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Abstract. The word2vec and fastText models train two vectors per
word: a word and a context vector. Typically the context vectors are
discarded after training, even though they may contain useful informa-
tion for different NLP tasks. Therefore we combine word and context
vectors in the framework of meta-embeddings. Our experiments show
performance increases at several NLP tasks such as text classification,
semantic similarity, and analogy. In conclusion, this approach can be
used to increase performance at downstream tasks while requiring mini-
mal additional computational resources.
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1 Introduction and Motivation

The choice of word embedding model is an important hyperparameter for many
NLP tasks, since it has been observed that different embedding models tend to
provide stronger representations for different types of downstream tasks [4]. It
is also known that ensembles of machine learning models tend to perform better
than their individual constituents. It makes sense, then, to combine different
embedding models in order to improve the performance of downstream NLP
tasks.

While using ensembles of downstream models seeded with different types of
word embeddings had been tried before [1], the idea of combining word embed-
dings directly to form meta-embeddings starts with the work of [21]. In that
work the authors form meta-embeddings by concatenation, by factorization of
the concatenated vectors (SVD), and a method called 1toN that learns a meta-
embedding from which (also learned) projections exist to the source embeddings,
with said projections minimizing the mean square error between the projected
meta-embedding and source embedding of the same word for all words. A sim-
pler but overlooked idea of averaging source embeddings is explored in [5]. In
[3] autoencoders are employed to dimension reduce the concatenated (CAEME)
and averaged (AAEME) meta-embeddings as well as dimension reducing source
embeddings and concatenating them (DAEME).
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One of the best known word embedding models is word2vec [13,14], which
during its learning procedure not only learns a word vector for each word in
the training corpus, but also a context vector for it. However context vectors
are typically discarded after training. In [16] it is briefly mentioned that adding
word and context vectors may result in a small performance boost. However
it is not thoroughly investigated. In this study we investigate it in detail by
forming meta-embeddings of word and context vectors in several different ways
and conducting detailed experiments. We observe that combining the word and
context embeddings to form a meta-embedding in several different settings yields
a higher performance at the text classification, semantic similarity and analogy
tasks.

In Sect.2, we describe our novel approach and meta-embedding types. In
Sect. 3, we describe our experimental setup, our implementation and NLP tasks
that we perform. In Sect. 4, we present results of our meta-embedding methods
on text classification, semantic similarity and word analogy tasks. In Sect. 5, we
draw our conclusions based on our results and discuss possible extensions as
future work.

2 Approach

Our novel approach focuses on exploiting otherwise ignored information encoded
in context vectors. We formulate and experiment with seven different types of
meta-embeddings. A total of nine results are given in our tables for comparison
where the first two are traditional word and context embeddings which constitute
the baselines.

In order to see if including context vectors help improving performance
in several NLP tasks, first, we create a meta-embedding by concatenating
word and context embeddings which is simply denoted by concat. This will
result in doubling the dimensionality. Our second approach is to average
word and context embeddings which is denoted by average. Third approach
is to apply a max pooling filter to word and context embeddings to cre-
ate a meta-embedding. This is donated by mazpool. Fourth one is a more
complicated meta-embedding which is obtained by concatenation, averaging
and maxpooling of word and context embeddings. This is indicated as CAM
in our result tables. Following this, we have three additional auto-encoder
based meta-embeddings [3] of word and context embeddings, namely Aver-
aged Autoencoded Meta-Embedding (AAEME), Concatenated Autoencoded
Meta-Embedding (CAEME), and Decoupled Autoencoded Meta-Embedding
(DAEME). Please note that different meta-embedding approaches we have taken
result in different dimensional vectors. This can be seen in Table 1.

In order to obtain word and context embeddings we use two of the most
popular word embedding models; the word2vec and fastText [2,8]. For both
models we use the skip-gram negative sampling architecture as it is more popular.
In the case of fastText models while character n-grams are trained alongside
word and context embeddings, we’ve choose not to include those in our meta-
embeddings for comparability reasons.
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Table 1. Embedding and dimension

Embedding|word|context concat average maxpool CAM|AAEME|CAEME|DAEME
Dimension [200 |200 400 200 200 400 300 400 400

3 Experiments

3.1 Datasets

We trained our embeddings on Text8 [11], which is a corpus based on the first 10°
bytes of the Wikipedia dump of March 3, 2006. For comparison we also trained
our embeddings on a large Wikipedia dump. This corpus contains 19,251,790
articles and occupies approximately 16 GB of disk space.

For the text classification task we use the following datasets: AG’s News
Corpus [22] consisting of 120,000 documents in 4 classes, WEBKB which is a
highly imbalanced dataset of 8,282 documents in 7 classes [12,17], Yelp Reviews
Polarity [20,22] consisting of 560,000 documents in 2 classes, and DBPedia [9,22]
also consisting of 560,000 documents but in 14 classes.

For the semantic similarity test we use the following datasets: WS [6] (353
word pairs), RG [19] (65 word pairs), RW [10] (2034 word pairs), SL [7] (999
word pairs).

For the analogy test we use the GL [14] dataset (19,557 analogy questions).

3.2 Experimental Setup

We use the gensim library [18] implementations of word2vec and fastText. For
both we train vectors dimension of 200, and use default hyperparameters oth-
erwise. We also use the word similarity and analogy tests implemented in the
gensim library. We report the Spearman Correlation between the cosine similar-
ity of word vectors and human assigned similarity scores.

For the text classification experiments we use Support Vector Machines
(SVM) algorithm, more specifically Linear Support Vector Classifier (Lin-
earSVC) which is commonly used in this domain. We use the one implemented
in the scikit-learn library [15] with the default hyper parameters. Documents to
be classified are represented as averages of their words’ vectors.

The text classification experiments were run with 10-fold cross validation.
We report the average accuracy and the standard deviations for the classification
experiments.

In text classification experiments, in order to see if the performance improve-
ment of meta-embeddings such as concat is due to the increased (actually dou-
bled) number of dimensions or not, we conduct two sets of experiments. First,
we compare meta-embeddings of size 200 (100 word + 100 context) with a base-
line word embedding vectors of 200. In the second set of similar experiments we
double the vector sizes.
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4 Results and Discussion

4.1 Text Classification

According to our results, as seen in Tables2 and 3, we see that for text clas-
sification the concatenation approach has a distinct advantage over all other
approaches. The auto-encoder meta-embeddings appear to perform better than
the average and the baseline meta-embeddings. However for the WEBKB
dataset, which is a highly class imbalanced one, we observe a different pattern.
In this dataset autoencoder based meta-embeddings perform poorly compared
to others.

The concatenation meta-embeddings of both word2vec and fastText mod-
els exceed the classification performance of the other meta-embeddings in all
datasets.

Table 2. Performance of word2vec meta-embeddings trained on text8 for text classi-
fication task

AG News WEBKB Yelp Polarity | DBpedia
word 85.41 +/- 1.11 |67.61 +/- 2.07 |79.51 +/- 0.78 |94.78 +/- 1.49
context |86.26 +/- 1.12 |67.11 +/-2.45 |81.29 +/- 0.79 | 94.75 +/- 1.52
concat | 87.42 4 /- 1.07|69.56 +/- 2.27 | 83.31 +/- 0.80 | 96.02 +/- 1.21
average |85.68 +/- 1.14 |67.40 +/- 2.14 |79.79 +/- 0.74 | 94.87 +/- 1.47
maxpool | 85.51 +/- 1.07 | 66.97 +/- 2.17 |79.33 +/- 1.00 | 94.63 +/- 1.49
CAM 86.79 +/- 1.06 |69.79 +/- 1.88|82.44 +/- 0.89 | 96.05 +/- 1.20
AAEME | 86.71 +/- 1.21 | 58.53 +/- 2.72 | 82.21 +/- 0.73 | 94.75 +/- 1.58
CAEME | 86.90 +/- 1.15 |59.14 +/- 2.72 | 82.96 +/- 0.75 |94.99 +/- 1.54
DAEME | 86.33 +/- 1.12 | 56.79 +/- 2.92 |82.19 +/- 0.77 |94.56 +/- 1.59

The improvement is most obvious in the Yelp Reviews Polarity dataset with
an increase of 3.8% points over word embeddings for word2vec, and 4.27% points
for fastText.

As the second step of experiments we run the same text classification
tasks using our meta-embedding models trained using Wikipedia. According
to results, as seen in Tables4 and 5, again concatenation meta-embeddings of
both word2vec and fastText models exceed the classification performance of the
other meta-embeddings in all datasets.

For text classification, as seen in Table 6, we also compare the performance
of same size meta-embedding and baseline embedding vectors. We observe that
concatenation of word and context vectors still shows higher accuracy than word
vectors by themselves, even though their dimensionalities are equal.
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Table 3. Performance of fastText meta-embeddings trained on text8 for text classifi-

cation task

AG News

WEBKB

Yelp Polarity

DBpedia

word

85.32 4 /- 1.16

68.08 +/- 2.37

79.78 +/- 0.74

94.29 +/- 1.75

context

86.61 +/- 1.23

67.51 +/-2.32

81.26 +/- 0.84

94.79 +/- 1.54

concat

87.49 +/- 1.17

70.13 +/- 2.30

84.05 +/- 0.88

95.98 +/- 1.25

average

85.77 +/- 1.16

68.23 +/- 2.23

80.16 +/- 0.79

94.51 +/- 1.66

maxpool

85.21 +/-1.28

67.21 +/- 2.69

79.43 +/- 0.67

94.79 +/- 1.86

CAM

86.86 +/- 1.08

70.85 +/-2.60

83.05+/- 0.80

95.72 +/- 1.31

AAEME

86.75 +/- 1.17

59.72 +/- 2.70

83.05 +/- 0.88

94.75 +/- 1.72

CAEME

87.07 +/- 1.20

60.31 +/- 2.74

83.86 +/- 0.83

95.15 +/- 1.59

DAEME

86.61 +/- 1.26

58.25 4 /- 2.49

83.08 +/- 0.86

94.63 +/- 1.73

Table 4. Performance of word2vec meta-embeddings trained on Wikipedia for text
classification task

AG News WEBKB Yelp Polarity | DBpedia
word | 88.82 4+/- 1.11 | 68.31 +/- 3.02 | 84.06 +/- 0.73 | 96.53 +/- 1.20
context |88.98 +/- 1.21 |67.96 +/- 3.30 |84.71 +/-0.70 |96.56 +/- 1.20
concat |89.42 +/- 1.10|69.89 +/- 3.36 | 86.07 +/- 0.67 | 96.90 +/- 1.11
average |88.98 +/- 1.16 | 68.13 +/- 3.19 | 84.50 +/- 0.69 | 96.53 +/-1.18
maxpool | 88.87 +/- 1.21 |68.23 +/- 3.10 |84.09 4/- 0.73 | 96.40 +/- 1.22
CAM 89.38 +/- 1.14 |69.04 +/-3.64 |86.23 +/- 0.68|96.97 +/- 1.11

Table 5. Performance of fastText meta-embeddings trained on Wikipedia for text
classification task

AG News WEBKB Yelp Polarity | DBpedia
word 88.04 +/-1.35 |67.30 +/- 1.97 |82.12 +/- 1.47 |96.32 +/-1.18
context |88.56 +/-1.13 |66.48+/ -2.18 |84.77 +/ -0.74 | 96.35 +/- 1.26
concat |88.76 +/-1.10|67.97 +/- 2.11 |85.34 +/- 1.01|96.83 +/- 1.07
average |88.23 +/-1.29|68.17 +/- 1.84 | 83.374+/- 0.78 |96.38 +/- 1.19
maxpool | 87.61 +/- 1.54 | 67.05 +/-4.01 | 81.79 +/-1.11 |95.98 4/- 1.39
CAM 88.33 +/-1.21 |69.47 +/- 2.24|83.17 +/- 2.79 |96.69 +/- 1.20
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Table 6. Performance comparison of word2vec and fastText meta-embedding concat
with word embeddings of the same dimensionality on the text classification task

Model Type |Dim | AG News WEBKB Yelp Polarity DBpedia
word2vec | concat | 400 | 87.42 +/- 1.07 | 69.56 +/- 2.27 | 83.31 +/- 0.80 | 96.02 +/- 1.21
word2vec | word | 400 |86.26 +/- 1.03 |68.46 +/- 1.82 | 81.32 +/- 0.73 | 95.67 +/-1.24
word2vec | concat | 200 | 86.07 +/- 1.24 | 67.50 +/- 2.55 | 81.17 +/- 0.71 | 94.79 +/- 1.51
word2vec | word | 200 |85.41 +/- 1.11 |67.61 +/- 2.07 | 79.51 +/- 0.78 | 94.78 + /- 1.49
fastText | concat | 400 |87.49 +/- 1.17|70.13 +/- 2.30 | 84.05 +/- 0.88 | 95.98 +/- 1.25
fastText |word |400 |86.30 +/- 1.07 |69.59 +/-2.66 |82.42 +/- 0.87 | 95.46 +/- 1.39
fastText |concat | 200 | 86.54 +/- 1.22 | 68.25 +/- 2.29 | 80.64 +/- 0.73 | 94.49 +/- 1.72
fastText |word | 200 | 85.32 +/- 1.16 | 68.08 +/- 2.37 | 79.78 +/- 0.74 | 94.29 +/- 1.75

4.2 Semantic Similarity and Word Analogy

Word2vec meta-embedding semantic similarity and analogy results that can be
seen in Table 7, for three of the five datasets the average meta-embedding per-
forms better. For the RW dataset auto-encoder based meta-embedding DAEME
slightly outperforms the average meta-embedding. Interestingly other auto-
encoder based meta-embeddings under perform the average meta-embedding in
the same dataset. One outlier in the semantic similarity task is the SL dataset.
In this one concatenation outperforms all other methods by a large margin.

In the fastText meta-embedding semantic similarity and analogy results
which can be seen in Table 7, we observe a pattern differing from its word2vec
counterparts. We see a much better picture for auto-encoder based meta-
embedding methods. For four of the five datasets the auto-encoder base meta-
embeddings outperform all others visibly. The only dataset where they do not
is the RG dataset which is the smallest dataset used in the semantic similarity
task. In this dataset the average meta-embeddings perform better.

Of note is the fact that for every dataset except the SL dataset, the average
meta-embeddings outperform the concatenation meta-embeddings at the seman-
tic similarity task, and at the analogy task as well.

We also see a difference in the performance of fastText word and context
embeddings. For instance in the analogy task the context embeddings only solve
13.8% of the analogy questions, whereas the word vectors manage 40.6%. In
the SL dataset for the semantic similarity task the context vectors significantly
outperform word vectors (Spearman correlation of 0.3 versus 0.242). This should
be due to the difference in the training of fastText and word2vec vectors. Namely
in the word2vec model the similarity score is calculated as a function of the dot
product between word and context vectors, whereas in the fastText model word
and character n-gram embeddings are summed before computing a dot product
with the context vectors.

Thus while word and context vectors are symmetric in the word2vec model,
they are not in the fastText model. We suspect the differences in performance
are due to this fundamental asymmetry.
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Table 7. Performance of word2vec/fastText meta-embeddings trained on text8 for
semantic similarity and analogy tasks

‘WS RG |RW |SL |GL
word2vec
word 0.622 |1 0.504 |0.328 |0.261 |24.4
context | 0.445 | 0.320 | 0.336 |0.258 |18.0
concat |0.625 |0.487 |0.347 1 0.336 |24.4
average |0.6420.525|0.367 |0.269 |27.1
maxpool | 0.608 | 0.441 |0.373 |0.262 |20.5
CAM 0.629 |0.480 |0.378 |0.264 |24.2
AAEME 0.593 |0.441 | 0.348 |0.285 |25.4
CAEME | 0.576 |0.409 0.353 | 0.279 |25.8
DAEME | 0.598 |0.444 |0.375|0.270 |24.9
WS |RG RW |SL GL

fastText
word 0.435 10.377 | 0.305 |0.242 |40.6
context |0.393 |0.352 |0.304 | 0.300 | 13.8
concat |0.437 [0.365 | 0.309 | 0.251 |41.1
average |0.473 |0.414|0.328 |0.254 |42.1
maxpool | 0.425 |0.418 |0.320 |0.220 |36.1
CAM 0.451 |0.430 |0.328 |0.239 |39.7
AAEME | 0.475|0.398 | 0.345 |0.316 |44.5
CAEME | 0.471 |0.389 |0.345 | 0.320 |44.1
DAEME | 0.427 |0.397 | 0.349 | 0.317 |39.2

5 Conclusions and Future Work

By combining word and context vectors of word2vec and fastText models using
several different meta-embedding approaches we evaluate how much improve-
ment context vectors can provide to word vectors’ performances in downstream
NLP tasks such as text classification, semantic similarity, and analogy. Further-
more we investigate which meta-embedding approaches are better at these tasks.

We show that even when we use a much larger training corpus for embedding
models, resulting meta-embeddings show similar behavior, the concatenation of
word and context embeddings usually leads to higher accuracy in text classifi-
cation task.

It is interesting to note that just as the performances of word embedding
models differ according to task, so do those of meta-embeddings of word and
context vectors. In particular concatenation meta-embeddings perform better at
text classification tasks, and average meta-embeddings tend to perform better
at semantic similarity and analogy tasks.
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We plan to combine word and context embeddings using a greater variety
of meta-embedding methods. Namely, we think that the averaging method will
perform better if the word and context embeddings are aligned via an orthogonal
transformation first. We would also like to evaluate the 1toN [21] in this context.
Another interesting approach will be inclusion of character n-gram embeddings
of fastText in the various combinations.

In the future we would like to shed some light onto performance differences
of auto-encoder based meta-embeddings by throughout analysis.
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