
Tao Zhang
Jinpeng Wei
Liang-Jie Zhang (Eds.)

LN
CS

 1
15

20

Third International Conference
Held as Part of the Services Conference Federation, SCF 2019
San Diego, CA, USA, June 25–30, 2019, Proceedings

Edge Computing –
EDGE 2019

Lecture Notes in Computer Science 11520

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Tao Zhang • Jinpeng Wei •

Liang-Jie Zhang (Eds.)

Edge Computing –

EDGE 2019
Third International Conference
Held as Part of the Services Conference Federation, SCF 2019
San Diego, CA, USA, June 25–30, 2019
Proceedings

123

Editors
Tao Zhang
Cisco Systems
Iselin, NJ, USA

Jinpeng Wei
University of North Carolina
Charlotte, NC, USA

Liang-Jie Zhang
Kingdee International Software Group
Co., Ltd.
Shenzhen, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-23373-0 ISBN 978-3-030-23374-7 (eBook)
https://doi.org/10.1007/978-3-030-23374-7

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6982-7386
https://orcid.org/0000-0002-6219-0853
https://doi.org/10.1007/978-3-030-23374-7

Preface

The aim of the International Conference on Edge Computing (EDGE) is to become a
prime international forum for researchers and industry practitioners alike to exchange
the latest fundamental advances in the state of the art and practice of edge computing,
identify emerging research topics, and define the future of edge computing.

EDGE 2019 was part of the Services Conference Federation (SCF). SCF 2019 had
the following ten collocated service-oriented sister conferences: 2019 International
Conference on Web Services (ICWS 2019), 2019 International Conference on Cloud
Computing (CLOUD 2019), 2019 International Conference on Services Computing
(SCC 2019), 2019 International Congress on Big Data (BigData 2019), 2019 Inter-
national Conference on AI & Mobile Services (AIMS 2019), 2019 World Congress on
Services (SERVICES 2019), 2019 International Congress on Internet of Things (ICIOT
2019), 2019 International Conference on Cognitive Computing (ICCC 2019), 2019
International Conference on Edge Computing (EDGE 2019), and 2019 International
Conference on Blockchain (ICBC 2019). As the founding member of SCF, the First
International Conference on Web Services (ICWS) was held in June 2003 in Las
Vegas, USA. The First International Conference on Web Services – Europe 2003
(ICWS-Europe 2003) was held in Germany in October 2003. ICWS-Europe 2003 was
an extended event of the 2003 International Conference on Web Services (ICWS 2003)
in Europe. In 2004, ICWS-Europe was changed to the European Conference on Web
Services (ECOWS), which was held in Erfurt, Germany. To celebrate its 16th birthday,
SCF 2018 was held successfully in Seattle, USA.

This volume presents the accepted papers for the 2019 International Conference on
Edge Computing (EDGE 2019), held in San Diego, USA, during June 25–30, 2019.
EDGE 2019 puts its focus on the state of the art and practice of edge computing, in
which topics covered localized resource sharing and connections with the cloud. We
accepted six papers. Each was reviewed and selected by at least three independent
members of the EDGE 2019 international Program Committee. We are pleased to
thank the authors, whose submissions and participation made this conference possible.
We also want to express our thanks to the Organizing Committee and Program
Committee members, for their dedication in helping to organize the conference and in
reviewing the submissions. We would like to thank Prof. Teruo Higashino, who pro-
vided continuous support for this conference. We look forward to your great contri-
butions as a volunteer, author, and conference participant for the fast-growing
worldwide services innovations community.

May 2019 Tao Zhang
Jinpeng Wei

Liang-Jie Zhang

Organization

General Chair

Teruo Higashino Osaka University, Japan

Program Chairs

Tao Zhang Cisco Systems, USA
Jinpeng Wei University of North Carolina at Charlotte, USA

Services Conference Federation (SCF 2019)

SCF 2019 General Chairs

Calton Pu Georgia Tech, USA
Wu Chou Essenlix Corporation, USA
Ali Arsanjani 8x8 Cloud Communications, USA

SCF 2019 Program Chair

Liang-Jie Zhang Kingdee International Software Group Co., Ltd., China

SCF 2019 Finance Chair

Min Luo Services Society, USA

SCF 2019 Industry Exhibit and International Affairs Chair

Zhixiong Chen Mercy College, USA

SCF 2019 Operations Committee

Huan Chen Kingdee International Software Group Co., Ltd., China
Jing Zeng Kingdee International Software Group Co., Ltd., China
Liping Deng Kingdee International Software Group Co., Ltd., China
Yishuang Ning Tsinghua University, China
Sheng He Tsinghua University, China

SCF 2019 Steering Committee

Calton Pu (Co-chair) Georgia Tech, USA
Liang-Jie Zhang (Co-chair) Kingdee International Software Group Co., Ltd., China

EDGE 2019 Program Committee

Zesheng Chen Purdue University Fort Wayne, USA
Nicola Dragoni Technical University of Denmark, Denmark
Maria Gorlatova Duke University, USA
Tao Han University of North Carolina at Charlotte, USA
Mohamad Hoseiny University of Sydney, Australia
Wei Li The University of Sydney, Australia
Min Luo Services Society, USA
Rui André Oliveira University of Lisbon, Portugal
Ju Ren Central South University, China
Javid Taheri Karlstad University, Sweden
Weichao Wang University of North Carolina at Charlotte, USA
Hung-Yu Wei National Taiwan University, Taiwan
Mengjun Xie University of Tennessee at Chattanooga, USA
Yun Yang Swinburne University of Technology, Australia
John Zao Harvard University, USA

viii Organization

Contents

Characterization of IoT Workloads . 1
Uma Tadakamalla and Daniel A. Menascé

Latency Control for Distributed Machine Vision at the Edge
Through Approximate Computing . 16

Anjus George and Arun Ravindran

Energy-Aware Capacity Provisioning and Resource Allocation
in Edge Computing Systems. 31

Tayebeh Bahreini, Hossein Badri, and Daniel Grosu

Stackelberg Game-Theoretic Spectrum Allocation for QoE-Centric
Wireless Multimedia Communications . 46

Krishna Murthy Kattiyan Ramamoorthy, Wei Wang, and Kazem Sohraby

Intrusion Detection at the Network Edge: Solutions, Limitations,
and Future Directions . 59

Simone Raponi, Maurantonio Caprolu, and Roberto Di Pietro

Volunteer Cloud as an Edge Computing Enabler. 76
Tessema M. Mengistu, Abdullah Albuali, Abdulrahman Alahmadi,
and Dunren Che

Author Index . 85

Characterization of IoT Workloads

Uma Tadakamalla(B) and Daniel A. Menascé(B)

Department of Computer Science, George Mason University, Fairfax, VA, USA
{utadakam,menasce}@gmu.edu

Abstract. Workload characterization is a fundamental step in carry-
ing out performance and Quality of Service engineering studies. The
workload of a system is defined as the set of all inputs received by the
system from its environment during one or more time windows. The
characterization of the workload entails determining the nature of its
basic components as well as a quantitative and probabilistic description
of the workload components in terms of both the arrival process, event
counts, and service demands. Several workload characterization studies
were presented for a variety of domains, except for IoT workloads. This
is precisely the main contribution of this paper, which also presents a
capacity planning study based on one of the workload characterizations
presented here.

Keywords: Workload characterization · Internet of Things ·
Capacity planning · G/G/n queue ·
Quality of Service in edge computing

1 Introduction

Siegel et al. [35] argue that scalability is needed to support the continued expan-
sion of the Internet of Things. Therefore, performance engineering studies are
very important for understanding tradeoffs between security, availability, and
response time of various types of IoT applications.

Workload characterization is a fundamental and necessary step in carrying
out any performance engineering study [26]. The workload of a system is defined
as the set of all inputs received by the system from its environment during one
or more time windows. The characterization of the workload entails determining
the nature of its basic components (e.g., transactions, I/O requests, IoT device
requests) as well as a quantitative and probabilistic description of the work-
load components in terms of both the arrival process, event counts, and service
demands (e.g., arrival rate of requests and interarrival time distributions, distri-
bution of the number of IoT device signals received, distribution of the file sizes
returned by an HTTP request) [26].

General methods for workload characterization have been discussed in [11,
12,26]. Specific applications of these techniques to a variety of domains were
developed by many researchers (see examples in Sect. 5). However, there is a
need for workload characterization studies for IoT applications.
c© Springer Nature Switzerland AG 2019
T. Zhang et al. (Eds.): EDGE 2019, LNCS 11520, pp. 1–15, 2019.
https://doi.org/10.1007/978-3-030-23374-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23374-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-23374-7_1

2 U. Tadakamalla and D. A. Menascé

The recent development of Internet of Things (IoT) and edge/fog computing
demands models for this new environment. Our prior work includes the develop-
ment of an analytic model, called FogQN, based on queuing networks [37] and
an autonomic controller that uses FogQN to dynamically determine the optimal
breakdown of processing between fog and cloud servers [38].

Any modeling effort of fog and cloud computing calls for workload character-
ization studies of IoT workloads. The understanding of the characteristics of IoT
workloads can be used to perform capacity planning studies. These are the main
contributions of this paper. More specifically, we (1) describe the methodology
we used to analyze IoT traces; (2) describe and analyze three publicly available
IoT datasets: NY city taxi trips, GPS trajectories of taxis in Beijing, Chicago
taxi trips; and (3) present a capacity planning study based on the workload char-
acterization of the NY city taxi trips. Our workload characterization includes
counts of events, i.e., IoT device signals, at various time scales (e.g., hour of the
day, day of the week) and a characterization of the interarrival time of signals
received from IoT devices.

The rest of this paper is organized as follows. Section 2 describes the general
data collection and analysis methodology used in this paper. Section 3 has one
subsection for each of the datasets we analyzed. Each subsection describes the
dataset and presents the results of the workload characterization for that dataset.
Section 4 provides an example of how a queuing model can be used to answer
what-if questions using the workload of NY city taxi trips. Section 5 discusses
related work. Finally, Sect. 6 presents concluding remarks and future work.

2 General Data Collection and Analysis Methodology

The data collection and analysis methodology presented here can be applied to
a variety of IoT workloads. This paper analyzed several publicly available IoT
datasets. Some existing datasets are from applications in which data is sent by
a set of sensors at regular intervals (e.g., every 5 min) in a synchronous way. We
did not consider these datasets because they are not very interesting from the
point of view of workload analysis. The applications we considered in our study
have IoT devices that are independent of each other and send signals at irregular
intervals (e.g., signals sent by a taxi cab whenever a passenger is dropped off).

Our analysis methodology consisted of the following steps:

1. Data is aggregated from all the files that make up the dataset.
2. The aggregated data is cleansed by removing any invalid and duplicate data,

and any outliers.
3. The cleaned up data is sorted based on the timestamp of the records.
4. The sorted data is filtered based on characteristics such as days, hours, month,

latitude/longitude of the IoT device.
5. The filtered data is characterized by computing event counts by hour of the

day on a daily and monthly basis, and by day of the week.
6. The distribution of the interarrival time of signals generated by IoT devices is

characterized. We used Quantile-Quantile (Q-Q) plots and Cumulative Dis-
tribution Functions (CDF) to that effect [21].

Characterization of IoT Workloads 3

A Q-Q plot is a graphical tool that helps determine if the data points in a
given data set come from the same distribution as a given theoretical distribu-
tion. A Q-Q plot is a scatter plot that plots two sets of quantiles (from the dataset
and from the theoretical distribution) against each other. If both quantiles come
from the same distribution, the points in the Q-Q plot form a roughly straight
line. We experimented with several candidate theoretical distributions for each
dataset and did a linear regression on the points. The distribution that had a
coefficient of determination R2 closest to 1 was chosen as the best fit theoretical
distribution for the dataset. The candidate distributions can only be those that
can take non-negative values because an interarrival time cannot be negative.
For that reason we selected the lognormal, Weibull, and Gamma distributions.
Note that the Weibull distribution has the exponential distribution as a special
case, depending on the value of its parameters.

Table 1 presents the expressions for the probability density function (pdf)
and the expressions used to compute the parameters of the three considered
distributions as a function of X̄, S and C = S/X̄, the mean, standard deviation
and coefficient of variation of the interarrival times, respectively, computed from
the datasets.

Table 1. Features of the lognormal, Weibull, and Gamma distributions.

Distribution Pdf Parameters

Lognormal 1
xσ

√
2π

e
− [ln x−μ]2

2σ2 μ = ln(X̄) − ln(
√

(1 + C2)), σ =
√

ln(1 + C2) μ ∈ (−∞, +∞), σ ≥ 0

Weibull k
λ

(
x
λ

)k−1
e−(x/λ)k

k ≈ C−1.086, λ = X̄/Γ (1 + 1/k) k, λ > 0

Gamma xk−1e−x/θ

θkΓ (k)
k = 1/C2, θ = S2/X̄ k, θ > 0

The theoretical distribution quantile data is generated using the inverseCu-
mulativeProbability method in the Java Apache Commons Math3 distribution
package [2] with parameters computed using the equations in Table 1.

3 IoT Datasets

We describe and analyze in this section, three IoT datasets: NY city taxi trips,
GPS trajectories of taxis in Beijing, and Chicago taxi trips.

3.1 New York City Taxi Trip Data

The New York City taxi trip data is provided by Illinois Data Bank, which is
operated by the University of Illinois at Urbana Champaign. This dataset [15]
contains records of four years (2010–2014) of taxi operations in New York City
including 697,622,444 trips. The data is stored in the CSV format, organized by

4 U. Tadakamalla and D. A. Menascé

year and month. Each month’s data is stored in a separate file. Each row in the
file represents a single taxi trip. Each trip records the pickup and drop-off dates,
times, and coordinates, and the metered distance reported by the taximeter. For
this analysis, we only considered the drop-off date and time, drop-off latitude
and longitude fields. We assumed that a fog node is at Grand Central Terminal,
whose latitude and longitude coordinates are (40.7527, −73.9772), and it serves
all the IoTs devices (taxis) that are within a one-mile radius. This means that
signals received from the taxis at drop off locations that are within a 1-mile radius
are served by the Grand Central Terminal fog node. Therefore, we selected all
the records that are within 1 mile radius from the fog node for this analysis.
We cleaned up the data by removing duplicate and invalid entries and used the
cleaned up data to generate interarrival times. We then removed the outliers
(interarrival times greater than 2000 s) from the interarrival times dataset.

Figure 1(b) shows the variation of the number of taxi signals by hour of the
day for Sunday, February 7, 2010 and Monday, February 8, 2010. It is apparent
that taxi cabs are utilized more on Mondays (weekday) than on Sundays (week-
end), with the exception of 12:00 am through 5:00 am. This may be because more
people in New York use cabs on weekdays to move around. The number of taxi
signals on the early hours of Sunday exceeds the taxi cab requests during the
same time on Monday because people are more likely go out on Saturday nights,
and they utilize taxi cabs to get back home during the wee hours on Sunday.
However, at the same time on Monday, most people are at home resting for the
next work day. Also, the number of taxi signals is higher during the morning
(5:00 am to 9:00 am) and evening rush hours (4:00 pm to 6:00 pm) during a Mon-
day because between these peaks most people are more likely to be working in
their offices.

Next, we analyzed the number of taxi signals for the entire month of February,
2010 grouped by hour of the day as shown in Fig. 1(a). The figure shows that the
number of taxi signals is lower during non-working hours compared to those of
working hours. Also, there is a clear rise in the number of signals during morning
and evening rush hours from 5:00–9:00 am and 4:00–7:00 pm, respectively.

Next, we studied the variation of the number of taxi signals by days of the
week and aggregated the data for each day of the week of February, 2010 as
shown in Fig. 2. The figure shows that the lowest signal counts are recorded on
Sundays.

We now turn our attention to the characterization of interarrival times of
taxi signals using Q-Q plots and CDFs as explained in Sect. 2. To determine the
best fit distribution, the quantiles of interarrival times of taxi signals were plot-
ted against those of various theoretical distributions (i.e., lognormal, Weibull and
Gamma). Table 2 shows the parameters used for each distribution and the corre-

Characterization of IoT Workloads 5

Fig. 1. (a) Left: NY Grand Central Terminal taxi signal counts aggregated by hour of
the day for the entire month of February, 2010, (b) Right: NY Grand Central Terminal
taxi signal counts by hour of the day for Sunday, February 7, 2010 (weekend) and
Monday, February 8, 2010 (weekday)

Fig. 2. NY Grand Central Terminal taxi signal counts aggregated by days of the week
for February, 2010

Table 2. Fitting February 8, 2010 NY City taxi signal interarrival time data.

Distribution Parameters R2

Lognormal μ = −1.630, σ = 1.494 0.941

Weibull k = 0.316, λ = 0.081 0.902

Gamma k = 0.120, θ = 4.976 0.895

sponding R2 value. The lognormal distribution has the best fit for the data with
an R2 value equal to 0.941. The corresponding Q-Q plot is shown in Fig. 3(a).
The CDF plots of taxi signal interarrival times and the lognormal theoretical
distribution are shown in Fig. 3(b). They both match very closely. Based on the
R2 value from the Q-Q plot and CDF plots, we can conclude that the data best
fits the log-normal distribution.

6 U. Tadakamalla and D. A. Menascé

Fig. 3. (a) Q-Q plot (left) and (b) CDF plots (right) using NY Grand Central Ter-
minal February 8, 2010 taxi signal interarrival times data and theoretical lognormal
distribution data with μ =−1.630 and σ = 1.494.

3.2 Microsoft T-Drive Trajectory Dataset

The Microsoft T-Drive Trajectory dataset [41] is provided by Microsoft for
research purposes. This dataset contains the GPS trajectories of 10,357 taxis
(one file per taxi) during the period of February 2–8, 2008 within Beijing. We
ignored the data for February 2 and February 8 because they are incomplete.
Each file of this dataset contains the trajectory of one taxi. The total number of
points in this dataset is about 15 million and the total distance of the trajectories
reaches about 9 million kilometers. We assumed that the fog node is located at
Tiananmen Square, whose latitude and longitude are (39.9055, 116.3976), and
that this node will serve the IoT devices (i.e., taxis) within a one-mile distance.
We then selected all the records that are within a 1-mile radius from that node
and used that data to generate the interarrival times of the signals. We then
removed the outliers from the interarrival times data.

Figure 4(b) shows the the variation of the number of taxi signals by hour
of the day for Sunday, February 3, 2008, and Monday, February 4, 2008. It is
apparent that taxi cabs are utilized less over the night hours than during day
time. Also, there are more taxis utilized during evening hours on weekends than
weekdays.

Next, we analyzed the number of taxi signals from February 3–7, 2008
grouped by hour of the day as shown in Fig. 4(a). The figure shows that the
number of taxi signals is lower during night hours than during day time. A sim-
ilar trend was seen in Fig. 5. This figure shows the variation of the number of
taxi signals by days of the week from February 3–7, 2008. The highest number
of taxi signals on weekdays can be seen on Mondays and it decreases through
the week. The second highest number is observed on Sundays maybe because
Tiananmen Square is a popular place for visitors and there are more visitors on
weekends than on weekdays.

Characterization of IoT Workloads 7

Fig. 4. (a) Left: Beijing Tiananmen Square taxi signal counts aggregated by hour of
the day for February 3–7, 2008, (b) Right: Beijing Tiananmen Square taxi signal counts
by hour of the day for Sunday, February 3, 2008 (weekend day) and Monday, February
4, 2008 (weekday).

Fig. 5. Beijing’s Tiananmen Square taxi signal counts aggregated by days of the week.

Next, we characterized the interarrival times of taxi signals using Q-Q plots
and CDFs as explained in Sect. 2. To determine the best fit distribution, the
quantiles of interarrival times of taxi signals were plotted against those of various
theoretical distributions (i.e., lognormal, Weibull and Gamma). Table 3 shows
the parameters used for each distribution and the corresponding R2 value.

The lognormal distribution has the best fit for the data with an R2 value
equal to 0.986. The corresponding Q-Q plot is shown in Fig. 6(a). The CDF plot
of taxi signal interarrival times and lognormal theoretical distribution is shown
in Fig. 6(b). They both match very closely. Based on the R2 value from the
Q-Q plot and CDF plots, we can conclude that the data best fits a lognormal
distribution.

3.3 Chicago Taxi Trips Dataset

The Chicago taxi trips dataset provided by the City of Chicago’s open data
portal [1] contains information on taxi trips in Chicago reported to the City of

8 U. Tadakamalla and D. A. Menascé

Table 3. Fitting February 5, 2008 Tiananmen Square taxi signal interarrival time data.

Distribution Parameters R2

Lognormal μ = −0.130, σ = 1.111 0.986

Weibull k = 0.616, λ = 1.119 0.974

Gamma k = 0.410, θ = 3.970 0.946

Fig. 6. Q-Q plot (left) and CDF plots (right) using Beijing Tiananmen Square February
5, 2008 taxi signal interarrival times data and theoretical lognormal distribution data
with μ =−0.130 and σ = 1.111.

Chicago. We exported February 2015 data in a CSV format using their API.
Each record in the file represents a single taxi trip and includes pickup and
drop-off dates, times, and coordinates, and trip duration (in sec). The pickup
and drop-off times are rounded to the nearest 15 min and the trip duration is
rounded to the nearest minute, meaning that the trip durations are in multiples
of 60 s. For this analysis, we only considered the trip end time (trip start time
+ trip duration), drop off latitude and longitude fields. We assumed that the
fog node is at Millennium Park, whose latitude and longitude are (41.8826,
−87.6226), and it serves all the IoT devices (taxis) that are within one-mile
radius. Therefore, we selected all taxi trip records whose drop off location is
within one-mile radius from the fog node for this analysis. We cleaned up the
data by removing records with missing data and used the clean data for taxi trip
count analysis. To compute the interarrival times, we grouped the taxi signals
reported each minute and computed the interarrival times by distributing them
uniformly within that minute.

Figure 7(b) shows the variation of the number of taxi signals by hour of
the day for Sunday, February 22, 2015 and Monday, February 23, 2015. It is
apparent that taxi cabs are utilized more on Mondays (weekday) than on Sun-
days (weekend), with the exception of 12:00 am through 6:00 am. This may be
because more people in Chicago use taxis on weekdays to move around than on

Characterization of IoT Workloads 9

weekends. The number of taxi signals on the early hours of Sunday exceeds the
taxi signals during the same time on Monday because more people are likely to
go out on Saturday nights than on Sunday nights, and they utilize taxis to get
back home in the early hours of the next day. Also, the number of taxi signals is
higher during the morning (6:00 am to 9:00 am) and evening rush hours (3:00 pm
to 6:00 pm) during a Monday (weekday) because people are more likely to use
taxis to go to work and go back home during these times.

Next, we analyzed the number of taxi signals for the entire month of February,
2015 grouped by hour of the day as shown in Fig. 7(a). The figure shows that
the number of taxi signals is lower during non-working hours compared to those
of working hours. Also, there is a clear rise in the number of signals during
morning and evening rush hours from 5:00 am to 9:00 am and 3:00 pm to 6:00 pm,
respectively.

Fig. 7. Chicago Millennium Park taxi signal counts. (a) Left: aggregated by hour of the
day for the entire month of February 2015, (b) Right: by hour of the day for Sunday,
February 22, 2015 (weekend) and Monday, February 23, 2015 (weekday).

Next, we studied the variation of the number of taxi signals by days of the
month and aggregated the data for each day of the month of February as shown
in Fig. 8(a). The figure shows that the signal counts are higher on weekdays than
on weekends and the lowest signal counts are seen on Sundays every week.

Next, we studied the variation of the number of taxi signals by day of the
week and aggregated the data for each day of the week of February 2015 as
shown in Fig. 8(b). The figure shows that the weekday counts are higher than
the weekend counts and increase from Monday to Friday. Also, lowest signal
counts are recorded on Sundays.

We then characterized the interarrival times of taxi signals using Q-Q plots
and CDFs as explained in Sect. 2. To determine the best fit distribution, the
quantiles of interarrival times of taxi signals were plotted against those of various
theoretical distributions (i.e., lognormal, Weibull and Gamma). Table 4 shows
the parameters used for each distribution and the corresponding R2 value.

The R2 for lognormal and Weibull distributions are very close. However, the
lognormal distribution has the best fit for the data with an R2 value equal to

10 U. Tadakamalla and D. A. Menascé

Fig. 8. Chicago Millennium Park taxi signal counts. (a) Left: for each day in February
2015 (b) Right: aggregated by days of the week in February 2015.

Table 4. Fitting February 23, 2015 Chicago taxi signal interarrival time data

Distribution Parameters R2

Lognormal μ = 0.241, σ = 1.439 0.9621

Weibull k = 0.35, λ = 0.71 0.9618

Gamma k = 0.144, θ = 24.809 0.7977

Fig. 9. Q-Q plot (left) and CDF plots (right) using the Chicago Millennium Park
February 23, 2015 taxi signal interarrival times and theoretical lognormal distribution
data with μ = 0.241 and σ = 1.439.

0.9621. The corresponding Q-Q plot is shown in Fig. 9(a) and the plots for the
CDF of interarrival times and the lognormal theoretical distribution are shown
in Fig. 9(b). They both match very closely. Based on the R2 value from the
Q-Q plot and CDF plots, we can conclude that the data best fits a lognormal
distribution even though a Weibull distribution would be a good fit also.

Characterization of IoT Workloads 11

4 Workload Characterization Use in Capacity Planning

As indicated above, workload characterization is an essential step for capac-
ity planning purposes. Consider the following what-if question: How many fog
servers are required to support a given load with an average response time below
a certain value? We show here how we can answer this type of question using the
NY City taxi workload. Let n be the number of fog servers that handle signals
received from taxis within a one-mile radius of a given location. All arriving
signals join a single queue and are dispatched to the first available fog server
when they reach the head of the line.

The average response time of a taxi signal was computed using the approxi-
mate G/G/n queuing equation given below [26]

T ≈ E[S] +
C(ρ, n)

c(1 − ρ)/E[S]
× C2

a + C2
s

2
(1)

where E[S] is the average processing time of a taxi signal, ρ = λE[S]/n is the
utilization of the set of n fog servers that receive a collective average arrival
rate of λ taxi signals/sec, Ca is the coefficient of variation (i.e., the ratio of the
standard deviation by the mean) of the interarrival time, Cs is the coefficient of
variation of the service time, and C(ρ, n) is the Erlang formula given by

C(ρ, n) =
(nρ)n/n!

(1 − ρ)
∑n−1

j=0 (nρ)j/j! + (nρ)n/n!
. (2)

Because the utilization ρ must be less than 1, we have that λ < n/E[S], i.e.,
the average arrival rate cannot exceed n/E[S]. Our data showed that the max-
imum rate of signals received from taxis within a one-mile radius from Grand
Central Terminal during the date of February 8, 2010 was approximately 4 sig-
nals/sec. We used the G/G/n equations above to compute the variation of the
average signal response time as a function of the average arrival rate λ for five
values of n (see Fig. 10). We used the following numerical values for Fig. 10:
E[S] = 0.2 s, Ca = 2.88, Cs = 0.94 (from 2/8/2010 data). As expected, the figure
shows that the maximum arrival rate of signals that can be handled increases in
proportion to the number of fog servers. For example, when n = 1, the maximum
arrival rate the system can handle has to be less than 5 signals/sec whereas for
n = 5, the maximum arrival rate the system can handle has to be less than 25
signals/sec. Additionally, the average response time decreases as n increases for
a given arrival rate. For example, at an arrival rate = 4.5 signals/sec the aver-
age response time with one server is 9.13 s whereas with 5 servers the average
response time is 0.2 s. If we want the average response time not to exceed 1 s for
an average arrival rate of taxi signals of 10 signals/sec we need at least 3 fog
servers.

5 Related Work

Workload characterization studies have been conducted for various types of
applications and systems. Some examples include: e-commerce [25], auction

12 U. Tadakamalla and D. A. Menascé

Fig. 10. Average response time vs. arrival rate for n = 1, 2, 3, 4, 5

sites [5], WWW [24], networking [28,30], live streaming media [39], spam traf-
fic [19], storage systems [36], data centers [32], cloud computing [23], grid com-
puting [14], memory systems [8], and database systems [16]. [27] quantifies a
Poisson process approximation for IoT aggregate arrival processes. The studies
above have shown that different domains have their own specific workload char-
acteristics. Our paper fills a much needed gap in terms of understanding and
characterizing IoT workloads.

The vision and challenges of edge computing were discussed in [9,34]. There
are some very good IoT and fog/edge computing surveys: a survey of mobile
edge computing was presented in [3]; a survey of architecture, enabling tech-
nologies, security and privacy, and IoT applications was presented in [22]; and
Ngu et al. presented a survey on IoT middleware [29]. Cruz et al. presented a
reference model for IoT middleware [13]. [33] presents an IoT architecture based
on transparent computing to build scalable IoT platforms. Transparent comput-
ing enables users to select services on-demand, without being concerned with
the installation and management of services.

Similarly to [38], the work in [40] aims at reducing the response time of IoT
applications by offloading the load of fog-capable devices to the cloud. Another
work along the same vein is [10]. Fan and Ansari [17] presented an application
aware scheme to allocate IoT-based workloads to edge servers in order to mini-
mize the response time of IoT applications. The work in [4] proposes a method
for reducing latency and device energy consumption using the fog, which is based
on computational offloading and network utility optimization. The work in [18]
presents a vision of human-centered edge-device based computing, known as
Edge-centric Computing and the research challenges associated with its imple-
mentation. The work in [7] proposed a new technique called Home Edge Com-
puting, a three-tier edge computing architecture that provides data storage and
processing near the users (home server) to achieve ultra-low latency.

The work in [20] analyzed a motion dataset to characterize the kinetic energy
that can be harvested by an IoT node and developed energy allocation algorithms

Characterization of IoT Workloads 13

for such nodes. The work by Pereira et al. [31] discusses an experimental eval-
uation of latency in IoT service composition with mobile gateways and assesses
the capabilities and limitations of a standard machine-to-machine middleware.
IoT devices with security flaws are attractive targets for attacks. [6] discusses
HoneyScope, a network centric approach to protect vulnerable IoT devices by
creating virtualized views of the network and nodes.

None of the studies cited above present a comprehensive workload charac-
terization of actual IoT applications.

6 Concluding Remarks and Future Work

Understanding and quantitatively characterizing the workload generated by IoT
devices is key to being able to analyze the performance of edge/fog comput-
ing environments. Our study analyzed three datasets that contain information
generated by taxis in three big cities. Our workload characterization, which can
be applied to other IoT workloads, included counts of events, i.e., IoT device
signals, at various time scales (e.g., hour of the day, day of the week) and a
characterization of the interarrival time of signals received from IoT devices.

Our results indicated that the interarrival time of IoT signals for all three
datasets can be very well approximated by a lognormal distribution. We also
observed that the count of events for the three taxi-related datasets can be well
explained by expected daily routines of habitants of large cities. We also showed
that workload characterization results can be used for capacity planning studies
of edge computing environments.

In the future, we intend to apply our characterization methodology to IoT
datasets that deal with other types of IoT devices. We are also investigating the
sensitivity of our results with respect to the location of the fog node, and how it
may affect the probability distribution and parameters of the request interarrival
times.

References

1. Chicago data portal. https://data.cityofchicago.org/
2. Package org.apache.commons.math3.distribution. http://commons.apache.

org/proper/commons-math/javadocs/api-3.5/org/apache/commons/math3/
distribution/package-summary.html

3. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey.
IEEE Internet Things J. 5(1), 450–465 (2018)

4. Ahn, S., Gorlatova, M., Chiang, M.: Leveraging fog and cloud computing for effi-
cient computational offloading. In: 2017 Undergraduate Research Technology Con-
ference (URTC), IEEE MIT, pp. 1–4. IEEE (2017)

5. Akula, V., Menasce, D.: Two-level workload characterization of online auctions.
Electron. Commer. Res. Appl. 6, 192–208 (2007)

6. Al-Shaer, E., Wei, J., Hamlen, K.W., Wang, C.: HONEYSCOPE: IoT device pro-
tection with deceptive network views. Autonomous Cyber Deception, pp. 167–181.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02110-8 9

https://data.cityofchicago.org/
http://commons.apache.org/proper/commons-math/javadocs/api-3.5/org/apache/commons/math3/distribution/package-summary.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.5/org/apache/commons/math3/distribution/package-summary.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.5/org/apache/commons/math3/distribution/package-summary.html
https://doi.org/10.1007/978-3-030-02110-8_9

14 U. Tadakamalla and D. A. Menascé

7. Babou, C.S.M., Fall, D., Kashihara, S., Niang, I., Kadobayashi, Y.: Home edge
computing (HEC): design of a new edge computing technology for achieving ultra-
low latency. In: Liu, S., Tekinerdogan, B., Aoyama, M., Zhang, L.-J. (eds.) EDGE
2018. LNCS, vol. 10973, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94340-4 1

8. Barroso, L.A., Gharachorloo, K., Bugnion, E.: Memory system characterization of
commercial workloads. In: Proceedings of 25th Annual International Symposium
Computer Architecture, ISCA 1998, pp. 3–14. IEEE Computer Society, Washing-
ton, DC (1998)

9. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
Internet of Things. In: Proceedings of MCC Workshop on Mobile Cloud Comput-
ing, MCC 2012, pp. 13–16, New York, NY, USA. ACM (2012)

10. Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog.
IEEE Internet Things J. 4(5), 1185–1192 (2017)

11. Calzarossa, M., Massari, L., Tessera, D.: Workload characterization issues and
methodologies. In: Haring, G., Lindemann, C., Reiser, M. (eds.) Performance Eval-
uation: Origins and Directions. LNCS, vol. 1769, pp. 459–482. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46506-5 20

12. Calzarossa, M., Serazzi, G.: Workload characterization. Proc. IEEE 81, 1136–1150
(1993)

13. da Cruz, M.A.A., Rodrigues, J.J.P.C., Al-Muhtadi, J., Korotaev, V.V., de Albu-
querque, V.H.C.: A reference model for Internet of Things middleware. IEEE Inter-
net Things J. 5(2), 871–883 (2018)

14. Di, S., Kondo, D., Cirne, W.: Characterization and comparison of cloud versus
grid workloads. In: 2012 IEEE International Conference Cluster Computing, pp.
230–238, September 2012

15. Donovan, D., Work, D.B.: New york city taxi trip data (2010–2013) (2016)
16. Elnaffar, S., Martin, P., Horman, R.: Automatically classifying database workloads.

In: Proceedings of 11th International Conference Information and Knowledge Man-
agement, CIKM 2002, pp. 622–624, New York, NY, USA. ACM (2002)

17. Fan, Q., Ansari, N.: Application aware workload allocation for edge computing-
based IoT. IEEE Internet Things J. 5(3), 2146–2153 (2018)

18. Garcia Lopez, P., et al.: Edge-centric computing: vision and challenges. SIGCOMM
Comput. Commun. Rev. 45(5), 37–42 (2015)

19. Gomes, L.H., Cazita, C., Almeida, J.M., Almeida, V., Meira, Jr., W.: Character-
izing a spam traffic. In: Proceedings of 4th ACM SIGCOMM Conference Internet
Measurement, IMC 2004, pp. 356–369, New York, NY, USA. ACM (2004)

20. Gorlatova, M., Sarik, J., Grebla, G., Cong, M., Kymissis, I., Zussman, G.: Movers
and shakers: kinetic energy harvesting for the Internet of Things. In: The 2014 ACM
International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS 2014, pp. 407–419, New York, NY, USA. ACM (2014)

21. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, Hoboken
(1991)

22. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on Internet of
Things: architecture, enabling technologies, security and privacy, and applications.
IEEE Internet Things J. 4(5), 1125–1142 (2017)

23. Magalhaes, D., Calheiros, R.N., Buyya, R., Gomes, D.G.: Workload modeling for
resource usage analysis and simulation in cloud computing. Comput. Electr. Eng.
47, 69–81 (2015)

https://doi.org/10.1007/978-3-319-94340-4_1
https://doi.org/10.1007/978-3-319-94340-4_1
https://doi.org/10.1007/3-540-46506-5_20

Characterization of IoT Workloads 15

24. Menascé, D., Abrahao, B., Barbará, D., Almeida, V., Ribeiro, F.: Fractal character-
ization of web workloads. In: Eleventh International World Wide Web Conference,
Honolulu, HI, pp. 7–11 (2002)

25. Menasce, D., Almeida, V., Fonseca, R., Mendes, M.: A methodology for workload
characterization of e-commerce sites. In: Proceedings of 1st ACM Conference on
Electronic Commerce, EC 1999, pp. 119–128, New York, NY, USA. ACM (1999)

26. Menasce, D.A., Almeida, V.A.F., Dowdy, L.W.: Performance by Design: Computer
Capacity Planning by Example. Prentice Hall, Upper Saddle River (2004)

27. Metzger, F., Hofeld, T., Bauer, A., Kounev, S., Heegaard, P.E.: Modeling of aggre-
gated IoT traffic and its application to an IoT cloud. Proc. IEEE 107(4), 679–694
(2019)

28. Nedyalkov, I., Stefanov, A., Georgiev, G.: Characterization of the traffic in IP-based
communication networks. In: 2018 International Conference on High Technology
for Sustainable Development (HiTech), pp. 1–4. IEEE (2018)

29. Ngu, A.H., Gutierrez, M., Metsis, V., Nepal, S., Sheng, Q.Z.: IoT middleware: a
survey on issues and enabling technologies. IEEE Internet Things J. 4(1), 1–20
(2017)

30. Paxson, V., Floyd, S.: Wide area traffic: the failure of poisson modeling.
IEEE/ACM Trans. Netw. 3(3), 226–244 (1995)

31. Pereira, C., Pinto, A., Ferreira, D., Aguiar, A.: Experimental characterization of
mobile IoT application latency. IEEE Internet Things J. 4(4), 1082–1094 (2017)

32. Postema, B.F., Geuze, N.J., Haverkort, B.R.: Fitting realistic data centre work-
loads: a data science approach. In: Proceedings of the Ninth International Con-
ference on Future Energy Systems, e-Energy 2018, pp. 486–491, New York, NY,
USA. ACM (2018)

33. Ren, J., Guo, H., Xu, C., Zhang, Y.: Serving at the edge: a scalable IoT architecture
based on transparent computing. IEEE Netw. 31(5), 96–105 (2017)

34. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

35. Siegel, J.E., Kumar, S., Sarma, S.E.: The future Internet of Things: secure, efficient,
and model-based. IEEE Internet Things J. 5(4), 2386–2398 (2018)

36. Smirni, E., Reed, D.: Lessons from characterizing the input/output behavior of
parallel scientific applications. Perform. Eval. 33(1), 27–44 (1998)

37. Tadakamalla, U., Menasce, D.A.: FogQN: an analytic model for fog/cloud com-
puting. In: Proceedings of 1st Workshop on Managed Fog-to-Cloud (mF2C), joint
with 11th IEEE/ACM International Conference on Utility and Cloud Computing.
IEEE/ACM (2018). https://www.cs.gmu.edu/∼menasce/papers/mF2C2018TM.
pdf

38. Tadakamalla, U., Menasce, D.A.: Autonomic resource management using analytic
models for fog/cloud computing. In: Proceedings of IEEE International Conference
on Fog Computing. IEEE (2019)

39. Veloso, E., Almeida, V., Meira, W., Bestavros, A., Jin, S.: A hierarchical charac-
terization of a live streaming media workload. In: Proceedings of 2nd ACM SIG-
COMM Workshop on Internet Measurement, IMW 2002, pp. 117–130, New York,
NY, USA. ACM (2002)

40. Yousefpour, A., Ishigaki, G., Gour, R., Jue, J.P.: On reducing IoT service delay
via fog offloading. IEEE Internet Things J. 5(2), 998–1010 (2018)

41. Zheng, Y.: T-drive trajectory data sample, August 2011. https://www.microsoft.
com/en-us/research/publication/t-drive-trajectory-data-sample/

https://www.cs.gmu.edu/~menasce/papers/mF2C2018TM.pdf
https://www.cs.gmu.edu/~menasce/papers/mF2C2018TM.pdf
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

Latency Control for Distributed Machine
Vision at the Edge Through Approximate

Computing

Anjus George(B) and Arun Ravindran

University of North Carolina at Charlotte, Charlotte, NC, USA
ageorg28@uncc.edu

Abstract. Multicamera based Deep Learning vision applications sub-
scribe to the Edge computing paradigm due to stringent latency require-
ments. However, guaranteeing latency in the wireless communication
links between the cameras nodes and the Edge server is challenging,
especially in the cheap and easily available unlicensed bands due to the
interference from other camera nodes in the system, and from exter-
nal sources. In this paper, we show how approximate computation tech-
niques can be used to design a latency controller that uses multiple video
frame image quality control knobs to simultaneously satisfy latency and
accuracy requirements for machine vision applications involving object
detection, and human pose estimation. Our experimental results on an
Edge test bed indicate that the controller is able to correct for up to
164% degradation in latency due to interference within a settling time
of under 1.15 s.

Keywords: Edge computing · Machine vision ·
Approximate computing · Latency control

1 Introduction

The recent emergence of powerful Deep Learning algorithms, along with the
capacity to store and process massive amounts of data, has given us the ability
to potentially recognize objects in near real-time [13]. Such real-time machine
vision is a foundational technology in a number of applications such as auto-
matic video surveillance, augmented and virtual reality, autonomous driving, and
robotics. In many of these applications, timely recognition of objects and their
activity is important since events need to be responded within tight deadline
constraints precluding the offloading of computation to the Cloud. The latency
critical nature of machine vision applications motivates the use of the Edge com-
puting paradigm [5,6,14,23,24] where compute and storage are done at the Edge
of the network close to the camera.

As a concrete motivating example, in a surveillance application (for exam-
ple, to detect/predict pedestrian accidents), the Edge vision system consists of

c© Springer Nature Switzerland AG 2019
T. Zhang et al. (Eds.): EDGE 2019, LNCS 11520, pp. 16–30, 2019.
https://doi.org/10.1007/978-3-030-23374-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23374-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-23374-7_2

Latency Control for Distributed Machine Vision at the Edge 17

multiple video cameras monitoring an area of interest (for example, a traffic
intersection) from different vantage points. In dense urban environments, where
occlusions are common, multiple camera views increase tracking robustness. The
cameras transmit the video frames to an Edge server located in the vicinity. The
Edge server aggregates video frames from multiple cameras, and executes Deep
Learning based machine vision algorithms to determine/predict events of interest
(for example, potential pedestrian accidents). Due to cost and ease of installa-
tion reasons, the communication link between the camera and the Edge server
is wireless, operating in the unlicensed bands (for example, WiFi). Events such
as predicting of pedestrian accidents, are latency critical, necessitating careful
design of the compute and communication at the Edge to ensure that latency
bounds specified by the application are met. While hardware accelerators (for
example, GPUs, FPGAs) can be used to minimize compute latency, the wireless
links between the camera and Edge nodes are prone to large variations in the
latency due to interference, both from peer camera nodes, and unrelated external
sources.

In this paper, we describe the use of approximate computing to meet latency
requirements at the Edge in the presence of large latency variations in the wire-
less communication link. Approximate computing is based on the idea that
in some applications, selective inaccuracies in computation can be tolerated
to achieve gains in efficiency [17]. Machine vision applications can potentially
tolerate approximate computing since selective loss of image quality may still
not impact object/event detection accuracy adversely. We use this observation
to design a controller that dynamically uses multiple video image frame qual-
ity control knobs to simultaneously maintain application specified latency, and
object/pose detection accuracy in the presence of interference in the wireless
communication channel.

The paper makes the following contributions -

– Investigates the applicability of approximate computing by characterizing the
impact of image quality on application accuracy for Deep Learning based
vision applications.

– Identifies multiple control knobs for controlling image quality, and character-
izes their impact on wireless channel latency.

– Presents the design of a latency controller that uses the approximate com-
puting paradigm to simultaneously achieve application specified latency and
accuracy in the presence of unpredictable channel interference.

– Experimentally demonstrates the operation of the controller on an Edge test
bed for two machine vision applications involving object detection, and human
pose estimation.

To the best of our knowledge, this is the first work that uses approximate com-
puting to control communication latency at the Edge for machine vision appli-
cations.

The rest of the paper is organized as follows - Sect. 2, gives a brief overview
of related work on machine vision at the Edge, and the different applications

18 A. George and A. Ravindran

of approximate computing. Section 3 provides a system level description of dis-
tributed machine vision at the Edge. Section 4 describes the Edge test bed and
presents the experimental characterization of wireless channel latency. Section 5
then presents our study of the impact of image quality on application accu-
racy for Deep Learning based machine vision applications. Section 6, presents
the design of the controller, followed by experimental evaluation and results in
Sect. 7. Section 8 concludes the paper with summary of our work, with sugges-
tions for future research directions.

2 Related Work

The concept and motivation behind Edge computing have been described in
a number of recent publications [5,6,9,14,21–25]. Regarding machine vision at
the Edge, in the Gabriel project [10], Ha et. al. describe a wearable cognitive
assistance system where the images captured by a mobile device are processed
by the Edge node to analyze what the user is seeing, and provide the user
with cues as to what is in the scene (for example, recognizing a person). In the
VisFlow project, Lu et al. [16] describe a system that can analyze feeds from
multiple cameras for license plate recognition and real-time traffic flow mapping.
However, in contrast to our work, none of these works address guaranteeing of
latency requirements at the Edge for machine vision applications. In the Hetero-
Edge project, Zhang et. al. [26] describe a system that can efficiently orchestrate
real-time vision applications on heterogeneous Edge servers. The new resource
orchestration platform developed, uses a set of task scheduling schemes to make
the Hetero-Edge system latency-aware, but does not consider communication
latency.

In [17], Mittal provides a survey of approximate computing techniques.
Strategies for approximation at the code level such as loop perforation, and at
the architecture level such as reduced precision operations are discussed. Regard-
ing applications of approximate computing to Deep Learning, Chen et al. [8] use
approximate computing to accelerate network training, while Ibrahim et. al. [12]
explore the use of approximate computing to realize Deep Learning networks
on resource constrained embedded platforms. Unlike our work, in these works
approximate computing is targeted towards reducing the computational load.
In [4], Betzel et. al. introduce the concept of approximate communication to
reduce the communication between processing elements in a high performance
computing system. They evaluate compression, reduced synchronization, and
value prediction as potential approximate communication techniques. While we
use approximate communication as well, in contrast to Betzel et. al. we target
latency variations due to interference in wireless communication channels, and
investigate the impact of the approximation communication on computing, by
evaluating its impact on the application accuracy.

In [18], Pakha et. al. introduce the idea of control knobs to parametrize a cus-
tom video protocol that streams videos from cameras to cloud servers to perform
neural-network-based video analytics. The new server driven protocol highlights

Latency Control for Distributed Machine Vision at the Edge 19

opportunities to improve the tradeoffs between bandwidth usage and inference
accuracy, but does not address Edge specific latency requirements demanded by
Deep Learning vision applications.

3 System Architecture

Camera node Camera node

Camera node Camera node

Edge server

Wireless router

Fig. 1. Distributed machine vision at
the Edge. Multiple camera nodes trans-
mit video frames to an Edge server
through a wireless communication link.
The Edge server runs Deep Learn-
ing based machine vision algorithm for
object/event detection and prediction.

The overarching motivation behind the
design of our system is to make avail-
able real-time video frames from multi-
ple cameras to Deep Learning surveil-
lance applications at the Edge for analyt-
ics, detection and prediction of a diverse
set of events/objects while being scalable.
A subset of such applications include,
pedestrian safety guidance, road acci-
dent prediction, drunken driver detection
and crime detection in public spaces. As
shown in Fig. 1 the physical model of
our system consists of multiple embed-
ded boards equipped with video cam-
eras communicating to an Edge server
through WiFi (802.11ac) wireless routers.
The cameras monitor video scenes from
different angles in a particular area of
interest (e.g., traffic intersection, parking
lot). The camera nodes are deployed in
the field (for example, at the traffic inter-
section poles), whereas the Edge node
(Edge server) is assumed to be in a more
secure place (for example, traffic signal box). The camera nodes are assumed to
have limited compute and storage resources compared to the Edge nodes.

4 Characterizing Wireless Latency at the Edge

In this section we describe the test bed to characterize wireless latency at the
Edge. In particular, we are interested in determining latency variations seen at
the Edge due to interference, as well as potential means to control it.

4.1 Edge Test Bed

Our Edge test bed consists of two video camera equipped NVIDIA Jetson TX2
boards with 256 CUDA core Pascal GPU and quadcore ARM Cortex-A57 pro-
cessor. A laptop with Intel Core i7 processor and Nvidia GeForce 1060 GPU
serves as the Edge server. The Jetson boards and the laptop run Linux. The

20 A. George and A. Ravindran

wireless link consists of a NETGEAR Nighthawk XR700 access point that uses
802.11ac (5 GHz) standard with a bandwidth of up to 7.2 Gbps. The Edge server
is connected to the access point through Ethernet, while the Jetson TX2 boards
connect to the access point through the 802.11ac WiFi link.

The initial workload consisted of several pedestrian car accident surveillance
videos from YouTube. These videos are obtained from real-life incidents where
the pedestrian is struck by an automobile. In order to demonstrate the repro-
ducibility of image size tuning knobs and accuracy characterization for Egde
vision benchmarks, we used two publicly available workloads, namely, CADP
[19] and JAAD [20] data sets. Both data sets consist of videos captured under
various camera types and qualities in different weather/lighting conditions. To
perform the accuracy characterization for object detection and pose estimation
benchmarks, we chose 100 video clips each from the CADP and JAAD data sets.
The overall goal of our multi-camera Edge vision system in this case would be
to provide sufficiently early warning to pedestrians and drivers to avoid poten-
tial accidents. A Python based client and multi-threaded server at the camera
node and the Edge server respectively, facilitate camera node to server image
transfer, as well as latency measurements. The wireless latency and bandwidth
are measured with the Linux Qperf utility.

4.2 Edge Latency Characterization

We initially characterized the image transfer latency from camera node to the
Edge server, for different image sizes, with the camera node at different distances
from the access point. This setup emulates an Edge operational scenario where
image sizes vary depending on the scene content, and the cameras node may be
placed at different distances from the wireless access point so as to get the best
visual coverage of the scene. Figure 2a shows the variation in latency (plotted on
the y-axis), at different image sizes (plotted on the x-axis). Figure 2b plots the
latency measurements taken at differing camera node distance. In both cases,
each measurement point is an average of 10 measurements. We note that the
latency approximately increases linearly with size. This results suggests that for
camera nodes at fixed locations, the latency can be tuned by varying the size of
the image.

To study the impact of interference when two camera nodes are transmitting
simultaneously, we set up the camera node under test at a distance of 5 m
away from the access point, and the second camera node at a distance of 3
m. Both camera nodes continuously transmit image frames to the Edge server.
Figure 3 shows that the interference causes the test camera node to suffer a
latency increase as high as 164 %.

As seen from this experiment, the latency for image frame transfer from cam-
era node to Edge server varies dramatically in an unpredictable communication
environment at the Edge. Since many camera nodes might be operating in a given
Edge vision system, counter measures have to be taken to mitigate this increase
in latency due to interference for latency critical Edge vision applications.

Latency Control for Distributed Machine Vision at the Edge 21

(a) (b)

Fig. 2. (a) Image transfer latency from camera node to the Edge server vs. image size
with distance between camera node and wireless access point fixed to 10 m (b) Image
transfer latency from camera node to the Edge server vs. distance between camera
node and wireless access point for an image size of 1.2 MB

5 Approximate Computing for Latency Control

Fig. 3. Image transfer latency from camera
node to the Edge server vs. image size in pres-
ence of interference from peer camera node

Approximate computing (AC) exploits
the gap between the extent of accu-
racy needed by the applications and
that provided by the computing sys-
tem, for achieving various optimiza-
tions [17]. AC leverages the fact
that a number of vital applications,
like machine learning and multime-
dia processing, do not essentially
have to yield accurate results to be
useful [3]. In these applications, we
can drop some images or lower the
image resolution, provided that, the
deep vision applications’ accuracy
does not suffer substantially.

As seen in our experimental evaluation of latency in Sect. 4, channel inter-
ference from other camera nodes can cause channel latency to increase. We also
note that for fixed camera node locations, tuning the image size is a poten-
tial means to control latency. However, reducing the information content in the
images could make them unusable for object/event detection/prediction vision
applications. In this section we explore potential modifications that can be done
on images through which we can modify the image content and thus vary the
image sizes. We call these modifications as tuning knobs for images. We present
five such tuning knobs - resolution, color space modifications, blurring, choice of
detection techniques, and choice of frame differencing techniques. We then study
the impact of these tuning knobs on accuracy of two machine vision benchmarks.

22 A. George and A. Ravindran

5.1 Image Size Tuning Knobs

We use the open source computer vision library OpenCV [2] to explore different
image transformation techniques that can be applied to images to modify image
size. These transformation techniques (which we call tuning knobs) are as follows:

1. Knob1 - Resolution: Size of images can be reduced by decreasing their resolu-
tion while keeping the aspect ratio constant. We applied the resolution knob
on the original image frames to tune them into different resolutions varying
from 1280 × 720 to 400 × 225.

2. Knob2 - Colorspace modifications: Images can be converted from one col-
orspace to another resulting in total size reduction of images. There are more
than 150 color-space conversion methods available in OpenCV [2]. We chose
BGR↔Gray, BGR↔HSV, BGR↔LAB and BGR↔LUV colorspace modifi-
cations.

3. Knob3 - Blurring: Image frames can be blurred by passing them through
various low pass filters. The cv2.blur() [2] method from OpenCV blurs an
image using normalized box filter. We tuned this knob by inserting blurring
filter kernel sizes of (5,5), (8,8), (10,10) and (15,15).

4. Knob4 - Image detection techniques: Different image detection techniques
can be used to detect objects of interest in the image frames and remove the
unneeded contents in them. In setting 1 of this knob, we pre-processed images
by smoothing and changing the resolution to detect moving objects. This
results in bounding boxes drawn around the detected objects in the image
frames. In setting 2 of this knob, we modified the bounding box detected
image frames resulted from setting 1, by removing all the stationary objects.
In the third setting, we modified the original images by retaining only the
contours of all the objects.

5. Knob5 - Frame differencing techniques: We applied frame differencing tech-
nique using Absolute Difference (AbsDiff) [2] to identify the keyframes from
the set of image frames. We assume that, more the dissimilarity between the
image frames, more the useful information that can be extracted from those
images. Hence it is acceptable to drop similar images within a threshold. We
chose the threshold values in such a way that 11.6%, 22.3%, 30.3% and 40.1%
of the frames are dropped from a total set of image frames.

5.2 Machine Vision Benchmarks

To study the impact of object detection accuracy on the image frames after mod-
ifying them using different tuning knob combinations, we selected two machine
vision applications - object detection and human pose estimation. These appli-
cations, executing on the Edge server, serve as benchmarks to evaluate the wor-
thiness of the images modified using the tuning knobs. The input videos are
drawn from the pedestrian accident videos described in Sect. 4.1.

1. Object detection using MobileNet-SSD: One of the popular object detection
Deep Learning algorithm suited to resource constrained devices is Single Shot

Latency Control for Distributed Machine Vision at the Edge 23

Detectors (SSDs) [15]. We used pre-trained MobileNet model, specifically
designed for embedded vision applications, trained using Caffe-SSD frame-
work [1,11]. The model detects objects such as cars, persons and plants in
the original image frames as well as in the modified image frames (all knob
combinations). We calculate the True Positive Rate (TPR) for each setting
for all the knobs (including the unmodified frames) based on the manually
verified ground truth. TPR measures the actual positives that are identified
as such. Figure 4a visually shows the impact of applying tuning knobs 2 and
3 to a video frame from the pedestrian accident videos described in Sect. 4.1.

2. Pose estimation using OpenPose: Pose estimation deals with localizing human
body parts for applications such as augmented reality, animation, fitness and
health. The OpenPose project from CMU [7] is an open source real-time multi
person system to detect human body, hand and facial keypoints ((x,y) coor-
dinates of different body parts) on single images. The input to OpenPose
can be images or videos from webcam, Flir/Point Grey or IP camera. When
given these inputs, the software outputs the video frames and keypoints in
different formats. We input the original and modified image frames to Open-
Pose to generate the pose detected image frames and keypoint locations. We
enabled single person tracking feature in OpenPose to obtain keypoints and
their confidence levels for a single pedestrian in our images. We also enabled
the normalization feature in OpenPose so that all keypoint coordinates are
located between 0 and 1. We calculated the centroid of the person using the
keypoint locations and the Root Mean Square (RMS) of difference in centroid
locations of the person in modified and original images for each setting for all
the knobs as a measure of accuracy. Figure 4b visually shows the original and
modified images after detecting the pose of the pedestrian before and after
the application of tuning knobs 1, 2 and 3.

(a) (b)

Fig. 4. (a) Original and modified images resulting from tuning knobs 2 and 3. Top left:
original image frame, Top right: BGR↔Gray image, Bottom left: BGR↔HSV image,
Bottom right: image modified using blurring filter kernel size of (15, 15) (b) Original
and modified images showing the detected pose of the pedestrian from OpenPose. Top
left: BGR↔Gray image, Top right: image modified using blurring filter kernel size of
(15, 15), Bottom left: BGR↔LAB image, Bottom right: image frame with resolution
400 × 225 (Color figure online)

24 A. George and A. Ravindran

5.3 Characterizing Image Size Vs. Application Accuracy

We now systematically evaluate the impact of the tuning knobs on image size
and application accuracy (TPR for object detection, and RMSE for pose esti-
mation). Figure 5a shows the plot of the True Positive Rate (TPR) of detected
objects vs. image size for the object detection application. Note that higher TPR
indicates higher accuracy. The relationship between TPR and image size is com-
plex since multiple image size values (obtained from different combinations of
knob settings) map to similar TPR values. In Fig. 5a, it is observed that images
greater than 400 KB, have maximum TPR above 0.8 and median TPR above
0.7. For images below 400 KB size, we see that the median TPR decreases below
0.6, but the presence of knobs with TPR close to 1.0 makes the images in this
size range usable for the object detection application.

(a) (b)

Fig. 5. (a) TPR (True Positive Rate) of detected objects in images (from Fig. 4a) when
different knob combinations are applied on them vs. image size for MobileNetSSD-
object detection benchmark (b) RMS (Root Mean Square) of difference in centroid
locations of pedestrians in images (from Fig. 4a) when different knob combinations are
applied on them vs. image size for OpenPose-pose estimation benchmark

This key observation enables transmission of smaller sized images with almost
similar TPR as the original image from the camera node to the Edge server, in
the presence of channel interference. We exploit this observation in the design
of the latency controller described in Sect. 6.

A similar design freedom is observed in Fig. 5b where the RMS error in
centroid location of keypoints of pedestrians in the OpenPose application is
plotted against image size. Note that here lower RMSE indicates higher accuracy.
Figure 5b depicts that images in all size ranges have RMSE value as low as <0.1.
An important observation from Figs. 5a and 5b is that the design space consists of
feasible (infeasible) regions where latency and accuracy specifications are jointly
met (unmet).

Latency Control for Distributed Machine Vision at the Edge 25

(a) (b)

Fig. 6. (a) Minimum and maximum values for TPR of detected objects using object
detection benchmark in video clips (from CADP dataset) when different knob combi-
nations are applied on them (b) Minimum and maximum values for RMS (Root Mean
Square) of difference in centroid locations of pedestrians detected by pose estimation
benchmark in video clips (from JAAD dataset) after applying different knob combina-
tions on them. x-axis of both figures plots the percentage size reduction achieved by
images extracted from the video clips after modification using tuning knobs

Fig. 7. Different delay components (Wireless
latency, Object detection and Pose estimation
latency) in the Edge test bed (Fig. 1) plotted
against image size

We investigate the broader
applicability of the proposed image
tuning knobs to the videos in
the CADP and JAAD data set
described in Sect. 4.1. Figure 6a
shows the minimum and maximum
values for TPR of detected objects
using object detection benchmark
in video clips from CADP data set
when different knob combinations
are applied on them. Figure 6b
displays the minimum and maxi-
mum values for RMS (Root Mean
Square) of difference in centroid
locations of pedestrians detected by pose estimation benchmark in video clips
from JAAD dataset after applying different knob combinations on them. x-axis of
Fig. 6a and 6b plots the percentage size reduction achieved by images extracted
from the video clips after modification using tuning knobs. The plots in Fig. 6
shows the general utility of the proposed image tuning knobs in achieving a
range of detection accuracy for different image sizes.

In Fig. 7 we investigate the dependence of the compute latency on the image
size. We note that, in contrast to wireless communication latency, for both object
detection and pose estimation applications, the compute latency is independent
of image size. However, the compute latency dominates in the pose detection
application. As mentioned before, the compute latency is an artifact of the rel-
atively lower-end GPU used in this experiment, and will decrease with more
powerful hardware.

26 A. George and A. Ravindran

6 Design of Control Strategy

In this section we describe the algorithm that maintains the application spec-
ified image frame transmission latency from the camera to the Edge server in
the presence of interference, by automatically tuning the image quality knobs
identified in Sect. 5. The control mechanism constructively reduces image size, to
match the measured image transfer latency with the target latency specified by
the application, while maintaining the accuracy request within limits throughout
the operation.

The camera nodes shown in Fig. 1 need to be able to provide image frames
within the latency and accuracy levels (TPR or RMSE) requested by the vision
applications executing on the Edge server. Since the dependence of application
accuracy is complex (see Sect. 5.3), we have two options - (1) Use a sophisti-
cated machine learning model to predict the accuracy and knob combinations
for an input image size, or (2) Use a look up table that stores the image size
and application accuracy for all knob combinations. We chose the lookup table
approach since the total knob combinations of the 5 knobs results in 2500 values,
a small number easily stored in memory. These can be initially characterized and
quickly looked up using a primary hashtable with the image size as the key, and
the candidate accuracies as the value. A secondary hashtable uses the accuracy
as the key and the knob settings as the values.

The control algorithm is outlined in the psuedo code shown in Listing 1.

Algorithm 1. Latency control algorithm
Result: Image quality knob setting

1 latencyTarget;
2 accuracyTarget;
3 errorThreshold;
4 nominalImageSize ← BinSearch(latencyTarget);
5 latencyError ← latencySampled - latencyTarget;
6 while latencyError > errorThreshold do
7 imageSize = nominalImageSize + K1*latencyError +

K2*latencyErrorIntegral;
8 accuracy ← PrimaryHashTable.lookup(imageSize);
9 knobSetting ← SecondaryHashTable.lookup(accuracy);

10 if accuracy > AccuracyTarget then
11 return knobSetting;
12 else
13 return(No feasible solution);
14

15 end
16 latencyError ← latencySampled - latencyTarget;
17 end

The Edge latency controller running on the camera nodes periodically sam-
ples the image transfer latency to verify if it is under the requested limit. The
control is implemented in two steps - In Step 1, the error (error and integral of

Latency Control for Distributed Machine Vision at the Edge 27

error for Proportional-Integral control) between the observed the the specified
latency is used to determine the image size that can potentially satisfy latency
requirements. The almost linear dependence of latency on image size (see Sect. 4)
facilitates an efficient binary search for the nominal image size. In Step 2, we
lookup the primary hashtable with the image size as the key to determine the
candidate accuracy values. For the accuracy values that satisfy the application
request, the secondary hashtable is used to lookup the knob combinations. The
image frames transmitted from camera to Edge node are modified subject to
these knob combinations. The latency is measured again at the next sampling
interval, and if the error exceeds a preset threshold, Steps 1 and 2 are repeated.

If the application requested latency and accuracy are infeasible, the applica-
tion is notified. At this point, the application has to decide whether to continue
operation with relaxed requirements, or send the notification higher up the stack
to the user.

(a) (b)

Fig. 8. (a) Latency control and (b) image size reduction during the control phase for
MobileNetSSD-Object detection benchmark in presence of channel interference

(a) (b)

Fig. 9. (a) Latency control and (b) image size reduction during the control phase for
OpenPose-Pose estimation benchmark in presence of channel interference

28 A. George and A. Ravindran

7 Evaluation and Results

We evaluated the control algorithm described in Sect. 6 on the Edge test bed
described in Sect. 4. The camera node under test and the peer camera node were
kept at a distance of 5 m and 3 m from the access point. For both the MobielNet-
SSD and OpenPose benchmarks (see Sect. 5.2), the application request latency
was set at less than 200ms. For SSD, TPR was set at greater than 0.94, while for
OpenPose the RMSE was set at less than 0.12. Initially, only the camera node
under test was transmitting image frames to the Edge server. The controller was
able to satisfy these requirements with a median image size of 1 MB for both
MobileNetSSD and OpenPose. Note that the resulting latency and accuracy
exceed the specifications. To study the effectiveness of the controller when the
wireless channel is subject to interference, the peer camera node was turned on
to transmit images. Figures 8a and 9a show the control action (latency vs. time).
Initially the latency increases due to the interference from the peer camera node.
However, the controller is able to bring the latency back to the desired value by
tuning the image quality knobs, all the while keeping the accuracy under the
specified threshold. The controller settling time was 0.63 s for MobileNetSSD
and 1.15 s for OpenPose. Figure 8b and 9b show the resulting plot of image size
vs. time for the controller action. Table 1 shows the associated initial and final
knob settings.

Table 1. Initial and final knob settings associated with the latency control. R1-R5,
C1-C5, K1-K5, D1-D4 and F1-F5 represent different knob settings for knobs 1–5. Rows
1 and 2 are for OpenPose, while rows 3 and 4 are for SSD.

No. Knob settings Median image size (KB) RMSE TPR

1 R1, C1, K1, D1, F2 1062.3 0.01 -

2 R1, C1, K1, D1, F3 629.9 0.1004 -

3 R1, C1, K2, D1, F4 1049.8 - 1.0

4 R2, C1, K1, D1, F5 652.5 - 1.0

8 Conclusions

In this paper, we demonstrated how latency and accuracy specifications of Edge
vision application can be achieved despite the presence of significant latency
variations due to interference in the wireless channel. The control knobs are
derived from the approximate computing paradigm that a degraded image qual-
ity can be tolerated as long as application accuracy requirements are satisfied.
We proposed an efficient two-step control algorithm that uses a proportional
integral controller, and a hashtable based lookup to dynamically determine the
control knob settings based on latancies sampled during operation. Our control

Latency Control for Distributed Machine Vision at the Edge 29

approach is scalable since each camera node runs its controller independently.
Our experimental results on an Edge test bed with object detection, and human
pose estimation machine vision applications show that the proposed controller
can correct for latency variations of upto 164% within a settling time of less than
1.15 s.

Future research directions include evaluating the proposed approximate con-
trol algorithm on other machine vision applications such as object tracking, and
studying the impact on interference as nodes are scaled. Another interesting
direction is to study the trade-offs between centralized vs. decentralized control.
Unlike the decentralized approach proposed in the paper, centralized control at
the Edge server can coordinate transmission between the camera nodes to reduce
overall interference, but can potentially be subject to scalability limitations.

References

1. Mobilenet-ssd. https://github.com/chuanqi305/MobileNet-SSD. Accessed 12 Nov
2018

2. Opencv documentation. https://docs.opencv.org. Accessed 08 Nov 2018
3. Ben Khadra, M.A.: An introduction to approximate computing. CoRR

abs/1711.06115 (2017). http://arxiv.org/abs/1711.06115
4. Betzel, F., Khatamifard, K., Suresh, H., Lilja, D.J., Sartori, J., Karpuzcu, U.:

Approximate communication: techniques for reducing communication bottlenecks
in large-scale parallel systems. ACM Comput. Surv. (CSUR) 51(1), 1 (2018)

5. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for
internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and
Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–
186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4 7

6. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC 2012, pp. 13–16. ACM, New York (2012). https://
doi.org/10.1145/2342509.2342513

7. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estima-
tion using part affinity fields. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2017). https://doi.org/10.1109/CVPR.2017.143

8. Chen, C., Choi, J., Gopalakrishnan, K., Srinivasan, V., Venkataramani, S.: Exploit-
ing approximate computing for deep learning acceleration. In: 2018 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2018, Dresden,
Germany, 19–23 March 2018, pp. 821–826 (2018). https://doi.org/10.23919/DATE.
2018.8342119

9. Chiang, M., Zhang, T.: Fog and iot: an overview of research opportunities. IEEE
Internet Things J. PP(99), 1 (2016)

10. Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P., Satyanarayanan, M.: Towards
wearable cognitive assistance. In: Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys 2014. pp. 68–
81. ACM, New York, (2014). https://doi.org/10.1145/2594368.2594383

11. Howard, A.G., et al.: Mobilenets: Efficient convolutional neural networks for mobile
vision applications (2017)

https://github.com/chuanqi305/MobileNet-SSD
https://docs.opencv.org
http://arxiv.org/abs/1711.06115
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/CVPR.2017.143
https://doi.org/10.23919/DATE.2018.8342119
https://doi.org/10.23919/DATE.2018.8342119
https://doi.org/10.1145/2594368.2594383

30 A. George and A. Ravindran

12. Ibrahim, A., Osta, M., Alameh, M., Saleh, M., Chible, H., Valle, M.: Approximate
computing methods for embedded machine learning. In: 2018 25th IEEE Inter-
national Conference on Electronics, Circuits and Systems (ICECS), pp. 845–848.
IEEE (2018)

13. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

14. Lee, E.A., et al.: The swarm at the edge of the cloud. IEEE Design Test 31(3),
8–20 (2014)

15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

16. Lu, Y., Chowdhery, A., Kandula, S.: Visflow: a relational platform for efficient
large-scale video analytics. Technical report, June 2016. https://www.microsoft.
com/en-us/research/publication/visflow-relational-platform-efficient-large-scale-
video-analytics/

17. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv.
(CSUR) 48(4), 62 (2016)

18. Pakha, C., Chowdhery, A., Jiang, J.: Reinventing video streaming for distributed
vision analytics. In: 10th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 2018). USENIX Association, Boston, MA (2018). https://www.usenix.
org/conference/hotcloud18/presentation/pakha

19. Parag Shah, A., Lamare, J.B., Nguyen-Anh, T., Hauptmann, A.: CADP: a novel
dataset for CCTV traffic camera based accident analysis, pp. 1–9 (2018)

20. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Are they going to cross? A benchmark
dataset and baseline for pedestrian crosswalk behavior. In: 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW), pp. 206–213 (2017)

21. Sabella, D., Vaillant, A., Kuure, P., Rauschenbach, U., Giust, F.: Mobile-edge
computing architecture: the role of mec in the internet of things. IEEE Consum.
Electron. Mag. 5(4), 84–91 (2016)

22. Sapienza, M., Guardo, E., Cavallo, M., Torre, G.L., Leombruno, G., Tomarchio,
O.: Solving critical events through mobile edge computing: an approach for smart
cities. In: 2016 IEEE International Conference on Smart Computing (SMART-
COMP), pp. 1–5, May 2016

23. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

24. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

25. Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S.: Internet of Things Strategic
Research Agenda. River Publishers, Alsbjergvej (2011)

26. Zhang, W., Li, S., Liu, L., Jia, Z., Zhang, Y., Raychaudhuri, D.: Hetero-edge:
orchestration of real-time vision applications on heterogeneous edge clouds (2019)

https://doi.org/10.1007/978-3-319-46448-0_2
https://www.microsoft.com/en-us/research/publication/visflow-relational-platform-efficient-large-scale-video-analytics/
https://www.microsoft.com/en-us/research/publication/visflow-relational-platform-efficient-large-scale-video-analytics/
https://www.microsoft.com/en-us/research/publication/visflow-relational-platform-efficient-large-scale-video-analytics/
https://www.usenix.org/conference/hotcloud18/presentation/pakha
https://www.usenix.org/conference/hotcloud18/presentation/pakha

Energy-Aware Capacity Provisioning
and Resource Allocation in Edge

Computing Systems

Tayebeh Bahreini, Hossein Badri, and Daniel Grosu(B)

Department of Computer Science, Wayne State University, Detroit, USA
{tayebeh.bahreini,hossein.badri,dgrosu}@wayne.edu

Abstract. Energy consumption plays a key role in determining the cost
of services in edge computing systems and has a significant environ-
mental impact. Therefore, minimizing the energy consumption in such
systems is of critical importance. In this paper, we address the prob-
lem of energy-aware optimization of capacity provisioning and resource
allocation in edge computing systems. The main goal is to provision
and allocate resources such that the net profit of the service provider
is maximized, where the profit is the difference between the aggregated
users’ payments and the total operating cost due to energy consumption.
We formulate the problem as a mixed integer linear program and prove
that the problem is NP-hard. We develop a heuristic algorithm to solve
the problem efficiently. We evaluate the performance of the proposed
algorithm by conducting an extensive experimental analysis on problem
instances of various sizes. The results show that the proposed algorithm
has a very low execution time and is scalable with respect to the number
of users in the system.

1 Introduction

Efficient utilization of computing resources has always been an important chal-
lenge for service providers, leading to significant efforts on developing solutions,
either in the form of new technology or new ways to enhance the efficiency of
existing technologies. Edge Computing (EC) is the latest technology developed
to mitigate some of the existing challenges in cloud computing. In fact, the high
latency in cloud computing systems which stems from the long distance between
cloud servers and the end user, triggered the idea of EC systems, that is, bringing
computing resources closer to the end user. EC systems are expected to improve
the Quality of Service (QoS) by bringing servers closer to the end user, but when
it comes to the cost of services, these systems face an important challenge. The
operating cost of EC systems is higher than that of the remote clouds, due to the
small servers which are distributed across the network. In addition, in EC sys-
tems, a larger number of providers compete to provide services at a lower cost,
and as a result, obtain a higher market share. It might not be quite easy to lower
the investment costs, but when it comes to the operating costs, optimizing the
c© Springer Nature Switzerland AG 2019
T. Zhang et al. (Eds.): EDGE 2019, LNCS 11520, pp. 31–45, 2019.
https://doi.org/10.1007/978-3-030-23374-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23374-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-23374-7_3

32 T. Bahreini et al.

energy consumption would be a promising way to reduce them. Studies show
that about 25% of the operating costs of cloud data centers is attributed to
energy consumption [10].

Given these facts, researchers have approached the resource provision-
ing problem in distributed systems from different perspectives. A variety of
algorithms have been proposed to efficiently allocate users’ requests to the
cloud servers with an emphasis on reducing energy consumption of data cen-
ters [4,6,7,18]. Several researchers considered task/workload consolidation as a
strategy for reducing the energy consumption [12,15]. Minimizing the total num-
ber of active servers is another strategy considered by some researchers. Torres
et al. [16] proposed a technique to minimize the total number of active servers
without degradation of QoS. Beloglazov et al. [5] and Hameed et al. [11] survey
the research on energy-efficient cloud computing systems.

Several studies have focused on computation offloading in EC systems. Trinh
et al. [17] studied the impact of computation offloading on energy consumption
in EC systems. Chen et al. [8] developed a game theoretic approach for com-
putation offloading in a multi-channel wireless network to minimize the energy
consumption of mobile devices and the processing time of applications. Sardellitti
et al. [14] and Zhang et al. [19] developed algorithms for decision making on the
computational resources and the radio resources to minimize the system energy
cost while meeting latency constraints. Bahreini and Grosu [3] designed an itera-
tive matching algorithm for efficient placement of multi-component applications
in edge computing systems. These approaches have only focused on resource
allocation and did not investigate the capacity provisioning in EC systems.

Anglano et al. [2] developed an algorithm for resource allocation and capacity
provisioning in EC systems with the aim of maximizing the profit of the system.
To the best of our knowledge, this research is the first work addressing the
integrated capacity provisioning and resource allocation in EC systems that takes
the energy consumption into account. However, their proposed algorithm is based
on solving a mixed-integer linear program which might not be feasible to solve
within a reasonable amount of time for large size problems.

Our Contributions. In this paper, we address the capacity provisioning and
resource allocation problem in EC systems with the aim of maximizing the net
profit of the provider while taking into account the energy consumption of the
system. Our main contributions are as follows: (i) develop an energy-aware inte-
grated formulation of the capacity provisioning and resource allocation problem
for edge computing systems; (ii) prove that the energy-aware provisioning and
resource allocation problem in edge computing systems is NP-hard; (iii) design
an efficient heuristic algorithm to solve the problem; and (iv) perform an exten-
sive experimental analysis that shows that the proposed algorithm is scalable
with the number of users and produces solutions that are close to optimal.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
define the problem and characterize its complexity. In Sect. 3, we describe our
proposed heuristic algorithm. In Sect. 4, we define the experimental setup and
discuss the experimental results. In Sect. 5, we conclude the paper and propose
possible directions for future work.

Energy-Aware Capacity Provisioning and Resource Allocation 33

2 Energy-Aware Capacity Provisioning and Resource
Allocation Problem

In this section, we formulate the Energy-aware Capacity Provisioning and
Resource Allocation (ECPRA) problem in EC systems. We consider an EC sys-
tem owned and managed by a single provider that aims at maximizing its net
profit (i.e., the profit per unit of time). In this system, users’ devices generate
a high amount of data that needs real-time processing. To guarantee the QoS
for requests, the provider deploys a set of powerful computing resources at the
edge of the network. However, these resources are limited and the provider is
not able to allocate all requests to the edge side. Therefore, some of the requests
will be allocated to the cloud side. On the other hand, the operating cost of
edge resources is relatively higher than the operating cost of the cloud resources
which results in a higher price per unit of resource at the edge. The provider’s
goal is to allocate resources to users in order to maximize its net profit, which is
the total payment of users minus the total operating cost of resources per unit
of time.

We denote the edge/cloud levels by � (i.e., � = 1 for the edge level, and � = 2
for the cloud level). The system is composed of M � physical nodes at each level.
Users can request D types of resources. For the sake of making the presentation
simpler, we assume that D = 3, that is, there are three types of resources that a
user can request: CPU (cores) (k = 1), memory (k = 2), and storage (k = 3). The
capacity of node h at level � for the resource of type k is denoted by C�

hk. We con-
sider N users requesting resources as containers from the provider. The request
of user i consists of Qi containers and is denoted by Ri = {ri1k, . . . , riQik},
where rijk is the amount of resource of type k requested by user i for container j.
As an example, suppose that user i’s request is Ri = {{4, 6, 0}, {2, 1, 5}}. This
means that the number of containers, Qi, requested by user i, is two (Qi = 2).
The first container requires four cores, 6 GB of memory, and no storage, while
the second container requires two cores, 1 GB of memory, and 5 GB of storage.
The provider allocates a given container to a single node. Also, to have a con-
sistent response time from the physical nodes, the whole request from a user is
allocated at either edge or cloud level, but not at both.

Upon receiving the request, the provider decides how to provision resources
and allocate the users’ requests in order to maximize the total profit, where the
profit is the difference between the payments received form the users and the
operating cost. We consider that the operating cost of a node is proportional to
the energy consumption of that node which can be estimated by a linear function
of CPU, memory, and disk utilization [13,20]. Therefore, the energy consumption
is captured in the objective function through the operating cost. The operating
cost (due to energy consumption) of a powered-on node h at level � is given by,

E�
h = δ�

h +
3∑

k=1

u�
hk · ρ�

hk (1)

34 T. Bahreini et al.

where, δ�
h is the operating cost of node h at level � when it is idle, ρ�

hk is the
operating cost of node h for the resource of type k when the resource is fully
utilized, and u�

hk is the utilization rate of node h’s resource of type k. The
utilization u�

hk is given by,

u�
hk =

1
C�

hk

N∑

i=1

Qi∑

j=1

z�
hij · rijk (2)

where z�
hij is a binary variable associated with the allocation of container j of

user i to node h at level �. The value of this variable is 1, if container j of user i
is allocated to node h at level �; and 0, otherwise. Therefore, the total operating
cost of the system is,

E =
2∑

�=1

M�∑

h=1

x�
h · δ�

h +
2∑

�=1

M�∑

h=1

3∑

k=1

u�
hk · ρ�

hk (3)

where, x�
h is a binary decision variable associated with the status of node h

at level �. Variable x�
h is 1 if the node is powered on; and 0, otherwise. These

decision variables determine how many servers will be turned on by the provider,
and therefore represent the capacity provisioning decision.

The provider charges each user a certain amount of money per each unit
of time. The amount of money depends on the level that the user’s request is
allocated and the amount of resources that user requested. Denoting the unit
price of a resource of type k at level � by π�

k, the payment of user i is defined as,

pi =
Qi∑

j=1

3∑

k=1

2∑

�=1

y�
i · π�

k · rijk (4)

where, y�
i is a binary variable, y�

i = 1 if user i is allocated at level �; and 0, oth-
erwise. Therefore, we define the net profit, Π, of the provider as the aggregated
users payments minus the total operating cost of nodes,

Π =
N∑

i=1

Qi∑

j=1

3∑

k=1

2∑

�=1

y�
i · π�

k · rijk −
2∑

�=1

M�∑

h=1

x�
h · δ�

h

−
N∑

i=1

Qi∑

j=1

3∑

k=1

2∑

�=1

M�∑

h=1

zl
hij · rijk · ρ�

hk

C�
hk

(5)

To simplify the equations for profit, we define the following parameters:

ω�
hij =

3∑

k=1

rijk · ρ�
hk

C�
hk

and η�
i =

Qi∑

j=1

3∑

k=1

π�
k · rijk (6)

Now, we formulate the Edge Capacity Provisioning and Resource Allocation
(ECPRA) problem. Table 1 summarizes the notation that we use in our formu-
lation. The mixed-integer linear program (MILP) formulation of ECPRA is as
follows,

Energy-Aware Capacity Provisioning and Resource Allocation 35

Table 1. Notation

Notation Description

N Number of users

M � Number of physical nodes at level �

D Number of resource types

Qi Number of containers requested by user i

rijk Amount of resource of type k from container j of user i

C�
hk Capacity of node h at level l for resource of type k

δ�
h Operating cost of node h at level l in idle mode

ρ�
hk Operating cost of node h at level l for resource of type k fully utilized

π�
k Unit price of resource of type k at level �

x�
h Binary decision variable; status of node h at level �

z�
hij Binary decision variable; allocation of container j of user i

y�
i Binary decision variable; allocation of user i at level �

ECPRA-MILP:

Maximize
N∑

i=1

2∑

�=1

y�
i · η�

i −
2∑

�=1

M�∑

h=1

x�
h · δ�

h −
N∑

i=1

Qi∑

j=1

2∑

�=1

M�∑

h=1

z�
hij · ω�

hij (7)

subject to:
N∑

i=1

Qi∑

j=1

z�
hij · rijk ≤ x�

h · C�
hk ∀h,∀k,∀� (8)

y�
i · Qi ≤

M�∑

h=1

Qi∑

j=1

z�
hij ∀i,∀� (9)

2∑

�=1

M�∑

h=1

z�
hij ≤ 1 ∀i,∀j (10)

x�
h ∈ {0, 1}, y�

i ∈ {0, 1} ∀h,∀� (11)

z�
hij ∈ {0, 1} ∀i,∀j,∀�,∀h (12)

Equation (7) is the objective function which is the total net profit of the
provider. Constraints (8) ensure that the total allocated resources of each type
on node h at level � does not exceed the available capacity of that type of
resource. Note that these constraints also determine the mode of the node; if
x�

h = 1, the corresponding node is on; otherwise, the node is off and no request
can be allocated to it. Constraints (9) guarantee that user i is allocated at level �
if and only if the whole request of this user is allocated to the nodes situated
at level �. Constraints (10) ensure that no container is allocated to more than

36 T. Bahreini et al.

one node. Finally, constraints (11–12) guarantee the integrality of the decision
variables.

2.1 Complexity of ECPRA

We prove that ECPRA is an NP-hard problem, that is, it is not solvable in
polynomial time, unless P = NP . We prove this claim by showing that a special
case of this problem is NP-hard.

Theorem. The ECPRA problem is NP-hard.

Proof. Let us consider a special case of ECPRA in which there is only one user
in the system, and there exists only one level of resources. We call this problem
ECPRA-S. We show that ECPRA-S is an NP-hard problem. Then, we conclude
that ECPRA, which is the general case of ECPRA-S, is NP-hard as well.

From Eq. (7), the objective of ECPRA-S for user i at level � is,

Maximize y�
i · η�

i −
M�∑

h=1

x�
h · δ�

h −
Qi∑

j=1

M�∑

h=1

z�
hij · ω�

hij (13)

Since there is only one user in the system, the first term in the objective func-
tion (η�

i) has a fixed value, that is, it does not have any effects on the solution.
Therefore, we can ignore it. Furthermore, for our purpose, we convert the objec-
tive from maximization to minimization. Since i and � have a fixed value, for
the sake of readability, we define binary variables x̄h and ȳhj , where x̄h = x�

h

and z̄hj = z�
hij . We also define parameters, δ̄h = δ�

h, ω̄hj = ω�
hij , r̄jk = rijk and

C̄hk = C�
hk. Thus, we can formulate ECPRA-S as,

Minimize
M�∑

h=1

x̄h · δ̄h +
Qi∑

j=1

M�∑

h=1

z̄hj · ω̄hj (14)

subject to:
Qi∑

j=1

z̄hj · r̄jk ≤ x̄h · C̄hk ∀h,∀k (15)

M�∑

h=1

z̄hj ≤ 1 ∀j (16)

x̄h ∈ {0, 1} ∀h (17)
z̄hj ∈ {0, 1} ∀h,∀j (18)

We observe that ECPRA-S is the general case of the Capacitated Facility
Location (CFL) problem [9], where instead of having a single type of goods, each
facility provides different types of goods. In fact, in CFL, there is a set of facilities
(nodes), each facility provides a single type of goods (resources) with a limited
capacity (Constraints (15)). There is also a set of clients (set of containers), and

Energy-Aware Capacity Provisioning and Resource Allocation 37

a client j has a demand, r̄jk. The whole demand of a client must be assigned to a
single facility (Constraints (16)). Each facility has a fixed cost to be opened, δ̄h.
Satisfying the demand of each client from each facility has a different cost, ω̄hj .
The goal is to select a subset of facilities to open, in order to minimize the sum
of the cost of the assignment, plus the sum of facilities’ opening cost (Eq. (14)).
CFL is a well-known NP-hard problem [9]. Since ECPRA-S is a generalization of
CFL, ECPRA-S is NP-hard as well. Furthermore, ECPRA is a generalization of
ECPRA-S. Therefore, ECPRA is an NP-hard problem.

3 A Greedy Algorithm for ECPRA

ECPRA is NP-hard and therefore, it is not solvable in polynomial time, unless
P = NP . We give up on optimality and develop a greedy algorithm, called G-
ECPRA, that provides a suboptimal solution to ECPRA in polynomial time. Our
greedy algorithm is an iterative algorithm; and in each iteration, the allocation
of only one user is determined. In fact, in each iteration of the algorithm, a user
that maximizes the revenue of the system is selected, and then, the algorithm
finds an allocation for that user that minimizes the operating cost of the system.

The proposed algorithm for solving the ECPRA problem is given in Algo-
rithm1. The algorithm has as input the vector of users’ requests and the capac-
ity of the nodes at each level, and determines the allocation of these requests.
The output of the algorithm consists of the profit of the provider, Π, and the
allocation matrices X = {x�

h}, Y = {y�
i}, and Z = {z�

hij}.
First, G-ECPRA initializes the allocation matrices X, Y , and Z, and the

status matrix S = {s�
h} (Line 1). The status matrix indicates the status of the

nodes after the last iteration of the algorithm, that is, s�
h = 0 if node h at

level � is turned on, and s�
h = 1 if that node is off. Initially, this matrix is set

to 1, that is, no node is selected to be turned on. G-ECPRA then determines
the average revenue, Γi, that each user can bring to the system (Lines 2–3).
It sorts users in non-increasing order of Γi (Line 4). Then, in each iteration of
the algorithm, an unallocated user with the maximum Γi is chosen in order to
maximize the revenue of the provider. In this step, Algorithm G-CFL is called
twice to determine the possible allocations for the current user at both the edge
level and the cloud level (Lines 6–7). G-CFL gets the request of the user, the
current capacity at level �, and the status of nodes, S, and finds an allocation
for the user at level � such that the operating cost is minimized. In fact, G-CFL
tries to find a solution for ECPRA-S (we will explain this algorithm in more
details later). X̄� and Z̄� are temporary matrices corresponding to the output
matrices X̄ and Z̄ obtained by G-CFL for the current user at level �, and cost�

is the cost of allocating the current user at level �.
G-ECPRA determines the possible contribution to the profit by the current

user, Π� = η�
i − cost� (Line 8). Then, the algorithm picks the level that yields

the maximum profit (Line 9). If the profit at this level is positive, it means that
G-CFL has found a feasible allocation for this user. In this case, the allocation
matrices X, Y , Z, and the profit of the system are updated (Lines 10–16). If the

38 T. Bahreini et al.

Algorithm 1. G-ECPRA
Input: Users’ requests: {R1, . . . , RN}

Nodes’ capacity: C = {C�
hk}

1: Π ← 0, X ← 0, Y ← 0, Z ← 0, S ← 1
2: for i = 1 . . . N do
3: Γi ← ∑Qi

j=1

∑3
k=1

(π1
k+π2

k)

2
· rijk

4: sort users in non-increasing order of Γi

5: for i = 1 . . . N do
6: for � = 1 . . . 2 do
7: {X̄�, Z̄�, cost�} ← G-CFL(Ri, C

�, S�)
8: Π� ← η�

i − cost�

9: �∗ ← argmax�∈{1,2} Π�

10: if Π�∗
> 0 then

11: Π ← Π + Π�∗

12: y�∗
i ← 1

13: for h ∈ M �∗
do

14: x�∗
h ← x̄�∗

h

15: for j = 1 . . . Qi do
16: z�∗

hij ← z̄�∗
hj

Output: X, Y , Z, Π

profit is negative, it means that G-CFL has not found a feasible allocation for
the user. Therefore, the allocation matrices will not be updated. This procedure
is repeated until all users are considered.

The G-CFL algorithm, presented in Algorithm 2, finds an allocation for user i
at level � with the minimum operating cost. In fact, G-CFL solves the ECPRA-S
problem. However, in the problem that G-CFL solves, some nodes might have
been turned on due to the allocation of the previous users. Therefore, if any
container of the current user is allocated on these nodes, no fixed cost δ�

h, will
be added to the system.

G-CFL has as inputs the request of user i, the current capacity of the nodes
at level �, and the status matrix. It determines the allocation for user i. The
output of G-CFL is the cost of allocating user i at level �, and the allocation
matrices Z̄ = {z̄jk} and X̄ = {x̄h}.

First, G-CFL creates a set of unallocated containers, R. Initially, R contains
all user i’s containers (Line 2). Then, the algorithm computes the cost of assign-
ing each container on each node. For this purpose, function available is called
(Line 6) to check whether node h has enough capacity for container j. If there are
enough resources, then the cost of the assignment is given by s�

h · δ�
h +ω�

hij . Oth-
erwise, the cost of the assignment is infinity, which means that the assignment
is infeasible (Lines 4–9).

Then, G-CFL assigns containers to the nodes iteratively. In each iteration,
it chooses a pair of node and container (h∗, j∗) that has the minimum value
of assignment cost (Line 11). If costh∗j∗ is not infinity, it means that assigning
container j∗ to node h∗ at level �∗ is feasible. In this case, the algorithm updates

Energy-Aware Capacity Provisioning and Resource Allocation 39

Algorithm 2. G-CFL
Input: Request of user i; Ri = {rijk}

Nodes’ capacities at level �; C� = {C�
kh}

Status of nodes at level �; S� = {s�
h}

1: Π ← 0, X̄ ← 0, Z̄ ← 0
2: R ← {1, . . . , Qi}
3: C̄ ← C�

4: for each j ∈ R do
5: for h = 1, . . . , M � do
6: if available(Ĉh, j) then
7: costhj ← x̄�

h · δ�
h + ω′

hj

8: else
9: costhj ← ∞

10: while R �= ∅ do
11: (h∗, j∗) ← argmin(h,j)(costhj)
12: if costh∗j∗ �= ∞ then
13: C̄h∗ ← C̄h∗ − rij

14: z̄h∗j∗ ← 1
15: x̄h∗ ← 1
16: cost ← cost + costh∗j∗

17: remove j∗ from R
18: for each j ∈ R do
19: if available(C̄h∗ , j) then
20: costh∗j ← ω′

h∗j

21: else
22: costh∗j ← ∞
23: else
24: cost ← ∞
25: break;

26: if cost �= ∞ then
27: for h = 1, . . . , M � do
28: C�

h ← C̄h

29: if x̄h = 1 then
30: s�

h ← 0

Output: X̄, Z̄, cost

the capacity of the node, temporarily. Matrices X̄ and Z̄ and the cost of the
system are also updated (Lines 12–16). Then, the algorithm removes container j∗

from R (Line 17). After that, it updates the cost of assigning each remaining
container to node S�

h∗ . Since this node is on now, the fixed cost must not be
considered in any other assignments of this node. The algorithm also checks if
by this assignment, there are not enough resources for a container, then the
cost of the further assignment is set to infinity (Lines 19–22). If the cost of
assignment for (h∗, j∗) is infinity, it means that the minimum assignment cost
is infinity. Therefore, the algorithm could not find a feasible assignment for
this container and any other containers. Thus, it sets the total assignment cost

40 T. Bahreini et al.

to infinity, exits from the loop, and does not continue finding allocations for
other containers (Lines 23–26). Outside the loop, the algorithm checks the value
of cost. If it is not infinity, the allocation matrix, status matrix, and capacity
are updated (Lines 26–30).

We now analyze the time complexity of the algorithm. In the analysis we
use the following notation: M = max� M � and Q = maxi Qi. In G-CFL, the
initialization (Lines 1–3) takes O(DMQ). The while loop of G-CFL takes O((M+
D)Q2). Since D (the number of resource types) is small compared to M and Q,
the time complexity of G-CFL is O(MQ2). The most time consuming part of
G-ECPRA is the call to G-CFL for each user and for each level. Therefore, the
time complexity of G-ECPRA is O(NMQ2).

4 Experimental Results

In this section, we present an experimental analysis of the performance of our
proposed algorithm, G-ECPRA. We compare the performance of G-ECPRA with
the optimal solution obtained by solving ECPRA-MILP with CPLEX [1]. Then,
we investigate the scalability of G-ECPRA for large size instances. In the follow-
ing, we describe the experimental setup and analyze the experimental results.

4.1 Experimental Setup

We generate several problem instances with different values for the number of
users, N , the number of resource types, D, and the amount of resources requested
by each user, rijk. In the first set of experiments, we compare the performance
of G-ECPRA with that of the CPLEX solver. Since the CPLEX solver cannot
solve large size problem instances, we perform this analysis on relatively small
size problem instances. We assume that there are a few nodes available at the
edge level and the cloud level (M1 = 5, M2 = 10). For these problem instances,
the number of users varies from 10 to 100, and there are four types of resources,
i.e., CPU, memory, storage, and bandwidth. The value of rijk is chosen from a
uniform distribution U [0, RB], where RB is an upper bound for rijk.

Since the objective of ECPRA-MILP is to maximize the profit, we generate
instances according to a metric called price to cost ratio (PCR). This metric is
defined as the ratio of the average price per unit of resource to the average cost
per unit of resource:

PCR =
∑3

k=1

∑2
�=1

∑M�

h=1 C�
kh · π�

k∑2
�=1

∑M�

h=1(δ
�
h +

∑3
k=1 C�

kh · ρ�
kh)

(19)

Table 2 shows the probability distributions used to generate the parameters
in our experiments. We denote by U[x, y] the uniform distribution on the interval
[x, y]. To generate problem instances with different values of PCR, the price per
unit of each type of resources is drawn from different distributions.

Energy-Aware Capacity Provisioning and Resource Allocation 41

Table 2. Simulation parameters

Param Distribution Param Distribution

C1
hk U [1, 300] π1

k PCR ≈ 1 : U [1, 6]

C2
hk U [30, 300] PCR ≈ 2 : U [3, 10]

Qi U [1, 5] PCR ≈ 7 : U [10, 35]

rijk U [0, RB] PCR ≈ 20 : U [40, 120]

δ1h U [5, 50] π2
k PCR ≈ 1 : U [1, 3]

δ2h U [1, 40] PCR ≈ 2 : U [1, 5]

ρ1
kh U [1, 10] PCR ≈ 7 : U [3, 20]

ρ2
kh U [1, 5] PCR ≈ 20 : U [10, 80]

The performance of G-ECPRA is evaluated by computing the profit ratio, Πr,
which is the ratio of the value of the solution obtained by G-ECPRA, denoted
by Π, and that of the optimal solution obtained by CPLEX, denoted by Π∗,
i.e., Πr = Π

Π∗ .
In the second set of experiments, we investigate the scalability of G-ECPRA

for large size problem instances. We consider a system with 50 servers at the
edge level, and 100 servers at the cloud level (M1 = 50, M2 = 100). There are
four types of resources, and the number of users ranges from 100 to 1500.

The G-ECPRA algorithm is implemented in C++ and the experiments are
conducted on an Intel 1.6 GHz Core i5 system with 8 GB RAM. For solving G-
ECPRA-MILP, we use the CPLEX 12 solver provided by IBM ILOG CPLEX
optimization studio for academics initiative [1].

4.2 Experimental Analysis

We first investigate the effects of the number of users on the performance of G-
ECPRA. For each value of the number of users, we generate two sets of instances
with different values of PCR. In these problem instances, all parameters are
identical except π�

k. The value of π�
k is chosen according to Table 2, such that in

the first set, PCR ≈ 2, and in the second set, PCR ≈ 20. For these problem
instances, RB ≈ 6.

Figure 1a shows the execution time for each instance. We observe that for each
number of users, the running time of CPLEX for an instance with PCR ≈ 20
is less than the instance with PCR ≈ 2. The reason behind this is that when
the PCR is high, the effect of the energy cost of servers on the profit of the
system is not very significant. Thus, the main problem is to decide only on how
to place the requests of each user, either at the edge or at the cloud level, in
order to maximize the total payments. Therefore, the CPLEX solver can solve
the problem faster than the case in which we have a balance between cost and
the price of each unit of resources.

Another observation from Fig. 1a is with respect to the impact of the number
of users on the running time. The running time of CPLEX (represented in the

42 T. Bahreini et al.

 0.01

 1

 100

 10000

 1x106

 1x108

10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
tim

e
(m

se
c)

N

G-ECPRA(PCR~2)
G-ECPRA(PCR~20)

CPLEX(PCR~2)
CPLEX(PCR~20)

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 70 80 90 100

Π
r

N

PCR~2
PCR~20

(b)

Fig. 1. The effect of PCR on the execution time and profit ratio (small-size instances)

figure using a logarithmic scale) increases exponentially, while that of G-ECPRA
increases linearly. Figure 1b shows the profit ratio for each of these instances. As
we observe, the profit ratio for instances with PCR ≈ 20 is higher than that for
the instances with PCR ≈ 2. The reason behind this observation is that with
PCR ≈ 20, minimizing the cost is not so important and the main focus is on
maximizing the total payment. Therefore, G-ECPRA, which decomposes the main
problem into two subproblems obtains solutions that are not far from solutions
of the main problem. Another observation from Fig. 1b is that for both instances,
by increasing the number of users, the profit ratio decreases. Since the capacity
of the nodes is identical for all instances, by increasing the number of users in
the system, the allocation becomes more competitive and it becomes harder to
decide how to allocate resources in order to maximize the profit. However, the
solution obtained by G-ECPRA is good. For N = 10 the profit ratio is about 0.95
while for N = 100, it is about 0.6, which is still reasonable.

Next, we analyze the effects of the number of users on the performance of the
algorithm. But this time, our analysis is based on two sets of problem instances
with different values of the request bound, RB. In fact, we investigate the effects
of RB on the quality of solutions. In the first set, each container has at most
one unit of each type of resources (RB = 1), while in the second set, each
container can contain up to eight units of each type of resources (RB = 8).
For these instances, PCR ≈ 2. Figure 2a shows the running time of CPLEX
and G-ECPRA for each instance. We observe that the running time of G-ECPRA
does not change dramatically and is less than 1 ms for all instances. But the
running time of CPLEX increases by increasing RB, and for some instances, it
exceeds 2050 ms. The reason behind this behavior is that the complexity of the
problem increases when each container contains more than one unit of each type
of resources. Figure 2b shows that the profit ratio decreases when RB increases.
Since by increasing RB, the complexity of the problem increases, the solution
obtained by G-ECPRA is farther from the optimal solution than in the case with

Energy-Aware Capacity Provisioning and Resource Allocation 43

 0.1

 1

 10

 100

 1000

 10000

10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
tim

e
(m

se
c)

N

G-ECPRA(RB=8)
G-ECPRA(RB=1)

CPLEX(RB=8)
CPLEX(RB=1)

(a)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

10 20 30 40 50 60 70 80 90 100

Π
r

N

RB=8
RB=1

(b)

Fig. 2. The effect of the request size bound, RB, on the execution time and profit ratio
(small-size instances)

smaller values of RB. However, the quality of solutions is still very good (the
profit ratio is about 0.98).

In the next set of experiments, we investigate the performance of the algo-
rithm for large-scale problem instances. We define two sets of instances with
PCR ≈ 1 and PCR ≈ 7, respectively. Because for these sets of problem instances
the size of problem is large, the CPLEX is unable to obtain the optimal solution
in reasonable amount of time. Figure 3a shows the running time of our algorithm
for these two instances. As we observe, by increasing the number of users, the
running time of our algorithm also increases, but the increase is linear. Even for
these large instances, the running time of our algorithm is under 800 ms, thus,
making it suitable for deployment in EC systems.

Since, the CPLEX solver is unable to solve these large size problem instances
in a reasonable amount of time, we cannot compare the profit obtained by G-
ECPRA with that of CPLEX. Figure 3b shows the profit ratio between the profit

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

E
xe

cu
tio

n
tim

e
(m

se
c)

N

G-ECPRA(PCR~1)
G-ECPRA(PCR~7)

(a)

 0.154

 0.156

 0.158

 0.16

 0.162

 0.164

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

P
ro

fit
 r

at
io

 w
.r

.t.
 P

C
R

=
7

in
st

an
ce

s

N

(b)

Fig. 3. The effect of PCR on the execution time and profit ratio with respect to
PCR ≈ 7 instances (large-size instances)

44 T. Bahreini et al.

obtained for instances with PCR ≈ 1 to the profit obtained for instances with
PCR ≈ 7. We observe that in all cases this ratio is about 0.16 which is very close
to the ratio between the PCR of the two instance sets. This indicates that our
algorithm has a stable behavior and that the value of PCR does not significantly
affect the performance of the algorithm.

5 Conclusion

There is an increasing concern about the energy consumption in edge computing
systems, both from the perspective of the environmental impact as well as busi-
ness competitiveness. In this paper, we proposed an energy-conscious approach
for the capacity provisioning and resource allocation problem in edge computing
systems. We proposed an MILP formulation of the problem and proved that the
problem is NP-hard. In order to solve the problem efficiently, we proposed a
heuristic algorithm and analyzed its performance. Our experimental analysis on
different sizes and various configurations of the problem showed that the pro-
posed greedy algorithm is competitive with the CPLEX solver in terms of both
the computational time and the quality of solutions.

In future work, we plan to develop energy-aware auction based mechanisms
for the capacity provisioning and resource planning in edge computing systems.
Also, we plan to take the uncertainty of demands into account in the energy-
aware capacity provisioning and resource allocation in edge computing systems.

References

1. IBM ILOG CPLEX V12.1 user’s manual (2009)
2. Anglano, C., Canonico, M., Guazzone, M.: Profit-aware resource management for

edge computing systems. In: Proceedings of the 1st International Workshop on
Edge Systems, Analytics and Networking, pp. 25–30. ACM (2018)

3. Bahreini, T., Grosu, D.: Efficient placement of multi-component applications in
edge computing systems. In: Proceedings of the 2nd ACM/IEEE Symposium on
Edge Computing, pp. 5:1–5:11 (2017)

4. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

5. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A taxonomy and survey of
energy-efficient data centers and cloud computing systems. In: Advances in Com-
puters, vol. 82, pp. 47–111. Elsevier (2011)

6. Buyya, R., Beloglazov, A., Abawajy, J.: Energy-efficient management of data cen-
ter resources for cloud computing: a vision, architectural elements, and open chal-
lenges. arXiv preprint arXiv:1006.0308 (2010)

7. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Managing
energy and server resources in hosting centers. ACM SIGOPS Oper. Syst. Rev.
35(5), 103–116 (2001)

8. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Trans. Netw. 5, 2795–2808 (2016)

http://arxiv.org/abs/1006.0308

Energy-Aware Capacity Provisioning and Resource Allocation 45

9. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness, vol. 29. WH Freeman, New York (2002)

10. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research
problems in data center networks. ACM SIGCOMM Comput. Commun. Rev.
39(1), 68–73 (2008)

11. Hameed, A., et al.: A survey and taxonomy on energy efficient resource allocation
techniques for cloud computing systems. Computing 98(7), 751–774 (2016)

12. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud comput-
ing systems. J. Supercomput. 60(2), 268–280 (2012)

13. Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level full-system
power models. HotPower 8(2), 32–39 (2008)

14. Sardellitti, S., Scutari, G., Barbarossa, S.: Joint optimization of radio and com-
putational resources for multicell mobile-edge computing. IEEE Trans. Signal Inf.
Process. Netw. 1(2), 89–103 (2015)

15. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud com-
puting. In: Proceedings of the 2008 Conference on Power Aware Computing and
Systems, San Diego, California, vol. 10, pp. 1–5 (2008)

16. Torres, J., Carrera, D., Hogan, K., Gavaldà, R., Beltran, V., Poggi, N.: Reduc-
ing wasted resources to help achieve green data centers. In: Proceedings IEEE
International Symposium on Parallel and Distributed Processing, pp. 1–8. IEEE
(2008)

17. Trinh, H., et al.: Energy-aware mobile edge computing for low-latency visual data
processing. In: Proceedings of the 5th IEEE International Conference on Future
Internet of Things and Cloud, pp. 128–133 (2017)

18. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware appli-
cation placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Mid-
dleware 2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89856-6 13

19. Zhang, K., et al.: Energy-efficient offloading for mobile edge computing in 5G
heterogeneous networks. IEEE Access 4, 5896–5907 (2016)

20. Zhang, Q., Zhani, M.F., Zhang, S., Zhu, Q., Boutaba, R., Hellerstein, J.L.: Dynamic
energy-aware capacity provisioning for cloud computing environments. In: Proceed-
ings of the 9th International Conference on Autonomic Computing, pp. 145–154
(2012)

https://doi.org/10.1007/978-3-540-89856-6_13
https://doi.org/10.1007/978-3-540-89856-6_13

Stackelberg Game-Theoretic Spectrum
Allocation for QoE-Centric Wireless

Multimedia Communications

Krishna Murthy Kattiyan Ramamoorthy(B), Wei Wang, and Kazem Sohraby

Department of Computer Science, San Diego State University,
San Diego, CA 92182, USA

{kkattiyanramam8285,wwang,ksohraby}@sdsu.edu

Abstract. Multimedia Quality of Experience (QoE) is a predominant
factor that drives customer satisfaction and user experience in the future
wireless networks. This paper proposes a Stackelberg game theoretic
spectrum allocation approach for QoE-centric wireless multimedia com-
munication rather than the traditional data traffic. Here, we introduce
the cost of utilizing the spectrum as a factor in the utility of the service
provider and the client device. Both service provider and client devices
are assumed rational and selfishly look to maximize their utility in a non-
cooperative manner. Stackelberg game is used to formulate the interac-
tion between the service provider and the client device, and to derive
the Nash Equilibrium for the utility maximization problem. The paper
proves existence of a Stackelberg game solution such that the utility of
both client device and the service provider is maximized. The simula-
tion results demonstrate that QoE and fairness can be achieved by the
proposed game-theoretic spectrum allocation scheme.

Keywords: QoE/QoS resource allocation · Game theory ·
Stackelberg game · Wireless multimedia communications

1 Introduction

The mobile and wireless communication is one of the most rapidly growing tech-
nologies. The wireless data traffic is expected to grow 1000-fold by year 2020 and
more likely to grow to 10,000-fold by 2030 [1]. Multimedia and video packets con-
stitute the largest share of data traffic over the Internet. With increasing num-
ber of Internet-ready devices and the demand for multimedia data, the network
becomes congested and the spectrum turn out to be a valuable resource. A good
solution for multimedia streaming over the Internet would be to maximize the
utilization of the available spectrum, have the capability to adjust video bit rates
to varying wireless channel and provide seamless Quality of Experience (QoE)
to the user. For example, Dynamic Adaptive Streaming over HTTP (DASH)
standard has been proposed by the Moving Picture Experts Group (MPEG)

c© Springer Nature Switzerland AG 2019
T. Zhang et al. (Eds.): EDGE 2019, LNCS 11520, pp. 46–58, 2019.
https://doi.org/10.1007/978-3-030-23374-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23374-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-23374-7_4

Game-Theoretic Spectrum Allocation 47

of International Standardization Organization (ISO)/International Electro tech-
nical Commission (IEC) in 2011 [2]. MPEG DASH is a multimedia delivery
technology that aims at transporting the best quality content with the fewest
dropouts and least possible buffering. Internet-based video delivery today has
widely adopted DASH as it provides less latency for a given bandwidth and
can be deployed on top of the existing infrastructure, utilizing transport layer
protocol (TCP) and the application layer protocol (HTTP) [3,4].

This paper proposes a Stackelberg game-theoretic mechanism for spectrum
allocation for the multimedia packets transmitted over the wireless networks as
shown in Fig. 1. In this model, the interaction between the service provider and
the client is considered as a Stackelberg game, where the SP (Service Provider)
makes an announcement for the spectrum cost and then the client decides the
quantity of spectrum to request for allocation.

Fig. 1. Interaction between service provider and client in proposed scheme.

The client device aims to maximize its QoE by requesting as much spectrum
blocks as possible for a given channel condition and the video description profile
(e.g., display resolution, codec support). The service provider, being aware of
the channel condition, decides the cost charged for the spectrum blocks for each
multimedia packet. The essential questions are: What should be the suitable cost
factor charged by the SP, such that their net utility is maximized? How much
spectrum should the client device request for the given cost such that its QoE is
maximized? In this paper, we propose an algorithm that determines the optimal
values for the spectrum size and cost. This algorithm is derived by translating
the system model into a game-theoretical QoE maximization problem.

Game-theoretic models have been proposed in the past for non-cooperative
wireless communications. For example, Nash Equilibrium for multimedia relay
communication was analyzed [5], a game for power selection based on the distor-
tion reduction per frame was proposed and equilibrium was achieved [6]. Several
game solutions have been developed to address the issues in Dynamic spec-
trum sharing over cognitive radio [7,8]. In one study, [7], the game is defined
between the secondary users and solved for the optimization problem between
the secondary users who are competing to maximize their utilities by sharing the
spectrum. Another study by Huang and Wang [8], proposes a refunding mech-
anism in spectrum sharing network where the primary user provides refund to
the secondary user if the promised QoS is not achieved. Researchers also propose
a cooperative game model to allocate the bandwidth between various users for

48 K. M. Kattiyan Ramamoorthy et al.

DASH [9]. This model assumes the players to be cooperative in order to maxi-
mize the spectrum allocated to them. However, in reality, the client devices are
bandwidth hungry and selfish. Other research have been performed extensively
on resource allocation, QoE optimization or attaining the utility Equilibrium for
wireless multimedia communications [14,15]. In the proposed work, we assume
the end users to be rational and selfish. We have derived the Nash equilibrium
for a single user – single service provider scenario which can be easily extended
to a multi-user scenario.

The rest of the paper is organized as follows: Sect. 2 presents the utility
models of the SP and the client device. In Sect. 3, we define the utility models as
a two-stage Stackelberg game and determine the Nash equilibrium of the game.
Simulation results for the proposed game theory model is presented in Sect. 4
and we conclude the paper in Sect. 5.

2 System Model

In multimedia communication, the client device requests a sequence of multime-
dia packets from the SP. Figure 2 shows the system model for the proposed last
mile dynamic allocation model. In this architecture, the service provider dynam-
ically decides the cost per unit bandwidth γ before transmitting the multimedia
packets. The service provider has several copies of the requested data with dif-
ferent multimedia profiles obtained from the server. This gives the client device
the flexibility to determine the bit rates for every subsequent frame. The client
device then determines the amount of bandwidth B to request for given spec-
trum cost γ. The multimedia QoE achieved by the client is determined by the
amount of bandwidth requested. If the client requests high bandwidth, the SP
helps transmit the premium content and if the client requests lower bandwidth,
the SP transmits regular content.

In this section, we define the utilities of the client and the base station. We
use the terms service provider and base station interchangeably. We also use the
term client and end-user interchangeably in the rest of this paper.

2.1 Utility of the Client (End-User)

The client requests data from the service provider over the wireless channel. The
utility of the client is defined as the income generated from user satisfaction such
as the multimedia QoE, minus the payment for service provider’s service. The
capacity of the wireless channel can be given by the Shannon–Hartley theorem.

C = B log2

(
1 +

p

σ

)
(1)

where B is the total amount of bandwidth allocated to client, and p and σ
represent the signal power and noise power in the communication channel. In
this paper, we assume that the transmission and the noise power do not change
during the data transmission.

Game-Theoretic Spectrum Allocation 49

Fig. 2. System model - spectrum allocation in QoE centric wireless multimedia com-
munications.

The utility obtained through the wireless channel can be formulated as the
logarithmic function of allocated resource, [10], and it is given by:

QoE = α log (1 + θ B log2

(
1 +

p

σ

)
) (2)

where α is the payoff parameter and the currency gain for the logarithmic QoE.
The packet transmitted over the wireless channel comprises of the protocol over-
head and the error control bits apart from the payload information as shown in
Table 1 below. The percentage (%) of payload bits per transmission θ is mul-
tiplied with the bandwidth term of the QoE equation above as only those bits
contribute to the actual QoE.

Table 1. Overhead in wireless communication protocols

Protocol stack Overhead (HTTP DASH)

Transport layer TCP (32 bytes)

Network layer IP (20 bytes)

Datalink layer Ethernet (14 bytes)/Wi-MAX (6 bytes)

Interframe gap 12 bytes

Preamble 8 bytes

CRC/Error control 4 bytes

Average payload ˜576 bytes

Channel utilization (θ) ˜50%

The link utilization of the client device would be higher for higher bit rates
due to the larger payload. Therefore, to maximize its QoE, the client device

50 K. M. Kattiyan Ramamoorthy et al.

will look forward in buying several spectrum blocks. The client pays the service
provider with ψClient SP for delivering quality of service by transmitting data
with requested spectrum. This can be modeled as the product of the cost per
unit bandwidth γ and the amount of spectrum allocation B.

ψClient SP = γ B (3)

The SP determines the cost of spectrum based on the channel conditions
and spectrum availability. Knowing the cost of the spectrum, the optimization
on the client devices is to be allocated the right amount of spectrum that would
maximize its utility. The utility of the client can be modeled as

Uc = α log
(
1 + θ B log2

(
1 +

p

σ

))
− γ B (4)

st. Uc ≥ 0

Bmin < B< Bmax

where Bmin and Bmax represent minimum spectrum required to transmit the
frame with uneven importance and the maximum spectrum available per user
with the base station.

2.2 Utility of the Base Station (Service Provider)

Base station generates revenue by transmitting the multimedia data with QoE
requirement to the client. The base station is rational and recognizes the client’s
QoE as a factor for the bandwidth requirement and spectrum cost. The payment
received from the client ψClient SP is modeled in Eq. (3). The base station also
incurs two types of costs, namely the transmission cost and the spectrum cost.
The utility equation for the base station can be modeled as:

UBS = ψClient SP − ψTx − ψspectrum (5)

The transmission cost ψTx is defined as the cost per unit energy required to
transmit a frame over the wireless channel. It is determined by the packet length
l, transmission power per bit p, constellation size of modulation scheme b and
the spectrum B. λ is defined as the currency value per unit energy consumption.

ψTx = λ
lp

bB
(6)

The second cost incurred by the base station is the money paid to acquire the
spectrum ψspectrum. The service provider might request the spectrum from the
Federal Communications Commission (FCC) before it can use it for transmission
of data. The cost function of the spectrum can be modeled as per [11] indicating
that the cost mainly consists of investment ϕ which is directly proportional to
B and a fixed cost μ. The cost co-efficient τ is non-negative constant and τ < 1
for the cost function to be monotonically increasing and concave.

ψspectrum = μ + ϕ(B)τ (7)

Game-Theoretic Spectrum Allocation 51

The base station is interested in optimizing the cost it offers the client device
for unit spectrum such that its net utility is maximized.

UBS = γ B − λ
lp

bB
− μ + ϕ(B)τ (8)

st. UBS ≥ 0

γ ≥ λ + μ + ϕ

3 Stackelberg Game Analysis

The service provider and the client device, both being coherent, desire to maxi-
mize their profits by changing the cost of spectrum blocks and amount of spec-
trum requested, respectively. This utility maximizing problem is defined as a two
stage Stackelberg game. In this section, we investigate the proposed Stackelberg
game and compute the Nash equilibrium for the bandwidth allocation problem.
Nash equilibrium of the game is defined as the set of strategies, one for client and
one for the service provider such that both players have no incentive deviating
from that strategy [12].

Since the client device always request the spectrum based on the cost charged
by the base station, we define the service provider as the leader and client as the
follower of the two stage Stackelberg game. We then use backward induction to
solve the game. We begin with converting the utility function into best response
functions and then we look for the mutual best response {B∗, γ∗}. Mutual best
response is the set of strategies which produce the most favorable outcome for a
player, taking other players’ strategies as given [12]. The best response solution
is generally attained by finding the Nash Equilibrium.

3.1 Best Response of the Client (End-User)

The service provider decides the cost for unit spectrum γ. The utility of the
client is concave for any given cost γ and Bmin < B < Bmax This can be proved
computing the second derivative of the utility function.

∂U c

∂B
=

α θ log
(
1 + p

σ

)

B θ log
(
1 + p

σ

)
+ 1

− γ (9)

∂2U c

∂B2
= − α θ2 log2

(
1 + p

σ

)

(B θ log
(
1 + p

σ

)
+ 1)2

(10)

In the above equations, signal power, noise power, spectrum B and the payoff
parameter α are all positive and so the second derivative ∂2U c

/
∂B2 < 0. This

proves that the utility function is concave for all cost values. The best response
B∗ or stable value of the function that would maximize the utility of the client
can be computed by equating the first derivative to zero.

α θ log
(
1 + p

σ

)

B θ log
(
1 + p

σ

)
+ 1

− γ = 0 (11)

52 K. M. Kattiyan Ramamoorthy et al.

By solving the Eq. (11), we determine the best response for the client. Equa-
tion (12) demonstrates that the users’ spectrum requirement has the following
relationship with the cost parameter γ .

B(γ) =
α θ log

(
1 + p

σ

) − γ

γ θ log
(
1 + p

σ

) (12)

3.2 Best Response of the Base Station (Service Provider)

The service provider being the leader and a rational player of the game knows
the best response of the client shown in Eq. (12) for any given cost γ. Therefore,
the utility equation of the base station shown in Eq. (8) can be rewritten in terms
of γ as

UBS = γ B(γ) − λ
lp

bB(γ)
− μ + ϕ(B(γ))τ (13)

Obtaining the best response for the above utility equation is not straightfor-
ward and require numerical methods. Here, we have used couple of lemmas to
prove that a Nash equilibrium exists and then use Newton’s method to compute
the best response.

Lemma 1. A real function which is differentiable must be a continuous function,
[13].

Lemma 2. A continuous real function on a closed interval must contain a max-
imum value and a minimum value, [13].

Computing the first derivative of UBS and B(γ) with respect to γ, we obtain
Eqs. (14) and (15). Therefore, it can be seen that the utility equation is both
real and differentiable. By coupling with Lemma1, we can prove that the utility
function is continuous.

∂UBS(γ)
∂ γ

= B(γ) + [B(γ) +
lp

bB(γ)
− ϕτB(γ)τ−1]

∂B(γ)
∂ γ

(14)

∂B(γ)
∂ γ

= − α

γ2
(15)

Equation (9) can have more than one root, however we choose only the root
which yields the maximum utility. Equation (12) illustrates the fixed relationship
between the client’s bandwidth requirement and the spectrum cost. Expres-
sion in (15) is always negative, this proves that the function B(γ) is monoton-
ically decreasing. Therefore, it can be observed that the client would choose to
request the maximum bandwidth when the spectrum cost is minimum and vice
versa. The optimal value of the utility function is bounded by a closed interval
[γmin, γmax]. The maximum and minimum cost of the spectrum can be derived
from Eq. (12) and are defined in the equations below.

γmin =
α θ log

(
1 + p

σ

)

Bmax θ log
(
1 + p

σ

)
+ 1

(16)

Game-Theoretic Spectrum Allocation 53

γmax =
α θ log

(
1 + p

σ

)

Bmin θ log
(
1 + p

σ

)
+ 1

(17)

Combining Lemmas 1 and 2, we can prove the existence of a maximum value
for UBS within the closed interval [γmin , γmax]. The optimal cost response γ ∗

can be evaluated by finding the maximum value for UBS using a genetic algo-
rithm or global searching.

3.3 Stackelburg Equilibrium Algorithm

The mutual best response {B∗, γ∗} is the Nash equilibrium of the Stackel-
berg game which maximizes the utility for both the service provider and client
{UBS , UC}. Based on the above analysis of two-stage Stackelberg game we
present an algorithm to determine the Nash Equilibrium using backward induc-
tion method. The Stackelberg game interactions are performed every time before
a multimedia packet is transmitted.

The computing cost of the proposed algorithm is O (M), which comprises of
the maximum iteration steps M to determine the optimal value. Alternatively, a
searching table can be created and updated with the equilibrium spectrum and
equilibrium cost during the sparse time periods between the multimedia trans-
mission. The best responses can directly be searched from the table whenever the
algorithm needs to be performed. This would reduce the computing complexity
and latency in-between the data transmission. The global searching algorithm
to compute the mutual best responses is shown below.

Algorithm 1: Computation of Stackelberg Game Equilibrium.

1. Initialization :
1.1 Initialize the cost parameters α, μ, λ, ϕ and τ .
1.2 Define the channel parameters: transmission

power p and channel noise σ.
1.3 Set the transmission parameters: length of

packet l and modulation constellation size b.
2. Iterations:

2.1 The algorithms solve for the best responses
{B∗, γ∗}. Thereby , determining the utilities of
the base station and the client {UBS , UC }.

2.2 Set UBS = UC = B∗ = γ ∗ = 0.
2.3 Let χ = γ min : N : γmax

2.4 For i=1: N
2.5 Set γ = χ(i)

2.6 compute UBS = γ B(γ) − λ lp
bB(γ) − μ + ϕ(B(γ))τ

2.7 If UBS(γ) > UBS

2.7.1 Update UBS = UBS(γ)
2.7.2 Set γ ∗ = γ
2.7.3 Calculate B∗ = α log (1 + p/σ) − γ ∗/ γ ∗ (1 + p/σ)

54 K. M. Kattiyan Ramamoorthy et al.

2.7.4 Determine the value of UC

3. Output:
The algorithm searches the closed interval space
[γmin, γmax] to determine the Stackelberg game
equilibrium {B∗, γ∗} and the corresponding utilities
of base station and client {UBS , UC}

4 Simulations

The performance of the proposed game theoretic scheme has been examined in
this section. The cost parameters are set as follows: α = 100, μ = 10, λ = 1, ϕ =
1 and τ = 0.5. The channel SNR is set to 25 dB. The modulation size and length
of packet are set at 2 and 10000, respectively. The network utilization θ is set at
50%. The Stackelberg game equilibrium for optimization for the service provider
is facilitated by a global search. The utility of the base station is computed for
payoff parameter α = 100, 90 and 80 and the corresponding best responses (γ ∗)
is shown in Fig. 3.

Fig. 3. Utility of base station versus cost

In Sect. 3, we showed mathematically, the existence of an equilibrium in the
proposed Stackelberg game. The utility of the client primarily depends upon the
channel conditions and the network utilization given by θ. The utility of the base
station depends upon the amount of spectrum blocks allocated and the length
of the packet l.

Game-Theoretic Spectrum Allocation 55

Fig. 4. Utility curves of base station and client device versus spectrum allocated

Fig. 5. Comparison of QoE versus time varying wireless channel

Figure 4 shows the utility gain of the base station and the client device for
fixed cost (γ ∗) versus different quantity of spectrum blocks allocated to the
client. It can be observed that the utility of the base station increases linearly
whereas the utility of the client is concave by its nature for any given cost γ.
This graphically proves the existence of the Nash equilibrium.

The QoE of the end-user for the traditional non-game scheme is com-
pared with the proposed game-theoretic scheme in the following simulations.

56 K. M. Kattiyan Ramamoorthy et al.

Fig. 6. Comparison of utility versus transmission cost per unit energy consumption

Fig. 7. Comparison of utility versus spectrum cost per unit bandwidth allocation

The quality of wireless channel is inherently time varying. In traditional meth-
ods, the client’s QoE changes as a function of channel quality. However, in the
proposed method, we use cost as a factor in the utility equation which improves
the overall QoE of the user. In Fig. 5, the proposed game is performed each time
before the multimedia packet is transmitted over the time varying channel. It
can be observed that the QoE of the client is not compromised based on the
channel quality.

Game-Theoretic Spectrum Allocation 57

The overall utility is defined as the sum of utilities of the SP and the end user.
Figures 6 and 7 show the overall utility gain versus transmission cost per unit of
energy consumption λ and the spectrum cost per unit of bandwidth allocated
ϕ respectively. It can be observed that the overall utilities of both schemes vary
with the cost parameters linearly. Thus, the different initializations of the cost
parameters do not affect the proposed game theoretic scheme and they yield a
better utility.

5 Conclusion

In this paper, we introduced the concept of game theoretic spectrum allocation
by leveraging cost factor to determine the QoE in wireless multimedia commu-
nication. The proposed game was developed between the service provider with
multiple, time-aligned versions of media files and a client device which requests
video sequences. A two-stage Stackelberg game was set-up with service provider
as the leader and client as the follower. The amount of spectrum allocation, and
the cost of spectrum are the two variables in the game under which the Nash
equilibrium was derived. Simulation results show that the QoE of the end user
and the utility of the service provider improves significantly in comparison with
the traditional non-game methods. The proposed game-theoretic methodology
can be scaled to multiple user framework with a single service provider with
multiple clients or multiple service providers with multiple clients.

Acknowledgement. This research was supported in part by National Science Foun-
dation grants CNS-1743427 and CNS-1463768.

References

1. Baldemair, R., et al.: Evolving wireless communications: addressing the challenges
and expectations of the future. IEEE Veh. Technol. Mag. 8(1), 24–30 (2013)

2. Stockhammer, T.: Dynamic adaptive streaming over HTTP - standards and design
principles. In: Proceedings of the 2nd Annual ACM Conference on Multimedia
Systems, pp. 133–144 (2011)

3. MPEG: Information technology: Dynamic adaptive streaming over HTTP (DASH):
Part 1: Media presentation description and segment formats. ISO/IEC 23009–
1:2014 (2014)

4. Timmerer, C.: Advanced Transport Options for DASH: QUIC and HTTP/2 (2015).
https://bitmovin.com/advanced-transport-options-dash-quic-http2/

5. He, S., Wang, W.: Context-aware QoE-price equilibrium for wireless multimedia
relay communications using Stackelberg game. In: 2017 IEEE Conference on Com-
puter Communications Workshops, pp. 506–511 (2017)

6. Wang, Q., Wang, W., Shi, J., Zhu, H., Zhang, N.: Smart media pricing (SMP):
non-uniform packet pricing game for wireless multimedia communications. In: Pro-
ceedings of the IEEE International Conference on Computer Communications, the
5th Workshop on Smart Data Pricing, pp. 27–32 (2016)

https://bitmovin.com/advanced-transport-options-dash-quic-http2/

58 K. M. Kattiyan Ramamoorthy et al.

7. Niyato, D., Hossain, E.: A game-theoretic approach to competitive spectrum shar-
ing in cognitive radio networks. In: IEEE Wireless Communications and Network-
ing Conference, pp. 16–20 (2007)

8. Huang, J., Wang, H.: Game user oriented multimedia transmission over cognitive
radio networks. IEEE Trans. Circuits Syst. Video Technol. 27(1), 108–208 (2017)

9. Yuan, H., Wei, X., Yang, F., Xiao, J., Kwong, S.: Cooperative bargaining game-
based multiuser bandwidth allocation for dynamic adaptive streaming over HTTP.
IEEE Trans. Multimedia 20(1), 183–197 (2018)

10. Su, Z., Xu, Q., Fei, M., Dong, M.: Game theoretic resource allocation in media
cloud with mobile social users. IEEE Trans. Multimedia 18(8), 1650–1660 (2016)

11. Niyato, D., Hossain, E.: Competitive spectrum sharing in cognitive radio networks:
a dynamic game approach. IEEE Trans. Wirel. Commun. 7(7), 2651–2660 (2008)

12. Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, Oxford
(2003)

13. Binmore, K.G.: Mathematical Analysis: A Straightforward Approach. Cambridge
University Press, Cambridge (1982)

14. Wang, W.: Collaborative multimedia source-protocol coordination: a cross-layer
QoE study in modern wireless networks. IEEE Syst. J. 11(4), 2403–2409 (2017)

15. Wang, W., Peng, D., Wang, H., Sharif, H., Chen, H.H.: Energy-constrained qual-
ity optimization for secure image transmission in wireless sensor networks. Adv.
Multimedia 2007, 1–9 (2007). Article ID 25187

Intrusion Detection at the Network Edge:
Solutions, Limitations, and Future

Directions

Simone Raponi(B), Maurantonio Caprolu, and Roberto Di Pietro

College of Science and Engineering (CSE),
Division of Information and Computing Technology (ICT),

Hamad Bin Khalifa University (HBKU), Doha, Qatar
{sraponi,mcaprolu}@mail.hbku.edu.qa, rdipetro@hbku.edu.qa

Abstract. The low-latency, high bandwidth capabilities promised by
5G, together with the diffusion of applications that require high com-
puting power and, again, low latency (such as videogames), are probably
the main reasons—though not the only one—that have led to the intro-
duction of a new network architecture: Fog Computing, that consists in
moving the computation services geographically close to where comput-
ing is needed. This architectural shift moves security and privacy issues
from the Cloud to the different layers of the Fog architecture. In this sce-
nario, IDSs are still necessary, but they need to be contextualized in the
new architecture. Indeed, while on the one hand Fog computing provides
intrinsic benefits (e.g., low latency), on the other hand, it introduces new
design challenges.

In this paper, we provide the following contributions: we analyze the
possible IDS solutions that can be adopted within the different Fog com-
puting tiers, together with their related deployment and design chal-
lenges; and, we propose some promising future directions, by taking into
account the challenges left uncovered by the considered solutions.

1 Introduction

The data deluge expected by the massive adoption of IoT solutions, together with
the need for better network performance required by modern end-user applica-
tions, underline how the classic network Cloud model is not able to efficiently
respond to the new needs. The Cloud model offers a scalable infrastructure that
frees users from the costs of designing, purchasing, and maintaining computing
and storage resources. Despite the obvious advantages, this model is not suit-
able for latency sensitive applications, that demand geographical proximity with
the service provider to meet their delay requirements. To address this challenge,
Cisco researchers defined a new network architecture, called Fog Computing [1],
that extends the Cloud computing paradigm to the edge of the network, enabling
a new variety of applications and services, such as gaming, augmented reality, and
real-time video stream processing. This new paradigm provides computational

c© Springer Nature Switzerland AG 2019
T. Zhang et al. (Eds.): EDGE 2019, LNCS 11520, pp. 59–75, 2019.
https://doi.org/10.1007/978-3-030-23374-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23374-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-23374-7_5

60 S. Raponi et al.

and storage capabilities physically closer to end-users, where data are being
generated [2]. Among the characteristics of Fog Computing, the most impor-
tant are [1]: low latency and location awareness; handling of a huge number of
nodes; heterogeneity; widespread geographical distribution; support for mobile
end-devices; support for real-time applications; and wireless access.

Since the Fog computing network architecture brings the typical services
offered by Cloud computing closer to the end-user, most of its security and pri-
vacy issues are inherited from the Cloud itself. These problems include, but are
not limited to, Distributed Denial of Service (DDoS) attacks, Man in the Mid-
dle (MitM) attacks, rogue gateway attacks, privacy leakage, privilege escalation
attacks, service manipulation attacks, and injection of information. However,
although the problems are the same in Fog computing, they should be contex-
tualized in the new physical and logical elements of the Fog computing network
architecture [3].

One of the most effective methods to solve the above-cited problems is the
adoption of an Intrusion Detection System (IDS) to monitor and analyze the
network traffic and the devices’ behavior. Nevertheless, even IDSs need to be
contextualized to the new network architecture. Indeed, designing an effective
IDS requires to choose not only the IDS typology (e.g., Host-based IDS, Network-
based IDS) and the methods of detection (e.g., anomaly-based IDS, signature-
based IDS), but also the tier in the Fog computing architecture where to place
it. Since the Fog computing network architecture is composed of three tiers, the
placement of an IDS within a tier with respect to the others would completely
change its capabilities.

Although the implementation of IDSs within the Fog Computing network
architecture poses many challenges, whether inherited from the Cloud architec-
ture or not, the introduced benefits could make the difference in certain scenario
(e.g., the detection time plays a crucial role in defending a critical infrastructure).

Contributions: In this paper, we first provide an in-depth analysis of the IDSs
implementation within the Fog computing network architecture by both identi-
fying several design and deployment challenges inherited by the Cloud environ-
ment, and proposing new original ones. Further, we provide a detailed overview
of a selected set of existing solutions. Among the proposed IDS solutions in the
literature we considered both the ones specifically implemented for the Fog com-
puting network architecture and the generic ones that have not been thought
for the Fog paradigm—though they could be adopted within one or more Fog
tiers (e.g., IDS for IoT devices that could be deployed in edge devices, IDS for
Cloud). Moreover, we have mapped each existing solution to the challenges iden-
tified during the analysis, highlighting how none of the current solutions is able
to satisfy most of them. Finally, we propose some future directions, taking into
consideration the challenges left uncovered by the analyzed solutions.

Road-Map: The paper is organized as follows. In Sect. 2, we provide a techni-
cal background of the Fog computing network architecture. In Sect. 3, we study
advantages and drawbacks that possible implementations of IDS in the Fog com-
puting network architecture would bring. In Sect. 4, we provide an analysis of

Intrusion Detection at the Network Edge 61

the main challenges related to architectural design and deployment of IDS in
the Fog computing network architecture. The description of the existing solu-
tions is performed in Sect. 5, together with the related mapping to the challenges
previously identified. In Sect. 6, we discuss the results and propose some future
directions, while in Sect. 7 we report some concluding remarks.

2 Background

In this section, an overview of both Edge and Fog Computing is provided,
together with their differences.

Although apparently similar and often interchangeably used, Edge Comput-
ing and Fog Computing present key differences that are not always easy to
catch. Both the network architectures share the same main objective: bringing
the computation closer to the user, thus reducing the network congestion and
the end-to-end delay. As highlighted in [4], the differences concern:

1. how data are handled. How to process and analyze data gathered locally or
received by other devices in the network;

2. where to process data. Where to put both intelligence and computing power.
The common architecture is composed of several tiers, the choice of the intel-
ligence and computing power placement is crucial and strongly dependent on
the purpose.

In Edge Computing, each end-device plays an important active role in pro-
cessing data locally rather than delegate it to the Cloud [4]. As a consequence,
every device, being it a sensor, an actuator, or a network device, relies on its
own computational power and storage resources to perform operations on data.
The product of this analysis could be maintained locally in case the device
is autonomous and able to take advantage of this information, otherwise, it
is delivered to other upper-tiers devices, that are usually responsible for both
the management of the device itself and other devices belonging to the same
subnetwork. On the contrary, in Fog Computing, processing power and storage
resources needed to process and analyze data collected from IoT devices are inte-
grated into other devices that, in turn, are moved geographically closer to the
data collection. Usually, the devices in question are network ones, placed only a
few hops away from the edge devices [5].

2.1 Fog Computing

Figure 1 depicts one of the most widely adopted architectures in Fog Computing:
the Three-Tier Fog computing architecture [4].

Tier 1 – Edge Devices. Tier 1 usually consists of Internet of Things devices,
including sensors (e.g., temperature, proximity, pressure, chemical, motion detec-
tion, optical), actuators (e.g., chemical, power generation, pumps, valves), and

62 S. Raponi et al.

Fig. 1. Fog computing tiers

smart hand-held devices (e.g., smartphones, tablets, smart watches). Being the
farthest from the Cloud tier, tier 1 includes devices that directly interact both
with end-users and the surrounding environment, gathering data and informa-
tion that need to be processed. However, most of these devices suffer from limited
memory and limited computational power, thus being unable to apply algorithms
for the analysis and the processing of the data in a limited time [6]. This limita-
tion leads to the need to move the computation to more suitable places: in the
Cloud, or within the tier 2 in case Fog computing network architectures have
been adopted.

Tier 2 – Fog Devices. Tier 2 represents the layer between the end-user
devices and the Cloud. It usually consists of network devices (including switches,
routers, gateways), WAN/MAN (Wide Area Network/Metropolitan Area Net-
work) access devices, multiplexers, Integrated Access Devices, and requires con-
siderable resource requirements to perform several tasks, including real-time data
processing and analysis, data storing, data caching, and computational offload-
ing [7]. In this layer, the analysis performed on the gathered data obtained from
the edge devices allows to take decisions locally, thus providing quick responses
to unusual behaviors [8].

Tier 3 – Cloud. Tier 3 comprises the traditional Cloud servers. Cloud servers,
for savings and efficiency reasons, are kept in dedicated facilities (i.e., data cen-
ters) that, in turn, are placed in convenient geographical locations (e.g., where

Intrusion Detection at the Network Edge 63

electricity is cheaper and the weather conditions are optimal). This leads to
an unavoidable physical distance between the Cloud server and end-users, that
eventually brings to end-to-end communication delays and network congestion.
However, Cloud servers offer more computing power and more data storage with
respect to devices in tier 2, together with the opportunity to perform compu-
tationally burdensome operations, such as management of big data and parallel
data processing.

3 Intrusion Detection at the Network Edge

As a new in-standardization-phase network architecture, Fog Computing
presents several security and privacy challenges. Indeed, although the Cloud
architecture is commonly protected by Cloud operators, security and privacy
solutions are not effortlessly extensible for the new architectures introduced.
Challenges of these architectures include, but are not limited to, malicious
insider attacks detection, malicious node detection, Fog forensics, intra-tier and
inter-tier secure communication (i.e., authentication and integrity of the data
exchanged), trust in the Fog services, trust in the end-users, cross-border pri-
vacy of data, security in the storage of the data, security and privacy in the
computation of the data, and access control policies [4,9]. Since the Fog com-
puting network architecture is continuously evolving, these challenges have only
been partially addressed in the literature.

This section focuses on the detection of malicious attacks performed by
internal/external attackers, by describing the possible implementations of IDSs
in both the Cloud architecture and the Fog Computing network architecture.
Attacks can come both from inside and outside the network. We consider:

– outside attack : any attack coming from outside the network or performed by
a non-authenticated device;

– inside attack : any attack coming from inside the network and performed by
an authenticated device.

Inside attacks are more difficult to detect, especially in multi-tenant envi-
ronments where resources are shared among different applications and users.
Moreover, attackers from the inside could use their knowledge of the system to
cover their tracks, thus remaining transparent.

The Fog computing network architecture presents some peculiarities with
respect to the Cloud architecture that could make an IDS more suitable and
effective. The Fog computing network architecture is composed of three tiers,
each tier offering a different view of the network: the higher the tier, the wider
the vision on the network; conversely, the lower the tier, the narrower the vision
on the network.

Advantages and drawbacks of implementing an IDS in the Fog computing
network architecture with respect to the Cloud computing network architecture
are depicted in Table 1. Each row in the table represents where it could be
possible to deploy an IDS, while in each column a Fog computing feature is
reported.

64 S. Raponi et al.

Table 1. Features of IDSs implemented in different network architectures.

Comp. power Storage Bandwidth Latency Network view Privacy threat

Cloud High High High High High High

Fog Tier 3 High High High High High High

Tier 2 Medium Medium Medium Low Medium Medium

Tier 1 Low Low N/A N/A Low Low

3.1 Implementing an IDS in the Cloud Servers

Implementing an IDS in the Cloud Servers or, equivalently, in Tier 3 of the Fog
computing network architecture, allows to exploit the powerful resources of the
Cloud devices, thus providing the IDS with remarkable Computational Power
and Storage resources. Furthermore, the physical characteristics of the Cloud
allow application and services to rely on an efficient and performing network,
which guarantees an outstanding Bandwidth. However, the modern needs for a
smart and connected world lead to a massive generation of data from edge devices
spread all over the world. Considering that Cloud Servers are usually physically
far from the edge devices, implementing an IDS on a Cloud Server implies high
latency and delay times, inescapably dictated by the physical distance between
the communicating devices. Being virtually placed at the highest point of the
network, Cloud Servers have a far-reaching Network View, made available by
devices located in lower levels that share information regarding their local view
of the network. This gives an IDS the possibility to manage threats having a
complete picture of the network available. Finally, an IDS has the ability to
monitor data traffic and scan files in order to detect malicious code and unusual
behaviors. Cloud service providers, to make the most of the computational and
storage resources they own, rely on multi-tenant environments where users share
the same machine, often without being aware of it. Although this approach is
extremely cost-effective from the resources optimization’s point of view, it opens
the door to potentially serious privacy issues. In fact, regardless of the technology
used (e.g., virtual machines, containers), there is an impressive amount of attacks
aimed at undermining security and privacy of information on the Cloud [10].

3.2 Implementing an IDS in the Fog Network Architecture

The Fog computing network architecture, as depicted in Fig. 1, consists of three
tiers, where each tier is composed of a specific set of devices: tier 1 includes edge
devices, representing those devices that allow generating data, such as sensors,
actuators, and smart-hand devices; tier 2 includes Fog devices, that are usually
placed geographically close to the edge devices and perform processing and anal-
ysis services; tier 3 represents the Cloud itself. The advantages and drawbacks
of an IDS in the Fog computing network architecture are strongly dependent on
the tier in which it is implemented.

Intrusion Detection at the Network Edge 65

Implementing an IDS within the tier 3 makes no difference compared to
implementing it within the Cloud since Fog computing network architecture’s
tier 3 and Cloud coincide. Conversely, the implementation of an IDS within
the tier 2 presents some differences. Tier 2’s devices, often represented by net-
work devices (i.e., switches, routers, gateways), small servers, Integrated Access
Devices, can boast of adequate computational power and storage resources, not
even remotely comparable to those in the Cloud but sufficient to successfully
perform data mining, data aggregation, and data processing tasks. Implement-
ing an IDS within an existing network device would reduce the cost of acquisi-
tion, commissioning, and maintenance of a new device, with the disadvantage of
subtracting computational resources from an operating network device. Further-
more, tier’s 2 network devices could be not able to perform Intrusion Detection
activities and manage the incoming traffic peaks in parallel, thus incurring in
bottlenecks that could reduce the response time, and so the usefulness, of the
IDS. The IDS can even be implemented within edge devices, placed at tier 1.
In this latter case, considering that devices have poor computational power and
storage resources, only lightweight IDSs (e.g., [11–13]) can be taken into account.
Moreover, the Cloud’s tier makes use of dedicated network backbones designed
to handle a worldwide traffic volume, while tier 2’s devices can only offer a
limited bandwidth, having been designed to handle local traffic volumes. The
bandwidth metrics do not make sense if we consider a tier 1’s IDS, given that
it would be directly integrated within the end-device. The latency is the metric
that motivates the need to have IDSs within tier 2’s devices. In fact, the geo-
graphic distance between Cloud servers and edge devices generating the data
increases the latency in a perceptible way, an increase that could be critical in
certain contexts (e.g., in a critical infrastructure scenario taking timely decisions
is crucial, not respecting the right timing could lead to catastrophic events). The
Network View becomes wider and wider with the increase of the tier, that is with
the increase of the geographical distance from the edge devices. In fact, an IDS
implemented within a tier 1’s edge device enjoys only a limited vision of the
network, that is the vision of the component itself (or of a small subset of them).
Turning to tier 2, the devices receive data from subnetworks composed of edge
devices, thus having the ability to both correlate and aggregate information,
obtaining a wider vision of the network. Tier 3 exploits the information of tier
2’s devices usually located in geographically distant places, that provide it with
a peripheral view of the whole network. On the contrary, moving towards higher
tiers, the threats related to the privacy of data and information tend to increase.
In fact, considering that optimizing the use of resources leads to a maximiza-
tion of the gain, the devices tend to serve as many clients as possible (and to
manage as many devices of the lower tier as possible). The more information
(often also important and sensitive) a device contains, the more this device is
tempting for an attacker who, be it internal or external, will have at her disposal

66 S. Raponi et al.

various means to appropriate or compromise information. For example, a mali-
cious employee could inject malware into a competitor company’s network and
mask the traces, compromising the information of a device that is dealing with
the detection.

4 Challenges

In this section, we provide an in-depth analysis of the main challenges related
to the architectural design and deployment of an IDS within the Fog. The new
architecture introduced by the Fog computing network paradigm brings the typ-
ical services offered by Cloud computing closer to the end-user. For this reason,
most of the security and privacy issues of the Fog computing architecture are
inherited from the Cloud. Similar considerations can be applied to IDSs deployed
within a Fog computing network architecture, that mainly have the same IDSs
challenges as Cloud environments, in addition to new ones derived from IoT
environments. We discuss all these challenges in the following subsections, start-
ing from some considerations on the deployment of IDSs in the Fog computing
network architecture environment that lead to some generally valid challenges,
regardless of the type of IDS and the layer of the Fog computing network archi-
tecture in which it is deployed. Then, we present other challenges that arise
depending on the type of IDS considered (Table 2).

4.1 Deployment

One of the first architectural problem to be considered before designing an IDS
for the Fog computing network architecture environment is to define in which of
the three tiers the single components of the system should be deployed. IDSs can
be deployed within the tier 1 to detect malicious behavior by monitoring and
analyzing log files, user login information, and enforcing access control policies.
IDSs can also be deployed within the tier 2 to detect malicious attacks such as
Denial of Service (DoS), port scanning, to name a few [9]. In order to increase the
security level of the entire network, IDSs must be deployed in all the three tiers,
monitoring and analyzing traffic and behavior of edge devices, Fog devices, and
Cloud servers. In fact, securing one or two tiers of the Fog computing network
architecture is not sufficient to protect the entire system, dangerous events like
the propagation of malware from a compromised device to the rest of the network
could not be noticed [4]. The deployment of IDS solutions within every tier of
the Fog computing network architecture leads to common challenges, described
in Sect. 4.2, as well as to specific ones depending on the type of IDS considered,
discussed in Sect. 4.3.

Intrusion Detection at the Network Edge 67

4.2 General Challenges

Considering the Fog computing network architecture peculiarities described in
Sect. 3, implementing a reliable and efficient IDS implies designing and tuning a
detection system able to effectively work in an environment with the following
characteristics:

– Large-scale Network: The large number of heterogeneous connected
devices, as well as the unpredictable chaotic dynamics of today’s large and
medium-size computer networks, make the number of suspicious events that
need to be controlled by an IDS huge. For this reason, IDSs should both
be equipped with hardware resources adequate to support this workload and
implement powerful algorithms to efficiently perform the required tasks.

– Geo-distributed Environment: In sharp contrast with the more central-
ized Cloud, the Fog could be very complex and geographically worldwide
distributed, depending on the purpose for which it was designed [1]. As an
example, we can consider a wireless sensor network deployed along a high-
way that crosses an entire country, providing lighting and video surveillance
services. In this case, edge devices could be deployed every 100 m, while Fog
devices could be deployed every kilometer. All these devices could send data
to a Cloud located halfway around the world. In this scenario, an IDS should
be able to provide a real-time protection to the entire architecture.

– Real-time Notification: The most important characteristic of every IDS
is the ability to early discover intrusion violation threats. The huge number
of connected edge devices, as well as their geographic distances (that have a
severe impact on the network latency), make it difficult to analyze packets in
real-time. This increases the notification time, impacting negatively on the
response time.

– Alarm Parallelization: Securing all the Fog computing network architec-
ture layers requires a distributed IDS system, with at least one component
in every layer of the architecture. These components need to cooperate with
each other by exchanging data that can be aggregated to obtain a compre-
hensive high-level view of the network, improving the overall reliability and
reactiveness of the whole system.

– False-alarm Control: The main objective of an IDS is to raise alarm if an
event in the network could be considered as an intrusion. The verification
of whether a suspicious event is a real attack or a false positive is beyond
the scope of current IDS solutions [14]. The Fog computing characteristics,
discussed in Sect. 1, could increase the false positive/negative events detected
by the system. For this reason, more efforts are needed to improve the IDSs
detection accuracy.

68 S. Raponi et al.

Table 2. IDS design challenges

IDS type Challenges

Host-Based Intrusion
Detection System (Tier 1)

• Limited Resources (Comp. Power, Storage, Battery)

• Lack of Context Knowledge

• Delay in Centralized Reporting

Host-Based Intrusion
Detection System (Tier 2)

• Lack of Context Knowledge

• Delay in Centralized Reporting

Network-Based Intrusion
Detection System (Tiers
1, 2, 3)

• Insider Attackers Detection

• Cooperation

• Decrease False Positives/Negatives

• Encrypted Traffic

• Developing Physical Jamming Detection Techniques

• Developing DoS Detection and Mitigation Techniques

General • Large-Scaling

• Geo-Distribution

• Environment Dynamicity

• Real-time Notification

• Alarm Parallelization

• False-alarm Control

4.3 Design

The design challenges are different depending on the type of IDS considered
(Host-based or Network-based) and the tier in which it is intended to be placed.
The main challenges of deploying host-based IDS in the Fog computing network
architecture are aligned with the ones of other network architectures:

– Lack of Context Knowledge: Having only its local view, a host-based IDS
is not aware of what is happening outside. This lack of context knowledge
makes more challenging to achieve high detection accuracy.

– Delay in Centralized Reporting: As part of a more complex system
charged with supervising the whole Fog computing network, a host-based IDS
has to report every detected local anomaly to a centralized entity. This entity
is charged with the collection and elaboration of the data coming from every
other component in the network. If the communication between this central-
ized module and the other components of the system has high latency due to
their geographical distribution, the delay in centralizing reporting becomes
very challenging, impacting the overall performance and accuracy of the IDS.

If the IDS is deployed within the tier 1, another challenge arises:

– Limited Resources: Since edge devices usually have very limited resources
(i.e., in terms of computation, network bandwidth, storage, and battery),
designing and implementing IDSs within the tier 1 could be very challenging.

Intrusion Detection at the Network Edge 69

For network-based IDSs instead, the main challenges are applicable to each tier
of the Fog computing network architecture:

– Insider Attackers Detection: The attacks coming from inside the network
are usually very challenging to discover. In fact, edge devices with genuine
authentication privileges are often able to cover their traces and hide evidence
of their malicious activities.

– Cooperation: If the IDS solution includes different modules, regardless of
the tasks they are performing, they still need to cooperate with each other,
adding further typical distributed systems’ challenges.

– Decrease False Positives/Negatives: In the context of IDS, a high num-
ber of false positives makes the solution unusable due to the waste of resources
dedicated to analyzing legitimate events. Moreover, false negatives make the
solution ineffective, because malicious events would go unnoticed.

– Encrypted Traffic: A network-based IDS, due to its physical position, is
able to observe the entire network traffic generated by the subnet it is con-
nected to. However, if the traffic is encrypted, it is not able to open the packets
and analyze their content. This limitation makes the detection of malicious
packets more challenging.

– Developing DoS Detection and Mitigation Techniques: The Fog com-
puting network architecture moves services from the Cloud to local Fog
devices which, having less network bandwidth and being less protected, are
more vulnerable to DoS attacks.

If the IDS is a Wireless IDS (WIDS), also the following challenge arises:

– Developing Physical Jamming Detection Techniques: Tier 1 is mostly
composed of IoT sensor networks, which normally communicate both with
each other and with Fog devices via wireless networks. This makes them
vulnerable to physical level’s DoS attacks, such as jamming attacks.

5 Existing Solutions

In this section we provide a thorough analysis of the studies related to IDSs
present in the literature.

Given the widespread adoption of the Fog computing network architecture,
in recent years several studies have come to light, with the aim of proposing
solutions for the integration of efficient IDSs within the new paradigm. In [8],
the authors introduced a lightweight IDS based on an Artificial Immune System
(AIS), that is a form of biologically inspired computing. The AIS takes inspi-
ration from the Human Immune System (HIS), that protects the body against
the diseases being able to recognize external pathogens among internal cells and
molecules of the body. The proposed IDS is developed in all the three tiers of the
Fog computing network architecture. In tier 1, detectors are deployed within the
edge devices. In tier 2, devices take advantage of a smart data concept to analyze
and process the intrusion alerts. Smart data is a smart structure that helps to

70 S. Raponi et al.

manage a large amount of data in IoT applications: a simple lightweight data
cell that evolves (by merging with other cells or dividing by them, according to
the direction) when traveling across the tiers. Finally, in tier 3 the IDS organizes
the network traffic in clusters (by relying on unsupervised clustering techniques)
and trains the detectors.

In [15] the authors found in the Device security, thus in the identification
of malicious edge devices, one of the major challenges for successfully integrate
Fog Computing and Internet of Things. Taking into account the difficulty of
preventing attacks from malicious Fog devices, due to their privileges of stor-
ing and processing data, the authors proposed a framework that makes use of
three distinctive technologies: a two-stage Markov Model, an IDS, and a Virtual
Honeypot Device (VHD). The two-stage Markov Model allows reducing the false
alarm rate generated by the different types of data sent by the IoT devices. In
detail, when the anomaly-based IDS detects a malicious behavior on the Fog
device an attack alarm is generated and sent to the two-stage Markov Model.
The first stage allows categorizing the Fog devices, while the second stage is
dedicated to predicting whether the categorized devices have to be moved to the
VHD or not. The VHD allows to store and maintain a log repository of all the
identified malicious Fog devices and provides the system with protection against
unknown attacks.

Furthermore, considering that the Fog computing network architecture pro-
vides the sensors networks with ever-increasing importance, several studies
have introduced proposals of IDSs implementation within the aforementioned
resource-constrained devices. In [16], the authors introduced a lightweight IDS
based on a vector space representation using a single hidden layer MultiLayer
Perceptron (MLP) to improve the detection time. The authors exploited new
datasets, the Australian Defense Force Academy Linux Dataset (ADFA-LD) and
the Australian Defense Force Academy Windows Dataset (ADFA-WD), respec-
tively, representing system calls datasets containing both attacks and exploits
on various applications. The proposed IDS, implemented within a Raspberry
Pi as a Fog device, achieves 94% accuracy, 95% recall, and 92% F1-measure in
ADFA-LD, and 74% accuracy, 74% recall, and 74% F1-measure in ADFA-WD
when considering a small number of nodes. Another IDS able to run within
resource-constrained devices has been introduced in [17]. The authors reached
a convenient trade-off between the energy consumption and the accuracy detec-
tion by making use of an anomaly-based IDS only when the signature of a new
attack, identified by a signature-based IDS, is expected to occur. The problem is
formulated as a security game model, where the security strategy is a game for-
mulation between the intruder’s attack and the IDS agent implemented within
an Internet of Things device. The IDS agent implements its anomaly detection
techniques to detect new attack patterns by relying on the Nash Equilibrium.
The performance and the viability of the proposed approach have been analyzed
by simulating a Wireless Sensor Network (WSN) using the TOSSIM simulator.

However, at the top of the new network architecture, the Cloud continues to
be omnipresent, so more and more innovative studies have been proposed with

Intrusion Detection at the Network Edge 71

the goal of implementing IDSs within the Cloud (or within the Fog computing
network architecture’s tier 3). In [18], the authors proposed an anomaly detection
system at the hypervisor layer that makes use of Hybrid algorithms (e.g., Fuzzy
C-Means clustering techniques, Artificial Neural Networks) to improve the accu-
racy of the detection system. The proposal has been experimented by using the
DARPA’s Knowledge Discovery and Data Mining (KDD) cup dataset, showing a
higher detection accuracy and a lower false alarm rate even against low-frequent
attacks, thus outperforming Naive Bayes classifiers and Classic ANN techniques.

In [19], the authors introduced a framework of Cooperative IDSs to coun-
teract Distributed Denial of Service (DDoS) attacks on the Cloud. IDSs placed
in the Cloud computing regions exchange alerts with each other. Each of them
relies on a cooperative agent that is able to determine whether to accept the
alert received from other IDSs or not. If the agent decides to accept the alert,
the system adds a new blocking rule (related to the identification of the type of
packet in the Cloud region) into the block table. A comparison against a pure
Snort-based IDS shows that the proposed solution allows more accurate detec-
tion of Distributed Denial of Service attacks, paying only a small additional
computational effort.

6 Discussion and Future Directions

Nowadays, several systems such as SCADA, Cloud, and Smart Grid rely on IDSs
as the first line of defense against malicious attacks such as Scanning attacks,
DoS attacks, Insider attacks, and Man in the Middle attacks [4]. For this reason,
after the introduction of the Fog computing network architecture, a new line
of research started studying the adoption of IDSs within this paradigm. Since
the advantages of each IDS are strongly dependent on the tiers in which it
is implemented, to increase the level of security, the IDSs should be deployed
in every tier of the architecture. However, this choice brings new challenges,
discussed in Sect. 4.

In this section, we first evaluate the mapping between existing solutions and
these challenges, highlighting which challenges have not been addressed by the
solutions in the literature, then we propose promising future directions.

Table 3 shows the mapping between the existing solutions in the literature
and the challenges we identified during our analysis. A horizontal cut of the
table allows to know whether the challenge has been addressed by the consid-
ered work, while a vertical cut provides an overview of the challenges addressed
by single solutions. It is possible to notice how most of the solutions in the lit-
erature focused on solving the typical challenges of distributed systems (e.g.,
geographic distribution, large-scaling, environmental dynamicity, real-time noti-
fication, alarm parallelization, and delay in centralized reporting). This is jus-
tified by the fact that these solutions aim at leveraging the most important
advantage offered by the Fog computing network architecture (i.e., the reduc-
tion of the network latency). This property allows Edge devices within the tier 1,

72 S. Raponi et al.

Table 3. Mapping between existing solutions and challenges Legend: N/D: Not
Declared, N/A: Not Applicable

Challenges/Studies [8] [15] [16] [17] [18] [19]

Limited Resources N/D N/A ✗ ✓ ✗ ✗

Lack of Context Knowledge ✓ ✗ ✗ ✗ ✓ ✓

Delay in Centralized Reporting ✓ ✓ ✓ ✗ ✓ ✓

Insider Attack Detection ✓ ✗ ✗ ✓ ✗ ✗

Cooperation ✓ ✗ ✗ N/A N/A ✓

Decrease False Positives/Negatives ✗ ✓ ✗ ✓ ✗ ✓

Encrypted Traffic ✗ ✗ N/A N/A ✗ ✗

Jamming Detection ✗ ✗ ✗ ✗ N/A N/A

DoS Detection ✓ ✗ ✗ ✗ ✓ ✓

Large-Scaling ✓ ✓ ✓ N/A ✓ ✓

Geographic Distribution ✓ ✗ ✓ N/A ✓ ✓

Environment Dynamicity ✗ ✓ ✓ N/A ✓ ✓

Real-time Notification ✓ ✓ ✓ ✓ ✓ ✓

Alarm Parallelization ✓ ✓ ✓ N/A N/A ✓

False-alarm Control ✗ ✓ ✗ ✗ ✗ ✓

to quickly communicate with Fog devices within the tier 2, enabling more imme-
diate aggregation and processing of data. In the context of IDS, this translates
into improving the overall detection times of malicious events in the system.

However, most of the solutions did not focus on solving other important
challenges, such as the development of lightweight IDSs able to work within
resource-constrained devices, the false-alarm control, the reduction of false pos-
itive/negative number, and the DoS attack protection.

Tier 1 is typically composed of resource-constrained devices, with a limited
amount of computational power, storage, and energy. These restrictions make the
deployment of IDSs solutions within this tier challenging. In [17], for example,
the authors proposed a lightweight detection technique that requires low energy
consumption to achieve a high-security level.

Regarding the false-alarm control challenge, we believe that every IDS should
have a validation mechanism for those events that are considered malicious, with
the goal of decreasing the number of false positives. A possible solution requires
to use more than one IDS’s method of detection (i.e., signature-based, anomaly-
based), that would also reduce the number of false negatives. In the context of
IDSs, reducing false positives and false negatives is crucial, since a high number
of false positives makes the solution unusable due to the waste of resources
dedicated to analyzing legitimate events (that would be infeasible if the IDS has
been deployed in a resource-constrained device), while false negatives make the
solution ineffective, because malicious events would go unnoticed. Authors in [15]
introduced a two-stage Markov module that helps to reduce the false-alarm rate
of the IDSs.

Intrusion Detection at the Network Edge 73

The goal of some critical attacks on the Fog is to limit or deny the system
services accessible to legitimate users/devices through Denial of Service attacks.
In addition to the classic DoS attacks present in the literature, Edge devices
could be infected by stealthy malware, that would consume their resources,
finally leading to alternative DoS attacks. Although several solutions have been
designed [20,21], this research field is still worthy of attention, and further con-
tributions are needed to effectively face this challenge.

Table 3 also highlights that the existing solutions we took into account do not
adequately respond to the encrypted traffic challenge. This stems from the fact
that most of the solutions designed to work in the presence of encrypted traffic
are limited to the detection of some specific types of attacks, such as scanning,
brute-force, and DoS attacks, and are ineffective for all the others [22]. Advanced
machine and deep learning techniques, together with deep packet inspection
methods, could be integrated within an IDS with the goal of analyzing encrypted
traffic to detect malicious patterns.

Another important future direction regards the integration of some jamming
detection techniques on IDSs deployed within both tier 1 and 2 of the Fog com-
puting network architecture. This would allow to detect jamming attacks and
to react by putting in place specific countermeasures. For example, if we take
into account a wireless sensor network deployed within the tier 1 that commu-
nicates with a Fog gateway (placed within the tier 2), a malicious user could be
able to completely block the inter-tiers communication by jamming the wireless
channel. One possible detection approach, deployed within the tier 2, involves
the monitoring of the packet’s throughput. A drastic fall of this parameter for
one or more Edge devices detected by a Fog device could be strong evidence
of malicious jamming activities. The detection of this attack is crucial because
techniques aimed at restoring the communication could be implemented, such
as relying on alternatives schemes [23].

It is worth mentioning that most of the challenges identified in Sect. 4 could
be addressed by using SDN networks technologies, as highlighted by [24], that
investigated the possible cooperation between Edge computing and SDN. In
this field, a promising research direction is the implementation of security mech-
anisms using SDN switches with stateful data plane [25] within the tier 2 of the
Fog architecture.

7 Conclusions

In this paper, we analyzed how the changes in the network architecture intro-
duced by the adoption of Fog Computing affect both the design and the deploy-
ment of IDSs. We first discussed the benefits of implementing an IDS within
both the Cloud and the Fog network paradigm. Later, we identified the main
challenges in the design and the deployment of IDS solutions within the Fog
computing network architecture. Then, we explored a selected set of existing
solutions and we mapped them to the challenges identified. Finally, we discussed
the results and proposed some promising future research directions.

74 S. Raponi et al.

Acknowledgement. This publication was partially supported by awards NPRP-S-
11-0109-180242, UREP23-065-1-014, and NPRP X-063-1-014 from the QNRF-Qatar
National Research Fund, a member of The Qatar Foundation. The information and
views set out in this publication are those of the authors and do not necessarily reflect
the official opinion of the QNRF.

References

1. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, pp. 13–16. ACM (2012)

2. Rios, R., Roman, R., Onieva, J.A., Lopez, J.: From SMOG to Fog: a security
perspective. In: 2017 Second International Conference on Fog and Mobile Edge
Computing (FMEC), pp. 56–61, May 2017

3. Roman, R., Lopez, J., Mambo, M., Mobile edge computing, Fog et al.: A survey
and analysis of security threats and challenges. Future Gener. Comput. Syst. 78,
680–698 (2018)

4. Mukherjee, M., et al.: Security and privacy in fog computing: challenges. IEEE
Access 5, 19293–19304 (2017)

5. Munir, K.: Advancing Consumer-Centric Fog Computing Architectures. IGI Global
(2018)

6. Sciancalepore, S., Piro, G., Vogli, E., Boggia, G., Grieco, L.A., Cavone, G.: LICI-
TUS: a lightweight and standard compatible framework for securing layer-2 com-
munications in the IoT. Comput. Netw. 108, 66–77 (2016)

7. Yu, W., et al.: A survey on the edge computing for the internet of things. IEEE
Access 6, 6900–6919 (2018)

8. Hosseinpour, F., Vahdani Amoli, P., Plosila, J., Hämäläinen, T., Tenhunen, H.: An
intrusion detection system for fog computing and IoT based logistic systems using
a smart data approach. Int. J. Digit. Content Technol. Appl. 10, 34–46 (2016)

9. Yi, S., Qin, Z., Li, Q.: Security and privacy issues of fog computing: a survey. In:
Xu, K., Zhu, H. (eds.) WASA 2015. LNCS, vol. 9204, pp. 685–695. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21837-3 67

10. Martin, A., Raponi, S., Combe, T., Di Pietro, R.: Docker ecosystem-vulnerability
analysis. Comput. Commun. 122, 30–43 (2018)

11. Krontiris, I., Giannetsos, T., Dimitriou, T.: LIDeA: a distributed lightweight intru-
sion detection architecture for sensor networks. In: Proceedings of the 4th Inter-
national Conference on Security and Privacy in Communication Networks, p. 20.
ACM (2008)

12. Hai, T.H., Huh, E.N., Jo, M.: A lightweight intrusion detection framework for
wireless sensor networks. Wirel. Commun. Mob. Comput. 10(4), 559–572 (2010)

13. Onat, I., Miri, A.: An intrusion detection system for wireless sensor networks. In:
IEEE International Conference on Wireless and Mobile Computing, Networking
And Communications, WiMob 2005, vol. 3, pp. 253–259. IEEE (2005)

14. Anwar, S., et al.: From intrusion detection to an intrusion response system: fun-
damentals, requirements, and future directions. Algorithms 10(2), 39 (2017)

15. Sandhu, R., Sohal, A.S., Sood, S.K.: Identification of malicious edge devices in fog
computing environments. Inf. Secur. J.: Glob. Perspect. 26(5), 213–228 (2017)

16. Sudqi Khater, B., Abdul Wahab, A., Idris, M., Abdulla Hussain, M., Ahmed
Ibrahim, A.: A lightweight perceptron-based intrusion detection system for fog
computing. Appl. Sci. 9(1), 178 (2019)

https://doi.org/10.1007/978-3-319-21837-3_67

Intrusion Detection at the Network Edge 75

17. Sedjelmaci, H., Senouci, S.M., Al-Bahri, M.: A lightweight anomaly detection tech-
nique for low-resource IoT devices: a game-theoretic methodology. In: 2016 IEEE
International Conference on Communications (ICC), pp. 1–6. IEEE (2016)

18. Pandeeswari, N., Kumar, G.: Anomaly detection system in cloud environment using
fuzzy clustering based ANN. Mob. Netw. Appl. 21(3), 494–505 (2016)

19. Lo, C.C., Huang, C.C., Ku, J.: A cooperative intrusion detection system framework
for cloud computing networks. In: 2010 39th International Conference on Parallel
Processing Workshops, pp. 280–284. IEEE (2010)

20. Di Pietro, R., Mancini, L.V.: Intrusion detection systems, vol. 38. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-0-387-77265-3

21. Abeshu, A., Chilamkurti, N.: Deep learning: the frontier for distributed attack
detection in fog-to-things computing. IEEE Commun. Mag. 56(2), 169–175 (2018)

22. Kovanen, T., David, G., Hämäläinen, T.: Survey: intrusion detection systems
in encrypted traffic. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.)
NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 281–293. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46301-8 23

23. Sciancalepore, S., Oligeri, G., Di Pietro, R.: Strength of crowd (SOC)–defeating
a reactive jammer in IoT with decoy messages. Sensors 18(10), 3492 (2018). Spe-
cial Issue on Emerging Methodologies and Practical Solutions for M2M and D2D
Communications in the Internet of Things Era

24. Baktir, A.C., Ozgovde, A., Ersoy, C.: How can edge computing benefit from
software-defined networking: a survey, use cases, and future directions. IEEE Com-
mun. Surv. Tutor. 19(4), 2359–2391 (2017, Fourthquarter)

25. Caprolu, M., Raponi, S., Di Pietro, R.: Fortress: an efficient and distributed firewall
for stateful data plane SDN. Secur. Commun. Netw., 16 (2019)

https://doi.org/10.1007/978-0-387-77265-3
https://doi.org/10.1007/978-3-319-46301-8_23

Volunteer Cloud as an Edge
Computing Enabler

Tessema M. Mengistu(B), Abdullah Albuali, Abdulrahman Alahmadi,
and Dunren Che

Department of Computer Science, Southern Illinois University at Carbondale,
Carbondale, USA

{tessema.mengistu,aalbuali,aalahmadi,dche}@siu.edu

Abstract. The rapid increase in the number of devices connected to
the Internet, due to the Internet of Things, demands new ways of pro-
cessing data produced by the devices. Edge Computing is one of the
solutions that tries to process data close to the origin, which is the edge
of networks. Emerging cloud systems, such as volunteer clouds, can also
be used towards the processing of data produced by IoT devices. This
paper proposes a Volunteer Computing as a Service (VCaaS) based Edge
Computing infrastructure. The paper addresses the architectural design
of the proposed system together with its research and technical chal-
lenges.

1 Introduction

The current computing landscape is entering a “post-cloud era” [5]. In this “post-
cloud-era”, the major shift in the computing paradigm is due to the Internet of
Things (IoT), which is the digital interconnection of everyday objects with the
Internet [3]. This paradigm shift results in the explosion of devices connected to
the Internet that is estimated to reach 50 billion by 2020 [4]. These devices will
produce huge amount of data that need to be processed, stored, and transmitted
efficiently. IoT applications generally require a computing facility that can pro-
vide fast responses. So far, Cloud Computing data centers have been providing
the necessary computing infrastructures for the applications.

The data center based Cloud Computing infrastructures usually have a few
large data centers built in locations where construction and operational (e.g.
energy) costs are low [6]. As a result, these centralized data centers may be
located far away from the end users, resulting in higher round-trip network
latency. Due to the large geographical distances of the centralized data cen-
ters, processing data produced by IoT devices in public clouds entails some
challenges. These challenges create problems on the service quality of IoT appli-
cations in terms of delay, jitter, and throughput. Hence, the current centralized
cloud infrastructures will not suffice for IoT’s network intensive applications
with very fast response requirements. One of the solutions to the above prob-
lem is moving the cloud infrastructure closer to users/devices by creating mini
c© Springer Nature Switzerland AG 2019
T. Zhang et al. (Eds.): EDGE 2019, LNCS 11520, pp. 76–84, 2019.
https://doi.org/10.1007/978-3-030-23374-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23374-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-23374-7_6

Volunteer Cloud as an Edge Computing Enabler 77

data centers or using devices at the edge of a network. This solution is called
Edge/Fog Computing. The edge/fog proposal tries to create a middle layer cloud
system so that part of the storage and computation can be done at the edge of
a network instead of in the totality of the centralized cloud. Some of the advan-
tages of Edge/Fog Computing include providing better Quality of Service (QoS)
for delay-sensitive applications, such as video streaming, and reducing network
communications and operational costs.

In the definition of Edge/Fog Computing, there is no standardized definition
about the edge of a network and the devices that are expected to participate in
the edge vary [7]. Vehicles, mobile base stations, networking devices, cloudlets,
servers, smart phones etc., can all be part of Edge Computing. Volunteer com-
puters at the edge of a network can also be used for Edge Computing. In this
paper, we propose cloud infrastructures that are based on volunteer compute
resources as a component in the Edge/Fog Computing fabric.

Volunteer cloud computing is an opportunistic cloud model that uses the
spare donated resources of volunteer computers at the edge of a network to
provide cheaper and greener cloud infrastructures and services [11]. Volunteer
clouds come with multi-folds of benefits: no upfront investment for procuring a
large number of servers; no maintenance costs such as electricity consumption for
cooling and running the servers; boosting the utilization of computing resources
(such as individually owned PCs). In the meantime, volunteer cloud computing
introduces technical challenges that are centered on the high dynamics and high
heterogeneity of volunteer computers. Moreover, volunteer computers are shared
not only among cloud users but also between cloud users and local users of the
machines. Novel and innovative algorithms and techniques that take the fun-
damental characteristics of volunteer computing in general and volunteer cloud
computing in particular are needed to fully utilize the benefits. Volunteer cloud
systems can not replace the powerful conventional data center based clouds,
rather they complement those infrastructures.

Empirical evidences showed that volunteer clouds can be used to execute a
range of applications [11,12]. Fault tolerant resource discovery and optimized
VM placement techniques allow them to provide cloud services reliably and
efficiently [9,10]. Moreover, the physical proximity of volunteer nodes to where
applications originate, edge of networks, helps them in reducing the round-trip
network latency of applications. However, since volunteer clouds depend on spare
computing resources of less powerful computers, their overall computing capa-
bility may not suffice to handle highly resource intensive applications. As most
applications naturally happen at the edge (of a network), volunteer clouds can
be most conveniently deployed to directly serve these applications, edge applica-
tions, in cooperation with data center based conventional public clouds. There-
fore, volunteer clouds are a perfect fit to the concept of Edge Computing.

This positional paper, elaborates on the concept of the usage of volunteer
computing resources for Edge Computing. It discusses a high-level conceptual
architecture of Volunteer Computing as a Service (VCaaS) based Edge Comput-
ing. Building upon our previous works, the following are the new contributions
of this paper:

78 T. M. Mengistu et al.

– It proposes the concept of the usage of volunteer cloud systems as a fabric in
Edge Computing.

– It presents a high-level architecture of VCaaS based mini data centres as Edge
Computing enablers.

– It explores technical and research challenges for the implementation of the
VCaaS based Edge Computing.

The rest of the paper is organized as follows: Sect. 2 elaborates on the con-
cept of volunteer cloud based Edge Computing together with its usage scenar-
ios. Section 3 discusses the architecture of the proposed volunteer computing
resources based Edge Computing. It also presents the technical and research chal-
lenges of implementing a fully-fledged VCaaS enabled Edge Computing infras-
tructure. Section 4 reviews related work and finally Sect. 5 concludes the paper
and outlines future works.

2 Volunteer Cloud Computing as an Edge Computing
Fabric

Currently, there are billions of Personal Computers (PCs) connected to the Inter-
net [15]. Most of these computers are underutilized, usually used only for a few
hours per day [14]. The usage of the aggregated spare compute resource of Per-
sonal Computers (PCs) to provide Cloud Computing services has been inves-
tigated [11]. Volunteer Computing as a Service (VCaaS) concept is proposed
and implemented with encouraging performance results [11,12]. With novel and
efficient resource management algorithms, reliable and efficient cloud services
can be deployed over sporadically available PCs [9]. The VCaaS systems have
the advantage of having a close proximity to where applications originate, the
edge of a network. This physical proximity helps VCaaS systems to provide fast
responses, context awareness, and more flexible mobility for applications. More-
over, VCaaS systems are cheaper and greener complements of the centralize data
center based public clouds.

Contrary to the well-resourced data center based cloud systems, VCaaS sys-
tems depend on the scavenged spare compute resources of less powerful comput-
ers. This imposes a computing power limitation on VCaaS systems. This limita-
tion can be off-setted by offloading computations to powerful public clouds, when
the need arises. The cooperation of VCaaS systems with public cloud infrastruc-
tures and their proximity to the end users’ applications help them to render edge
services efficiently. The following motivational scenarios show how the proposed
system can be used in real life situations.

University Campus Scenario: A student in a university campus wants to
play an interactive game and she accessed the online game using the university’s
wifi. The public cloud provider that hosts the game detects the physical location
of the customer and tries to initiates the offloading of the application to the
nearby VCaaS system. Once the VCaaS system is identified, the public cloud

Volunteer Cloud as an Edge Computing Enabler 79

can negotiate on issues such as pricing, QoS, etc., with the VCaaS system. After
the negotiation concludes, the offloading of the application will be started. Once
the offloading is completed the user will be redirected to the nearby VCaaS
system that hosts the game. The offloaded instance will be cached or destroyed,
when the user is done with playing. With this offloading, the user will get a
better QoS from the application due to the reduced round-trip latency.

IoT Scenario: An air quality control research project uses sensors to collect
environmental data and a public cloud infrastructure for data aggregation and
processing. The project also uses a credit-based incentive model to encourage
volunteers to use sensors on their smartphones and send the sensed data to the
aggregation servers hosted on the public cloud. Volunteer users receive the credit
they earned right after they send the data. The cloud provider that hosts the
project sensed a surge of the volunteers’ sensor data it receives for a particular
day because of an advertisement about the project on a concert. In order not
to lose the sensed data and respond to the new volunteer users as fast as pos-
sible, it uses the nearby VCaaS systems and allows the data to be received and
aggregated by the infrastructures closer to the volunteers.

The two scenarios mentioned above give a glimpse of the usage of VCaaS sys-
tems as a middle layer in the Edge Computing paradigm. Some of the advantages
of using VCaaS systems as a resource fabric in Edge Computing include:

– The significant reduction in the round-trip network latency due to the prox-
imity of VCaaS systems to edge devices/applications. This reduction in the
round-trip network latency will significantly improve the quality of experience
of users and quality of service of applications, especially for time sensitive
applications such as video streaming and interactive games.

– Complement the compute resources limitation of edge devices. Offloading is
a mechanism where devices, such as smartphones, transfer the execution of a
task to a centralized cloud partially or as a whole so as to conserve battery
power or to leverage on the powerful compute resources of clouds. VCaaS
systems can be an ideal choice for offloading tasks to complement computing
resource limitations and to conserve battery for edge devices.

– Provision of context awareness and mobility to applications, as VCaaS sys-
tems are close to where data/applications originate.

3 Architecture of Volunteer Edge Computing

Considering the fact that the definition of Edge Computing is flexible on what
constitute an “edge”, we propose the inclusion of a collection of VCaaS sys-
tems as a component in the Edge Computing fabric. We propose a three lay-
ers architecture of VCaaS based volunteer edge computing composed of public
cloud infrastructures (Public Cloud Layer), mini data center (VCaaS Layer),
and front-end edge devices/applications (User Layer). The mini data center is a
collection of volunteer cloud (VCaaS) systems. Each of the VCaaS systems bases

80 T. M. Mengistu et al.

its compute resource pool on the spare resources of computers within an organi-
zation/institution or homes. Figure 1 depicts the proposed three layers high-level
architecture of the volunteer cloud based Edge Computing infrastructure.

Fig. 1. High-level architecture of volunteer edge computing

Unlike cloud data centers, the mini data centers (VCaaS systems) are more
diversified and resource constrained. This will create the need to exploit the
computing capacities of remote public cloud services, such as Amazon EC2/S3,
in case of increased compute resource requirements by the front-end edge
devices/applications. Therefore, communication among the layers of the system
can happen both vertically and/or horizontally.

– Vertical communication can happen between the layers through offloading
and bursting. Offloading typically happens from resource-limited devices to
a cloud to take advantage of the resource rich clouds or to conserve battery
power. In our proposal, offloading can happen from the edge devices to the
VCaaS systems. We also introduce an offloading from the public clouds to
the VCaaS systems. This kind of offloading is mainly to exploit the proximity
of the VCaaS systems to the edge devices/applications. Moreover, bursting,
which is the offloading of excess load from private clouds to public clouds, is
possible. The VCaaS systems can burst to the public clouds in the case of
excess load.

– Horizontal communication in the middle layer, among the VCaaS systems is
also possible. The VCaaS systems can create a form of loose federation in
order to cater the computing and storage needs of applications at the edge
of a network. The federation can be created dynamically according to the
resource needs of edge devices/applications.

The implementation of this high-level architecture needs an extension at the
Public Cloud Layer in such a way that it can discover suitable VCaaS(s) for

Volunteer Cloud as an Edge Computing Enabler 81

offloading and managing issues such as QoS and contract management. Figure
2 depicts components at the Public Cloud and VCaaS layers.

Fig. 2. Components of volunteer edge computing

As a blend of volunteer computing, cloud computing, mobile computing,
and IoT, the volunteer edge computing proposal adopts both the challenges
and opportunities of these systems and adds its own. There remain many open
technical and research challenges for the full-fledged implementation of VCaaS
based Edge Computing, the most notable ones being:

– Offloading and Partitioning:- Data/tasks can be offloaded from the edge
devices to VCaaS systems to maximize on the donated compute resources
and to conserve battery. Offloading can also happen from the public cloud to
the VCaaS systems to leverage on the proximity of the VCaaS systems to the
edge devices/applications in order to minimize network latency. Issues such
as when to offload, what to offload, and how to offload are open issues that
need to be investigated. Moreover, optimal ways of partitioning data/tasks
for offloading should be researched.

– Communication Model:- Federation of clouds under the same and different
providers has been researched in Cloud Computing context. In addition to
this, the dynamic creation of clouds federation among VCaaS systems based
on resource requests from User Layer should be investigated in VCaaS based
edge computing. The volunteer edge computing should also define protocols
and interfaces for both horizontal and vertical communications. Mechanisms

82 T. M. Mengistu et al.

to select suitable VCaaS system(s) to offload data/application by the public
cloud together with business model and QoS issues should also be investi-
gated.

– Business Model:- Both Cloud and Volunteer Computing have their own busi-
ness models, the first based on pay-as-you-go and the latter based on some
incentives. The volunteer edge computing should device a business model that
addresses how to handle offloading and bursting among the different layers of
the architecture. This includes how to negotiate terms and prices of offloads
(contract management) between the public cloud and VCaaS system.

– Quality of Service:- Volunteer Computing systems generally provide best
effort services due to the intermittent availability and resource constraints
of volunteer nodes as well as their non-intrusive characteristics [13]. This cre-
ates a problem to provide QoS guaranteed services by VCaaS systems. More
research is needed towards providing quality guaranteed services in volunteer
edge computing systems in order to increase their adoption for IoT applica-
tions.

– Security:- The security aspect of volunteer edge computing is complicated
by the fact that using the untrusted VCaaS infrastructure base for potential
cloud-standard business applications. New and innovative distributed secu-
rity mechanisms are needed to fully utilize the potential of volunteer edge
computing.

4 Related Work

The idea of using Edge Computing to cater the computational needs of IoT
applications is intriguing. Prior works have exploited three types of hardware
resources for computing on the edge: end devices, smart gateways, and local
servers [8]. Volunteer edge/fog cloud computing systems that are based on
donated spare resources of devices at the edge of the Internet are also pro-
posed. Alonso-Monslave et al. proposed a public resource based fog computing.
The proposal aims to use any type of device with Internet access and located at
the edge of the network in order to deploy fog computing applications [1]. The
authors used a simulator SimGrid to test performances using a video transfer
system and claimed the reduction on the load of the cloud servers and better
system performance. Nebula is a context and location aware distributed cloud
infrastructure that uses volunteer edge resources [2]. An experimental set-up
that emulates a volunteer platform using 50 PlanetLab nodes is used to test
Nebula. The authors claimed that the deployed MapReduce tasks show superior
performance improvement and better fault tolerance on Nebula. A deployment
of fog computing by using participating devices, such as PCs, smartphones or
smart TVs, at the edge of a network is studied in [1]. What makes our proposed
system different from the above systems is that instead of using individual vol-
unteer devices, we introduced a middle layer of federation of volunteer cloud
systems that are based on volunteer compute resources.

Volunteer Cloud as an Edge Computing Enabler 83

5 Conclusion and Future Work

The rapid increase in the number of devices connected to the Internet, due to
IoTs, demands new ways of processing data produced by the devices. Edge Com-
puting is one of the solutions that tries to process the data close to the origin,
the edge of networks. Volunteer computing resources can also be exploited to
provide the necessary compute infrastructures for IoT devices/applications. In
this paper we proposed and discussed a three layer Volunteer Computing as a
Service based Edge Computing infrastructure. The volunteer edge computing
architecture that we proposed is a blend of Volunteer Computing, Mobile Com-
puting, IoT, and Cloud Computing. As future work, we plan to implement the
proposed system using a VCaaS system that we have built in our lab called
cuCloud. We also plan to conduct different performance evaluation experimen-
tations for IoT and general applications using cuCloud as a middle layer in the
proposed volunteer edge computing system.

References

1. Alonso-Monsalve, S., Garćıa-Carballeira, F., Calderón, A.: Fog computing through
public-resource computing and storage. In: 2nd International Conference on Fog
and Mobile Edge Computing (FMEC), pp. 81–87 (2017)

2. Ryden, M., Oh, K., Chandra, A., Weissman, J.: Nebula: distributed edge cloud
for data-intensive computing. In: 2014 International Conference on Collaboration
Technologies and Systems (CTS), pp. 491–492 (2014)

3. Conner, M.: Sensors empower the “Internet of things”. EDN Netw. 55, 32–37
(2010)

4. Evans, D.: The Internet of Things: how the next evolution of the Internet is chang-
ing everything, vol. 1, pp. 1–11. CISCO Internet Business Solutions Group (IBSG)
(2011)

5. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81
(2016)

6. Goiri, I., Le, K., Guitart, J., Torres, J., Bianchini, R.: Intelligent placement of
datacenters for Internet services. In: 31st International Conference on Distributed
Computing Systems, pp. 131–142 (2011)

7. Premsankar, G., Di Francesco, M., Taleb, T.: Edge computing for the internet of
things: a case study. IEEE Internet Things J. 5(2), 1275–1284 (2018)

8. Li, C., Xue, Y., Wang, J., Zhang, W., Li, T.: Edge-oriented computing paradigms:
a survey on architecture design and system management. ACM J. Comput. Surv.
51(2), 1–34 (2018). Quality of Service

9. Mengistu, T.M., Che, D., Alahmadi, A., Lu, S.: Semi-Markov process based reliabil-
ity and availability prediction for volunteer cloud systems. In: 11th IEEE Interna-
tional Conference on Cloud Computing (2018 IEEE CLOUD), pp. 359–366 (2018)

10. Mengistu, T.M., Che, D., Lu, S.: Multi-objective resource mapping and allocation
for volunteer cloud computing. In: 12th IEEE International Conference on Cloud
Computing (2019 IEEE CLOUD), pp. 1–5 (2019)

11. Mengistu, T.M., Alahmadi, A.M., Alsenani, Y., Albuali, A., Che, D.: cuCloud:
Volunteer Computing as a Service (VCaaS) system. In: Luo, M., Zhang, L.-J. (eds.)
CLOUD 2018. LNCS, vol. 10967, pp. 251–264. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94295-7 17

https://doi.org/10.1007/978-3-319-94295-7_17
https://doi.org/10.1007/978-3-319-94295-7_17

84 T. M. Mengistu et al.

12. Mengistu, T., Alahmadi, A., Albuali, A., Alsenani, Y., Che, D.: “No Data Center”
solution to cloud computing. In: 10th IEEE International Conference on Cloud
Computing (2017 IEEE CLOUD), pp. 714–717 (2017)

13. Mengistu, T.M., Che, D.: Survey and taxonomy of volunteer computing. ACM J.
Comput. Surv. 1–35 (2019)

14. Domingues, P., Marques, P., Silva, L.: Resource usage of windows computer labo-
ratories, pp. 469–476. IEEE (2005)

15. Gartner More than 1 Billion PCs In Use Worldwide and Headed to 2 Billion Units
by 2014. http://www.gartner.com/newsroom/id/703807

http://www.gartner.com/newsroom/id/703807

Author Index

Alahmadi, Abdulrahman 76
Albuali, Abdullah 76

Badri, Hossein 31
Bahreini, Tayebeh 31

Caprolu, Maurantonio 59
Che, Dunren 76

Di Pietro, Roberto 59

George, Anjus 16
Grosu, Daniel 31

Kattiyan Ramamoorthy, Krishna Murthy 46

Menascé, Daniel A. 1
Mengistu, Tessema M. 76

Raponi, Simone 59
Ravindran, Arun 16

Sohraby, Kazem 46

Tadakamalla, Uma 1

Wang, Wei 46

	Preface
	Organization
	Contents
	Characterization of IoT Workloads
	1 Introduction
	2 General Data Collection and Analysis Methodology
	3 IoT Datasets
	3.1 New York City Taxi Trip Data
	3.2 Microsoft T-Drive Trajectory Dataset
	3.3 Chicago Taxi Trips Dataset

	4 Workload Characterization Use in Capacity Planning
	5 Related Work
	6 Concluding Remarks and Future Work
	References

	Latency Control for Distributed Machine Vision at the Edge Through Approximate Computing
	1 Introduction
	2 Related Work
	3 System Architecture
	4 Characterizing Wireless Latency at the Edge
	4.1 Edge Test Bed
	4.2 Edge Latency Characterization

	5 Approximate Computing for Latency Control
	5.1 Image Size Tuning Knobs
	5.2 Machine Vision Benchmarks
	5.3 Characterizing Image Size Vs. Application Accuracy

	6 Design of Control Strategy
	7 Evaluation and Results
	8 Conclusions
	References

	Energy-Aware Capacity Provisioning and Resource Allocation in Edge Computing Systems
	1 Introduction
	2 Energy-Aware Capacity Provisioning and Resource Allocation Problem
	2.1 Complexity of ECPRA

	3 A Greedy Algorithm for ECPRA
	4 Experimental Results
	4.1 Experimental Setup
	4.2 Experimental Analysis

	5 Conclusion
	References

	Stackelberg Game-Theoretic Spectrum Allocation for QoE-Centric Wireless Multimedia Communications
	1 Introduction
	2 System Model
	2.1 Utility of the Client (End-User)
	2.2 Utility of the Base Station (Service Provider)

	3 Stackelberg Game Analysis
	3.1 Best Response of the Client (End-User)
	3.2 Best Response of the Base Station (Service Provider)
	3.3 Stackelburg Equilibrium Algorithm

	4 Simulations
	5 Conclusion
	References

	Intrusion Detection at the Network Edge: Solutions, Limitations, and Future Directions
	1 Introduction
	2 Background
	2.1 Fog Computing

	3 Intrusion Detection at the Network Edge
	3.1 Implementing an IDS in the Cloud Servers
	3.2 Implementing an IDS in the Fog Network Architecture

	4 Challenges
	4.1 Deployment
	4.2 General Challenges
	4.3 Design

	5 Existing Solutions
	6 Discussion and Future Directions
	7 Conclusions
	References

	Volunteer Cloud as an Edge Computing Enabler
	1 Introduction
	2 Volunteer Cloud Computing as an Edge Computing Fabric
	3 Architecture of Volunteer Edge Computing
	4 Related Work
	5 Conclusion and Future Work
	References

	Author Index

