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Abstract This paper presents a MATLAB-Toolbox named ameshref that provides
an efficient implementation of various adaptive mesh refinement strategies allowing
triangular and quadrilateral grids with and without hanging nodes. For selected
methods, we give an insight into the strategy itself and the core ideas for an efficient
realization. This is achieved by utilization of reasonable data structure, use of
MATLAB built-in functions and vectorization. To serve educational purposes on how
to implement a method efficiently, the code is kept accessible but short. Numerical
experiments underline the efficiency of the code and show the flexible deployment
in different contexts where adaptive mesh refinement is in use. Our implementation
is accessible and easy-to-understand and thus considered to be a valuable tool in
research and education.

1 Introduction and Outline

Keeping computational cost low while maintaining a good accuracy in solving
partial differential equations (PDEs) can be achieved by adaptively refining the
underlying domain. For this and more general applications in mind, we present
an efficient implementation of nine adaptive mesh refinement strategies in two
dimensions. Different grid refinement methods have been proposed and investigated
over the last few decades and various scientists have provided public code for one or
another method; see [13] for an overview and list of public code and, in particular,
[5, 6, 9] for MATLAB implementations. Nonetheless, existing mesh refinement tools
are often inaccessible. Commercial software packages act as a “black box” and
open source codes are mostly too complex to be understood by a wider audience.
Furthermore, the mesh refinement is often just one step in a series and by the use of
an external mesh refinement software, it is cumbersome to integrate this step with
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other implementations. In addition, most of these tools only provide a triangulation
of the region into triangles. However, for some applications like the evaluation
of stress fields or in computational fluid dynamics, it is beneficial to provide the
geometric data as a grid of quadrilaterals [16]. Thus, in this work we provide an
accessible mesh refinement implementation in MATLAB that offers flexibility in the
refinement step. The data structure is kept simple by only requiring the element-
connectivity and coordinates of the vertices as input data. In contrast to other
implementations, we do not follow a recursive approach and prefer the realization
in terms of vectorization. Unlike using a vertex-based marking strategy as, e.g., in
[12], we understand a marking as an edge-based marking.

The following mesh refinement strategies for triangular and quadrilateral el-
ements are realized in our MATLAB ameshref-package: For triangular meshes,
the red-green (TrefineRG) refinement proposed by Bank and Sherman in [2], the
newest vertex bisection (TrefineNVB) first mentioned by Sewell in [14], and the red-
green-blue (TrefineRGB) refinement method using reference edges as discussed by
Carstensen in [4]. A further red (TrefineR) refinement strategy emerges naturally
from the red-green refinement if hanging nodes are allowed. For quadrilateral
meshes, there also exists a red (QrefineR) refinement strategy, precisely a refinement
by quadrisection, touched upon from Verfürth in [15]. Furthermore, Bank et al.
proposed a red-green (QrefineRG) algorithm to eliminate hanging nodes arising
by quadrisection [3]. A further red-blue (QrefineRB) strategy is investigated which
was inspired by a work of Kobbelt [10]. Mao et al. presented a refinement method
based on enneasection (division of a quadrilateral in nine smaller quadrilaterals) [16]
which we call red2-green2 (QrefineRG2) refinement strategy in this work. Similarly,
for this method the red2 (QrefineR2) refinement strategy naturally arises if irregular
grids are allowed. An overview of the just mentioned methods is illustrated in Fig. 1.

TrefineR TrefineRG TrefineRGB TrefineNVB

QrefineR QrefineRG QrefineRB QrefineR2 QrefineRG2

mesh-closure

Fig. 1 Overview of refinement strategies implemented in our MATLAB-toolbox
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Our realization of mesh refinement strategies follows the general procedure

MARK − CLOSURE − CREATE NODES − CREATE ELEMENTS.

We understand the first step MARK in the following way: elements are marked
by flagging each edge of the element for bisection or trisection, respectively. Hence,
also non-marked elements can be affected by neighboring elements. The proceeding
step CLOSURE makes sure that either hanging nodes are removed or the level of
two neighboring elements differs at most by one as is needed for irregular mesh
refinement strategies. We provide a detailed explanation of how to realize the first
two steps in the course of this work. The last two steps are self-explanatory and are
not addressed in this work.

The complete MATLAB code of ameshref can be downloaded from the web
[8], and the technical report provides a detailed documentation of the underlying
ideas [11]. We restrict our discussions to two representative methods QrefineRB and
TrefineR to explain the main ideas; for a short but complete version on all nine
refinement methods we recommend [7].

The rest of this paper is organized as follows. First of all, we introduce the
methods QrefineRB and TrefineR. Subsequently in Sect. 3, we present the data
structure used for a grid and state the main ideas for an efficient realization. This
work closes with some numerical experiments discussed in Sect. 4.

2 Mesh Refinement Strategies

We consider a polygonal Lipschitz domain Ω in R
2. Let therefore T be a

triangulation, i.e., T is a finite set of compact elements T with positive area
|T | > 0, the union of all elements in T covers the closure Ω and for two elements
T1, T2 ∈ T with T1 �= T2 holds T̊1 ∩ T̊2 = ∅, where T̊ denotes the interior of
T . Here, we restrict the elements T to be of triangular or quadrilateral shape. In
addition, we call T a regular triangulation of Ω if for all T1, T2 ∈ T with T1 �= T2
holds that T1 ∩ T2 is empty, a common node or a common edge. This definition
prevents a triangulation from having hanging nodes. If z ∈ T1 ∩ T2 is a vertex of T1
but not of T2, we call z a hanging node.

As a first method, we present TrefineR, a refinement strategy for triangles with
one red refinement pattern. This pattern is formed by connecting the midpoints of
each edge with each other; see Fig. 2. The four emerging triangles are geometrically
similar to their ancestor [15]. If this pattern is used adaptively, hanging nodes can
not be eliminated without refining the mesh uniformly. For this reason, we allow
hanging nodes in this method but restrict the hanging nodes per edge to be one by
the 1-Irregular Rule proposed in [3]: Refine any unrefined element that has more
than one hanging node on an edge.
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Fig. 2 Refinement patterns
in TrefineR

none red

Fig. 3 Red and blue patterns

red blue

Fig. 4 Non-uniqueness of
QrefineRB without any
further assumptions. Top left
to bottom right: red
refinement and possible
eliminations of hanging
nodes by using blue patterns

Fig. 5 Convention of placing
the patterns in relation to
black and white nodes

none red bluer

The second refinement method to showcase is QrefineRB with a red and blue
refinement pattern shown in Fig. 3 where the blue pattern resembles a Y-formation.
We seek a blue pattern that regularizes a mesh by eliminating hanging nodes.

However, due to the blue pattern, by repairing one hanging node, another hanging
node is introduced, i.e., hanging nodes are shifted to an adjacent edge. Only
connecting two hanging nodes leads to a regular mesh. To resolve this issue we
utilize this pattern to surround a node until another is reached and thus hanging
nodes are eliminated [10]. There still remains the question about the realization of
this method, i.e., how to uniquely place the blue pattern.

Without any further assumptions on how to place the blue pattern, this refinement
strategy does not lead to a unique refinement. For an illustration of the non-
uniqueness, the nodes of an exemplary mesh are painted alternately in black and
white. Originating from a red refinement shown in the top left of Fig. 4, the
subsequent meshes are some possible closures, namely placing the Y-formation
around black nodes, around white nodes or a mixture of both. To guarantee
uniqueness, we stick to the convention of placing the Y-formation around black
nodes, i.e., we only allow the patterns in relation to black and white nodes depicted
in Fig. 5.
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Fig. 6 Counterexample for coloring the nodes alternately. Nodes cannot be painted alternately in
two different colors due to the odd number of nodes forming a ring

none red bluer blue�

Fig. 7 A red element and its refinement patterns in QrefineRB

b2blue b2red b2south b2east b2southeast

Fig. 8 A blue element and its refinement patterns in QrefineRB

To realize this method, painting the nodes alternately in black and white and
subsequently matching the patterns would be an obvious approach. However, in
practice coloring the nodes alternately can be of great effort and supplementary
there exist meshes for which an alternating coloring can not be achieved; see Fig. 6.

Thus, we follow Kobbelt’s proposal to first refine the mesh uniformly [10], i.e.,
by red-refining each element. Instead of coloring the nodes alternately, we make use
of the property that after one refinement the nodes of an element can be assigned
to two generations. We store the oldest node of each element as reference node
and consider this reference node as one of the white nodes and therefore, we allow
the refinement patterns in relation to the reference node shown in Fig. 7. Since we
only deal with one reference node, we have to take into account a bluer and blue�

refinement pattern. However, a distinction is only needed to cover all cases for the
refinement of a red element. Afterwards, a blue element is refined as depicted in
Fig. 8—no distinction into bluer and blue� is needed.

To avoid degenerated quadrilaterals, a blue element is coarsened before further
refined; see Fig. 8 for a blue element and its refinement patterns.
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3 Implementation of Adaptive Mesh Refinement

We first present the used data structure of a triangulation T . Subsequently, the
steps MARK and CLOSURE are explained in more detail. For the latter, we make
use of two different implementation approaches, namely a hash map concept for
QrefineRB and an implementation by means of virtual elements for TrefineR. The
concepts translate with some minor changes for the other refinement strategies not
investigated in this work. For the interested reader an extensive presentation is
provided in [11].

3.1 Data Structure of a Triangulation

To represent the data, we need to specify the triangulation T = {T1, . . . , TM}, the
corresponding set of nodes N = {z1, . . . , zn} and potentially boundary data. We
follow [1, 9] and define coordinates as a N × 2 array with the �-th row

coordinates(�,:) = [x� y�]

representing the x- and y-coordinates of the �-th node z� = (x�, y�) ∈ R
2.

Furthermore, the triangulationT is stored in a M×3 array elements3 for triangles,
i.e., the �-th element T� = conv

{
zi , zj , zk

}
is represented by

elements3(�,:) = [i j k] .

Analogously, a M × 4 array elements4 for quadrilaterals stores the �-th quadrilat-
eral element T� = conv

{
zi , zj , zk, zl

}
as

elements4(�,:) = [i j k l] .

If boundary edges are given, the �-th edge E� = conv
{
zi, zj

}
corresponds to

dirichlet(�,:) = [i j ] or neumann(�,:) = [i j ] .

Depending on the problem at hand, the naming and usage of the boundary conditions
can be adjusted and are not limited to Dirichlet and Neumann boundaries. See an
exemplary illustration of the introduced terms in Fig. 9. It is ensured that the order
of the nodes in a triangulation is given in a mathematical positive sense.
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z1z1z1 z2

z3 z4 z5

z6 z7 z8

coordinates

1 -1.0 -1.0
2 0.0 -1.0
3 -1.0 0.0
4 0.0 0.0
5 1.0 0.0
6 -1.0 1.0
7 0.0 1.0
8 1.0 1.0

elements4

1 1 2 4 3
2 8 7 4 5
3 6 3 4 7

dirichlet

1 1 2
2 4 5
3 8 7
4 7 6

neumann

1 2 4
2 5 8
3 6 3
4 3 1

Fig. 9 A triangulation T of the L-shaped domain Ω = (−1, 1)2\([0, 1] × [−1, 0]) into 3
quadrilaterals characterized by the arrays coordinates and elements4. The boundary edges
of the L-shape are partitioned into Dirichlet (in black) and Neumann boundary (in red). This
illustration is based on the data representation in [1, 9]

Using this data structure, we may visualize a grid by MATLAB’s built-in function
patch('Faces', elements4, 'Vertices', coordinates, 'Facecolor',

'none'). This works analogously for triangular meshes by replacing elements4

by elements3.

3.2 MARK

As already stated, we understand a marked element as an element where each edge
is marked for refinement. To this end, it is favorable to generate a numbering of
the edges instead of searching data structure costly. This is accomplished by the
function provideGeometricData which is an enhanced version of the one provided
in [9]. This function returns the corresponding nodes in edge2nodes(�,:)=
[i j ] for the �-th edge E� = conv

{
zi, zj

}
and the edges of the triangulation

T in element3edges and element4edges respectively. element3edges(i,�)

provides the number of the edge between the nodes elements3(i,� mod 3 + 1) and
elements3(i,(� + 1) mod 3 + 1). Analogously for elements4edges by replacing
� mod 3 by � mod 4. Additionally, optional information about boundary edges
can be queried. Remember, that for this refinement strategy a distinction into red
and blue elements is necessary. To this end, by utilization of this function, all edges
of a marked red element are flagged and furthermore, for a marked blue element,
all edges of the father are flagged. A distinction between red and blue elements is
easily made by storing them block by block in elements4.
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Table 1 In- and output of the function hashmap for QrefineRB

mark

bin 0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111

dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

hash

bin 0000 1100 1100 1100 0011 1111 1111 1111 0011 1111 1111 1111 0011 1111 1111 1111

type none bluer bluer bluer blue red red red blue red red red blue red red red

3.3 CLOSURE

Once the edges of marked elements are flagged, further edges might need to be
marked as well to properly map the marking to an admissible grid. Note, that further
edges can always be marked whereas removing a marking is not considered.

3.3.1 Implementation with Hash Maps

Our first approach is based on hash maps. For this procedure we understand each
edge as a binary, i.e., a flagged edge has value one and a non-flagged edge has
value zero. We illustrate the procedure in Table 1 for QrefineRB. For a quadrilateral,
there exist 24 = 16 possibilities to mark edges. Note, that the corresponding binary
number is given in a reverse order. For each marking it is clear by definition of
the refinement strategy which pattern encoded in hash is the one to choose. This
mapping is done automatically by the auxiliary function hash2map with input
parameters dec, i.e., we specify the decimal number corresponding to the marking
and the possible refinement patterns given by the refinement strategy in hash.
This is done in a loop until no further markings are necessary. Remember that the
assignment of a reference node is needed for this strategy. We have the convention
to store the reference node of the �-th element in elements4(�,1).

3.3.2 Implementation with Virtual Elements

Unlike for regular refinements, in the irregular case hanging nodes are not removed.
However, to follow the 1-Irregular Rule for TrefineR, a distinction into regular
and irregular edges is indispensable. To this end, we make use of virtual elements
irregular as depicted in Fig. 10. Then, irregular(�,3) gives the hanging node
of the �-th irregular edge. This convention is handy because if one of the two halves
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Fig. 10 Irregularity data as
virtual elements. An irregular
edge with a hanging node
(left) can be interpreted as a
virtual triangle (right)

of the irregular edge is marked, the unrefined neighbor element can be flagged for
refinement, too.

4 Numerical Experiments

To demonstrate the efficiency of the developed MATLAB code, we provide some
numerical experiments performed on an Apple MacBook Air with a 1.6 GHz Intel
Core i5, a RAM of 8 GB 1600 MHz DDR3 on macOS 10.13.2 (High Sierra).
Throughout, MATLAB version 9.2.0 (R2017a) is used.

For the first experiment, we consider a refinement along a circle that can be found
as test example of the ameshref-package as example1/. We measure 15 times the
computational time by use of MATLAB’s built-in function cputime and plot the
mean of the measured times for each strategy in Fig. 11. This plot shows an almost
linear behavior between the number of elements and computational time. The non-
linear behavior at the beginning of the refinement process is an overlay of MATLAB’s
precompiling process. A refined mesh with 107 elements is generated within 20–30 s
on a standard laptop. The refined meshes for this example are depicted in Fig. 12.
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Fig. 11 Computational times for the adaptive mesh refinements over the number of elements. A
nearly linear behavior between the number of elements and computational time evens out for all of
our implementations
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TrefineR, | |= 4 882 TrefineRG, | |= 6 686 TrefineRGB, | |= 7 229

TrefineNVB, | |= 7 421 QrefineR, | |= 3 155 QrefineRG, | |= 5 538

QrefineRB, | |= 5 733 QrefineR2, | |= 3 146 QrefineRG2, | |= 4 747

Fig. 12 Refinement along a circle using different strategies. Elements are marked for refinement
if they intersect with a given circle. Below the triangulations, the used refinement method and the
number of elements in the mesh are specified
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