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Abstract. Workload characterization is a fundamental step in carry-
ing out performance and Quality of Service engineering studies. The
workload of a system is defined as the set of all inputs received by the
system from its environment during one or more time windows. The
characterization of the workload entails determining the nature of its
basic components as well as a quantitative and probabilistic description
of the workload components in terms of both the arrival process, event
counts, and service demands. Several workload characterization studies
were presented for a variety of domains, except for IoT workloads. This
is precisely the main contribution of this paper, which also presents a
capacity planning study based on one of the workload characterizations
presented here.
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1 Introduction

Siegel et al. [35] argue that scalability is needed to support the continued expan-
sion of the Internet of Things. Therefore, performance engineering studies are
very important for understanding tradeoffs between security, availability, and
response time of various types of IoT applications.

Workload characterization is a fundamental and necessary step in carrying
out any performance engineering study [26]. The workload of a system is defined
as the set of all inputs received by the system from its environment during one
or more time windows. The characterization of the workload entails determining
the nature of its basic components (e.g., transactions, I/O requests, IoT device
requests) as well as a quantitative and probabilistic description of the work-
load components in terms of both the arrival process, event counts, and service
demands (e.g., arrival rate of requests and interarrival time distributions, distri-
bution of the number of IoT device signals received, distribution of the file sizes
returned by an HTTP request) [26].

General methods for workload characterization have been discussed in [11,
12,26]. Specific applications of these techniques to a variety of domains were
developed by many researchers (see examples in Sect. 5). However, there is a
need for workload characterization studies for IoT applications.
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The recent development of Internet of Things (IoT) and edge/fog computing
demands models for this new environment. Our prior work includes the develop-
ment of an analytic model, called FogQN, based on queuing networks [37] and
an autonomic controller that uses FogQN to dynamically determine the optimal
breakdown of processing between fog and cloud servers [38].

Any modeling effort of fog and cloud computing calls for workload character-
ization studies of IoT workloads. The understanding of the characteristics of IoT
workloads can be used to perform capacity planning studies. These are the main
contributions of this paper. More specifically, we (1) describe the methodology
we used to analyze IoT traces; (2) describe and analyze three publicly available
IoT datasets: NY city taxi trips, GPS trajectories of taxis in Beijing, Chicago
taxi trips; and (3) present a capacity planning study based on the workload char-
acterization of the NY city taxi trips. Our workload characterization includes
counts of events, i.e., IoT device signals, at various time scales (e.g., hour of the
day, day of the week) and a characterization of the interarrival time of signals
received from IoT devices.

The rest of this paper is organized as follows. Section 2 describes the general
data collection and analysis methodology used in this paper. Section 3 has one
subsection for each of the datasets we analyzed. Each subsection describes the
dataset and presents the results of the workload characterization for that dataset.
Section 4 provides an example of how a queuing model can be used to answer
what-if questions using the workload of NY city taxi trips. Section 5 discusses
related work. Finally, Sect. 6 presents concluding remarks and future work.

2 General Data Collection and Analysis Methodology

The data collection and analysis methodology presented here can be applied to
a variety of IoT workloads. This paper analyzed several publicly available IoT
datasets. Some existing datasets are from applications in which data is sent by
a set of sensors at regular intervals (e.g., every 5 min) in a synchronous way. We
did not consider these datasets because they are not very interesting from the
point of view of workload analysis. The applications we considered in our study
have IoT devices that are independent of each other and send signals at irregular
intervals (e.g., signals sent by a taxi cab whenever a passenger is dropped off).

Our analysis methodology consisted of the following steps:

1. Data is aggregated from all the files that make up the dataset.
2. The aggregated data is cleansed by removing any invalid and duplicate data,

and any outliers.
3. The cleaned up data is sorted based on the timestamp of the records.
4. The sorted data is filtered based on characteristics such as days, hours, month,

latitude/longitude of the IoT device.
5. The filtered data is characterized by computing event counts by hour of the

day on a daily and monthly basis, and by day of the week.
6. The distribution of the interarrival time of signals generated by IoT devices is

characterized. We used Quantile-Quantile (Q-Q) plots and Cumulative Dis-
tribution Functions (CDF) to that effect [21].
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A Q-Q plot is a graphical tool that helps determine if the data points in a
given data set come from the same distribution as a given theoretical distribu-
tion. A Q-Q plot is a scatter plot that plots two sets of quantiles (from the dataset
and from the theoretical distribution) against each other. If both quantiles come
from the same distribution, the points in the Q-Q plot form a roughly straight
line. We experimented with several candidate theoretical distributions for each
dataset and did a linear regression on the points. The distribution that had a
coefficient of determination R2 closest to 1 was chosen as the best fit theoretical
distribution for the dataset. The candidate distributions can only be those that
can take non-negative values because an interarrival time cannot be negative.
For that reason we selected the lognormal, Weibull, and Gamma distributions.
Note that the Weibull distribution has the exponential distribution as a special
case, depending on the value of its parameters.

Table 1 presents the expressions for the probability density function (pdf)
and the expressions used to compute the parameters of the three considered
distributions as a function of X̄, S and C = S/X̄, the mean, standard deviation
and coefficient of variation of the interarrival times, respectively, computed from
the datasets.

Table 1. Features of the lognormal, Weibull, and Gamma distributions.

Distribution Pdf Parameters

Lognormal 1
xσ

√
2π

e
− [ln x−μ]2

2σ2 μ = ln(X̄) − ln(
√

(1 + C2)), σ =
√

ln(1 + C2) μ ∈ (−∞, +∞), σ ≥ 0

Weibull k
λ

(
x
λ

)k−1
e−(x/λ)k

k ≈ C−1.086, λ = X̄/Γ (1 + 1/k) k, λ > 0

Gamma xk−1e−x/θ

θkΓ (k)
k = 1/C2, θ = S2/X̄ k, θ > 0

The theoretical distribution quantile data is generated using the inverseCu-
mulativeProbability method in the Java Apache Commons Math3 distribution
package [2] with parameters computed using the equations in Table 1.

3 IoT Datasets

We describe and analyze in this section, three IoT datasets: NY city taxi trips,
GPS trajectories of taxis in Beijing, and Chicago taxi trips.

3.1 New York City Taxi Trip Data

The New York City taxi trip data is provided by Illinois Data Bank, which is
operated by the University of Illinois at Urbana Champaign. This dataset [15]
contains records of four years (2010–2014) of taxi operations in New York City
including 697,622,444 trips. The data is stored in the CSV format, organized by
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year and month. Each month’s data is stored in a separate file. Each row in the
file represents a single taxi trip. Each trip records the pickup and drop-off dates,
times, and coordinates, and the metered distance reported by the taximeter. For
this analysis, we only considered the drop-off date and time, drop-off latitude
and longitude fields. We assumed that a fog node is at Grand Central Terminal,
whose latitude and longitude coordinates are (40.7527, −73.9772), and it serves
all the IoTs devices (taxis) that are within a one-mile radius. This means that
signals received from the taxis at drop off locations that are within a 1-mile radius
are served by the Grand Central Terminal fog node. Therefore, we selected all
the records that are within 1 mile radius from the fog node for this analysis.
We cleaned up the data by removing duplicate and invalid entries and used the
cleaned up data to generate interarrival times. We then removed the outliers
(interarrival times greater than 2000 s) from the interarrival times dataset.

Figure 1(b) shows the variation of the number of taxi signals by hour of the
day for Sunday, February 7, 2010 and Monday, February 8, 2010. It is apparent
that taxi cabs are utilized more on Mondays (weekday) than on Sundays (week-
end), with the exception of 12:00 am through 5:00 am. This may be because more
people in New York use cabs on weekdays to move around. The number of taxi
signals on the early hours of Sunday exceeds the taxi cab requests during the
same time on Monday because people are more likely go out on Saturday nights,
and they utilize taxi cabs to get back home during the wee hours on Sunday.
However, at the same time on Monday, most people are at home resting for the
next work day. Also, the number of taxi signals is higher during the morning
(5:00 am to 9:00 am) and evening rush hours (4:00 pm to 6:00 pm) during a Mon-
day because between these peaks most people are more likely to be working in
their offices.

Next, we analyzed the number of taxi signals for the entire month of February,
2010 grouped by hour of the day as shown in Fig. 1(a). The figure shows that the
number of taxi signals is lower during non-working hours compared to those of
working hours. Also, there is a clear rise in the number of signals during morning
and evening rush hours from 5:00–9:00 am and 4:00–7:00 pm, respectively.

Next, we studied the variation of the number of taxi signals by days of the
week and aggregated the data for each day of the week of February, 2010 as
shown in Fig. 2. The figure shows that the lowest signal counts are recorded on
Sundays.

We now turn our attention to the characterization of interarrival times of
taxi signals using Q-Q plots and CDFs as explained in Sect. 2. To determine the
best fit distribution, the quantiles of interarrival times of taxi signals were plot-
ted against those of various theoretical distributions (i.e., lognormal, Weibull and
Gamma). Table 2 shows the parameters used for each distribution and the corre-
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Fig. 1. (a) Left: NY Grand Central Terminal taxi signal counts aggregated by hour of
the day for the entire month of February, 2010, (b) Right: NY Grand Central Terminal
taxi signal counts by hour of the day for Sunday, February 7, 2010 (weekend) and
Monday, February 8, 2010 (weekday)

Fig. 2. NY Grand Central Terminal taxi signal counts aggregated by days of the week
for February, 2010

Table 2. Fitting February 8, 2010 NY City taxi signal interarrival time data.

Distribution Parameters R2

Lognormal μ = −1.630, σ = 1.494 0.941

Weibull k = 0.316, λ = 0.081 0.902

Gamma k = 0.120, θ = 4.976 0.895

sponding R2 value. The lognormal distribution has the best fit for the data with
an R2 value equal to 0.941. The corresponding Q-Q plot is shown in Fig. 3(a).
The CDF plots of taxi signal interarrival times and the lognormal theoretical
distribution are shown in Fig. 3(b). They both match very closely. Based on the
R2 value from the Q-Q plot and CDF plots, we can conclude that the data best
fits the log-normal distribution.
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Fig. 3. (a) Q-Q plot (left) and (b) CDF plots (right) using NY Grand Central Ter-
minal February 8, 2010 taxi signal interarrival times data and theoretical lognormal
distribution data with μ =−1.630 and σ = 1.494.

3.2 Microsoft T-Drive Trajectory Dataset

The Microsoft T-Drive Trajectory dataset [41] is provided by Microsoft for
research purposes. This dataset contains the GPS trajectories of 10,357 taxis
(one file per taxi) during the period of February 2–8, 2008 within Beijing. We
ignored the data for February 2 and February 8 because they are incomplete.
Each file of this dataset contains the trajectory of one taxi. The total number of
points in this dataset is about 15 million and the total distance of the trajectories
reaches about 9 million kilometers. We assumed that the fog node is located at
Tiananmen Square, whose latitude and longitude are (39.9055, 116.3976), and
that this node will serve the IoT devices (i.e., taxis) within a one-mile distance.
We then selected all the records that are within a 1-mile radius from that node
and used that data to generate the interarrival times of the signals. We then
removed the outliers from the interarrival times data.

Figure 4(b) shows the the variation of the number of taxi signals by hour
of the day for Sunday, February 3, 2008, and Monday, February 4, 2008. It is
apparent that taxi cabs are utilized less over the night hours than during day
time. Also, there are more taxis utilized during evening hours on weekends than
weekdays.

Next, we analyzed the number of taxi signals from February 3–7, 2008
grouped by hour of the day as shown in Fig. 4(a). The figure shows that the
number of taxi signals is lower during night hours than during day time. A sim-
ilar trend was seen in Fig. 5. This figure shows the variation of the number of
taxi signals by days of the week from February 3–7, 2008. The highest number
of taxi signals on weekdays can be seen on Mondays and it decreases through
the week. The second highest number is observed on Sundays maybe because
Tiananmen Square is a popular place for visitors and there are more visitors on
weekends than on weekdays.
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Fig. 4. (a) Left: Beijing Tiananmen Square taxi signal counts aggregated by hour of
the day for February 3–7, 2008, (b) Right: Beijing Tiananmen Square taxi signal counts
by hour of the day for Sunday, February 3, 2008 (weekend day) and Monday, February
4, 2008 (weekday).

Fig. 5. Beijing’s Tiananmen Square taxi signal counts aggregated by days of the week.

Next, we characterized the interarrival times of taxi signals using Q-Q plots
and CDFs as explained in Sect. 2. To determine the best fit distribution, the
quantiles of interarrival times of taxi signals were plotted against those of various
theoretical distributions (i.e., lognormal, Weibull and Gamma). Table 3 shows
the parameters used for each distribution and the corresponding R2 value.

The lognormal distribution has the best fit for the data with an R2 value
equal to 0.986. The corresponding Q-Q plot is shown in Fig. 6(a). The CDF plot
of taxi signal interarrival times and lognormal theoretical distribution is shown
in Fig. 6(b). They both match very closely. Based on the R2 value from the
Q-Q plot and CDF plots, we can conclude that the data best fits a lognormal
distribution.

3.3 Chicago Taxi Trips Dataset

The Chicago taxi trips dataset provided by the City of Chicago’s open data
portal [1] contains information on taxi trips in Chicago reported to the City of
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Table 3. Fitting February 5, 2008 Tiananmen Square taxi signal interarrival time data.

Distribution Parameters R2

Lognormal μ = −0.130, σ = 1.111 0.986

Weibull k = 0.616, λ = 1.119 0.974

Gamma k = 0.410, θ = 3.970 0.946

Fig. 6. Q-Q plot (left) and CDF plots (right) using Beijing Tiananmen Square February
5, 2008 taxi signal interarrival times data and theoretical lognormal distribution data
with μ =−0.130 and σ = 1.111.

Chicago. We exported February 2015 data in a CSV format using their API.
Each record in the file represents a single taxi trip and includes pickup and
drop-off dates, times, and coordinates, and trip duration (in sec). The pickup
and drop-off times are rounded to the nearest 15 min and the trip duration is
rounded to the nearest minute, meaning that the trip durations are in multiples
of 60 s. For this analysis, we only considered the trip end time (trip start time
+ trip duration), drop off latitude and longitude fields. We assumed that the
fog node is at Millennium Park, whose latitude and longitude are (41.8826,
−87.6226), and it serves all the IoT devices (taxis) that are within one-mile
radius. Therefore, we selected all taxi trip records whose drop off location is
within one-mile radius from the fog node for this analysis. We cleaned up the
data by removing records with missing data and used the clean data for taxi trip
count analysis. To compute the interarrival times, we grouped the taxi signals
reported each minute and computed the interarrival times by distributing them
uniformly within that minute.

Figure 7(b) shows the variation of the number of taxi signals by hour of
the day for Sunday, February 22, 2015 and Monday, February 23, 2015. It is
apparent that taxi cabs are utilized more on Mondays (weekday) than on Sun-
days (weekend), with the exception of 12:00 am through 6:00 am. This may be
because more people in Chicago use taxis on weekdays to move around than on
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weekends. The number of taxi signals on the early hours of Sunday exceeds the
taxi signals during the same time on Monday because more people are likely to
go out on Saturday nights than on Sunday nights, and they utilize taxis to get
back home in the early hours of the next day. Also, the number of taxi signals is
higher during the morning (6:00 am to 9:00 am) and evening rush hours (3:00 pm
to 6:00 pm) during a Monday (weekday) because people are more likely to use
taxis to go to work and go back home during these times.

Next, we analyzed the number of taxi signals for the entire month of February,
2015 grouped by hour of the day as shown in Fig. 7(a). The figure shows that
the number of taxi signals is lower during non-working hours compared to those
of working hours. Also, there is a clear rise in the number of signals during
morning and evening rush hours from 5:00 am to 9:00 am and 3:00 pm to 6:00 pm,
respectively.

Fig. 7. Chicago Millennium Park taxi signal counts. (a) Left: aggregated by hour of the
day for the entire month of February 2015, (b) Right: by hour of the day for Sunday,
February 22, 2015 (weekend) and Monday, February 23, 2015 (weekday).

Next, we studied the variation of the number of taxi signals by days of the
month and aggregated the data for each day of the month of February as shown
in Fig. 8(a). The figure shows that the signal counts are higher on weekdays than
on weekends and the lowest signal counts are seen on Sundays every week.

Next, we studied the variation of the number of taxi signals by day of the
week and aggregated the data for each day of the week of February 2015 as
shown in Fig. 8(b). The figure shows that the weekday counts are higher than
the weekend counts and increase from Monday to Friday. Also, lowest signal
counts are recorded on Sundays.

We then characterized the interarrival times of taxi signals using Q-Q plots
and CDFs as explained in Sect. 2. To determine the best fit distribution, the
quantiles of interarrival times of taxi signals were plotted against those of various
theoretical distributions (i.e., lognormal, Weibull and Gamma). Table 4 shows
the parameters used for each distribution and the corresponding R2 value.

The R2 for lognormal and Weibull distributions are very close. However, the
lognormal distribution has the best fit for the data with an R2 value equal to
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Fig. 8. Chicago Millennium Park taxi signal counts. (a) Left: for each day in February
2015 (b) Right: aggregated by days of the week in February 2015.

Table 4. Fitting February 23, 2015 Chicago taxi signal interarrival time data

Distribution Parameters R2

Lognormal μ = 0.241, σ = 1.439 0.9621

Weibull k = 0.35, λ = 0.71 0.9618

Gamma k = 0.144, θ = 24.809 0.7977

Fig. 9. Q-Q plot (left) and CDF plots (right) using the Chicago Millennium Park
February 23, 2015 taxi signal interarrival times and theoretical lognormal distribution
data with μ = 0.241 and σ = 1.439.

0.9621. The corresponding Q-Q plot is shown in Fig. 9(a) and the plots for the
CDF of interarrival times and the lognormal theoretical distribution are shown
in Fig. 9(b). They both match very closely. Based on the R2 value from the
Q-Q plot and CDF plots, we can conclude that the data best fits a lognormal
distribution even though a Weibull distribution would be a good fit also.
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4 Workload Characterization Use in Capacity Planning

As indicated above, workload characterization is an essential step for capac-
ity planning purposes. Consider the following what-if question: How many fog
servers are required to support a given load with an average response time below
a certain value? We show here how we can answer this type of question using the
NY City taxi workload. Let n be the number of fog servers that handle signals
received from taxis within a one-mile radius of a given location. All arriving
signals join a single queue and are dispatched to the first available fog server
when they reach the head of the line.

The average response time of a taxi signal was computed using the approxi-
mate G/G/n queuing equation given below [26]

T ≈ E[S] +
C(ρ, n)

c(1 − ρ)/E[S]
× C2

a + C2
s

2
(1)

where E[S] is the average processing time of a taxi signal, ρ = λE[S]/n is the
utilization of the set of n fog servers that receive a collective average arrival
rate of λ taxi signals/sec, Ca is the coefficient of variation (i.e., the ratio of the
standard deviation by the mean) of the interarrival time, Cs is the coefficient of
variation of the service time, and C(ρ, n) is the Erlang formula given by

C(ρ, n) =
(nρ)n/n!

(1 − ρ)
∑n−1

j=0 (nρ)j/j! + (nρ)n/n!
. (2)

Because the utilization ρ must be less than 1, we have that λ < n/E[S], i.e.,
the average arrival rate cannot exceed n/E[S]. Our data showed that the max-
imum rate of signals received from taxis within a one-mile radius from Grand
Central Terminal during the date of February 8, 2010 was approximately 4 sig-
nals/sec. We used the G/G/n equations above to compute the variation of the
average signal response time as a function of the average arrival rate λ for five
values of n (see Fig. 10). We used the following numerical values for Fig. 10:
E[S] = 0.2 s, Ca = 2.88, Cs = 0.94 (from 2/8/2010 data). As expected, the figure
shows that the maximum arrival rate of signals that can be handled increases in
proportion to the number of fog servers. For example, when n = 1, the maximum
arrival rate the system can handle has to be less than 5 signals/sec whereas for
n = 5, the maximum arrival rate the system can handle has to be less than 25
signals/sec. Additionally, the average response time decreases as n increases for
a given arrival rate. For example, at an arrival rate = 4.5 signals/sec the aver-
age response time with one server is 9.13 s whereas with 5 servers the average
response time is 0.2 s. If we want the average response time not to exceed 1 s for
an average arrival rate of taxi signals of 10 signals/sec we need at least 3 fog
servers.

5 Related Work

Workload characterization studies have been conducted for various types of
applications and systems. Some examples include: e-commerce [25], auction
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Fig. 10. Average response time vs. arrival rate for n = 1, 2, 3, 4, 5

sites [5], WWW [24], networking [28,30], live streaming media [39], spam traf-
fic [19], storage systems [36], data centers [32], cloud computing [23], grid com-
puting [14], memory systems [8], and database systems [16]. [27] quantifies a
Poisson process approximation for IoT aggregate arrival processes. The studies
above have shown that different domains have their own specific workload char-
acteristics. Our paper fills a much needed gap in terms of understanding and
characterizing IoT workloads.

The vision and challenges of edge computing were discussed in [9,34]. There
are some very good IoT and fog/edge computing surveys: a survey of mobile
edge computing was presented in [3]; a survey of architecture, enabling tech-
nologies, security and privacy, and IoT applications was presented in [22]; and
Ngu et al. presented a survey on IoT middleware [29]. Cruz et al. presented a
reference model for IoT middleware [13]. [33] presents an IoT architecture based
on transparent computing to build scalable IoT platforms. Transparent comput-
ing enables users to select services on-demand, without being concerned with
the installation and management of services.

Similarly to [38], the work in [40] aims at reducing the response time of IoT
applications by offloading the load of fog-capable devices to the cloud. Another
work along the same vein is [10]. Fan and Ansari [17] presented an application
aware scheme to allocate IoT-based workloads to edge servers in order to mini-
mize the response time of IoT applications. The work in [4] proposes a method
for reducing latency and device energy consumption using the fog, which is based
on computational offloading and network utility optimization. The work in [18]
presents a vision of human-centered edge-device based computing, known as
Edge-centric Computing and the research challenges associated with its imple-
mentation. The work in [7] proposed a new technique called Home Edge Com-
puting, a three-tier edge computing architecture that provides data storage and
processing near the users (home server) to achieve ultra-low latency.

The work in [20] analyzed a motion dataset to characterize the kinetic energy
that can be harvested by an IoT node and developed energy allocation algorithms
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for such nodes. The work by Pereira et al. [31] discusses an experimental eval-
uation of latency in IoT service composition with mobile gateways and assesses
the capabilities and limitations of a standard machine-to-machine middleware.
IoT devices with security flaws are attractive targets for attacks. [6] discusses
HoneyScope, a network centric approach to protect vulnerable IoT devices by
creating virtualized views of the network and nodes.

None of the studies cited above present a comprehensive workload charac-
terization of actual IoT applications.

6 Concluding Remarks and Future Work

Understanding and quantitatively characterizing the workload generated by IoT
devices is key to being able to analyze the performance of edge/fog comput-
ing environments. Our study analyzed three datasets that contain information
generated by taxis in three big cities. Our workload characterization, which can
be applied to other IoT workloads, included counts of events, i.e., IoT device
signals, at various time scales (e.g., hour of the day, day of the week) and a
characterization of the interarrival time of signals received from IoT devices.

Our results indicated that the interarrival time of IoT signals for all three
datasets can be very well approximated by a lognormal distribution. We also
observed that the count of events for the three taxi-related datasets can be well
explained by expected daily routines of habitants of large cities. We also showed
that workload characterization results can be used for capacity planning studies
of edge computing environments.

In the future, we intend to apply our characterization methodology to IoT
datasets that deal with other types of IoT devices. We are also investigating the
sensitivity of our results with respect to the location of the fog node, and how it
may affect the probability distribution and parameters of the request interarrival
times.
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