q

Check for
updates

A WS-Agreement Based SLA Ontology
for IoT Services

Fan Li®)®, Christian Cabrera®™®, and Siobhén Clarke®)

Trinity College Dublin, College Green, Dublin, Ireland
{fali,cabrerac,Siobhan.Clarke}@scss.tcd.ie

Abstract. In the Internet of Things (IoT), billions of physical devices,
distributed over a large geographic area, provide a near real-time state
of the world. These devices’ capabilities can be abstracted as IoT ser-
vices and delivered to users in a demand-driven way. In such a dynamic
large-scale environment, a service provider who supports a service level
agreement (SLA) can have a comprehensive competitive edge in terms
of service quality management, service customization, optimized resource
allocation, and trustworthiness. However, there is no consistent way of
drafting an SLA with respect to describing heterogeneous IoT services,
which obstructs automatic service selection, SLA negotiation, and SLA
monitoring. In this paper, we propose an ontology, WIoT-SLA| to achieve
semantic interoperability. We combine IoT service properties with two
prominent web service SLA specifications: WS-Agreement and WSLA,
to take advantage of their complementary features. This ontology is used
to formalize the SLAs and SLA negotiation offers, which further facili-
tates the service selection and automatic SLA negotiation. It can also be
used by a monitoring engine to detect SLA violations by providing the
semantics of service level objectives (SLOs) and quality metrics. To eval-
uate our work, a prototype is implemented to demonstrate its feasibility
and efficiency.

Keywords: Internet of Things + SLA - Service level management -
SLA ontology

1 Introduction

The Internet of Things (IoT) is an ambient smart environment where a large
number of interconnected physical objects interact with the physical world, pro-
viding a near real-time state of the environment. Each device’s functionalities
can be abstracted as an IoT service provided through a well-defined interface
in a homogeneous way [22]. For mission-critical IoT applications, “best effort”
services are not sufficient [21]. In many service provisioning needs, SLAs are
widely used as a contract to provide a certain level of control to a consumer

Supported by Science Foundation Ireland (SFI) under the project SURF - grant

13/IA/1885.

© Springer Nature Switzerland AG 2019
V. Issarny et al. (Eds.): ICIOT 2019, LNCS 11519, pp. 58-72, 2019.
https://doi.org/10.1007/978-3-030-23357-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23357-0_5&domain=pdf
http://orcid.org/0000-0002-9729-9250
http://orcid.org/0000-0002-6954-6859
http://orcid.org/0000-0001-5721-9976
https://doi.org/10.1007/978-3-030-23357-0_5

A WS-Agreement Based SLA Ontology for IoT Services 59

and deliver requested services with pre-negotiated quality of service (QoS). In
SLAs, the obligations and guarantees of involved parties are specified in the
form of Service Level Objectives (SLOs), which are evaluated using measurable
data [16].

To our best knowledge, SLA management in IoT platforms is still in a prelim-
inary stage [17]. However, providing a precise SLA specification for IoT services
would enable a better QoS-aware service management [12]. For example, the
varying syntax of different SLLAs obstructs automatic service matching and SLA
negotiation in large-scale electronic markets. Consumers or third-party audit
agents struggle to detect SLA violations unless they understand the SLA docu-
ment. To achieve semantic interoperability and reduce the ambiguity in automat-
ing negotiation and monitoring activities, the common solution is to create SLA
ontologies [19]. Current SLAs languages for cloud services and web services do
not capture characteristics of IoT services. How to draft SLAs with respect to
describing IoT services abstracted from the large, distributed and heterogeneous
sources is still a problem.

In light of this gap, this paper presents an ontology for automatic SLA man-
agement in an IoT environment: WIoT-SLA. This ontology combines two of
the most commonly-used web service SLA specifications: WS-Agreement [1] and
WSLA [16]. These languages have complementary features: WS-Agreement has
a well-structured schema with supports for the extension of new domain-specific
elements and SLA negotiation, while WSLA defines metric descriptions of SLA
parameters. This paper extend the WS-Agreement schema with a set of general
ToT domain-specific concepts, which enables constraint-based SLA modeling for
automatic service selection, SLA negotiation and SLA creation.

The reminder of the paper is organized as follows: Sect. 2 summarizes related
work. Section 3 describes the ontology-based SLA management for IoT ser-
vices. Section4 proposes the contextual SLA ontology. Section5 presents the
SLA template match-making algorithm for optimized candidate service selec-
tion. Section 6 details the experimental setup and evaluation results and Sect. 7
concludes the paper with a discussion about future research directions.

2 Related Work

SLA specification languages are central to the definition of an SLA contract.
There have been significant works in defining SLA languages for web services
and cloud services. IBM published the Web Service Level Agreement (WSLA),
which provides a specification for the definition and monitoring of SLAs within
a web service environment [16]. WS-Agreement is another XML-based web ser-
vice SLA specification defined by Open Grid Forum (OGF) [1]. Compared to
WSLA, it defines a decoupled negotiation layer on top of the agreement layer
for bilateral multi-round negotiation: WS-Agreement Negotiation [26]. Inspired
by WS-Agreement, Uriarte et al. proposed an SLA language for the cloud com-
puting domain. They predefined a set of metrics for Infrastructure-as-a-Service
and adopted a denotational semantics [24]. To be decoupled from the XML-
schema, the SLA@SOI project proposed an abstract SLA syntax named SLA*

60 F. Li et al.

[13] to automate the cloud SLA life cycle. Based on WSLA and SLA*, CSLA
was proposed to address SLA violations in cloud computing [14], which supports
cloud elasticity management such as the QoS or functionality degradation.

Compared to web services and cloud services, SLA specification targeting
IoT services is very limited [17]. Although Gaillard et al. [9] extended the
WSLA specification with device information to describe network performance
for WSN operators, it focused on modeling the SLAs on the device layer instead
of the service layer, while service consumers may be additionally interested in
service-oriented aspects rather than just the concrete device information. Cur-
rent research has developed a number of ontologies to model sensors and sensor
observations. The SSN ontology [7] is a high-level model to describe devices’
measurement capabilities and related attributes, which is further extended by
OpenloT [20] and IoT-Lite [2] to define sensors, measurements, and locations.
The SENSEI project [25] models Real World Entities as resources, which are
described by a semantic ontology including resource type, location, temporal
availability, semantic operation description (e.g., input, output, pre-conditions,
post-conditions), observation area, quality, and cost.

Several IoT middlewares also proposed their QoS metrics. For example, Ope-
nloT defines a set of utility metrics for different IoT layers to manage QoS, which
includes energy consumption, delay, bandwidth, latency, etc [5]. The CityPulse
project listed the quality categories that are used to assess the quality of obser-
vations made in the real world, and summarized the quality parameters with
corresponding measurement units and value ranges [23]. However, as far as we
know, these QoS metrics have not been integrated into the SLA schema for IoT
services.

3 Ontology-Based SLA Management

From the European Commission report on recent cloud computing projects that
cover SLAs, the SLA lifecycle meta-model consists of six main phases [15]: Ser-
vice use, which reflects the information on service usage by a consumer. Ser-
vice modeling, which deals with the service design and analysis issues, such as
estimating performance and instantiating service parameters. SLA template
definition, which creates SLA templates by analyzing the business objectives.
SLA instantiation, which covers various processes including attributes map-
ping and translation, provider discovery, and dynamic SLA (re-)negotiation.
SLA enforcement, which aims to verify the reliability of pre-negotiated QoS
parameters during the service provisioning time by adopting a QoS monitoring
mechanism. SLA conclusion, which handles the termination of signed SLAs
according to pre-defined accounting and billing mechanisms. If an SLA is termi-
nated as a violated agreement or is predicted to be violated by the QoS monitor,
SLA renegotiation may be conducted as a corrective action to maintain service
continuity.

The lifecycle meta-model briefly describes how to create and manage SLA-
supported services. Since the IoT is a large-scale environment where multiple

A WS-Agreement Based SLA Ontology for IoT Services 61

Temporal Spatial -
[features][features [De"'cetype}

S~ K Z

includes. includes includes

has

Device
ontology

describedBy providedBy . controlledBy
Resource Provider
. e I
clivities perform: .
exposedBy negotiates Neg?ft'lat;gn
With specification|
controlledBy deployedOn
consumedBy
. Services Consumers [~controlledBy:
Conditions
specifies

(7]
g
>

pecifie:

monitors specifiedBy
A
. tailors. Negotiation
QoS Monitor |_instruct—lspecification| Offers

Service description model SLA Negotiz

Fig. 1. Upper ontology of IoT SLA core concepts

services offering the same or similar functionalities are distributed in different
locations, human intervention may not be feasible to manage services and SLAs.
We assume a middleware can be deployed in different IoT gateways, which works
in a distributed manner to provide the necessary functionalities such as service
selection, SLA negotiation, and QoS monitoring. The service providers outline
the functionalities of their SLA-supported services with default values in the
form of SLA templates (SLAT) and register them to gateways so that their
offerings can be discovered when requests are received by gateways from con-
sumers. Figure 1 shows the upper ontology that describes the relations between
the domain-specific core concepts of IoT services. To automate the SLA lifecycle
in the IoT environment, a common global knowledge of SLAs is needed to make
SLAs reciprocally understandable. This uniform SLA ontology not only allows
providers to express their offerings in a standardized way but also helps gate-
ways dynamically adjust the negotiation and monitoring mechanisms based on
the metrics, constraints, and conditions defined in the SLAs. Figure 2 presents
our ontology-based SLA management model: (i) SLA ontology generalizes the
semantics of SLA specification and negotiation specification; (ii) The dynamic
SLA negotiation and SLA creation can be performed according to the negoti-
ation context, creation constraints and validation rules specified in the SLAT;
(iii) The automatic monitoring can be conducted according to the assessment
information (e.g. negotiated guarantees, measurement metrics and assessment
schedulers) specified in the SLA; (iv) The service adaptation (i.e., SLA rene-
gotiation) and accounting mechanisms can be triggered by monitored results.

62 F. Li et al.

SLA Negotiation SLA Monitoring
SLA Specification SLA Specification
SLA Contextual
Creation constraints Ontology QoS models
Assessment scheduler
Negotiation Specification SLA Creation
Offer context L
SLA Specification Billing & Accounting

Negotiation constraints template definition SLA Specification

Validation rules Creation constraints Price |

Rejected reasons Validation rules Penalty

Fig. 2. Ontology-based SLA management

4 SLA Contextual Ontology

The SLA specification defines the standard format of an agreement, which
requires a non-ambiguous description of services. The key requirements of defin-
ing an SLA schema in the IoT environment are simplicity, reusability, readability
and efficiency [18]. In other words, the SLA ontology should contain all the neces-
sary information for automatic SLA management but in the meanwhile, remain
as simple as possible. In IoT, three well-accepted concepts are the entity, resource
and service [2]. The semantic models of these concepts are associated with each
other by attributes such as location, domain information, physical concept and
observations. Since an end user may focus more on the service-oriented aspects
rather than the physical sensor information described by a sensor ontology, it is
useful to merge the important attributes of the entity model and resource model
to the service model, and provide a uniform SLA ontology for IoT services.

We built an SLA ontology, called WIoT-SLA, based on an extendable web
service SLA specification WS-Agreement (WSAG) [1], which supports for SLA
negotiation and widely used in cloud computing projects [15]. We formalized
the structure of WIoT-SLA by extending WSAG with IoT domain-specific con-
cepts to improve the readability and efficient traversability of SLA and SLAT.
The steps to achieve this were: (i) We linked the domain knowledge relat-
ing to sensing, actuating and processing tasks to real-world resources, which
enables more flexible and scalable solutions for different IoT application tasks
(Sect. 4.1: Service Description Term). (ii) We proposed a high-level abstraction
of sensing service configuration properties, enabling applications to avoid com-
plex details about devices (e.g., Fig. 5). (iii) We defined the syntax of guarantees
and QoS metrics to facilitate SLA monitoring (Sect.4.1: Service Property). (iv)
We extended the WSAG template schema to solve the template synchroniza-
tion problem and reduce the message payload during SLA negotiation (Sect. 4.1:
SLA Template Structure). (v) We formalized the structure of negotiation offers

A WS-Agreement Based SLA Ontology for IoT Services 63

by extending the WS-Agreement Negotiation specification (WSAG-Negotiation)
with offer validation rules and rejected reasons to avoid invalid interactions
(Sect. 4.2).

4.1 SLA Description Ontology

"""""" . ‘ WIoT-SLA
Necessary 1
Optional ‘
-1d : string <)
] p - name: string E"‘T’ds
e Context 1 ‘ SLA-Template ‘ creationConstraints
<> i h
- agreementlnitiator . 25 I
_ - templateld: string 1..+| - item: termName
ﬁ— - agre.eme“'ResP"sr:ﬁE’g 1 1 - targetLocation: JSONPath
i i - i Terms A
- templateld: string | Extend
- negotiationinterface: xs:anyURI & Y G s i ;
- negotiationProtocol: string [Enumeration Range Function
i - xs: enumeration | | - xs: mininclusive
has- e i
h £
Temporality. " o
— . SeTTEa T GuaranteeTerm(GT) |, 1 BusinessValueList
- creationTimeStamp: xs:dateTime —— - -) 0.1
- expiryDate: xs:dateTime P ——— - obligatedParty: string :stiing. [g TR
) - serviceScope: string
[é b - valueUnit
- valueExpr
1
(— T — | ZE :
Term(SDT) ‘s ceProj QE)H S (5R) | samvicelevaiob/act 0) | | QualifyingConditi | hes
- variableSet - serviceEPR: xs:anyUR! | | _yoiName: SPVariableName P Assessmentinterval
- customLevel: wsla: predicates | | * guaranteeState

I T - KpiTarget * requestRate - type : once/all
0. Extends % Extends

Variable Metric
ohas | ‘ Timelnterval Event
- name: string 1| - name: string
* negotiable: boolean|! - unit: string

- period: xs:duration | | - eventType: string
i - count: integer
(——Extends Extends——

[Directive

- functionType r-Use> . requestURI: xs:anyURI

Fig. 3. WIoT-SLA structure

The structure of WIoT-SLA comprises two parts (shown in green on Fig. 3):
agreement context (i.e., party information, expiry date, agreement template
identifier, etc.) and terms. Services are described by terms, which consists of
service description term (SDT), service property (SP), service reference (SR),
and guarantee term (GT). SDT is the fundamental component of an SLA, which
describes the functionality that will be delivered by the service. SP is used to
define the measurable and exposed QoS properties associated with the service.
SR (optional) lists the references point to the service (e.g., a WSDL document
or a restful web service interface). GT defines the assurance of SP variables in
the form of SLOs, which specifies a customized quality level that is guaran-
teed by the obligated party. The business objectives associated with an SLO are
defined in business value list, which includes the compensation type (i.e., price
and penalty) and possibly, the importance factor. The latter would be useful
for SLA negotiation if the tradeoff negotiation tactic (i.e. the concession rate
can be made based on the weight of each SLO) is adopted. The compensation

64 F. Li et al.

type specifies the consequence of SLA fulfillment, which is associated with an
assessment interval describing how to measure the SLA violation for monitors
(e.g., periodic schedule or the number of events that has occurred).

ServiceDescriptionTerms(SDTs) e b
i - Mandatory :

i * Optional
1
h ta has’
ServiceParameter ! ([W 1
inputs | o eration ServiceType TimeConstraints ServiceCoverage
- name: string outpus |~ a: - -
- dataType: string —O ~id: string — - description: string - startTime: xs:dateTime * LocationType: indoor/outdoor
- unit: string b 1 1.5 1 -domainSet: string[] - endTime: xs:dateTime * Mobility: boolean
* timeStamp: xs: time A - duration: xs:duration
((I w Extends Extends
A i vice i vice EdgeService CloudService i age Ct i verage
- quantityKind - quantityKind - serviceModel:laa$/...
- measureRange - measureRange
1 1 1 1
1 |pas 1 |Pes 1 |hes 1 [hes S— Extends——————
Resource Resource Resource Resource Circle
- type: sensor,actuator, | - type: sensor - type: edgeDevices - type: cloud - bottomLeftLocation - centreLocation
* resourcelD: string * resourcelD: string * resourcelD: string * resourceURI: string - upperRightLocation - regionRadius: double
* resourceURI: string * resourceURI: string * resourceURI: string - radiusUnit: string
? <E Q 1 Q 1 H 1
1
h 1..* 1
has 1. - = . Location .| Coordinate
- Configurationltem I
Effect - address 1 - latitude: long
" - name: string - longitude: long
- condition: eventType - value * altitude: long

- action: actionType * unit

- dataType: boolean/numeric/string
* negotiable: boolean

Fig. 4. Service description terms

Service Description Term. Figure4 shows the ontology of service descrip-
tion terms in WIoT-SLA, which consists of three parts: time constraints, service
coverage, and service type. Time constraints specifies the actual service pro-
visioning time, which is different from the temporality in an SLAT. Service
coverage specifies the spatial features of the service (e.g., the observation area
of sensors). We pre-defined the rectangle area and circle area for regional cov-
erage. The concrete location can be defined with an address ontology or the
geographic coordinate.

Service type generalizes a service’s functionality with domain information,
operation, service parameters (i.e., input and output) and configurable features.
In ToT, the service type can be clustered as a sensing service (e.g., temperature
sensing), a sensing and actuation service (e.g., trigger the alarm when detected
hazard gas concentration greater than a threshold), an edge service (e.g., a data
dispatch service that collects data from sensors and publish verified data to
subscribed services) and cloud service (e.g., data storage and data processing
service that analyzing historical data and predict abnormalities) based on the

A WS-Agreement Based SLA Ontology for IoT Services 65

‘ Samplelnterval

- value: xs: duranon
DataAggregation DataTransmission
’7 [o I |

séEx\endsw —%Extends\

r—Extend r—Extends
Algorithm Protocol Conflgurauonltems Scheduler ‘ Protocol
- value: cmldal... ‘ - value: lead/... - value: xs:duration/event || - value: push/...
DataAccuracy o+ T 0n Security
s Extends—Extends—Extend S ‘ Extend Extend é Extends; Extends—
Resolution Deviation Sensitivity Encryption CA ‘ PublicKey Credential
- value: double| | - value: string - value: double - value: rfc4253/...‘ - value: string || - value: string | | - value: PIN/...

Fig. 5. An example of configuration items (sensing service)

deployed resources. For instance, quality kind can be used to describe the real-
world property observed by the sensors, but a sensing and actuation service may
have an “effect” attribute describing an event or an action when the pre-defined
condition is met. Each resource type is associated with one or more configuration
items, which specifies the service’s functional features, such as the sample rate
for sensing services, data reporting rate for edge services or memory capacity
for cloud services. The configuration item is defined with a name, a value, and
data type (i.e., boolean, numeric and string) of the value. Figure5 outlined a
set of general configuration items for sensing services, including data accuracy,
security, sample rate, data aggregation, and data transmission.

Service Property. In WIoT-SLA, SP variables are defined as the dynamic QoS
features (i.e., values are affected by devices’ status and run-time environment)
that can be monitored by a measurement party. Each SP variable is described
by a name, which is further used in expressing SLO in GTs (i.e., KPIName
in SLO), and the customized metrics specifying its measurement unit. Different
from cloud computing and web services, the QoS model in the IoT context needs
to consider the complexity introduced by the layered architecture of IoT applica-
tions [8]. From bottom to top, the architecture is composed of a perception layer,
network layer, service layer, and application layer. In the perception layer, a
heterogeneous set of devices sample the state of the physical world with differ-
ent capabilities and constraints. Quality metrics for a perception layer include
data correctness, data completeness, transmission speed, energy consumption,
price, etc [23]. The network layer comprises the network infrastructures on
which the IoT platform is based. Quality metrics for the network layer focus
on the performance of data transmissions, such as network delay, bandwidth,

66 F. Li et al.

packet loss, and network jitter [6]. The service layer processes information
received from the lower layer and provides services such as data storage, data
management, and data analysis. CLOUDQUAL is an example of a quality model
for cloud services, which defines usability, availability, reliability, responsiveness,
security, and elasticity as quality dimensions [27]. In the application layer,
different services provided by the lower layer can be composed together to fulfill
the domain-specific requirements of an application task. The end-to-end QoS
of the application layer is dependent on the aggregated or nested QoS metrics
across the lower layers. For instance, a fire detection application has stringent
QoS demands on availability, responsiveness and accuracy, which constrains the
quality level of each layer, such as good quality sensors with high data precision,
adjustable sampling rate, fast transmission speed, available networks with low
latency, and a high reliability for the data processing service. Since achieving
SLOs at the application layer requires the satisfaction of the SLOs of lower level
services, the guarantee states' of lower-level service properties can be used as
a precondition under which the application SLOs take effect. The precondition
can be specified in the QualifyingCondition associated with each SLO.

Since the semantics of QoS parameters are not defined precisely in WSAG, we
define two types of metrics in WIoT-SLA: measurement directives and compos-
ite metrics. The measurement directive is derived from WSLA specification [16],
and is directly retrieved from managed resources (e.g., a request URI exposed by
the QoS monitor). The composite metrics are created by aggregating measure-
ment directives or other composite metrics according to a function. For example,
availability is a composite metric that is composed by a measurementDirective
(i.e., service uptime and service execution time) with a function (i.e., the ratio
of the service uptime to the service execution time).

SLA Template Structure. SLAT is designed as a blueprint to create a valid
SLA and SLA negotiation offer, which shares the same structure as the final SLA
except for some additional segments. In WIoT-SLA, these segments are (marked
in purple on Fig. 3): CreationConstraint (optional), Temporality (mandatory),
negotiationInformation (optional) and Negotiable indicator (optional) for con-
figuration items or SP variables. The items specified in CreationConstraint must
be presented in a valid initial negotiation offer and the final SLA with the val-
ues satisfying the constraints. We divide constraints into three types: Range,
Enumeration and Function. The Range type specifies the minimum and maxi-
mum value, the Enumeration type lists all the possible values, and the Function
type specifies the value in the form of a function. We define constraints with
two attributes: item and targetLocation, which specifies the name of a term and
where to put the constraint respectively. The targetLocation can be expressed
using a querying languages such as JSONPath?. The Temporality is defined to
indicate the validity date of an SLAT, which is composed of creation times-
tamp and expiry date. Since the IoT is a large-scale distributed environment

1 WSAG guarantee state model represents a fulfillment state for each GT of an SLA.
2 https://goessner.net /articles/JsonPath /index.html#e2 - Accessed 15 Jan 2019.

https://goessner.net/articles/JsonPath/index.html#e2

A WS-Agreement Based SLA Ontology for IoT Services 67

and providers’ offerings may change as time passes, the creation timestamp is
used to synchronize the latest version of SLAT within the system. The expiry
date is used to allow IoT middlewares periodically check the availability of reg-
istered SLATs and remove the expired ones to avoid unnecessary interactions
during the negotiation stage. The negotiationInformation specifies the negoti-
ation interface (i.e., a restful negotiation service EPR or an instant message
address) and the negotiation protocol (e.g., CNP or WSAG-Negotiation) if the
service is negotiable. If an SLAT does not specify this segment, the service is
non-negotiable, and users have to accept all the default values specified in the
SLAT. The Negotiable indicator is defined to specify the negotiable terms whose
values can be changed through negotiation, which means the value in the final
SLA can be different from the default value specified in the SLAT. If the indi-
cator is omitted, this means the term is non-negotiable, and it must hold the
default value presented in the SLAT.

4.2 Negotiation Offer Ontology

WSAG-Negotiation formalizes negotiation information as negotiation offers [26],
which are generated based on an SLAT. Generally, the ontology of a negotia-
tion offer (Fig.6) has four sections: negotiation context (e.g., identifier, party,
etc.), offer context, negotiable terms, and negotiation constraints. A negotiation
constraint specifies the constraints on negotiable terms when creating a valid
counteroffer, which has a similar format to a creation constraint, except that an
additional constraint type FizedValues is added to indicate the value can not
be changed in subsequent offers or the final SLA. The offer state model spec-
ified in an offer context controls the interactions between negotiation parties
and indicates the rules for taking action after receiving a new offer. For offers
in the “rejected” state, to reduce ambiguity and avoid futile interactions, the
offer context is extended with domain-specific information to indicate why the
offer is rejected. The set of predefined rejected reasons are: { Unsupported Term,
SLOConflict, Timeout, InvalidOffer, UnderPayment}. Considering the negoti-
ation offer specified by WSAG-Negotiation might be too heavyweight during
the negotiation process, we regulate that the SLAT must be referred in each
negotiation offer, and only the terms that specified in CreationConstraints or
have Negotiable indicators will be presented in negotiation offers. Other terms
are omitted but regarded as holding the same values presented in the SLAT.
Any inconsistency will cause a failure when validating the negotiation offer or
creating the final agreement.

5 SLA Template Match-Making

As we described in Sect.3, SLA negotiation is the first and necessary step to
create an SLA before the actual service delivery. Considering the scale of IoT
services and possible long latency during a bilateral negotiation process, a tem-
plate match-making process can reduce the negotiation time by ranking the

68 F. Li et al.

[‘ D Identifier l Iz » Name l -
Y@ state
isValidWithin

|sReJectedBy
counterOfferTo
isCreatedBy
has
) Terms isObligatedTo

<

cor(stram

Ta
) ServiceTerms [
Yor— hasProperty
lralms S : :
/ e ¢
V'> N
// < [—] \
\ *® ServiceDescript

Fig. 6. Ontology of negotiation offer

candidate services based on the similarity between requests and services. Gate-
ways associate an incoming request with registered SLAT's that are closest to the
requirements, and select the most optimized SLAT to create a negotiation offer.
A request is defined as R = (I,0,T, L, F,Q,C*), consisting of inputs, outputs,
time, location, functional features (e.g., sample interval), QoS properties, and
possibly, the constraints (e.g., the expected price range). We assume providers
formalize SLAT'Ss by following the WIoT-SLA structure, and the service discov-
ery engine uses a goal-driven backward planning algorithm to discover candidate
services based on the semantic relations of service parameters [3]. The match-
making process is composed of two steps: (i) The candidate SLATSs are filtered
based on time and spatial features. (ii) The correspondence between the request
and each candidate SLAT is measured by the similarity of the request and the
SLAT, which is the weighted sum of semantic similarities between the requested
terms and the offered terms.

To calculate the semantic similarity of requested terms and services terms,
we use an auxiliary source WordNet to compute the WUP relatedness [11]. A
score value greater than 0.75 is regarded as a valid matching. The weight of
each valid matching is calculated based on the data type, default value and
creation constraints presented in the SLAT. If the feature is negotiable without
any creation constraints, the weight w is set to 1. If the feature is negotiable and
the value is restricted in the constraints, the weight of a string type is measured
by the minimum Levenshtein distance [10], and the weight of a numeric type
is calculated by Eq. 1 for lower-is-better features (e.g., price or sample interval
from a consumer’s perspective), and by Eq. 2 for higher-is-better features (e.g.,

A WS-Agreement Based SLA Ontology for IoT Services 69

availability or reliability from a consumer’s perspective).

].7 if Smaa: < Rmzn
w = |RNS| th . (1)
B[otherwise.
17 if Smin Z Rmam
w = |RNS| th . (2)
R otherwise.

where Sinaz, Smin, Rmaz, Bmae are the maximum and minimum values of the
offered feature and the requested feature respectively. R NS is the intersection
between the request values and the offered values.

6 Evaluation

A user requests a hazardous gas detection service with functional requirements
including minimum sample interval, maximum data deviation, access credential
and data reporting protocol, and the QoS requirements including price, avail-
ability, reliability and latency. Based on examples proposed in IoT literature [4],
we established a SLAT prototype of a gas detection service, and created three
datasets based on the prototype. In the first dataset (i.e., test case 1), only 20%
services match the request, while in the second dataset (i.e., test case 2), the
percentage is increased to 90% (i.e., 10% conflict). For the services that violate
the request, 50% of them conflict with the spatial requirements and the rest con-
flict with the functional or QoS requirements. In the third dataset (i.e., test case
3), 60% services match the request and 60% of them present the same service
properties using different words (i.e., using robustness to represent reliability),
40% of them adopt different names as well as data types. In each dataset, 30,
60 and 100 JSON-formatted SLATSs are created according to the structure of
WIoT-SLA. Theses SLATsS are different in terms of configuration items (i.e., dif-
ferent names, synonymous names, different range of values, different data types),
SP variables, SLOs and constraints.

The WIoT-SLA match-making algorithm is implemented in Java under
Eclipse Mars2 IDE, and the third-party library WS4J? is integrated to check
words’ semantic relatedness. The executable jar file is deployed on three devices:
a Dell-OptiPlex-990 desktop (Intel Core i7-2600 CPU, 4GB DDR3 1333 MHz
RAM, Windows 10 OS), a 13-inch MacBook-Pro laptop (Intel Core i5 CPU, 8 GB
DDR3 1333 MHz RAM, macOS High Sierra) and a Raspberry Pi-3 (4xCortex-
A7 CPU, 1GB RAM, 16 GB SD card, Raspbian OS). Figure 7 shows the aver-
age processing time (APT) on each device as the scale of candidate services
increases, and the APT under the first two different test cases respectively. The
service scale has a negative impact on the performance of our SLA match-making
algorithm (7(a)), but the negative impact can be slightly reduced by adopting
location-based filtering (7(b)). From the result, the responsiveness of WIoT-SLA

3 https://code.google.com /archive/p/ws4j/ - Accessed 22 Jan 2019.

https://code.google.com/archive/p/ws4j/

70 F. Li et al.

Average Processing Time (10% Conflict) Average Processing Time (100 Services)
o o
- o0
o o
° 000 . 5000
5
§ w0 § w0
i o
2000 2000
o o
, | | , M
30 Services 60 Services 100 Services Desktop Laptop Raspberry Pl
WDesktop M laptop M RaspberryPl MCasel WCase2
(a) APT of different service scale (b) APT of different test cases

Fig. 7. Average processing time

match-making is highly dependent on gateways’ computational capabilities. For
instance, the APT on Dell-OptiPlex-990 (approximately 622ms) is about 12
times of that on Raspberry Pi-3 (approximately 7438 ms). If we assume gate-
ways are the resource-rich edge devices that can manage hundreds of services
that deployed in the local area, such as a desktop or a personal workstation, the
latency is acceptable. Otherwise, a more light-weight SLA match-making algo-
rithm is needed for resource-constrained devices selecting the services that have
a bigger chance to satisfy all the requirements through SLA negotiation. We
further compute the average precision, recall and accuracy in template march-
making for test case 3, and compare the result with path-length based similarity
(PATH) and Lin similarity (LIN) [11]. Figure 8 presents the result under differ-
ent thresholds. Among these three approaches, WUP shows a better and more
stable performance in a wider range, that’s why we select the WUP similarity
and set the threshold to 0.75. Although there are services incorrectly matched to
the request, considering the high recall, this problem can be solved by ranking
the candidate services based on their similarity value and selecting the Top-K
solutions as the final candidate services.

Precision Recall Accuracy
08 b & § 09
1
08
09
0.7
08 07
0.7
0.6
06 0.6
05 05
04
05 03 04
0.01 01 02 03 04 05 06 0.7 08 09 001 01 02 03 04 05 06 07 08 09 001 01 02 03 04 05 06 0.7 0.8 09
Threshold Threshold Threshold
—WUuP LIN ==——PATH e WUP e LIN == PATH ——WUP e LIN = PATH

Fig. 8. Precision, recall and accuracy of test case 3

A WS-Agreement Based SLA Ontology for IoT Services 71

7 Conclusion

This paper proposed an SLA ontology for IoT services that covers the IoT’s lay-
ered architecture and its domain-specific properties. To achieve semantic inter-
operability and enable automatic SLA management in the IoT environment,
we formalized the SLA schema by extending the commonly used web service
SLA specification: WS-Agreement. This schema can be extended by domain-
specific experts to construct SLAs for different applications. According to the
ontology, we designed a match-making algorithm to select the candidate services
which are more likely to provide the service as requested before SLA negotia-
tion. As future work, we aim to develop an SLA reputation system that can audit
the SLA’s fulfillment based on negotiation and monitoring result, and provide
a more lightweight service match-making mechanism resource-constrained IoT
gateways.

References

1. Andrieux, A., et al.: Web services agreement specification (WS-agreement). In:
Open Grid Forum, vol. 128, p. 216 (2007)

2. Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylor, K.. IoT-Lite: a
lightweight semantic model for the Internet of Things. In: 2016 Interna-
tional IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced
and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP /SmartWorld), pp. 90-97. IEEE (2016)

3. Cabrera, C., Palade, A., White, G., Clarke, S.: Services in IoT: a service planning
model based on consumer feedback. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.)
ICSOC 2018. LNCS, vol. 11236, pp. 304-313. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03596-9_21

4. Cabrera, C., White, G., Palade, A., Clarke, S.: The right service at the right place: a
service model for smart cities. In: 2018 IEEE International Conference on Pervasive
Computing and Communications (PerCom), pp. 1-10. IEEE (2018)

5. Calbimonte, J.P., Riahi, M., Kefalakis, N., Soldatos, J., Zaslavsky, A.: Utility met-
rics specifications. openiot deliverable d422. Technical report (2014)

6. Chen, D., Varshney, P.K.: QoS support in wireless sensor networks: a survey. In:
International Conference on Wireless Networks, vol. 233, pp. 1-7 (2004)

7. Compton, M., et al.: The SSN ontology of the W3C semantic sensor network
incubator group. Web Semant.: Sci. Serv. Agents World Wide Web 17, 25-32
(2012). https://doi.org/10.1016/j.websem.2012.05.003. http://www.sciencedirect.
com/science/article/pii/S1570826812000571

8. Duan, R., Chen, X., Xing, T.: A QoS architecture for IoT. In: 2011 International
Conference on and 4th International Conference on Cyber, Physical and Social
Computing Internet of Things (iThings/CPSCom), pp. 717-720. IEEE (2011)

9. Gaillard, G., Barthel, D., Theoleyre, F., Valois, F.: SLA Specification for IoT
Operation-The WSN-SLA Framework. Ph.D. thesis, INRIA (2014)

10. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

11. Jurafsky, D., Martin, J.H.: Speech and Language Processing, vol. 3. Pearson, Lon-
don (2014)

https://doi.org/10.1007/978-3-030-03596-9_21
https://doi.org/10.1007/978-3-030-03596-9_21
https://doi.org/10.1016/j.websem.2012.05.003
http://www.sciencedirect.com/science/article/pii/S1570826812000571
http://www.sciencedirect.com/science/article/pii/S1570826812000571

72

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

F. Li et al.

Kazmi, A., Serrano, M., Lenis, A., Soldatos, J.: A QoS-aware integrated man-
agement of IoT deployments in smart cities. In: 2017 IEEE 10th Conference on
Service-Oriented Computing and Applications (SOCA), pp. 141-146. IEEE (2017)
Kearney, K.T., Torelli, F., Kotsokalis, C.: SLA*: an abstract syntax for service level
agreements. In: 2010 11th IEEE/ACM International Conference on Grid Comput-
ing (GRID), pp. 217-224. IEEE (2010)

Kouki, Y., De Oliveira, F.A., Dupont, S., Ledoux, T.: A language support for
cloud elasticity management. In: 2014 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pp. 206-215. IEEE (2014)
Kyriazis, D.: Cloud computing service level agreements-exploitation of research
results. European Commission Directorate General Communications Networks
Content and Technology Unit, Technical report 5, 29 (2013)

Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web service level agreement
(WSLA) language specification, pp. 815-824. IBM Corporation (2003)

Palade, A., Cabrera, C., Li, F., White, G., Razzaque, M., Clarke, S.: Middleware
for Internet of Things: an evaluation in a small-scale IoT environment. J. Reliable
Intell. Environ. 4, 1-21 (2018)

Papadopoulos, A.V., Asadollah, S.A., Ashjaei, M., Mubeen, S., Pei-Breivold, H.,
Behnam, M.: SLAs for industrial IoT: mind the gap. In: 2017 5th International
Conference on Future Internet of Things and Cloud Workshops (FiCloudW), pp.
75-78. IEEE (2017)

Redl, C., Breskovic, I., Brandic, I., Dustdar, S.: Automatic SLA matching and
provider selection in grid and cloud computing markets. In: Proceedings of the
2012 ACM/IEEE 13th International Conference on Grid Computing, pp. 85-94.
IEEE Computer Society (2012)

Soldatos, J., et al.: OpenloT: open source Internet-of-Things in the cloud. In:
Podnar Zarko, I., Pripuzi¢, K., Serrano, M. (eds.) Interoperability and Open-Source
Solutions for the Internet of Things. LNCS, vol. 9001, pp. 13-25. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16546-2_3

Swiatek, P., Rucinski, A.: ToT as a service system for eHealth. In: 2013 IEEE
15th International Conference on e-Health Networking, Applications & Services
(Healthcom), pp. 81-84. IEEE (2013)

Thoma, M., Meyer, S., Sperner, K., Meissner, S., Braun, T.: On IoT-services: sur-
vey, classification and enterprise integration. In: 2012 IEEE International Confer-
ence on Green Computing and Communications (GreenCom), pp. 257-260. IEEE
(2012)

Tonjes, R., et al.: Real time IoT stream processing and large-scale data analytics
for smart city applications. In: Poster session, European Conference on Networks
and Communications (2014)

Uriarte, R.B., Tiezzi, F., Nicola, R.D.: SLAC: a formal service-level-agreement lan-
guage for cloud computing. In: Proceedings of the 2014 IEEE/ACM 7th Interna-
tional Conference on Utility and Cloud Computing, pp. 419-426. IEEE Computer
Society (2014)

Villalonga, C., Bauer, M., Lépez Aguilar, F., Huang, V.A., Strohbach, M.: A
resource model for the real world internet. In: Lukowicz, P., Kunze, K., Kortuem, G.
(eds.) EuroSSC 2010. LNCS, vol. 6446, pp. 163-176. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16982-3_13

Waeldrich, O., et al.: WS-Agreement Negotiation Version 1.0, p. 64 (2011)
Zheng, X.: QoS representation, negotiation and assurance in cloud services. Queen’s
University (Canada) (2014)

https://doi.org/10.1007/978-3-319-16546-2_3
https://doi.org/10.1007/978-3-642-16982-3_13

	A WS-Agreement Based SLA Ontology for IoT Services
	1 Introduction
	2 Related Work
	3 Ontology-Based SLA Management
	4 SLA Contextual Ontology
	4.1 SLA Description Ontology
	4.2 Negotiation Offer Ontology

	5 SLA Template Match-Making
	6 Evaluation
	7 Conclusion
	References

