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Preface

This book provides an overview of game and decision theoreticmethods for designing
resilient and interdependent networks. The book aims to unite game theory with
network science to lay a system-theoretic foundation for understanding the resiliency
of interdependent and heterogeneous network systems. One focused application area
of the book is the critical infrastructure systems. Infrastructure networks such as
electric power, water, transportation, and communications are increasingly inter-
connected with the integration of Internet of Things devices. A single-point shutdown
of a generator in the electric power either due to cyber and physical attacks or natural
failures can propagate to other infrastructures and creates an enormous social and
economic impact. Therefore, secure and resilient design of interdependent critical
infrastructure is critical. To achieve this goal, it requires multidisciplinary research in
this area that crosscuts computer science, engineering, public policy, social sciences,
and mathematics. The book summarizes recent research findings into three parts
including resilient meta-network modeling and analysis, control of interdependent
epidemics spreading over large-scale complex networks, and applications to critical
infrastructures such as Internet of battlefield things. Each chapter includes a section on
background, which does not require the readers of this book to have advanced
knowledge in game and decision theory and network science.

The book is self-contained and can be adopted as a textbook or supplementary
reference book for courses on network science, systems and control theory, and
infrastructures. The book will be also useful for practitioners or industrial
researchers across multiple disciplines including engineering, public policy, and
computer science who look for new approaches to assess and mitigate risks in their
systems and enhance their network resilience.

The authors would like to thank fruitful discussions and collaborations with
Corrine Touati (INRIA, France), Rui Zhang (NYU), and other research members in
NYU Tandon LARX. The authors would also like to acknowledge support from
NSF and DHS.

Brooklyn, NY, USA Juntao Chen
May 2019 Quanyan Zhu
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Chapter 1
Introduction

1.1 Motivation and Introduction

Ourworld is increasingly connected due to the adoption of smart devices and Internet
of Things (IoT). Not only does the connectivity of the network itself grows but also
networks are interconnected with other networks which create interdependent net-
works. For example, the power networks are nowadays integrated with communi-
cation networks with the advances of the smart grid technologies. Transportation
networks are connected with social networks through on-demand transport systems.
The deeply interconnected cyber-physical-social networks create new challenges for
improving the resiliency at different scales against all hazards from nature, terrorism,
and deliberate cyber attacks.

The first challenge of designing resilient interdependent networks comes from
the lack of system framework that captures heterogeneous network components. The
existingmodels in literature aremostly designed for a single-layer network containing
a number of agents. In this book, we propose a network-of-networks framework
that jointly considers the interactions within a network itself and across different
layers of networks. This framework facilitates the analysis of network operators’
strategies whose objectives and actions are coupled due to the inherent network
interdependencies. The network-of-networks modeling offers a holistic view of the
separate components by leveraging which we can analyze the system-of-systems
performance of the global network.

The second challenge for designing resilient interdependent network is the unco-
ordinated nature between systemdesigners. This characteristic has beenobserved in a
number of scenarios. For example, the power systemand transportation systemopera-
tors determine their operational policies separatelywith a goal in improving their own
revenue even though these two networks are coupled. This decision-making pattern is
different from single-layer network where the designer maximizes the global system
utility. To address this distinct challenge in interdependent networks, we establish a
game-theoretic framework to capture the decentralized nature of decision-making.
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2 1 Introduction

The interactions between different networks can be viewed as a noncooperative game
inwhich each network optimizes its ownobjective. The resulting equilibriumsolution
predicts the outcome of such strategic interactions which further provides analyti-
cal basis for designing mechanisms to build interdependencies that yield desirable
network-of-networks at equilibrium.

Human and social networks are another important class of networks ofwhich opti-
mal and secure control design is critical. Similar to computer networks, one feature of
human or social networks is its large number of agents. Due to the enormous scale of
the network, designing explicit strategy for each agent becomes prohibitive or even
impossible. To address this challenge, we need to shift the focus from fine-grained
modeling to approximate modeling of the complex network while preserving the
interdependencies between agents. Therefore, we establish a mean-field approxima-
tion framework by classifying the nodes in the network according to their degrees.
This convenient modeling facilitates the analysis and design of control policies of
interdependent epidemics over complex networks. The application scenarios include
spreading control of viruses and ransomware on the Internet, and diseases such as
Ebola in the human society.

Another critical factor needs to consider in resilient network design is the imple-
mentation complexity of strategies. A system with agile resilience requires an effi-
cient recovery policy which can be computed and implemented easily. In the meta-
network resilience game, we transform the originally formulated game problem into
semidefinite programs which can be solved efficiently. The interdependent mobile
autonomous system is resilient if the control policy is situationally aware. We design
online control algorithms to achieve this goal to optimize the network resilience.
In addition, the devised algorithm for constructing optimal secure interdependent
infrastructure network scales well with linear complexity in the size of networks.

1.2 Overview of the Book

The rest of the book is organized as follows. In Chap.2, we will briefly present
the basics of game theory and network science which are theoretical foundations
of the entire book. In Chap.3, we will establish static and dynamic interdependent
network resilience game in which each designer determines the strategy for his own
subnetwork. We further devise decentralized and computationally efficient policies
for the system designers in optimizing their aligned goals on network-of-networks
performance. In Chap.4, we expand the scope from finite networks which is a focus
of Chap.3 to complex networks. This large-scale network modeling is able to cap-
ture the system with a large number of population, e.g., social and human networks
and computer networks. Based on the established model, we investigate the optimal
control of interdependent epidemics spreading over complex networks. The obtained
results provide guidelines for network operators in controlling interdependent dis-
eases and viruses by considering tradeoffs between epidemics severity and applied
effort costs. Knowing that critical infrastructures could be disconnected due to cyber
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and physical attacks which downgrade the network efficiency, the designer should
take security considerations into account when designing the network at the begin-
ning. Chapter5 aims to address this challenge by developing a systematic approach
for designing secure multilayer networks. Since different layers face various levels
of cyber threats, the system operator needs to design the multi-layer network with
heterogeneous security requirements for each subnetwork. Under the limited budget
constraint, we characterize the optimal design solutions and propose an algorithm
to construct the optimal network, and illustrate the design principles through multi-
layer Internet of battlefield things (IoBT). Finally, we conclude the book and discuss
future works in Chap.6.



Chapter 2
Background of Game Theory
and Network Science

2.1 Introduction to Game Theory

Game theory is widely adopted in modeling and analyzing strategic interactions
between a number of independent agents (also called players) [1, 2]. A game G
can be generally defined by a tuple G := {N , (Ai )i∈N , (Ui )i∈N }, where N is the
set of players, Ai is the action set of player i , and Ui is the utility function of
player i . Specifically,we consider an N -player game,whereN := {1, 2, . . . , N }. The
decision variable of player i ∈ N is denoted by ai ∈ Ai . Note that the action set can
be finite (infinite) such that players have a finite (infinite) number of possible actions.
For convenience, we denote the action of all N players as a := (a1, a2, . . . , aN ). In
addition, denote by A the Cartesian product in the form of A1 × A2 × · · · × AN .

The utility function of player i can be explicitly written as Ui (ai , a−i ) : A → R,
where a−i denotes the action profile of all players except the i th one. Furthermore,
we denote byΩ ⊂ A the feasible action set of all players after capturing the possibly
coupled constraints. Thus, a feasible a needs to satisfy a ∈ Ω . We further denote
by Ωi the constrained action set of player i . A game is finite, in contrast to infinite
games (or continuous-kernel games), if both the action set and the number of players
is finite.

2.1.1 Finite Nash Games

In finite games, each player chooses actions from the action set, either in pure strat-
egy or mixed strategy sense, to maximize its utility. A pure strategy indicates that
the player chooses a single action with certainty. In comparison, a mixed strategy
is represented by a probability distribution over the action set which specifies the
probability of taking each action.

To characterize the strategic behaviors of players, we adopt Nash equilibrium
(NE) as the solution concept which is defined as follows.
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6 2 Background of Game Theory and Network Science

Definition 2.1 (Nash Equilibrium) An N -tuple action profile a∗ ∈ Ω constitutes a
Nash equilibrium (NE) of game G if, for all i ∈ N ,

Ui (a
∗
i , a

∗
−i ) ≥ Ui (ai , a

∗
−i ), ∀ai ∈ Ai , such that (ai , a

∗
−i ) ∈ Ω. (2.1)

Since a finite N -player game may not have an NE in pure strategy, the solu-
tion concept can be extended to mixed strategy NE. The mixed strategy of player i
is denoted by pi which assigns the probability of taking each action. In search of
a mixed strategy equilibrium, Ui is replaced by its expected value taken with re-
spect to the mixed strategy choices of the players, which we denote for player i by
Li (p1, . . . , pN ). Denote Pi by the set of all probability distributions on Ai . Then,
the definition of mixed strategy NE is given as follows.

Definition 2.2 (Mixed Strategy Nash Equilibrium) An N -tuple action profile
(p∗

1, . . . , p
∗
N ) constitutes a mixed strategy NE of game G if, for all i ∈ N ,

Li (p
∗
i , p

∗
−i ) ≥ Li (pi , p

∗
−i ), ∀pi ∈ Pi . (2.2)

The existence of NE in finite Nash games is presented below whose proof can be
found in [3].

Theorem 2.1 Every finite N-player nonzero-sum game has a Nash equilibrium in
mixed strategies.

2.1.2 Infinite Nash Games

In an N -player infinite game, the action set Ai is a finite-dimensional space instead
of a finitely countable set, ∀i ∈ N . The utility functionUi is a function on the finite-
dimensional product space A. The definition of NE strategies of infinite games is
the same as the ones in Definitions2.1 and 2.2 with only slightly differences in the
redefined action sets.

The results of existence of NE strategy are summarized in the following Theo-
rems2.2 and 2.3 which can be found in [4].

Theorem 2.2 In the N-player nonzero-sum infinite game, if the constrained action
set Ωi for player i is a closed and bounded subset of a finite-dimensional Euclidean
space, andUi (ai , a−i ) is continuous for each i ∈ N , then there exists an NE in mixed
strategies.

Theorem 2.3 In the N-player nonzero-sum infinite game, if the constrained set Ω

is a closed, bounded, and convex subset of a finite-dimensional Euclidean space, and
Ui (ai , a−i ) is strictly concave in ai for each a−i and each i ∈ N , then there exists
an NE in pure strategies.
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2.1.3 Stackelberg Games

The Nash equilibrium solution concept provides a noncooperative equilibrium solu-
tion for nonzero-sum games when the roles of the players are symmetric. However,
when one of the players has the ability to enforce his strategy on the others, one
needs to introduce a hierarchical equilibrium solution concept. Following the termi-
nology in [5], the player who dominates the game is called the leader, and the others
reacting to the leader’s strategy are called the followers. For the sake of clarity in
exposition, we focus on presenting a two-person Stackelberg games in this section,
i.e., one leader and one follower. A number of extensions of the Stackelberg solution
concept to N -person static games with different levels of hierarchy can be found in
[5].

Before presenting the solution concept for Stackelberg game, we introduce the
following definition.

Definition 2.3 (Best Response) In a two-person static game, the set BR2(a1) ⊂ Ω2

defined for each a1 ∈ Ω1 by

BR2(a1) ⊂ Ω2 = {ζ ∈ Ω2 : U2(a1, ζ ) ≥ U2(a1, a2), ∀a2 ∈ Ω2} (2.3)

is the best response set of player 2 to the strategy a1 ∈ Ω1 of player 1.

Based on the best response definition, we define Stackelberg equilibrium solution
concept as follows.

Definition 2.4 (Stackelberg Equilibrium) In a two-person game with player 1 as the
leader, a strategy a∗

1 ∈ Ω1 is called a Stackelberg equilibrium strategy for the leader
if

min
a2∈BR2(a∗

1 )
U1(a

∗
1 , a2) = max

a1∈Ω1

min
a2∈BR2(a1)

U1(a1, a2). (2.4)

Remark 2.1 If BR2(a1) is a singleton for each a1 ∈ Ω1, i.e., the best response func-
tion of player 2 is described completely by a reaction curve l2 : Ω1 → Ω2, then (2.4)
can be replaced by

U1(a
∗
1 , l2(a

∗
1)) = max

a1∈Ω1

U1(a1, l2(a1)). (2.5)

The existence of Stackelberg equilibrium is summarized below. More discussions
on the properties on Stackelberg equilibrium can be found in [5].

Theorem 2.4 The following statements hold:

(1) Every two-person finite game admits a Stackelberg strategy for the leader, and
the follower’s strategy is characterized by the best response.

(2) In two-person infinite games, let Ω1 and Ω2 be compact subsets, and Ui be
continuous on Ω1 × Ω2, i = 1, 2. Let there exist a finite family of continuous



8 2 Background of Game Theory and Network Science

mappings li : Ω1 → Ω2, with i ∈ I := {1, . . . , M}, such that BR2(a1) = {a2 ∈
Ω2 : a2 = li (a1), i ∈ I }. Then, the two-person nonzero-sum infinite game admits
a Stackelberg equilibrium strategy.

The readers interested in a complete introduction of game theory can refer to [1,
5] for more details.

2.2 Basics of Network Science

2.2.1 Modeling of Networks

An undirected graph G is defined by a pair of sets (V, E), where V is a non-empty
countable set of elements, called nodes or vertices, and E is a set of unordered pairs
of different nodes, called edges or links. The link (i, j) joins the nodes i and j . The
total number of nodes in the graph is equal to the cardinality of the set V denoted
by |V | which is also referred as the size of the graph G. The cardinality of the set
E is equal to the number of edges. Note that in a graph with n nodes, the maximum
number of links is equal to n(n−1)

2 . When all pairs of nodes are connected, then G is
called a complete graph.

Suppose that G(V, E) consists of n nodes and interconnected by m links. To
represent an undirected graphG(V, E), adjacency matrix is usually adopted. Denote
the adjacency matrix of G by A ∈ R

n×n . The element of A is denoted by ai j taking
values as follows:

ai j =
{

wi j , nodes i and j are connected;
0, nodes i and j are not connected; (2.6)

where wi j ∈ R+ is the link weight. If G is an unweighted graph where links are
homogeneous, then wi j = 1 if link (i, j) ∈ E , and otherwise wi j = 0. When G is a
weighted graphwhere each link (i, j) is associatedwith aweightwi j representing the
intensity of its connection, then the entry in A becomes ai j = wi j if link (i, j) ∈ E ,
and otherwise ai j = 0.

There are a number of metrics to quantify the performance of graph for different
purposes, including the node degree, nearest neighbors, reachability, shortest path,
and diameter. We focus on a metric called algebraic connectivity [6] which is an
indicator of how well a graph is connected. Algebraic connectivity is based on the
Laplacian matrix of a graph. Consider a graph consists of n nodes and m links. For
a link l that connects nodes i and j where the link weight equaling to wi j , we define
two n-dimensional vectors al and bl , where al(i) = 1, al( j) = −1, bl(i) = wi j ,
bl( j) = −wi j , and all other entries 0. When G is unweighted, wi j = 1. Then, the
Laplacian matrix L of network G can be expressed as
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L =
m∑
l=1

albT
l , (2.7)

where “T ” denotes the matrix transpose operator. Intuitively, the i th diagonal
entry Li i in the Laplacian matrix is equal to the degree of node i , i.e., Li i =∑

j∈Ni
wi j , ∀i ∈ V , where Ni denotes the set of nodes that connects with node

i . In addition, Li j = −wi j , ∀i �= j ∈ V, if nodes i and j are connected, and other-
wise is 0. Additionally, Laplacian matrix is positive semidefinite, andL1 = 0, where
1 is an n-dimensional vector with all one entries. Thus, by ordering the eigenvalues
of L in an increased way, we obtain

0 = λ1 ≤ λ2 ≤ · · · ≤ λn, (2.8)

where the smallest eigenvalue λ1(L) = 0, and λ2(L) is called algebraic connectivity
(or Fiedler value) of G [6]. Further, λ2(L) = 0 when G is not connected. For a
graph with Laplacian L, the algebraic connectivity λ2(L) can be computed from the
Courant–Fisher theorem [7] as follows:

λ2(L) = min{zTLz|z ∈ 1⊥, ||z||2 = 1}, (2.9)

where || · ||2 denotes the standard L2 norm.
The readers interested in more detailed and formal discussions on graph theory

can refer to [8, 9].

2.2.2 Modeling of Network-of-Networks

To facilitate the analysis and design of resilient interdependent networks, we need
to establish a model for network-of-networks. We consider two interdependent net-
works G1(V1, E1) and G2(V2, E2), where networks 1 and 2 are represented by the
graphsGi , i = 1, 2, respectively. Network i , for i ∈ {1, 2}, is composed of ni = |Vi |
nodes and mi = |Ei | links. The set of links denoted by Ei are called the inter-links
of individual network i . The two networks can also be connected using intra-links
which creates the interdependencies between two networks. Let E12 be the set ofm12

intra-links between G1 and G2, with m12 = |E12|. Hence, the global network can be
represented by the combined graph G = (V1∪V2, E1∪E2∪E12). Note that we also
use E21 to denote the set of intra-links inG for convenience later, and thus E21 = E12.
Let n = n1 + n2 and m = m1 + m2 + m12. The adjacency matrix A ∈ R

n×n of the
global networksG has the entry ai j defined in (2.6). In the followingChap.3,wi j = 1
in the static network resilience game, while the value ofwi j in the dynamic resilience
game counterpart depends on the distance between nodes i and j .

LetA1 ∈ R
n1×n1 andA2 ∈ R

n2×n2 be the adjacency matrices of G1 and G2. When
these two networks are disconnected, A takes the following form
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A =
[

A1 0n1×n2
0n2×n1 A2

]
,

where 0n1×n2 is an n1 × n2-dimensional matrix with all zero entries. When E12 �= ∅,
the adjacency matrix of the network G becomes

A =
[
A1 B12

BT
12 A2

]
,

where B12 ∈ R
n1×n2 is an off-diagonal block matrix used to capture the effect of

intra-links between networks.
The Laplacian matrix L can be rewritten as adjacent matrices A1 and A2. Let

D1 ∈ R
n1×n1 and D2 ∈ R

n2×n2 be two diagonal matrices associated with network 1
and 2, respectively, which are defined as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(D1)i i =
∑
j

(B12)i j ,

(D2)i i =
∑
j

(BT
12)i j .

Then, by using L = D − A, the Laplacian matrix of G is

L =
[
L1 + D1 −B12

−BT
12 L2 + D2

]
, (2.10)

where Li = Di − Ai , i = 1, 2, are Laplacians associated with G1 and G2, respec-
tively.

Remark 2.2 The above modeled two-layer interdependent networks can be easily
extended to multilayer cases.

2.3 Notation Conventions

The conventions in the rest of the book are summarized as follows. The bold symbol
refers to either a vector or a matrix. R and Z refer to the real numbers and real
integers, respectively. | · | denotes the cardinality of a set. || · ||2 denotes the standard
L2 norm. λ2 represents the algebraic connectivity of a network. Supescript T denotes
the transpose of a vector or a matrix. I and 1 represent an identity matrix and a vector
with all one entries, respectively. L denotes the Laplacian matrix of a network. Pi
and Gi stand for player i and network i , respectively.
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Chapter 3
Meta-Network Modeling and Resilience
Analysis

3.1 Static Network Resilience Game

In this section, we investigate the static network resilience game. Its dynamic network
resilience game counterpart will be studied in Sect. 3.2.

The recent advances in information and communications technologies (ICTs),
such as 5G wireless networks and the Internet of Things (IoTs), have created a grow-
ing amount of connectivity between systems. The interconnection between network
systems creates a network-of-networks inwhich the interdependencies play an impor-
tant role in understanding their emerging functions and performances. The connectiv-
ity between the interdependent networks is critical for the robustness and resilience
of the entire system. A higher connectivity allows faster information exchange and
quick emergency response to natural or man-made disasters, and hence increases the
ex post resilience.

One important type of network-of-networks comes from the interaction between
different modern critical infrastructures [1–3]. For example, Fig. 3.1 illustrates a
two-layer interdependent network including the communication and power networks.
Both network designers are making decisions on the network configuration for better
connectivity. One the one hand, routers in the communication network can set up
wireless communication links with other routers and substations for information
exchange. On the other hand, substations in the power network can form connections
with other substations through power line communication (PLC) or wireless channel
with routers for communication. Though the goals of the two network operators are
aligned, they do not coordinate to achieve their objectives which will lead to potential
inefficiency. Therefore, one challenge for the interdependent critical infrastructures
network design is the decentralized nature of decision making.

A natural framework to capture the interdependency as well as the decentralized
decisions is game theory [4]. The interactions between two network systems can
be viewed as a noncooperative game in which each network configures itself to
achieve its own objective. The Nash equilibrium solution concept can be used to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
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Interdependent Network Analysis and Design, SpringerBriefs in Control,
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Fig. 3.1 Interdependent
networks G including
communication (G1) and
power(G2) networks. Links
in G1 and G2 are called
inter-links, and links
between G1 and G2 are
called intra-links
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characterize and predict the outcome of such strategic interactions, which provide
the analytical basis for designing mechanisms to build interdependencies that yield
desirable equilibrium networks.

We establish a two-player interdependent network formation game, where two
designers configure or rewire their network to achieve high connectivity of the global
network. The network connectivity can be measured by algebraic connectivity or
Fielder value [5], which is the second smallest eigenvalue of the Laplacian matrix of
a graph. As shown in Fig. 3.1, links in the global network are classified into two types:
inter-links which connect nodes in individual networks, and intra-links that connect
nodes between networks. Each designer can add or remove inter-links within his
network, and intra-links between the two networks to optimize the algebraic connec-
tivity subject to the budget constraints. Despite the fact that the goals of the players
are aligned, the lack of communications and coordination leads to a noncooperative
game in which individual players make decisions subject to their constraints. Our
network formation game problem involves two individual optimization problems
which can be further rounded as a semidefinite program (SDP). We propose an algo-
rithmwith dynamic alternating plays. At every step, a player reconfigures its network
based on the network obtained from the other players’ strategy in the previous step.
We show that the iterative algorithm converges to a Nash equilibrium after a finite
number of steps.

As a comparison, we study the constrained team problem associated with the
game, where two players cooperatively optimize the global interdependent network.
We propose the loss of connectivity metric to quantify the inefficiency gap between
the two problems, and use it as a guideline for increasing the efficiency of the Nash
equilibrium network. We use the interdependency between a power system network
and a communication network as a case study to illustrate the two-player game
problem and corroborate our results.

The established interdependent network formation framework is general and can
be applied to various scenarios including water networks, smart grids and transporta-
tion networks [2, 6–9]. In addition to improving the system resilience by focusing
on the network topology optimization, the system operator can design another layer
of artificial intelligence-based operational strategies for enhancing interdependent
infrastructures resilience [10–14].
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3.1.1 Problem Formulation

3.1.1.1 Static Interdependent Network Formation Game

Consider the following network formation problem: a network designer aims to opti-
mize the network topology to achieve an objective of minimum cost and/or highest
utility. Specifically, we investigate an interdependent network formation problem
between two network designers. Each of them forms inter-links and intra-links to
achieve their individual objectives. This lack of coordination can be captured by a
game-theoretic model, and its outcome can be predicted by Nash equilibrium solu-
tions. In the following, we describe the static interdependent network formation
game.

Let P1 and P2 be two network designers or players involved in the game. Each
player aims to add or remove links in G with the same goal of achieving high con-
nectivity of the network. Specifically, P1 can modify the link sets E1 and E12, and P2
can modify E2 and E21. Here, E12 and E21 refer to the same set of intra-links of G.
In addition, each player has complete knowledge of the game, and their objectives
are aligned. However, without communication, they need to make individual deci-
sions rather than resort to a centralized planner. This type of games often exists in
interdependent infrastructures. For example, at the post-disaster recovery, the power
systems and transportations make individual recovery plans. The insufficient com-
munications lead to a slow restoration process despite the fact they have the same
goal of fast recovery.

The players P1 and P2 update or rewire the networkG through adding and remov-
ing a set of links. LetAi ⊆ Ei ∪ Ei j , i, j ∈ {1, 2}, i �= j , be the set of possible links
Pi can add, and xei ∈ {0, 1}, i ∈ {1, 2}, e ∈ Ai , be the binary decision variable of
Pi with xei = 1 indicating that link e is added by Pi , and xei = 0 indicating other-
wise. Similarly, Di ⊆ Ei ∪ Ei j , i, j ∈ {1, 2}, i �= j, be the set of possible links Pi
can remove, and xe

′
i ∈ {0, 1}, i ∈ {1, 2}, e′ ∈ Di , be the binary decision variable of

Pi with xe
′

i = 1 indicating that link e′ ∈ Di is removed by Pi , and xe
′

i = 0 indicating
otherwise.

Both players have a budget constraint on the operating links. Since each link e ∈
Ai ∪ Di in the network is associated with a cost cei ∈ R+, i ∈ {1, 2}. For example, in
the power and communication networks shown in Fig. 3.1, setting up PLC orwireless
channels for information exchange induces a cost for network operators. Forming
more links results in higher costs. Therefore, a budget for players is necessary to
obtain nontrivial solutions. In the network formation game, the total budget for Pi is
Mi ∈ Z+, i.e.,

cTi,axi,a + cTi,d(1 − xi,d) ≤ Mi , for i ∈ {1, 2},

where ci,a = [cei ]e∈Ai ∈ R
|Ai |+ , ci,d = [ce′

i ]e′∈Di ∈ R
|Di |+ , xi,a = [xei ]e∈Ai ∈ {0, 1}|Ai |,

xi,d = [xe′
i ]e′∈Di ∈ {0, 1}|Di |, and 1 is a |Di |-dimensional vector will all one entries.

Here, ci,a and xi,a have the same order of indexing e with respect to the set Ai .
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Similarly, ci,d and xi,d have the same indexing as the setDi with respect to e′. Another
assumption is that each player updates the network topology through rewiring, then
the number of added links should be equal to the number of removed links, and
the total number of links stays the same. This fact can be captured by imposing the
constraint

∑

e∈Ai

xei =
∑

e′∈Di

xe
′

i .

This assumption is reasonable for the purpose of finding the equilibrium topology of
interdependent networks. Comparing with the adding strategy in network formation
[15], the rewiring method gives more insights on the resources allocation planning.
Note that in this interdependent network formation game, Ai ∩ Di = ∅, and Ai ∪
Di = Ei ∪ Ei j for i ∈ {1, 2}, since we do not allow both players to add or remove the
same. This condition can be naturally satisfied by the iterative algorithm described
in later in Sect. 3.1.3.

The decision variables are xi = [xi,a, xi,d ] for player Pi . Denote by F1 and F2

the action spaces of P1 and P2, respectively, which are sets of all the possible link
formation strategies for the players within the budget constraints. The goal of both
players is to maximize the algebraic connectivity of the global network G. Hence,
the utility function of both players is described by λ2(x1, x2) : F1 × F2 → R+. More
details about algebraic connectivity can be found in Sect. 2.2.We then can summarize
into the following optimization problem Qi for Pi for i = 1, 2:

Qi : max
xi

λ2

(
L +

∑

e∈Ai

xei aea
T
e −

∑

e′∈Di

xe
′

i de′dT
e′

)

s.t.
∑

e∈Ai

xei =
∑

e′∈Di

xe
′

i ,

cTi,axi,a + ci,d T (1 − xi,d) ≤ Mi ,

1T xi,a + 1T (1 − xi,d) = hi ,

xi,a = [xei ]e∈Ai ∈ {0, 1}|Ai | ,

xi,d = [xe′
i ]e′∈Di ∈ {0, 1}|Di | ,

where ae is the added link vector whose formal definition is presented in (2.7); de′

is the deleted link vector where de′(i) = 1, de′( j) = −1 and other entries zero for
link e′ connecting nodes i and j ; 1 is a column vector with all ones of appropriate
dimension; and hi is the total number of links that player i can form.

Following Sect. 2.1, the interdependent network formation game can be repre-
sented by a tripletG := {N , {Fi }i∈N ,λ2}, whereN := {1, 2} is the set of the players,
Fi are the action spaces. Since both players have an aligned objective function given
by λ2, game G is characterized to a potential game. A natural solution concept to this
game is Nash equilibrium, which has been introduced in Chap.2.
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Definition 3.1 A strategy profile (x∗
1, x

∗
2) is a Nash equilibrium of the game G if for

every xi ∈ Fi , i ∈ N ,

λ2(x∗
1, x

∗
2) ≥ λ2(x1, x∗

2),

λ2(x∗
1, x

∗
2) ≥ λ2(x∗

1, x2).

At equilibrium, no player can increase the network connectivity individually by
changing his rewiring strategy.

3.1.1.2 Jointly Constrained Team Problem

With sufficient communications and coordinations, the network formation game
problem leads to a constrained team problem in which P1 and P2 jointly optimize
the algebraic connectivity. In this problem, two players share the same objective
while they should consider the constraints of both players together. Given an initial
network and its Laplacian L, the constrained team problem T P can be written as:

T P : max
x1,x2

λ2

(
L +

2∑

i=1

∑

e∈Ai

xei aea
T
e −

2∑

i=1

∑

e′∈Di

xe
′

i de′dT
e′

)

s.t. cTi,axi,a + cTi,d(1 − xi,d) ≤ Mi ,

1T xi,a + 1T (1 − xi,d) = hi ,
∑

e∈A1

xei =
∑

e′∈D1

xe
′

i ,

xi,a ∈ {0, 1}|Ai | , xi,d ∈ {0, 1}|Di | , i = 1, 2.

Due to the collective efforts, the solution to T P denoted by (xo1, x
o
2) usually

yields a higher connectivity than its Nash equilibrium counterpart. We measure this
connectivity gap by using the loss of connectivity (LOC) metric which is defined as

LOC(x∗
1, x

∗
2) := λ2(xo1, x

o
2) − λ2(x∗

1, x
∗
2)

λ2(xo1, x
o
2)

.

Note that LOC is between 0 and 1, and it can inform network designers how bad the
system performance is when there is lack of coordination, and provides a guideline
for designers to close the gap between team and Nash equilibrium solutions.

3.1.2 Nash Equilibrium Analysis

In this section, we analyze the feasibility and existence of Nash equilibrium of the
interdependent network formation game formulated in Sect. 3.1.1.



18 3 Meta-Network Modeling and Resilience Analysis

3.1.2.1 Feasibility

The first step is to understand whether there exists a feasible solution to Qi . We
consider the following constraints on the budgets of each player.

Lemma 3.1 Let s( j) be the j th largest value in the vector ci,a. Then,Qi is feasible
if

∑hi
j=1 c

s( j)
i ≤ Mi , for i = 1, 2.

3.1.2.2 Existence of Nash Equilibrium

Note that each player’s action set is finite for given (n1, n2), (h1, h2) and (M1, M2).
For all possible action profiles, we care about the existence of Nash equilibrium of
this game.

Theorem 3.1 There exists at least one pure Nash equilibrium in the interdependent
network formation game.

Proof This network formation game can bewritten in amatrix form, and both players
share the same objective. Thus, there exists at least one (x∗

1, x
∗
2) that jointly optimizes

the network connectivity. Then, λ2(x∗
1, x

∗
2) ≥ λ2(x1, x∗

2), ∀x1 ∈ F1, λ2(x∗
1, x

∗
2) ≥

λ2(x∗
1, x2), ∀x2 ∈ F2, where F1 and F2 are action spaces of P1 and P2, respectively.

Since (x∗
1, x

∗
2) is a dominant strategy of the players, then (x∗

1, x
∗
2) is a pure Nash

equilibrium in this game. �

Remark 3.1 The existence of a mixed-strategy Nash equilibrium is ensured by
Nash’s Theorem2.1. The equilibria of interest here are pure ones.

Corollary 3.1 The jointly constrained team optimal solution (xo1, x
o
2) also consti-

tutes a Nash equilibrium of the network formation game G.
Proof First, the solution to T P satisfies (xo1, x

o
2) ∈ F1 × F2 because of the joint

constraints in T P . If (xo1, x
o
2) is not a Nash equilibrium, then, there exists x1 ∈ F1,

such that λ2(xo1, x
o
2) < λ2(x1, xo2), or there exists x2 ∈ F2, such that λ2(xo1, x

o
2) <

λ2(xo1, x2). In this sense, (x
o
1, x

o
2) is not an optimal solution to T P which contradicts

the assumption. Hence, (xo1, x
o
2) should be a Nash equilibrium solution. �

3.1.3 Algorithm Design

In this section, we present a best-response alternating play algorithm to obtain the
Nash equilibrium solution, and study its convergence property.
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3.1.3.1 Best-Response Alternating Play Mechanism

In practice, the Nash equilibrium can be interpreted as an outcome of iterative algo-
rithms. Consider two players who play the game G by taking turns to update their
strategies. Given an initial configuration of the network Gk−1 at time k − 1, at time
step k ∈ Z+, P1 solves the optimizationQ1,k by choosing x1,k = [xk1,a, xk1,d ]. Due to
this rewiring of links of P1, the network topology changes from Gk−1 to Gk , with the
inter-links of G1 and the intra-links modified. However, the inter-links of G2 remain
intact. Note that we have introduced index k to the notations to indicate specifically
the problem to be solved at time k. For example, Q1,k is the problem that P1 solves
at time k, and x1,k is the corresponding solution. At time k + 1, P2 finds the optimal
solution x2,k+1 = [xk+1

2,a , xk+1
2,d ] to the problemQ2,k+1 based on the topology Gk . This

iteration leads to the change of the inter-links of G2 and the intra-links, but the inter-
links of G1 remain intact. This process can be iteratively proceed until no rewiring
is possible, and the solution obtained in the end corresponds to the Nash equilibrium
of the interdependent network formation game in which no players can deviate from
their strategy unilaterally to achieve a better payoff.

It is evident that this iterative scheme automatically satisfies the condition that
both players cannot add or remove the same link at the same time during each update.
Moreover, this algorithm is often observed in practice. The transit authority of New
York City will respond to the power system network failure to reroute its traffic,
while the power network will reroute the power supply in response to the emergency.
This Nash equilibrium can be used to predict the outcome of two network operators
when they have limited and insufficient communications when disasters hit the city.

3.1.3.2 Convergence of the Algorithm

During the network formation game, one player’s optimal strategy at each round of
the update is the best response to the strategy of the other player from the previous
round. For convenience, we define −i := {1, 2}\{i}, where i ∈ {1, 2}, to denote the
player other than i . Then, we have the following theorem about the outcome of
updates.

Theorem 3.2 Under the best-response alternating play algorithm, the algebraic
connectivity of G converges to a pure Nash equilibrium after a finite number of
steps.

Proof Since P1 and P2 each can form a finite number of links in the game, the opti-
mal algebraic connectivity ofG is upper bounded. Denote players’ action at step k as
x1,k and x2,k , respectively. Then, λ2(x1,k+1, x2,k+1) ≥ λ2(x1,k, x2,k), for all k ∈ Z+,
which indicates that the outcome of each step is a non-decreasing sequence. Since
the action spaces of players are finite, then, players cannot increase the λ2 of G con-
tinually by reforming the network. Therefore, ∃k ∈ Z+, such that the strategy profile
(x1,k+1, x2,k+1) and (x1,k, x2,k) are the same, and λ2(x1,k+1, x2,k+1) = λ2(x1,k, x2,k).
Since Pi ’s strategy at step k + 1 is the best response to the network that formed after
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P−i ’s action at step k, then, λ2(x1,k ′ , x2,k ′) = λ2(x1,k ′−1, x2,k ′−1), ∀ k ′ > k. Since the
utility function is non-decreasing during the game, then, we know that the action
profile (x1,k ′ , x2,k ′) will not change, and the λ2 stays constant for k ′ > k. Hence, the
network reaches an equilibrium after a finite number of k steps, and the strategy
profile (x1,k, x2,k) is a Nash equilibrium. We denote the sequence of λ2 in this game
as {v(k)}, and its upper bound as v̄. Then, ∀ε > 0, |v(k ′) − v̄| = 0 < ε, ∀k ′ ≥ k,
which results in the convergence of the algebraic connectivity in the game. �

3.1.4 SDP-Based Approach

In this section, we propose a semidefinite programming approach to solve the opti-
mization problem Qi .

3.1.5 Alternative Problem Formulation

To simplify the formulation of the original optimization problem Qi , we first intro-
duce the following lemma.

Lemma 3.2 At step k, Pi will not remove those intra-links formed by P−i at the
previous step k − 1.

Proof Without loss of generality, we assume that each link has the same cost, and
P1 is playing the game. Suppose P1 removes a set of intra-links B formed by P2
at step k − 1. Denote the optimal network formed after P1’s action as Gk , and the
current strategy profile of players as (x1,k, x2,k−1). If P1 does not remove links in set
B, then he can form |B| additional links based on Gk , and we denote the strategy of
players at this case as (x′

1,k, x2,k−1). Since algebraic connectivity is non-decreasing
on the link addition with the same set of nodes [5], then we obtain λ2(x′

1,k, x2,k−1) ≥
λ2(x1,k, x2,k−1). Therefore, Pi will not remove intra-links that formed by P−i at the
previous step. �

Based on Lemma3.2, we can reformulate Qi as follows.

Corollary 3.2 Links rewiring problemQi is equivalent to the following links adding
problem for i = 1, 2:

Q′
i : max

xi
λ2

⎛

⎝L′ +
∑

e∈Ti

xei lel
T
e

⎞

⎠

s.t. cTi xi ≤ Mi ,

1T xi = hi ,

xi ∈ {0, 1}|Ti | ,



3.1 Static Network Resilience Game 21

where L′ is the Laplacian matrix of G which is only contributed by the previous step
of P−i . Ti is the link set that contains all inter-links in Gi , and all intra-links except
those already formed by P−i , i.e., Ti = Ai ∪ Di\D−i . xi , le and ci have the same
interpretations as xi , ae and ci inQi , respectively, with only a slight variation on the
vector size.

Proof The interpretation ofQ′
i is as follows: Pi removes all links that he has formed at

the previous step first, then starts from scratch and forms another hi links. Therefore,
to show Qi and Q′

i are equivalent, it is enough to show that Pi will not remove
intra-links that formed by P−i at the previous step. This is true which is proved in
Lemma3.2. �

3.1.5.1 Nonzero-Sum Game and SDP Formulation

We define a new game G̃ := {N , {F̃i }i∈N , {αi }i∈N }, where N = {1, 2} is the set of
the players, F̃i are the feasible action spaces defined by problemQ′

i in Corollary3.2,
and αi is the objective for player i . Then, we have the following.

Proposition 3.1 The nonzero-sum game G̃ is equivalent to the potential game G
defined in Sect.3.1.1.1, and its formulation can be captured by the following SDP
problem:

Q′′
i : max

xi ,αi

αi

s.t. L′ +
∑

e∈Ti

xei lel
T
e � αi

(
In − 1

n
11T

)
,

cTi xi ≤ Mi ,

1T xi = hi ,

xi ∈ {0, 1}|Ti |.

where αi ∈ R, for i = 1, 2, and In is an n-dimensional identity matrix.

Proof We have shown that Q′
i is equivalent to Qi in Corollary3.2. Then, to show

game G̃ is equivalent to game G, it is sufficient to show that its SDP formulation is
equivalent to the formulation ofQ′

i . Based on the result in [16], i.e., the optimization
problemmaxx λ2(L(x)) is equivalent tomaxx,β β while subjecting toL(x) � β(In −
1
n 11

T ), where β is a scalar. Therefore, the equivalence of G and G̃ follows from the
fact that Q′

i and Q′′
i are equivalent. �

Note that game G̃ enables an efficient computation of best-response algorithms. It,
however, is a nonzero-sum game since the objective functions inQ′′

i are different for
players i = 1, 2. Based on Proposition3.1, we know that G̃ admits at least one pure
Nash equilibrium, and its best-response algorithm is similar to the one in Sect. 3.1.3.
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Since the elements in the decision vector xi inQ′′
i is binary, we denote this problem

as a binary game problem (BGP). BGP is NP-hard and not easy to solve. By changing
the boolean constraint xi ∈ {0, 1}|Ti | to the linear constraint xi ∈ [0, 1]|Ti |, we obtain
a relaxed game problem (RGP) as

QR
i : max

xi ,αi

αi

s.t. L′ +
∑

e∈Ti

xei lel
T
e � αi

(
In − 1

n
11T

)
,

cTi xi ≤ Mi ,

1T xi = hi ,

xi ∈ [0, 1]|Ti |.

We have transformed Qi which is hard to deal with to an easier RGP QR
i , and

SeDuMi [17] is adopted to solve the RGP. Moreover, the solution to the RGP QR
i

severs as an upper bound of the solution to BGP Q′′
i due to the relaxation.

3.1.5.2 Rounding Techniques for RGP

Denote the strategy of players as x∗
i and x∗

−i , respectively. Then, several rounding
methods are listed below.

• Greedy: Selecting the hi and h−i largest entries in x∗
i and x∗

−i alternatively at one
shot.

• Link-by-Link: We select the largest entry that is smaller than 1 in x∗
i , and set it to 1.

Then, update the RGP by incorporating this link. Next, solve the new RGP again,
and repeat these two steps for hi times. Same for x∗

−i .• Log Link-by-Link: The only difference with the link-by-link method is that we
choose the best half of the remaining elements rather than one at a time. Then,
only around log(hi ) and log(h−i ) number of RGPs need to be solved for Pi and
P−i at every step, respectively.

3.1.6 Case Studies

3.1.6.1 Interdependent Networks Model

We consider the communication network A and power network B that contain 3
routers and 5 substations, respectively. Both network managers are able to set up
wireless links between routers and substations known as intra-links. Inside the net-
work, A forms wireless inter-links, while B sets up inter-links via PLC. Note that
the switching of PLC over a link inside the power network is enabled by the flexible
AC transmission system (FACTS) technology [18]. In addition, the cost of each link
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Fig. 3.2 Interdependent
power and communication
networks. 8 links are
contributed by network A,
and 7 links are formed by
network B
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is related to its type, i.e., inter-link or intra-link, and PLC or wireless communica-
tion. For simplicity, we normalize the budget and the cost of communication links.
Specifically, each inter-link costs 1 and 1.2 units in networks A and B, respectively,
and each wireless intra-link takes 1.5 units between A and B. Figure3.2 shows the
initial configuration of the interdependent networks.

3.1.6.2 Performance of the Two Formation Models

In this case study, h1 = 8, h2 = 7, M1 = 12 and M2 = 10. Figure3.3a shows the
performance of the game model and the team model on the algebraic connectivity.
The network connectivity is increasing step by step using the game method, and
reaches an equilibrium after 9 steps, illustrating the effectiveness of the algorithm.
Thefinal configurationof the interdependent network is shown inFig. 3.3c.Moreover,
the connectivity of theNash equilibriumnetwork is the same as that of the constrained
team network, and thus LOC is 0.

3.1.6.3 Comparison of Different Initial Configurations

By rewiring links (1, 2) to (1, 3) in the initial configuration in Fig. 3.2, the best
response dynamic algorithm can converge to a Nash equilibrium in 5 steps shown in
Fig. 3.3b, d is the equilibrium network. Though, in this case, the final network has the
same algebraic connectivity as that in Fig. 3.3a, and it is also optimal (i.e., LOC= 0),
the equilibriumnetwork topology is different for these two scenarios. Therefore, there
exist more than one Nash equilibria in this interdependent network formation game,
and it corroborates that the jointly team optimal solution also constitutes a Nash
equilibrium.
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Fig. 3.3 Both a and b show the performances of the game model and team model on λ2(G). The
initial network for a is shown in Fig. 3.2, and b’s initial network is the same as that in Fig. 3.2
except link (1, 2) is changed to (1, 3). c and d are the final equilibrium networks for cases a and b,
respectively

3.1.6.4 Impact of the Budget on Network Formation Game

In previous case studies, M1 = 12 and M2 = 10 indicate that both network designers
have a sufficiently large budget, and they can create links wherever necessary. Next,
we investigate the impact of the budget on the network formation game. Assuming
M1 = 11 and M2 = 8.5, and also the initial network configuration is the same as that
in Fig. 3.2 except rewiring link (5, 1) to (4, 6). Then, the results of the game and team
solutions are shown in Fig. 3.4. We can see that the obtained equilibrium network is
not optimal, and the LOC is equal to 4.1%. The constrained optimal solution is the
same as that in Fig. 3.3. This can be directly verified by the network in Fig. 3.3c, as it
also satisfies the budget constraints M1 = 11 and M2 = 8.5. The reason accounting
for nonzero LOC in this case is that during the network updating process, players
cannot implement desired rewiring strategies due to the insufficient budget at some
steps. Therefore, the achieved equilibrium is a suboptimal Nash equilibrium.
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Fig. 3.4 a shows the performances of the game model and team model with budgets M1 = 11 and
M2 = 8.5. b is the resulting equilibrium network

To sum up, with sufficient budgets, players can achieve a Nash equilibrium net-
work same as the constrained team optimal network by using the proposed best
response dynamic algorithm from any initial network configuration. When the bud-
gets are limited, the yielding equilibrium network can be a suboptimal Nash equilib-
rium network comparing with its constrained team network counterparts. Therefore,
cooperation is more preferable for budget scarcity cases in which the LOC can be
dropped to zero.

3.2 Dynamic Network Resilience Game

The previous section has studied the connectivity of static network-of-networks. We
extend the framework to a dynamic one and investigate dynamic network resilience
game in this section.

Cooperative mobile autonomous system (MAS) has a wide range of applica-
tions, such as rescue and monitoring the crowd in mission critical scenarios. One
of the challenges in designing the MAS network is to maintain the connectiv-
ity between agents/robots,1 since a higher connectivity enables faster information
spreading and hence a high-level of situational awareness. In [19], the authors have
successfully tackled connectivity control of a single network of cooperative robots.
Recent advances in networked systems havewitnessed emerging applications involv-
ing multi-layer networks or network-of-networks [20–22]. For example, in the bat-
tlefield, unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs)
execute tasks together, and the whole network can be seen as a two-layer interdepen-
dent network [23]. The connectivity of the two-layer network can play a key role in the

1The “agent” refers to the robot in our MAS network. We also use the terms “MAS network” and
“robotic network” interchangeably.
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operations for a given collaborative mission. To enable the real-time decision mak-
ing of each agent, the integrated network needs to guarantee a level of connectivity.
Therefore, the current single network control paradigm is not yet sufficient to address
the challenges related to the analysis and design of multi-layer MAS networks. The
main objective in the rest of the chapter is to develop a theoretic framework that can
capture the interactions between agents within a network and across networks and
enable the design of distributed control algorithms that can maintain the connectivity
in both adversarial and non-adversarial environment.

The operator of each layer MAS network aims to maximize the algebraic con-
nectivity [5] of the global network. If the whole network is fully cooperative or
governed by a single network operator, then the designed network is a team-optimal
solution. However, in practice, different layers of robotic networks are often oper-
ated by different entities, which makes the coordination between separate entities
difficult. This uncoordinated control design naturally leads to a system-of-systems
(SoS) framework of the multi-layer MAS network. For example, in the aforemen-
tioned two-layer UAV and UGV mobile networks, though the objectives of two
network operators are aligned, the UAVs are operated by one entity while the UGVs
is operated by another. The lack of the centralized planning can result in insuffi-
cient coordination between two networks and lead to disruptions in connectivity and
security vulnerabilities. To address this problem, we establish aNash game-theoretic
model in which two players, i.e., network operators, control robots at their layer, to
maximize the global connectivity independently. This model captures the lack of
coordination between players and their decentralized decision making in optimizing
the SoS performance.

Cybersecurity is another critical concern of networked systems because of the
integration with IoT components [24, 25]. To address the security issues in multi-
layer systems, a holistic approach capturing the interdependencies is necessary [26,
27]. In the MAS, the agents are prone to adversarial attacks, e.g., the communication
links between robots can be jammed (e.g., [28]) which decreases the connectivity.
Therefore, secure control of the multi-layer MAS networks is critical to maintain
the SoS performance at a high level. To this end, we model the mobility of robots
by taking into account the imperfect communication links under adversarial envi-
ronment. Specifically, each network operator anticipates the jamming attacks and
controls robots by anticipating that a set of critical links between agents can be com-
promised. This secure control design can bemodeled by a Stackelberg game between
each network operator and the attacker.

We integrate the modeled Nash game between two network operators as well as
the Stackelberg game between the network operator and the attacker which further
yields a games-in-games framework. This new type of game provides a holistic
modeling that integrates the network-network interactions and the agent-adversary
interactions together for the secure and decentralized control design of multi-layer
MAS networks. We propose a meta-equilibrium solution for this games-in-games
which includes the optimal strategy of network operators and the strategic jamming
attacks of adversary. We further develop a resilient and decentralized mechanism
that guides the online design of MAS for achieving a meta-equilibrium solution. A
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typical example is that two network operators update their own network in a round-
robin fashion based on the current network to maximize the network connectivity.
This alternating-play mechanism induces an iterative algorithm that can converge to
a meta-equilibrium asymptotically.

The games-in-games framework provides a theoretical foundation for understand-
ing the agile resilience of the system to cyberattacks, which is a critical system
property for the MAS network to recover quickly especially for mission-critical
applications. When robots or communication links in the network are compromised,
the integrated MAS network under the designed control strategy needs to respond to
the unexpected disruptions with agility to mitigate the loss of connectivity. Hence, to
investigate the resilience of the designed algorithm, we first introduce the GPS spoof-
ing attacks. The resilience is measured by the enhanced SoS performance through the
design of post-attack control strategies. Simulation results show that the multi-layer
MAS network is resilient to attacks using the proposed control method. After the
detection of GPS spoofing attack by the network operator, the MAS network shows
agile resilience to the attack and the system can adapt and reconfigure itself to an
efficient meta-equilibrium that coincides with the one without attack.

Related Work

MAS has been applied to a number of emerging fields. One of them is drone delivery
[29]. Another example is the unmanned aerial vehicles (UAVs) assisted sensing and
communication networks for disaster response and recovery [30]. Since we focus
on controlling groups of MAS, this work is also related to the classical control of
multi-agent systems [31–33].

One critical factor needs to be considered for MAS network is its connectivity.
WhenMAS is adopted in mission-critical scenarios, such as battlefields and disaster-
affected areas, a higher network connectivity provides a higher level of situational
awareness [34]. Maximizing the algebraic connectivity of networks has been investi-
gated extensively in literature, including single-layer static network [15], single-layer
mobile network [31, 35], multi-layer static network [21, 36, 37]. We focus on opti-
mizing a new category of multi-layer MAS network connectivity in this section.

3.2.1 Games-in-Games Framework

We introduce the system framework which includes the wireless communication
model and the strategic interdependent MAS network formation.

3.2.1.1 Wireless Communication Model

In the MAS, we consider a set V of robots in the network, and their positions at time
k are defined by the vector x(k) = (

x1(k); x2(k); . . . ; xn(k)
) ∈ R

3n . Robots in the
same network can exchange data viawireless communications.Denote the communi-
cation link between robots i and j as (i, j). Then, the strength of the communication
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Fig. 3.5 Communication
strength under function
f (d) = δ(c1−d)/(c1−c2) with
δ = 0.1, c1 = 2 and c2 = 6

link (i, j) is similar to the weight of the link in a network. Thus, we associate a
weight functionw : R3 × R

3 → R+ with every communication link (i, j), such that

wi j (k) = w
(
xi (k), x j (k)

) = f
(||xi j (k)||22

)
, (3.1)

for some differentiable f :R+ → R+, where xi j (k) := xi (k) − x j (k), and ||xi j (k)||2
is the distance between robots i and j . To capture the communication strength decay
with the distance, f is a monotonically decreasing function. A typical choice of f is
f (d) = δ(c1−d)/(c1−c2), where δ, c1 and c2 are positive constants. Note that different
forms of f capture various decay rates of communication strengthwith distance [38].
Thus, the weight of the link between robots is positive if their distance is within a
threshold and degenerates to zero otherwise. Figure3.5 shows an example of f with
δ = 0.1, c1 = 2 and c2 = 6.

3.2.1.2 Secure Interdependent MAS Network Formation

A two-layer MAS network model is shown in Fig. 3.6, where networks G1 and
G2 include n1 and n2 number of robots, respectively. More generally, we label
robots in G1 as 1, 2, . . . , n1, and robots in G2 as n1 + 1, n1 + 2, . . . , n1 + n2,
i.e., V1 := {1, 2, . . . , n1} and V2 := {n1 + 1, n1 + 2, . . . , n}. Note that n = n1 + n2.
Robots in these two layers can also communicate, and this kind of communication
link is called intra-link while the link inside of a network is known as inter-link.
Exchanging data between robots at different layers can be more difficult than that of
the robots at the same layer because of possible larger distance. In this situation, to
enable information exchange between networks, we can assume that intra-link has a
smaller communication strength decay comparing with that of inter-link by choosing
different f in (3.1). For notational clarity, we adopt the same communication strength
function for intra-links and inter-links. The agents at two layers are interdependent,
and thus the integratedMAS network can bemodeled as a system-of-systems. Amore
detailed modeling of system-of-systems can refer to Sect. 2.2.2.
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Fig. 3.6 Multi-layer MAS
network in an adversarial
environment

Network Designer

We consider two players, player 1 (P1) and player 2 (P2), operating two inter-
dependent MAS networks. P1 controls robots in network G1, and P2 controls
robots in G2. Specifically, P1 and P2 update their own network with a fixed fre-
quency by controlling the positions of robots. After each update, the communi-
cation link strength between robots are modified due to the change of distance.
For simplicity, define −γ := {1, 2}\γ, where γ ∈ {1, 2}, and x := (x1, x2), where
x1 := (x1; . . . ; xn1) ∈ R

3n1 and x2 := (xn1+1; . . . ; xn) ∈ R
3n2 . Specifically, x1 and

x2 are decision variables denoting the position of robots in G1 and G2, respectively.
In addition, the action spaces of P1 and P2 are denoted by X1 and X2, respectively,
which include all the possible network configurations. The set of pure strategy pro-
files X := X1 × X2 is the Cartesian product of the individual pure strategy sets. For
each update, Pγ’s strategy Xγ is based on the current configuration of network G−γ .
The goal of both players is to optimize the SoS performance, i.e., maximize the
algebraic connectivity of the global network G. Hence, the utility function for both
players is λ2

(
LG(x)

)
: X → R+, where LG(x) is the Laplacian matrix of network G

when mobile robots have position x.

Remark 3.2 In general, the objectives of twoplayers can be different rather thanmax-
imizing the algebraic connectivity of the globalMAS network. However, in our prob-
lem setting, the two teams of robots execute tasks collaboratively, and thus they both
aim to optimize the global network connectivity to improve the SoS performance.

In the adversarial network formation game, one of the constraints is the minimum
distance between robots in each layer. Without this constraint, all robots at the same
layer will converge to one point finally which is not a reasonable solution. Thus, we
assign a minimum distance ρ1 and ρ2 for robots in G1 and G2, respectively.

Cyber Attacker

In addition to the network players P1 and P2, our framework also includes amalicious
jamming attacker as shown in Fig. 3.6. The attacker is able to disrupt communication
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links via injecting large amount of spam into the channel which leads to the link
breakdown eventually because of overload of the link. The attacker’s objective is
to minimize the algebraic connectivity of the network through compromising links.
Generally, the behavior of attacker is unknown to the network operators. Therefore,
it is difficult for the network designers to make optimal strategies that can achieve
the best performances of the network. However, by knowing that attackers are strate-
gic and are more prone to disrupt the critical communication links in the network,
the network operators can design a secure MAS network resistant to cyberattacks.
Specifically, network designers first anticipate that the attacker can compromise a
number ψ ∈ Z

+ of links, and then design the MAS network by taking into account
the worst-case attack that leads to the most decrease of the network algebraic con-
nectivity. Note that ψ quantifies the security level of the designed network.

Denote A by the action space of the attacker which is the set including all the
possible single communication link removal in the network. For convenience, we
denote Le

G(x) by the Laplacian matrix of the network after removing a set of links
e ⊆ A, i.e., the network after attack is G(V, E1 ∪ E2 ∪ E12\e), and the cardinality
of e is |e| = ψ quantifying the ability of attacker, where ψ ∈ Z

+ is a positive integer.
Denote the feasible set of e by E . Then, the cost function of the attacker can be
captured by Λ(x1, x2, e) � λ2

(
Le
G(x)

)
, for Λ : X1 × X2 × E → R+.

3.2.1.3 Games-in-Games Formulation

During the MAS network formation, the interactions between two networks G1

and G2 can be modeled as a Nash game where both players aim to increase the
global network connectivity. In addition, each network operator plays a Stackelberg
game with the malicious jamming attacker. Therefore, the multi-layer MAS network
formation in the adversarial environment can be characterized by a games-in-games
framework [39–41] which is shown in Fig. 3.7. Since network operators are aware
of the jamming attacks, the proposed model incorporates security considerations in
the MAS network design. In the following, we specifically formulate the attacker’s
and network operators’ problems, respectively.

Stackelberg Game

In the Stackelberg game, network designer is the leader, and jamming attacker is the
follower. Background of Stackelberg game can be found in Sect. 2.1.3. The objective
of the attacker is to minimize the algebraic connectivity of network G. We can
summarize the strategic behavior of the attacker into the following problem:

Qk
A : min

e⊆A,|e|=ψ
λ2

(
Le
G(x(k + 1))

)
. (3.2)

On the leader side, network operator Pγ maximizes the algebraic connectivity
of the network, where γ ∈ {1, 2}, and his decision can be obtained via solving the
optimization problem:
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Fig. 3.7 Games-in-Games
framework which includes
two network operators and
one attacker. Both network
operators prepare for the
cyberattack which form a
Stackelberg game with the
attacker. In addition, two
network operators are
uncoordinated and aim to
maximize the global network
connectivity which create a
Nash game

Nash game

Jamming a acker

Network G2Network G1

Stackelberg game Stackelberg game

Qk
γ : max

xγ(k+cγ)
min

e⊆A,|e|=ψ
λ2

(
Le
G(x(k + cγ))

)

s.t. ||xi j (k + cγ)||2 ≥ ργ, ∀(i, j) ∈ Eγ,

||xi j (k + cγ)||2 ≥ ρ12, ∀i ∈ Vγ, ∀ j ∈ V−γ,

||xi (k + cγ) − xi (k)||2 ≤ dγ, ∀i ∈ Vγ,

x j (k + cγ) = x j (k), ∀ j ∈ V−γ,

(3.3)

where cγ ∈ Z
+ is a positive integer indicating the update frequency; ργ ∈ R+ is the

safety distance between robots; ρ12 ∈ R+ is the minimum distance between robots
in different layers; and dγ ∈ R+ is the maximum distance that robots in network Gγ

can move at each update. The constraint x j (k + cγ) = x j (k), j ∈ V−γ captures the
uncoordinated nature that each network operator can only control the robots at his
layer. Furthermore, this constraint preserves security consideration between agents
in V−γ and also ensures consistent connectivity improvement when player γ updates
his network.

The Stackelberg game between the attacker and network operator γ can be rep-
resented by Ξγ := {Nγ,Xγ,A,λ2} for γ ∈ {1, 2}, where Nγ := {Pγ, Attacker} is
the set of players, Xγ and A are action spaces and λ2 is the objective function.

Nash Game

The interaction between two robotic networks in an adversarial environment can
be characterized as a Nash game in which both players aim to increase the global
network connectivity. We denote this strategic game by ΞI := {P1, P2,X1,X2,λ2}.

Note that the MAS network formation game is played repeatedly over time, and
its structure is the same only with different initial conditions in terms of the robots’
position. This two-person interdependent MAS network formation game can be nat-
urally generalized into an N -person game where each player controls a subset of
robots in the multi-layer networks.
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3.2.2 Problem Analysis and Meta-Equilibrium

In this section, we first reformulated problems in Sect. 3.2.1, and then present the
solution concept of the MAS network formation game.

3.2.2.1 Problem Reformulation

Note that each network designer updates the robotic network iteratively based on the
current configuration. It is essential to obtain the relationship between the updated
position and the current one due to the natural dynamics of robots. To achieve this
goal, we define Zi j (k) := ||xi j (k)||22 for notational convenience. Analogous to apply-
ing Euler’s first order method to continuous dynamics, we can obtain Zi j (k + m)

based on the current positions xi (k) and x j (k) as follows:

Zi j (k + m) + Zi j (k) = ||xi j (k + m)||22 + ||xi j (k)||22
= 2{xi (k + m) − x j (k + m)}T {xi (k) − x j (k)}.

(3.4)

Similarly, by using the function f in (3.1), the updated weight wi j (k + m) can be
expressed as:

wi j (k + m) = wi j (k) + ∂ f

∂||xi j ||22

∣∣∣∣
k

(Zi j (k + m) − Zi j (k)). (3.5)

Therefore, we can obtain the Laplacian matrix LG
(
x(k + m)

)
by using (3.5) for the

global network. Specifically, its entries LG
i j (k + m) are as follows:

LG
i j (k + m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− wi j (k + m), if i �= j, (i, j) ∈ E1 ∪ E2;
− w̃i j (k + m), if i ∈ V1, j ∈ V2, or j ∈ V1, i ∈ V2;
∑

s �=i,s∈V1

wis(k + m) +
∑

q �=i,q∈V2

w̃iq(k + m), if i = j ∈ V1;
∑

s �=i,s∈V2

wis(k + m) +
∑

q �=i,q∈V1

w̃iq(k + m), if i = j ∈ V2;

(3.6)

wherewi j , ∀(i, j) ∈ E1 ∪ E2, represent the weights of inter-links insideG1 andG2,
and w̃i j , ∀(i, j) ∈ E12, denote the weights of intra-links connecting G1 and G2.

Each network designer needs to solve a max min problem which is not straight-
forward to deal with. We first present the following result.

Theorem 3.3 For a network containing n nodes, the optimization problem

max
x

min
e⊆A,|e|=ψ

λ2(Le
G(x)) (3.7)
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is equivalent to

max
x,β

β

s.t. Le
G(x) � β

(
In − 1

n
11T

)
, ∀e ⊆ A, |e| = ψ,

(3.8)

where β is a scalar. Note that the optimal x and the corresponding objective values
in these two problems are equal.

Proof Let vi be the eigenvector associatedwith eigenvalueλi of the Laplacianmatrix
Le
G(x), for ∀i ∈ V . SinceLe

G(x) is real and symmetric, its eigenvectors can be chosen
such that they are real, orthogonal to each other and have norm one, i.e., vT

i v j =
0,∀i �= j ∈ V and vT

i vi = 1. Specially, we define v1 := 1√
n
, which is actually the

eigenvector corresponding to λ1 = 0. Then, Le
G(x) admits a spectral decomposition

of the following form

Le
G(x) =

n∑

i=1

λi (Le
G(x))vivT

i . (3.9)

Since λ1 = 0, Eq. (3.9) can be simplified as

Le
G(x) =

n∑

i=2

λi (Le
G(x))vivT

i . (3.10)

Next, we add λ2(Le
G(x))v1vT

1 to both sides of (3.10) and obtain Le
G(x) + λ2(Le

G(x))
v1v

T
1 = ∑n

i=2 λi (Le
G(x))vivT

i + λ2(Le
G(x))v1vT

1 .Byusing property (2.8), we further
have

Le
G(x) + λ2(Le

G(x))v1vT
1 � λ2(Le

G(x))
n∑

i=1

viv
T
i ,

=⇒ Le
G(x) � λ2(Le

G(x))(In − v1v
T
1 ),

=⇒ Le
G(x) � λ2(Le

G(x))
(
In − 1

n
11T

)
. (3.11)

The above analysis is for any given attacker’s strategy e ⊆ A. Next, we show
that our modified algebraic connectivity maximization problem is equivalent to
maxx,β β in (3.8), i.e., maxx,β β = λ2(Le∗

G (x∗)), where x∗ and e∗ are the opti-
mal decisions. For convenience, we denote β∗ = maxx,β β. The proof includes two
parts. First, we show that β∗ ≥ λ2(Le∗

G (x∗)). We aim to maximize the algebraic
connectivity λ2(Le

G(x)), and (x∗, e∗) is a feasible solution pair. Therefore, based on
(3.11),β∗ ≥ λ2(Le∗

G (x∗)) should hold. Second,we show thatβ∗ ≤ λ2(Le∗
G (x∗)). Since

β∗, e∗, x∗ are feasible, then, the constraints in (3.8) should be satisfied, i.e., Le
G(x∗) �

β∗(In − 1
n 11

T ), ∀e ⊆ A, |e| = ψ, which gives Le∗
G (x∗) � β∗(In − 1

n 11
T ). Let μ be
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any unit vector that satisfies μT v1 = 0. Then, we obtain μTLe∗
G (x∗)μ ≥ μTβ∗(In −

1
n 11

T )μ → μTLe∗
G (x∗)μ ≥ β∗μT Inμ − β∗μT v1v

T
1 μ → μTLe∗

G (x∗)μ ≥ β∗μT Inμ =
β∗. Since vector μ is not fixed, and based on (2.9), we have λ2(Le∗

G (x∗)) ≥ β∗. There-
fore, maxx,β β = λ2(Le∗

G (x∗)) holds, and (3.7) is equivalent to (3.8). �
Note that the constraints in (3.8) ensure the network operator to achieve the max-

imum network connectivity by considering all the possible link removal attacks.
Next, we define a new Stackelberg game Ξ̃γ := {Nγ,Xγ,A,αγ,λ2}, for γ ∈

{1, 2}, where Nγ , Xγ and A are the same as those defined in game Ξγ ; αγ and λ2

are the objective functions of the network designer and attacker, respectively. Based
on (3.4), (3.5) and Theorem3.3, the network designer γ’s problem is formulated as
follows, for γ ∈ {1, 2}:

Q̃k
γ : max

xγ(k+cγ),αγ(k+cγ)
αγ(k + cγ)

s.t. Le
G(k + cγ) � αγ(k + cγ)

(
In − 1

n
11T

)
,

∀e ⊆ A, |e| = ψ,

2{xi (k + cγ) − x j (k + cγ)}T {xi (k) − x j (k)}
= Zi j (k + cγ) + Zi j (k), ∀i, j ∈ Vγ,

||xi j (k + cγ)||2 ≥ ργ, ∀(i, j) ∈ Eγ,

||xi j (k + cγ)||2 ≥ ρ12, ∀i ∈ Vγ, ∀ j ∈ V−γ,

||xi (k + cγ) − xi (k)||2 ≤ dγ, ∀i ∈ Vγ,

x j (k + cγ) = x j (k), ∀ j ∈ V−γ .

Note that Laplacian matrices Le
G(k + cγ), for γ = 1, 2, are constructed based on

(3.5).
The above analysis leads to the following corollary.

Corollary 3.3 The Stackelberg game Ξ̃γ is strategically equivalent to the game
Ξγ defined in Sect.3.2.1.3, for γ ∈ {1, 2}. The interactions between two network
operators can be captured by a strategic equivalent Nash game denoted by Ξ̃I ,
where Ξ̃I includes αγ , γ = 1, 2.

3.2.2.2 Meta-Equilibrium Solution Concept

Stackelberg Equilibrium of the Adversarial Game Ξ̃γ

In the Stackelberg game, the attacker’s strategy is the best response to the action that
network designer chooses. Recall that Λ(x1, x2, e) = λ2

(
Le
G(x)

)
. Then, following

Sect. 2.1.3, the formal definition of best response is as follows.

Definition 3.2 (Best Response) For a given strategy pair (x1, x2), where x1 ∈ X1

and x2 ∈ X2, the best response of the attacker is defined by BR(x1, x2) := {e′ :
Λ(x1, x2, e′) ≤ Λ(x1, x2, e),∀e, e′ ⊆ A, |e′| = |e| = ψ}.
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Thus, we give the definition of the Stackelberg equilibrium of game Ξ̃γ , for
γ ∈ {1, 2}.
Definition 3.3 (StackelbergEquilibrium) For a given x−γ ∈ X−γ , the profile (x∗

γ, e
∗)

constitutes a Stackelberg equilibrium of the adversarial game Ξ̃γ , for γ ∈ {1, 2}, if
the following conditions are satisfied:

1. Attacker’s strategy e∗ ⊆ A, where |e∗| = ψ, is a best response to (x∗
γ, x−γ), i.e.,

e∗ ∈ BR(x∗
γ, x−γ).

2. Network designer γ’s strategy x∗
γ ∈ Xγ satisfies

min
e∈BR(x∗

γ ,x−γ)
Λ(x∗

γ, x−γ, e) = max
xγ∈Xγ

min
e∈BR(xγ ,x−γ)

Λ(xγ, x−γ, e) � Λγ∗,

where Λγ∗ is the Stackelberg utility of the designer γ.

Nash Equilibrium of the MAS Network Formation Game Ξ̃I

After P1 takes his action at step k, G1 and G12 are reconfigured, where G12 is
the network between G1 and G2. We denote network G1 and G12 at stage k as
G1,k andG12,k , respectively. For simplicity, we further define G̃12,k := G1,k ∪ G12,k ,
which is a shorthand notation for the merged network. Then, network Gk can be
expressed as Gk = G̃12,k ∪ G2,k . Similarly, after P2 updates network G2 at step k,
the whole network Gk becomes Gk = G̃21,k ∪ G1,k , where G̃21,k := G2,k ∪ G12,k .
Then, similar to Definition3.1, the formal definition of NE which depends on the
position of robots is as follows.

Definition 3.4 (Nash Equilibrium) The NE solution to game Ξ̃I is a strategy profile
x∗, where x∗ = (x∗

1, x
∗
2) ∈ X , that satisfies

λ2
(
LGk (x

∗
1, x

∗
2)

) ≥ λ2
(
LGk (x1, x

∗
2)

)
,

λ2
(
LGk (x

∗
1, x

∗
2)

) ≥ λ2
(
LGk (x

∗
1, x2)

)
,

for ∀x1 ∈ X1 and ∀x2 ∈ X2, where k denotes the time step.

Note that LGk in Definition3.4 captures the network characteristic under all possible
attacks instead of a particular one.At theNEpoint, no player can individually increase
the global network connectivity by reconfiguring their MAS network.

Meta-equilibrium of the Games-in-Games

To design a secure multi-layer MAS, each network operator should take into account
the attacker’s behavior and the other network operator’s strategy. Hence, a holistic
equilibrium solution concept of the proposed games-in-games formulation is neces-
sary which is presented as follows.

Definition 3.5 (Meta-equilibrium) The meta-equilibrium of the multi-layer MAS
network formation game is captured by the profile (x∗

1, x
∗
2, e

∗) which satisfies the
following conditions:
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1. (x∗
γ, e

∗) constitutes a Stackelberg equilibrium of game Ξ̃γ , for γ = 1, 2.
2. x∗ = (x∗

1, x
∗
2) is an NE of game Ξ̃I .

Next, our goal is to find a meta-equilibrium by addressing problems Q̃k
γ , γ = 1, 2.

3.2.3 SDP-Based Approach and Online Algorithm

Next, we reformulate the network designer’s problem as an SDP and design an
algorithm to compute the meta-equilibrium of the MAS network formation game.

3.2.3.1 SDP Reformulation

Notice that in Q̃k
γ , the minimum distance constraints ||xi j (k + cγ)||2 ≥ ργ, ∀(i, j) ∈

Eγ , are nonconvex. To address this issue, we regard Zi j (k + cγ) as a new decision
variable. Based on the definition Zi j (t) := ||xi j (t)||22, we have ||xi j (k + cγ)||22 =
Zi j (k + cγ). Note that the Laplacian matrixLe

G(k + cγ) depends linearly on Zi j (k +
cγ), i, j ∈ V , based on the relationships (3.5) and (3.6). Then, we solve problems Q̃k

γ

with respect to unknowns Zi j (k + cγ) and x(k + cγ) jointly. In this way, Q̃k
γ becomes

a convex problem. However, due to the coupling between the robots position and the
distance vectors, solving Q̃k

γ via merely adding new variables yields inconsistency
between the obtained solutions x(k + cγ) and Zi j (k + cγ), ∀i, j ∈ V . To address
this issue, we first present the following definition.

Definition 3.6 (Euclidean Distance Matrix) Given the positions of a set of n points
denoted by {x1, . . . , xn}, the Euclidean distance matrix representing the points spac-
ing is defined as

D := [di j ]i, j=1,...,n, where di j = ||xi − x j ||22.

A critical property of the Euclidean distance matrix is summarized in the following
theorem.

Theorem 3.4 ([42]) A matrix D = [di j ]i, j=1,...,n is an Euclidean distance matrix if
and only if

−CDC � 0, and dii = 0, i = 1, . . . , n, (3.12)

where C := In − 1
n 11

T .

Note that (3.12) is a necessary and sufficient condition that ensuresD anEuclidean
distance matrix. In addition, the inequality and equality in (3.12) are both convex.
Therefore, Theorem3.4 provides an approach to avoid the inconsistency between the
robots position and distance vectors when they are treated as independent variables.
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In specific, denote Z = [Zi j ]i, j∈V , C = In − 1
n 11

T , and we can further reformulate
problems Q̃k

γ , γ ∈ {1, 2}, as

Qk
γ : max

xγ(k+cγ),Z(k+cγ),αγ(k+cγ)
αγ(k + cγ)

s.t. Le
G(k + cγ) � αγ(k + cγ)C, ∀e ⊆ A, |e| = ψ,

2{xi (k + cγ) − x j (k + cγ)}T {xi (k) − x j (k)}
= Zi j (k + cγ) + Zi j (k), ∀i, j ∈ Vγ,

Zi j (k + cγ) ≥ ρ2γ, ∀(i, j) ∈ Eγ,

Zi j (k + cγ) ≥ ρ212, ∀i ∈ Vγ, ∀ j ∈ V−γ,

−CZ(k + cγ)C � 0, Zii (k + cγ) = 0, i ∈ V,

||xi (k + cγ) − xi (k)||2 ≤ dγ, ∀i ∈ Vγ,

x j (k + cγ) = x j (k), ∀ j ∈ V−γ .

(3.13)

Remark 3.3 Pγ controls robots inGγ and reconfigures the network by solvingQk
γ to

obtain the new positions of robots for γ ∈ {1, 2}. Furthermore, Qk
γ becomes convex

and admits an SDP formulation which can be solved efficiently.

3.2.3.2 Online Algorithm

We have obtained the SDP formulations Q
k
γ , γ = 1, 2, and next we aim to find the

solution that results in a meta-equilibrium MAS configuration. In the MAS forma-
tion game, P1 controls robots in G1 and reconfigures the network by solving the

optimization problem Q
k
1 to obtain a new position of each robot. P2 controls robots

in network G2 in a similar way by solving Q
k
2. Note that the players’ action at the

current step can be seen as a best-response to the network at the previous step by
taking the worst-case attack into account. In addition, for given τ1 and τ2 in the con-
tinuous time space, we can obtain their update frequencies by normalizing them into
integers denoted by c1 and c2, respectively. Then, P1 and P2 reconfigure their robots
for every c1 and c2 time intervals which can also be interpreted as the frequency of

solving Q
k
1 and Q

k
2, respectively. Since both players maximize the global network

connectivity at every update step, then one approach to find the meta-equilibrium

solution is to address Q
k
1 and Q

k
2 iteratively by two players until the yielding MAS

possesses the same secure topology, i.e., P1 and P2 cannot increase the network
connectivity further through reallocating their robots. Note that this algorithm can
be implemented in an online fashion. For clarity, Algorithm3.1 shows the updating
details.
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Algorithm 3.1 Secure and resilient MAS network formation
1: Initialize mobile robots’ position xi (0), ∀i ∈ V , x(1) = 2x(0), k = 1, κ = 10−6.
2: for k = 1 do
3: while k mod c1 = 0 and ‖x(k) − x(k − c1)‖∞ > κ do
4: P1 obtains new strategy x1(k + c1) via solving Qk

1
5: end while
6: while k mod c2 = 0 and ‖x(k) − x(k − c2)‖∞ > κ do
7: P2 obtains new strategy x2(k + c2) via solving Qk

2
8: end while
9: k ← k + 1
10: end for
11: return x(k)

A typical example of the algorithm is alternating update in which P1 and P2 have
the same update frequency but not update at the same time and reconfigure the MAS
network sequentially.

3.2.3.3 Analytical Results

Regarding the feasibility of the problems Qk
γ for γ = 1, 2, we have the following

theorem.

Theorem 3.5 For a given multi-layer MAS network where the distance between

robots satisfies the predefined minimum distance constraint, problems Qk
1 and Qk

2
are always feasible.

Proof Since problems Qk
1 and Qk

2 are similar, without loss of generality, we only

analyzeQk
1. Given an initial configuration of the network, we calculate its algebraic

connectivity, and denote it as α0
1. P1 aims to maximize the algebraic connectivity

by updating his network. For the first step, if the algebraic connectivity α1
1 of the

network is no larger than α0
1 after P1 taking his action x1, i.e., α0

1 ≥ α1
1, then, the

optimal solution to Qk
1 is α0

1 which means that P1 will not modify the configuration
of the current network. Therefore, for a given MAS network, a feasible solution to

Qk
1 always exists. �

When Qk
1 and Qk

2 are feasible at each update step, another critical property is
the convergence of the proposed iterative algorithm. The result is summarized in
Theorem3.6.

Theorem 3.6 The proposed online Algorithm3.1 of the adversarial network forma-
tion game converges to a meta-equilibrium asymptotically.

Proof First, recall that both players maximize the algebraic connectivity of the
global network by anticipating the worst-case attack e∗ ⊆ A, and thus the result-
ing αγ(k + cγ), γ ∈ {1, 2}, is no less than the one obtained from the previous
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update step which yields a non-decreasing network connectivity sequence λ2. In
addition, for a network with n nodes, its algebraic connectivity is upper bounded
by a value depending on f (dγ) [43]. Thus, based on the monotone convergence
theorem [44], we can conclude that the network connectivity sequence converges
asymptotically. Denote the actions of two players that achieve the network con-
nectivity limit as x̄1 and x̄2 at some step l, and then, we obtain λ2

(
Le∗
Gl

(x̄1, x̄2)
) ≥

λ2
(
Le∗
Gl

(x1, x̄2)
)
, λ2

(
Le∗
Gl

(x̄1, x̄2)
) ≥ λ2

(
Le∗
Gl

(x̄1, x2)
)
, for ∀x1 ∈ X1 and ∀x2 ∈ X2.

Otherwise, x̄1 and x̄2 do not result in the network connectivity limit. Obviously, the
strategy pair (x̄1, x̄2) satisfies the equilibrium Definition3.4 which indicates that the
proposed iterative algorithm converges to ameta-equilibriumpoint asymptotically.�

We next investigate the uniqueness of the meta-equilibrium of the game, and the
result is shown in the following theorem.

Theorem 3.7 The meta-equilibrium of the game is not unique, i.e., different equi-
librium profiles (x∗

1, x
∗
2, e

∗) are possible.

Proof To show the non-uniqueness of the meta-equilibrium, one possible way is
to find a different position pair (x̃∗

1, x̃
∗
2) but the network configuration is the same

with a one under the meta-equilibrium, say (x∗
1, x

∗
2). This can be achieved by the

simultaneous offset or rotation in x∗
1 and x

∗
2. For example, under themeta-equilibrium

(x∗
1, x

∗
2, e

∗), the profile (x∗
1 + ζ, x∗

2 + ζ, e∗) is also ameta-equilibrium,where ζ ∈ R
3,

and this shows the nonuniqueness of the equilibrium. �

Remark 3.4 The network configuration at meta-equilibrium can also be different at
which the network exhibits various levels of network connectivity. This phenomenon
is further demonstrated through case studies.

Another interesting result is on the effectiveness of our proposed strategy com-
paring with simpler ones without attack anticipation for the network designers. In
the proposed model, if there is no attack, then the network connectivity achieved at
the equilibrium is no better than the one designed under without attack considera-
tions. However, when the anticipated attack happens, the designed network through
the established framework is no worse than the one without considering adversaries.
Characterizing the conditions under which these two classes of strategies coincide
is not trivial and it is also related to the system parameters of multi-layer MAS. We
next present an illustrative example when these two strategies whether considering
attacks are the same.

Example: In a network containing 3 agents with the minimum distance in between
equaling 1, the optimal configuration without considering attacks is a regular trian-
gle. In comparison, if the network designer anticipates a link removal, then the best
strategy is still to construct a regular triangle network. The reason is that after remov-
ing a link, the regular triangle network has the largest connectivity comparing with
other networks.



40 3 Meta-Network Modeling and Resilience Analysis

3.2.4 Adversarial Analysis

In this section,wefirst analyze the security ofMASnetwork by deriving a closed form
solution of the jamming attacker, and then present two other types of cyberattacks
for further resiliency quantification of the proposed iterative algorithm.

3.2.4.1 Adversarial Analysis

Denote the network as G̃(i, j) = (V, E\(i, j)) after removing a link (i, j) ∈ E from
network G, then, we have L̃ = L − ΔL and ΔL = ΔD − ΔA, where ΔD and ΔA
are the decreased degree and adjacency matrices, respectively. By using Eq. (2.7), we
obtain ΔD and ΔA as follows: ΔD = ei ẽTi, j + e j ẽTj,i ,ΔA = ei ẽTj,i + e j ẽTi, j , where
ei and ẽi, j are n-dimensional zero vectors except the i th element equaling to 1 and
wi j , respectively, and similar for e j and ẽ j,i . Denote the Laplacian matrix of G̃(i, j)
as L̃(i, j), and by using ΔD and ΔA, we have

L̃(i, j) = L − (
ei − e j

)(
ẽi, j − ẽ j,i

)T
. (3.14)

When link (i, j) is attacked, the resulting Laplacian is given by (3.14). Denote the
Fiedler vector of L as u, and thus uTLu = λ2(L) based on the definition. By using
Courant–Fisher Theorem in (2.9), we obtain the following:

λ2
(
L̃(i, j)

) ≤ uT L̃(i, j)u

= uT
(
L − (

ei − e j
)(
ẽi, j − ẽ j,i

)T )
u

= uTLu − (ui − u j )(wi j ui − w j i u j )

= λ2(L) − wi j (ui − u j )
2.

(3.15)

Therefore, by removing the link (i, j)∗, where

(i, j)∗ ∈ arg max
(i, j)∈E

wi j (ui − u j )
2, (3.16)

the upper bound of λ2
(
L̃(i, j)

)
is the smallest. The strategy in (3.16) can be seen

as a greedy heuristic for the attacker to compromise the network G. Specifically,
the attacker can apply the above procedure iteratively to find a set of critical links
to accommodate the attacker’s ability. To this end, the jamming attacker’s strategy
is to compromise those links with top ψ largest value of wi j (ui − u j )

2, i, j ∈ V .
Therefore, the network operators designs secure strategies by anticipating that these
ψ critical links could be compromised by the attacker.

Remark 3.5 Depending on the scope of knowledge that the attacker has of the net-
work, our proposed framework can be used for attackers of different knowledge
levels. For example, an attacker may know the information of the whole multi-layer
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MAS network or merely one sub-network. For the former case of attack, closed form
solutions have already been presented above. For the latter case, the attacking sur-
face is smaller, and the security analysis can be carried in a similar fashion where an
additional constraint on the set of possible compromised links is imposed.

3.2.4.2 GPS Spoofing Cyberattack

Wehave analyzed the strategic behavior of jamming attacker, and our designedmulti-
layerMAS network is resistant to link removal attacks due to the fact that the network
operators anticipate a certain level of attacks when designing strategies. In order to
assess the resilience of designed iterative algorithm in Sect. 3.2.3.2, we introduce
another type of adversarial attacks to the MAS network called global positioning
system (GPS) spoofing attack.

A GPS spoofing attack aims to deceive a GPS receiver in terms of the object’s
position, velocity and time by generating counterfeit GPS signals [45]. In [46], the
authors have demonstrated that UAVs can be controlled by the attackers and go to
a wrong position through the GPS spoofing attack. We consider the scenario that
the compromised robot is spoofed which can be realized by adding a disruptive
position signal to the robot’s real control command. Therefore, through the GPS
spoofing attack, the mobile robot is controlled by the adversary, but it still maintains
communications with other robots in the network. In addition, we assume that the
attack cannot last forever but for a period of ga in the discrete time measure, since
the resource of an attacker is limited, and the abnormal/unexpected behavior of the
other unattacked robots resulting from the spoofing attack can be detected by the
network operator.

Specifically, if robot i , i ∈ V , is compromised by the spoofing attack at time step
k1, and the attack lasts for ga time steps, then this scenario can be captured by adding

the following constraint toQk
γ : xi (k + 1) = xi (k) + ε(k), k = k1, . . . , k1 + ga − 1,

where ε(k) is the disruptive signal added by the attacker. The attacked robot is usually
randomly chosen. To evaluate the impact of attack, we choose the robot that has the
maximum degree denoted by imax and satisfies

imax ∈ arg max
i∈V

∑

j∈Ni

wi j , (3.17)

where Ni is the set of nodes connected to robot i .
The GPS spoofing attack decreases the network connectivity during the network

formation process. The resilience of designed iterative algorithm can be quantified
by the increased network performance through the network operators’ response to
the cyberattacks.
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3.2.5 Case Studies

In this section, we use case studies to quantify the security and resiliency of the
designed online algorithm, and identify the interdependency in the multi-layer MAS
networks.We adopt YALMIP [47] to solve the corresponding SDP problems. Specif-
ically, we consider a two-layer MAS network in which G1 contains 2 nodes and G2

contains 6 nodes. To illustrate that the designed framework can be applied to cases
where the robots at one layer can further be operated in a decentralized way, we
assume that the robots in G2 are divided into 2 equal-size groups connected by a
secure link between nodes 3 and 4. The investigated scenario is applicable when the
agents in MAS are sparsely distributed in geometric clusters.

The communication strength between agents follows the one in Fig. 3.5. Further,
two layers of MAS are operated in two planes where the third dimension of their
position is fixed satisfying the minimum distance ρ12. The initial positions of robots
in G1 (upper layer) are (1, 3, 1.2), (2, 3, 1.2), and robots in G2 (lower layer) are
(0, 0, 0), (0, 1.5, 0), (1, 0, 0), (2, 0, 0), (3, −1.5, 0), (3, 0, 0). The safety distance
between robots in G1 and G2 is ρ1 = ρ2 = 1, and the maximum distance that robots
at each layer can move at each update step is d1 = d2 = 0.2. The update frequency
of network operator P1 is two times faster than network operator P2, i.e., 2c1 = c2.
In addition, both network designers prepare for the worst-case single link removal
of jamming attack, i.e., |e| = ψ = 1, during the MAS network formation.

3.2.5.1 Secure Design of MAS Networks

First, we illustrate the secure design of two-layer MAS network under the jamming
attack using Algorithm3.1. Figure3.8 shows the results. The final positions of agents
in G1 are (1.88, −0.13, 1.2), (1.88, 0.87, 1.2), and those in G2 are (0.94, −0.85, 0),
(0.94, 0.65, 0), (1.60, −0.10, 0), (2.26, 0.65, 0), (1.55, −0.29, 0), (2.92, 1.40, 0).
The connectivity of the integrated MAS network is iteratively improved, and con-
verges to a steady value 1.4 after approximate 40 steps. During the updates, each
network operator is aware of the strategic jamming attack that compromises the
most critical communication link. Hence, the network shown in Fig. 3.8b is a meta-
equilibrium configuration. This example shows the effectiveness of the proposed
method in designing secure multi-layer MAS network. To show the nonuniqueness
of the equilibrium solutions, we modify the initial positions of agents where the
robots in G1 (upper layer) start with (3, 1, 1.2) and (3, 2, 1.2). The results are shown
in Fig. 3.9. We can see that the final positions of agents in G1 are (1.06, 0.59, 1.2),
(2.06, 0.59, 1.2), and those in G2 are (0.05, 0.58, 0), (1.55, 1.45, 0), (1.05, 0.58, 0),
(2.05, 0.58, 0), (1.55,−0.29, 0), (3.05, 0.58, 0). Further, the final network configu-
ration as well as network connectivity are different with the ones shown in Fig. 3.8
which corroborate the meta-equilibrium of the proposed game is not unique.
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Fig. 3.8 a Shows the evolutionary configuration of secure MAS network at each step. b depicts
the final network configuration. c shows the network connectivity under attack with ψ = 1

3.2.5.2 Resilience of the Network to Cyberattacks

Second, we investigate the resilience of the designed MAS network to cyberattacks
presented in Sect. 3.2.4.2. The metric used for quantifying the resilience is the recov-
ery ability of network connectivity after the adversarial attack.

For the GPS spoofing attack, we assume that it lasts for 5 time steps from step
9–14 before the detection of abnormal movement of MAS by the network opera-
tor. Note that the attack duration depends on the detection ability of the network
designer. After the identification of attack, the network designer can reboot the com-
promised agent for it returning to the normal state. Moreover, the horizontal axis in
attacker’s disruptive command ε(k), k = 9, . . . , 14, is drawn uniformly from [0, 0.2].
Figure3.10 shows the obtained results where agent 7 is compromised. Specifically,
the network connectivity encounters a sudden drop at step 9, from 0.58 to 0.37, as
shown in Fig. 3.10b due to the spoofing attack. At step 12 which is still in the attack-
ing window, the connectivity, however, has an increase which is a result from the
updates of agents at the lower layer G2. When the spoofing attack is removed, the
network recovers quickly after step 14 which shows agile resilience of the proposed
control algorithm. Note that the final MAS network configuration is the same as the
one in Sect. 3.2.5.1.
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Fig. 3.9 a, b, and c Show the results of the ones in Fig. 3.8. The initial conditions of agents are
modified and the final equilibrium network is different from the one in Fig. 3.8 which shows the
nonuniqueness of the equilibrium

Fig. 3.10 a Shows the evolutionary configuration of secure MAS network at each step. The GPS
spoofing attack is introduced at time step 9, and it lasts for 5 steps. The attack duration depends on
the detection ability of the network designer. b shows the corresponding network connectivity

We next investigate a scenario in which the spoofing attack is introduced after
the network reaching an equilibrium. Specifically, the attack launches at step 35
and it lasts for 6 steps. The results are shown in Fig. 3.11. Similar to the previous
case, the network can responsd to the attack in a fast fashion and tries to recover
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Fig. 3.11 a Shows the evolutionary configuration of secure MAS network at each step. b shows
the corresponding network connectivity. The spoofing attack launches at step 35 and it lasts for 6
steps. The network recovers and reaches a meta-equilibrium quickly after the removal of attack

the network connectivity with its best effort during the attacking window. After the
detection and removal of the attack, the network performance is improved and the
equilibrium network configuration is achieved which is the same as the previous one
before attack.

In summary, the designed two-layerMAS network using Algorithm3.1 is of high-
level situational awareness and is resilient to spoofing cyberattacks.

3.2.5.3 Interdependency in Multi-layer MAS Networks

Finally, we characterize the inherent interdependencies in the two-layer MAS net-
work. The studied scenario is similar to the one in Sect. 3.2.5.1 except that the agents
at the lower layer only update once at step 3 and then remain static afterward. This
model is applicable to the disaster-response scenario where the constrained move-
ment of agents is caused by physical attacks. The corresponding results are shown in
Fig. 3.12. The agents at upper layer move consecutively toward positions that allow
to set up the most intra-links with the ones at lower layer, validating the existence of
interdependency between two-layer MAS network. Due to the interdependency, the
integrated MAS is more resilient to adversarial attacks and natural failures, since the
agents at the unattacked layer can response to the emergencies quickly.

3.3 Summary and Notes

In this chapter, we have investigated the static and dynamic network resilience games
in which network designers aim to maximize the algebraic connectivity of the global
network. For the static network scenario, we have developed alternating plays mech-
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Fig. 3.12 a Shows the evolutionary configuration of secure MAS network at each step. Network
operator P2 updates the agents in G2 only once at time step 3. b shows the network connectivity

anism where the players configure or rewire networks step by step, and have shown
that the proposed algorithm converges to a Nash equilibrium in a finite number of
steps. For the dynamic network scenario, we have established a games-in-games
framework for the secure control of multi-layer MAS networks under the adversarial
environment. The newly proposed meta-equilibrium solution concept has success-
fully captured the secure and uncoordinated design of each layer of MAS network
through integrative Stackelberg and Nash games. The provided case studies have
shown that the designed multi-layer MAS network is of agile resilience to various
kinds of cyberattacks.

The readers interested in more details about the network resilience games can
refer to [36, 40, 48]. Furthermore, a thorough introduction of network-of-networks
and its applications to critical infrastructures is presented in [20]. In addition, for
readers interested in cross-layer design, a systematic development of games-in-games
principle to achieve robustness, security, and resilience of cyberphysical control
systems can be found in [41].
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Chapter 4
Interdependent Decision-Making
on Complex Networks

4.1 Interdependent Epidemics on Large-Scale Networks

The previous Chap.3 has focused on the decision-making on finite networks. When
the number of agents grows and becomes enormous, e.g., social network and the
Internet, the finite network modeling capturing the explicit interactions between
agents is inefficient and prohibitive. To this end, this chapter investigates decision-
making on complex networks by proposing a new type of system framework.

In a complex network with a large number of agents, we consider the classical
susceptible-infected-susceptible (SIS) model in which each agent can be in one of
the following two states: susceptible (S) or infected (I). We further consider two
strains of interdependent epidemics, strain 1 and strain 2, spreading over the network.
Specifically, strains 1 and 2 are in a competingmechanism, i.e., each susceptible agent
can either be infected by strain 1 or strain 2 by contacting with other corresponding
infected individuals. Let ζ1 and ζ2 be the spreading rate of strain 1 and strain 2,
respectively. In addition, the infected agents can recover to the susceptible state with
rateγ1 orγ2 (with respect to strain 1 or strain 2).Besides the self-recoverymechanism,
each infected agent can be controlled to return to the healthy state through efforts,
e.g., allocating vaccines during flu outbreak season.

To analyze the interdependent epidemic dynamics over complex networks, we
consider a degree-based mean-field approximation model [1, 2]. Specifically, the
model assumes that the nodes with the same number of degree/connectivity have the
identical probability of being infected. Denote by k the degree of a node, where k ∈
K := {0, 1, 2, . . . , K }, and P(k) ∈ [0, 1] by the probability distribution of node’s
degree in the network. Further, we adopt Ii,k(t) ∈ [0, 1] to represent the density of
nodes at time t with degree k infected by strain i , i ∈ {1, 2}. Then, the dynamics of
two competing epidemics can be described by two coupled non-linear differential
equations as follows:
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d I1,k(t)

dt
= −γ1 I1,k(t) + ζ1k[1 − I1,k(t) − I2,k(t)]Θ1(t),

d I2,k(t)

dt
= −γ2 I2,k(t) + ζ2k[1 − I1,k(t) − I2,k(t)]Θ2(t),

(4.1)

where (γ1, γ2) and (ζ1, ζ2) are the recovery and spreading rates of two strains, respec-
tively. The terms−γ1 I1,k(t) and−γ2 I2,k(t) indicate the proportion of affected nodes
returned to the healthy state through recovery. Note that the term 1 − I1,k(t) − I2,k(t)
captures the density of susceptible nodes with degree k. In addition,Θi (t) represents
the probability of a given link connected to a node infected by strain i , andΘi ∈ [0, 1],
i ∈ {1, 2}. Specifically, Θ1(t) and Θ2(t) admit the following expressions:

Θ1(t) =
∑

k ′∈K k ′P(k ′)I1,k ′(t)

〈k〉 , (4.2)

Θ2(t) =
∑

k ′∈K k ′P(k ′)I2,k ′(t)

〈k〉 , (4.3)

where 〈k〉 := ∑
k kP(k) is the average degree/connectivity of nodes in the network.

The nominator
∑

k ′ k ′P(k ′)Ii,k ′(t) stands for the average connectivity of individuals
infected by strain i , i ∈ {1, 2}. Note that ∑k ′ k ′P(k ′)Ii,k ′(t) ≤ 〈k〉. Therefore, in the
class of agents with degree k, the epidemic spreading processes of strain i , i ∈ {1, 2},
can be modeled by the term ζi k[1 − I1,k(t) − I2,k(t)]Θi (t) shown in (4.1).

4.2 Controlling Interdependent Epidemics
on Complex Networks

With the growth of urban population and the advances in technologies and infras-
tructures, our world becomes highly connected, and witnesses fast economic devel-
opment. The connectivity not only enables the communications among mobile and
networked devices [3], but also creates dense social and physical interactions in
societies, resulting in densely connected complex networks. As the connectivity
facilitates the information exchange and interactions [4, 5], its also allows diseases
and viruses to spread over the network in multifarious ways. For example, the Wan-
naCry Ransomware has spread through the Internet and infected more than 230,000
computers in over 150 countries. The spreading of Ebola disease in 2014 fromWest
Africa to other countries such as US, UK, and Spain relies on the global connectivity.

Control of the epidemics of diseases and computer viruses is an essential way to
mitigate their social and economic impact. Depending on the nature of the epidemics,
we can design centralized or distributed policies to contain the growth of the infected
population by protecting, removing, and recovering nodes from the population. In
human networkswhereHIN1,HIV, and Ebola viruses can spread, vaccine allocations
will be an effective control mechanism. In computer networks that are vulnerable
to malware, anti-virus software and quarantine strategies play an essential role in
assuring network security.
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The control of homogeneous epidemics has found applications in viral market-
ing [6], computer security [7, 8], and epidemiology [1, 9, 10]. However, with the
integration of multiple technologies and the growing complexity of the network sys-
tems, homogeneous epidemic models are not sufficient to capture the coexistence of
heterogeneous epidemic processes. For example, it has been shown that during the
epidemic season, influenza virus canmutate, and during the epidemic season, several
types of influenza virus circulate in the human population. An individual cannot be
infected by multiple strains simultaneously. Once an individual is infected by one
type, he cannot be infected by a virus of a different type. Similarly, in the marketing
over socialmedia, two similar productswill compete for their customers by spreading
information over social networks. An individual who has bought one kind of product
is not likely to purchase the same product from another manufacturer. Therefore, it
is essential to address the heterogeneous control of interdependent epidemics in a
holistic framework.

To this end, the rest of this chapter focuses on the optimal control1 of two interde-
pendent epidemics spreading over complex networks [11]. To capture the dynamics
of the epidemics, we use an SIS epidemic model for both epidemic processes of two
strains of viruses 1 and 2, which leads to an epidemic model with three states: (i)
susceptible (healthy), (ii) infected by strain 1, and (iii) infected by strain 2. Those
infected entities can be treated and moved to the susceptible state through control.

We first study the steady state of the proposed epidemics over complex networks.
Through analyzing the non-linear differential equations that model the competing
epidemics with control, we observe a non-coexistence phenomenon. Specifically, the
network can be in the following three possible equilibrium states: (i) only strain 1,
(ii) only strain 2 and (iii) disease-free. Therefore, a coexistence of two competing
epidemics in the same network is impossible at the steady state. Furthermore, we
investigate the stability of each network equilibrium via the eigenvalue analysis of
its linearized dynamic systems.

To design the optimal control strategy, we formulate an optimization problem
that minimizes the control cost as well as the severity of epidemics over the net-
work jointly.We propose a gradient-decent algorithm based on a fixed-point iterative
scheme to compute the optimal solution and show its convergence to the correspond-
ing fixed-point. In the disease-free regime, we provide a closed-form solution for
the optimal control. One critical feature of the policy in this regime is that it is fully
determined by the average degree of the epidemic network and the secondmoment of
the degree distribution which yields a distribution independent optimal quarantining
strategy.We further observe one emerging phenomenon that, under some conditions,
the network encounters a switching of equilibrium through optimal control as the
unit cost of effort changes. Depending on the system parameters, the network can be
directly controlled to the disease-free equilibrium or from one exclusive equilibrium
to the other one first with the symmetric control efforts of two competing epidemics.
As long as the applied effort drives the epidemic network to the disease-free equi-
librium, the control effort ceases to increase though the unit control cost continues

1The control effort refers to the applied quarantining strategy.
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to decrease. The control effort under which the network switches from exclusive
equilibrium of strain 1 or 2 to disease-free regime is referred as fulfilling threshold.
Finally, we use several numerical experiments on a scale-free network to corroborate
the derived theoretical results and discovered phenomenon.

Related Work

The growing social and computer networks provide a fertile medium for the spread-
ing of epidemics. A number of previous works have been on modeling the dynamic
processes of epidemics including [1, 12–14]. More recently, a growing number of
works have investigated the epidemics spreading on multiplex/interconnected net-
works [15, 16], and time-varying underlying epidemic networks [17, 18]. Optimal
control of single strain epidemics spreading over networks has been considered in
various applications including biological disease and virus [19–22], and network
security [7, 23, 24]. In addition to the single strain epidemics, the properties of com-
peting epidemics or multi-strain epidemics under different models have been well
studied in literature [25–27]. Several methods have been proposed to control multi-
strain epidemics over finite networks, including the mean-field approximation-based
optimization, impulse control, and passivity-based approach [28–30]. The work in
this chapter contributes to the literature on epidemic control by focusing on the con-
trol of interdependent epidemics over complex networks. In addition, the established
theoretical framework can be further used to address a number of emerging security
issues including risk management [31, 32], strategic trust [33, 34], and mechanism
design for security [35–37] in cyber-physical systems under adversarial attacks.

4.2.1 Problem Formulation

Based on the model established in Sect. 4.1, the dynamics of two competing epi-
demics with a control u := (u1, u2) ∈ R

2+ can be described as follows:

d I1,k(t)

dt
= −γ1 I1,k(t) + ζ1k[1 − I1,k(t) − I2,k(t)]Θ1(t) − u1 I1,k(t),

d I2,k(t)

dt
= −γ2 I2,k(t) + ζ2k[1 − I1,k(t) − I2,k(t)]Θ2(t) − u2 I2,k(t).

(4.4)

Recall that (γ1, γ2) and (ζ1, ζ2) are the recovery and spreading rates of two strains,
respectively. The imposed control effort or quarantining strategy to suppress the
epidemic spreading is reflected by the terms −u1 I1,k(t) and −u2 I2,k(t). Here, based
on the mean-field approximation, the agents with different degrees are controlled in
the same manner.

The network cost over a time period [0, T ] is captured by two terms: the control
cost c1(u), and the severity of epidemics c2(w1 Ī1(t) + w2 Ī2(t)), where c1 : R2+ →
R+, c2 : R2+ → R+ w1 and w2 are two positive weighting constants. Note that both
c1 and c2 are assumed to be continuously differentiable, convex, and monotonically
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increasing. When u = (0, 0), we have c1(u) = 0. If there are no epidemics, then
c2(0) = 0. Furthermore, Ī1(t) and Ī2(t) are defined as

Ī1(t) :=
∑

k∈K
P(k)I1,k(t), (4.5)

Ī2(t) :=
∑

k∈K
P(k)I2,k(t), (4.6)

respectively, which can be interpreted as the severity of epidemics in the network.
The average combined cost of epidemics and control in the long run is given by
lim
T→∞

1
T

∫ T
0 c1(u) + c2(w1 Ī1(t) + w2 Ī2(t))dt.Therefore, the average optimal control

problem of interdependent epidemics is

(OP1) : min
u

lim sup
T→∞

1

T

∫ T

0
c1(u) + c2

(
w1 Ī1(t) + w2 Ī2(t)

)
dt

s.t. system dynamics (4.4).

When Ī1(t) and Ī2(t) converge to a steady state as T → ∞, the cost functions c1
and c2 admit constant values. Therefore, (OP1) can be reformulated as

(OP2) : min
u

c1(u) + c2
(
w1 Ī

∗
1 (u1) + w2 Ī

∗
2 (u2)

)

s.t. system dynamics (4.4),

where Ī ∗
1 (u1) and Ī ∗

2 (u2) denote the densities of the strains at the steady state under
the control u.

To address (OP2), we need to obtain Ī ∗
1 (u1) and Ī ∗

2 (u2). For convenience, we
denote by

ψi := ζi

γi + ui
, i = 1, 2, (4.7)

the effective spreading rate (ESR) of strains under the control. Note that ESR ψi

quantifies the net spreading rate of strain i over the network. However, the condition
ψi > 1, i ∈ {1, 2}, along cannot guarantee the outbreak of the epidemics, as analyzed
in Sect. 4.2.2.

At the steady state, d I1,k/dt = 0 and d I2,k/dt = 0. Then, from (4.4), we obtain

I1,k = ψ1kΘ1

1 + ψ1kΘ1 + ψ2kΘ2
, (4.8)

I2,k = ψ1kΘ1

1 + ψ1kΘ1 + ψ2kΘ2
. (4.9)
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Therefore, with (4.8) and (4.9), the optimal control problem (OP2) becomes

(OP3) : min
u

c1(u) + c2
(
w1 Ī

∗
1 (u1) + w2 Ī

∗
2 (u2)

)

s.t. I ∗
1,k(u1) = ψ1kΘ∗

1

1 + ψ1kΘ∗
1 + ψ2kΘ∗

2

, ∀k ∈ K,

I ∗
2,k(u2) = ψ2kΘ∗

2

1 + ψ1kΘ∗
1 + ψ2kΘ∗

2

, ∀k ∈ K,

ψi = ζi/(γi + ui ), i = 1, 2,

where the variables with superscript ∗ denote the steady state values, i.e., Θ∗
i =

∑
k′ k ′P(k ′)I ∗

i,k′ (ui )
〈k〉 and Ī ∗

i (ui ) = ∑
k P(k)I ∗

i,k(ui ), i ∈ {1, 2}.
In the suppression of diseases spreading, the control efforts are generally deter-

mined by a centralized authority. Thus, our objective is to design a control strategy via
solving (OP3) which jointly optimizes the control cost and the epidemics spreading
level in the network.

4.2.2 Network Equilibrium and Stability Analysis

Tosolve theproblem (OP3),wefirst need to analyze the steady states of the epidemics.
Substituting (4.8) and (4.9) into (4.2) and (4.3), respectively, yields

Θ1 = ψ1

〈k〉
∑

k ′∈K

k ′2P(k ′)Θ1

1 + ψ1k ′Θ1 + ψ2k ′Θ2
, (4.10)

Θ2 = ψ2

〈k〉
∑

k ′∈K

k ′2P(k ′)Θ2

1 + ψ1k ′Θ1 + ψ2k ′Θ2
. (4.11)

Thus, the steady state pair (Θ∗
1 ,Θ

∗
2 ) in (OP3) should satisfy Eqs. (4.10) and (4.11).

For clarity, we denote

T1 = ψ1〈k2〉
〈k〉 , T2 = ψ2〈k2〉

〈k〉 . (4.12)

In general, the ESR for different strains of epidemics are unequal, i.e., ψ1 �= ψ2. In
the special case ofψ1 = ψ2, the characteristics of two strains are the same, and it can
be seen as a generalized single-strain scenario. Therefore, in the following study, we
analyze the network equilibrium in the nontrivial regime ψ1 �= ψ2.

4.2.2.1 Equilibrium Analysis

For the self-consistency Eqs. (4.10) and (4.11), (Θ1,Θ2) = (0, 0) is a trivial solution.
In this case, Ī ∗

1 = Ī ∗
2 = 0 which is a disease-free equilibrium. To obtain nontrivial

solutions to (4.10) and (4.11), we first present the following theorem.
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Theorem 4.1 There exist no positive solutions to the Eqs. (4.10) and (4.11), i.e.,
Θ1 > 0 and Θ2 > 0.

Proof We proof by contradiction. If there exist positive solutions, i.e., Θ1 > 0 and
Θ2 > 0, (4.10) and (4.11) are equivalent to

1 = ψ1

〈k〉
∑

k ′∈K

k ′2P(k ′)
1 + ψ1k ′Θ1 + ψ2k ′Θ2

, (4.13)

1 = ψ2

〈k〉
∑

k ′∈K

k ′2P(k ′)
1 + ψ1k ′Θ1 + ψ2k ′Θ2

. (4.14)

Sinceψ1 �= ψ2 and 1
〈k〉

∑
k ′

k ′2P(k ′)
1+ψ1k ′Θ1+ψ2k ′Θ2

> 0, (4.13) and (4.14) cannot be satisfied
simultaneously which rules out the positive solutions to Eqs. (4.10) and (4.11). �

Remark 4.1 Based on Theorem4.1, Θ1 and Θ2 cannot be both positive at the steady
state, resulting in a non-coexistence phenomenon of the two interdependent strains.

The following corollary on the possible nontrivial solutions ofΘ1 andΘ2 naturally
follows from Theorem4.1.

Corollary 4.1 The possible nontrivial solutions to (4.10) and (4.11) fall into two
categories: (i) Θ1 > 0,Θ2 = 0 and (ii) Θ2 > 0,Θ1 = 0.

Proof Since 0 ≤ Θi ≤ 1, i = 1, 2, no negative solutions exist. Then, the possible
nontrivial solutions are Θ1 > 0,Θ2 = 0 and Θ2 > 0,Θ1 = 0. �

Corollary4.1 indicates that, for the possible nontrivial solutions, strain 1 or strain
2 has an exclusive equilibrium. The existence of nontrivial solutions is critical for
the analysis of network equilibrium. Therefore, we next investigate the conditions
under which the network stabilizes at the exclusive equilibrium.

Theorem 4.2 Strain i has an exclusive equilibrium if and only if Ti > 1, i ∈ {1, 2}.
Proof For the two exclusive equilibria, i.e., Θ1 > 0,Θ2 = 0 and Θ2 > 0,Θ1 = 0,
(4.10) and (4.11) are reduced to

1 = ψi

〈k〉
∑

k ′

k ′2P(k ′)
1 + ψi k ′Θi

, i = 1, 2. (4.15)

For the former case Θ1 > 0,Θ2 = 0, we define function g : [0, 1] → R+, i.e.,
g(Θ1) = ψ1

〈k〉
∑

k ′
k ′2P(k ′)
1+ψ1k ′Θ1

. Then, we obtain

g(1) = ψ1

〈k〉
∑

k ′

k ′2P(k ′)
1 + ψ1k ′ = 1

〈k〉
∑

k ′

ψ1k ′

1 + ψ1k ′ k
′P(k ′)

<
1

〈k〉
∑

k ′
k ′P(k ′) = 〈k〉

〈k〉 = 1.
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Moreover, g′(Θ1) = −ψ2
1

〈k〉
∑

k ′
k ′3P(k ′)

(1+ψ1k ′Θ1)2
< 0. Therefore, g is a decreasing func-

tion over the domain Θ1 ∈ [0, 1]. To ensure the existence of nontrivial solu-
tions to Eq. (4.15), a necessary and sufficient condition is g(0) > 1. Since g(0) =
ψ1

〈k〉
∑

k ′ k ′2P(k ′) = ψ1〈k2〉
〈k〉 = T1, g(0) > 1 is equivalent to T1 > 1. The analysis is

similar for the case Θ2 > 0,Θ1 = 0, and the necessary and sufficient condition is
T2 > 1. �

Three possible equilibria are summarized as follows:

(1) Disease-free equilibrium, E1 = (1, 0, 0).
(2) Exclusive equilibrium of strain 1, E2 = (S̄∗

1 , Ī
∗
1 , 0), if and only if T1 > 1.

(3) Exclusive equilibrium of strain 2, E3 = (S̄∗
2 , 0, Ī

∗
2 ), if and only if T2 > 1.

Remark 4.2 Ti > 1 is equivalent to ψi >
〈k〉
〈k2〉 , i = 1, 2. In addition, strain i dies out

when ψi does not satisfy the condition, and the steady state of the network is the
disease-free equilibrium E1.

4.2.2.2 Stability Analysis of Equilibria

We next analyze the stability of the candidate equilibria presented in Sect. 4.2.2.1.
For convenience, we define S := {k ∈ Z+|P(k) > 0}, with d = |S| denoting the

Cardinality of S. Then, we have the following result for disease-free equilibrium.

Theorem 4.3 The disease-free equilibrium E1 is asymptotically stable if and only
if T1 ≤ 1 and T2 ≤ 1.

Proof The Jacobian matrix J1 ∈ R
2d×2d of the nonlinear dynamic systems (4.4) at

the disease-free equilibriumhas the block structureJ1 =
[
E1 0
0 E2

]

,whereEi ∈ R
d ×

R
d , i = 1, 2. Specifically, (Ei )k,k ′ = ∂

∂ Ii,k′ (t)

(
d Ii,k (t)

dt

)
= ζi k[1 − I1,k(t) − I2,k(t)]

k ′P(k ′)
〈k〉 = ζi kk ′P(k ′)

〈k〉 , k ′ �= k ∈ S, i = 1, 2. In addition, (Ei )k,k = ∂
∂ Ii,k (t)

(
d Ii,k (t)

dt

)
=

−(γi + ui ) − ζi kΘi (t) + ζi k[1 − I1,k(t) − I2,k(t)] kP(k)
〈k〉 = −(γi + ui ) + ζi k2P(k)

〈k〉 ,

k ∈ S, i = 1, 2. Moreover, for ∀k, k ′ ∈ S, we have

(J1)k,(d+k ′) = ∂

∂ I2,k ′(t)

(
d I1,k(t)

dt

)

= −ζ1kΘ1(t) = 0,

(J1)(d+k),k ′ = ∂

∂ I1,k ′(t)

(
d I2,k(t)

dt

)

= −ζ2kΘ2(t) = 0.

Therefore, the compact forms can be expressed as

(E1)k,k ′ = ζ1kk ′P(k ′)
〈k〉 − (γ1 + u1)�k,k ′ , (4.16)

(E2)k,k ′ = ζ2kk ′P(k ′)
〈k〉 − (γ2 + u2)�k,k ′ , (4.17)
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where k, k ′ ∈ S, and �k,k ′ =
{
0, if k �= k ′,
1, if k = k ′.

The eigenvalues of the Jacobianmatrix J1 are the union of eigenvalues of the block
matrices E1 and E2. Therefore, by calculating the determinants det(λ1Id − E1) and
det(λ2Id − E2), and setting them to 0, i.e., det(λ1Id − E1) = 0 and det(λ2Id − E2) =
0, where Id is a d-dimensional identity matrix; λ1 and λ2 are the eigenvalues to E1

and E2, respectively, we obtain the characteristic polynomials

(λ1 + γ1 + u1)
d−1

(

λ1 + γ1 + u1 − ζ1
〈k2〉
〈k〉

)

= 0, (4.18)

(λ2 + γ2 + u2)
d−1

(

λ2 + γ2 + u2 − ζ2
〈k2〉
〈k〉

)

= 0. (4.19)

Therefore, J1 has eigenvalues (−γi − ui )with multiplicity d − 1, and (ζi
〈k2〉
〈k〉 − γi −

ui ) with multiplicity 1, i = 1, 2. If the disease-free equilibrium E1 is asymptotically
stable, the real parts of eigenvalues of J1 should be strictly smaller than 0. Obviously,
−γ1 − u1 < 0, and −γ2 − u2 < 0. Hence, we further need ζi

〈k2〉
〈k〉 − γi − ui < 0

which leads to ζi
γi+ui

〈k2〉
〈k〉 < 1 =⇒ Ti < 1, i = 1, 2. �

We further investigate the stability of exclusive equilibrium of strain 1, and the
result is presented as follows.

Theorem 4.4 The exclusive equilibrium of strain 1, E2, is asymptotically stable if
and only if T1 > 1 and T1 > T2.

Proof For the exclusive equilibriumof strain 1, note thatΘ2(t) = 0 and thus I2,k(t) =
0when t → ∞, k ∈ S.We linearize the systemof dynamic equations (4.4) around the
equilibrium point E2, and obtain its Jacobianmatrix J2 which has the following block

structure J2=
[
Z1 Z2

0 Z3

]

, where Z j ∈ R
d × R

d , j ∈ {1, 2, 3}. More specifically,

(Z1)k,k ′ = ∂
∂ I1,k′ (t)

(
d I1,k (t)

dt

)
= ζ1k[1 − I1,k(t) − I2,k(t)] k ′P(k ′)

〈k〉 = ζ1kk ′[1−I1,k (t)]P(k ′)
〈k〉 ,

k ′ �= k ∈ S, and (Z1)k,k = ∂
∂ I1,k (t)

(
d I1,k (t)

dt

)
= −(γ1 + u1) − ζ1kΘ1(t) + ζ1k[1 − I1,k

(t) − I2,k(t)] kP(k)
〈k〉 = −(γ1 + u1) − ζ1kΘ1(t) + ζ1k2[1−I1,k (t)]P(k)

〈k〉 , for k ∈ S. For the
blockZ2, we have (Z2)k,k ′ = ∂

∂ I2,k (t)

(
d I1,k (t)

dt

)
= −ζ1kΘ1(t), k, k ′ ∈ S. For the block

Z3, we have (Z3)k,k ′ = ∂
∂ I2,k′ (t)

(
d I2,k (t)

dt

)
= ζ2k[1 − I1,k(t) − I2,k(t)] k ′P(k ′)

〈k〉 =
ζ2kk ′[1−I1,k (t)]P(k ′)

〈k〉 , k ′ �= k ∈ S. In addition, (Z3)k,k = ∂
∂ I2,k (t)

(
d I2,k (t)

dt

)
= −(γ2 + u2)

− ζ2kΘ2(t) + ζ2k[1 − I1,k(t) − I2,k(t)] kP(k)
〈k〉 = −(γ2 + u2) + ζ2k2[1−I1,k (t)]P(k)

〈k〉 , k ∈
S. Moreover, for ∀k, k ′ ∈ S,

(J2)(d+k),k ′ = ∂

∂ I1,k ′(t)

(d I2,k(t)

dt

)
= −ζ2kΘ2(t) = 0.
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Therefore, J2 admits an upper triangular structure. To analyze its eigenvalues, we
only need to compute the eigenvalues of matrices Z1 and Z3. For Z1, finding its
determinant and setting it to 0, i.e., det(λ3Id − Z1) = 0, lead to

∑

k

kP(k)(I ∗
1,k − 1)

γ1 + u1 + λ3 + ζ1kΘ∗
1

+ 〈k〉γ1 + u1
ζ1

= 0, (4.20)

where λ3 is the eigenvalue of Z1. From (4.8) and by using Θ∗
2 = 0, we obtain I ∗

1,k +
I ∗
1,kψ1kΘ∗

1 = ψ1kΘ∗
1 , which is equivalent to (γ1 + u1)I ∗

1,k + I ∗
1,kζ1kΘ

∗
1 = ζ1kΘ∗

1
and further yields

I ∗
1,k − 1 = (γ1 + u1)I ∗

1,k

ζ1kΘ∗
1

. (4.21)

Plugging (4.21) into (4.20) yields
∑

k
kP(k)I ∗

1,k

γ1+u1+λ3+ζ1kΘ∗
1

− ∑
k

kP(k)I ∗
1,k

γ1+u1+λ3
= 0.Therefore,

λ3 = −ζ1kΘ∗
1 < 0, ∀ k ∈ S.

For block Z3, finding its determinant and setting it to 0, i.e., det(λ4Id − Z3) = 0,

yields (λ4 + γ2 + u2)
d−1

(
ψ2

〈k〉
∑

k
kP(k)(1−I ∗

1,k )

γ1+u1+λ4
− 1

)
= 0. Therefore, Z3 has negative

eigenvalue−γ2 − u2 with multiplicity d − 1. Moreover, ψ2

〈k〉
∑

k
kP(k)(1−I ∗

1,k )

γ1+u1+λ4
− 1 = 0

yieldsλ4 = 〈k〉
〈k2〉 (γ2 + u2)(

ζ1
γ1+u1

− ζ2
γ2+u2

).Toensureλ4 < 0,weneed ζ1/(γ1 + u1) −
ζ2/(γ2 + u2) < 0, which is equivalent to T1 > T2.

Hence, T1 > T2 together with T1 > 1 in Theorem4.2 lead to the asymptotically
stable exclusive equilibrium of strain 1. �

Similarly, we can obtain the condition for stable exclusive equilibrium E3 as
follows.

Theorem 4.5 The exclusive equilibrium of strain 2, E3, is asymptotically stable if
and only if T2 > 1 and T2 > T1.

Proof The proof is similar to that in Theorem4.5 and hence omitted here. �

In Theorems4.3, 4.4, and 4.5, the ESR plays an critical role in determining the
equilibrium. For example, if ESR of both strains of epidemics are smaller than 〈k〉

〈k2〉 ,
then both epidemics die out at steady state. This disease-free stable state occurs when
either the control effort is sufficiently large or the epidemics have a relatively low
spreading ability. In comparison, when strain 1’s ESR exceeds 〈k〉

〈k2〉 and it is also
greater than strain 2’s ESR, then only strain 1 exists at equilibrium as shown in
Theorem4.4. This non-coexistence phenomenon indicates that the strain that has a
larger spreading rate and is more loosely controlled can eventually survive in the
network.
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4.2.3 Optimal Quarantining Strategy Design

We have obtained the stable equilibria of the interdependent epidemics in Sect. 4.2.2
which further characterize the steady state expressions of parameters in (OP3). In
this section, we aim to determine the optimal quarantining strategy of epidemics
spreading via solving (OP3) in Sect. 4.2.1.

4.2.3.1 Bounds on Control Effort

Before addressing (OP3), we present the control bounds at each network equilib-
rium which should be taken into account when designing the optimal control. The
following Corollary4.2 directly follows from Theorems4.3, 4.4, and 4.5.

Corollary 4.2 The control efforts leading to different network equilibria are sum-
marized as follows.

1. If the network reaches the disease-free equilibrium E1, the control law needs to
satisfy

u1 ≥ ζ1〈k2〉
〈k〉 − γ1, (4.22)

u2 ≥ ζ2〈k2〉
〈k〉 − γ2. (4.23)

Note that ui ≥ 0, i = 1, 2, and thus when ζi 〈k2〉
〈k〉 − γi ≤ 0, i = 1, 2, (4.22) and

(4.23) hold.
2. If the network is stabilized at the exclusive equilibrium E2, the control law needs

to satisfy

u1 <
ζ1〈k2〉
〈k〉 − γ1, (4.24)

u2 >
ζ2(γ1 + u1)

ζ1
− γ2. (4.25)

3. If the network is stabilized at the exclusive equilibrium E3, the control law needs
to satisfy

u2 <
ζ2〈k2〉
〈k〉 − γ2, (4.26)

u1 >
ζ1(γ2 + u2)

ζ2
− γ1. (4.27)
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The control bounds presented in Corollary4.2 have natural interpretations. The
efforts to control strains 1 and 2 by the network operator need to be higher than
the thresholds shown in (4.22) and (4.23) to achieve a disease-free steady state. In
comparison, if only one strain of epidemics exists at the equilibrium, then the control
effort to the other strain is upper bounded by a constant as shown in (4.24) and (4.26).

4.2.3.2 Optimal Quarantine of Interdependent Epidemics

In this section, we address the optimal control problem for each equilibrium case.
Stable disease-free equilibrium
In this case, the optimization problem (OP3) is reduced to

(OP4) : min
u

c1(u) + c2(0)

s.t. inequalities (4.22) and (4.23).

Due to themonotonicity of function c1, we can obtain the optimal control solutions
based on Corollary4.2 as

u1 = max

(

0,
ζ1〈k2〉
〈k〉 − γ1

)

,

u2 = max

(

0,
ζ2〈k2〉
〈k〉 − γ2

)

.

(4.28)

When ζ1〈k2〉
〈k〉 < γ1 and ζ2〈k2〉

〈k〉 < γ2, then no control is required and the network
reaches the disease-free equilibrium automatically at the steady state due to suffi-
ciently high recovery rates γ1 and γ2 of the epidemics comparing with their spreading
rates ζ1 and ζ2.We summarize the results of optimal quarantine at disease-free regime
in the following corollary.

Corollary 4.3 At the stable disease-free equilibrium, when ζ1〈k2〉
〈k〉 < γ1 and

ζ2〈k2〉
〈k〉 <

γ2, the optimal effort is irrelevant with network structure, i.e., the degree distribution
P(k), and admits a value 0. When ζ1〈k2〉

〈k〉 > γ1 or ζ2〈k2〉
〈k〉 > γ2, the optimal effort is

positive and depends on the average network connectivity 〈k〉 and the secondmoment
〈k2〉.
Remark 4.3 In the disease-free regime, Corollary4.3 indicates that the optimal quar-
antining strategies for networks with different degree distributions P(k) but the
same 〈k〉 and 〈k2〉 are identical, yielding a distribution independent optimal control
strategy.

Stable Exclusive Equilibrium of Strain 1
Since Ī ∗

2,k = 0 in this case, the optimization problem (OP3) becomes
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(OP5) : min
u

c1(u) + c2
(
w1 Ī

∗
1 (u1)

)

s.t. I ∗
1,k(u1) = ψ1kΘ∗

1

1 + ψ1kΘ∗
1

, ∀k ∈ K,

ψ1 = ζ1/(γ1 + u1),

inequalities (4.22) and (4.23),

where Θ∗
1 and Ī ∗

1 (u1) are defined in (OP3).
To solve (OP5), we obtain an expression of Ī ∗

1 (u1) with respect to u1. Note that
Ī ∗
1,k(u1), k ∈ K, and Θ∗

1 are coupled in the constraints, and we need to solve the
following system of equations:

I ∗
1,k(u1) = ψ1kΘ∗

1

1 + ψ1kΘ∗
1

, k ∈ K, (4.29)

Θ∗
1 =

∑
k ′ k ′P(k ′)I ∗

1,k ′(u1)

〈k〉 . (4.30)

To address this problem,we substitute (4.29) into (4.30) and arrive at the following
fixed-point equation:

Θ∗
1 = 1

〈k〉
∑

k ′

k ′2P(k ′)ψ1Θ
∗
1

1 + ψ1k ′Θ∗
1

. (4.31)

For the existence and uniqueness of the solutions to (4.31), we have the following
theorem.

Theorem 4.6 There exists a unique solution Θ∗
1 to the fixed-point Eq. (4.31).

Proof From the proof of Theorem4.2, we know that function g(Θ1) = ψ1

〈k〉
∑

k ′
k ′2P(k ′)
1+ψ1k ′Θ1

is monotonously decreasing over the domain Θ1 ∈ [0, 1]. Moreover,
g(0) > 1 and g(1) < 1. Therefore, g(Θ1) = 1 has a solution over Θ1 ∈ [0, 1], and
the solution is unique. �

Remark 4.4 The existence and uniqueness of Θ∗
1 ensures the predictability of

I ∗
1,k(u1) through (4.29).

Another critical aspect of (OP5) is the continuity of Ī ∗
1 (u1) with respect to u1.

When Ī ∗
1 (u1) is continuous with u1, the objective function in (OP5) is a continu-

ous convex function, and thus can be theoretically solved by using the first-order
optimality condition directly. When Ī ∗

1 (u1) encounters jumps at some points of u1,
which is a possible case, (OP5) becomes challenging to solve, since c2(w1 Ī ∗

1 (u1)) is
discontinuous in u1. If this possible discontinuity feature is neglected, the obtained
optimal control law is incorrect. To rule out the probability of discontinuity case, we
have the following theorem.
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Theorem 4.7 In the optimization problem (OP5), the mapping Ī ∗
1 (u1) is continuous

in u1.

Proof We need the following lemma for the proof of the theorem.

Lemma 4.1 Define H(x, y) := 1
〈k〉

∑
k ′

k ′2P(k ′)xy
1+k ′xy , where x ∈ R+ and y ∈ Y :=

(0, 1). Then, H(x, y) is a contraction in y uniformly over all possible x with
contraction constant 0 < c < 1, i.e., |H(x, y1) − H(x, y2)| ≤ c · |y1 − y2|, where
y1, y2 ∈ Y .

Proof First, since H(x, y) is a continuous and twice differentiable function over y,
we have

∂

∂y
H(x, y) = 1

〈k〉
∑

k ′

k ′2x P(k ′)(1 + k ′xy) − k ′3P(k ′)x2y
(1 + k ′xy)2

= 1

〈k〉
∑

k ′

k ′2x P(k ′)
(1 + k ′xy)2

> 0,

and ∂2

∂y2 H(x, y) = − 2
〈k〉

∑
k ′

k ′2x P(k ′)
(1+k ′xy)3 < 0. Therefore, H(x, y) is concave andmono-

tonically increasingover y.Note that H(x, y) is strictly positive. For y1 < y2 ∈ Y and
0 < t < 1, we conclude that y1 < y1 + t (y2 − y1) < y2. By concavity of H(x, y),
we obtain H(x, y1 + t (y2 − y1)) = H(x, (1 − t)y1 + t y2) ≥ (1 − t)H(x, y1) +
t H(x, y2). Dividing both sides by t yields

H(x,y1+t (y2−y1))
t ≥ (1−t)H(x,y1)

t + H(x, y2)

which is equivalent to H(x,y1+t (y2−y1))−H(x,y1)
t + H(x, y1) ≥ H(x, y2). Taking the

limit as t → 0, we obtain

∂

∂y1
H(x, y1) ≥ H(x, y2) − H(x, y1)

y2 − y1
> 0. (4.32)

To show that there exists a constant 0 < c < 1, such that |H(x,y1)−H(x,y2)|
|y1−y2| ≤ c, y1, y2 ∈

Y , based on (4.32), it is sufficient to show that there exists a constant 0 < c′ < 1,
such that ∂

∂y H(x, y) ≤ c′, ∀y ∈ Y . We have

∂

∂y
H(x, y) = 1

〈k〉
∑

k ′

k ′2x P(k ′)
(1 + k ′xy)2

= 1

〈k〉
∑

k ′
k ′P(k ′)

k ′x
(1 + k ′xy)2

,

and 〈k〉 = ∑
k ′ k ′P(k ′). In addition, k ′x

(1+k ′xy)2 = 1
1
k′x +2+k ′xy2 < 1

2 , andwecan conclude

that ∂
∂y H(x, y) < 1

2 .

Therefore, |H(x, y2) − H(x, y1)| ≤ 1
2 |y2 − y1|, and H(x, y) is a contraction in

y uniformly over x . �

Returning to the proof of Theorem4.7, we first define H(ψ1,Θ
∗
1 ) := 1

〈k〉
∑

k ′
k ′2P(k ′)ψ1Θ

∗
1

1+ψ1k ′Θ∗
1
. From Lemma4.1, H(ψ1,Θ

∗
1 ) is a contraction in Θ∗

1 uniformly over
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ψ1. Therefore, for feasible s of ψ1 and feasible Θ∗
1,m and Θ∗

1,t of Θ∗
1 , we have

|H(s,Θ∗
1,m) − H(s,Θ∗

1,t )| ≤ 1
2 |Θ∗

1,m − Θ∗
1,t |.Next, let ε > 0. Note that H is contin-

uous in the first variable ψ1. By choosing an appropriate δ > 0 so that if |s − t | < δ,
where t is a feasible ψ1, then we can have

|H(s,Θ∗
1,t ) − H(t,Θ∗

1,t )| < ε. (4.33)

FromTheorem4.6,weknow that H(t,Θ∗
1,t ) = Θ∗

1,t has a uniquefixed-point solution.
Thus, inequality (4.33) indicates that the contraction with parameter value s moves
Θ∗

1,t a distance at most ε, i.e., |H(s,Θ∗
1,t ) − Θ∗

1,t | < ε.
Next, define a ball B̄ with centerΘ∗

1,t and radius r such that |H(s,Θ∗
1,t ) − Θ∗

1,t | ≤
(1 − c)r, where c = 1

2 is the contraction constant. For ∀w ∈ B̄,

|H(s, w) − Θ∗
1,t | ≤ |H(s, w) − H(s,Θ∗

1,t )| + |H(s,Θ∗
1,t ) − Θ∗

1,t |
≤ c · |Θ∗

1,t − w| + (1 − c) · r
≤ c · r + (1 − c) · r = r.

Therefore, the unique solution to the fixed-point equation Θ∗
1,s = H(s,Θ∗

1,s) lies
in the ball B̄. Since |H(s,Θ∗

1,t ) − Θ∗
1,t | < ε, then one choice for r is r = ε/(1 −

c) = 2ε. Thus, we obtain |Θ∗
1,s − Θ∗

1,t | ≤ 2ε. To sum up, |s − t | < δ implies that
|Θ∗

1,s − Θ∗
1,t | ≤ 2ε.

Hence, the Θ∗
1 is continuous over ψ1. Since ψ1 = ζ1

(γ1+u1)
, then Θ∗

1 is an implicit

continuous function of u1. Based on (4.29) and Ī ∗
1 (u1) = ∑

k P(k)I ∗
1,k(u1), we con-

clude that Ī ∗
1 (u1) is a continuous function of u1. �

Remark 4.5 Based on Theorem4.7, the continuous mapping Ī ∗
1 (u1) leads to a robust

epidemic control scheme. Specifically, with a small perturbation of the unit control
cost, the severity of epidemics under the optimal control resulting from (OP5) does
not encounter a significant deviation.

To obtain the solution Θ∗
1 with respect to ψ1, we first denote the right hand side

of (4.31) as a function of Θ∗
1 , i.e., Q : [0, 1] → R+. Specifically,

Q(Θ∗
1 ) = 1

〈k〉
∑

k ′

k ′2P(k ′)ψ1Θ
∗
1

1 + ψ1k ′Θ∗
1

. (4.34)

Then, (4.31) can be solved by using the following fixed-point iterative scheme:

Θ
∗(n+1)
1 = Q(Θ

∗(n)
1 ), n = 0, 1, 2, . . . , N , (4.35)

until |Q(Θ
∗(n+1)
1 ) − Θ

∗(n+1)
1 | ≤ ε1, where ε1 > 0 is the predefined error tolerance.

Note that, from Lemma4.1, Q(Θ∗
1 ) is a contraction mapping which leads to the

stability and convergence of the fixed-point iterative scheme. The algorithm to obtain
solution Θ∗

1 is summarized in Algorithm4.1.
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For a givenΘ∗
1 ,wehave Ī1(u1) = ∑

k P(k)I1,k(u1),where I1,k(u1) = ζ1kΘ∗
1

γ1+u1+ζ1kΘ∗
1
.

Define a function f : R2+ → R+ by

f (u) := c1(u) + c2
(
w1 Ī1(u1)

)
. (4.36)

Since u ≥ 0, c2
(
w1 Ī1(u1)

)
is continuously differentiable, and so does f (u). To mini-

mize f (u), we use the gradient descent method incorporating with backtracking line
search to obtain the optimal control u∗.

For clarity, the complete proposed method is summarized in Algorithm4.2.

Algorithm 4.1 Fixed-Point Iterative Scheme

1: Initialize Θ
∗(0)
1 , ε1, n = 0

2: Calculate Q(Θ
∗(n)
1 )

3: while |Q(Θ
∗(n)
1 ) − Θ

∗(n)
1 | > ε1 do

4: Θ
∗(n+1)
1 = Q(Θ

∗(n)
1 )

5: n = n + 1
6: end while
7: return Θ

∗(n)
1

Algorithm 4.2 Gradient Descent Method based on Fixed-Point Iterative Scheme

1: Initialize the starting point u(0) = 0, n = 0, tolerance ε2, u(−1) = ε2 + 1. Obtain a feasible set
U of effort u from (4.24) and (4.25)

2: while ||u(n) − u(n−1)||2 > ε2 do
3: ψ

(n)
1 = ζ1

γ1+u(n)
1

4: Obtain value Θ
∗(n)
1 through Algorithm4.1

5: for k = 0 : K do

6: I1,k(u1) = ζ1kΘ
∗(n)
1

γ1+u1+ζ1kΘ
∗(n)
1

7: end for
8: Ī1(u1) = ∑

k P(k)I1,k(u1).

9: Obtain u∗ = argmin
u

c1(u) + c2
(
w1 Ī1(u1)

)
using gradient descent method

10: u∗
f = ProjU (u∗)

11: n = n + 1
12: u(n) = u∗

f
13: end while
14: return u∗

f

Stable Exclusive Equilibrium of Strain 2
Since Ī ∗

1,k = 0, the optimization problem (OP3) becomes
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(OP6) : min
u

c1(u) + c2
(
w2 Ī

∗
2 (u2)

)

s.t. I ∗
2,k(u2) = ψ2kΘ∗

2

1 + ψ2kΘ∗
2

, ∀k ∈ K,

ψ2 = ζ2/(γ2 + u2),

inequalities (4.24) and (4.25),

where Θ∗
2 and Ī ∗

2 (u2) are presented in (OP3). Since (OP6) is similar to (OP5), the
analysis to obtain the optimal control u∗ also follows and is omitted here.

We next comment on one observation of the optimal control effort with respect to
the network structure. Different from the distribution independent strategy in disease-
free regime where 〈k〉 and 〈k2〉 are sufficient statistics, the node degree distribution
P(k) plays an essential role in the optimal control of epidemics in the exclusive
equilibria of strain 1 and strain 2.We summarize this result in the following corollary.

Corollary 4.4 In the exclusive equilibria of strain 1 and strain 2 regime, the optimal
control effort is distribution dependent, i.e., correlated with the node degree distribu-
tion P(k), ∀k ∈ K, as the epidemic severity cost c2 depends on the average epidemic
level including all nodes’ degree classes.

Remark 4.6 We have characterized the best quarantining strategy in each equilib-
rium regime. The next critical problem is to characterize the global optimal strategy
across three equilibria. This goal can be achieved as follows. After obtaining each
optimal quarantining strategy, we determine the global optimal one by comparing
the objective values of three equilibria which is the one associated with the lowest
cost functions of (OP4), (OP5), and (OP6).

Note that if the system operator has a predefined goal of the steady state of the
network, then it is sufficient to solve one of the problems (OP4), (OP5), and (OP6).
In such scenarios, the designed control is regime-aware by taking the control bounds
in Sect. 4.2.3.1 into account.

4.2.4 Equilibria Switching via Optimal Quarantine

In this section, we present a switching phenomenon of network equilibria. Specifi-
cally, when the equilibrium state of the epidemic network without control effort is
not disease-free, then it can switch to different equilibrium states through the applied
control effort. To better illustrate this phenomenon, we focus on a class of symmet-
ric control schemes and the system operator aims to suppress two epidemics jointly.
Furthermore, we consider the nontrivial case ζ1

γ1
�= ζ2

γ2
where two strains of epidemics

are distinguishable.
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4.2.4.1 Motivation of Equilibria Switching

Before presenting the formal results, we provide an intuitive example to motivate
this switching phenomenon. Recall that the optimal effort depends on the trade-
off between the epidemic severity cost and the control cost captured by c1 and c2,
respectively. Then, the steady state of epidemic network can switch if the unit cost
of control effort changes. For example, the control cost of strain 1 is relatively high
at the beginning which prohibits the system operator in adopting u1 and thus the
anticipated network equilibrium only contains strain 1. However, the control cost
of strain 1 may decrease significantly due to the maturity of curing technology for
agents infected by strain 1, and thus control effort u1 can be applied to suppress the
epidemic spreading before its outbreak. The increase of u1 may lead to an equilib-
rium switching from E2 to E3 as the total cost of network with steady state E3 is
lower than the one stabilized at E2, and hence it is an optimal strategy for the system
operator.

4.2.4.2 Symmetric Control Effort Scenario

In general, u1 and u2 can admit different values. For ease of presenting the structural
results, we focus on the symmetric control scenario u1 = u2 = u and comment on
the general case later in this section. This scenario is practical as the global system
operator aims to suppress the spreading of two strains simultaneously. In addition,
the unit cost of control effort of two strains decreases, and thus the optimal effort
u increases continuously based on the continuity result in Theorem4.7. Depending
on the parameters of the epidemics, the increasing optimal control can lead to either
single or double switching between equilibrium points. Based on Theorems4.3, 4.4,
and 4.5, we obtain the following corollary which presents the conditions under which
the network encounters a single switching of equilibria.

Corollary 4.5 Consider the case that ζi 〈k2〉
γi 〈k〉 > 1, and ζi

γi
>

ζ−i

γ−i
, where i = 1 or 2, and

−i := {1, 2}\{i}, i.e., the epidemic network is stabilized at the exclusive equilibrium
of strain i without control. If

ζi ≥ ζ−i or

ζi < ζ−i and ζi − γi > ζ−i − γ−i ,

then, there exists a single transition from the exclusive equilibrium of strain i to the
disease-free equilibrium with the increase of optimal u.

The single switching phenomenon in Corollary4.5 enhances the prediction of net-
work equilibrium under control, since it confirms that the exclusive equilibrium of
strain −i is not possible under the symmetric optimal control case in this parameter
regime.

Similarly, the phenomenon of double switching of equilibrium points is presented
as follows.
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Corollary 4.6 Consider the case that ζi 〈k2〉
γi 〈k〉 > 1, i = 1, 2, i.e., the epidemic network

does not reach the disease-free equilibrium without control. When

ζi

γi
>

ζ−i

γ−i
, ζi < ζ−i , and

ζi − γi

ζ−i − γ−i
< 1,

where i = 1, 2 and −i := {1, 2}\{i}, then, there exist transitions from the exclusive
equilibrium of strain i , to the exclusive equilibrium of strain −i , and to the disease-
free equilibrium with the increase of u.

For the special case that ζ1
γ1

= ζ2
γ2
, and ζi 〈k2〉

γi 〈k〉 > 1, i = 1, 2, when ζi > ζ−i , there
exist transitions from the current network equilibrium (mixed steady state with both
strains) to the exclusive equilibrium of strain i , and then to the disease-free equilib-
rium with the increase of optimal control u as the unit control cost decreases.

To identify the optimal policies under which the control effort leads to a stable
disease-free equilibrium through switching, we present the following definition.

Definition 4.1 (Fulfilling Threshold) The fulfilling threshold refers to the optimal
control ūo = (ū1, ū2) under which the epidemic network stabilizes at the disease-
free equilibrium after switching of network equilibria, and the total cost c1(ū) is the
lowest among all control policies. Equivalently, ū satisfies the following conditions:

c1(ū) ≤ c1(u), ∀u,

ū1 ≥ ζ1〈k2〉
〈k〉 − γ1,

ū2 ≥ ζ2〈k2〉
〈k〉 − γ2.

(4.37)

Based on Definition4.1, we next characterize the fulfilling threshold in the inves-
tigated scenario.

Proposition 4.1 The optimal control effort does not increase after the epidemic
network switches from the exclusive equilibrium E2 or E3 to the disease-free equi-
librium E1. In the investigated symmetric control scenario with constraint u1 = u2,
the fulfilling threshold is

ū = max

(

0,
ζ1〈k2〉
〈k〉 − γ1,

ζ2〈k2〉
〈k〉 − γ2

)

. (4.38)

Proof The fulfilling threshold in the studied cases can be directly verified by the
zero epidemic cost in regime E1 and the monotonically increasing function c1 with
respect to the applied effort. Based onDefinition4.1 and symmetric control structure,
we can obtain the threshold ū in (4.38). �
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Remark 4.7 The fulfilling threshold in Proposition4.1 provides an upper bound for
the network operator’s control effort to bring the network equilibria to the disease-
free regime. As the unit cost of effort decreases, the amount of optimal control should
not exceed the fulfilling threshold.

Another result on the number of network equilibria switching is summarized as
follows.

Corollary 4.7 Under the symmetric optimal control scenario with decreasing unit
control cost, the maximum number of network equilibria switching is two.

Corollary4.7 generalizes Corollaries4.5 and 4.6 by studying the entire parameter
regime. The monotonically increasing optimal control yields either single or double
switching of equilibria. For general cases in which optimal u1 and u2 are not nec-
essarily the same, then the switching of network equilibria depends on the specific
unit costs of u1 and u2. However, if the system operator has a preference to avoid
the outbreak of strain i , then as the optimal control ui increases, either single or
double switching happens with the network stabilizing at disease-free equilibrium
depending on the epidemic system parameters.

4.2.5 Case Studies

In this section, we corroborate the obtained results with numerical experiments.
First, we generate a scale-free network with 500 nodes using the Barabási–Albert
model [38]. The degree distribution of the network satisfies P(k) ∼ k−3. The typi-
cal generated random network in the following studies has an average connectivity
〈k〉 = 1.996 and 〈k2〉 = 13.75. Our objective is to design the optimal control of
interdependent epidemics spreading under different network equilibrium cases.

The functions in the optimization problems admit the forms: c1(u) = K1u1 +
K2u2, and c2(w1 Ī ∗

1 (u) + w2 Ī ∗
2 (u)) = K3( Ī ∗

1 (u) + Ī ∗
2 (u)), where K1, K2 and K3 are

positive constants, andw1 = w2 = 1. Specifically, we choose K1 = 15, K2 = 10 and
K3 = 50. For better illustration purposes, we assume that strain 1 and strain 2 have
the same spreading rate, i.e., ζ1 = ζ2 = ζ . We find and compare the optimal control
solutions of the following two scenarios: scenario I where γ1 = 0.5, γ2 = 0.3, and
scenario II where γ1 = 0.5, γ2 = 0.8.

4.2.5.1 Optimal Control in Disease-Free Case

In the disease-free case, the epidemic spreading levels are zero at the steady state.
By solving (OP4), we obtain the results of optimal control which are shown in
Fig. 4.1. We can see that the control efforts u1 and u2 both increase linearly with the
spreading rate ζ as expected by (4.28). Due to the same recovery rates of strain 1 in
two scenarios, the applied control efforts u1 overlap as shown in Fig. 4.1a. In addition,
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Fig. 4.1 a and b show the results of the optimal control and the associated objective value, respec-
tively, where the network stabilizes at the disease-free equilibrium

because of a smaller self-recovery rate of strain 2 in scenario I, its corresponding
control effort u2 is larger than that in scenario II. Hence, the optimal objective value
in scenario II is smaller than that of scenario I shown in Fig. 4.1b.

4.2.5.2 Optimal Control in Exclusive Equilibrium Case

We investigate the case when the network is stabilized at the exclusive equilibrium
of strain 1. By solving (OP5) using the proposed Algorithm4.2, the obtained results
are shown in Fig. 4.2. Specifically, Fig. 4.2a, b show the optimal control efforts. In
scenario I, the control u1 (red line in Fig. 4.2a) increases first when the spreading
rate ζ is relatively small. It then decreases after ζ > 0.55, since it is not economical
to control the spreading of strain 1 comparing with its control cost. Further, because
the recovery rate of strain 2 in scenario I is low, the applied control u2 (red dotted
line in Fig. 4.2b) should be relatively large to suppress its spreading. An important
phenomenon is that u2 decreases after ζ > 0.55, which follows the pattern of u1,
since u2 can be chosen as long as it satisfies the conditions in Theorem4.4, and strain
2 does not exist at the steady state. In scenario II, due to the high self-recovery rate
γ2, strain 2 dies out at the equilibrium even without control. Thus, the control of
strain 2 is 0, i.e., u2 = 0 (blue dotted line in Fig. 4.2a). In addition, the control u1
in this scenario (blue line in Fig. 4.2a) first increases to compensate the spreading
of strain 1. Then, it stays flat after ζ > 0.27, since otherwise larger control u1 leads
to a network equilibrium switching from E2 to E3. Figure4.2c depicts the severity
of epidemics at the steady state with and without control. We can conclude that the
optimal control effectively reduces the spreading of epidemics in both scenarios.Note
that the epidemic spreading levels without the control intervention overlap in two
cases (dotted lines in Fig. 4.2c) though only strain 2 and strain 1 exist at equilibrium
in scenarios I and II, respectively. The reason is that the severity of epidemics is
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Fig. 4.2 The network is stabilized at the exclusive equilibrium of strain 1. a and b are the optimal
control of strain 1 and strain 2, respectively. c and d show the severity of epidemics and the
corresponding objective value under the optimal control, respectively

determined by the network structure and the steady state, while the parameter ζ only
influences the rate of epidemics spreading.

4.2.5.3 Transition of the Equilibrium Through Control

In this section, we illustrate the transition between the epidemic equilibrium through
control. First, we study the single transition case. From Corollary4.5, we choose
ζ1 = 0.2, γ1 = 0.4, ζ2 = 0.15 and γ2 = 0.4. The result is shown in Fig. 4.3. As the
unit control cost changes, the network equilibrium at steady state will be different.
Specifically, as the optimal control increases due to the decrease of unit control
cost, the epidemic network equilibrium switches from the exclusive equilibrium
of strain 2 to the disease-free equilibrium. For the double transitions case, based on
Corollary4.6, we select parameters ζ1 = 0.1, γ1 = 0.1, ζ2 = 0.15 and γ2 = 0.2. The
result is shown in Fig. 4.4. Consistent with Corollary4.6, the network equilibrium
switches first from the exclusive equilibrium of strain 2 to the exclusive equilibrium
of strain 1, and then to the disease-free equilibrium, as the applied optimal control
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Fig. 4.3 Transition of the
equilibrium with the increase
of control across two
regimes: from the exclusive
equilibrium of strain 2 (III)
to the disease-free
equilibrium (I)

Fig. 4.4 Transition of the
equilibrium with the increase
of control across three
regimes. (from the exclusive
equilibrium of strain 2 (III)
to the exclusive equilibrium
of strain 1 (II), then to the
disease-free equilibrium (I))

increases. One common feature in these two cases is that once the effort drives the
network to the disease-free equilibrium, the control effort ceases to increase, where
fulfilling threshold is reached (corresponding to the effort level at the transition point
denoted by black dot in Figs. 4.3 and 4.4). Specifically, based on Proposition4.1, the
fulfilling thresholds in Figs. 4.3 and 4.4 are 0.978 and 0.834, respectively.

4.3 Summary and Notes

In this chapter, we have studied the optimal control of interdependent epidemics
spreading over complex networks. The competingmechanism between two strains of
epidemics results in a non-coexistence phenomenon at the steady state. Furthermore,
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we have explicitly derived the conditions under which the network is stabilized at
different equilibria with control. The optimal control computed via the designed
iterative algorithm can effectively reduce the spreading of epidemics. At the disease-
free equilibrium, the optimal control is independent of nodes’ degree distribution
as the optimal strategy can be fully determined by the sufficient statistics including
the average degree and the second moment of the degree distribution. Furthermore,
depending on the epidemic parameters, the network equilibrium can switch via the
adopted control strategy. Once the epidemic network switches to the disease-free
equilibrium under the optimal control, the applied effort does not increase though
the unit cost of effort continues to decrease, and the optimal control effort at the
associated switching point is called the fulfilling threshold.

The readers interested in an overview of epidemic processes in complex networks
can refer to [2] for more details. In addition, the researchers interested in the control
of epidemics can refer to [19, 22, 27–30].
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Chapter 5
Optimal Secure Interdependent
Infrastructure Network Design

5.1 Interdependent Infrastructure Network Security

In this chapter, we adopt the established model of network-of-networks to design
optimal secure interdependent infrastructures. IoTs have witnessed a tremendous
development with a variety of applications, such as virtual reality, intelligent supply
chain, and smart home. In this highly connected world, IoT devices are massively
deployed and connected to cellular or cloud networks. For example, in smart grids,
wireless sensors are adopted to collect the data of buses and power transmission lines
[1]. The collected data can then be sent to a supervisory control and data acquisition
(SCADA) center through cellular networks for grid monitoring and decision plan-
ning purposes [2, 3]. Smart home is another example of IoT application. Various
devices and appliances in a smart home including air conditioner, lights, TV, tablets,
refrigerator and smart meter are interconnected through the cloud, improving the
quality of the living.

IoT networks can be viewed as multi-layer networks with the existing infrastruc-
ture networks (e.g., cloud and cellular networks) and the underlaid device networks.
The connectivity of IoT networks plays an important role in information dissemina-
tion. On the one hand, devices can communicate directly with other devices in the
underlaid network for local information. On the other hand, devices can also com-
municate with the infrastructure networks to maintain a global situational awareness.
In addition, for IoT devices with insufficient on-board computational resources such
as wearables and drones, they can outsource heavy computations to the data centers
through cloud networks, and hence extend the battery lifetime [4]. Vehicular network
is an illustrative example for understanding the two-tier feature of IoT networks [5].
In an intelligent transportation network, vehicle-to-vehicle (V2V) communications
enable two vehicles to communicate and exchange information, e.g., accidents, speed
alerts, notifications. In addition, vehicles can also communicate with roadside infras-
tructures or units (RSU) that belong to one or several service providers for exchang-
ing various types of data related to different applications including GPS navigation,
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Fig. 5.1 In IoBT networks, a team of UAVs and a group of soldiers and UGVs execute missions
cooperatively. The agents in the battlefield share critical information throughD2D communications.
The UAV network and ground network form a two-layer network which faces cyber threats, e.g.,
jamming attacks which can lead to link removals

parking and highway tolls inquiry. In this case, the vehicles form one network while
the infrastructure nodes form another network. Due to the interconnections between
two networks, vehicles can share information through infrastructure nodes or by
direct V2V communications.

IoT communication networks are vulnerable to cyber attacks including the denial-
of-service (DoS) and jamming attacks [6, 7]. To compromise the communication
between two specific devices, the attacker can adopt the selective jamming attack
[8]. More specifically, the attacker selectively targets specific channels and packets
which disrupts the communications by transmitting a high-range or high-power inter-
ference signal. This adversarial behavior leads to communication link removals in
IoT network. Therefore, to maintain the connectivity of devices, IoT networks need
to be secure and resistant to malicious attacks. For example, V2V communication
links of a car can be jammed, and hence the car loses the real-time traffic information
of the road which may further cause traffic delays and accidents especially in the
futuristic self-driving applications. Hence, IoT networks should be constructed in a
tactic way by anticipating the cyber attacks. Internet of Battlefield Things (IoBT)
is another example of mission-critical IoT systems [9]. As depicted in Fig. 5.1, in
IoBT networks, a team of unmanned aerial vehicles (UAVs) serves as one layer of
wireless relay nodes for a team of unmanned ground vehicles (UGVs) and soldiers
equipped with wearable devices to communicate between themselves or exchange
critical information with the command-and-control nodes. The UAV network and
the ground network naturally form a two-layer network in a battlefield which can
be susceptible to jamming attacks. It is essential to design communication networks
that can allow the IoBT networks to be robust to natural failures and secure to cyber
attacks in order to keep a high-level situational awareness of agents in a battlefield.
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Due to heterogeneous and multi-tier features of the IoT networks, the required
security levels can vary for different networks. For example, in IoBT networks, the
connectivity of UAV networks requires a higher security level than the ground net-
work if the UAVs are more likely to be targeted by the adversary. Similarly, in vehic-
ular networks, the communication links between RSUs need a high-level protection
when they anticipate more attacks than the vehicles do. Therefore, it is imperative
to design secure IoT networks resistant to link attacks and maintain the two-layer
network connectivity with heterogeneous security requirements simultaneously.

5.2 Optimal Secure Two-Layer Network Design
with an Application to IoBT

We present a heterogeneous IoT network design framework in which network links
are vulnerable to malicious attacks. To enhance the security and the robustness of
the network, an IoT network designer can add extra links to provide additional com-
munication paths between two nodes or secure links against failures by investing
resources to protect the links. To allocate links, note that when the nodes in the
IoT network are within a short distance, then the classical wireless communication
technologies can be adopted including WiFi, Bluetooth, and Zigbee. In comparison,
when the distance is large, then one option that has recently emerged is called ultra
narrow band (UNB) [10] that uses the random frequency and time multiple access
[11]. The UNB is dedicated for mission-critical IoT systems for providing reliable
communication services in long range. The goal of the multi-tier network design
is to make the network connectivity resistant to link removal attacks by anticipat-
ing the worst attack behaviors. Different from previous works [12, 13] which have
focused on the secure design of single-layer networks, in this chapter, the network
designer needs to take into account the heterogeneous features of the IoT networks
by imposing different security requirements on each layer which presents a new set
of challenges for network design.

We focus on a two-layer IoT network and aim to design each network resistant
to different number of link failures with minimum resources [6]. We characterize
the optimal strategy of the secure network design problem by first developing a
lower bound on the number of links a secure network requires for a given budget of
protected links. Then, we provide necessary and sufficient conditions under which
the bounds are achieved and present a method to construct an optimal network that
satisfies the heterogeneous network design specifications with the minimum cost.
Furthermore, we characterize the robust network topologies which optimally satisfy
a class of security requirements. These robust optimal networks are applicable to
the cases when the cyber threats are not perfectly perceived or change dynamically,
typically happening in the mission-critical scenarios when the attacker’s action is
partially observable.
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Finally, we use IoBT as a case study to illustrate the analytical results and obtain
insights in designing secure networks. We consider a mission-critical battlefield
scenario in which the UAV network anticipates higher cyber threats than the soldier
network, and the number of UAVs is less than the number of soldiers. We observe
that as the cost of forming a protected communication link becomes smaller, more
secure connections are formed in the optimal IoBT network. In addition, the designed
network is resilient to the change of agents in the battlefield. For example, when a
group of soldiers join in the battle, they only need to connect to a set of neighboring
companions, which is convenient to implement in practice. For the scenarios inwhich
soldiers leave the battlefield, the optimal network can be reconfigured in a similar
fashion, i.e., those agents who lose some degree of communications should build
up new connections with some other neighbors to stay resistant to attacks. We also
study the reconfiguration and resilience of the UAV network as nodes leave and join
the battlefield.

Related Work

Due to the increasing cyber threats, IoT security becomes a critical concern [14–
16]. Depending on the potential of cyber attackers, IoT networks face heterogeneous
types of attacks [17]. For example, attackers can target the edge computing nodes
in IoT, e.g., RFID readers and sensor nodes. Some typical adversarial scenarios
include the node replication attack by replicating one node’s identification number
[18], DoS by battery draining, sleep deprivation, and outage attacks [19, 20]. The
attackers can also launch attacks through the IoT communication networks [21–
23]. Quintessential examples include the eavesdropping attack where the attacker
captures the private information over the channel, and utilizes the information to
design other tailored attacks [24]. Another example is the data injection attack where
the attacker can inject fraudulent packets into IoT communication links through
insertion, manipulation, and replay techniques [25]. The work in this chapter is
also related to the interdependent infrastructure networks in which their secure and
resilient operational strategies are critical in ensuring the system performance [26–
30].

To mitigate the cyber threats in IoT, a large number of works have focused on
addressing the security issues by using different methodologies [7, 31]. The authors
in [4, 32, 33] have proposed a switching control method to enhance the security
and resilience of cloud-enabled systems. A contract-theoretic approach has been
adopted to guarantee the performance of security services in the Internet of controlled
things and networked systems [21, 34, 35]. Farooq and Zhu [9] have designed a
reconfigurable communication network for information dissemination in IoBT using
an epidemic model. Chen et al. [22] have proposed a dynamic game model including
pre-attack defense and post-attack recovery phases in designing resilient IoT-enabled
infrastructure networks. In [36], the authors have studied the resilience aspect of
routing problem in parallel link communication networks using a two-player game
framework and designed stable algorithms to compute the equilibrium strategy. The
authors in [37] have developed an adaptive strategic cyber defense for mitigating
advanced persistent threats in infrastructures.
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We investigate the secure design of IoT network by considering its connectivity
measure [12, 13, 38–41] through the lens of graph theory [42]. Comparing with
the previous works [12, 13] that have focused on a single-layer adversarial network
design, we model the IoT as a two-layer network and strategically design each layer
of the network with heterogeneous security requirements.

5.2.1 Heterogeneous Two-Layer IoT Network Design
Formulation

In this section, we formulate a two-layer secure IoT network design problem. Due to
the heterogeneous features of IoT networks, the devices at each layer face different
levels of cyber threats. Tomaintain the global situational awareness, the designer aims
to devise an IoT network with a minimum cost, where each layer of IoT network
should remain connected in the presence of a certain level of adversarial attacks.

Specifically, we model the two-layer IoT network with two sets of devices or
nodes1 denoted by S1 and S2. Each set of nodes is of a different type. Specifically,
denote by n1 := |S1| and n2 := |S2| the number of nodes of type 1 and 2, respectively,
where | · | denotes the cardinality of a set.We unify them to n = n1 + n2 vertices that
are numbered from 1 to n starting from nodes inS1. Thus, a node labeled i is of type 1
if and only if i ≤ n1. Note that each set of nodes forms an IoT subnetwork. Together
with the interconnections between two sets of nodes, the subnetworks form a two-
layer IoT network. Technically, the communication protocols between nodes within
and across different layers can be either the same or heterogeneous depending on the
adopted technology by considering the physical distance constraints. Furthermore,
the nodes’ functionality can be different in two subnetworks depending on their
specific tasks. In this chapter, our focus lies in the high-level of network connectivity
maintenance.

In standardgraph theory, an edge (or a link) is anunorderedpair of vertices: (i, j) ∈
[[1, n]]2, i �= j , where [[1, n]]2 is a set including all the pairs of integers between 1 and
n. We recall that two vertices (nodes) i0 and iL are said connected in a graph of nodes
S1 ∪ S2 and a set of edgesE if there exists a path between them, i.e., a finite alternating
sequence of nodes and distinct links: i0, (i0, i1), i1, (i1, i2), i2, . . . , (iL−1, iL), iL ,
where il ∈ S1 ∪ S2 and (il−1, il) ∈ E for all 1 ≤ l ≤ L .

In our IoT networks, the communication links (edges) are vulnerable to mali-
cious attacks, e.g., jamming and DoS, which result in link removals. To keep the
IoT network resistant to cyber attacks, the network designer can either invest (i)
in redundancy of the path, i.e., using extra links so that two nodes can communi-
cate through different paths, or (ii) in securing its links against failures where we
refer to these special communication edges as protected links. These protected links
can be typically designed using moving target defense (MTD) strategies, where the

1Nodes and vertices in the IoT network refer to the devices, and they are used interchangeably.
Similar for the terms edges and links.
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designer randomizes the usage of communication links amongmultiple created chan-
nels between two nodes [43]. More precisely, we consider that for the designer, the
cost per non-protected link created is cN P and the cost per protected link created is
cP . It is natural to have cN P ≤ cP since creation of a protected link is more costly
than that of a non-protected one. For clarity, we assume that the costs of protected or
non-protected links at two different layers are the same. If the costs of creating links
are different in two subnetworks, then the network designer needs to capture this link
creation difference in his objective [44]. Let EN P ⊆ E be the set of non-protected
links and EP ⊆ E be the set of protected links in the IoT network, and EN P ∪ EP = E .
We assume that the protection is perfect, i.e., links will not fail under attacks if they
are protected. Therefore, an adversary does not have an incentive to attack protected
links. Denote the strategy of the attacker by EA, then it is sufficient to consider attacks
on a set of links EA ⊆ EN P . Furthermore, we assume that the network designer can
allocate links between any nodes in the network. In the scenarios that setting up
communication links between some nodes is not possible, then the network designer
needs to take into account this factor as constraints when designing networks.

The heterogeneous features of IoT networks naturally lead to various security
requirements for devices in each subnetwork. Hence, we further consider that the
nodes in IoT network have different criticality levels (k1 and k2 for nodes of type 1
and 2, respectively, with k1, k2 ∈ [[0, |EN P |]], where [[a, b]] denotes a set of integers
between a and b). It means that subnetworks 1 and 2 should remain connected after
the compromise of any k1 and k2 links in EN P , respectively. Thus, the designer
needs to prepare for the worst case of link removal attacks when designing the two-
layer IoT network. Our problem is beyond the robust network design where the link
communication breakdown is generally caused by nature failures. In this chapter, we
consider the link removal which is a consequence of cyber attacks, e.g., jamming
and DoS attack. Furthermore, in our problem formulation, the network designer can
allocate protected links which can be seen as a security practice, and he takes into
account the strategic behavior of attackers, and designs the optimal secure networks.
Without loss of generality, we have the following two assumptions:

(A1) k1 ≤ k2.
(A2) n1 ≥ 1, n2 ≥ 1.

Specifically, (A1) indicates that the IoT devices in subnetwork 2 are relatively more
important than those in subnetwork 1, and thus subnetwork 2 should bemore resistant
to cyber attacks. Another interpretation of (A1) can also be that subnetwork 2 faces
a higher level of cyber threats, and the network designer needs to prepare a higher
security level for subnetwork 2. In addition, (A2) ensures that no IoT subnetwork is
empty.

More precisely, consider a set of vertices S1 ∪ S2 and edges EP ∪ EN P . The IoT
network designer needs to guarantee the following two cases:

(a) if |EA| ≤ k1, then all nodes remain attainable in the presence of attacks, i.e.,
∀i, j ∈ S1 ∪ S2, there exists a path in thegraph (S1 ∪ S2, EP ∪ EN P\EA)between
i and j .
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(b) if |EA| ≤ k2, nodes of type 2 remain attainable after attacks, i.e., ∀i, j ∈ S2, there
exists a path in the graph (S1 ∪ S2, EP ∪ EN P\EA) between i and j .

Remark 5.1 We denote the designed network satisfying (a) and (b) above by
sD := (S1 ∪ S2, EP ∪ EN P), and call such heterogeneous IoT networks (k1, k2)-
resistant (with k1 ≤ k2). The proposed (k1, k2)-resistant metric provides a flexi-
ble network design guideline by specifying various security requirements on dif-
ferent network components. Furthermore, we care about each node’s degree which
requires an explicit agent-level quantification. Then, the (k1, k2)-resistant metric is
more preferable than measure of the proportion of links in each subnetwork, where
the latter metric only gives a macroscopic description of the link allocation over two
subnetworks.

Given the system’s parameters S1, S2, k1, and k2, an optimal strategy for the
IoT network designer is the choice of a set of links EP ∪ EN P which solves the
optimization problem:

min
EP ,EN P

cp|EP | + cN P |EN P |
s.t. EP ⊆ [[1, n]]2 , EN P ⊆ [[1, n]]2 ,

EP ∩ EN P = ∅,

sD = (S1 ∪ S2, EP ∪ EN P) is (k1, k2)−resistant.

From the above optimization problem, the optimal network design cost directly
depends on cP and cN P . In addition, as we will analyze in Sect. 5.2.2, the cost ratio
cP
cN P

plays a critical role in the optimal strategy design.
Under the optimal design strategy, compromising a node with low degree, i.e., k1

degree in subnetwork 1 and k2 degree in subnetwork 2, is not feasible for the attacker,
since the degree of any nodes without protected link in the network is larger than k1
or k2 depending on the nodes’ layers.

Note that the above designer’s constrained optimization problem is not straight-
forward to solve. First, the size of search space increases exponentially as the number
of nodes in the IoT network grows. Therefore, we need to find a scalable method
to address the optimal network design. Second, the heterogeneous security require-
ments make the problem more difficult to solve. On the one hand, two subnetworks
are separate since they have their own design standards. On the other hand, we should
tackle these two layers of network design in a holistic fashion due to their natural
couplings.

5.2.2 Analytical Results and Optimal IoT Network Design

In this section, we provide an analytical study of the designer’s optimal strategy, i.e.,
the optimal two-layer IoT network design.
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We first develop, for given system parameters S1, S2, k1, k2, cP and cN P , and for
each possible number of protected links p = |EP |, a lower bound on the number of
non-protected links that have any (k1, k2)-resistant network with p protected links
(Sect. 5.2.2.1). Then, we study three important cases, namely when p takes values
0, n2 − 1 and n1 + n2 − 1, and present for each of them sufficient conditions under
which the lower bounds are attained (Sect. 5.2.2.2). Based on this study, we can
obtain the main theoretical results of this chapter, which include the optimal strategy
for the designer, i.e., a (k1, k2)-resistant IoT network with the minimal cost, as well
as the robust optimal strategy, and constructive methods of an optimal IoT network
(Sect. 5.2.2.3).

5.2.2.1 A Lower Bound on the Number of (Non-protected) Links

Recall that the system parameters are S1, S2, k1, k2, cP and cN P (corresponding to
the set of nodes of criticality level 1 and 2, the values of criticality, and the unitary
cost of creating protected and non-protected links). We first address the question of a
lower bound on the cost for the designer with an additional constraint on the number
of protected links p in the network. Since the cost is linear with the number of non-
protected links, it amounts to finding a lower bound on the number of non-protected
links that are required in any (k1, k2)-resistant network with p protected links.

Let s̃ Dp be a (k1, k2)-resistant network containing p protected links. Then, we have
the following proposition on the lower bound |EN P |.
Proposition 5.1 (Lower bound on |EN P |) The number of non-protected links of s̃Dp
is at least of

(i)
n1(k1 + 1) + (n2 − p)(k2 + 1)

2
, if 0 ≤ p ≤ n2 − 2,

(ii)
(n − p)(k1 + 1)

2
, if n2 − 1 ≤ p ≤ n1 + n2 − 2,

(iii) 0, if p = n1 + n2 − 1.

Note that p takes integer values in each regime. The results are further illustrated in
Fig.5.2.

Before proving Proposition5.1, we first present the notion of network contraction
in the following.

Network Contraction: Let g = (S1 ∪ S2, EP ∪ EN P) be a network. Given a link
(i, j) ∈ EP , the network denoted by g � (i, j) refers to the one obtained by contract-
ing the link (i, j); i.e., by merging the two nodes i and j into a single node {i, j}
(supernode). Note that any node a is adjacent to the (new) node {i, j} in g � (i, j)
if and only if a is adjacent to i or j in the original network g. In other words, all
links, other than those incident to neither i nor j , are links of g � (i, j) if and only
if they are links of g. Then ĝ, the contraction of network g, is the (uniquely defined)
network obtained from g by sequences of link contractions for all links in EP [13].
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Lower bound on the number of non-protected links
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For clarity, we illustrate the contraction of a network g in Fig. 5.3. This example
consists of 5 nodes and 2 protected links (represented in bold lines between nodes 1
and 2 and between nodes 3 and 4). The link (1, 2) is contracted and thus both nodes
1 and 2 in g are merged into a single node denoted by {1, 2} in ĝ. Similarly the link
(3, 4) is contracted. The resulting network thus consists of node 5 and supernodes
{1, 2} and {3, 4}. Since g contains a link between nodes 5 and 1 in g, then nodes 5
and {1, 2} are connected through a link in network ĝ. Similarly, since nodes 1 and 3
are adjacent in g, then supernodes {1, 2} and {3, 4} are adjacent in network ĝ.

Based on network contraction, we present the proof of Proposition5.1 as follows.

Proof Consider an IoTnetwork g including p protected links, and ĝ as its contraction.
Let

(1) ν1 be the number of nodes of type 1 in ĝ (and supernodes containing only nodes
of type 1),

(2) ν2 be the number of nodes of type 2 in ĝ (and supernodes containing only nodes
of type 2),

(3) ν0 be the number of supernodes in ĝ that contains nodes of both type 1 and 2.
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Note that if ν1 + ν2 + ν0 = 1, (i.e., if there is a unique supernode containing all
nodes of the network), then no non-protected link is needed to ensure any level
of (k1, k2)-resistancy. Otherwise, for the IoT network to be (k1, k2)-resistant, each
element of ν1, ν2 and ν0 must have a degree of (at least) k1 + 1. Further, if there exist
more than one element not in ν1; i.e., if ν0 + ν2 ≥ 2, then each of them should have
a degree of (at least) k2 + 1.

Thus, a lower bound on the number of non-protected links in s̃ Dp is

Φ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν1(k1 + 1) + (ν0 + ν2)(k2 + 1)

2
, if ν2 + ν0 > 1,

0, if ν1 + ν2 + ν0 = 1,
(ν1 + 1)(k1 + 1)

2
, if ν1 ≥ 1 and ν2 + ν0 = 1.

Next, we focus on the study of parameters ν0, ν1 and ν2. If no protected link is
used, i.e., p = 0, thenν1 = n1,ν2 = n2 andν0 = 0 andν0 + ν1 + ν2 = n1 + n2 = n.
Adding any protection allows to decrease the total number of elements ν1 + ν2 + ν0
by 1 (or to remain constant if the link induce a loop in a protected component of
g). Thus ν0 + ν1 + ν2 ≥ n − p. Similarly, for each subnetwork, we have ν0 + ν1 ≥
n1 − p and ν0 + ν2 ≥ n2 − p. Further, the number of elements of ν1 and ν2 are
upper bounded by the number of nodes of type 1 n1 and type 2 n2, respectively, i.e.,
ν1 ≤ n1 and ν2 ≤ n2. Finally, since n1 ≥ 1 then ν1 + ν0 ≥ 1, and since n2 ≥ 1 then
ν2 + ν0 ≥ 1. Thus, for any p, a lower bound on the number of non-protected links
in s̃ Dp can be obtained by solving the following optimization problem:

min
ν1,ν2,ν0

Φ

s.t. ν0 + ν1 + ν2 ≥ n − p,

ν0 + ν1 ≥ n1 − p, ν0 + ν2 ≥ n2 − p,

ν1 ≤ n1, ν2 ≤ n2,

ν1 + ν0 ≥ 1, ν2 + ν0 ≥ 1.

(5.1)

To solve this optimization problem, we consider three cases.
Case 1: First, assume that p < n2 − 1. From ν0 + ν1 + ν2 ≥ n − p, we obtain

that ν0 + ν2 > 1. Thus, (5.1) reduces tominν1,ν2,ν0
ν1(k1+1)+(ν0+ν2)(k2+1)

2 with the same
constraints as in (5.1) except ν0 + ν2 > 1.

Since k2 ≥ k1, then the minimum of the objective is obtained when ν0 + ν2 is
minimized, i.e., when all protections involve nodes of type 2. Then, ν0 + ν2 = n2 −
p. Thus, the lower bound is equal to n1(k1+1)+(n2−p)(k2+1)

2 . This result is illustrated by
the line joining points A and B in Fig. 5.2.

Case 2: Assume that n2 − 1 ≤ p ≤ n1 + n2 − 2. Then n − p ≤ n1 + 1. There-
fore, for a given p, i.e., for a given minimal value of ν0 + ν1 + ν2, we can have either
ν0 + ν2 > 1 or ν0 + ν2 = 1. Then, the lower bound of the number of non-protected

links is min
{
n1(k1+1)+(n2−p)(k2+1)

2 ,
(n−p)(k1+1)

2

}
. Recall that k2 ≥ k1, and therefore
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the lower bound achieves at (n−p)(k1+1)
2 . This observation is illustrated by the line in

Fig. 5.2 joining points C and D.
Case 3: Finally, when p = n − 1, ν0 + ν1 + ν2 = 1, and thus no non-protected

link is needed, which is represented by point E in Fig. 5.2. �

Based on Proposition5.1, we further comment on the locations where protected
and non-protected links are placed in the two-layer IoT networks.

Corollary 5.1 When 0 ≤ p ≤ n2 − 2, the protected links purely exist in subnetwork
2. When n2 − 1 ≤ p ≤ n1 + n2 − 2, subnetwork 2 only contains protected links,
and non-protected links appear in subnetwork 1 or between two layers. When p =
n1 + n2 − 1, then all nodes in the two-layer IoT network are connectedwith protected
links.

Corollary5.1 has a natural interpretation that the protected link resources are prior
to be allocated to a subnetwork facing higher cyber threats, i.e., subnetwork 2 in our
setting.

5.2.2.2 Networks with Special Values of p Protected Links

In the previous Sect. 5.2.2.1, we have studied for each potential number of protected
links p, a lower bound m(p) on the minimum number of non-protected links for
an IoT network with sets of nodes S1 and S2 being (k1, k2)-resistant. Then, the cost
associated with such networks is

C(p,m(p)) = pcP + m(p)cN P ,

where C : N × N → R+. Since the goal of the designer is to minimize its cost, we
need to investigate the value of p minimizing such function C(p,m(p)).

In Fig. 5.2, we note that the plot of a network of equal cost (iso-cost) K is a line of
equation K−pcP

cN P
. It is thus a line of (negative) slope cP/cN P that crosses the y-axis at

point K/cN P . Recall also that the graph that shows m(p) as a function of p is on the
upper-right quadrant of its lower bound. Thus, the optimal value of p corresponds to
the point where an iso-cost line meets the graphm(p) for the minimal value K . From
the shape of the lower bound drawn in Fig. 5.2, the points A, C and E are selected
candidates leading to the optimal network construction cost. We thus investigate
in the following the condition under which the lower bounds are reached at these
critical points as well as the corresponding configuration of the optimal two-layer
IoT networks.

Remark 5.2 Denote by sDp a (k1, k2)-resistant IoT network with p protected links
and the minimum number of non-protected links.

Before presenting the result, we first present the definition of Harary network in
the following. Recall that for a network containing n nodes being resistant to k link
attacks, one necessary condition is that each node should have a degree of at least
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Fig. 5.4 Illustration of Harary networks with different number of nodes and security levels

k + 1, yielding the total number of links more than
⌈

(k+1)n
2

⌉
. Here, 
·� denotes the

ceiling operator. Harary network below can achieve this bound.

Definition 5.1 (Harary Network [45]) In a network containing n nodes, Harary
network is the optimal design that uses the minimum number of links equaling⌈

(k+1)n
2

⌉
for the network still being connected after removing any k links.

The constructive method of general Harary network can be described with cycles
as follows. It first creates the links between node i and node j such that (|i − j |
mod n) = 1, and then (|i − j | mod n) = 2, etc. When the number of nodes is odd,
then the last cycle of link creation is slightly different since (k+1)n

2 is not an integer.

However, the bound
⌈

(k+1)n
2

⌉
can be still be achieved. For clarity, we illustrate three

cases in Fig. 5.4 with n = 5, 7 under different security levels k = 2, 3. Since Harary

network achieves the bound
⌈

(k+1)n
2

⌉
, its computational cost of the construction is

linear in both the number of nodes n and the security level k.
Then, we obtain the following result.

Proposition 5.2 For the number of protected links p taking values of n − 1, n2 − 1,
and 0, we successively have:

(i) each sDn−1 contains exactly 0 non-protected link.

(ii) each sDn2−1 contains exactly
⌈

(n1+1)(k1+1)
2

⌉
non-protected links if and only if

k1 + 1 ≤ n1.
(iii) if we have the following assumptions: (i) k1 mod 2 = 1, where mod denotes

the modulus operator, (ii) n2 > k2 − k1 and (iii) n2
k1+1
2 ≤ n1, then each sD0

contains exactly

⌈
n1(k1 + 1) + n2(k2 + 1)

2

⌉

non-protected links.

Proof We successively prove the three items in the proposition in the following.
(i) Note that sDn−1 contains exactly p = n − 1 protected links. It is thus possible

to construct a tree network among the set S1 ∪ S2 of nodes that consists of only
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protected links. Thus, no non-protected link is required, and the lower bound (point
E in Fig. 5.2) can be reached.

(ii) Suppose that p = n2 − 1. If k1 + 1 ≤ n1, we can construct any tree protected
network on the nodes of S2. Further, construct a (k1 + 1)-Harary network on the
nodes of S1 ∪ {n1 + 1}, that is the nodes of type 1 and one node of type 2. Such
construction is possible since k1 + 2 ≤ n1 + 1. The total number of non-protected

links is then exactly
⌈

(n1+1)(k1+1)
2

⌉
(point C in Fig. 5.2). Therefore, each node in

S1 ∪ {n1 + 1} is connected to k1 + 1 other nodes, and the IoT network cannot be
disconnected after removing k1 non-protected links. In addition, the subnetwork 2 is
resistant to any number of attack since it is constructed using all protected links. Note
that the constructed Harary network here is optimal, in the sense that its configuration
uses the least number of links for the IoT network being (k1, k2)-resistant.

Next, if k1 + 1 > n1, then suppose that a network g achieves the lower bound⌈
(n1+1)(k1+1)

2

⌉
. Consider its associated contracted network ĝ. Since g contains n2 − 1

protected links, then ĝ is such that ν0 + ν1 + ν2 ≥ n1 + 1. From the shape of the
lower bound Φ in the proof of Proposition 5.1, then necessarily ν0 + ν2 = 1 and
ν1 = n1. Thus, all nodes in S2 need to be connected together by protected links.
Since |S2| = n2, then it requires at least n2 − 1 protected links, which equals p.
Thus, there cannot be any protected link involving nodes in set S1. In addition,
each node in S1 needs to be connected to at least k1 + 1 other nodes in the IoT
network. Since k1 + 1 > n1, then every node in S1 should connect to at least
(k1 + 1) − (n1 − 1) ≥ 2 number of nodes in S2. Recall that in a complete network
of m nodes, each node has a degree of m − 1, and the total number of links is
m(m−1)

2 . Hence, our IoT network admits a completed graph in S1 with some extra
n1((k1 + 1) − (n1 − 1)) non-protected links between two subnetworks, and in total
at least n1(n1−1)

2 + n1((k1 + 1) − (n1 − 1)) = n1(k1 + 1) − n1(n1−1)
2 non-protected

links. Then, comparing with the lower bound, the extra number of links required is
n1(k1 + 1) − n1(n1−1)

2 − (n1+1)(k1+1)
2 = n1−1

2 (k1 + 1 − n1) > 0. Thus, sDn2−1 does not
achieve the lower bound (point C in Fig. 5.2) when k1 + 1 > n1.

(iii) Finally, suppose that p = 0. We renumber the nodes in the network accord-
ing to the following sequence: 1, 2, . . . , k1+1

2 , n2,
k1+1
2 + 1, . . . , k1 + 1, n2 + 1, k1 +

2, . . . , 3 k1+1
2 , n2 + 2, . . . . Intuitively, we interpose one node in S2 after every

k1+1
2

nodes in S1. Then, we first build a (k1 + 1)-Harary network among all the nodes in
S1 and S2. Note that since n2

k2+1
2 ≤ n1, then the last k1+1

2 indices of the sequence
only contain nodes of type 1. Thus, by construction, there are no links between any
two nodes in S2. Then, we can further construct a (k2 − k1)-Harary network on the
nodes in S2, which is possible since n2 > k2 − k1. Thus, the constructed IoT net-
work is (k1, k2)-resistant, and it is also optimal since it uses the minimum number of
non-protected links. �

Proposition5.2 and Fig. 5.2 indicate that depending on the system parameters
(k1, k2, n1, n2) and for a given budget, the optimal IoT network can achieve at either
point A, C or E with p = 0, n2 − 1, n − 1 protected links, respectively. Notice that
when k1 + 1 > n1, sDn2−1 is not optimal at point C and the lower bound on the number
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of non-protected links is not attained. Instead, in this case, sDn2−1 requires
n1(2k1−n1+3)

2
non-protected links in which n1(k1 − n1 + 2) are allocated between two subnet-
works, introducing protection redundancy for nodes in S2. For the IoT network
containing 0 protected link, it reaches the lower bound (point A) if we can construct
a (k1 + 1)-Harary network for all nodes and an additional (k2 − k1)-Harary network
for nodes only in S2. As mentioned before, the Harary network admits an optimal
configuration with the maximum connectivity given a number of links [45].

5.2.2.3 Optimal Strategy and Construction of IoT Networks

We investigate the optimal strategy and the corresponding construction for the IoT
network designer in this section.

Optimal Strategy

Before presenting the main result, we comment on the scenarios that we aim to study
regarding the IoT networks.

(1) First, the number of nodes is relatively large comparingwith the link failure risks,
i.e., n1 ≥ k1 + 1 and n2 ≥ k2 − k1 + 1. Indeed, these two conditions indicate
that the designer can create a secure two-layer IoT network solely using non-
protected links.

(2) We further have the condition n2
k1+1
2 ≤ n1, indicating that the type 2 nodes with

higher criticality levels in S2 constitute a relatively small portion in the IoT
network comparing with these in S1. This condition also aligns with the practice
that the attacker has preferences on the nodes to compromise in the IoT which
generally only contain a small subset of the entire network.

(3) Finally, we have constraints k1 mod 2 = 1 and n2(k2 + 1) mod 2 = 0 which
are only used to simplify the presentation of the chapter (whether the number of
nodes and attacks is odd or even). However, they do not affect the results signif-
icantly. Note that different cases corresponding to k1 mod 2 = 0 or n2(k2 + 1)
mod 2 = 1 can be studied in a similar fashion as in our current context. The only
difference is that for certain system parameters, sD0 is not an optimal strategy
comparing with sDn2−1 by following a similar analysis in [13].

Therefore, based on the above conditions, the scenarios that we analyze are quite
general and conform with the situations in the adversarial IoT networks. Based on
Proposition5.2, we then obtain the following result on the optimal design of secure
two-layer IoT networks. Note that the solution in Proposition5.3 is optimal to the
original optimizationproblempresented inSect. 5.2.1 under the considered scenarios.

Proposition 5.3 Under the conditions that n1 ≥ k1 + 1, n2 ≥ k2 − k1 + 1, n2
k1+1
2 ≤

n1, k1 mod 2 = 1 and n2(k2 + 1) mod 2 = 0, we have the following results:

I) Regime I: if 1 + k1 − n(k2 − k1) ≤ 0, then:

(1) if 2 cP
cN P

≥ k2 + 1 + k2−k1
n2−1 , then sD0 are optimal strategies.
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(2) if k1 + 1 + k1+1
n1

≤ 2 cP
cN P

< k2 + 1 + k2−k1
n2−1 , then s

D
n2−1 are optimal strategies.

(3) if 2 cP
cN P

< k1 + 1 + k1+1
n1

, then sDn−1 are optimal strategies.

II) Regime II: if 1 + k1 − n(k2 − k1) > 0, then:

(1) when k2 − k1 + 1 ≤ n2 < 1+k1
1+k1−n1(k2−k1)

, the optimal IoT network design
strategies are the same as those in regime I.

(2) otherwise, i.e., n2 ≥ 1+k1
1+k1−n1(k2−k1)

, we obtain

(i) if 2 cP
cN P

≥ n1(k1+1)+n2(k2+1)
n1+n2−1 , then sD0 are optimal strategies.

(ii) if 2 cP
cN P

< n1(k1+1)+n2(k2+1)
n1+n2−1 , then sDn−1 are optimal strategies.

Thus, sDn2−1 cannot be optimal in this scenario.

Proof From Proposition5.2 and under the assumptions in the current proposition,
sD0 , s

D
n2−1 and sDn−1 achieve the lower bounds of the number of links for the network

being (k1, k2)-resistant. In Fig. 5.2, note that the slope of the line between points A
and C is 1

2 (k2 + 1 + k2−k1
n2−1 ), and between points C and E is 1

2 (k1 + 1 + k1+1
n1

), where
we quantify the slopes in their absolute value sense.

In regime I, i.e., 1 + k1 − n(k2 − k1) ≤ 0,weobtain (k2 + k2−k1
n2−1 ) − (k1 + k1+1

n1
) ≤

0, yielding that the line connecting points A and C has a higher slope than the one
joining points C and E. Thus, if the lines of iso-costs have a slope higher than the
slope of the line A–C, then the minimum cost is obtained at point A. Similarly, if
the slope is less than that of line C–E, then the minimum cost is obtained at point E.
Otherwise, the minimum is obtained at point C. Recall that the slope of the lines of
iso-costs is equal to cP/cN P which leading to the result.

In the other regime II, i.e., 1 + k1 − n(k2 − k1) > 0, the slope of line A–C is
not always greater than that of line C–E. Specifically, we obtain a threshold n2 =

1+k1
1+k1−n1(k2−k1)

over which the slop of line C–E is greater than line A–C. Therefore,

if n2 < 1+k1
1+k1−n1(k2−k1)

, the optimal network design is the same as those in regime I.

In addition, when n2 ≥ 1+k1
1+k1−n1(k2−k1)

, and if the slop of iso-costs lines, i.e., cP/cN P ,
is larger than the slope of the line connecting points A and E, the minimum cost is
achieved at point A. Otherwise, if cP/cN P is smaller than the slop of line A–E, the
optimal network configuration is obtained at point E. �

From Proposition5.3, we can conclude that in regime I, i.e., 1 + k1 − n(k2 −
k1) ≤ 0, when the unit cost of protected links is relatively larger than the non-
protected ones, then the secure IoT networks admit an sD0 strategy using all non-
protected links. In comparison, the secure IoT networks are constructed with solely
protected links when the cost per protected link is relatively small satisfying
cP < (k1 + 1 + k1+1

n1
)cN P/2. Note that the optimal network design strategy in this

regime can be achieved by protecting the minimum spanning tree for a connected
network. Equivalently speaking, finding a spanning tree method provides an algo-
rithmic approach to construct the optimal network in this regime. Finally, when the
cost per protected link is intermediate, the network designer allocates n2 − 1 pro-
tected links connecting those critical nodes in set S2 while uses non-protected links
to connect the nodes in S1. In addition, the intra-links between two subnetworks are
non-protected ones.
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Note that the specific configuration of the optimal IoT network is not unique
according to Proposition5.3. To enhance the system reliability and efficiency, the
network designer can choose the one among all the optimal topology that minimizes
the communication distance between devices.

Since the cyber threat in subnetwork2 ismore severe than that in subnetwork1, i.e.,
k2 ≥ k1, thus the condition of regime II in Proposition5.3 (1 + k1 − n(k2 − k1) > 0)
is not generally satisfied. We further have the following Corollary refining the result
of optimal IoT network design in regime II.

Corollary 5.2 Only when two subnetworks facing the same level of cyber threats,
i.e., k1 = k2, the optimal IoT network design follows the strategies in regime II.
Moreover, sDn2−1 cannot be an optimal network design in regime II.

Proof Based on the condition n1 ≥ k1 + 1, we obtain 1 + k1 − (n1 + n2)(k2 −
k1) ≤ n1 − (n1 + n2)(k2 − k1). Thus, when k2 > k1, the condition of regime II
(1 + k1 − n(k2 − k1) > 0) cannot be satisfied. Since k2 ≥ k1, then only k1 = k2
yields 1 + k1 > 0. Therefore, n2 ≥ 1+k1

1+k1−n1(k2−k1)
= 1 always holds which leads to

the result. �

Corollary5.2 indicates that in regime II, sDn2−1 cannot be optimal and the designer
constructs the multi-layer IoT network using either all protected links or all non-
protected links. This fact is consistent with the homogeneous security requirements
since we can view the two-layer IoT networks as a unified one in this scenario, i.e.,
k1 = k2. Thus, the optimal design strategy achieves at boundaries either of sD0 or
sDn−1. We then simplify the conditions leading to regime I and II as follows.

Corollary 5.3 The IoT network design can be divided into two regimes according
to the cyber threat levels. Specifically, when k2 > k1, the optimal design strategy
follows the one in regime I in Proposition5.3, and otherwise (k1 = k2) follows the
one in regime II.

Note that Corollary5.3 presents a simpler condition than the one in Proposition5.3
for determining which regime the optimal IoT network design lies in. We illustrate
the optimal design strategies in Fig. 5.5 according to the heterogeneous security
requirements and link creation costs ratio.

Robust Optimal Strategy

One interesting phenomenon is that some strategies are optimal for a class of security
requirements. Thus, these strategies are robust in spite of the dynamics of cyber threat
levels. We summarize the results in the following Corollary.

Corollary 5.4 Consider to design a (k1, k2)-resistant IoT network. If sDn−1 is the
optimal strategy, then it is robust and optimal to security requirement for the net-
work being (k ′

1, k
′
2)-resistant, for all k

′
1 > k1 and all k ′

2 > k2. If sDn2−1 is the optimal
strategy, then it is robust and optimal to cyber threat levels (k1, k ′

2), for all k
′
2 > k2.

Furthermore, the optimal strategy sD0 is not robust to any other security standards
(k ′

1, k
′
2), for k

′
1 �= k1 and k ′

2 �= k2.



5.2 Optimal Secure Two-Layer Network Design with an Application to IoBT 91

Regime I

Regime II

Fig. 5.5 Optimal design of two-layer IoT networks in two regimes in terms of system parameters.
When k2 > k1, the optimal network design follows from the strategies in regime I which can be
in any sDn−1, s

D
n2−1 or s

D
0 depending on the value of cP

cN P
. When k2 = k1, the IoT network designer

chooses strategies from regime II, either of sDn−1 or s
D
0 in term of the link cost ratio cP

cN P

Corollary5.4 has a natural understanding on the selection of robust strategies.
When the cyber threat level increases, then the optimal network sDn−1 remains to be
optimal since the network construction cost does not increase under sDn−1. Under
the optimal sDn2−1, subnetwork 2 is connected with all protected links and the rest
is connected by a Harary network with the minimum cost. If subnetwork 2 faces
more attacks, (k2 becomes larger), then sDn2−1 is robust and optimal in the sense that
subnetwork 2 remains secure and no other non-protected link is required.

Robust strategies are crucial in the scenarios that the cyber threats are not perfectly
perceived or they change dynamically due to the uncertain behavior of the attacker.
Thus, the network designer can use a robust optimal strategy to defend against a class
of cyber threats. We further illustrate this finding using a case study in Sect. 5.2.3.3.

Construction of the Optimal Secure IoT Networks

We present the constructive methods of optimal IoT networks with parameters in
different regimes based on Proposition5.3.

Specifically, the optimal sDn−1 can be constructed by any tree network using pro-
tected links. In addition, the optimal networks sDn2−1 can be constructed in two steps
as follows. First, we create a tree protected network on the nodes of S2. Then, we
construct a (k1 + 1)-Harary network on the nodes of S1 ∪ {n1 + 1}, i.e., all nodes of
type 1 and one node of type 2, where a constructive method of Harary network can
be found in [45].

Finally, regarding the optimal network sD0 , we build it with the following proce-
dure. First,we renumber the nodes according to the sequence: 1, 2, . . . , k1+1

2 , n2,
k1+1
2

+ 1, . . . , k1 + 1, n2 + 1, k1 + 2, . . . , 3 k1+1
2 , n2 + 2, . . .Recall that this renumbering

sequence can be achieved by interpolating one node in S2 after every
k1+1
2 nodes in
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S1. Then, we build a (k1 + 1)-Harary network among all the nodes in S1 and S2.
Finally, we construct a (k2 − k1)-Harary network on the nodes in S2.

Consideration of Random Link Failures

In the consideredmodel so far, the non-protected communication link between nodes
is removed with probability 1 by the attack and remains connected without attack.
In general, the non-protected links face random natural failures. If we consider this
random failure factor, then there is a probability that the designed optimal network
will be disconnected under the joint cyber attacks and failures. We assume perfect
connection of protected links and denote the random failure probability of a non-
protected link by κ ∈ [0, 1). Therefore, in the regime that the optimal network design
is of Harary network where all links are non-protected, then under the anticipated
level of cyber attacks, a single link failure of non-protected link will result in the
network disconnection. Thus, the probability of network connection, i.e., mean con-

nectivity, is equal to (1 − κ)

⌈
n1(k1+1)+n2(k2+1)

2

⌉
−k2 ≈ (1 − κ)

n1(k1+1)+n2(k2+1)−2k2
2 which is of

order (1 − κ)
n1k1+n2k2

2 . Similarly, under the regime that the optimal network admits

n2 − 1 protected links and
⌈

(k1+1)(n1+1)
2

⌉
non-protected links, the probability of net-

work connection under link failure is (1 − κ)

⌈
(k1+1)(n1+1)

2

⌉

≈ (1 − κ)
(k1+1)(n1+1)

2 which
is of order (1 − κ)

k1n1
2 . We can see that in the above two regimes, when the security

requirement is not relatively high and the size of the network is not large, the current
designed optimal strategy gives a relatively high mean network connectivity. In the
regime that the optimal network is constructed with all protected links, then the mean
network connectivity is 1 where the random failure effect is removed.

5.2.2.4 An Illustrative Example

To better understand the presented constructive methods, we develop in this section
someoptimal networks sDp for all values of p between0 andn1 + n2 − 1with network
parameters k1 = 3, k2 = 5, n1 = 7, and n2 = 3.

Specifically, Figs. 5.6 and 5.7 shows some optimal constructions of two-layer
networks. Nodes of type 1 are represented in white circles while nodes of type 2 are
represented with black dots. Non-protected links are drawn in normal lines while
protected links are represented in thick lines. The figures present possible configura-
tions for p growing from 0 to n − 1 = 9 respectively. For each subfigure, the caption
gives the number of non-protected links needed and compares it with the lower
bound computed from Proposition5.1. Note that the lower bounds are reached in the
examples except for the cases where the number of nodes in the contraction network
ĝ is not sufficient to construct proper Harary networks. Recall that network con-
traction and its corresponding parameters can be found in Sect. 5.2.2.1. Specifically,
when p ≤ n2 − 1 and n2 − p ≤ k2 − k1, we have ν2 = k2 − k1 = 2, representing
the number of type 2 nodes in ĝ as shown in Fig. 5.6b. In addition, when p > n2 and
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(a) p = 0 (point A):
4∗7+6∗3

2 = 23 links (lower
bound reached)

(b) p = 1: 21 non-protected
links (lower bound not
reached)

(c) p = 2 (point C): 4∗8
2 = 16 non-

protected links (lower bound reached)
(d) p = 3: 4∗7

2 = 14 non-protected
links (lower bound reached)

(e) p = 4: 4∗6
2 = 12 non-protected

links (lower bound reached)
(f) p = 5: 4∗5

2 = 10 non-protected
links (lower bound reached)

Fig. 5.6 Optimal networks for different p under k1 = 3, k2 = 5, n1 = 7, and n2 = 3. Type 1 nodes:
white circles; Type 2 notes: black dots; Non-protected links: thick lines; Protected links: thick lines

1 < n − p ≤ k1, we obtain ν1 = 4, 3 and 2, indicating the number of type 1 nodes
in ĝ corresponding to Figs. 5.7a–5.6c, respectively.

From Proposition5.3, the system parameters fall in regime I. Then, we further
obtain the optimal network configurations depending on the cost ratio cP

cN P
as follows.

(i) Network depicted in Fig. 5.6a is optimal iff cP
cN P

≥ 3.5,
(ii) Network depicted in Fig. 5.6c is optimal iff 16/7 < cP

cN P
≤ 3.5,

(iii) Network depicted in Fig. 5.7d is optimal iff cP
cN P

< 16/7.
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Fig. 5.7 (Continued):
optimal networks for
different p under k1 = 3,
k2 = 5, n1 = 7, and n2 = 3

(a) p = 6: 9 links non-protected
(lower bound not reached)

(b) p = 7: 3∗4
2 = 6

non-protected links
(lower bound not
reached)

(c) p = 8: 4 non-
protected links (lower
bound not reached)

(d) p = 9
(point
E): 0 non-
protected link
(lower bound
reached)

Optimal IoTNetwork Evolutionwith Varying p: Figs. 5.6 and 5.7 also gives insight
on the evolution of the IoT networks in a potential dynamic scenario when p evolves
(due to the system constraints or change of costs). Based on the evolution of network
configurations from Fig. 5.6a–d, we observe the following pattern. When a protected
link needs to be removed, the optimal strategy is to remove by order of preference: (i)
a protected link joining two nodes of type 1, or if no such link exists (ii) a protected
link between a node of type 1 and one of type 2, and if no such link exists (iii) one
protected link between two nodes of type 2. Then, the protected link that has been
removed is replaced by a proper number of non-protected links for the network being
resistant to adversaries. This order of removal is natural since the nodes of type 2
are more critical than type 1 nodes, and a protected link placed in subnetwork 2 can
save more unprotected links.
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5.2.3 Case Studies

In this section, we use case studies of IoBT to illustrate the optimal design princi-
pals of secure networks with heterogeneous components. The results in this section
are also applicable to other mission-critical IoT network applications. In a battle-
field scenario, the soldiers, unmanned ground vehicles (UGV) and unmanned aerial
vehicles (UAV) execute missions together. To enhance the information transmission
quality and situational awareness of each agent in the battlefield, a secure and reliable
communication network resistant to malicious attacks is inevitable.

The IoBT network designer determines the optimal strategy on creating links
with/without protection between agents in the battlefield. The ground layer and aerial
layer in IoBT generally face different levels of cyber threats which aim to disrupt the
network communications. Since UAVs become more powerful in the military tasks,
they are the primal targets of the attackers, and hence the UAV network faces an
increasing number of cyber threats. In the following case studies, we investigate the
scenario that the IoBT network designer anticipates more cyber attacks on the UAV
network than the soldier and UGV networks.

To create protected D2D communication links, one method is to use moving
target defense (MTD) [43]. Specifically, instead of using a single communication
channel between agents which is easy for attackers to compromise (unprotected
link), the designer can create multiple channels and use switching strategies when
one is down. Hence, the connection of two agents through multi-channel technology
can be seen as a protected link. The cost ratio between forming a protected link and
an unprotected link cp

cN P
is critical in designing the optimal IoBT network. This ratio

depends on the number of channels used in creating a safe link though MTD. We
will analyze various cases in the following studies.

5.2.3.1 Optimal IoBT Network Design

Consider an IoBTnetwork consisting of n1 = 20 soldiers and n2 = 5UAVs (n = 25).
The designer aims to design the ground network and the UAV network resistant to
k1 = 5 and k2 = 9 attacks, respectively. Hence the global IoBT network is (5, 9)-
resistant. Based on Proposition5.3, the system parameters satisfy the condition of
regime I. Further, we have two critical points T1 := (k1 + 1 + k1+1

n1
)/2 = 3.15 and

T2 := (k2 + 1 + k2−k1
n2−1 )/2 = 5.5, at which the topology of optimal IoBT network

encounters a switching. For example, when a protected link adopts 3 channels to
prevent from attacks, i.e., cp

cN P
= 3, the optimal IoBT network is an sD24 graph as

shown in Fig. 5.8a. When a protected link requires 5 channels to be perfectly secure,
i.e., cp

cN P
= 5, then the optimal IoBT network is of sD4 configuration which is depicted

in Fig. 5.8b. In addition, if the cyber attacks are difficult to defend against (e.g., require
7 channels to keep a link safe, i.e., cp

cN P
= 7), the optimal IoBT network becomes an

sD0 graph as shown in Fig. 5.8c. The above three types of optimal networks indicate
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Fig. 5.8 a When cp
cN P

= 3 < T1, the optimal IoBT network is an sD24 graph with all protected

links. b When T1 <
cp
cN P

= 5 < T2, the optimal network is an sD4 graph, where the UAV network
is connected with protected links and the ground network with all unprotected links. c When
cp
cN P

= 7 > T3, the optimal IoBT network adopts an sD0 configuration with all unprotected links
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that the smaller the cost of a protected link is, themore secure connections are formed
starting from the UAV network to the ground network.

5.2.3.2 Resilience of the IoBT Network

The numbers of UAVs, UGVs and soldiers can be dynamically changing. To study
the resilience of the designed network, we first investigate the scenario that a number
of UGVs/soldiers join the battlefield which can be seen as army backups. As n1
increases, the threshold T1 decreases slightlywhile T2 remains unchanged. Therefore,
the optimal IoBT network keeps with a similar topology except that the newly joined
UGVs/soldiers connect to a set of their neighbors. To illustrate this scenario, we
present the optimal network with n1 = 22 and cp

cN P
= 5 in Fig. 5.9a, and all the other

parameters stay the same as those in Sect. 5.2.3.1. When n1 decreases, the network
remains almost unchanged except those UGVs/soldiers losing communication links

(b)

(a)

Fig. 5.9 a and b show the optimal IoBT network reconfiguration when two UGVs/soldiers join in
and leave the battlefield, respectively
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build up new connections with neighbors. An illustrative example with n1 = 17 is
depicted in Fig. 5.9b.

Another interesting scenario is that when the number of UAVs n2 changes due
to backup aerial vehicles joining in and current vehicles leaving the battlefield for
maintenance. When n2 increases, then the threshold T1 remains the same while T2
decreases. If the cost ratio cp

cN P
lies in the same regime with respect to T1 and T2

even though T2 decreases, then under
cp
cN P

≤ T2, the newly joined UAV will connect

with another UAV with a protected link which either creates an SD
n−1 or s

D
n2−1 graph.

Otherwise, if cp
cN P

> T2, the UAV first connects to other UAVs and then connects to

a set of UGVs/soldiers both with unprotected links which yields an sD0 graph. When
a number of UAVs leaving the battlefield, i.e., n2, decreases, then T1 stays the same
and T2 will increase under which the cost ratio cp

cN P
previous belonging to interval

cp
cN P

≥ T2 may change to interval T1 ≤ cp
cN P

≤ T2. Note that regime switching can
also happen when n2 increases. Therefore, the optimal IoBT network switches from
sD0 to sDn2−1 (for the increase of n2 case, the switching is in a backward direction).
For example, when the network contains n2 = 6 UAVs and cp

cN P
= 5.4, and the other

parameters are the same as those in Sect. 5.2.3.1, from Proposition5.3, the optimal
IoBT network is an sD0 graph. However, Fig. 5.8b shows that the optimal network
adopts an sD4 topology when n2 = 5. Therefore, by adding a UAV to the aerial layer,
the optimal IoBT network switches from sD4 to sD0 in this scenario. The interpretation
is that a smaller number of UAVs is easier for the aerial network to defend against
attacks, and hence protected links are used between UAVs instead of redundant
unprotected links.

5.2.3.3 Flexible Design and Robust Strategies

In this section, we further investigate the secure IoBT network design in the presence
of varying levels of cyber threats. Specifically, the parameters are selected as follows:
n1 = 20, n2 = 10, k1 = 5, and cP

cN P
= 5. The security requirement k2 takes a value

varying from 5 to 14, modeling the dynamic or uncertain behaviors of the attacker
targeting at the critical UAV network. The optimal IoBT network design is depicted
in Fig. 5.10, and the corresponding cost is in shown Fig. 5.11. When k2 ∈ [[5, 8]], the
optimal IoBT network is constructed with all non-protected links. Since k2 becomes
larger, the number of non-protected links used is increasing, and thus the total cost
increases. The optimal network topology switches from sD0 to sD9 when k2 exceeds the
threshold 8. Then,when k2 ∈ [[9, 14]], the optimal IoBTnetwork is unchanged aswell
as the associated construction cost. Despite the increases in k2, no additional links
are required since the UAV network (subnetwork 2) is connected with all protected
links. Note that sD9 is a robust strategy in the sense that the IoBT network can be
(5, k2)-resistant, for all k2 ∈ [[9, 14]]. This study can be generalized to the cases when
the network designer has an uncertain belief on the attacker’s strategy. Therefore,
the IoBT designer can prepare for a number of attacking scenarios and choose from
these designed strategies in the field with a timely and flexible manner.
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Fig. 5.10 Optimal IoBT
network design with
parameters n1 = 20,
n2 = 10, k1 = 5, cP

cN P
= 5,

and k2 taking a value from 5
to 14. When k2 ∈ [[5, 8]], the
optimal network design is in
the form of sD0 . When
k2 ∈ [[9, 14]], the optimal
network admits a strategy of
sD9 . Note that sD9 is robust to
a dynamic or varying
number of cyber attacks
ranging from 9 to 14

Fig. 5.11 The total cost of
optimal network design in
terms of the number of
non-protected links. In the
regime of k2 ∈ [[5, 8]], with a
larger k2, the IoBT network
requires more non-protected
links to be resistant to
attacks. In the regime of
k2 ∈ [[9, 14]], the total cost
remains the same, since the
UAV network is connected
with all protected links and
no additional non-protected
link is required despite the
increasing cyber threats k2

5.3 Summary and Notes

In this chapter, we have studied a two-layer secure network formation problem for
IoT networks in which the network designer aims to form a two-layer communica-
tion network with heterogeneous security requirements while minimizing the cost
of using protected and unprotected links. We have shown a lower bound on the
number of non-protected links of the optimal network and developed a method to
construct networks that satisfy the heterogeneous network design specifications. We
have demonstrated the design methodology in the IoBT networks. It has been shown
that the optimal network can reconfigure itself adaptively as nodes enter or leave
the system. In addition, the optimal IoBT network configuration may encounter a
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topological switching when the number of UAVs changes. We have further identified
the optimal design strategies that can be robust to a set of security requirements.

The readers interested in the secure and resilient network design can refer to
[6, 13, 22, 44] for more information. Further, other works on network design from
economics perspective can be found in [12, 46–48].
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Chapter 6
Conclusion and Future Work

6.1 Summary

This book has investigated the resilient design and analysis of interdependent net-
works using game and decision theoretic approaches. To address the distinct chal-
lenges arising from interdependencies, theoretical frameworks on the network-of-
networks have been established which facilitates a holistic design of interdependent
networks. The book has analyzed resilient interdependent networks design across
different dimensions: from static networks to dynamic networks and from finite net-
works to large-scale complex networks. We summarize this book as follows.

In Chap.2, we have reviewed the basics of game theory and network science
which play crucial roles in developing system frameworks and analysis in the rest of
the book. In Chap.3, we have provided a system-of-systems approach for distributed
operation of multilayer networks. Specifically, we have used a game-theoretic frame-
work to capture the uncoordinated decision making of network designers (players)
where each designer controls his own layer of network. The interdependencies are
reflected by the common objectives of players that maximize the integrated net-
work connectivity. Both static and dynamic meta-network modeling have been pro-
posed. For the dynamic MAS, the devised games-in-games framework has success-
fully enabled the decentralized control of agents that preserves network security
and resilience. We have further provided computationally efficient methods for the
agile operation of interdependent networks. In Chap.4, we have shifted the focus
from finite networks to complex networks consisting of a large population. To that
end, we have established a degree-based mean field model capturing the network
structure and dynamics, and studied the strategic control of two interdependent
epidemics spreading over complex networks. The obtained structural results, e.g.,
non-coexistence phenomenon of epidemics and network equilibrium switching, have
provided an optimal approach to suppressing the virus spreading. The designed quar-
antining strategy can be applied in a number of emerging scenarios including social
network security and cybersecurity. We have further explored the secure design of
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interdependent infrastructure network inChap.5. Different from the setup inChaps. 3
and 5 has focused the network design with heterogeneous security requirement at
each layer under the adversarial environment. Furthermore, the goal of the global
network designer is to keep the network connected using protected and unprotected
links. We have explicitly characterized the optimal strategy and provided an algo-
rithm to construct the optimal two-layer network satisfying the requirements. The
strategy has been shown with agile resilience as the number of nodes changes in the
network.

6.2 Future Work

The frameworks introduced in this book would lead to many research problems in
the future. In the static interdependent network formation game in Chap.3, the link
has been modeled by a binary variable. However, we can consider more general
weighted links that capture the link strength between nodes as in [1]. In this way,
the approximation errors resulting frommixed-integer programming can be avoided.
However, additional challenge on the simultaneous link selection and weight deter-
mination needs to be addressed. As for dynamic network resilience game presented in
Chap.3, we can further consider the network operators having different estimations
of severity of attacks [2], and design the multilayer MAS networks with heteroge-
neous security requirements. This adversarial model captures network designers’
perceptions on cyber risks. Theoretically, another research direction is to design
mechanisms to drive the multilayer MAS to a desired meta-equilibrium if multiple
equilibria are possible. This research direction is important to enhance the network-
of-networks efficiency. Some other directions include designing the multilayer MAS
based on reinforcement learning and mitigating the system-of-systems security risks
through strategic trust [3, 4], insurances [5], and contracts [6, 7].

Thework presented in Chap.4 has only considered two interdependent epidemics.
Depending on the application scenarios, this framework can be insufficient. Thus,
one future work is to extend the framework to multi-strains and derive new network
equilibria and stability results. Second, we have only focused on a competing mech-
anism between two epidemics. The extensions to other types of interdependencies
are also possible, e.g., coexistence and mutation of viruses. Third, we can investigate
the epidemics quarantine under some control structures. Instead of controlling the
agents in the entire degree classes which may be impossible, the system operator
can only apply efforts to a subset of them which is similar to the scenarios in [8, 9].
Thus, the selection of degree classes to allocate control resources becomes critical.

In Chap.5, the interdependent network is designed by a global operator with
heterogeneous security requirements. Inspired by the model in Chap. 3, a natural
next step is to extend the single network designer problem to a two-player one,
where each player designs their own subnetwork in a decentralized fashion. In addi-
tion, the interdependent critical infrastructure may be composed of multiple lay-
ers, e.g., power–transportation–water triple nexus. Hence, another direction will be
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generalizing the current bi-level network to more than two layers and designing the
optimal strategies. Furthermore, similar to [10], we can extend the current static
network design to dynamic ones by considering timing of attack and recovery.
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