negative.

Proof A lower bound for the Lyapunov exponent λ(m) can be obtained by applying
the weighted arithmetic-geometric mean inequality [13]

n∏

l=1

ζ
pl

l ≤
n∑

l=1

plζl. (13)

From inequality (13), it follows that the argument of the logarithm in Eq. (11) is
larger than or equal to 1. As a result, we obtain

λ(m) ≥ mλ̄. (14)

This inequality establishes that for λ(m) to be negative, λ̄ must also be negative. *�
Remark 1 From the previous claim, we posit if none of the Lyapunov exponents
{λst

r }nr=1 are negative, synchronization is not feasible for any selection of m and
{pr}nr=1. Thus, stochastic synchronization cannot be achieved without at least
one coupling configuration to support synchronization. This is in contrast with
observations from continuous-time systems which indicate the possibility of stable
synchronization even if none of the coupling configurations support synchronization
[39, 40].

Remark 2 The weighted arithmetic and geometric mean, introduced in (13), are
equal if and only if ζ1 = ζ2 = . . . = ζn. Thus, inequality (14) reduces to an equality
if and only if
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m−1∏

i=0

(F ′(s(mj + i))− d1)
2 =

m−1∏

i=0

(F ′(s(mj + i))− d2)
2 = (15)

. . . =
m−1∏

i=0

(F ′(s(mj + i))− dn)
2 (16)

holds for any j ∈ Z
+. For the case of chaotic dynamics, where s(k) does not

evolve periodically in time, this condition cannot be satisfied and Eq. (15) is a strict
inequality.

For continuous-time systems [5, 30, 63–65, 67–70], it was shown that under fast
switching conditions the synchronizability of stochastically switching system can be
assessed from the synchronizability of the averaged system. Here, we re-examine
this limit in the case of coupled maps, whereby the averaged system is obtained
by replacing the switching gain by its expected values. The synchronizability of
the averaged system is ascertained by studying the Lyapunov exponent obtained by
replacing d# with E[d] in Eq. (9), that is,

λaver = lim
k→∞

1

k

k−1∑

j=0

ln
[
(F ′(s(j))− E[d])2

]
. (17)

In what follows, we demonstrate through examples that the weighted average
Lyapunov exponent λ̄ can be positive or negative, independent of the value of λaver.
Therefore, the averaged system does not offer valuable insight on the stability of
the synchronization manifold of the stochastically coupled maps. For the sake of
illustration, we consider the case in which the individual dynamics corresponds to
the identity, such that

[
x1(k + 1)
x2(k + 1)

]
=
[
x1(k)+ ε1(k)(x2(k)− x1(k))

x2(k)+ ε2(k)(x1(k)− x2(k))

]
. (18)

In this case, the transverse dynamics in (4) takes the simple form

ξ(k + 1) = [1 − d(k)] ξ(k). (19)

Statically coupled identity maps should have a Lyapunov exponent given by (9) with
F ′(s(j)) = 1, that is,

λst(d#) = ln
[
(1 − d#)2

]
. (20)
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Suppose that the net switching gain is a random variable that takes values d1 = 1
and d2 = −1 with equal probabilities 0.5. Then, using Eq. (20) we compute

λ̄ = 1

2

(
λst(1)+ λst(−1)

) = −∞, (21a)

λaver = λst(0) = 0 > λ̄. (21b)

Thus, the average coupling does not support synchronization, even though the
effective Lyapunov exponent is negative.

Now, we assume d1 = 0 and d2 = 2 with the same probability 0.5, which yields

λ̄ = 1

2

(
λst(0)+ λst(2)

) = 0, (22a)

λaver = λst(1) = −∞ < λ̄. (22b)

This posits that the stochastically coupled maps cannot synchronize for any
selection of the period m, even though the average coupling affords synchronization
in a single time step.

If the difference between the possible values of the net coupling gain in D is
sufficiently small, the stability of the stochastic system can be related to the stability
of the error dynamics of the averaged system. In this case, if for all l = 1, . . . , n,
we can write F ′(x) − dl as F ′(x) − Δdl + E[d], where |Δdl | ' |F ′(x) − E[d]| is
the deviation of the stochastic switching with respect to their expected value. Thus,
we obtain

λ̄ =
n∑

l=1

pl lim
k→∞

1

k

k−1∑

j=0

ln
[
(F ′(s(j))− E[d] +Δdl)

2
]
≈

lim
k→∞

1

k

k−1∑

j=0

(
ln
[
(F ′(s(j))− E[d])2

])
+

n∑

l=1

lim
k→∞

k−1∑

j=0

2plΔdl

F ′(s(j)− E[d] = λaver,

(23)

where we have expanded the logarithm in series in the neighborhood of F ′(s(j))−
E[d] and we have used the fact that

∑n
l=1 plΔdl = 0 by construction.

3.5 Chaotic Dynamics

Direct computation of the Lyapunov exponent as a limit of a time series from
Eqs. (8) or (11) may be challenging or even not feasible; for example, if F ′(x) is
undefined on a finite set of points x. Following the approach of [33], we replace the
summation with integration using Birkhoff’s ergodic theorem [14].
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Toward this aim, we introduce ρ(x) as the probability density function of the
map F(x), defined on a set B and continuously differentiable on B except for a
finite number of points. The probability density function of each map can be found
analytically or numerically [9, 12]. Using Birkhoff’s ergodic theorem, Eqs. (8), (9),
and (11) can be written as

λst
l =

∫

B

ln
[
(F ′(t)− dl)

2
]
ρ(t)dt, (24a)

λ(m) =
∫

B

ln
n∑

l=1

plYl(t,m)ρ(t)dt, (24b)

λ(m) = m

n∑

l=1

plλ
st
l +

∫

B

ln

∑n
l=1 plYl(t,m)

∏n
l=1 Y

pl

l (t, m)
ρ(t)dt. (24c)

Here, we have introduced the function of time and switching period

Yl(t,m) =
m−1∏

i=0

(F ′(F i(t))− dl)
2, (25)

where F i(t) = [F ◦ F ◦ . . . ◦ F ] (t) is the composite function of order i.
If the analytical expression of the probability density function is known, the

Lyapunov exponents can be found explicitly as further detailed in what follows
when we study coupled tent maps. Numerical analysis can also benefit from
the above formulation, which obviates with computational challenges related to
uncertainties in rounding variables in Eqs. (8), (9), and (11) for large values of k.
This may be especially evident for large curvatures of the individual map, which
could result in sudden changes in the synchronization dynamics.

Remark 3 Equation set (24) can be used to explore the synchronizability of an N -
periodic trajectory s(Nk + i) = si , where i = 0, 1, . . . , N − 1, k ∈ Z

+, and
N ∈ Z

+/{0}, by using the appropriate probability density function [12] ρ(s) =
1
N

∑N−1
i=0 δ(s − si), where δ(·) denotes the Dirac delta distribution. Specifically,

from (24a) and (24b), we establish

λ(m) = 1

N

N−1∑

i=0

ln
n∑

l=1

plYl(si , m). (26)

3.6 A Representative Example: Coupled Tent Maps

To illustrate our approach, we use the paradigm of two linearly coupled one-
dimensional tent maps. Statically coupled tent maps are known to have two
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Fig. 5 Transversal Lyapunov
exponent, λst , for stability of
synchronization in the static
network of tent maps (3),
calculated through (28) as a
function of coupling ε

symmetric ranges of positive and negative coupling for which synchronization is
locally stable [33] (see Fig. 5). In our setting, we let the coupling stochastically
switch between values within and outside these stability regions to explore the emer-
gence of windows of opportunity. We will demonstrate that while fast switching,
occurring at each time step may not synchronize the maps, there can be a range of
lower frequencies that yields stable synchronization. We argue that this is possible
for coupled maps where the probability of switching between stable and unstable
configurations is uneven, inducing a non-trivial balance between the dynamics of
the coupled maps and the switching periods.

The chaotic tent map, described by the equation

x(k + 1) = F(x(k)) =
{
ax(k), x(k) < 1/2
a(1 − x(k)), x(k) ≥ 1/2

(27)

with parameter a = 2 is known to have a constant invariant density function ρ(t) =
1 [33].

3.6.1 Statically Coupled Maps

The stability of synchronization in a static network (3) of tent maps (27) is controlled
by the sign of the transversal Lyapunov exponent [33]

λst = ln |2 − ε| + ln |2 + ε|. (28)

Figure 5 indicates two disjoint regions given by ε ∈
[
−√

5,−√
2
]

and ε ∈
[√

2,
√

5
]

in which λst < 0 and synchronization is stable.
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3.6.2 Stochastically Coupled Maps

To elucidate synchronizability of stochastically coupled tent maps, we assume that
the net coupling gain d takes values d1 and d2 with corresponding probabilities p1
and p2 = 1 − p1. The numerical computation of the Lyapunov exponent in (8) is
performed for different values of d2 from −4 to 4 with a step of 0.01 and m from 1
to 25 with a step of 1. The probability p1 is held fixed to 0.5 and the net coupling
gain d1 to −1.90.

This wide parameter selection allows for exploring the connection between the
stability of synchronization for static coupling and the resulting stochastic synchro-
nization. We consider different cases, where stochastic switching is implemented
on coupling gains which could individually support or hamper synchronization for
statically coupled maps. Specifically, we contemplate the case in which: none (case
I), one (case II), or both (case III) of the coupling gains yield synchronization.

A closed-form expression for the Lyapunov exponent of coupled tent maps can
be derived from Eq. (24b) using the probability density function ρ(t) = 1, see [26]
for a precise derivation,

λ(m) = 1

2m

m∑

i=0

(
m

i

)
ln

(
n∑

l=1

pl(2 − dl)
2(m−i)(2 + dl)

2i

)
. (29)

We comment that for large m the binomial coefficient grows as 2m/
√
m according

to Stirling’s formula, which ensures that the summation is well behaved in the slow
switching limit [55].

Figure 6 (top) provides the Lyapunov exponent of two stochastically tent maps,
analytically computed from Eq. (29). The effective Lyapunov exponent is directly
computed from Eq. (28), which for the select parameters, p1 = p2 = 0.5 and d1 =
−1.90, yield the following intervals for

d2 :
(
−
√

4 + 1

0.39
,−

√
4 − 1

0.39

)
∪
(√

4 − 1

0.39
,

√
4 + 1

0.39

)
.

Importantly, analytical results for large periods in Fig. 6 (bottom) confirm that slow
switching in case III favors stochastic synchronization. Figure 6 (bottom) also
confirms the existence of a thin green zone surrounding the blue bands, where
synchronization is stable even though one of the coupling gains does not support
synchronization (case II). For example, in the case of fast switching, m = 1, these
regions are (−2.33,−2.24) and (−1.73,−1.64) from the closed-form expressions
in Eqs. (28) and (29).

The analytical solution in Eq. (29) allows for shedding further light on the
possibility of synchronizing coupled maps in case II. Specifically, in Fig. 7 we
consider switching between coupling gains d1 = −1.9999 and d2 = 1.7000,
which are associated with λst

1 = −7.82 (strongly stable synchronization) and λst
2 =

0.10 (weakly unstable synchronization). We systematically vary the probability of
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Fig. 6 Analytical demonstration of synchronization through non-fast switching. (Top) Lyapunov
exponent of two stochastically tent maps, where the net coupling is switching with equal
probability between d1 = −1.90 and d2 at a period m, analytically computed from Eq. (29). Color
illustrates the range of Lyapunov exponents attained for each value of γ . The dashed line identifies
the values of d2 and m for which the Lyapunov exponent is zero; the regions within such contours
correspond to negative values of the Lyapunov exponent and thus stochastic synchronization. The
solid lines refer to the values of d2 and m for which the effective Lyapunov exponent is zero. The
vertical bands identified by such solid lines correspond to regions where stochastic synchronization
is feasible, as predicted by Proposition 3.1. (Bottom) Interplay between synchronization in
stochastically and statically coupled tent maps. The partition into cases I, II, and III is based on
the sign of the Lyapunov exponent in Eq. (28), corresponding to the net couplings d1 and d2. The
regions are colored as follows: orange (case II without stochastic synchronization); yellow (case
III without stochastic synchronization); green (case II with stochastic synchronization); and blue
(case III with stochastic synchronization)
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Fig. 7 Analytical
demonstration of emergence
of windows of opportunity.
(Top) Lyapunov exponent of
two stochastically tent maps
as a function of the switching
probability p1 and the period
m, analytically computed
from Eq. (29) with
d1 = −1.9999 and
d2 = 1.7000. The color bar
illustrates the range of
Lyapunov exponents attained
for each value of γ . The
dashed line identify the
values of d2 and m for which
the Lyapunov exponent is
zero; the regions within such
contours correspond to
negative values of the
Lyapunov exponent and thus
stochastic synchronization.
(Bottom) Interplay between
synchronization in
stochastically and statically
coupled tent maps. For the
select values of the net
couplings, λst

1 = −7.82 and
λst

2 = 0.10, which correspond
to case II. The regions are
colored as follows: orange
(case II without stochastic
synchronization) and green
(case II with stochastic
synchronization)

switching p1 from 0.6 to 1 with a step 0.001, so that when the coupled maps spend
most of the time with the coupling gain that would support synchronization. In this
case, the effective Lyapunov exponent is always negative, and synchronization may
be attained everywhere in the parameter space.

Surprisingly, under fast switching conditions, synchronization is not attained
if p1 � 1 as shown in Fig. 7. Although the maps spend most of the time in a
configuration that would strongly support synchronization, the sporadic (p2 ≈ 0)
occurrence of a coupling gain which would lead to weak instability hampers
stochastic synchronization under fast switching. Increasing the switching period,
synchronization may be attained for p1 > 0.995 (see the “Pinocchio nose” in Fig. 7
(bottom)). For 0.753 < p1 < 0.795, we observe a single window of opportunity,
whereby synchronization is achieved in a compact region around m = 10. For
0.795 � p1 � 0.824, a second window of opportunity emerges for smaller values
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of m around 5. The two windows ultimately merge for p1 ≈ 0.83 in a larger window
that grows in size as p1 approaches 1.

In summary, we have studied the stochastic stability of the transverse dynamics
using the notion of mean square stability, establishing a mathematically-tractable
form for the Lyapunov exponent of the error dynamics. We have demonstrated
the computation of the stochastic Lyapunov exponent from the knowledge of the
probability density function. A necessary condition for stochastic synchroniza-
tion has been established, aggregating the Lyapunov exponents associated with
each static coupling configuration into an effective Lyapunov exponent for the
stochastic dynamics. For tent maps, we have established a closed-form expression
for the stochastic Lyapunov exponent, which helps dissecting the contribution of
the coupling gains, switching probabilities, and switching period on stochastic
synchronization.

We have demonstrated that non-fast switching may promote synchronization of
maps whose coupling alternates between one configuration where synchronization
is unstable and another where synchronization is stable (case II). These windows
of opportunity for the selection of the switching period may be disconnected and
located away from the fast switching limit, where the coupling is allowed to change
at each time step.

In contrast to one’s expectations, fast switching may not even be successful in
synchronizing maps that are coupled by switching between two configurations that
would support synchronization (case III). However, a sufficiently slow switching
that allows the maps to spend more time in one of the two stable synchronization
states will induce stochastic synchronization. The emergence of a lower limit for the
switching period to ensure stochastic synchronization is highly non-trivial, while the
stabilization of synchronization by slow switching in the dwell time limit should be
expected as the maps will spend the time necessary to synchronize in one of the
stable configurations, before being re-wired to the other stable configuration.

4 Network Synchronization Through Stochastic
Broadcasting

Building on our results from the previous section on the stochastic synchronization
of two intermittently coupled maps, in this section, we go further and address an
important problem of how non-fast switching can be used to control synchronization
in a target network through stochastic broadcasting from a single external node.

This problem of controlling synchronous behavior of a network towards a desired
common trajectory [52] arises in many technological and biological systems where
agents are required to coordinate their motion to follow a leader and maintain a
desired formation [71]. In our setting, each node of the target network, implemented
as a discrete-time map, is coupled to the external node with connections that
stochastically switch in time with an arbitrary switching period. The network is



Dynamics and Control of Stochastically Switching Networks: Beyond Fast Switching 289

harder to synchronize than its isolated nodes, as its structure contributes to resilience
to controlled synchronization probed by the externally broadcasting node.

In the following, we will rigorously study the mean square stability of the
synchronous solution in terms of the error dynamics and provide an explicit
dependence of the stability of controlled synchronization on the network structure
and the properties of the underlying broadcasting signal, defined by the strength
of broadcasting connections and their switching period and probability. Via an
analytical treatment of the Lyapunov exponents of the error dynamics and the use
of tools from ergodic theory, we derive a set of stability conditions that provide an
explicit criterion on how the switching period should be manipulated to overcome
network resilience to synchronization as a function of the Laplacian spectrum of the
network [25].

Through the lens of chaotic tent maps, we discover that the network topology
shapes the windows of opportunity of favorable non-fast switching in a highly non-
linear fashion. In contrast to mutual synchronization with a network whose stability
is determined by the second smallest and largest eigenvalue of the Laplacian matrix
via the master stability function, [57] controlled synchronization by the external
node is defined by all its eigenvalues, including the zero eigenvalue. In the case of
chaotic tent maps, the zero and the largest eigenvalue appear to effectively control
the size of these windows of opportunity. This leads to the appearance of a persistent
window of favorable switching periods where all network topologies sharing the
largest eigenvalue become more prone to controlled synchronization.

We study the synchronization of a network of N discrete-time oscillators given
by the state variables yi ∈ R for i = 1, 2, . . . , N1 that are driven by an external
reference node given by x ∈ R via a signal that is stochastically broadcasted to
all of the nodes in the network. The topology of the network is undirected and
unweighted. It is described by the graph G = (V, E), where V is the set of vertices
and E is the set of edges. The broadcaster-network system is depicted in Fig. 8.
The evolution of the oscillators in the network and the reference node are given

Fig. 8 The reference node
(blue) stochastically
broadcasts a signal to each of
the nodes in a static network
of N oscillators (pink)

1These results generalize for yi ∈ R
n.
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by the same mapping function F : R → R, such that x(k + 1) = F(x(k)). The
switching of the broadcasted signal is an independent and identically distributed
(i.i.d) stochastic process that re-switches every m time steps. That is, the coupling
strength of the reference node ε(mk) = ε(mk + 1) = · · · = ε(m(k + 1) − 1) is
drawn randomly from a set of n coupling strengths {ε1, . . . , εn} with probabilities
p1, . . . , pn, respectively (

∑n
l=1 pl = 1).

The evolution of the discrete-time broadcaster-network system can be written
compactly as

x(k + 1) = F(x(k)),

y(k + 1) = F (y(k))− μLy(k)− ε(k)IN (y(k)− x(k)1N) ,
(30)

where F is the natural vector-valued extension of F , μ is the coupling strength
within the network, 1N is the vector of ones of length N , IN is the N × N identity
matrix, and L is the Laplacian matrix of G i.e., Lij = −1 for ij ∈ E, Lii =
−

N∑
j=1,j �=i

Lij , i = 1, 2, . . . , N. Without loss of generality, we order and label the

Laplacian spectrum of L: γ1 = 0 ≤ γ2 ≤ · · · ≤ γN .
We study the stability of the stochastic synchronization of the network about the

reference node’s trajectory, or y1(k) = y2(k) = · · · = yN(k) = x(k). Towards this
goal, it is beneficial to re-format the problem and study the evolution of the error
dynamics ξ(k) = x(k)1N − y(k). When all of the nodes yi(k) have converged to
the reference trajectory, ξ(k) = x(k)1N − y(k) = 0N . To study the stability of
synchronization, we linearize the system about the reference trajectory

ξ(k + 1) = [DF(x(k))IN − μL− ε(k)IN ] ξ(k), (31)

where DF(x(k)) is the Jacobian of F evaluated along the reference trajectory
x(k). As is typical of linearization, we assume that the perturbations ξi(k) in the
variational Eq. (31) are small and in directions transversal to the reference trajectory.
Convergence to the reference trajectory along these transversal directions ensures
the local stability of the synchronous solution. Despite the stochastic and time-
dependent nature of the broadcasting signal ε(k), it only appears on the diagonal
elements underlying the evolution of the error vector ξ(k). Because μL is the only
matrix in (31) that is not diagonal, we can diagonalize (31) with respect to the
eigenspaces of the Laplacian matrix.

We obtain the stochastic master stability equation

ζ(k + 1) = [DF(x(k))− μγ − ε(k))] ζ(k), (32)

where γ ∈ {γ1, . . . , γN } and ζ ∈ R is a generic perturbation along the
eigendirection of L. Notice that γ1 = 0 corresponds to the evolution of the error
dynamics in the absence of a network. Lastly, in order to simplify the analysis of the
evolution of the variational equations, we re-scale the time variable with respect to
the switching period
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ζ̃ (k + 1) =
m−1∏

i=0

[
DF(x(mk + i))− μγ − ε̃(k)

]
ζ̃ (k), (33)

where ζ̃ (k) = ζ(mk) and ε̃(k) = ε(mk). This scalar equation provides the explicit
dependence of the synchronization error on the network topology (via μγ ) and
the strength of the broadcasted signal (via ε). With this in mind, we continue by
discussing the stability of the synchronization to the reference trajectory.

Definition 4.1 The synchronous solution yi(k) = x(k) for i = 1, 2, . . . , N
in the stochastic system (30) is locally mean square asymptotically stable if
lim
k→∞ E[ζ̃ 2(k)] = 0 for any ζ̃ (0) and γ ∈ {γ1, ..., γN } in (33), where E[·] denotes

expectation with respect to the σ -algebra generated by the stochastic process
underlying the switching.

Mean square stability of the stochastic system in (33), and by extension
synchronization in the original system (30), corresponds to studying the second
moment of ζ̃ (k). We take the expectation of the square of the error in (33)

E[ζ̃ 2(k + 1)] =
n∑

l=1
pl

(
m−1∏
i=0

[
DF(x(mk + i))− μγ − εl

])2

E[ζ̃ 2(k)]. (34)

Reducing the stochastically switching system (30) to a deterministic system (34)
allows for the use of standard tools from stability theory, such as Lyapunov
exponents [56]. The Lyapunov exponent for (34) is computed as

λ = lim
k→∞

1
k

ln

[
E
[
ζ̃ 2(k)

]

ζ̃ 2(0)

]
= lim

j→∞
1
j

j∑
k=1

ln
[
E[ζ̃ 2(k + 1)]

]
. (35)

There are numerous pitfalls that can undermine the numerical computation of
Lyapunov exponent from a time series, such as E[ζ̃ 2] falling below numerical
precision in a few time steps and incorrectly predicting stochastic synchronization
for trajectories that would eventually diverge. With the proper assumptions, one can
use Birkoff’s ergodic theorem [56] to avoid these confounds and form the main
analytical result of this section.

Proposition 4.1 The synchronous solution x(k) of the stochastic system (30) is
locally mean square asymptotically stable if

λ = ∫

B

ln

[
n∑

l=1
pl

(
m−1∏
i=0

[
DF(t)− μγ − εl

])2]
ρ(t)dt (36)
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is negative for ∀γ ∈ {γ1, . . . , γN }. Here, B is the region for which the invariant
density ρ(t) of F is defined.

Proof Assuming F is ergodic with invariant density ρ(t), one can avoid computing
the Lyapunov exponent from a time series using Birkoff’s ergodic theorem to
replace the averaging over time with averaging over the state. This amounts to
replacing the summation with integration in (35). Then, by virtue of (35) and the
definition of a Lyapunov exponent, stability of the stochastic system reduces to
monitoring the sign of this Lyapunov exponent. *�
Remark 4 We reduce studying the stability of synchronization in (30) to monitoring
the sign of the Lyapunov exponents in (36), with a different exponent for each
eigenvalue γ . If each of these Lyapunov exponents is negative, the dynamics of
the network in the original system (30) converges to the dynamics of the reference
trajectory. Furthermore, this allows the stability of stochastic synchronization to
be studied explicitly in the network and broadcasting parameters μ, {γ1, . . . , γN },
{ε1, . . . , εn}, {p1, . . . , pn}, and m.

Remark 5 There are two notable consequences of the Laplacian spectrum on the
stability conditions given by the sign of (36): (i) μγ = 0 is always an eigenvalue,
such that it is necessary that the nodes in the network pairwise synchronize to the
reference node in the absence of a network topology, and (ii) if the network is
disconnected, fewer stability conditions need to be satisfied, whereby there will be
repeated zero eigenvalues. In light of these consequences, a network is inherently
resilient to broadcasting synchronization, in that it necessitates satisfying more
stability conditions, and synchronization in the absence of a network is always one
of the stability conditions.

4.1 Tent Maps Revisited

To explore some of the theoretical implications of the general stability criterion (36),
we consider the broadcaster-network system (30) composed of chaotic tent maps. In
this context, the general criterion (36) can be written in a compact form that depends
only on the network and broadcasting parameters.

Proposition 4.2 A stochastic system (30) of chaotic tent maps is locally mean
square asymptotically stable if

λ = 1

2m

m∑

i=0

(
m

i

)
ln

[
n∑

l=1

plY (i,m,μγ, εl)

]
(37)

is less than zero, where Y (i,m,μγ, εl) is given by (2+μγ+εl)
2i (2−μγ−εl)

2(m−i)

and
(
m
i

) = m!
(m−i)!i! .
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Remark 6 The closed-form analytical expression (37) for the Lyapunov exponents
indicates the explicit dependence of the stability of controlled synchronization on
the network coupling strength μ, the eigenvalues of the Laplacian matrix for the
network, the switching period m, the stochastically switching coupling strengths
{ε1, . . . , εn}, and their respective probabilities {p1, . . . , pn}. For controlled syn-
chronization to be mean square stable, the Lyapunov exponent for each eigenvalue
in the Laplacian spectrum must be negative.

To illustrate the power of our explicit criterion (37) for controlled synchroniza-
tion and clearly demonstrate of the emergence of windows of opportunity, we limit
our attention to stochastic broadcasting between two coupling strengths ε1 (with
probability p) and ε2 (with probability 1 − p).

To choose the coupling strengths ε1 and ε2, we consider two statically coupled
tent maps (27)

x(k + 1) = f (x(k)),

y(k + 1) = f (y(k))+ ε(x(k)− y(k)).
(38)

This network (38) describes a pairwise, directed interaction between the dynamics
of the broadcasting map x(k) and a single, isolated map y(k) from the network
where the switching broadcasting coupling is replaced with a static connection of
strength ε. The stability of synchronization in the static network (38) is controlled by
the sign of the transversal Lyapunov exponent [33] given in (28). Figure 5 indicates

two disjoint regions given by ε ∈
[
−√

5,−√
2
]

and ε ∈
[√

2,
√

5
]

in which λst <

0 and synchronization is stable.

4.2 Stochastic Broadcasting: Fast Switching (m = 1)

When switching occurs at every time step, the condition described in Proposition 4.2
can be simplified to the following corollary, which we state without additional proof.

Corollary 4.1 The Lyapunov exponent for the mean square stability of the syn-
chronous solution in the fast-switching system represented by (30) of chaotic tent
maps is

λ = ln
[
(2 − μγ )2 + 2(μγ − 2)E[ε(k)] + E[ε2(k)]]

· [(−2 − μγ )2 + 2(μγ + 2)E[ε(k)] + E[ε2(k)]], (39)

where E[ε(k)] = p1ε1 + p2ε2 and E[ε2(k)] = p1ε
2
1 + p2ε

2
2 .
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4.2.1 Master Stability Function

The Lyapunov exponent (39) demonstrates the explicit dependence of the stability of
stochastic synchronization on the node-to-node coupling strength, the eigenvalues
of the Laplacian matrix, and the stochastically switching coupling strengths along
with their respective probabilities.

Figure 9 illustrates the dependence of λ on ε1 and μγ . The dashed curve in
Fig. 9 indicates the boundary between positive and negative Lyapunov exponents,
identifying the onset of mean square stability of the error dynamics. In order for the
network to synchronize to the reference node, the point (ε1, μγ ) must fall within
the dashed curve for every eigenvalue in the spectrum of the Laplacian matrix. In
agreement with our predictions, we find that as μγ increases the range of values of
ε1 which affords stable synchronization becomes smaller and smaller. This suggests
that the resilience of the network to synchronize improves with μγ .

Remark 7 While the nonlinear dependence of the stability boundary on ε1 and μγ

is modulated by the nonlinearity in the individual dynamics, it should not be deemed
as a prerogative of nonlinear systems. As shown in Remark 4, the stochastic stability
of synchronization in the simplest case of a linear system is also nonlinearly related
to the spectrum of the Laplacian matrix and to the expectation and variance of the
broadcasting signal—even for classical consensus with α = 1 [16].

Remark 8 In this example of a chaotic tent map, the stability boundary is a single
curve, defining a connected stability region. To ensure stable synchronization of

Fig. 9 Master stability function for stochastic synchronization of chaotic tent maps, for ε2 =
2.2,m = 1, and p1 = p2 = 0.5. For synchronization to be stable, each eigenvalue of the Laplacian
matrix must correspond to a negative Lyapunov exponent (indicated by the yellow color, isolated
by the black dashed curve). For example, the black vertical line shows the range of admissible
values of μγ that would guarantee stability at ε1 = 2
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a generic network, it is thus sufficient to monitor the largest eigenvalue of the
Laplacian matrix, γN , such that (ε1, μγ ) will fall within the stability region.
This is in contrast with the master stability function for uncontrolled, spontaneous
synchronization [57], which would typically require the consideration of the second
smallest eigenvalue, often referred to as the algebraic connectivity [25]. However,
similar to master stability functions for uncontrolled, spontaneous synchronization
[75], we would expect that for different maps, one may find several disjoint regions
in the (ε1, μγ )-plane where stable stochastic synchronization can be attained.

4.2.2 Role of Network Topology

The master stability function in Fig. 9 shows that both μ and γ contribute to the
resilience of the network to synchronization induced by stochastic broadcasting.
For a given value of the node-to-node coupling strength μ, different networks will
exhibit different residences based on their topology. Based on the lower bound by
Grone and Merris [29] and the upper bound by Anderson and Morley [2], for a
graph with at least one edge, we can write max{di, i = 1, . . . , N} + 1 ≤ γN ≤
max{di + dj , ij ∈ E}, where di is the degree of node i = 1, . . . , N . While
these bounds are not tight, they suggest that the degree distribution has a key role
on γN . For a given number of edges, one may expect that networks with highly
heterogeneous degree distribution, such as scale-free networks [11], could lead to
stronger resilience to broadcasting as compared to regular or random networks, with
more homogenous degree distributions [11].

In Fig. 10, we illustrate this proposition by numerically computing the largest
eigenvalue of the graph Laplacian for three different network types:

(i) A 2K-regular network, in which each node is connected to 2K nearest
neighbors, such that the degree is equal to 2K . As K increases, the network
approaches a complete graph.

(ii) A scale-free network [4] which is grown from a small network of q nodes. At
each iteration of the graph generation algorithm, a node is added with q edges
to nodes already in the network. The probability that an edge will be connected
to a specific node is given by the ratio of its degree to the total number of
edges in the network. Nodes are added until there are N nodes in the network.
When q is small, there are a few hub nodes that have a large degree and many
secondary nodes with small degree, whereas when q is large, the scale-free
network is highly connected and similar to a complete graph.

(iii) A random Erdős-Rényi network which takes as input the probability, p, of an
edge between any two nodes. When p is small, the network is almost surely
disconnected, and when p approaches 1, it is a complete graph.

We fix N to 100 and vary K , q, and p in (i), (ii), and (iii), respectively, to explore
the role of the number of edges.

As expected from the bounds in [2, 29], for a given number of edges, the scale-
free network tends to exhibit larger values of γN . This is particularly noticeable
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Fig. 10 Largest eigenvalue γN of the Laplacian matrix as a function of the number of edges for
three different types of networks of 100 nodes: a 2K-regular network (navy curve), scale-free (light
blue curve), and random Erdős-Rényi (red curve) networks. Scale-free and random networks are
run 10,000 times to compute means and standard deviations, reported herein—note that error bars
are only vertical for scale-free networks since the number of edges is fully determined by q, while
for random networks also horizontal error bars can be seen due to the process of network assembly

for networks of intermediate size, whereby growing the number of edges will
cause the three network types to collapse on a complete graph of N nodes. As
the largest eigenvalue of the Laplacian matrix fully controls the resilience of the
network to broadcasting-induced synchronization (in the case of linear and chaotic
tent maps), we may argue that, given a fixed number of edges, the network can be
configured such that it is either more conducive (regular graph) or resistant (scale-
free graph) to synchronization. The increased resilience of scale-free networks
should be attributed to the process of broadcasting-induced synchronization, which
globally acts on all nodes simultaneously, without targeting critical nodes (low or
high degree) like in pinning control [16, 78].

4.3 Stochastic Broadcasting: Beyond Fast Switching (m > 1)

Returning to the stochastically switching broadcaster-network system, but without
the limitation of m = 1, we use the master stability function of Fig. 5 to choose
ε1 = −1.999 from a stability region and ε2 = −1.7 from an instability region such
that the connection from the broadcasting node to the network switches between the
two values where one value supports controlled synchronization whereas the other
destabilizes it. In this way, the broadcaster sends two conflicting messages to the
network to follow and not to follow its trajectory.
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We pay particular attention to the case where the switching probability of the
stabilizing coupling, ε1 is higher (p > 0.5.) One’s intuition would suggest that
fast-switching between the stable and unstable states of controlled synchronization
with probability (p > 0.5), that makes the system spend more time in the stable
state, would favor the stability of synchronization. However, the master stability
function of Fig. 11 calculated through the analytical expression for the Lyapunov
exponent (37) shows that this is not the case. Our results reveal the presence of
a stability zone (black area) which, in terms of the switching periods m, yields a
window of opportunity when non-fast switching favors controlled synchronization,
whereas fast or slow switching does not. The fact that slower switching at m >

25 at the switching probability p = 0.9 (see the transition from point A to B)
desynchronizes the system is somewhat unexpected, as the system is likely to stay
most of the time in the stable state, defined by ε1.

The exact cause of this effect remains to be studied; however, we hypothesize
that this instability originates from a large disparity between the time scale of weak
convergence in the vicinity of the synchronization state during the (long) time lapse
when the stabilizing coupling ε1 is on and the time scale of strong divergence
from the synchronization solution far away from it when the destabilizing coupling
ε2 finally switches on. As a result, this unbalance between the convergence and
divergence makes synchronization unstable.

The window of opportunity displayed in Fig. 11 appears as a result of inter-
sections between the boundaries (dashed curves) of the stability zones where each
boundary is calculated from the criterion (37) when the Lyapunov exponent is zero
for each eigenvalue of the Laplacian matrix. The red curve for γ1 = 0 shows the
stability region in the absence of a network, and is therefore a necessary condition
for controlled synchronization in the presence of the network. In the general case
of N distinct eigenvalues, there will be N curves. Each curve adds a constraint and,
therefore, one would expect each eigenvalue γ1, . . . , γN to play a role in reducing
the size of the stability zone and shaping the window of opportunity as a function of
network topology.

In contrast to these expectations, Fig. 11 provides a convincing argument that
the stability zone is essentially defined by two curves, corresponding to the zero
eigenvalue, γ1 (red dashed curve) and the largest eigenvalue, γN (black dashed
curve). All the other curves offer a very minor contribution to shaping the stability
region. As a consequence, windows of opportunity should be relatively robust to
topological changes, preserving the maximum largest eigenvalue of the Laplacian
spectrum. For example, the set of four distinct eigenvalues (0, 1, 3, 10) in Fig. 11
corresponds to a star network of 10 nodes with an additional edge connecting two
outer nodes. In this case, the removal of the additional link reduces the spectrum
to three distinct eigenvalues (0, 1, 10) and eliminates the curve for γ = 3 which,
however, does not essentially change the stability region. This observation suggests
that the addition of an edge to a controlled network, which would be expected to
help a network better shield from the external influence of the broadcasting node,
might not necessarily improve network resilience to synchronization.
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Fig. 11 Analytical calculation of the master stability function (37) for controlled synchronization
of tent maps as a function of the switching probability p and switching period m for ε1 =
−1.9999, ε2 = 1.7, and μ = 0.01. (Top). The black region indicates the stability of controlled
synchronization, and the dashed lines represent the boundaries for the stability region for various
eigenvalues γ of a network’s Laplacian matrix. Notice that the size of the stability region is
primarily controlled by only two curves, corresponding to γ = 0 (red dashed) and γ = 10 (black
dashed) such that the addition of curves for eigenvalues γ ∈ (0, 10) only affects the small cusp
part of the stability region (see the zoomed-in area). (Bottom). Zoom-in of the region marked by
the white rectangle in (top). Points A, B, and C indicate pairs (p,m) for which synchronization
is unstable, stable, and unstable, respectively for different values of the switching period m. Note
the window of favorable frequencies m which includes point B in the vertical direction from A to
C. Remarkably, the size of the stability region remains persistent to changes of the intra-network
coupling μ (not shown), suggesting the existence of soft, lower and upper thresholds for favorable
switching frequencies between m = 20 and 30
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Similarly, the removal of an edge from an all-to-all network with two distinct
eigenvalues (0, N) changes the spectrum to (0, N − 1, N), which according to
Fig. 11 does not significantly alter the stability region either. For general topologies,
one may look at the degree distribution to gather insight on the largest eigenvalue
[2, 29], thereby drawing conclusions on the switching periods that guarantee the
success of the broadcaster to synchronize the network. Put simply, “you can run but
you cannot hide:” the broadcaster will identify suitable switching rates to overcome
the resilience of the network.

5 Conclusions

While the study of stochastically switching networks has gained significant momen-
tum, most analytical results have been obtained under the assumption that the
characteristic time scales of the intrinsic oscillators and evolving connections are
drastically different, enabling the use of averaging and perturbation methods. In
regard to on-off stochastically switching systems, these assumptions typically yield
two extremes, fast or slow (dwell-time [35]) switching, for which rigorous theory
has been developed [5, 7, 31, 32, 63, 67, 69, 70]. However, our understanding of
dynamical networks with non-fast switching connections is elusive, and the problem
of an analytical treatment of the dynamics and synchronization in non-fast switching
network remains practically untouched.

In this chapter, we sought to close this gap by presenting an analytical approach to
characterize the stability of synchronization in stochastically switching networks of
discrete-time oscillators as a function of network topology and switching period. We
first focused on the simplest stochastic network composed of two maps and studied
the stability of synchronization by analyzing the linear stability of an augmented
system, associated with the linear mean square transverse dynamics. We performed
a detailed analysis of the Lyapunov exponent of the transverse dynamics, based on
the knowledge of the probability density function for the synchronized trajectory.
We established a necessary condition for stochastic synchronization in terms of the
synchronizability of the coupled maps with a static coupling. The necessary condi-
tion can be used to demonstrate that switching between configurations which do not
individually support synchronization will not stabilize stochastic synchronization
for any switching frequencies. This is in contrast with networks of continuous-time
oscillators where windows of opportunity for stable synchronization may appear
as a result of switching between unstable states [39, 40]. Through closed-form and
numerical findings, we have demonstrated the emergence of windows of opportunity
and elucidated their nontrivial relationship with the stability of synchronization
under static coupling.

While the details of the mechanisms for the appearance of windows of oppor-
tunity in stochastically switching networks are yet to be clarified, it is tenable to
hypothesize that this effect is related to the dynamic stabilization of an unstable
state. From a mechanics perspective, this can be loosely explained by an analogy
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to the dynamics of Kapitza’s pendulum. Kapitza’s pendulum is a rigid pendulum in
which the pivot point vibrates in a vertical direction, up and down [43]. Stochastic
vibrations of the suspension are known to stabilize Kapitza’s pendulum in an upright
vertical position, which corresponds to an otherwise unstable equilibrium in the
absence of suspension vibrations. By this analogy, stochastic switching between
stable and unstable configurations can be proposed to perform a similar stabilizing
role.

Extending our analysis of synchronization of two maps, we then established
a rigorous toolbox for assessing the mean-square stability of controlled synchro-
nization in a static network of coupled maps induced by stochastic broadcasting
from a single, external node. We studied the conditions under which a reference
broadcasting node can synchronize a target network by stochastically transmitting
sporadic, possibly conflicting signals. We demonstrated that manipulating the
rate at which the connections between the broadcasting node and the network
stochastically switch can overcome network resilience to synchronization. Through
a rigorous mathematical treatment, we discovered a nontrivial interplay between the
network properties that control this resilience and the switching rate of stochastic
broadcasting that should be adapted to induce synchronization. Unexpectedly, non-
fast switching rates controlling the so-called windows of opportunity guarantee
stable synchrony, whereas fast or slow switching leads to desynchronization, even
though the networked system spends more time in a state favorable to synchroniza-
tion.

In contrast to classical master stability functions for uncontrolled synchro-
nization, where both the algebraic connectivity and the largest eigenvalue of
the Laplacian matrix determine the onset of synchronization, we report that the
algebraic connectivity has no role on broadcasting-induced synchronization of
chaotic tent maps. Specifically, the resilience of the network to broadcasting
synchronization increases with the value of the largest eigenvalue of the Laplacian
matrix. Heterogenous topologies with hubs of large degree should be preferred
over homogenous topologies, when designing networks that should be resilient to
influence from a broadcasting oscillator. On the contrary, homogenous topologies,
such as regular or random topologies, should be preferred when seeking networks
that could be easily tamed through an external broadcasting oscillator. Interestingly,
these predictions would be hampered by a simplified analysis based on averaging,
which could lead to false claims regarding the stability of synchronous solutions.

Our approach is directly applicable to high-dimensional maps whose invariant
density measure can calculated explicitly. These systems include two-dimensional
diffeomorphisms on tori such as Anosov maps [34], for which the invariant density
measure can be calculated analytically, and volume-preserving two-dimensional
standard maps whose invariant density function can be assessed through computer-
assisted calculations [45]. Although our work provides an unprecedented under-
standing of network synchronization beyond the fast switching limit, we have
hardly scratched the surface of temporal dynamical networks theory. This work
immediately raises the following questions: (i). What if the i.i.d process underlying
the switching was relaxed to be a more general Markov process? (ii). What if the
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underlying topology of the broadcasting was more complex? Both of these questions
are of interest, but provide their own technical challenges and require further study.
We anticipate that combining our recent work on synchronization of two maps under
Markovian switching with memory [62] with the approach presented in this chapter
should make progress toward unraveling a complex interplay between switching
memory and network topology for controlled synchronization.
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The Effects of Local and Global Link
Creation Mechanisms on Contagion
Processes Unfolding on Time-Varying
Networks

Kaiyuan Sun, Enrico Ubaldi, Jie Zhang, Márton Karsai, and Nicola Perra

1 Introduction

Think about the last conference you attended. In particular, focus on the social inter-
actions you had throughout the week. Chances are that you spent a disproportionate
fraction of time chatting with old and current collaborators as well as with long time
colleagues you typically meet in such settings. Chances are that you also networked
with new people. Most of these interactions were probably short and spontaneous
exchanges maybe while waiting in line for coffee or after your presentation. Others
might have been with editors, to whom you were trying to push your new idea for a
book, or with one of the keynote speakers after her inspiring talk. Bear with us and
think about last time you visited Twitter. Chances are that you read and interacted
with the posts of popular users, which you don’t know personally, but follow avidly.
Finally, chances are that you also interacted with your personal friends you follow.
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These two scenarios highlight how both face-to-face and digital interactions
are temporal acts driven by intricate social mechanisms. Among them we can
identify two categories. The first, refers to frequent reciprocated connections with
individuals in your close social circle(s). These are interactions you reinforce and
activate over time. The second refers to (mostly) one-sided interactions with popular
individuals. These are connections you initiate with people who, thanks to their sta-
tus and fame, are able to attract a large share of the attention from many others. The
first category encompasses local mechanisms that do not depend on the behavior
of people outside your social circle. The second instead, global mechanisms that
depend on the behavior of, potentially, a large fraction of individuals.

Let’s go back to your last conference. Many of the interactions you probably had
were with people that, conference after conference, dinner after dinner, paper after
paper, entered in your close social circle. These are individuals that you know very
well and that are likely part of the same community. Some of the other interactions
instead were probably with popular and influential people such as the keynote
speakers or editors with whom many other participants wanted to speak to. The
first type of interactions were driven by social closeness, the second instead by
popularity.

A large literature, mostly built on a time-aggregated (static) data, substantiates
this picture. In particular, it is well known that social ties (both offline and online)
can be categorized as strong or weak [1–8]. The first describes a small subset of ties
which are activated frequently. The second instead describes sporadic (such as the
person you met while waiting for coffee) interactions. A classic signature of this
tendency is found in the distributions of link’s weights which are heterogeneous.
There is more. In fact, as alluded above, people with whom we share strong ties
are likely to be also connected in tight communities [3, 9–11]. Thus, strong ties
are clustered around groups of people characterized by large links’ overlap [3, 12].
Some of the weak ties instead, bridge such groups [3, 13]. Another well known
property of real networks is the heterogeneity in the distribution of number of
ties (the degree) [14, 15]. In fact, networks are typically sparse. Many nodes are
poorly connected. Few of them instead are able to attract a disproportionate amount
of connections. It is important to stress how strong and weak ties, communities,
and hubs emerge and evolve over time [16, 17]. Which model(s) can be used to
reproduce such features? How do they affect contagion phenomena taking place on
their fabric? These are the main questions we will tackle in this chapter. In particular,
we aim to revise and discuss a set of models that have been proposed to capture the
evolution of social ties as function of time. In particular, we will consider both local
and global approaches able to reproduce the formation of strong ties, communities,
as well as the presence of popular individuals. From this stand point, we will then
study how they affect contagion (epidemic) processes unfolding on such networks.
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2 The Activity-Driven Framework

To explore the effects of local and global link formation mechanisms on epidemic
spreading processes, we will consider several variations of the activity-driven
framework [18]. These are models of time-varying networks, based on the same
fundamental scheme. In particular, when one is tasked to describe the evolution
of the connections between N nodes, needs to specify (at least) which nodes
are involved in interactions at each time step. In the activity-driven framework
this prescription is divided in two steps: (i) activation, (ii) partners selection. The
first describes, which nodes are active and willing to connect. The second instead
describes how such active nodes select the partners to whom interact. The modeling
of the activation process, which will be the same for all the different variations of the
framework we discuss here, is based on the intuition that not all nodes are equally
willing to create or be part of social interactions. This has been confirmed with a
range of observations in real datasets capturing very different type of interactions
ranging from scientific collaborations to R&D alliances between firms [18–24]. In
particular, it turns out that the activity rate (measured in series of time windows of
size Δt) is very heterogeneous. Furthermore, the distribution of activity is largely
independent on the choice of Δt . In other words, if we measure the propensity of
nodes to be involved in a social interaction by splitting the data in time windows
of size Δt or Δt ′ we will get very extremely similar distributions. The partner
selection process instead describes the mechanism behind the formation of links.
Here, we will revise and consider three different models that capture popularity and
social closeness mentioned above. In addition, we will consider a basic version of
the model in which link creation is random. This will serve as null model (baseline).
In all cases, we will first discuss the details of the link formation mechanism and
then their effect on epidemic processes unfolding on the network at comparable time
scale respect to the evolution on the graph’s structure.

The general setting of activity driven models is the following. N nodes are
described by at least one variable: their activity a. This quantity regulates their
propensity to be active and willing to initiate social interactions at each time step.
Activities are extracted and assigned to nodes from a distribution F(a), which in
the following we consider as a power-law. Thus F(a) = Ca−γ with ε ≤ a ≤ 1 to
avoid divergences for small values of activities. At each time step t the network Gt

starts completely disconnected. Each node i is active with a probability aiΔt . Active
nodes create m connections with others. As mentioned above we will consider four
link creation mechanisms. At time t + Δt each link is deleted and the process re-
start and a network Gt+Δt is generated. It is important to stress how all the links are
deleted at the end of each iteration and thus links do not persist across time steps
unless they are re-formed.
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2.1 Model 1: Baseline

The simplest link formation mechanism is random [18] (see Fig. 1a). In this very
unrealistic scenario partners are selected homogeneously across the entire system.
While, very active nodes are likely to initiate connections in adjacent time steps,
the probability that the same link is activated more than one time, the weight in
a time integrated network, follows a Poisson distribution which, as mentioned in
the introduction, is quite far from real observations. However, it is possible to
show that integrating links over T time steps, the degree distribution follows the
functional form of the activity [25]. Thus, the heterogeneous propensity to initiate
social interactions results in a heterogeneous degree distribution. It is important to

T=1 T=2 T=3 IntegratedA)

B)

C)

D)

Fig. 1 Schematic representation of the four different variations of the activity-driven framework.
The first three columns describe three time-steps of the evolution of network. The final column
describes the union of links created in the three time steps. At each time, for all the networks,
we assume that the same nodes are active (nodes in red), but the link creation process is instead
different. For simplicity we assume m = 1, the width of the link in the final column is proportional
to how many time each link was activated. The first row (a) shows the case of random link creation
(model 1). The second (b) describe the global link creation mechanism based on popularity (model
2). In this representation, one of nodes (the node with degree 4 in the integrated network) is the
most attractive node. The third row (c) describes the local link creation mechanism based on the
social memory (model 3). The final row (d) describes the local link creation mechanism driven by
the presence of communities which are depicted by shaded areas (model 4)
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stress however, that each Gt network is mostly constituted by a set of disconnected
stars formed around active nodes. Hubs emerge in time due the active engagement
of such nodes.

2.2 Model 2: Global Links Formation Process Driven
By Popularity

The second link formation we consider aims to capture a global, popularity based,
mechanism [23] (see Fig. 1b). The basic intuition here is that not all nodes are
equally attractive. Keynotes in conferences and celebrities in Twitter attract a
disproportionate fraction of the connections in the system. To account for this,
we assume that nodes, besides the activity, are characterized by another feature:
the attractiveness b. Observations in different online social platforms suggest that
indeed the propensity of people to attract connections is heterogeneously dis-
tributed [23]. All these aspects can be modeled within the activity-driven framework
as follows. Nodes are assigned with two features: activity a and attractiveness b.
These two quantities are extracted from a joint distribution H(a, b). Interestingly,
observations on online social platforms indicate that active people are also more
attractive, thus the two features are in general positively correlated [23]. In these
settings the dynamics of the networks are very similar as those described above.
At each time step t , the network Gt starts disconnected. Each node is active with
probability aΔt and connects to m other nodes. Each partner j is selected following
a simple preferential attachment, thus with probability bj /〈b〉N . At time t +Δt all
links are deleted and the process starts from scratch. It is possible to show that
also in this case the degree distribution, obtained integrating links over time, is
heterogeneous. However, the presence of attractiveness introduces some levels of
heterogeneity in the weight distribution [23].

2.3 Model 3: Local Links Formation Process Driven by Social
Memory

The third link formation mechanism is local and based on the idea of social
closeness (see Fig. 1c). The intuition is that, due to the need for close social
connection, cognitive and temporal constraints, large part of our interactions take
place within a small social circle [4, 26–31]. These are strong ties that we remember
(hence social memory) and activate frequently. We do also have sporadic, weak,
interactions with people outside the circle such as the conference participants we
met waiting for coffee in the hypothetical scenario described in the introduction.
Observations across collaboration and communication networks corroborate this
picture [3, 13, 20, 22–24]. Indeed, the probability that the next social act, for nodes
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that have already contacted k distinct individuals in the past, will result in the
establishment of a new, k+1-th, tie follows this function p(k) = (

1 + k
c

)−η
[20, 22].

This implies that the larger the size of social circle the smaller the probability of
increasing it. Consequently, social acts are frequently repeated within small circles
of nodes. Remarkably, the behavior of large number of individuals can be modeled
using one single value of c (that captures the off-set after which the memory
effects become effective) and a single (or multiple within a small region) value of
η (that captures the memory strength) [20, 22]. We can modify the activity-driven
framework to account for the function p(k) that regulates the tendency towards
new/old connections (social memory). The evolution of these networks, driven by
such local link formation mechanism, is modeled as follows. At each time t the
network Gt starts completely disconnected. Each node i activates with probability
aiΔt and creates m connections. Each of these is created towards a randomly
selected node never contacted before with probability p(ki) (where ki is the number
of nodes already in the social circle of i) and with probability 1 − p(ki) towards a
node already connected before. It is possible to show how both emergent degree and
weight distributions are heterogeneous and function of η [20, 22].

2.4 Model 4: Local Links Formation Process Driven By
Communities

The fourth, and final, mechanism is also based on a local link formation process. As
mentioned in the introduction, not only our social ties are organized around strong
and weak ties but people in our social circles are likely to be friends. In networks
terms, social circles are communities formed by groups of tightly connected
people [9]. It is important to notice how the local mechanism described above
(model 3) does not account for this important aspect. Indeed, triangles (i.e. a friend
of my friend is my friend), which are crucial aspects of real communities, might
emerge but are not likely by construction. There has been multiple proposals on
how to model emergent clusters using the activity-driven framework [32, 33]. Here,
we will consider the approach developed in Ref. [33] (see Fig. 1d). Observations
in real networks show how the size of communities is heterogeneous [9]. Thus, we
can set a distribution P(s) ∼ s−α with smin ≤ s ≤ smax to describe the size,
s, of communities in the system. Each node is then associated to a community.
In these settings, we can easily modify the activity-driven framework to account
for communities. As before, at each time step t the network Gt starts completely
disconnected. Each node i is active with probability aiΔt and creates m connections.
With probability q each of these is directed towards nodes in the same community
(at random). With probability 1 − q instead links are created randomly outside
the community. The parameter q regulates the modularity of the time-aggregated
network. Clearly, if q = 0 the community structure does not play any role on the
dynamics of the network. Instead, if q = 1 the system is formed by disconnected
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communities. Values in between connect these two limits. It is possible to show
how, for moderately high values of q, the degree and weight distribution are
heterogeneous [33].

3 Epidemic Spreading on Activity-Driven Networks:
Analytical Approach

After this preamble, we are in the position to investigate how global and local link
formation mechanisms affect epidemic spreading. To this end, we will consider a
prototypical contagion process: the Susceptible-Infected-Susceptible model [34–
36]. Here, nodes are divided in two compartments according to their disease status.
Susceptible, S for short, are healthy nodes that might be infected. Infected, I for
short, are infectious nodes. The natural history of the disease is described by two
transitions. The first is the infection process which is linked to a contact between
S and I nodes. In particular, a susceptible node in contact with an infected one

gets infected with probability λ: S + I
λ−→ 2I . The second is instead the recovery

process. Infected nodes spontaneously recover and become susceptible again with

rate μ: I
μ−→ S. A key quantity, that can be used to study the spreading of a disease

with a given λ and μ in a given network, is the epidemic threshold. The disease will
be able to spread, and reach an endemic state, only above a critical value (which
is determined by the features of the network where the process unfolds). Below
such critical value the disease will die out and affect only a small fraction of the
population. Before going forward we need another piece. In particular, how do we
go about estimating, numerically, the epidemic threshold? The classic approach is
to study I∞ as function of λ/μ [35, 37]. As already mentioned, above the threshold
the process reaches an endemic state. This is a dynamical equilibrium in which the
total number of infected nodes is constant. Thus above threshold I∞ > 0, while
below threshold I∞ = 0. Due to the stochastic nature of the process, the estimation
of the threshold by looking at the behavior of I∞ is quite hard. We will adopt an
alternative and recent approach, which looks at the life time, L, of the process [38].
This quantity is defined as the time the disease needs either to die out or to reach
a finite fraction, Y , of the population. Indeed, well below the threshold the disease
will quickly die out. Well above the threshold the disease will be able to reach
the fraction Y quite quickly. For values between these two regimes the life time
increases and reaches a peak for values in proximity of the real threshold. In the
language of phase transitions, the life time acts as the susceptibility χ [38].

We have now all the ingredients to study a contagion process unfolding on
different versions of activity-driven networks which capture local and global link
formation dynamics. Before jumping to the details we summarize the key features
of the various models in Table 1.
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Table 1 Summary of the four different activity driven models and their key features

Model Links creation mechanism Key variable(s)

1 Random Activity a

2 Global: driven by popularity Activity a and attractiveness b

3 Local: driven by social memory Activity a, social ties reinforcement parameters c

and η

4 Local: driven by communities Activity a, details of communities sizes distribution,
probability q to select partners in the same
community

3.1 SIS Epidemic Processes Unfolding on Model 1: Baseline

As first step, let us consider the basic model where links are created randomly. This
is the baseline which will highlight the effects of heterogenous activity patterns
(since the link formation is featureless). We can assume that nodes in the same
activity class are statistically equivalent. Furthermore, we can differentiate them
according to their disease status. Thus we will refer to Sa , and Ia as the number
of susceptible and infected nodes in activity class a. As we are considering a fixed
population Na = Sa + Ia at all times. In order to derive the conditions for the
spreading, we can study the evolution of the infected population. In particular, we
can write the number of infected nodes at time t +Δt as:

Ia(t +Δt) = Ia(t)− μIa(t)Δt +mλSa(t)aΔt

∫
da′ Ia′(t)

N
+mλSa(t)

∫
da′a′Δt

Ia′(t)
N

.

(1)

In particular, this is given by the number of infected nodes at time t (first term on
the r.h.s.), minus the nodes that recover (second term on the r.h.s.), plus susceptible
nodes that are active, get in contact with infected nodes in other classes and get
infected as result (third term on the r.h.s.), plus susceptible nodes that get contacted
and infected by active infectious nodes in other categories of activity (fourth term
on the r.h.s.). It is important to stress that as each m link is created randomly, the
probability of selecting a node in a particular class is simply m/N . By dividing for
Δt in the limit of Δt → 0 we can write:

dt Ia = −μIa +mλ
Na − Ia

N
aI +mλ

Na − Ia

N
Θ, (2)

where for simplify the notation we removed the explicit dependence of time, wrote
Sa = Na − Ia , defined Θ = ∫

aIada and considered that I = ∫
Iada is the total

number of infected nodes. Since we are interested at the early stages of the spreading
we can move forward linearizing the expression by assuming that Na ∼ Sa and by
keeping just the first order terms in Ia . Thus we get

dt Ia = −μIa +mλ
Na

N
aI +mλ

Na

N
Θ. (3)
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By summing over all classes of activity we get

dt I = −μI +mλ〈a〉I +mλΘ, (4)

since 〈a〉 = ∫
aNa/Nda = ∫

aF(a)da. The expression is now function of two
variables of I and Θ . In order to understand their behavior we need to get an
expression for Θ . To this end, we multiply Eq. 3 by a and sum over all activity
classes:

dtΘ = −μΘ +mλ〈a2〉I +mλ〈a〉Θ. (5)

At this stage, we obtained a system of two differential equations, one in I one in
Θ . The disease will be able to spread only if the largest eigenvalue of the Jacobian
of the system is larger than zero. In fact, this will imply that the region where we
developed the system is unstable. The Jacobian matrix can be written as

Jm =
(−μ+ λm〈a〉 λm

λm〈a2〉 −μ+ λm〈a〉
)
,

with eigenvalues

Λ(1,2) = m〈a〉λ− μ± λm

√
〈a2〉. (6)

Thus, the epidemic threshold can be simply written as [18]

λ

μ
>

1

m

1

〈a〉 +√〈a2〉 (7)

We can define β as the per capita rate at which people get infected. This is equal to
β = λ〈k〉. The average degree at each time step is equal to 〈k〉 = 2m〈a〉. Thus we
can write

β

μ
> ξr ≡ 2〈a〉

〈a〉 +√〈a2〉 , (8)

where we defined ξr as the epidemic threshold for the random link creation process.
It is interesting to notice how the threshold is function of the first and second
moments of the activity distribution and that it has been derived using also other
methods [25, 39, 40]. As the process is unfolding as the network changes structure
the threshold is not function of the integrated degree distribution but only of the
quantities describing the activation of each node at each time step.
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3.2 SIS Epidemic Processes in Model 2: The Effects
of Popularity

Let us now shift gears and analyze the first not random link creation mechanism. In
particular, following the previous order, let us consider the global mechanism based
on popularity. To this end, nodes are characterized by two features extracted from a
general joint distribution H(a, b). As before a describes the activity, b instead the
attractiveness. In these settings, it is necessary to divide nodes according to these
two features. Thus, the number of susceptible, and infected nodes of activity a and
attractiveness b at time t is indicated as Sa,b and Ia,b respectively. The evolution of
the number of infected nodes can be written as:

dt Ia,b = −μIa,b + λm

N〈b〉Sa,b
[
a

∫∫
da′db′b′Ia′,b′ + b

∫∫
da′db′a′Ia′,b′

]
. (9)

The first term on the r.h.s. accounts for the recovery process. The second describes
susceptible nodes that are active and select (with probability b/〈b〉N ) infected nodes
in other classes getting infected. The third term finally describes susceptible nodes
selected by active and infected nodes in other classes and that become infectious
as result. It is interesting to notice the symmetry of the last two terms. To move
forward, let us define two functions θ = ∫∫

aIa,bdadb and φ = ∫∫
bIa,bdadb. The

previous expression becomes:

dt Ia,b = −μIa,b + λm

N〈b〉Sa,b
[
aφ + bθ

]
. (10)

As before, we can assume that at the early stages of the spreading Na,b ∼ Sa,b and
neglect the terms at the second order in Ia,b thus we are left with

dt Ia,b = −μIa,b + λm

N〈b〉Na,b[aφ + bθ ]. (11)

From the last expression, we can obtain a system of three equations necessary to
study the behavior of the number of infected nodes in the early stages. In particular,
we can obtain an expression for (i) I by summing all activity and attractiveness
classes, (ii) θ by multiplying both sides for a and summing all classes, and iii) φ

by multiplying both sides for b and summing all classes. Doing so, we obtain the
following system of differential equations:

dt I = −μI + λm

〈b〉 [〈a〉φ + 〈b〉θ ], (12)

dtθ = −μθ + λm

〈b〉 [〈a
2〉φ + 〈ab〉θ ], (13)

dtφ = −μφ + λm

〈b〉 [〈ab〉φ + 〈b2〉θ ]. (14)
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The eigenvalues of the Jacobian matrix read:

Λ1 = −μ, Λ(2,3) = λm

〈b〉
(
〈ab〉 ±

√
〈a2〉〈b2〉

)
− μ. (15)

As before, the disease is able to spread if the largest eigenvalue is larger than zero.
This condition implies [41]:

β

μ
> ξatt ≡ 2〈a〉〈b〉

〈ab〉 +√〈a2〉〈b2〉 . (16)

It is important to notice how the threshold has been computed without any assump-
tion on the form of the distribution H(a, b), thus it is valid for any (integrable)
form. A comparison between ξr and ξatt reveals how the general structure of the
threshold is similar. In particular, the second moments are under the square root in
the denominator. However, note how the details of the correlation between the two
features appear explicit in the term 〈ab〉. To gather a deeper understanding on the
differences between the two thresholds, let us first consider the uncorrelated case
thus H(a, b) = F(a)G(b). In this case, we can re-write the threshold as:

ξatt = 2

1 +
√ 〈a2〉〈b2〉

〈a〉2〈b〉2

. (17)

As the dependence of the threshold on the two moments is symmetric, the case
with constant attractiveness and generic F(a) (baseline) can be mapped to the one
with constant activity and attractiveness distribution F(b). Clearly the symmetry
would be broken in case of directed networks, since the activity would regulate
out-links while the attractiveness in-links. Furthermore, as 〈b2〉 ≥ 〈b〉2 always
holds, the threshold can only be lower than or equal to the one found in first
model. This means that the introduction of any amount of heterogeneity in the
attractiveness helps the epidemic spreading pushing the threshold to smaller values.
As mentioned in the introduction, observations in real networks suggest that activity
and attractiveness are correlated. The relation between the two, in two online
communication networks, can be modeled as a ∼ bγc with γc close to one. What
happens to the threshold in this case? To answer this question, we can study the case
of deterministic correlation between the two variables imposing:

H(a, b) = F(a)δ(b − q(a)), (18)

where δ(x) is the Dirac delta and q(a) is the function that determines the
attractiveness of a node given its activity: bi = q(ai), ∀i. Using the relation
G(b) = F(a)|da/db|, we can obtain an expression for G(b):
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G(b) = F(q−1(b))

∣∣∣∣
dq−1(b)

db

∣∣∣∣ . (19)

To account for the observations mentioned above, we can set q(a) = aγc , γc >

0. Since the activity is distributed according to a power-law (F(a) ∝ a−γa ), the

attractiveness will be distributed as G(b) ∝ b
−1+ 1−γa

γc . In these settings, a generic
moment of the joint distribution can be expressed as:

〈anbm〉 = 〈an+γcm〉, (20)

thus the epidemic threshold becomes:

ξatt = 2〈a〉〈aγc 〉
〈a1+γc 〉 +√〈a2〉〈a2γc 〉 .

Generally speaking (this is controlled by the value of γc) the threshold is not only
smaller than ξr but also smaller than the uncorrelated case. In fact, the disease is
able to spread faster when popular people, that are able to attract the connection
from many others, are also very active in contacting other nodes.

3.3 SIS Epidemic Processes in Model 3: The Effects of Social
Memory

The third model, based on the local reinforcement of previously activated ties (social
memory), does not allow (to the best of our knowledge) a derivation of a closed
expression for the threshold as we did in the previous two cases. Exact numerical
methods, based on the spectral properties of matrices obtained from Gt , can be
used to derive it, but these do not allow to gather an explicit expression [42, 43].
However, a recent paper by Tizzani et al. [44] provides an analytical treatment
with some approximations. While we refer the interested reader to the original
paper for details, here we provide a summary of their derivation as it nicely
complements the techniques we discussed above. First of all, they adopted an
individual based approach, in which rather than considering classes of activity each
node is considered explicitly. In fact, the memory effects for each node make the
interactions with a given social circle more likely. Thus nodes in the same activity
class cannot be considered statistically equivalent as their behavior depends on their
memory of past interactions. In the individual based approach, the focus goes from
the study of the evolution of the number of infected nodes in a given activity class
to the study of the probability ρi(t) that the node i is infected at time t . This can be
written as [44]:
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dtρi(t) = −μρi(t)+ λ [1 − ρi(t)]

⎡

⎣
∑

j

ai [1 − p(ki)]
Aij (t)

ki
ρj (t)+

+
∑

j �∼i

aip(ki)
ρj (t)

N − ki − 1
+
∑

j

aj
[
1 − p(kj )

] Aij (t)

kj
ρj (t)

+
∑

j �∼i

ajp(kj )
ρj (t)

N − kj − 1

⎤

⎦ , (21)

where Aij (t) is the adjacency matrix of the integrated graph up to time t , and �∼
selects only the nodes j not yet connected to i. By construction this is N−kj (t)−1.
The first term on the r.h.s. describes the recovery rate of the node. All the other terms
describe the infection processes, which depend on the infection probability λ and the
probability that the node is susceptible (1 − ρi(t)). The first two terms in the large
brackets account for the fact that the node i is active and connects with a node j that
has already contacted before (first term) or that has never seen (second term). The
last two terms are the same but in this case they account for the fact that the other
nodes are active and connect to i [44]. It is important to notice that this expression
underlies an approximation: the state of every node is independent of the state of
the neighbors. Clearly, this neglects the correlation between nodes. The challenges
induced by the memory are clear thinking that the adjacency matrix and the social
circle of each node are function of time. Thus, the unfolding of the disease is clearly
function of its starting point in time. As Tizzani et al. noted, if we consider the limit
in which 1 ' ki(t) ' N , thus if the disease starts spreading when the degree of
each node is far from one and from N , hence at large times (but not too large), the
expression can be reduced as (see Ref. [44] for details):

dtρ(t) = −μρ(t)+ λ [1 − ρ(t)]
∑

j

Aij (t)

(
ai

ki
+ aj

kj

)
ρj (t). (22)

In order to find a solution to this expression, Tizzani et al. transitioned from the time
integrated connectivity patterns (Aij ) to an annealed form (Pij (t)) which describes
the probability that i and j have been connected in the past. Interestingly, they show
that

Pij (t) = (1 + η)
t

1
1+η

N

[
g(ai)+ g(aj )

]
, (23)

where they defined g(x) = x/(Cx)η. The strength of the memory η regulates the
expression as well as the activity of the two nodes. From here Tizzani et al. can
move from the probability that a node i is infected at time t to the probability that
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a node of activity a at time t is infected (thanks to the annealed approximation). In
particular, they obtain [44]:

dtρ(a, t) = −μρ(a, t)+ λ [1 − ρ(a, t)]

[
ag(a)

g(a)+ 〈g〉
∫

da′F(a′)ρ(a′, t)

+ a

g(a)+ 〈g〉
∫

da′F(a′)ρ(a′, t)g(a′)+ g(a)

∫
da′F(a′) a′

g(a′)+ 〈g〉ρ(a
′, t)

+
∫

da′F(a′) a′g(a′)
g(a′)+ 〈g〉ρ(a

′, t)
]
, (24)

where interestingly we find similar terms from the two previous cases. This
expression is rather complex. However, the conditions for the spreading can be
found, conceptually as before, by linearizing it at early times and studying the
Jacobian of the system of four differential equations obtained for it (see Ref. [44]
for the derivation). While the condition can be obtained fairly easily numerically,
the nature of the terms, and the size of the matrix does not allow for a simple closed
expression. Nevertheless, in case a disease start spreading in a mature social network
in which nodes have build social circles, this analytical treatment works extremely
well [44]. However, the general case, does not have a general closed solution, yet.

3.4 SIS Epidemic Processes in Model 4: The Effects
of Communities

Finally, let us turn our attention to the last model where the link creation dynamic
is influenced by the membership to specific communities. In particular, active nodes
select (at random) a connection with nodes in their community with probability
q, and outside their community with probability 1 − q. Although we will not be
able to solve them, it is instructive to write the dynamical equations describing the
contagion process in these settings. Similarly to what we did before, let us define
Sa,s and Ia,s as the number of susceptible and infected individuals, respectively, in
the class of activity a and community of size s at time t . We can then write [33]:

dt Ia,s = −μIa,s + λaSa,s

[
q
Is

s
+ (1 − q)

I

N

]

+ λ

∫
da′a′

[
qIa′,s

Sa,s

s
+ (1 − q)Ia′,s

Sa,s

N

]
, (25)

where Is and I are the number of infected in communities of size s and in the whole
network, respectively. As usual, the first term in the r.h.s accounts for the recovery of
infected individuals. The second and third terms describe susceptible nodes that are
active and select infected nodes in their community or outside. The fourth and fifth
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terms are similar but consider that active nodes and infected nodes select susceptible
nodes of class a in community of size s. For simplicity, we consider that N−s ∼ N

and, at least initially, I − Is ∼ I . Summing over all the activities and community
sizes, and considering only the first order terms in a, Ia,s and their products, we
obtain

dt I = −μI + λ〈a〉I + λθ + λq
∑

s

(〈a〉s − 〈a〉)Is, (26)

dt θ = −μθ + λ〈a2〉I + λ〈a〉θ +
+ λq

∑

s

[
(〈a2〉s − 〈a2〉)Is + (〈a〉s − 〈a〉)θs

]
, (27)

where we defined as before θ = ∫
aIada, and θs = ∫

aIa,sda. The term 〈ax〉s =∫
daNa,sa

x/s describes the moments of the activity distribution in any community
of size s. That is the average activity in a community of size s. As before, the second,
auxiliary, equation is obtained from the first by multiplying both sides by a and
summing over all s and a. The epidemic threshold, at least in principle, can be
derived evaluating the largest eigenvalue of the Jacobian matrix of the system of
differential equations in I and θ . Unfortunately, a closed expression, to the best
of our knowledge, has not been derived yet. Nevertheless, we can point out some
interesting observations. First of all, the terms in q weight a comparison between the
moments of the activity distribution in the whole network with the corresponding
values computed inside each community. In case the fluctuations of these terms are
negligible, due for example to very large community sizes or to narrow distribution
of activity, the equations become equivalent to the case q = 0 (which is equivalent,
for small community sizes, to a random link creation mechanism). Similarly, in case
q → 0, the network has no modular structure, and the threshold becomes equal to
the first simple model. In the opposite limit q → 1 the large majority of connections
take place inside each community. Thus the coupling between clusters becomes very
weak. Especially when the average size of communities is small, the probability of
selecting the same node as partner increases significantly.

Before moving to a more direct comparison between the thresholds in the four
different models, let us spend few words about another important, and prototypical,
contagion process: the SIR model [34–36]. While the infection mechanism is
equivalent to the SIS, the recovery is radically different. In fact, there is another
compartment, R, describing infected nodes that recover. These cannot be infected
again as they acquire a permanent immunity. It is easy to show that, in case at
early stages the population is fully susceptible and thus R ∼ 0, the threshold for
the SIR model unfolding on activity-driven networks with random or global link
creation dynamics is equivalent to that of a SIS process. However, the symmetry
breaks in case of local link creation mechanisms (for the last model in the limit of
high q and small community sizes) [33, 45]. In fact, the presence of memory in the
connectivity patterns induced by the reinforcement of previously activated ties or
by high modularity have opposite effects in SIR and SIS models. The repetition of
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a small number of connections hinders the spreading power of SIR processes. In
fact, as soon as a node recovers, links towards it cannot result in further infections.
However, such repetition (as will see more in details in the next section) favors SIS
dynamics since it allows the disease to survive in small patches (infected nodes will
eventually be susceptible again).

4 Epidemic Spreading on Activity-Driven Networks:
Numerical Simulations

In Fig. 2 we show the normalized lifetime, Ln, for the different variations of the
activity-driven framework discussed above. The normalization is done dividing each
curve by its maximum, i.e. Ln = L/maxL. In the plot we considered two versions
of the model with heterogenous attractiveness (model 2). In the first, attractiveness
and activity, for each node, are extracted independently (uncorrelated scenario). In
the second instead, attractiveness and activity are equal (correlated scenario). In
the case of social memory (model 3), we set c = 1 and η = 1, thus previously
activated ties are repeated with probability 1 − p(k) = k

1+k
. We also considered

two different versions of the model with communities (model 4). In the first, we set
q = 0.45, thus only 45% of the links are created within each community. In the
second instead, we set q = 0.9, a much higher value. In both scenarios, community
sizes are extracted from a power-law distribution P(s) s−2.1 with 10 ≤ s ≤ √

N .

Fig. 2 We show the normalized lifetime of SIS processes unfolding on different variations of the
activity driven framework as function of β/μ. In all cases, we set N = 105, m = 1, F(a) a−2.1,
ε = 10−3, μ = 10−2, Y = 0.25, start each simulations with 1% of randomly selected seeds,
and each point is the average of 102 independent simulations. In the models with attractiveness,
we set the distribution of popularity as G(b) b−2.1 and considered two scenarios: (1) H(a, b) =
F(a)G(b) (uncorrelated case), (2) H(a, b) = F(a)δ(b − a) (correlated case). In the model with
social memory, we set c = 1 and η = 1, thus a node that contacted already k nodes will connect to a
new tie with probability p(k) = 1

k+1 and will reinforce a previously activated link with probability

1−p(k) = k
k+1 . Finally, in the models with community structure, we extracted communities sizes

for a power-law distribution P(s) s−2.1 with 10 ≤ s ≤ √
N and considered two values of q
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In order to compare the different scenarios, we fixed (across the board) all the other
parameters (see legend of Fig. 2 for details). In these settings, several observations
are in order. First, all global and local links creation mechanisms result in smaller
values of the epidemic threshold respect to the baseline (random links’ creation).
Second, global, popularity-driven, mechanisms based on heterogenous distributions
of attractivity (model 2) push the threshold to much smaller values respect to local
mechanisms based on social closeness principles (models 3 and 4). Interestingly,
correlations between activity and attractiveness help the spreading of the disease
even further respect to uncorrelated scenarios. Third, the effects of communities
depend on the value of q. In particular, high values of this quantity help the
spreading more than smaller values of it. In fact, the repetition of connections within
each cluster, helps the disease to survive for smaller values of the spreading rate.
Finally, social memory, thus the repetition of previously activated ties, helps the
spreading respect to medium-low values of modularity (q = 0.45), but not as much
as larger values of it. In order to gather a deeper understanding on the dynamics,
in Fig. 3 we show, as function of β/μ, the fraction of infected population evaluated
at the time step equal to the life time, IL. This quantity provides complimentary
information respect to the previous plot by showing the prevalence of the disease at
the moment the conditions that define the lifetime are met (i.e. disease either dies
out or reaches a cumulative fraction Y of the population). Several observations are
in order. First, the presence of heterogeneity in nodes’ attractiveness (model 2) not
only results in the lower value of the threshold (as shown in Fig. 2), but affects a
larger fraction of the population respect to all the other links creation mechanisms.
The effects of correlations between activity and attractiveness are not as visible
as for the threshold. Second, despite in case of strong modularity (q = 0.9) the
threshold is smaller than in case of social memory, the latter has a larger impact on
the population. Indeed, while the presence of tightly connected communities allows
for the survival of the disease for smaller values of the spreading rate, high values of
modularity confine the impact of the virus in small patches. It is important to notice
that this effect is dependent on the average community size and the distribution of

Fig. 3 We show IL for the different version of activity-driven models. This quantity describes the
fraction of infected nodes at time t = L. The parameters for all different cases are the same used
in Fig. 2
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sizes. Intuitively, in case nodes are arranged in few and very large communities
such effects would be reduced as the repetition of ties would be much less likely.
Finally, social memory (model 3), thus the reinforcement of previously activated
ties, has a large impact on the system respect to random and other local mechanisms
for values of β/μ closer to the epidemic threshold. As β/μ increases we enter in
a region of the phase space where the repetition of the same connections hampers
the spreading power of the disease respect to randomly activated ties or to networks
with low modularity (model 4). In this regime, the spreading rate is high and having
connections with a large number nodes, rather than repeating the links with few of
them, helps the unfolding of the disease.

5 Conclusions

In this chapter we have investigated the effects of different link creation mechanisms
on contagion processes unfolding on time-varying networks. In particular, we
focused on two main classes: global and local mechanisms. We modeled the first
considering that the propensity of nodes to attract social interactions is heteroge-
neous. We modeled the second, considering two different approach: (i) ties activated
in the past are more likely to be re-activated than new ones (social memory), (ii)
social ties are typically organized in tight communities poorly connected between
them. The first mechanism is inspired by popularity (attractiveness) the second
by social closeness mechanisms. Furthermore, as null model, we considered the
simple, and unrealistic, case in which links are created randomly (baseline). We first
provided details about how to analytically tackle the spreading of SIS processes
in these models. We then presented a more direct numerical comparison between
them. Interestingly, we found that global link creation mechanisms, driven by
heterogenous distributions of attractivity, drastically reduce the epidemic threshold
respect to the case of homogenous distribution of such quantity (baseline) and to
the case of local mechanisms driven by social closeness. Thus, the presence of
globally popular nodes, able to attract a large share of the interactions, facilitates
the spreading respect to the local correlated dynamics induced by social closeness
mechanisms. In fact, as soon such popular hubs get infected they affect a large
fraction of the population that connects to them, even for small values of the
spreading rate. The effect of communities is function of the modularity. High values
of modularity push the threshold to smaller values respect to low values of it and to
the social memory mechanism based on the repetition of previously activated ties.
However, social memory might have a large impact on system in terms of disease’s
prevalence in the population. In fact, for values of the spreading rates close to the
threshold we observe an interesting phenomenology where the fraction of infected
nodes is larger respect to the case of communities as well as to the baseline. While
the presence of communities allows the disease to survive for smaller values of the
spreading rate, it confines the disease in smaller patches respect to case of social
memory.
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Arguably, all the mechanisms considered here are not mutually exclusive. In
fact, both offline and online social networks are driven by their interplay. Here, we
shown that even taken singularly they introduced no-trivial dynamics on contagion
processes. More research should be conducted to study their interplay and trade-off
in the future.
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Supracentrality Analysis of Temporal
Networks with Directed Interlayer
Coupling

Dane Taylor, Mason A. Porter, and Peter J. Mucha

1 Introduction

Quantifying the importances of nodes through the calculation of ‘centrality’ mea-
sures is a central topic in the study of networks [1]. It is important in numerous
and diverse applications, including identification of influential people [2–5], ranking
web pages in searches [6–8], ranking teams and individual athletes in sports [9–
11], identification of critical infrastructures that are susceptible to congestion or
failure [12, 13], quantifying impactful judicial documents [14–16] and scientific
publications [17], revealing drug targets in biological systems [18], and much more.

Because most networks change in time [19–21], there is much interest in
extending centralities to temporal networks [22]. Past efforts have generalized
quantities such as betweenness centrality [23–27], closeness centrality [23–25, 28],
Bonacich and Katz centrality [29, 30], win/lose centrality [31], communicability
[27, 32–36], dynamic sensitivity [37], coverage centrality [38], PageRank [39–
43], and eigenvector centrality [44–46]. A common feature of these extensions is
that they illustrate the importance of using methods that are designed explicitly
for temporal networks, as opposed to various alternatives: aggregating a temporal
network into a single ‘time-independent’ network; independently analyzing the
temporal network at different instances in time; or binning the temporal network
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into time windows and analyzing those windows independently. In the first case, it
is not even possible to study centrality trajectories (i.e., how centrality changes over
time).

Because one can derive many centralities by studying walks on a network, some
of the above temporal generalizations of centrality involve the analysis of so-called
‘time-respecting paths’ [47, 48]. There are multiple ways to define a time-respecting
path, including the possibility of allowing multiple edge traversals per time step for a
discrete-time temporal network. There are also multiple ways to quantify the length
of a time-respecting path [25], because such a path can describe the number of
edges that are traversed by a path, latency between the initial and terminal times of
a path, or a combination of these ideas. In particular, it is necessary to make choices
even to define a notion of a ‘shortest path’ (from which one can formulate several
types of centrality). Consequently, some of the diversity in the various temporal
generalizations of centrality measures arises from the diversity in defining and
measuring the length of a time-respecting path.

In the present work, we examine a notion supracentrality [49, 50], which one can
calculate by representing a temporal network as a sequence of network layers and
coupling those layers to form a multilayer network (specifically, a multiplex network
[51, 52]). See Fig. 1 for illustrative examples. The sequence of network layers, which
constitute time layers, can represent a discrete-time temporal network at different
time instances or a continuous-time network in which one bins (i.e., aggregates
[53]) the network’s edges to form a sequence of time windows with interactions
in each window. This approach is motivated by the use of a multiplex-network
representation to detect communities in temporal networks through maximization
of multilayer modularity [54–57]. We note in passing that there is also widespread
interest in generalizing centrality measures to multilayer networks more generally
[58–74].

Our supracentrality framework generalizes a family of centralities for time-
independent networks called eigenvector-based centralities, which are defined by
the property of calculating centralities as the entries of an eigenvector (the so-called
‘dominant’ eigenvector) that corresponds to the largest-magnitude eigenvalue (the
‘dominant’ eigenvalue) of a centrality matrix C(A), which one defines by some
function of a network adjacency matrix A. Different choices for the centrality
matrix recover some of the most popular centrality measures, including eigenvector
centrality (by using C(A) = A) [2], hub and authority scores (by using C(A) =
AAT for hubs and AT A for authorities) [8], and PageRank [7] (see Sect. 2.2). Given
a discrete-time temporal network in the form of a sequence of adjacency matrices
A(t) ∈ R

N×N for t ∈ {1, . . . , T }, where A
(t)
ij denotes a directed edge from entity i

to entity j in time layer t , examining supracentralities involves two steps:

1. Construct a supracentrality matrix C(ω), which couples centrality matrices
C(A(t)) of the individual time layers t = 1, t = 2, t = 3, . . .

2. Compute and interpret the dominant eigenvector of C(ω).

For a temporal network with N nodes and T time layers, C(ω) is a square matrix
of size NT × NT . We require the set of nodes to be the same for all time layers.
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Fig. 1 Multiplex-network representations of a discrete-time temporal network. Given a temporal
network with N = 4 nodes and T = 6 times, we represent the network at each time by a
‘time layer’ with adjacency matrix A(t) ∈ R

N×N for t ∈ {1, . . . , T }. (a, b) We represent the
network as a multiplex network by coupling the layers with ‘interlayer edges’ (gray edges) that we
encode in an interlayer-adjacency matrix Ã∈R

T×T . Panel (a) illustrates interlayer coupling in the
form of an undirected chain, and panel (b) depicts directed coupling between layers. In panels
(c) and (d), we show visualizations of the networks that are associated with Ã for panels (a) and
(b), respectively. In panel (d), there are directed interlayer edges between consecutive time layers,
so these interlayer edges respect the direction of time. Additionally, we construct connections of
weight γ > 0 between corresponding nodes from all pairs of layers to ensure that Ã corresponds to
a strongly connected network, which in turn ensures that the centralities are positive and unique. By
analogy to ‘node teleportation’ in PageRank [75], we refer to this coupling as ‘layer teleportation’

However, it is easy to accommodate the appearance and disappearance of nodes
by including extra instances of the entities in layers in which they otherwise do
not appear (but without including any associated intralayer edges). The parameter
ω scales the weights of the interlayer coupling to control the strength of the
connection between time layers. It thus provides a ‘tuning knob’ to control how
rapidly centrality trajectories can change over time.

An important aspect of the first step is that one must choose a topology to
couple layers to each other. To do this, we define an interlayer-adjacency matrix
Ã ∈ R

T×T , where the entry Ãtt ′ encodes the coupling from time layer t to time layer
t ′. In Fig. 1, we illustrate two possible choices for coupling the time layers. In the
upper row, Ã ∈ R

T×T encodes an undirected chain, which couples the time layers
with adjacent-in-time coupling but neglects the directionality of time. In the lower
row, by contrast, we couple the time layers with a directed chain that reflects the
directionality of time. In addition to the directed, time-respecting edges, Fig. 1(d)
also illustrates that we include weighted, undirected edges between corresponding
nodes in all pairs of layers. This implements ‘layer teleportation’, which is akin to
the well-known ‘node teleportation’ of the PageRank algorithm [75]. Similar to the
motivation for node teleportation, layer teleportation ensures that supracentralities
are well-behaved (specifically, that they are positive and unique).
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The second step of our supracentrality framework involves studying the dominant
right eigenvector of the supracentrality matrix C(ω), which characterizes the joint
centrality of each node-layer pair (i, t)—that is, the centrality of node i in time
layer t—and thus reflects the importances of both node i and layer t . From the joint
centralities, one can calculate marginal centralities for only the nodes (or only the
time layers). One can also calculate conditional centralities that measure a node’s
centrality at time t relative only to the other nodes’ centralities in that particular time
layer t . These concepts, which are inspired by ideas from probability theory, allow
one to develop a rich characterization for how node centralities change over time.

In this chapter, we describe the supracentrality framework that we developed
in [49, 50] and extend these papers with further numerical explorations of how
interlayer coupling topology affects supracentralities. We apply this approach to
a data set, which we studied in [49] and is available at [76], that encodes the
graduation and hiring of Ph.D. recipients between mathematical-sciences doctoral
programs in the United States. We focus our attention on five top universities and
examine how they are affected by the value of ω and the choice of Ã. Specifically,
we compare the two strategies for interlayer coupling in Fig. 1, and we explore the
effect of reversing the directions of all directed edges. Our experiments reveal how to
use ω and Ã to tune the extent to which centrality trajectories of nodes are influenced
by the oldest time layers, the newest time layers, and the direction of time.

2 Background Information

We now give some background information on multiplex networks and eigenvector-
based centralities. Our supracentrality framework involves representing a temporal
network as a multiplex network (see Sect. 2.1). In Sect. 2.2, we review eigenvector-
based centrality measures.

2.1 Analysis of Temporal Networks with Multiplex-Network
Representations

We study discrete-time temporal networks, for which we provide a formal definition.

Definition 1 (Discrete-Time Temporal Network) A discrete-time temporal net-
work consists of a set V = {1, . . . , N} of nodes and sets E (t) of weighted edges that
we index (using t) in a sequence of network layers. We denote such a network either
as G (V , {E (t)}) or by the sequence {A(t)} of adjacency matrices, where A

(t)
ij = wt

ij

if (i, j, wt
ij ) ∈ E (t) and A

(t)
ij = 0 otherwise.

As we illustrated in Fig. 1, we represent a discrete-time temporal network as a
multiplex network with weighted and possibly directed coupling between the time
layers. We restrict our attention to the following type of multiplex network.
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Definition 2 (Uniformly and Diagonally Coupled (i.e., Layer-Coupled) Multi-
plex Network) Let G (V , {E (t)}, Ẽ ) be a T -layer multilayer network with node
set V = {1, . . . , N} and interactions between node-layer pairs that are encoded by
the sets {E (t)} of weighted edges, where (i, j, wt

ij ) ∈ E (t) if and only if there is

an edge (i, j) with weight wt
ij in layer t . The set Ẽ = {(s, t, w̃st )} encodes the

topology and weights for coupling separate instantiations of the same node between
a pair (s, t) ∈ {1, . . . , T } × {1, . . . , T } of layers. Equivalently, one can encode a
multiplex network as a set {A(t)} of adjacency matrices, such that A

(t)
ij = wt

ij if

(i, j, wt
ij ) ∈ E (t) and A

(t)
ij = 0 otherwise, along with an interlayer-adjacency matrix

Ã with entries Ãst = w̃st if (s, t, w̃st ) ∈ Ẽ and Ã
(t)
st = 0 otherwise.

The coupling in Definition 2 is ‘diagonal’ in that the only interlayer edges are
ones that couple a node in one layer with that same node in another layer. It is
‘uniform’ in that the coupling between two layers is identical for all nodes in those
two layers. A multilayer network with both conditions is called ‘layer-coupled’ [51].

As we illustrate in Fig. 1, we focus our attention on two choices for coupling time
layers:

(A) Ã encodes an undirected chain:

Ãtt ′ =
{

1 , |t ′ − t | = 1 ,

0 , otherwise ; (1)

(B) Ã encodes a directed chain with layer teleportation:

Ãtt ′ =
{

1 + γ , t ′ − t = 1 ,

γ , otherwise ,
(2)

where γ > 0 is the layer-teleportation probability. In Sect. 4, we compare the
effects on centrality trajectories of these two choices for Ã.

2.2 Eigenvector-Based Centrality for Time-Independent
Networks

Arguably the most notable—and certainly the most profitable—type of centrality is
PageRank, which provided the mathematical foundation for the birth of the web-
search algorithm of the technology giant Google [6, 7, 75]. PageRank quantifies the
importances of nodes in a network (e.g., a directed network that encodes hyperlinks
between web pages) by computing the dominant eigenvector of the ‘PageRank
matrix’ (or ‘Google matrix’ [77])

C(PR) = σAT D−1 + (1 − σ)N−111T , (3)
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where N is the number of nodes, 1 = [1, . . . , 1]T is a length-N vector of ones, and
A is an adjacency matrix in which each entry Aij encodes a directed (and possibly
weighted) edge from node i to node j . The matrix D = diag[dout

1 , . . . , dout
N ] is a

diagonal matrix that encodes the node out-degrees dout
i = ∑

j Aij .
The PageRank matrix’s dominant right eigenvector is a natural choice for ranking

nodes, as it encodes a random walk’s stationary distribution (which estimates the
fraction of web surfers on each web page in the context of a web-search engine1).
The term AT D−1 is a transition matrix that operates on column vectors that encode
the densities of random walkers [78]. The term N−111T is a teleportation matrix; it
represents a transition matrix in a network with uniform all-to-all coupling between
nodes. The teleportation parameter σ ∈ (0, 1) implements a linear superposition
of the two transition matrices and yields an irreducible matrix, even when the
transition matrix AT D−1 is reducible. Because we introduced the concept of layer
teleportation in Sect. 2.1, we henceforth refer to the traditional teleportation in
PageRank as ‘node teleportation’.

It is common to define the PageRank matrix as the transpose of Eq. (3); in that
case, one computes the dominant left eigenvector instead of the dominant right one.
However, we use the right-eigenvector convention to be consistent with a broader
class of centrality measures called ‘eigenvector-based centralities’, in which one
encodes node importances in the elements of the dominant eigenvector of some
centrality matrix. In addition to PageRank, prominent examples of eigenvector-
based centralities include (vanilla) eigenvector centrality [2] and hub and authority
(i.e., HITS) centralities [8]. We now provide formal definitions.

Definition 3 (Eigenvector-Based Centrality) Let C = C(A) be a centrality
matrix, which we obtain from some function C : RN×N &→ R

N×N of the adjacency
matrix A, of a network G (V ,E ). Consider the dominant right eigenvector u, which
satisfies

Cu = λmaxu , (4)

where λmax ∈ R+ is the largest eigenvalue of C. (Note that this eigenvalue
is guaranteed to be positive.) The ith entry ui specifies the eigenvector-based
centrality of node i ∈ V that is associated with the function C.

Definition 4 (PageRank [7, 75]) When C is given by Eq. (3), we say that Eq. (4)
yields PageRank centralities {u(PR)

i }.
Remark 1 It is also common to compute PageRank centralities from a left eigenvec-
tor [75]. In the present paper, we use a right-eigenvector formulation to be consistent
with the other eigenvector-based centralities. One can recover the other formulation
by taking the transpose of Eq. (4).

1Note that PageRank has had intellectual impact well beyond web searches [75].
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3 Supracentrality Framework

We now describe the supracentrality framework that we presented in [50]. The
present formulation generalizes our formulation of supracentrality from [49] that
required interlayer coupling to take the form of an undirected chain. (See the top
row of Fig. 1.) To aid our presentation, we summarize our mathematical notation in
Table 1.

3.1 Supracentrality Matrices

We first describe a supracentrality matrix from [50].

Definition 5 (Supracentrality Matrix) Let {C(t)} be a set of T centrality matrices
for a discrete-time temporal network with a common set V = {1, . . . , N} of nodes;
and assume that C

(t)
ij ≥ 0. Let Ã, with entries Ãij ≥ 0, be a T × T interlayer-

adjacency matrix that encodes the interlayer couplings. We define a family of
supracentrality matrices C(ω), which are parameterized by the interlayer-coupling
strength ω ≥ 0, of the form

C(ω) = Ĉ+ ωÂ =

⎡

⎢⎢⎢⎢⎣

C(1) 0 0 . . .

0 C(2) 0 . . .

0 0 C(3) . . .

...
...

. . .
. . .

⎤

⎥⎥⎥⎥⎦
+ ω

⎡

⎢⎢⎢⎢⎢⎣

Ã11I Ã12I Ã13I . . .

Ã21I Ã22I Ã23I . . .

Ã31I Ã32I Ã33I . . .
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎦
,

(5)

where Ĉ = diag[C(1), . . . ,C(T )] and Â = Ã ⊗ I is the Kronecker product of Ã

and I.

Table 1 Summary of our
mathematical notation for
objects with different
dimensions

Typeface Class Dimension

M Matrix NT ×NT

M Matrix N ×N

M Matrix T × T

v Vector NT × 1

v Vector N × 1

v Vector T × 1

Mij Scalar 1

vi Scalar 1
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For layer t , the matrix C(t) can represent any matrix whose dominant eigenvector
is of interest. In our discussion, we focus on PageRank (see Definition 4), but one
can alternatively choose eigenvector centrality [2], hub and authority centralities [8],
or something else.

The NT × NT supracentrality matrix C(ω) encodes the effects of two distinct
types of connections: the layer-specific centrality entries {C(t)

ij } in the diagonal
blocks relate centralities between nodes in layer t ; and entries in the off-diagonal
blocks encode coupling between layers. The matrix Â = Ã⊗ I implements uniform
and diagonal coupling. The matrix I encodes diagonal coupling; and any two layers
t and t ′ are uniformly coupled, because all interlayer edges between them have the
identical weight ωÃtt ′ .

3.2 Joint, Marginal, and Conditional Centralities

As we indicated earlier, we study the dominant right eigenvalue equation for
supracentrality matrices. That is, we solve the eigenvalue equation

C(ω)v(ω) = λmax(ω)v(ω) , (6)

and we interpret entries in the dominant right eigenvector v(ω) as scores that
measure the importances of node-layer pairs {(i, t)}. Because the vector v(ω) has a
block form—its first N entries encode the joint centralities for layer t = 1, its next
N entries encode the joint centralities for layer t = 2, and so on—it is useful to
reshape v(ω) into a matrix.

Definition 6 (Joint Centrality of a Node-Layer Pair [49]) Let C(ω) be a supra-
centrality matrix given by Definition 5, and let v(ω) be its dominant right
eigenvector. We encode the joint centrality of node i in layer t via the N ×T matrix
W(ω) with entries

Wit (ω) = vN(t−1)+i (ω) . (7)

We refer to Wit (ω) as a ‘joint centrality’ because it reflects the importance both of
node i and of layer t .

Definition 7 (Marginal Centralities of Nodes and Layers [49]) Let W(ω)

encode the joint centralities given by Definition 6. We define the marginal layer
centrality (MLC) and marginal node centrality (MNC), respectively, by

xt (ω) =
∑

i

Wit (ω) ,

x̂i(ω) =
∑

t

Wit (ω) . (8)
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Definition 8 (Conditional Centralities of Nodes and Layers [49]) Let {Wit (ω)}
be the joint centralities given by Definition 6; and let {xt (ω)} and {x̂i (ω)},
respectively, be the marginal layer and node centralities given by Definition 7. We
define the conditional centralities of nodes and layers by

Zit (ω) = Wit (ω)/xt (ω) ,

Ẑit (ω) = Wit (ω)/x̂i(ω) , (9)

where Zit (ω) gives the centrality of node i conditioned on layer t and Ẑit (ω) gives
the centrality of layer t conditioned on node i. The quantity Zit (ω) indicates the
importance of node i relative just to the other nodes in layer t .

We ensure that the supracentralities are well-defined (i.e., unique, positive, and
finite) with the following theorem.

Theorem 1 (Uniqueness and Positivity of Supracentralities [50]) Let C(ω) be
a supracentrality matrix given by Eq. (5). Additionally, suppose that Ã is an
adjacency matrix for a strongly connected graph and that

∑
t C(t) is an irreducible,

nonnegative matrix. It then follows that C(ω) is irreducible, nonnegative, and has
a simple largest positive eigenvalue λmax(ω), with corresponding left eigenvector
u(ω) and right eigenvector v(ω) that are each unique and positive. The centralities
{Wit (ω)}, {xi(ω)}, {x̂t (ω)}, {Zit (ω)}, and {Ẑit (ω)} are then positive and finite. If we
also assume that C(ω) is aperiodic, it follows that λmax(ω) is a unique dominant
eigenvalue.

In Fig. 2, we show the joint and marginal centralities for the network in panel (a)
of Fig. 1. We have normalized the vector v(ω) using the 1-norm.
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Fig. 2 Joint centralities {Wit (ω)} of Definition 6 (white cells), with corresponding marginal layer
centralities (MLC) {xt (ω)} and marginal node centralities (MNC) {x̂i (ω)} from Definition 7 (gray
cells), for the network in panel (a) of Fig. 1 with ω = 1. The centrality matrices of the layers are
PageRank centrality matrices (see Eq. (3)) with a node-teleportation parameter of σ = 0.85
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4 Application to a Ph.D. Exchange Network

We apply our supracentrality framework to study centrality trajectories for a
temporal network that encodes the graduation and hiring of mathematicians between
N = 231 mathematical-sciences doctoral programs in the United States during
the years {1946, . . . , 2010} [49]. Each edge A

(t)
ij in the temporal network encodes

the number of Ph.D. recipients who graduated from university j in year t and
subsequently supervised a Ph.D. student at university i. The edge directions, where
A

(t)
ij is an edge from university i to university j , point in the opposite direction to the

flow of people who earn their Ph.D. degrees. We define edge directions in this way
to indicate that university i effectively selects the output of university j when they
hire someone who received their Ph.D. from j [79–81]. With this convention for
the direction of edges, {C(t)} encodes the PageRank matrices of the layers; and the
highest-ranking universities are the ones that are good sources for the flow of Ph.D.
recipients. The network, which we constructed using data from the Mathematics
Genealogy Project [82], is available at [76].

We focus our discussion on five U.S. universities: Harvard, Massachusetts
Institute of Technology (MIT), Princeton, Stanford, and University of California
at Berkeley. They have the largest PageRank centralities (using a node-teleportation
parameter of σ = 0.85) for a temporally aggregated network with adjacency matrix∑

t A
(t). In all of our experiments, we assume that the layers’ centrality matrices are

given by PageRank matrices, as defined in Eq. (3). As in our previous explorations
[49, 50], we vary the interlayer coupling strength ω to adjust how rapidly centralities
change over time. In the present work, our primary focus is investigating the effects
on supracentralities of undirected and directed interlayer coupling. See Eqs. (1)
and (2) for the definitions of these interlayer-coupling schemes; see Fig. 1 for
visualizations of these two types of interlayer coupling.

We first consider undirected interlayer coupling, so we define Ã by Eq. (1). In
Fig. 3, we plot the joint and conditional centralities for the five universities. The
columns show results for interlayer-coupling strengths ω ∈ {1, 10, 102, 103}. In
the bottom row, we see that progressively larger values of ω yield progressively
smoother conditional-centrality trajectories. In the top row, we observe that as one
increases ω, the joint centrality appears to limit to one arc of a sinusoidal curve. We
prove this result in Sect. 5. The most striking results occur in the bottom row of the
third column. Based on conditional node centrality, we see that MIT becomes the
top-ranked university in the 1950s and then remains so in our data set. Stanford and
UC Berkeley develop gradually larger conditional centralities over the 64 years in
the data set, whereas those of Princeton and Harvard decrease gradually over this
period. When considering all universities, these five universities have conditional
node centralities in the top-10 values throughout all years of the data set. This is
consistent with our results in [49, 50].
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Harvard MIT Stanford UC BerkeleyPrinceton

Fig. 3 Trajectories of node centralities using undirected interlayer coupling for mathematical-
sciences Ph.D. programs at five top universities. The top and bottom rows illustrate joint and
conditional node centralities, respectively, that we compute with centrality matrices based on
PageRank with a node-teleportation parameter of σ = 0.85 and undirected interlayer coupling
Ã given by Eq. (1) with ω ∈ {1, 10, 100, 1000}. The dotted black curve in the rightmost top panel
is the result of an asymptotic approximation that we present in Sect. 5

We now examine directed interlayer coupling, and we take Ã to correspond to a
directed chain with layer teleportation. See Eq. (2) for the specific formula and the
bottom row of Fig. 1 for an associated visualization. In each panel of Fig. 4, we plot
the joint centralities and conditional node centralities. The columns give results for
interlayer coupling strengths of ω ∈ {0.1, 1, 10, 100}, and the three panels indicate
different choices for the layer-teleportation probabilities: (a) γ = 0.0001; (b) γ =
0.001; and (c) γ = 0.01. The dotted black curves in the rightmost column indicate
large-ω asymptotic approximations that we will present in Sect. 5.

To understand the main effect of directed interlayer coupling, we first compare
the joint centralities in Fig. 4 to those in Fig. 3. To help our discussion, we focus on
the rightmost column of both figures. Comparing Fig. 4 to Fig. 3, we observe that the
joint-centrality trajectories tend to decay with time for directed interlayer coupling,
whereas they are peaked and attain their largest values near t = 1978 for undirected
interlayer coupling. Therefore, directed interlayer coupling tends to “boost” the joint
centralities of earlier time layers in comparison to undirected coupling. Comparing
panels (a)–(c) of Fig. 4 (and again focusing on the rightmost column), we observe
that the rate of decay is fastest for γ = 0.0001 (panel (a)) and slowest for γ = 0.01
(panel (c)).

The conditional centralities are also affected by directed interlayer coupling.
Consider ω = 10 in Fig. 3, and observe that the conditional centrality of Princeton
decreases monotonically in time. By contrast, observe in Fig. 4(a, b) for ω = 10
that the conditional centrality of Princeton now decreases between t = 1946 and
about t = 1988, but then it increases.
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Fig. 4 Trajectories of node centralities using directed interlayer coupling for mathematical-
sciences Ph.D. programs at five top universities. This figure is similar to Fig. 3, except that the
interlayer-adjacency matrix Ã is now given by Eq. (2), which corresponds to a directed chain with
layer teleportation with rate γ . Panels (a), (b), and (c) show results for γ = 0.0001, γ = 0.001,
and γ = 0.01, respectively. The dotted black curves in the rightmost top subpanels of panels (a)–
(c) are the result of an asymptotic approximation that we present in Sect. 5. For sufficiently large
ω and sufficiently small γ , observe that the joint centralities decrease with time
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For our last experiment, we examine how reversing the direction of interlayer
edges changes the results of our supracentrality calculations. Specifically, we repeat
the previous experiment with directed interlayer edges, except that now we set Ã to
be the transpose of the matrix that we defined by Eq. (2). One motivation is that for
some applications, the most recent time layers are more important than the earliest
time layers. One can incorporate this idea into our supracentrality framework by
reversing the direction of interlayer edges. In Fig. 5, we plot the same quantities
as in Fig. 4, except that now we take the directed interlayer edges to have the
opposite direction (so we have reversed the arrow of time). Observe that the joint
centralities now tend to increase with time, as opposed to Fig. 4, where they tended
to decrease with time. These trends are most evident in the rightmost columns. We
also observe differences for the conditional centralities. For example, focusing on
ω = 10 in the third column of Fig. 5, we see that Princeton never has the largest
conditional centrality. By contrast, for ω = 10 in Figs. 3 and 4(a, b), Princeton
has the largest conditional centrality for the earliest time steps (specifically, for
t ∈ {1946, . . . , 1954}).

Understanding how the weights, topologies, and directions of interlayer coupling
affect supracentralities is essential to successfully deploying supracentrality analysis
to reveal meaningful insights. The above experiments highlight that one can tune the
weights and topology of interlayer coupling to emphasize either earlier or later time
layers. Specifically, one can adjust the parameters ω and γ , as well as the direction
of interlayer edges, to cater a study to particular data sets and particular research
questions. In our investigation in this section, we considered both the case in which
Ã is given by Eq. (2) and that in which it is given by the transpose of the matrix that
we determine from Eq. (2). It is worth considering how these different choices of
interlayer edge directions are represented in the supracentrality matrix C(ω) and the
consequences of these choices. Specifically, each layer’s PageRank matrix C(t) is
defined in Eq. (3) using the transpose of the layer’s adjacency matrix A(t), yet when
coupling the centrality matrices, we do not take the transpose of Ã when defining
C(ω) in Eq. (5). Accordingly, one may worry that the matrix C(ω) effectively acts
in the forward direction for the intralayer edges, but in the opposite direction for the
interlayer edges. However, this does not lead to any inherent contradiction, as the
meanings of the directions in these two types of edges are fundamentally different:
the direction of intralayer edges dictates the flow of random walkers, whereas the
direction of interlayer edges couples the centralities of the different layers. In other
applications, it may be necessary to encode the directions of the interlayer and
intralayer edges in the same way, but there is no reason why one cannot encode
directions of interlayer and intralayer edges in different ways in a supracentrality
formalism. As we have demonstrated by considering both Ã and its transpose—
and thus by treating the effect of the interlayer edges in opposite ways in these
two calculations—both uses are meaningful. They also probe different aspects of
temporal data.
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Fig. 5 Trajectories of node centralities using reversed directed interlayer coupling for
mathematical-sciences Ph.D. programs at five top universities. This figure is identical to Fig. 4,
except that Ã is now given by the transpose of the matrix from Eq. (2), such that the directed chain
points backwards in time. For sufficiently large ω and sufficiently small γ , observe that the joint
centralities now increase with time
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5 Asymptotic Behavior for Small and Large
Interlayer-Coupling Strength ω

In this section, we summarize the asymptotic results from [50] that reveal the
behavior of supracentralities in the limit of small and large ω. In our present
discussion, we focus on dominant right eigenvectors.

To motivate our asymptotic analysis, consider the top-right subpanels in each
panel of Figs. 3, 4, and 5. In each of these subpanels, we plot (in dotted black
curves) the results of an asymptotic analysis of the dominant right eigenvector ṽ(1)

of Ã for the joint centrality of MIT in the limit of large ω. We observe excellent
agreement with our numerical calculations. Therefore, for sufficiently large ω, one
can understand the effects of both undirected and directed interlayer couplings (as
encoded in an interlayer-adjacency matrix Ã) by examining the dominant right
eigenvector of Ã. For large values of ω, this eigenvector captures the limit of the
joint centralities as a function with a peak for undirected coupled (see Fig. 3), decay
in time for directed coupling (see Fig. 4), and growth in time for directed coupling
when reversing the arrow of time (see Fig. 5).

5.1 Layer Decoupling in the Limit of Small ω

We begin with some notation. Let μ̃1 be the dominant eigenvalue (which we assume
to be simple) of Ã, and let ũ(1) and ṽ(1) denote its corresponding left and right
eigenvectors. Given a set {C(t)} of centrality matrices, we let μ(t)

1 be the dominant
eigenvalue (which we also assume to be simple) of C(t); and u(1,t) and v(1,t) are the
corresponding left and right eigenvectors. Let {μ(t)

1 } denote the set of spectral radii,

where λmax(0) = maxt μ
(t)
1 is the maximum eigenvalue over all layers. (Recall

that λmax(ω) is the dominant eigenvalue of the supracentrality matrix C(ω).) Let
P = {t : μ(t)

1 = λmax(0)} denote the set of layers whose centrality matrices achieve
the maximum. When the layers’ centrality matrices {C(t)} are PageRank matrices
given by Eq. (3), it follows that μ

(t)
1 = 1 for all t (i.e., P = {1, . . . , T }), the

corresponding left eigenvector is u(1,t) = [1, . . . , 1]T /N , and v(1,t) is the PageRank
vector for layer t . Furthermore, for each t , we define the length-NT “block” vector
v(1,t) = e(t)⊗v(1,t), which consists of zeros, except for block t , which equals v(1,t).
(The vector e(t) is a length-T unit vector that consists of zeros, except for entry t ,
which is 1.)

We now present a theorem from [50], although we restrict our attention to the
part that describes the right dominant eigenvector.

Theorem 2 (Weak-Coupling Limit of Dominant Right Eigenvectors [50]) Let
v(ω) be the dominant right eigenvector of a supracentrality matrix that is nor-
malized using the 1-norm and satisfies the assumptions of Thm. 1. Additionally, let
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P = {t : μ(t)
1 = λmax(0)} denote the set of indices associated with the eigenvalues

of C(t) that equal the largest eigenvalue λmax(0) of C(0). We assume that each
layer’s dominant eigenvalue μ

(t)
1 is simple. It then follows that the ω → 0+ limit of

v(ω) satisfies

v(ω) →
∑

t∈P

αtv
(1,t) , (10)

where the vector α = [α1, . . . , αT ]T has nonnegative entries and is the unique
solution to the dominant eigenvalue equation

Xα = λ1α . (11)

The eigenvalue λ1 needs to be determined, and the entries of X are

Xtt ′ = Ãt,t ′
〈u(1,t), v(1,t ′)〉
〈u(1,t), v(1,t)〉 χ(t)χ(t ′) , (12)

where χ(t) = ∑
t ′∈P δtt ′ is an indicator function: χ(t)= 1 if t ∈ P and χ(t)= 0

otherwise. The vector α must also be normalized to ensure that the right-hand
side of Eq. (10) is normalized (by setting ‖α‖p = 1 for normalization with a
p-norm).

5.2 Layer Aggregation in the Limit of Large ω

To study the ω → ∞ limit, it is convenient to divide Eq. (6) by ω and define
ε = 1/ω to obtain

C̃(ε) = εC(ε−1) = εĈ+ Â , (13)

which has right eigenvectors ṽ(ε) that are identical to those of C(ω) (specifically,
ṽ(ε) = v(ε−1)). Its eigenvalues {λ̃i} are scaled by ε, so λ̃i (ε) = ελi(ε

−1).
Before presenting results from [50], we define a few additional concepts. Let

ṽ(1,j) = ẽ(j) ⊗ ṽ(1) denote a block vector that consists of zeros, except for block j ,
which equals the dominant right eigenvector ṽ(1) of Ã. (The vector ẽ(j) is a length-
N unit vector that consists of zeros, except for entry j , which is 1.) We also define
the stride permutation matrix

[P]kl =
{

1 , l = .k/N/ + T [(k − 1) mod N ] ,
0 , otherwise ,

(14)

where the ceiling function .θ/ denotes the smallest integer that is at least θ and
‘mod’ denotes the modulus function (i.e., a mod b = a − b.a/b − 1/).
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Theorem 3 (Strong-Coupling Limit of Dominant Eigenvectors [50]) Let Ã, μ̃1,
ũ(1), and ṽ(1) be defined as above, with the same assumptions as in Theorem 1. It
then follows that the dominant eigenvalue λ̃max(ε) and the associated eigenvector
v(ε) of C(ε) converge as ε → 0+ to the following expressions:

λ̃max(ε) → μ̃1 ,

ṽ(ε) →
∑

j

α̃jPṽ(1,j) , (15)

where the constants {α̃i} solve the dominant eigenvalue equation

X̃α̃ = μ̃1α̃ , (16)

with

X̃ij =
∑

t

C
(t)
ij

ũ
(1)
t ṽ

(1)
t

〈ũ(1), ṽ(1)〉 . (17)

Note that we normalize the vector α̃ to ensure that the right-hand side of Eq. (15) is
normalized.

Equation (17) indicates that the strong-coupling limit effectively aggregates the
centrality matrices {C(t)} across time via a weighted average, with weights that
depend on the dominant left and right eigenvectors of Ã. When Ã encodes an
undirected chain from Eq. (1) (see the top row of Fig. 1), it follows that [49]

X̃ =
∑

t

C(t)
sin2

(
πt

T+1

)

∑T
t=1 sin2

(
πt

(T+1)

) . (18)

The dotted black curve in the top-right subpanel of Fig. 3 shows a scaled version
of ṽ(1), which is defined by the normalized sinusoidal weightings in Eq. (18). The
dotted black curves in the top-right subpanels of each panel of Figs. 4 and 5 also
show ṽ(1) (specifically, when Ã is given by Eq. (2) or by the transpose of the matrix
that we obtain from Eq. (2), respectively), which we scale to normalize the joint
centralities.

6 Discussion

We presented a supracentrality framework to study how the importances of nodes
in a temporal network change over time. Our approach involves representing a
temporal sequence of networks as time layers in a multiplex network and using the
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strength and topology of coupling between time layers to tune centrality trajectories.
A key feature of our approach is that it simultaneously yields the centralities of all
nodes at all times by computing the dominant right eigenvector of a supracentrality
matrix.

Inspired by ideas from probability theory, we examined three types of
eigenvector-based supracentralities:

(i) the joint centrality for a node-layer pair (i, t); this captures the combined
importance of node i and time layer t ;

(ii) the marginal centrality of node i or time t ; these capture separate importances
of a node or a time layer; and

(iii) the conditional centrality of a node i at time t ; this captures the importance of
a node relative only to other nodes at that particular time.

Because our approach involves analyzing the dominant eigenvector of a cen-
trality matrix, it generalizes eigenvector-based centralities, such as PageRank,
hub and authority centralities, and (vanilla) eigenvector centrality. Naturally, it is
desirable to extend supracentralities to analyze networks that are both temporal and
multiplex [51]. Another important generalization of centrality analysis is the study
of continuous-time temporal networks and streaming network data [30, 83], and it
will be insightful to extend supracentralities to such situations.
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Approximation Methods for Influence
Maximization in Temporal Networks

Tsuyoshi Murata and Hokuto Koga

1 Introduction

Diffusion of rumors (or information) can be represented as information propagation
in a social network where its nodes are people and its edges are contacts among
the people. The scale of information propagation depends on where and when
to start the propagation. In order to propagate information as much as possible,
starting nodes should be carefully selected. Selecting starting nodes for large-scale
information propagation is important as one of the methods for viral marketing.

From given network, selecting such starting nodes for large-scale information
propagation was formalized as “influence maximization problem” by Kempe et al.
[20]. The original formalization is for static networks. However, nodes and edges
can be newly added or deleted in many real social networks. Therefore, influence
maximization problem in temporal networks should be considered. Since the
influence maximization problem in temporal networks is NP-hard, computing the
best solution in realistic time is computationally intractable. Therefore, many
approximation schemes based on Monte-Carlo simulation and other heuristic
methods have been proposed. Methods based on Monte-Carlo simulation are more
accurate but computationally expensive. On the other hand, other heuristic methods
are fast but they are less accurate.

In order to find better solutions for the information maximization problem, we
propose three new methods for temporal networks as the extension of the methods
for static networks. Dynamic Degree Discount is a heuristic method based on node
degree. Dynamic CI is a method based on a node’s degree and the degrees of
reachable nodes from the node within specific time. Dynamic RIS uses many similar
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networks generated by random edge removal. We compare the proposed methods
with previous methods. Although the performance of MC greedy was better than
the three methods, it was computationally expensive and intractable for large-scale
networks. The computational time of our proposed methods was more than 10 times
faster than MC greedy. When compared with Osawa, the performances of the three
methods were better for most of the cases.

We discuss extended methods for influence maximization in temporal networks
[25, 26]. This chapter includes detailed explanation of background knowledge,
discussions of the effect of different values of parameters in the proposed methods,
and detailed analysis of the advantages and disadvantages of the proposed methods.

The structure of this chapter is as follows. Section 2 shows related work.
Section 3 presents proposed methods (Dynamic Degree Discount, Dynamic CI and
Dynamic RIS), Sect. 4 explains our experiments, and Sect. 5 shows the experimental
results. Section 6 shows discussions about the experimental results, and Sect. 7
concludes the chapter.

2 Related Work

2.1 Model of Information Propagation

We use the SI model as the model of information propagation on networks. In
the SI model, each node in networks is either in state S (susceptible) or in state I
(infected). Nodes in state S do not know the information and those in state I know
the information. At the beginning of information propagation (at time t = 1), a
set of nodes in state I is fixed as the seed nodes. For all edges (t, u, v) at time
t = 1, 2, . . . , T , the following operations are performed. If node u is in state I and
node v in state S, information is propagated from u to v with probability λ, which
means the state of v is changed from S to I at time t+1. Probability λ is the parameter
of susceptibility, and it controls the percentage of information propagation. At time
t = T + 1, information propagation is terminated.

Based on the above notations, we can formulate influence maximization problem
as follows. We define σ(S) as the expected number of nodes of state I at time T + 1
when information propagation started at time 1 from seed nodes S of state I based
on SI model. (Please keep in mind that S in σ(S) is a set of seed nodes, and S in SI
model is susceptible state.) Influence maximization problem in a temporal network
is to search for a set of seed nodes S of size k that maximizes σ(S) when a temporal
network G, duration of the network T , susceptibility of SI model λ and the size of
seed nodes k are given.



Approximation Methods for Influence Maximization in Temporal Networks 347

2.2 Problems Related to Influence Maximization in Temporal
Networks

There are some problems related to influence maximization in temporal networks.
Instead of giving item (or information) to seed nodes for free, revenue maximization
[2] is the problems of finding seed customers (nodes) and offering discounts to them
in order to increase total revenue. Although the problem is important in the field of
marketing, it is more complicated than influence maximization problem since seed
nodes are not treated as equal, and the amount of discount for each node may not be
equal. The number of possible parameters increases greatly especially in the case of
temporal networks.

Opinion formation [1, 16, 17] is another problem related to influence maximiza-
tion problem. Each agent (node) has an opinion which might be a continuous or a
discrete quantity. The underlying network represents the society where the agents
have interactions. Each agent has an opinion in the society that is influenced by
the society. Analyzing the increase and decrease of each opinion is important for
modeling the dynamics of opinion formation and for opinion polarization [10].

It is often pointed out that the properties of temporal networks are quite different
from those in static networks. Braha and Bar-Yam [4, 5] pointed out the overlap of
the centrality in temporal networks and that in the aggregated (static) network is very
small. Hill and Braha [13] propose dynamic preferential attachment mechanism that
reproduce dynamic centrality phenomena. Holme presents good surveys of temporal
networks [14, 15].

2.3 Influence Maximization Methods for Static Networks

Jalili presents a survey on spreading dynamics of rumor and disease based on
centrality [18]. There are roughly three approaches for influence maximization
problem in static networks. The first is Monte-Carlo simulation methods, the second
is heuristic-based methods and the third is the methods to generate a large number of
networks with random edge removal and select seed nodes based on the generated
networks.

Monte-Carlo simulation method is proposed by Kempe et al. [20]. In Kepme’s
method, σ(S) is estimated by repeating Monte-Carlo simulations. When S is given
as a set of seed nodes, simulations of information propagation are repeated R times
and the average number of infected nodes is defined as σ(S). Next, the node v which
maximizes the difference σ(S ∪ {v}) − σ(S) is added to seed nodes greedily based
on the estimated σ(S). This operation is repeated until |S| = k.
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Since σ(·) is a monotonic and submodular function, when we denote strict
solution of seed nodes as S∗, the seed nodes obtained by the above greedy algorithm
Sgreedy are proved to satisfy σ(Sgreedy) ≥ (1 − 1/e)σ (S∗) [20]. Because of this
property, qualities of the solutions by Kempe’s method are good. However, more
and more repetition of Monte-Carlo simulation is needed in order to estimate σ(S)

accurately. Since the computational cost for finding seed nodes with this method is
high, it is not possible to find seed nodes in realistic time for large scale networks.

Heuristic methods are proposed in order to search for seed nodes at high speed.
Chen et al.[7] proposes PMIA to find seed nodes focusing on the paths with high
information propagation ratio. Jiang et al. [19] proposed SAEDV which searches
for seed nodes by annealing method to obtain σ(·) from adjacent nodes in seed
nodes. Chen et al. [8] proposed Degree Discount based on node degree where the
nodes adjacent to already selected node are given penalty. This is because when
node v is selected as one of seed nodes and u is its neighbor, it is highly likely that v
propagates information to u, so selecting nodes other than u as seed nodes is better
for information diffusion.

Algorithm of Degree Discount is shown as follows. ti in the algorithm shows the
penalty of node i. ddi is the degree of node i after giving penalty. ddi is smaller
when the value of ti is bigger.

Algorithm 1 Degree discount
Inputs

Static network G

The size of seed nodes k

Susceptibility λ

Outputs
Seed nodes S

Algorithm

(1) Initialize seed nodes as S = φ, and initialize ddi = ki , ti = 0 for each node i. ki is the degree
of node i in network G.

(2) Add node v to seed nodes S such that v = argmaxi{ddi |i ∈ V \S}. V is the nodes in network
G.

(3) Update ddu and tu for all nodes u adjacent to v.

tu = tu + 1

ddu = ku − 2tu − (ku − tu)tuλ

(4) Repeat (2) and (3) until |S| = k.
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Fig. 1 Example for
explaining CIl (v). When
l = 2, CIl(v) = 14

Morone and Makse [24] proposed a method for finding seed nodes considering
the degrees of distant nodes. The method calculates the following CIl (v) for each
node and selects seed nodes based on the values:

CIl (v) = (kv − 1)
∑

u∈∂Ball(v,l)

(ku − 1).

∂Ball(v, l) in the above formula represents nodes where the distance from node
v is l. The example of CIl (v) is explained in Fig. 1. ∂Ball(v, 2) when l = 2 are two
nodes with distance 2 from node v and the degrees of both nodes are 8. Therefore,
CI2(v) = (2 − 1)× {(8 − 1)+ (8 − 1)} = 14.

The degree of node v itself is low in the network in Fig. 1, but the node v

is effective for information propagation because it is connected with some high
degree nodes with distance two. This method thus selects seed nodes causing wider
propagation compared with the cases when seed nodes are selected based on the
degree of node v only.

These heuristic methods compute seed nodes faster than the methods based on
Monte-Carlo simulation. However, it is experimentally confirmed that the scale of
propagation of the methods depends on network structures and parameters.

Ohsaka et al. [27] proposed a method to generate many networks with random
edge removal in order to solve this problem. Ohsaka’s method is based on “coin flip”
mentioned in Kempe’s paper [20]. The distribution of nodes to which information is
propagated from seed nodes S in static network G is set as DG(S). And distribution
of nodes where information is propagated from seed nodes S on network where
edges are removed at constant ratio from the network G is set as D′

G(S). “Coin
flip” states as DG(S) equals to D′

G(S) in this situation. σ(·) can be estimated by
generating many networks with edges removed at constant ratio, not by repeating
Monte-Carlo simulation. Ohsaka’s method estimates σ(·) by acquiring Strongly
Connected Component (SCC) in each network generated by RR numbers of
networks with edges removed at constant ratio. SCC is a subgraph where each node
in the subgraph can be reachable to and from any other nodes.

Borgs et al. [3] and Tang et al. [30] also propose methods similar to Ohsaka’s
method. The difference from Ohsaka’s method is σ(·), which is not estimated
directly from generated networks. Reachable nodes from randomly selected node
v are computed, and then seed nodes are selected based on the nodes. More
specifically, the algorithm is as follows.
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Algorithm 2 Algorithm by Borgs and Tang
Input

Static network G

The size of seed nodes k

Susceptibility λ

Generated number of networks θ

Outputs
Seed nodes S

Algorithm

(1) Initialize S = φ, U = φ. U is a set of all RR.
(2) Select node v at random.
(3) Remove edges with probability 1 − λ from network G and set as Gp .
(4) Acquire nodes RR reachable to v by Gp . Add RR to U .
(5) Repeat θ times from (2) to (4).
(6) Add node u with the highest frequency in U to S.
(7) Delete all RR containing u from U .
(8) Repeat (6) and (7) until |S| = k.

There are other approaches for influence maximization problem in different
problem setting. Chen et al. [6] proposed a method to solve the problem with time
limit. Feng et al. [9] solves the influence maximization problem in a situation where
freshness of the information degrades as it spreads. Mihara et al. [23] proposed a
method to influence maximization problem where the whole network structure is
unknown.

2.4 Degrees in Temporal Networks

Notations of edges and paths in temporal networks are the same as the ones in [28].
(t, u, v) represents an edge from node u to v at time t . A path from node v1 to vk
of length k−1 is represented as (t1, v1, v2), (t2, v2, v3), . . . , (tk−1, vk−1, vk), where
t1 < t2 < . . . < tk−1 and ∀i, j (i �= j), vi �= vj . Duration of time from the start to
the end of a path tk−1 − t1 is the length of time of the path, and the smallest one is
the minimum length of time.

Habiba et al. [12] define degrees in temporal network using symmetric differ-
ence of past connections and future connections. However, diffusion in temporal
networks is from past to future only, and it is not bidirectional. We therefore define
degree DT (v) of node v in temporal network as follows:

DT (v) =
∑

1<t≤T

|N(v, t − 1)\N(v, t)|
|N(v, t − 1) ∪N(v, t)| |N(v, t)|,

where N(v, t) is a collection of nodes adjacent to node v at time t . Figures 2
and 3 illustrate the examples of degrees on temporal networks. In Fig. 2, adjacent
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Fig. 2 Example of low
degree nodes in a temporal
network. Nodes adjacent to
node A do not change over
time ({B,C} → {B,C} →
{B,C})

Fig. 3 Example of high
degree nodes in a temporal
network. Nodes adjacent to
node A change at each time
({B,C} → {D,E} →
{B,C})

nodes of node A do not change during the period. The difference of adjacent nodes
N(A, 1)\N(A, 2) and N(A, 2)\N(A, 3) are empty. Therefore, the degree of node
A in Fig. 2 is calculated as follows.

D3(A) = |N(A, 1)\N(A, 2)|
|N(A, 1) ∪N(A, 2)| |N(A, 2)| + |N(A, 2)\N(A, 3)|

|N(A, 2) ∪N(A, 3)| |N(A, 3)|

= 0

2
∗ 2 + 0

2
∗ 2 = 0

On the other hand, in Fig. 3, nodes adjacent to node A change over time. So the
degree of node A is bigger than that in Fig. 2.

D3(A) = |N(A, 1)\N(A, 2)|
|N(A, 1) ∪N(A, 2)| |N(A, 2)| + |N(A, 2)\N(A, 3)|

|N(A, 2) ∪N(A, 3)| |N(A, 3)|

= 2

4
∗ 2 + 2

4
∗ 2 = 2

In Figs. 2 and 3, the number of adjacent nodes of node A is the same every time,
so the average degree of node A is the same in Figs. 2 and 3. On the other hand, if we
employ DT (v) as the definition of node degree, D3(A) = 0 in Fig. 2 and D3(A) = 2
in Fig. 3. DT (v) captures the number of newly adjacent nodes, and this is important
for influence maximization problem. We therefore employ DT (v) as the definition
of node degree in temporal networks.

2.5 Influence Maximization Methods for Temporal Networks

There are two approaches for influence maximization problem in temporal net-
works: methods based on Monte-Carlo simulation and heuristic-based methods. The
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former method is proposed by Habiba. The method estimates the scale of propaga-
tion σ(·) by repeating Monte-Carlo simulation just the same as in static networks.
Since σ(·) is monotonic and deteriorated modular also in temporal networks, this
method achieves large-scale propagation. However, the computational cost of this
method is high as in static networks. Osawa [28] proposed a heuristic method for
calculating σ(·) at high speed. His algorithm for computing σ(S) for seed nodes S

is shown as follows.

Algorithm 3 Osawa’s algorithm
Input

Temporal network G

Duration of temporal network T

Seed nodes S

Susceptibility λ

Output
The number of state I nodes σ(S)

Algorithm

(1) Initialize p̂v(1) as follows where the probability of node v being in state I is p̂v(t) in time
t (1 ≤ t ≤ T + 1).

p̂v(1) =
{

1 v ∈ S

0 v /∈ S

(2) Update p̂v(t) in time t as follows.

p̂v(t + 1) = 1 − (1 − p̂v(t))Rv(t)

Rv(t) =
∏

u∈N(v,t)

(1 − p̂u(t)λ)

where Rv(t) is the probability of which information is not propagated to node v from any
adjacent nodes at time t . N(v, t) is the set of nodes adjacent to node v at time t .

(3) σ(S) is computed by adding probability p̂v(T + 1) of each node which is in state I at time
T + 1.

σ(S) =
∑

v∈V
p̂v(T + 1)

After σ(S) is computed, seed nodes are obtained by greedy algorithm as in the
method by Monte-Carlo simulation. Osawa’s method finds seed nodes in realistic
computational time. However, the quality of its solution depends on given networks
because σ(·) is calculated approximately, and it is worse compared with the
solutions by Monte-Carlo simulation.
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3 Proposed Methods

We propose new methods for influence maximization problem in temporal net-
works in this section. We propose three new methods (Dynamic Degree Discount,
Dynamic CI and Dynamic RIS) which are the extensions of static network methods
to temporal network methods. We use the following notations: G: temporal network,
T : duration of the temporal network, k: the size of seed nodes, λ: susceptibility, θ :
the number of generated networks, and S: seed nodes.

3.1 Dynamic Degree Discount

Dynamic Degree Discount is the extension of Degree Discount by Chen et al. [8] to
temporal networks. In Dynamic Degree Discount, definition of degrees and adjacent
nodes in the algorithm of Degree Discount are modified for temporal networks.
Algorithm 4 shows the algorithm of Dynamic Degree Discount. Underlines show
the parts modified from original Degree Discount.

3.2 Dynamic CI

Dynamic CI is an extension of Morone’s method [24] for temporal networks.
Morone’s method focuses on the degree of node v and the degrees of nodes with
distance l from v. Dynamic CI defines an index D_CIl (v) in which degree and
distance are extended to temporal networks.

D_CIl (v) = DT (v)
∑

u∈DBall(v,l)

DT (u)

The differences between CIl (v) and D_CIl (v) are: (1) the definition of degree
is changed to that for temporal networks and (2) ∂Ball(v, l) in CIl (v) is changed
to DBall(v, l). DBall(v, l) represents nodes where their shortest duration of time
from node v is l. l is a parameter which takes the value within the range 1 ≤ l ≤ T .
In the algorithm of Dynamic CI, D_CIl (v) is computed for each node and top k

nodes are selected as seed nodes.
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Algorithm 4 Dynamic degree discount
Input

Temporal network G

Duration of temporal network T

The size of seed nodes k

Susceptibility λ

Output
Seed nodes S

Algorithm

(1) Initialize seed nodes as S = φ. Also initialize the values of each node i as ddi = DT (i) and
ti = 0.

(2) Add node v where v = argmaxi{ddi |i ∈ V \S} to S. V is the set of nodes in the network.
(3) For all nodes u where u ∈ NT (v), update ddu and tu as follows.

tu = tu + 1

ddu = DT (u)− 2tu − (DT (u)− tu)tuλ

NT (v) represents a set of all nodes adjacent to v during the whole period of the temporal
network.

NT (v) =
T⋃

t=1

N(v, t)

(4) Repeat (2) and (3) until |S| = k.

3.3 Dynamic RIS

Dynamic RIS is an extension of Borgs’s method [3] and Tang’s method [30] for
temporal networks.

The difference between Borgs’s and Tang’s algorithms and Dynamic RIS are
where RR in their algorithm is set as RR(v, d) in our algorithm. RR(v, d) is a
set of all nodes that are reachable to v within the shortest duration of time d in all
durations of temporal networks, which is defined as follows:

RR(v, d) =
T⋃

t=1

RRt(v, d).

RRt (v, d) is a set of nodes which are reachable to “node v at time t” within
the shortest period of d. The computational complexities of these methods are as
follows.
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Algorithm 5 Dynamic RIS
Inputs

Temporal network G

Duration of the temporal network T

Size of seed nodes k

Susceptibility λ

The number of generated networks θ

Output
Seed nodes S

Algorithm

(1) Initialize as S = φ,U = φ, where U is the set containing all RR(v, d).
(2) Select node v at random.
(3) Remove edges from temporal network G with probability 1 − λ and set as Gp .
(4) Acquire nodes RR(v, d) reachable to v on Gp . Add RR(v, d) to U .
(5) Repeat (2) to (4) θ times.
(6) Add the most frequent node u in U to S.
(7) Remove all RR(v, d) with u from U .
(8) Repeat (6) and (7) until |S| = k.

Dynamic Degree Discount
According to the paper of Chen et al. [8], the computational complexity of Degree
Discount is O(k · log n+m), where k is the number of seed nodes, n is the number
of nodes, and m is the number of edges, respectively. Dynamic Degree Discount
is an extension of Degree Discount. Static degree is replaced with dynamic one
(DT (i)) and Static neighbors is replaced with dynamic one (NT (v)). Computational
complexity for dynamic degree and dynamic neighbors are T ·m

n
, where T is the

total duration of time of given temporal network. Therefore, the total computational
complexity of Dynamic Degree Discount is O(k · log n+m+ T ·m

n
).

Dynamic CI
According to the paper of Morone and Makse [24], the computational complexity
of CI is O(n · log n), where n is the number of nodes. Dynamic CI is an extension
of CI. Static degree is replaced with dynamic one (DT (i)), and its computational
complexity is T ·m

n
, where T is the total duration of time of given temporal network.

Therefore, the total computational complexity of Dynamic CI is O(n · log n+ T ·m
n

).

Dynamic RIS
According to the paper of Tang [30], the computational complexity of RIS is
O(k · l2(m+ n)log2n/ε3) which returns (1 − 1

e
− ε)-approximate solution with

at least 1 − n−l probability, where l and ε are the constants. Computational
complexity of Dynamic RIS heavily depends on the parameters θ and d, which
are the number of generated networks and the duration of time for computing
RR(v, d), respectively. Therefore, the total computational complexity of Dynamic
RIS is O(θ · d · k · l2(m+ n)log2n/ε3).
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4 Experiments

We perform experiments for comparing the proposed methods with previous ones
in order to confirm their effectiveness. Temporal networks used for the experiments
are shown in Table 1. These networks are the same as the ones used in previous
research. Average degree in Table 1 shows the average of all nodes in the network,
which is 1

|V |
∑

v∈V DT (v). Hospital [31] is a network about contacts of patients and
medical staffs at hospital with time. Primary School [11, 29] is a network about
contacts of students and teachers at school. High School 2013 [22] is a network of
contacts of students. The unit of the duration in these three datasets is 20 s. Each
dataset is available at SocioPatterns (http://www.sociopatterns.org).

Methods used in the experiments are previous two methods (Monte-Carlo
simulation (MC Greedy) and Osawa) for temporal network explained in Sect. 2.5
and our proposed methods (Dynamic Degree Discount, Dynamic CI and Dynamic
RIS) in Sect. 3. Given a network as input, each method computes seed nodes S. The
simulation of influence maximization based on SI model is repeated R times with
the obtained seed nodes and set the average of the number of nodes in state I as
σ(S). The values of σ(S) are compared in order to evaluate the methods.

Experiments are performed for the following purposes:

(1) Comparison of σ(S) when the size of seed nodes k changes
(2) Comparison of computational time when the size of seed nodes k changes

Parameters in the experiments are set as follows. The number of repetition of the
simulations for information propagation is set as R = 50. The number of repetition
of Monte-Carlo simulation in MC Greedy is set as 1000. These two parameters
are common in all experiments. The size of seed nodes k is set from 0 to 20%.
Susceptibility λ is set as λ = 0.01. It is difficult to perform experiments for all the
values as parameter l in Dynamic CI which takes the value of 1 ≤ l ≤ T . We use the
values l = 1, 5, 10, 20 in the experiments. As the parameters θ and d in Dynamic
RIS, θ is set as θ = 1000. As for d, values d = 0, 5, 10, 20 are used since it is
difficult to perform experiments for all the value as in l of Dynamic CI.

CELF [21] is used to speedup the experiments when greedy algorithms are used
in MC Greedy and Osawa. CELF is an algorithm used when the greedy algorithm
is applied to the problem with inferior modularity, and the solution is the same as
in normal greedy algorithm. According to the experiments by Leskovec et al. [21],
computational time is 700 times faster than normal greedy algorithm when CELF is
used.

Table 1 Dataset for the experiments

Nodes Edges Duration Ave. deg.

Hospital 75 32,424 9,453 69.3

Primary school 242 125,773 3,100 142.7

High school 2013 327 188,508 7,375 63.0

http://www.sociopatterns.org
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5 Experimental Results

5.1 Comparison of σ(S) When the Size of Seed Nodes k

Changes

The results of information propagation for each size of seed nodes k with fixed
susceptible λ = 0.01 of SI model are shown in Fig. 4. The x-axis of the Figure
shows the percentage of seed nodes, and the y-axis shows the number of infected
nodes. Values of the x-axis is k

|V | ∗ 100, the percentage of seed nodes to all nodes in

the network. Values of the y-axis is σ(S)
|V | ∗100, the percentage of σ(S) to all nodes in

the network. The best values of l in Dynamic CI and d in Dynamic RIS are used in
our experiments. As shown in Fig. 4, MC Greedy achieves the highest diffusion in
all dataset. Diffusion of the proposed methods, Dynamic Degree Discount, Dynamic
CI and Dynamic RIS are inferior to MC Greedy, but they are still better than Osawa.
The scale of diffusion of Dynamic RIS in High School 2013 achieves 1.5 times as
in Osawa.

Fig. 4 Comparison of σ(S) when the size of seed nodes k changes. Except (computationally
expensive) MC Greedy, three proposed methods are better than Osawa
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There is not much difference in the scale of diffusion among each of three
proposed methods. Dynamic RIS achieves the highest in High School 2013 for
example, but the difference among proposed methods is small compared with
the difference between proposed methods and previous methods (MC Greedy and
Osawa).

5.2 Comparison of σ(S) When Susceptibility λ Changes

Figure 5 shows diffusion when the size of seed nodes is fixed as 20% of all nodes
in the networks and susceptibility is changed as λ = 0.001, 0.01, 0.05. The x-axis
shows the value of λ, and the y-axis shows the percentage of diffusion. Parameters
l and d are the same as the ones used in the previous experiments. As shown in
Fig. 5, MC Greedy achieves the highest diffusion regardless of the value of λ. The
difference among three proposed methods are small.

As the result of comparison with proposed methods and Osawa, our proposed
methods achieve higher scale of diffusion than Osawa in Hospital and High School
2013 when λ = 0.05. Osawa achieves higher diffusion than Dynamic RIS only in

Fig. 5 Comparison of σ(S) when susceptibility λ changes. Except (computationally expensive)
MC Greedy, three proposed methods are better than Osawa for most of the cases
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Primary School. When λ = 0.001, the difference between proposed methods and
Osawa is very small compared with the cases of other λ values.

5.3 Comparison of Computational Time When the Size of Seed
Nodes k Changes

Figure 6 shows the computational time when λ is set as λ = 0.01 and the sizes of
seed nodes are changed. A PC of Intel Core i7 (3.4GHz) CPU and 8GB memory
is used for the experiments. X-axis shows the percentage of seed nodes, and y-axis
shows the computational time (log-scale).

Figure 6 shows that for all datasets, methods other than MC Greedy can compute
seed nodes in realistic time. MC Greedy needs several hours to compute seed nodes.
This shows that MC Greedy is intractable in realistic time for large scale networks.

Fig. 6 Comparison of computational time when the size of seed nodes k changes. Methods other
than MC Greedy can compute in realistic time
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Regarding the comparison among three proposed algorithm, computational time
of Dynamic Degree Discount and Dynamic CI are almost the same in all dataset.
Dynamic RIS is about the same computational time as the other two proposed
methods in Hospital, and is faster in Primary School and High School 2013.
Regarding the comparison with proposed methods and Osawa, Dynamic RIS is
approximately 7.8 times faster than Osawa except very small network (Hospital).

5.4 Parameters of Dynamic CI and Dynamic RIS

Diffusion of proposed methods with different parameters are shown in this section.
We change parameters l of Dynamic CI, and θ and d in Dynamic RIS.

5.4.1 Diffusion and Computational Time of Different l in Dynamic CI

Diffusion and computational time when l in Dynamic CI changes to 1, 5, 10, 20
are shown in Fig. 7. Left line graphs show the size of diffusion when l is changed
in each network. Right bar graphs show computational time. Left line graphs show
that diffusion depends on the value of l. Therefore, it is important to find appropriate
l in Dynamic CI. Since there is no simple correlation between the scale of diffusion
and the value of l (such as diffusion becomes larger as l becomes large), diffusion
for various values of l should be investigated and compared. Right bar graphs show
that there are no big differences of execution time when the value of l changes.

5.4.2 Diffusion and Computational Time of Different θ in Dynamic RIS

In Dynamic RIS, θ is a parameter for the number of generated graphs in
RR(v, d). Diffusion and computational time when parameter θ is changed to
500, 1000, 1500, 2000 are shown in Fig. 8. Left line graphs show that diffusion
does not change much when θ changes. However, the scale of diffusion is slightly
small when θ = 500 in Hospital and High School 2013. This means that bigger
θ is desirable from the viewpoint of diffusion. On the contrary, right bar graphs
show that higher value of θ results in the increase of computational time. From
the viewpoint of computational time, smaller θ is better. Regarding the value of θ ,
there is a trade-off between the scale of diffusion and the computational time. It is
important to find smaller θ for shorter computational time, but too small θ results in
small-scale diffusion.
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Fig. 7 Diffusion and computational time for different l in Dynamic CI. Left: there is no simple
correlation between the scale of diffusion and the value of l. Right: there are no big differences of
execution time when the value of l changes
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Fig. 8 Diffusion and computational time of different θ in Dynamic RIS. Left: diffusion does not
change much when θ changes. Right: higher value of θ results in the increase of computational
time
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5.4.3 Diffusion and Computational Time of Different d in Dynamic RIS

In Dynamic RIS, d is a parameter for the number of time steps for looking
back. Figure 9 shows diffusion and executing time when parameter d changes to

Fig. 9 Diffusion and computational time of different d in Dynamic RIS. Left: there is almost no
difference in diffusion when d changes. Right: computational time increases as the value of d

becomes bigger
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0, 5, 10, 20. Left line graphs show that there is almost no difference in diffusion
when d changes, while right bar graphs show that computational time increases as
the value of d becomes bigger. The scale of diffusion does not change even if the
value of d becomes bigger in our experiments.

6 Discussion

6.1 Analysis Focused on Diffusion of Each Node

In the experiments when susceptibility changes in Sect. 5.2, the difference between
the proposed methods and Osawa was small when λ = 0.001 compared with the
experiments with other values of λ. When λ = 0.05, Osawa outperforms proposed
methods only in Primary School. This section discusses these two points.

Figure 10 shows the distribution of diffusion σ({v}) of each node v when Monte-
Carlo simulation is used. X-axis shows the percentage of diffusion from node v to
the whole network (σ({v})), and Y-axis shows the frequency of the nodes with each
of the percentage in X-axis. When λ = 0.001, almost all nodes are less than 5% of
diffusion in all networks. This means that there is no big difference of the diffusion
from different seed nodes. This is the reason why the difference between proposed
methods and Osawa is small in the experiment in Sect. 5.2. On the contrary, there
are many nodes with more than 60% of diffusion in Primary School when λ = 0.05
compared with other two networks. In this case, large scale diffusion is easy to be
achieved even if the most appropriate seed nodes are not selected. This is the reason
why Osawa outperforms proposed method in Primary School in Sect. 5.2.

6.2 Advantages and Disadvantages of Each of Proposed
Methods

Advantages and disadvantages of each of proposed methods are discussed in this
section. An advantage of Dynamic Degree Discount is that it contains no parameter,
so there is no need to adjust parameter. Its disadvantage is that it is only for SI
model, so the method cannot be used for other models. This is because Dynamic
Degree Discount is an extension of Chen’s Degree Discount which is for SI model.
There are other information propagation models such as LT model and Triggering
models proposed by Kempe et al. Dynamic Degree Discount cannot be applied to
such models.

An advantage of Dynamic CI is that it can be applied to many information
propagation models in contrast to Dynamic Degree Discount because Dynamic CI
uses only degree information when it calculates seed nodes. Its disadvantage is
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Fig. 10 Distribution of diffusion σ({v}) of each node v. In the case of Primary School when
λ = 0.05, there are many nodes of high diffusion. Therefore, large scale diffusion is easy to
be achieved even if the most appropriate seed nodes are not selected. This is the reason Osawa
outperforms proposed method in Primary School

that the ability of diffusion depends on the value of parameter l as mentioned in
section 5.4.1. It is necessary to search for appropriate values of l for Dynamic CI.
The parameter l takes the value within the range 1 < l < T , so the search takes
time in general.

An advantage of Dynamic RIS is that its computational time is short. As shown
in the experimental results, its computational time is shorter than other methods in
all networks except Hospital. As the method can be applied to large networks due to
its short computational time, this is a big advantage. Disadvantage of Dynamic RIS
is that it needs to adjust parameters θ and d. As mentioned in the previous section,
computational time becomes bigger as the parameter θ becomes bigger, and the
scale of diffusion becomes smaller for too small θ . Therefore, it is necessary to set
appropriate value for θ . However, parameter sensitivity of θ and d is not so much
compared with the sensitivity of l in Dynamic CI.
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7 Conclusion

We propose three new methods for influence maximization problem in temporal
networks which are the extensions of the methods for static networks. As the result
of experiments for comparing with previous methods, MC Greedy and Osawa,
our three proposed methods are better than previous methods in the following
sense. Although the performance of MC greedy is better than these three methods,
it is computationally expensive and intractable for large scale networks. The
computational time of our proposed methods are more than 10 times faster than
MC greedy, so they can be computed in realistic time even for large scale temporal
networks. As the comparison with Osawa, the performances of these three methods
are almost the same as Osawa, but they are approximately 7.8 times faster than
Osawa. Based on these facts, the proposed methods are suitable for influence
maximization in temporal networks.

The comparison of Dynamic Degree Discount, Dynamic CI and Dynamic RIS is
as follows. The choice of the methods should be done based on the following pros
and cons.

Dynamic Degree Discount

• It requires no parameter.
• It is applicable to SI model only.

Dynamic CI

• It is applicable to other information propagation models.
• The performance heavily depend on parameter l.

Dynamic RIS

• It is relatively fast among these three methods.
• It requires two parameters to be adjusted (θ and d).

Finding the strategies of choosing suitable method for given temporal network
is practically important. It is a challenging open question and is left for our future
work. The problem of adjusting the parameters for Dynamic CI and and Dynamic
RIS is also left for our future work.
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