
Elisabeth Métais · Farid Meziane ·
Sunil Vadera · Vijayan Sugumaran ·
Mohamad Saraee (Eds.)

LN
CS

 1
16

08

24th International Conference on Applications
of Natural Language to Information Systems, NLDB 2019
Salford, UK, June 26–28, 2019, Proceedings

Natural Language
Processing and
Information Systems

Lecture Notes in Computer Science 11608

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Elisabeth Métais • Farid Meziane •

Sunil Vadera • Vijayan Sugumaran •

Mohamad Saraee (Eds.)

Natural Language
Processing and
Information Systems
24th International Conference on Applications
of Natural Language to Information Systems, NLDB 2019
Salford, UK, June 26–28, 2019
Proceedings

123

Editors
Elisabeth Métais
Conservatoire National des Arts et Métiers
Paris, France

Farid Meziane
University of Salford
Salford, UK

Sunil Vadera
University of Salford
Salford, UK

Vijayan Sugumaran
Oakland University
Rochester, MI, USA

Mohamad Saraee
CSE
University of Salford
Salford, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-23280-1 ISBN 978-3-030-23281-8 (eBook)
https://doi.org/10.1007/978-3-030-23281-8

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-23281-8

Preface

This volume of Lecture Notes in Computer Science (LNCS 11608) contains the papers
presented at the 24th International Conference on Application of Natural Language to
Information Systems, held at MediacityUK, University of Salford on the, during June
26–28, 2019 (NLDB 2019). Since its foundation in 1995, the NLDB conference has
attracted state-of-the-art research and followed closely the developments of the appli-
cation of natural language to databases and information systems in the wider meaning
of the term.

The NLDB conference is now a well-established conference that attracts participants
from all over the world. The conference evolved from the early years when most of the
submitted papers where in the areas of natural language, databases and information
systems to encompass more recent developments in the data and language engineering
fields. The content of the current proceedings reflects these advancements. The con-
ference also supports submissions on studies related to language that have not been
well supported in the early years such as Arabic, Tamil, Hindi, and Farsi.

We received 75 papers and each paper was sent to at least three reviewers and
reviewed by at least two. The conference co-chairs and Program Committee co-chairs
had a final consultation meeting to look at all the reviews and make the final decisions
on the papers to be accepted. We accepted 21 papers (28%) as long/regular papers and
16 short papers.

We would like to thank all the reviewers for their time, effort, and for completing
their assignments on time albeit under tight deadlines. Many thanks to the authors for
their contributions.

May 2019 Elisabeth Métais
Farid Meziane

Vijayan Sugumaran
Sunil Vadera

Mohamad Saraee

Organization

Conference Chairs

Elisabeth Métais Conservatoire National des Arts et Metiers, Paris,
France

Farid Meziane University of Salford, UK
Sunil Vadera University of Salford, UK

Program Committee Chairs

Mohamed Saraee University of Salford, UK
Vijay Sugumaran Oakland University Rochester, USA

Program Committee

Akoka Jacky CNAM & TEM, France
Hidir Aras FIZ Karlsruhe, Germany
Faten Atigui CNAM, France
Imran Sarwar Bajwa The Islamia University of Bahawalpur, Pakistan
Mithun Balakrishna Lymba Corporation, USA
Pierpaolo Basile University of Bali, Italy
Nicolas Béchet IRISA, France
Sana Belguith University of Salford, UK
Sandra Bringay LIRMM, France
Paul Buitelaar National University of Ireland Galway, Ireland
Raja Chiky ISEP, France
Kostadin Cholakov HU Berlin, Germany
Philipp Cimiano Universität Bielefeld, Germany
Isabelle Comyn-Wattiau CNAM, France
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
André Freitas University of Passau, Germany/Insight, Ireland
Debasis Ganguly Dublin City University, Ireland
Ahmed Guessoum USTHB, Algiers, Algeria
Yaakov Hacohen-Kerner Jerusalem College of Technology, Israel
Udo Hahn Jena University, Denmark
Siegfried Handschuh University of St.Gallen, Switzerland
Michael Herweg IBM, Germany
Helmut Horacek Saarland University, Germany
Ashwin Ittoo HEC, University of Liege, Belgium
Paul Johannesson Stockholm University, Sweden
Epaminondas Kapetanios University of Westminster, UK
Zoubida Kedad UVSQ, France

Eric Kergosien GERiiCO, University of Lille, France
Christian Kop University of Klagenfurt, Austria
Valia Kordoni Saarland University, Germany
Elena Kornyshova CNAM, France
Leila Kosseim Concordia University, Canada
Mathieu Lafourcade LIRMM, France
Els Lefever Ghent University, Belgium
Jochen Leidner Thomson Reuters, USA
Nguyen Le Minh Japan Advanced Institute of Science and Technology,

Japan
Cédric Lopez VISEO – Objet Direct, France
D. Manjula Anna University, Chennai, India
Heinrich C. Mayr Alpen-Adria-Universität Klagenfurt, Austria
John McCrae CITEC, Universität Bielefeld, Germany
Farid Meziane Salford University, UK
Elisabeth Métais CNAM, France
Marie-Jean Meurs UQAM, Montreal, Canada
Luisa Mich University of Trento, Italy
Andres Montoyo Universidad de Alicante, Spain
Andrea Moro Università di Roma La Sapienza, Italy
Rafael Muñoz Universidad de Alicante, Spain
Yulong Pei Eindhoven University of Technology, The Netherlands
Davide Picca UNIL, Switzerland
Behrang Qasemizadeh Heinrich-Heine-Universität Düsseldorf, Germany
Paolo Rosso NLEL València, Spain
Mohamed Saraee University of Salford, UK
Bahar Sateli Concordia University, Canada
Khaled Shaalan The British University in Dubai, UAE
Max Silberztein Université de Franche-Comté, France
Kamel Smaili University of Lorraine, France
Veda Storey Georgia State University, USA
Vijayan Sugumaran Oakland University Rochester, USA
Bernhard Thalheim Kiel University, Germany
Krishnaprasad Thirunarayan Wright State University, USA
Geetha T. V. Anna University, India
Christina Unger CITEC, Universität Bielefeld, Germany
L. Alfonso Ureña-López University of Jaén, Spain
Sunil Vadera University of Salford, UK
Panos Vassiliadis University of Ioannina, Greece
Tonio Wandmacher IRT SystemX, Saclay, France
Feiyu Xu DFKI Saarbrücken, Germany
Wlodek Zadrozny UNCC, USA

viii Organization

Contents

Full Papers

Deep Neural Network Models for Paraphrased Text Classification
in the Arabic Language . 3

Adnen Mahmoud and Mounir Zrigui

Model Answer Generation for Word-Type Questions
in Elementary Mathematics . 17

Sakthithasan Rajpirathap and Surangika Ranathunga

Learning Mobile App Embeddings Using Multi-task Neural Network 29
Ahsaas Bajaj, Shubham Krishna, Hemant Tiwari, and Vanraj Vala

Understanding User Query Intent and Target Terms in Legal Domain 41
Sachin Kumar and Regina Politi

Bidirectional Transformer Based Multi-Task Learning for Natural
Language Understanding . 54

Suraj Tripathi, Chirag Singh, Abhay Kumar, Chandan Pandey,
and Nishant Jain

LSVS: Link Specification Verbalization and Summarization 66
Abdullah Fathi Ahmed, Mohamed Ahmed Sherif,
and Axel-Cyrille Ngonga Ngomo

Deceptive Reviews Detection Using Deep Learning Techniques 79
Nishant Jain, Abhay Kumar, Shekhar Singh, Chirag Singh,
and Suraj Tripathi

JASs: Joint Attention Strategies for Paraphrase Generation 92
Isaac K. E. Ampomah, Sally McClean, Zhiwei Lin, and Glenn Hawe

Structure-Based Supervised Term Weighting and Regularization
for Text Classification . 105

Niloofer Shanavas, Hui Wang, Zhiwei Lin, and Glenn Hawe

Gated Convolutional Neural Networks for Domain Adaptation 118
Avinash Madasu and Vijjini Anvesh Rao

A Keyword Search Approach for Semantic Web Data 131
Mohamad Rihany, Zoubida Kedad, and Stéphane Lopes

Intent Based Association Modeling for E-commerce 144
Sailesh Kumar Sathish and Anish Patankar

From Web Crawled Text to Project Descriptions: Automatic Summarizing
of Social Innovation Projects . 157

Nikola Milošević, Dimitar Marinov, Abdullah Gök, and Goran Nenadić

Cross-Corpus Training with CNN to Classify Imbalanced Biomedical
Relation Data . 170

S. S. Deepika, M. Saranya, and T. V. Geetha

Discourse-Driven Argument Mining in Scientific Abstracts 182
Pablo Accuosto and Horacio Saggion

TAGS: Towards Automated Classification of Unstructured Clinical
Nursing Notes . 195

Tushaar Gangavarapu, Aditya Jayasimha, Gokul S. Krishnan,
and Sowmya Kamath S.

Estimating the Believability of Uncertain Data Inputs in Applications
for Alzheimer’s Disease Patients . 208

Fatma Ghorbel, Fayçal Hamdi, and Elisabeth Métais

Deep Genetic Algorithm-Based Voice Pathology Diagnostic System 220
Rania M. Ghoniem

An Arabic-Multilingual Database with a Lexicographic Search Engine. 234
Mustafa Jarrar and Hamzeh Amayreh

Bug Severity Prediction Using a Hierarchical
One-vs.-Remainder Approach . 247

Nonso Nnamoko, Luis Adrián Cabrera-Diego, Daniel Campbell,
and Yannis Korkontzelos

A Coherence Model for Sentence Ordering . 261
Houda Oufaida, Philippe Blache, and Omar Nouali

Short Papers

Unified Parallel Intent and Slot Prediction with Cross Fusion
and Slot Masking . 277

Anmol Bhasin, Bharatram Natarajan, Gaurav Mathur, Joo Hyuk Jeon,
and Jun-Seong Kim

Evaluating the Accuracy and Efficiency of Sentiment Analysis Pipelines
with UIMA . 286

Nabeela Altrabsheh, Georgios Kontonatsios, and Yannis Korkontzelos

x Contents

Comparing Different Word Embeddings for Multiword
Expression Identification . 295

Aishwarya Ashok, Ramez Elmasri, and Ganapathy Natarajan

Analysis and Prediction of Dyads in Twitter. 303
Isa Inuwa-Dutse, Mark Liptrott, and Yannis Korkontzelos

Mathematical Expression Extraction from Unstructured Plain Text 312
Kulakshi Fernando, Surangika Ranathunga, and Gihan Dias

A Study on Self-attention Mechanism for AMR-to-text Generation 321
Vu Trong Sinh and Nguyen Le Minh

PreMedOnto: A Computer Assisted Ontology for Precision Medicine 329
Noha S. Tawfik and Marco R. Spruit

An Approach for Arabic Diacritization. 337
Ismail Hadjir, Mohamed Abbache, and Fatma Zohra Belkredim

A Novel Approach Towards Fake News Detection: Deep Learning
Augmented with Textual Entailment Features . 345

Tanik Saikh, Amit Anand, Asif Ekbal, and Pushpak Bhattacharyya

Contextualized Word Embeddings in a Neural Open Information
Extraction Model . 359

Injy Sarhan and Marco R. Spruit

Towards Recognition of Textual Entailment in the Biomedical Domain 368
Noha S. Tawfik and Marco R. Spruit

Development of a Song Lyric Corpus for the English Language 376
Matheus Augusto Gonzaga Rodrigues, Alcione de Paiva Oliveira,
and Alexandra Moreira

A Natural Language Interface Supporting Complex Logic Questions
for Relational Databases. 384

Ngoc Phuoc An Vo, Octavian Popescu, Vadim Sheinin,
Elahe Khorasani, and Hangu Yeo

Waste Not: Meta-Embedding of Word and Context Vectors 393
Selin Değirmenci, Aydın Gerek, and Murat Can Ganiz

Extracting Statistical Mentions from Textual Claims to Provide
Trusted Content . 402

Tien Duc Cao, Ioana Manolescu, and Xavier Tannier

Contents xi

Aspect Extraction from Reviews Using Convolutional Neural Networks
and Embeddings . 409

Peiman Barnaghi, Georgios Kontonatsios, Nik Bessis,
and Yannis Korkontzelos

Author Index . 417

xii Contents

Full Papers

Deep Neural Network Models for Paraphrased
Text Classification in the Arabic Language

Adnen Mahmoud1,2(&) and Mounir Zrigui1

1 Algebra, Numbers Theory and Nonlinear Analyzes Laboratory LATNAL,
University of Monastir, Monastir, Tunisia

mahmoud.adnen@gmail.com, mounir.zrigui@fsm.rnu.tn
2 Higher Institute of Computer Science and Communication Techniques,

Hammam Sousse, University of Sousse, Sousse, Tunisia

Abstract. Paraphrase is the act of reusing original texts without proper citation
of the source. Different obfuscation operations can be employed such as
addition/deletion of words, synonym substitutions, lexical changes, active to
passive switching, etc. This phenomenon dramatically increased because of the
progressive advancement of the web and the automatic text editing tools.
Recently, deep leaning methods have gained competitive results than traditional
methods for Natural Language Processing (NLP). In this context, we consider
the problem of Arabic paraphrase detection. We present different deep neural
networks like Convolutional Neural Network (CNN) and Long Short Term
Memory (LSTM). Our aim is to study the effective of each one in extracting the
proper features of sentences without the knowledge of semantic and syntactic
structure of Arabic language. For the experiments, we propose an automatic
corpus construction seeing the lack of Arabic resources publicly available.
Evaluations reveal that LSTM model achieved the higher rate of semantic
similarity and outperformed significantly other state-of-the-art methods.

Keywords: Paraphrase detection � Deep learning � Word embedding �
Convolutional neural network � Long short term memory �
Arabic corpus construction

1 Introduction

The technological advancement of the Web and text editing tools, it became very easy
to find and re-use any kind of information. This increased dramatically the paraphrase
practice, which is difficult to detect. It means including other person’s text as your own
without proper citation. The texts must be semantically the same but rephrased using
different obfuscation operations such as addition/deletion of words, synonym substi-
tutions, lexical changes, active to passive switching, etc. [1]. As a result, automatic
detection of text reuse is a fundamental issue in Natural Language Processing (NLP).
It has attracted the attention of the research community due to the wide variety of
applications associated with it (e.g. information retrieval, question answering, essay
grading, text summarization, etc.). Often, neural networks have provided powerful
learning methods for analyzing semantic textual similarity through feed forward and

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 3–16, 2019.
https://doi.org/10.1007/978-3-030-23281-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_1

recurrent neural networks architectures. In this paper, we consider the problem of
Arabic paraphrase detection. Thus, we study different models of deep neural networks
and demonstrate the best one for extracting high-level features and capturing long-
range dependencies between words. The rest of this paper is organized as follows:
Sect. 2 briefly describes a literature review on paraphrase detection systems based on
semantic textual similarity approaches. Then, Sect. 3 details our proposed methodol-
ogy. Subsequently, Sect. 4 presents the experimental dataset and evaluation results.
Finally, Sect. 5 concludes the paper.

2 Literature Review

Natural Language Processing (NLP) has long been one of the holy grails of computer
science [2]. Although processing language and comprehending the contextual meaning
is an extremely complex task, paraphrase detection is a sensitive field of research for
specific language. Therefore, various methods have been produced for estimating
textual similarity between documents.

Lexical based methods compared documents if they contained the same characters
or words, like: Prayogo et al. [3] studied the structure of Bayesian network for
Indonesian paraphrase identification using lexical features (Levenshtein distance, term
frequency based on cosine similarity, and Long Common Substring (LCS)). Subse-
quently, they calculated similarity in the semantic tree WordNet by applying Wu and
Palmer and Shorest path methods. Similarly, Ali et al. [4] detected plagiarism in Urdu
documents based on a distance measuring method, structural alignment algorithm, and
vector space model. The performance of this system is evaluated using Support Vector
Machine (SVM) and Naïve Bayes classifiers. The experimental results demonstrated
that the detection result is improved using cosine similarity with the Term Frequency-
Inverse Document Frequency (TF-IDF) technique and the simple Jaccard measure.
These approaches were very accurate on detecting verbatim cases of plagiarism (i.e.
copy-paste), but they were useless to detect complex cases of plagiarism, such as
paraphrase, where texts showed significant differences in wording and phrasing.
However, Bag of Words (BoW) models regarded texts as a set of words without taking
into consideration their order. Few works have been proposed, distinguish: Al-Shenak
et al. [5] enhanced a method for Arabic question answering. They used Latent Semantic
Analysis (LSA) for modeling term and document to the same concept space and SVM
for classification. Similarly, Kurniawan et al. [6] detected plagiarism of writing and
image on Facebook’s social media using LSA method and Smith-Waterman algorithm.
In contrast, Latent Dirichlet Allocation (LDA) method computed text similarity
according to the topic distribution as shown in the system of Aljoha et al. [7]. They
recognized external plagiarism by combining LDA and Part of Speech Tags
(POS) techniques. Thus, semantic information is added even if the part-of-speech
features alone could be used satisfactorily. We distinguish also knowledge-based
methods that stored and queried structured information using lexical knowledge
databases (e.g. Wikipedia, WordNet, DBpedia, etc.). They aimed to measure the
semantic overlap, distinguish: Al-Shamry et al. [8] tested whether the research entered
under the specialization of computer science or not, where only such research would

4 A. Mahmoud and M. Zrigui

subject to semantic plagiarism detection using WordNet. Furthermore, Ghanam et al.
[9] detected Arabic plagiarism using WordNet combined with TF-IDF and feature-
based semantic similarity methods.

In recent decades, neural networks models have been employed for analyzing
semantic information without depending on any external knowledge resource: Mikolov
et al. [10] proposed word2vec model for generating word embedding. It had two
architectures: The first was a Continuous Bag-of-Words (CBOW) model for predicting
the current word from the context of words. Nagoudi et al. [11] used it for detecting
semantic similarity in Arabic sentences. The second was a Skip-gram model for pre-
dicting the context of words from the current word. Mahmoud et al. [12] combined it
with TF-IDF method for representing the most descriptive sentence and identifying
paraphrase in Arabic documents. Thereafter, global embedding (GloVe) is introduced
in [13] combining Skip-gram and word-word co-occurrences. It was more useful to
train word embedding and compare semantic differences between sentences in different
languages (e.g. Spanish [14], Arabic [15], English [16], etc.). In addition, Kenter et al.
[17] compared different word embeddings like word2vec, FastText, and GloVe.
Contrariwise, Niraula et al. [18] showed that words relatedness and similarity could be
measured by combining word embeddings models (i.e. LSA, LDA, word2vec and
GloVe). Similarly, Al-Smadi et al. [19] extracted lexical, syntactic, and semantic
features to train Maximum Entropy (MaxEnt) and Support Vector Regression
(SVR) classifiers. Their main advantage was to complement, better represent the
coverage of semantic aspects of words and overcome their limitation in analyzing the
specificities of any language. Therefore, deep learning methods have yielded com-
petitive results than traditional text classification models and have brought gains to
NLP. They achieved good results in extracting the proper features of sentences without
the knowledge of semantic and syntactic structure of a language, via feed forward
neural networks like Convolutional Neural Network (CNN). It was useful in different
systems and achieved good results for text classification and semantic similarity
analysis as demonstrated in the studies of Kim [20], Hu et al. [21], Mahmoud et al.
[22], Lazemi et al. [23], and Salem et al. [24]. The drawback of these methods that were
limited to process each word of sentence as a single feature by ignoring their order of
occurrence. Therefore, recurrent neural networks are introduced to make sequential
data process and learn sentence from the context of words considering their previous
information. However, these models were susceptible to explode the problem of gra-
dient. That is why; Long Short Term Memory (LSTM) and Gated Recurrent Units
(GRU) were efficient. They treated long sequences using a gating mechanism to create
a memory control of values proposed over the time. They were successful for analyzing
semantic similarity between long sentences as demonstrated in the studies of Duong
et al. [25] and Reddy et al. [26].

Throughout the state of the art, little attention has been considered for Arabic
paraphrase detection due to the following reasons: Arabic is the official language of the
Arab world [27]. It counts more than 445 million speakers and ranked the 8th in the
number of pages that circulate on the Internet [28]. Arabic is known to be a mor-
phological rich language because of the existence of diacritics and stacked letters above
or below the base line [29, 30]. This results the existence of more than one meaning and
category to which the word belongs. Among the Arabic language specificities that

Deep Neural Network Models for Paraphrased Text Classification 5

produce its processing complexity, we cite [31, 32]: non-vocalization, homograph,
agglutination, derivation, no concatenation, and phrase types (verbal, nominal and
prepositional). In general, an Arabic word can present ambiguity and can be interpreted
with different meanings as the word means he went or gold. In addition, the word

means destination or a side [33].

3 Proposed Model

In this section, the methodology behind paraphrase detection method is briefly
described. We propose a deep learning approach to learn sentences representations and
estimate the degree of semantic relatedness. It is decomposed into the following phases:
Text pre-processing to eliminate irrelevant data, features extraction to represent the
most discriminant information, and finally similarity computation to determine how
much suspect and source documents convey the same meaning.

3.1 Pre-processing

Pre-processing is fundamental in Arabic NLP systems for storing texts into machine-
readable formats and facilitating further processing (e.g. parsing or text mining). We
eliminate the less useful parts of the text through removing diacritics, extra white
spaces, titles numeration, special characters, duplicated letters and non-Arabic words.
Then, the exploration of words in the sentence is done. We apply tokenization oper-
ation dividing the text into tokens.

3.2 Global Word Embedding

While count based matrix factorization and contextual Skip-gram models have pro-
duced the data sparsity problem with large-scale data, words embeddings are generated
with the unsupervised global vector representation (GloVe). Let wi and w^ j are the

vectors of words i and j; bi and b
^

j are the scalar biases of the main word i and the
context of word j; V is the vocabulary size and f (x) is the weighting function for rare
and frequent co-occurrences. Training is performed on aggregating word co-occurrence
statistics and producing representations with linear substructures of the word vector
space using an objective function J defined as follows in Eq. (1):

J ¼
XV

i;j¼1

f Xij
� �ðwT

i w
^

j þ bi þ b
^

j � logðXijÞÞ2 ð1Þ

More formally, let S ¼ ½w1;w2; . . .;wn� be a sentence of length n, where wi is the
i-th word of the sentence represented by its word embedding xi. It is a row vector of K
dimension in a matrix X ¼ ½x1; x2; . . .; xn� of size N� K.

6 A. Mahmoud and M. Zrigui

3.3 Similarity Computation

Neural network models have provided powerful learning sentence representations for
many natural language applications. There are two major types of neural networks
architectures: feed-forward networks and recurrent networks. While feed forward
neural networks are able to extract local patterns, recurrent neural networks are able to
capture long-range dependency in the data by abandoning the Markov assumption.
This is the aim of the proposed paraphrase detection model. We intend to study the
capability of Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) models and compare their effectiveness. Our goal is to encode the semantic
and syntactic properties of Arabic sentences and compute thereafter efficiently the
semantic similarity.

3.3.1 Convolutional Neural Network
Convolutional Neural Network (CNN) is a feed forward architecture. It is advantageous
in features engineering through the independence from prior knowledge and human
efforts. The proposed model consists of three layers as shown in Fig. 1.

Convolutional Layer. We extract high-level features from the input matrix X. Given
different window sizes ws, a filter is seen as a weight F of size 64 moved in each
sentence of words n� ws þ 1: The core of this layer is obtained from the application of
convolutional operator on F and X according to a non-linear function. The output of
this layer is computed as follows in Eq. (2) [34]:

Yi ¼
XK

j¼1

Xw

h¼1
Fijh � Xn�ws þ 1;j þ bi ð2Þ

Fig. 1. Proposed GloVe-CNN model

Deep Neural Network Models for Paraphrased Text Classification 7

Where: i ¼ 1; 2; . . .; n; the term of bias b ¼ ½b1; . . .; bn�. After applying the con-
volutions, we introduce the non-linearity through an activation function using the
Rectified Linear Unit (ReLU) function defined in Eq. (3):

f xð Þ ¼ maxf0; xg ð3Þ

Pooling Layer. The most relevant and common features are extracted by applying the
max pooling operation. More precisely, this layer produces the reduced feature maps
P ¼ ½p1; p2. . .; pn�, where:

pi ¼ max1� i� n�ws þ 1Yi ð4Þ

All vectors are concatenated to enhance the generalization ability of the model.
These are fed into the fully connected layer to perform the classification.

Fully Connected Layer. This layer with a dropout improves the performance of the
model and reduce the over fitting problem. It generates the output score in the range of
[0, 1] using sigmoid function defined as follows in Eq. (5):

Output ¼ Sigmoid xð Þ ¼ ex

ð1þ exÞ ð5Þ

The drawback of this model is the following: a classical feed forward neural
network is limited to process each word of sentence as a single feature, which ignore
their order of occurrence.

3.3.2 Long Short-Term Memory
To address the limit of CNN model, we employ the effectiveness of recurrent neural
networks for sequential data process. It learns information from the context of words by
considering their previous information in the sentence. In contrast, it risks of the
gradient vanishing problem in which training is difficult for learning long sequences of
words [35]. Therefore, we use Long Short-Term Memory (LSTM) model to learn long-
term dependencies as represented in Fig. 2. It consists of a hidden unit composed of a
memory cell for storing one or multiple values controlled by an input gate (is written
to) that decides how many values enter the unit, an output gate (read from) decides how
many values output from the unit, and a forget gate (delete from) decides whether value
remains in the unit. Each of gates receives all of the current and past inputs to the cell
and combine them according to a unique set of weights. Then, each gate pass the output
of this combination to an activation sigmoid function at time t:

yt ¼ 1

1þ eð
P

i
wiyt�1

i Þ ð6Þ

8 A. Mahmoud and M. Zrigui

Finally, this internal state is updated by another activation function and multiplied
by the output gate to generate the output of the memory ot, at time t is the following:

ot ¼ ytaSt ð7Þ

4 Experiments

4.1 Datasets

The lack of publicly available resources make hard in experimenting the performance
of Arabic paraphrase detection methods [36]. As a solution, we develop automatically a
corpus consisting of the following process: Open Source Arabic Corpora (OSAC) [37]
is used as an original corpus containing 22,429 documents of 10 categories (e.g.
economics, history, sports, etc.) as shown in Table 1.

An automatic development of an Arabic paraphrased corpus is proposed. Indeed,
the degree of paraphrase D is fixed arbitrary in the range of [0.45, …, 0.75] using
random uniform function. This rate is used thereafter to count the number of words to
replace R from the OSAC source corpus of N words as follows in Eq. (8):

R ¼ N� D ð8Þ

Paraphrased corpus needs an analogy reasoning in which words with similar
meanings tend to have similar contextual representations. To do this, we use Skip-gram
model for capturing various degrees of similarity among words and offering efficient
representations with low-dimensional vectors. It predicts the context of the middle

Fig. 2. Proposed GloVe-LSTM model

Deep Neural Network Models for Paraphrased Text Classification 9

original word wi in a surrounding window c for maximizing the average log probability
according to the vocabulary size T as shown in Eq. (9):

1
T

XT

i¼1

X
�c� j� c;j6¼0

log pðwiþ jjwiÞ ð9Þ

POS technique proposed by the Stanford NLP group is used for annotating sen-
tences by their syntactic (grammatical) classes (e.g. noun, verb, adjective, adverbs,
etc.).

Finally, a random shuffle function replaces the source words according to an index
chosen, according to the following constraint: To preserve syntactic and semantic
properties of the original sentences, source words should be replaced from the
vocabulary model with their most similar ones that have the same grammatical classes.

Experiments are carried out on 15701 documents for training (4710 paraphrases
and 10991 different documents) and 6728 documents for the test (2019 paraphrases and
4709 different documents).

4.2 Word Embedding

Different neural network models are employed in our study. That is why; we transform
word tokens into fixed vectors by looking up the pre-trained local and global word
embeddings. For the paraphrased corpus development, each word from the OSAC
corpus is mapped to its pre-trained 300-dimensional word vector. It is produced by the
Skip-gram model trained on more than 2.3 billion words from various datasets (Arabic
Corpora Resource (AraCorpus), King Saud University Corpus of Classical Arabic
(KSUCCA) and Arabic papers from Wikipedia.). Table 2 summarizes the parameters
of the word2vec model.

For the paraphrase detection, we use the GloVe model trained on the same
resources used for word2vec. Table 3 presents its configuration in details.

Table 1. Open Source Arabic Corpora (OSAC)

Categories Number of documents

Economics 3102
History 3233
Education & Family 3602
Religious and Fatwas 3171
Sports 2419
Health 2296
Astronomy 557
Low 944
Stories 726
Cooking Recipes 2373

10 A. Mahmoud and M. Zrigui

4.3 Paraphrased Corpus Analysis

To validate the effectiveness of the proposed corpus, let a sentence S of N words, we
calculate an average of all cosine similarities of its word embedding’s fw1; . . .;wng as
defined in Eq. (10). The objective is to identify the degree of relatedness between the
source and the resulted paraphrased sentences and determine the impact of the pro-
posed annotations. After several experiments, the combination of Skip-gram and POS
is reported to be good in capturing syntactic and semantic properties of words with the

Table 2. Configuration of word2vec model

Parameters Values

Vocabulary size 2.3 billion
Vector dimension 300
Window size 3
Min_count � 5
Workers 8
Iterations number 7

Table 3. Configuration of GloVe model

Parameters Values

Co-occurrence matrix size 1.119.436 *1.119.436
Embedding size 300
Context size 3
Minimum occurrence 25
Learning rate 0.05
Batch size 512
Numbers of epochs 20

Table 4. Example of a paraphrased sentences construction

Deep Neural Network Models for Paraphrased Text Classification 11

following configuration: 3 as a window size (three words after and before the target
one) and 300 as a vector dimension. Table 4 illustrates an example of a paraphrased
sentence construction:

Average ¼
Xn

i¼1

wi

n
ð10Þ

4.4 Results and Discussion

CNN Results. The convolutional layer has a filter size of 64, a kernel width of 3, a
ReLU as an activation function, a max-pooling layer of size 4, and a fully connected
layer with sigmoid function for the classification. We study the effect of window size to
the accuracy of CNN models with GloVe embedding. Figure 3 shows the test accuracy
curves with different window sizes. The x-axis is the window sizes and the y-axis is the
accuracy ratio of the models on the test set. It is clear that w = 3 is the most appropriate
window size, which gives the best accuracy of 79.5% for training CNN model. The
overall experimental results show its benefit in capturing high-level contextual features
within sentences.

LSTM Results. We tune the parameters of LSTM model as follows: The number of
hidden units in all models is fixed at 256, and a dropout of probability 0.5. Compared to
CNN models, we investigate the performance of LSTM model for sentence modeling
and similarity computation. After 100 training iterations, it achieves an accuracy of
83% and outperforms CNN models as shown in Fig. 4. Although CNN models are
efficient in extracting invariant features, this experimental result demonstrates that
LSTM model is better in analyzing long-sequence dependencies of words and con-
serving the semantic of sentences.

Discussion. Overall experiments demonstrate that CNN and LSTM models are similar
and successful by sharing parameters between neurons. In addition, they are different
for the following reasons: CNN models are efficient in representing features with a
fixed number of computation steps and the output depends only on the current input. In
contrast, LSTM models are more advantageous in sequential modeling sentences and
sharing parameters across the temporal dimension. Table 5 and Fig. 5 represent a

0.755
0.795

0.73 0.7

0.6

0.8

1

2 3 4 5window size

Fig. 3. Accuracy of CNN models with different window sizes

12 A. Mahmoud and M. Zrigui

comparison with other methods in the literature: Seeing the diversity specificities of
Arabic language and the complexity of their processing, the proposed GloVe and CNN
based model achieved an accuracy of 79.5%. Using the same parameters, Le-Hong
et al. [34] demonstrated that it was more efficient for English text classification with an
accuracy of 83%. However, Salem et al. [24] clustered segments of a small Arabic
dataset and found which one had a different stylometry in comparison to the other using
CNN model as a classifier. Contrariwise, Duong et al. [25] achieved 78.6% of accuracy
for English paraphrase detection. They encoded pre-trained word vectors by an LSTM

0.
69 0.
73

0.
76

5

0.
78

0.
79

5

0.
71 0.
75

5

0.
78

5

0.
8

0.
83

2 0 4 0 6 0 8 0 1 0 0
GloVe-CNN GloVe-LSTM

Fig. 4. Accuracy of CNN and LSTM models with different word embeddings

Table 5. Overall comparisons

Systems Datasets Language Models Accuracy

Proposed
Models

OSAC corpus Arabic GloVe-CNN 79.500
GloVe-LSTM 83.000

Salem et al. [24] 10 long texts Arabic CNN-clustering 82.970
Le-Hong et al.
[34]

UIUC question
types

English GloVe-CNN 83.000
GloVe-LSTM 76.800

Duong et al. [25] MSRP English Word2vec-Dense
Softmax

78.600

GloVe- Dense
Softmax

75.238

Fig. 5. Comparative study regarding accuracy

Deep Neural Network Models for Paraphrased Text Classification 13

model and the output matrix is fed into an attention network with a dense Softmax
layer. Overall experiments showed that LSTM is better than CNN model for capturing,
modeling and analyzing both syntactic and semantic structure of Arabic sentences with
an accuracy of 83%. To sum up, the quantity and quality of data greatly affects the
performance.

5 Conclusion and Future Work

Arabic paraphrase detection is an important problem to solve. In this paper, we studied
the effectiveness of deep neural networks models for extracting the proper features of
sentences including CNN and LSTM. For experiments, we proposed an automatic
approach for Arabic paraphrased corpus construction combining Skip-gram model and
POS technique. It preserved both semantic and syntactic properties of sentences.
Results showed that Global-embedding GloVe with LSTM model significantly out-
performed the state-of-the-art methods with an accuracy of 83%. We note that LSTM
model was efficient in capturing long sentence dependencies while CNN was capable
in extracting discriminant contextual features from texts. Despite the promising results,
we will deal with additional stylistic feature sets (e.g. quantitative, function word,
vocabulary richness, etc.). Moreover, we will use other deep neural networks models to
capture more local context relations between sentences and improve the prediction of
semantic similarity in less time like Gated Recurrent Unit (GRU), etc.

References

1. Sameen, S., Sharjeel, M., Muhammad, R., Nawab, A., Rayson, P., Muneer, I.: Measuring
short text reuse for the Urdu language. IEEE Access 6, 7412–7421 (2018)

2. Kumar, V., Verma, A., Mittal, N., Gromov, S.V.: Anatomy of pre-processing of big data for
monolingual corpora paraphrase extraction: Source language sentence selection. In:
Abraham, A., Dutta, P., Mandal, J., Bhattacharya, A., Dutta, S. (eds.) Emerging
Technologies in Data Mining and Information Security. AISC, vol. 814, pp. 495–505.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1501-5_43

3. Prayogo, A.H., Syahrul, M., Adiwijaya, M.: On the structure of Bayesian network for
Indonesian text document paraphrase identification. In: International Conference on Data
and Information Science (ICoDIS), pp. 1–15 (2018)

4. Ali, W., Ahmed, T., Rehman, Z., Rehman, A.U., Slaman, M.: Detection of plagiarism in
Urdu text documents. In: 14th International Conference on Emerging Technologies (ICET),
Islamabad, pp. 1–6 (2018)

5. Al-Shenak, M., Nahar, K., Halwani, H.: AQAS: Arabic question answering system based on
SVM, SVD, and LSI. J. Theor. Appl. Inf. Technol. 97(2), 681–691 (2019)

6. Kurniawan, M., Surendro, K.: Similarity measurement algorithms of writing and image for
plagiarism on Facebook’s social media. In: 1st International Conference on Engineering and
Applied Technology (ICEAT), pp. 1–10 (2018)

7. Aljohani, N., Alowibdi, J., Daud, A., Khan, J., Nasir, J., Abbasi, R.: Latent Dirichlet
Allocation and POS Tags based method for external plagiarism detection: LDA and POS
tags based plagiarism detection. Int. J. Semant. Web Inf. Syst. (IJSWIS) 14(3), 53–69 (2018)

14 A. Mahmoud and M. Zrigui

http://dx.doi.org/10.1007/978-981-13-1501-5_43

8. Al-Shamery, E., Gheni, H.: Plagiarism detection using semantic analysis. Indian J. Sci.
Technol. 9(1), 1–8 (2016)

9. Ghanem, B., Arafeh, L., Rosso, P., Sánchez-Vega, F.: HYPLAG: hybrid Arabic text
plagiarism detection system. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E.,
Meziane, F. (eds.) NLDB 2018. LNCS, vol. 10859, pp. 315–323. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91947-8_33

10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781 (2013)

11. Nagoudi, E., Schwab, D.: Semantic similarity of Arabic sentences with word embeddings.
In: Third Arabic Natural Language Processing Workshop (WANLP), Valencia, Spain,
pp. 18–24 (2017)

12. Mahmoud, A., Zrigui, M.: Semantic similarity analysis for paraphrase identification in
Arabic texts. In: 31st Pacific Asia Conference on Language, Information and Computation,
(PACLIC), Philippine, pp. 274–281 (2017)

13. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In:
Conference on Empirical Methods in Natural Language Processing (EMNLP), Qatar,
pp. 1532–1543 (2014)

14. Rodríguez, I.: Text similarity by using GloVe word vector representations. Ph.D. (2017)
15. Alkhatlan, A., Kalita, J., Alhaddad, A.: Word sense disambiguation for Arabic exploiting

Arabic WordNet and word embedding. Procedia Comput. Sci. 142, 50–60 (2018)
16. Cer, D., Diab, M., Agirrec, E., Lopez-Gazpi, I., Specia, L.: SemEval-2017 Task 1: semantic

textual similarity multilingual and cross-lingual focused evaluation, pp. 1–14. arXiv:1708.
00055 (2017)

17. Kenter, T., Rijke, M.: Short text similarity with word embeddings. In: 24th ACM
International Conference on Information Knowledge Management (CIKM), pp. 1411–1420
(2015)

18. Niraula, N., Gautam, D., Banjadae, R., Maharjan, N., Rus, V.: Combining word
representations for measuring word relatedness and similarity. In: 28th International Florida
Artificial Intelligence Research Society Conference (FLAIRS), Florida (2015)

19. AL-Smadi, M., Jaradat, Z., AL-Ayyoub, M., Jararweh, Y.: Paraphrase identification and
semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic
features. ACM Digit. Libr. 53(3), 640–652 (2016)

20. Kim, Y.: Convolutional neural networks for sentence classification. In: Conference on
Empirical Methods in Natural Language Processing (EMNLP), Doha, pp. 1746–1751 (2014)

21. Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for matching
natural language sentences. In: Annual Conference on Neural Information Processing
Systems Montreal (NIPS), Canada, pp. 2042–2050 (2014)

22. Mahmoud, A., Zrigui, A., Zrigui, M.: A text semantic similarity approach for Arabic
paraphrase detection. In: International Conference on Computational Linguistics and
Intelligent Text Processing (CICLing), Budapest, pp. 338–349 (2017)

23. Lazemi, S., Ebrahimpour-komleh, H., Noroozi, N.: Persian plagirisim detection using CNN
s. In: 2018 8th International Conference on Computer and Knowledge Engineering
(ICCKE), pp. 171–175. IEEE (2018)

24. Salem, A., Almarimi, A., Andrejkova, G.: Text dissimilarities predictions using convolu-
tional neural networks and clustering. In: World Symposium on Digital Intelligence for
Systems and Machines (DISA), pp. 343–347 (2018)

25. Duong, P., Nguyen, H., Duong, H., Ngo, K., Ngo, D.: A hybrid approach to paraphrase
detection. In: 5th NAFOSTED Conference on Information and Computer Science (NICS),
pp. 366–371 (2017)

Deep Neural Network Models for Paraphrased Text Classification 15

http://dx.doi.org/10.1007/978-3-319-91947-8_33
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055

26. Aravinda Reddy, D., Anand Kumar, M., Soman, K.P.: LSTM based paraphrase identifi-
cation using combined word embedding features. In: Wang, J., Reddy, G.R.M., Prasad, V.
K., Reddy, V.S. (eds.) Soft Computing and Signal Processing. AISC, vol. 898, pp. 385–394.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3393-4_40

27. Abdellaoui, H., Zrigui, M.: Using tweets and emojis to build TEAD: an Arabic dataset for
sentiment analysis. Computacion y Sistemas 22(3), 777–786 (2018)

28. Terbeh, N., Maraoui, M., Zrigui, M.: Arabic discourse analysis: a naïve algorithm for
defective pronunciation correction. Computación y Sistemas 23(1), 153–168 (2019)

29. Mansouri, S., Charhad, M., Zrigui, M.: A heuristic approach to detect and localize text in
Arabic news video. Computacion y Sistemas 23(1), 75–82 (2018)

30. Aouichat, A., Hadj Ameur, M.S., Geussoum, A.: Arabic question classification using
support vector machines and convolutional neural networks. In: Silberztein, M., Atigui, F.,
Kornyshova, E., Métais, E., Meziane, F. (eds.) NLDB 2018. LNCS, vol. 10859, pp. 113–
125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91947-8_12

31. Ghezaiel Hammouda, N., Torjmen, R., Haddar, K.: Transducer cascade to parse Arabic
corpora. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds.) NLDB
2018. LNCS, vol. 10859, pp. 230–237. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-91947-8_22

32. Batita, M., Zrigui, M.: Derivational relations in Arabic Wordnet. In: 9th Global WordNet
Conference (GWC), Singapore, pp. 137–144 (2018)

33. Chouigui, A., Khiroun, O.B., Elayeb, B.: A TF-IDF and co-occurrence based approach for
events extraction from arabic news corpus. In: Silberztein, M., Atigui, F., Kornyshova, E.,
Métais, E., Meziane, F. (eds.) NLDB 2018. LNCS, vol. 10859, pp. 272–280. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91947-8_27

34. Le-Hong, P., Le, A.: A comparative study of neural network models for sentence
classification. In: 2018 5th NAFOSTED Conference on Information and Computer Science
(NICS), pp. 360–365. IEEE (2018)

35. Bsir, B., Zrigui, M.: Bidirectional LSTM for author gender identification. In: 10th
International Conference on Computational Collective Intelligence (ICCCI), pp. 393–402
(2018)

36. Mahmoud, A., Zrigui, M.: Artificial method for building monolingual plagiarized Arabic
corpus. Computacion y Systemas 22(3), 767–776 (2018)

37. Saad, M., Ashour, W.: OSAC: Open source Arabic corpora. In: 6th International Conference
on Electrical and Computer Systems (EECS), pp. 1–6 (2010)

16 A. Mahmoud and M. Zrigui

http://dx.doi.org/10.1007/978-981-13-3393-4_40
http://dx.doi.org/10.1007/978-3-319-91947-8_12
http://dx.doi.org/10.1007/978-3-319-91947-8_22
http://dx.doi.org/10.1007/978-3-319-91947-8_22
http://dx.doi.org/10.1007/978-3-319-91947-8_27

Model Answer Generation for Word-Type
Questions in Elementary Mathematics

Sakthithasan Rajpirathap(B) and Surangika Ranathunga(B)

Department of Computer Science and Engineering, Faculty of Engineering,
University of Moratuwa, Katubedda 10400, Sri Lanka

{rajpirathaps,surangika}@cse.mrt.ac.lk

Abstract. There are several categories of word-type questions at ele-
mentary level Mathematics. These include addition, subtraction, mul-
tiplication, division and ratio. Addition and subtraction problems can
be further divided based on their textual information. Those types are
change type (join-separate type), compare type, and whole-part type.
This paper presents a set of ensemble classifiers to automatically gen-
erate model answers for these three types of addition and subtraction
problems. Currently, questions with one unknown variable are consid-
ered. In addition to the existing data sets, a new data set is created
for the training and the evaluation purpose. Our results outperform the
existing statistical approaches.

Keywords: Elementary Mathematics · Math Word problems ·
Question classification · Answer generation

1 Introduction

Managing assessments through computers can be considered as an alternative
for manual assessment. For Mathematics questions expressed only using Mathe-
matics formulae such as those referring to Algebra, Computer Aided Assessment
systems such as SymPy can be used [1]. However, in automated assessment of
student answers, for Math Word problems (a mathematical problem expressed
using natural language), a model answer should be provided in advance. Many
systems that focus on assessment of this type of Mathematics questions have
assumed that a teacher manually provides the model answer for each question
for assessment to be carried out [2]. Although there is research to automate
the answer generation process as well [3–5], answer generation for Math Word
problems (MWPs) is still an open issue.

In this research, we focus on simple elementary level Mathematics ques-
tions that are expressed as Math Word problems (MWPs). These mostly con-
tain addition, subtraction, division, multiplication and ratio calculations, and
geometry based questions. Addition and subtraction problems can be further
divided into sub-types by considering the textual information in those questions.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 17–28, 2019.
https://doi.org/10.1007/978-3-030-23281-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_2

18 S. Rajpirathap and S. Ranathunga

These categories are change type (join-separate type), compare type, and whole-
part type [12].

Template/rule based, graph based, ontology based, statistical, and deep
learning based approaches have been used for answer generation for Math Word
problems. Template/Rule based approaches rely on rules/templates for input
sentences [8,9]. They use stored knowledge in the form of rules and templates.
The presence of rules and constraints affects the flexibility to adapt to new ques-
tion types. Ontology-based approaches rely on ontology relationships that exist
within the entities. In this case, domain-experts are needed to derive the domain
knowledge to write logic to create an ontology map. Statistical approaches rely
on traditional Machine Learning approaches [3]. In some hybrid systems, rule
logics are used in the initial stage of the system’s process, and statistical models
in the final stage [5], while some other approaches did vice versa [3]. In recent
research, these hybrid systems have produced more promising results. However,
manually defining rules or templates for simple elementary Mathematics word
type questions is an issue. In the recent past, deep learning approaches have
also been used [10], however, they require a large number of training samples to
perform at an acceptable level. Graph based approaches [11] use a graph repre-
sentation of word problems, where entities and relevant quantities are plotted in
the graphs and equations are generated from the graph based on the question
types.

This paper presents a statistical system to automatically generate model
answers for the aforementioned three types of addition and subtraction ques-
tions. We experimented with multiple classifiers such as Random forest, Gaus-
sian NB, decision tree, Support Vector Machines (SVM), Perceptron, and their
ensembles. We also introduce new features that perform better than those used
by existing research [3,5]. For evaluation, relevant questions were extracted from
Add-Sub dataset [13], ARIS dataset [11] and Roy et al.’s [3] dataset. SingleOP
dataset [14] was taken only for the purpose of testing. In addition, 782 new
questions were collected from O/L Mathematics teachers in Sri Lanka to create
a dataset of 1713 questions. An accuracy of 94.7% was achieved for 10-fold cross
validation on the combined data set, while an accuracy of 88.7% was achieved
for the SingleOP test dataset evaluated in decision tree ensemble classifier using
a combination of the newly defined features along with those borrowed from
previous research [3] and [5]. (The source is added to link https://github.com/
rajpirathap/ModelAnsGenProj)

2 Question Types

This research focuses on “change”, “compare” as well as “whole-part” type of
elementary Mathematics questions.

Change Type: In the “change” type of questions, a particular numerical value
or a quantitative value of an entity is changed over time throughout sentences
of a question. This formula can be explained as below,

https://github.com/rajpirathap/ModelAnsGenProj
https://github.com/rajpirathap/ModelAnsGenProj

Model Answer Generation for Elementary Math Word Problems 19

Start value+ change value = summation or result
Or
Start value - change value = difference or summation or result
Here the “start value” is the initial value of a quantity of an entity. “Change

value” represents the change of a quantity value of the entity/variable. As a
result, the answer is derived as a sum or difference value of a quantity in a
question.

Q1 below is an example of a Change type question,
Q1: Pete had 3 apples. Ann gave Pete 5 more apples, how many apples does

Pete have now?

Comparison Type: In this type of questions, there is a comparison of two
numerical values of entities. The comparison is implicitly captured by identifying
the difference between the quantities or numerical values in a question. Simply
the formula can be stated as below:

Initial value + or - difference value = second value
The quantity value of “Initial value” is compared with the quantity value

of “second value”. “difference value” denotes the quantity difference between
the “initial value” and “second value”. In most cases, this type of questions has
keywords such as “more”, “less”, and “than” in its context. For example consider
the question Q2,

Q2: Joe has 3 balloons. His sister Connie has 5 balloons. How many more
balloons does Connie have than Joe?

By considering the above question, the formula can be expressed as
first value (5) - second value (3) = difference (unknown)

Whole-Part Type: In this type of questions, value of the same kind of vari-
able/entity is divided into parts and the “whole” quantity is expressed by con-
sidering the “part” values. It can be simply expressed as,

part value + part value = whole value
In some cases, the whole value and one of the part values are mentioned in

the context of the question, the remaining part value has to be derived. Some
other questions mention about the quantity of “parts” and the “whole” quantity
value has to be derived. For example, consider the question Q3. Here, boys and
girls are parts of child entity/variable.

Q3: There are 6 boys and 8 girls in the volleyball team. How many
children are in the team?

In the above question, the formula can be derived as
part value + part value = whole value.

3 Related Work

Template/rule based, graph based, ontology based, statistical, and deep learning
based approaches have been used in previous research for answer generation for
MWPs.

20 S. Rajpirathap and S. Ranathunga

Template/Rule based approaches have been used to solve question types
such as real and natural number arithmetic, 2D and 3D geometry, pre-calculus,
and calculus related mathematical questions [8,9]. The main drawback of these
approaches is the presence of manually prepared templates/rules and constraints,
which affects the flexibility to adapt to a new question type.

Ontology based systems have commonly been designed for some selected
domain(s). For example, the fuzzy logic ontology model presented by Morton
and Qu [15] is aimed at the domains of investment, distance, and projectile
domains. Also they mostly considered addition type of linear equation based
questions. The main limitation of this approach is the need for a domain expert
for new question type integration.

We refer to systems that employ traditional classification algorithms as sta-
tistical approaches. Roy et al.’s [3] proposed the most recent statistical approach
for word type problems. This approach limits itself by allowing questions with
only one arithmetic operation (among addition, multiplication, subtraction and
division) at a time with two or three operand candidates. This system employs
a system of cascading classifiers to identify the operations to solve questions.
These cascading classifiers are dependent on each other for their continued work,
meaning that errors of classifiers in the early stages get propagated to latter
stages. Amnueypornsakul and Bhat [5] also used a multi-stage classifier with
a rule-based learner to generate answers for change and whole-part type linear
equation related MWPs.

Liang et al. [7] used a tag-based statistical framework to perform under-
standing and reasoning in solving MWPs. In this approach, logical inferences
is used to identify the proper tags which can help to identify desired operands
and filter out irrelevant quantities. Chien et al. [6] implemented a system that
involves statistical classifiers as well as logic inferences to solve MWPs. However
this approach is limited only to Chinese language. The main drawback of these
approaches is the limitations of the available logic inferencing solutions.

In recent past, statistical methods with templates have provided the most
accurate results. Here, a set of manually defined templates are being used to train
a statistical classifier. Kushman et al. [4] provided the first system of this kind.
Their system was able to handle questions containing two or three unknowns.
However, their approach was computationally expensive. Zhou et al.’s [16] app-
roach addresses this limitation through a quadratic programming approach. A
further improved solution was presented by Hevapathige et al. [18]. However,
all these techniques require handmade templates, and consume a large feature
space to define their features.

Hosseini et al. [11] proposed a container-entity based graph approach that
solves the mathematical question sentence with a state transition sequence. But
they faced irrelevant information mapping issues, and parsing issues.

Wang et al. [10] designed a hybrid model that combines a Recurrent Neural
Network (RNN) model and a similarity-based retrieval model to achieve addi-
tional performance improvements. However, this hybrid model also uses some
templates. Also the other issue is this deep learning approach requires a large
dataset for the training purpose.

Model Answer Generation for Elementary Math Word Problems 21

4 Data Preparation

Compare type, change type and whole-part type of elementary MWPs (contain-
ing 2–3 sentences) and their formulae are the data sources of this research. They
have two known variables (expressed numerically or textually) and one unknown
variable (expressed textually).

A dataset of 1713 questions was created. Out of these, 782 questions were
newly created by O/L Mathematics teachers in Sri Lanka. Others were extracted
from available question bases. Table 1 shows the statistics of the dataset.

Labeling the samples is manually done by two domain experts, who are GCE
O/L Mathematics teachers in Sri Lanka. The Kappa statistic measurement of
this collected dataset is 0.8598.

Table 1. Data sources and number of samples

Data source #of samples

O/L teachers in Sri Lanka 782

Add-Sub dataset [14] 389

ARIS dataset [9] 112

Roy et al.’s dataset [3] 230

SingleOP [12] (Used only in the testing set) 200

Total 1713

There are 8 types of labels/classes that are identified and associated with our
data set. Those labels/classes are X-Y, X+Y, Y-X, Y+Z, Y-Z, Z-Y, Z+W and
Z-W. The X-Y and Y-X labels are for compare type of questions, and Y-Z, Y+Z,
Z-Y are for change type of questions. Z+W and Z-W classes are associated with
the whole-part type of questions. For instance, Q1 presented in Sect. 2 can be
associated with X+Y, Q2 can be associated with Y-X, and Q3 can be associated
with Z+W. This particular labeling approach is introduced to easily distinguish
question types.

In the above labeling approach, letter ‘X’ represents the 1st variable and letter
‘Y’ represents the 2nd variable in a compare type of question. For change type
of questions, the 1st variable is represented by letter “Y” and the 2nd variable is
represented by letter “Z” to differentiate the variety of question types. For whole-
part type of questions, the 1st variable is represented by letter “Z” and the 2nd

variable is represented by letter “W”. The relevant plus or minus operation is
represented between these 1st and 2nd variables. Table 2 shows the number of
questions we have per each type.

5 Our Approach

Figure 1 shows the system architecture. System takes the annotated training
samples as input in the training phase and do pre-process on it. The feature

22 S. Rajpirathap and S. Ranathunga

Table 2. Amount of questions collected

Label Question type No. of questions taken No. of Qs used

Train set Test set

X-Y compare 200 160 40

X+Y compare 115 85 30

Y-X compare 250 230 20

Y-Z change 320 295 25

Y+Z change 250 227 23

Z-Y change 200 180 20

Z+W whole-part 200 182 18

Z-W whole-part 178 154 24

extractor module works towards extracting the features. A classifier is then
trained using these feature vectors. Multiple classification algorithms were exper-
imented with. The trained model is used to determine the formula type of unseen
questions. Finally, the answer solver generates the answer.

Fig. 1. System architecture

5.1 Pre-processing

In some of the questions, the numeric value can appear in word-based format.
In those cases, word-to-number paraphrase converter takes the tokenized plain
input sentence and converts the word-based numeric values into a numerical
value. The formats of the word-based numeric values are in standard format
[17]. Next, the parser outputs a POS(part—of—speech) tagged sentence.

Model Answer Generation for Elementary Math Word Problems 23

5.2 Feature Extraction

The feature extractor component takes the POS tagged representation of a ques-
tion as input. The output from this module is a feature vector that can be passed
to the trainer module. This POS tag based feature extraction is based on the
work by Roy et al. [3]. But there it has been used for extraction of very simple
features. In contrast our system used this technique to extract some new features
(both complex and simple).

We have introduced 20 new features and 10 features are derived from
Amnueypornsakul and Bhat’s [5] approach. The remaining 11 features are taken
from Roy et al. ’s [3] approach. 5 out of Roy et al.’s [3] 11 features are overlap-
ping with Amnueypornsakul and Bhat ’s [5] 10 features. Therefore, 36 features
are considered as unique features in this research. Below list shows the newly
introduced 20 features (complex features are in boldface).

1. Index position, distance between comparative adjective word and noun in a
threshold value.

2. 1st and 2nd sentences having the same proper nouns.
3. 1st and 3rd sentences having the same proper nouns.
4. Question in the 2nd sentence is about the actions that have been mentioned

in the 1st sentence.
5. 1st numerical value is greater than the 2nd numerical value.
6. Question contains exactly two numeric values in 1st or 2nd sentences.
7. Question contains the same proper nouns in all the sentences.
8. The action mentioned in the last sentence is actually performed

by the proper nouns in the 2nd sentence.
9. Question having exactly two proper nouns.

10. Matching proper nouns that exist in the same order in the sentences.
11. The final value of the question is related to the main proper noun

in the question.
12. Possessive pronoun of the main proper noun exists near the

noun/quantity changer in a question.
13. The change action has made a negative impact on a quantity.
14. The change action made a positive impact on quantity in the question.
15. Action maker/proper noun exists with the nearest verb.
16. Action/quantity change happened for the same entity in a question.
17. Co-reference resolution to identify the existence of the proper

noun in the following sentences.By checking the personal pronouns
in the second or third sentences in a question, the proper noun in the first
sentence is mapped for this feature.

18. Collective noun exists in sentences.
19. Question explicitly mentions some keywords related to an addition

operation (The keywords are derived from training set as well as
web).

20. Proper nouns in the questions separately perform the same action
for quantity changes.

24 S. Rajpirathap and S. Ranathunga

Also a list of positive and negative words is defined in the system to identify
the positive and negative impact of a sentence in the question. (ie positive words:-
add, join, sum, together, negative words:- damaged, expired)

5.3 Training and Classification

Different types of machine learning techniques were used to create classifiers.
Initially, we have considered Gaussian Näıve Bayes, Random Forest, Decision
tree, Perceptron and SVM (Support vector machines). Later, these classifiers
were combined to create classifier ensembles. There are various ways to create
ensemble classifiers. Combining the same type of classifiers with different param-
eters, or combining the different types of classifiers with different parameters are
some of the known ways of creating ensemble classifiers. However, it is noted
that we considered avoiding multistage classifiers or dependency classifiers in
our approach.

5.4 Generation of the Answer

The final answer to the question is generated by the answer solver module. The
inputs for this component are the predicted formula/class (from the classifier)
and the two numerical values derived from the question itself. The formula is
predicted by the classifier, and it posts that formula to the answer solver com-
ponent. After that, the first and second numerical values are derived from the
question context and those are passed to this component for further calculation.
At the end, the numeric values are plotted in the predicted formula and the final
answer is generated. Since this module is working totally independent from the
other modules, SymPy kind of answer solver packages can be easily plugged-in
with this module.

6 Evaluation

Evaluation was separately done for individual and ensemble classifiers. 10 fold
cross-validation and hold-out based evaluation methods were used to evaluate
the system. Data samples were shuffled two times before being passed to the
evaluator module to randomize the samples and ensure that the samples are
well spread in the training feature vector. We separately evaluated the accuracy
of the system for Roy et al. ’s [3] feature set (11 features), Roy et al. ’s [3] feature
set plus our newly introduced 20 features (total is 31 features), Amnueypornsakul
and Bhat’s [5] feature set (10 features), Amnueypornsakul Bhat’s [5] feature set
plus our newly introduced feature set (total is 30 features), and the combination
of all 36 features. All these feature combinations were tested with all the selected
classifiers.

Apart from that, SingleOP dataset [14] was used to test our system for
another hold-out evaluation. Table 3 represents some of the notable accuracy
values for different feature sets with different type of classifier algorithms consid-
ered in this research. Here the 10-fold and hold-out values represent the results

Model Answer Generation for Elementary Math Word Problems 25

for the testing set. For 10 fold and hold-out evaluation, 10% of the dataset
is kept as test dataset and the remainder was considered as the training set.
When compared with other experiment results reported in Table 3 (only the fea-
ture combinations having the best results are shown, due to space limitations,
d- means the number of dimensions, or the features), all the classifiers show
a drop in accuracy for all feature combinations with respect to the SingleOP
dataset. This is expected, since this data set is completely independent from the
training data set. However, combination that includes our features is still the
best. This shows that our newly introduced features add more robustness to the
classification process.

Table 3. Classification accuracy with different feature sets

Classifier Feature set 10-fold (%) Hold-out (%) SingleOP data (%)

SVM 30 d 94.2 92.88 87.5

36 d 94.2 92.32 88.5

Decision tree 30 d 94.4 96.24 87

36 d 94.7 95.76 88.7

Gaussian NB 30 d 76.8 78.0 39.5

36 d 77.1 88.08 38.5

RandomForest 30 d 84.5 83.28 63.5

31 d 84.14 91.67 71

36 d 83.5 86.48 72

As can be seen, all the classifiers perform the best when our new features are
combined with Roy et al.’s [3] and/or Amnueypornsakul and Bhat’s [5] features.
Decision tree reported the best accuracy. The F-measure of decision tree classifier
with different feature sets is noted Table 4. As a result of maximum number of
questions for label Y-Z in the dataset, it obtained the highest F-measure.

6.1 Ensemble Classifier Evaluation

Two different evaluation criteria were used in ensemble based evaluations. Since
decision tree shows the highest accuracy, first, the decision tree classifiers trained
with different parameters were combined. After that, in another experiment,
GaussianNB, SVM, RandomForest, decision tree classifiers were combined with
different parameters. Due to space limitations, results only the result related to
the SingleOP dataset are shown.

Ensemble-Based Evaluation Results for the Same Classifier with Sin-
gleOP Dataset: As mentioned earlier the decision tree based ensemble classi-
fier is used for this evaluation with SingleOP dataset. The accuracy is identified

26 S. Rajpirathap and S. Ranathunga

Table 4. F-measure for decision tree for 10-fold cross validation

Class 10 dim 11 dim 20 dim 30 dim 31 dim 36 dim

X-Y 0.8186 0.8878 0.8800 0.9433 0.9253 0.9430

X+Y 0.6726 0.8196 0.9376 0.9056 0.8900 0.9163

Y-X 0.5490 0.7582 0.9318 0.9580 0.9486 0.9602

Y+Z 0.8662 0.8820 0.9003 0.9341 0.9463 0.9432

Y-Z 0.9270 0.9104 0.9116 0.9631 0.9623 0.9657

Z-Y 0.1128 0.0959 0.7679 0.8753 0.7409 0.8220

Z+W 0.6604 0.7175 0.8803 0.9410 0.8687 0.9523

Z-W 0.1142 0.03 0.8564 0.9505 0.9457 0.9380

Average 0.5901 0.6376 0.8832 0.9338 0.9034 0.9300

Table 5. Ensemble based same type of classifier evaluation results for the SingleOP
dataset

Class Precision Recall F-Measure

ensemble1 ensemble2 ensemble1 ensemble2 ensemble1 ensemble2

X-Y 0.9375 0.8461 0.9375 0.6875 0.9375 0.7586

X+Y 1.0 0.4444 0.5 1.0 0.6666 0.6153

Y-X 1.0 0.0 1.0 0.0 1.0 0.0

Y+Z 0.6477 0.9272 0.9344 0.8360 0.7651 0.8793

Y-Z 0.8484 0.875 0.4375 0.9843 0.5773 0.9264

Z-Y 0.9166 1.0 0.6875 0.6875 0.7857 0.8148

Z+W 0.9259 0.8205 0.7142 0.9142 0.8064 0.8648

Z-W 0.1111 0.2 1.0 1.0 0.2 0.12

Average 0.1296 0.6391 0.7763 0.7636 0.7173 0.6224

as 88.9% for this evaluation. Precision, recall and F-measure for this ensem-
ble classifier are as in the “ensemble1” column in Table 5. According to this
result, Table 5, X+Y, Y-X formulae obtained the highest precision. Also Y-
X and Z-W formulae show the highest recall. Y-X formula shows the highest
F-measure value.

Ensemble-Based Evaluation Results for Different Classifiers with the
SingleOP Dataset: For this experiment, an accuracy of 89.2% was reported
with the SingleOP dataset. Precision, recall and F-measure for this ensemble
classifier are as in the “ensemble2” column in Table 5. Based on the result from
“ensemble2” column in Table 5, the Z-Y formula obtained the highest precision
which is more precise than the result obtained from “ensemble1” classifier. Also,
X+Y and Z-W formulae show the highest recall which are better than the values
obtained from “ensemble1” classifier evaluation. On the other hand, the Y-Z

Model Answer Generation for Elementary Math Word Problems 27

formula shows the highest F-measure value than the value obtained from the
“ensemble1”classifier evaluation.

When comparing these results with those in Table 3, it is clear that both
ensembles perform better than all of the individual classifiers.

7 Conclusion and Future Work

Previous research has reported different approaches to solve different types of
MWPs. Out of these, template-based approaches and deep learning approaches
have shown much promise. However, for simple MWPs in elementary Mathemat-
ics, such techniques are an not sufficient for solve all types of math problems.

We show that answers to such simple MWPs can be generated using simple
statistical classification techniques. This does not require any manually writ-
ten templates (unlike in template-based approaches), nor a very large data set
(unlike in deep learning approaches). We presented and evaluated a comprehen-
sive feature set that can be used to train these statistical classifiers and their
ensembles. These new features were able to achieve a greater result than the
features used in previous research. Also this feature set is also more robust as it
performs well on unseen questions as well.

In future, multiplication and division type of questions can be integrated
with this system. Also we can reduce the classes/labels by considering only the
operation type that we perform in a question. For example, the formula “X+Y”
and the formula “Z+W” perform the same addition operation. In future, these
labels can be merged as one label/class.

The assumption we considered is that the quantity changes of a particular
entity/variety in a question are always associated with the same noun. However,
in some cases, this assumption will not work when the second noun entity is
referred by some other synonymous word. For example, consider the question
“Dan has 9 pills and gave Sara 4 of the pills. How many pills does Dan have
now?”. In this case, we assume that the “pill” is a noun entity and the quantities
9 and 4 are only related to that “pill” entity. But in some cases, this assumption
will not work when the second noun entity is referred by some other synonymous
word(ie tablet). In the future, this issue can be resolved by a word similarity
measurement technique. Also in future the classifiers can be used to predict
positive and negative impact of a sentence.

Acknowledgement. This research was funded by a Senate Research Committee
(SRC) Grant of University of Moratuwa.

References

1. Erabadda, B., Ranathunga, S., Dias, G.: Computer aided evaluation of multi-step
answers to algebra questions. In: 2016 IEEE 16th International Conference on
Advanced Learning Technologies (ICALT) 1993. Austin, TX, pp. 199–201 (2016)

28 S. Rajpirathap and S. Ranathunga

2. Kadupitiya, J.C.S., Ranathunga, S., Dias, G.: Automated assessment of multi-step
answers for mathematical word problems 2016 Sixteenth International Conference
on Advances in ICT for Emerging Regions (ICTer), Negombo, pp. 66–71 (2016)

3. Roy, S.I., Vieira, T.J.H., Roth, D.I.: Reasoning about quantities in natural lan-
guage. Trans. Assoc. Comput. Linguist. 3, 1–13 (2015)

4. Kushman, N., Artzi, Y., Zettlemoyer, L., Barzilay, R.: Learning to automatically
solve algebra word problems. In: 52nd Annual Meeting of the Association for Com-
putational Linguistics, pp. 271–281, December 2014

5. Amnueypornsakul, B., Bhat, S.: Machine-Guided Solution to Mathematical Word
Problems, ACL, pp. 111–119 (2014)

6. Huang, C.T., Lin, Y.C., Su, K.Y.: Explanation generation for a math word problem
solver. Int. J. Comput. Linguist. Chin. Lang. Process. (2015). The 2015 Conference
on Computational Linguistics and Speech Processing ROCLING 2015, pp. 64–70

7. Liang, C.C., Hsu, K.Y., Huang, C.T., Li, C.M., Miao, S.Y., Su, K.Y.: A Tag-based
english math word problem solver with understanding, reasoning and explanation.
In: HLT-NAACL Demos, pp. 67–71 (2016)

8. Matsuzaki, T.: The most uncreative examinee: a first step toward wide coverage
natural language math problem solving. In: AAAI, pp. 1098–1104, July 2014

9. Dellarosa, D.: A computer simulation of children’s arithmetic word-problem solv-
ing. Behav. Res. Meth. Instrum. Comput. 18(2), 147–154 (1989)

10. Wang, Y., Liu, X., Shi, S.: Deep neural solver for math word problems. In: Confer-
ence on Empirical Methods in Natural Language Processing, pp. 856–865, Septem-
ber 2017

11. Hosseini, M.J., Hajishirzi, H., Etzioni, O., Kushman, N.: Learning to solve arith-
metic word problems with verb categorization. In: Conference on Empirical Meth-
ods on Natural Language Processing, pp 523–533, October 2014

12. Robert Sweetland: Types of Addition and Subtraction Problems Exam-
ples with whole numbers (1992). http://www.homeofbob.com/math/numVluOp/
wholeNum/addSub/adSubTypsChrt.html

13. Koncel-Kedziorski, R.: MaWPS: A Math Word Problem Repository, HLT-NAACL,
pp 1152–1157, June 2016

14. MaWPS: A Math Word Problem Repository (2016). http://lang.ee.washington.
edu/MAWPS/datasets/SingleOp.json

15. Morton, K., Yanzhen, Q.: A novel framework for math word problem solving. Int.
J. Inf. Educ. Technol. 3(1), 88–93 (2013)

16. Zhou, L., Dai, S., Chen, L.: Learn to solve algebra word problems using quadratic
programming. In: EMNLP The Association for Computational Linguistics, pp.
817–822, September 2015

17. Furey and Edward. Numbers to Words Converter. https://www.calculatorsoup.
com

18. Hevapathige A., Wellappili D., Kankanamge G.U., Dewappriya N., Ranathunga S.:
A two-phase classifier for automatic answer generation for math word problems. In:
18th International Conference on Advances in ICT for Emerging Regions (ICTer),
pp. 1–6 (2018)

http://www.homeofbob.com/math/numVluOp/wholeNum/addSub/adSubTypsChrt.html
http://www.homeofbob.com/math/numVluOp/wholeNum/addSub/adSubTypsChrt.html
http://lang.ee.washington.edu/MAWPS/datasets/SingleOp.json
http://lang.ee.washington.edu/MAWPS/datasets/SingleOp.json
https://www.calculatorsoup.com
https://www.calculatorsoup.com

Learning Mobile App Embeddings Using
Multi-task Neural Network

Ahsaas Bajaj(B), Shubham Krishna, Hemant Tiwari, and Vanraj Vala

Samsung R&D Institute, Bengaluru, India
{ahsaas.bajaj,shubham.k1,h.tiwari,vanraj.vala}@samsung.com

Abstract. Last few years have seen a consistent increase in the avail-
ability and usage of mobile application (apps). Mobile operating sys-
tems have dedicated stores to host these apps and make them easily
discoverable. Also, app developers depict their core features in textual
descriptions while consumers share their opinions in form of user reviews.
Apart from these inputs, applications hosted on app stores also contain
indicators such as category, app ratings, and age ratings which affect
the retrieval mechanisms and discoverability of these applications. An
attempt is made in this paper to jointly model app descriptions and
reviews to evaluate their use in predicting other indicators like app cat-
egory and ratings. A multi-task neural architecture is proposed to learn
and analyze the influence of application’s textual data to predict other
categorical parameters. During the training process, the neural archi-
tecture also learns generic app-embeddings, which aid in other unsuper-
vised tasks like nearest neighbor analysis and app clustering. Various
qualitative and quantitative experiments are performed on these learned
embeddings to achieve promising results.

1 Introduction

We live in an era where mobile applications have become really popular platforms
to provide various utilities and information. With an increase in demand of smart
phones, the number of available apps have also constantly grown [1]. Google
play store and Apple app store are the most common providers of these appli-
cations. Majority of applications are developed by third-party developers and
private organizations to fulfill the needs of their customers. Browsing through
the Google Play Store [2], one can see the abundance of applications available.
Apart from the description and user reviews, they also have many associated
tags (or indicators) like category, content ratings, review ratings, price, number
of downloads, etc. Generally, the popular apps have well-defined descriptions
and large number of reviews which make them rich in information. However, it
is difficult to tag this information for the newly added apps or the unpopular
ones. Once these indicators are available, they can optimize many different tasks
related to mobile apps. For example, some apps have content (age) rating of

A. Bajaj and S. Krishna—Equal contribution.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 29–40, 2019.
https://doi.org/10.1007/978-3-030-23281-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_3

30 A. Bajaj et al.

18+ and it is important not to show these apps when queried by a user below
this age bracket. Also, there are apps with category indicator as education or
games which can help boost their ranking when queried by a teenager browsing
the play store (or app store). Similarly, apps with poor ratings can be prevented
from populating the top few results. Moreover, the app category might help the
user to properly arrange them in his/her device after installation. Some users
might want to have a separate folder for each category of the downloaded apps.
Therefore, the additional indicators (tags) associated with each application serve
very important purpose to optimize its search and also the arrangement (order-
ing) in users’ mobile devices.

Most of the information regarding a particular app is mentioned in its descrip-
tion and reviews. These textual sources, in combination, can serve a great deal to
derive useful insight about a mobile application. Therefore, it is crucial to model
this data in order to provide useful predictions for rest of the correlated indica-
tors. Generally, app developers talk about their most important features in their
description which are often reinforced by users sharing their experience with
these features in the review section. Users not only share their sentiment about
the app but also talk about app’s features from their perspective. This adds
up to the information given by the developers in the app description. Therefore,
this paper attempts to jointly model applications’ description and reviews in a
multi-task learning fashion in order to predict various indicators related to the
applications. As most of output indicators (or their prediction tasks) are corre-
lated with each other, multi-task learning is the most effective approach, further
confirmed by the experiments performed in this paper. As a result of this learn-
ing, generic application embeddings are developed to solve various tasks related
to mobile applications.

An overview of related work in the domain of mobile apps and multi-task
learning is presented in Sect. 2. The methodology of predicting the app indica-
tors and learning app embeddings are discussed in Sect. 3. Section 4 elaborates
experiments and results using the proposed architecture for various tasks. Finally
Sect. 5 recapitulates the proposed approach with current applications and scope
of future extensions.

2 Related Work

In recent years, multiple mobile applications have become available to feed our
information needs. This tremendous amount of data has called for its efficient uti-
lization to provide a pleasant user experience by optimizing retrieval or ranking.
Since names of mobile apps are ambiguous, it is difficult to figure out the exact
functionality of the apps from their names. An approach to enrich this informa-
tion by exploiting the additional knowledge from the web and real-world logs was
proposed in [3]. Using this extra information, they studied the problem of auto-
matic app classification. In 2015, researchers studied the domain of mobile app
retrieval using topic modeling [4]. They proposed a probabilistic model, named
AppLDA, which combines app description and reviews to extract relevant topics

Learning Mobile App Embeddings Using Multi-task Neural Network 31

from mobile apps. They also released a test collection of app data which can be
used for its quantitative evaluation. Further, work done in [5] explored the role
of social media texts in order to capture implicit user intent and its usage for
mobile app retrieval. Researchers have also used Learning-to-Rank algorithms
to optimize retrieval of mobile notifications triggered by installed apps [6].

Recently, there have been studies to facilitate classification of apps into pre-
defined interest taxonomies. Using language modeling on smart phone logs, [7]
proposed a neural approach to learn app embeddings in a low-dimensional space.
Inspired by the deep learning approaches like Word2vec [8], vectorized represen-
tations of mobile applications were generated to capture semantic relationship
between apps [9]. They proposed an application recommender tool by building
a similarity function based on metrics like popularity, security, usability, etc.
They also studied the importance of these additional parameters to determine
usefulness of an app for a particular user. Researchers have recently tried to
develop relevance-based application embeddings to facilitate various informa-
tion retrieval tasks related to mobile applications [10].

The research done so far has focused on learning mobile application embed-
dings suitable for a specific task, like classification, recommendation, and others.
Most of these tasks are loosely related to each other and have some common-
ality. If a model is trained for a specific task, it often fails to generalize well
and captures data-dependent noise [11]. In academia, multi-task learning [12]
has proved to be useful for enhancing the performance of learning algorithms by
modeling multiple tasks jointly. It has found to be of significant use for multi-
ple domains like natural language processing [13], computer vision [14], speech
recognition [15], and many more. Recently, [16] proposed an approach called
MRNet-Product2Vec for learning generalized embeddings of Amazon products.
They employed the use of multi-task recurrent neural network to model diverse
set of product characteristics like weight, size, color, price, etc. The learned
low-dimensional embeddings were demonstrated to be as good as sparse and
high-dimensional representations.

The authors observe that the technique of multi-task learning has not
been employed to learn embeddings for mobile applications. As in the case of
e-commerce products [16], mobile applications also have multiple indicators like
popularity, content ratings, category which can be jointly modeled to create the
app embeddings in a more generic sense. This paper proposes a novel method to
learn dense app embeddings using app descriptions and reviews while optimizing
for different tasks of predicting app indicators. The learned app embeddings are
then evaluated with different tasks like app recommendation and clustering.

3 Proposed Method

The purpose of learning application embedding is to develop a generic repre-
sentation of the available apps. This facilitates various tasks related to mobile
applications such as app recommendation, retrieval and categorization. In order
to learn these embeddings, it is crucial to capture diverse characteristics related

32 A. Bajaj et al.

to applications. Each of these characteristics can be modeled as a regression or
classification task of its own, where the text data acts as input and different
app indicators (category, ratings, etc.) as the output. As discussed in the previ-
ous section, multi-task learning has the capability to learn a generalized feature
representation by exploiting commonalities and differences among various tasks.
While optimizing losses for different tasks in a single network, multi-task learn-
ing introduces inductive bias which helps the architecture to learn a trade-off
between the multiple losses which eventually helps in achieving generalized solu-
tions. This representation aids to improve the accuracy of multiple tasks while
also being time and resource efficient as there is no need to train and store
different models for each task to be performed.

Fig. 1. Multi-task neural architecture

There are two known ways to perform multi-task learning, namely, soft
parameter sharing and hard parameter sharing [11]. The proposed architecture

Learning Mobile App Embeddings Using Multi-task Neural Network 33

is based on the concept of hard parameter sharing with each task having its spe-
cific output layer and some shared hidden layers. This architecture is based on
the intuition that if multiple tasks are to be learned simultaneously, the model
eventually finds a representation that captures important information pertaining
to all the tasks. This reduces noise and the chance of over-fitting for a specific
task.

3.1 Architecture

As depicted in Fig. 1, the network contains two inputs, one for app description
and the other for user reviews. The input data is vectorized using the TF-IDF
representation [17,18] to generate weighted term vectors [19] which are then
passed to the neural network. As tf-idf methodology is based on bag-of-words
representation, the proposed method is language agnostic and works for descrip-
tion and reviews in any language. The authors experimented with various num-
ber of layers and different encoding sizes in each layer. After hyper-parameter
tuning, the best possible configuration is proposed as the final architecture in
this paper. Overall, the network contains nine hidden layers to encode mean-
ingful word representations. Initially, both the inputs are dealt with separate
hidden layers and later concatenated to form an unified representation at the
sixth hidden layer. After concatenation, this representation is further condensed
and fine tuned to generate a dense embedding, before feeding forward the data
to the task-specific output layers. The ReLU non-linearity [20] is applied as an
activation to each layer’s output. Dropout technique [21] is also employed by
setting to zero the output of each hidden neuron with probability of 0.35. These
choices are motivated by their popularity in academia.

3.2 Training Process

The purpose of this architecture is to predict different app indicators such as
App Category, Age Rating, App Rating and learn generic app embeddings by
doing so. These prediction tasks are multi-class classification problems and are
jointly solved using the multi-task learning paradigm. The output comprises of
task specific layers, one layer for each of the three tasks. The softmax function
[22] is applied to predict the probability distribution over different classes. The
categorical cross entropy loss is calculated separately for each output layer.

L1(ŷ1,y1) = −
N∑

i=1

C1∑

j=1

y1
j
i log(ŷ1

j
i),

L2(ŷ2,y2) = −
N∑

i=1

C2∑

j=1

y2
j
i log(ŷ2

j
i),

L3(ŷ3,y3) = −
N∑

i=1

C3∑

j=1

y3
j
i log(ŷ3

j
i)

34 A. Bajaj et al.

where yk is the true label and ŷk is the predicted probability for the kth task. For
the architecture given in this paper, k = 3. The total number of training exam-
ples are given by N . C1, C2, C3 are the total number of classes for each of the
tasks respectively. The final loss is the sum of above three losses which is back-
propagated for learning the parameters of the network. The back-propagation
algorithm with Adam optimizer is used for updating the parameters. The final
loss is given by:

L(ŷ,y) = L1(ŷ1,y1) + L2(ŷ2,y2) + L3(ŷ3,y3) (1)

Before training, the entire data is split in the ratio of 75-25 for training and
testing. Python-based deep learning library: Keras [23] is used to carry out the
training process. After the training is complete, the dense representation given
at the last hidden layer (say, layer t) gives the application embeddings. This is
given by:

AppEmb = ReLU(Wt ×Zt−1 + bt) (2)

where, Wt and bt are the respective weight matrix and bias vector for the layer
t. Both of these are learned during the training process with Zt−1 being the
output from the previous layer t− 1. For the architecture given in Fig. 1, t = 9.

4 Experimental Details

To evaluate the performance of the proposed method, various experiments are
performed to evaluate the multi-task architecture and the benefits of the learned
application embeddings. A publicly available apps dataset is used to test the
performance of methodologies discussed in the previous section. This dataset
includes textual data in form of app descriptions and user reviews, which are
useful to learn various parameters related to mobile applications. Analysis is
performed using these textual inputs to model categorical app indicators using
the multi-task architecture. As per the knowledge of the authors, there are no
existing methods which perform multi-task learning on this dataset. Therefore,
comparisons are performed with single-task and single-input versions of the same
approach. Moreover, the proposed model generates the application embeddings
after the training is complete. These can be useful for various use-cases and
experiments like nearest neighbor analysis and app clustering show the capability
of these embeddings vectors for unsupervised tasks. Results indicate superior
performance as compared to existing state-of-the-art method like Doc2Vec.

4.1 Dataset

Data Set for Mobile App Retrieval [4] is used for evaluation of the proposed
methods. This data includes information about 43,041 mobile apps including the
title, description, category, package name, user-reviews, and other app indicators.
For sanity, apps without description or user reviews are not considered during
evaluation. With the above mentioned preprocessing, the number of unique apps

Learning Mobile App Embeddings Using Multi-task Neural Network 35

comes down to 39,700 with a vocabulary size of 37,505 and 42,600 unique words
for description and reviews respectively. To perform the tasks discussed in Sect. 3,
the following indicators are considered to form the output layer of the multi-task
neural architecture.

– App Category: Total 41 categories including Music, Family, Racing, Trivia,
Weather, Productivity, etc.

– Age (Content) Rating: Low Maturity, Medium Maturity, High Maturity, and
Everyone.

– App Rating: Star ratings between 1–5 are mapped to five brackets, namely,
Very Low, Low, Medium, High, Very High.

The choice of these three indicators is based on the intuition to find all the
app characteristics that could be derived from the textual data in form of app
description and reviews. For example, there is no direct link between an app’s
textual data and its price, number of downloads, number of reviewers, developer,
date of publishing, etc. Many of these parameters may be based on developer
quality, app’s software, design or services. However, indicators like category and
ratings could be learned from the choice of words and their sentiment used in
the associated text.

4.2 Analysis with Multi-task Learning

This section details different experiments which are performed to quantify the
benefits of the proposed architecture using the dataset discussed in the previous
section. Categorical Accuracy [23] is the metric which is used for evaluating
the performance of the model. It calculates the mean accuracy rate across all
predictions for multi-class classification problems.

Comparison with Single Task Predictions. In this section, we present
our results for predicting different app indicators using the proposed multi-task
network discussed in Sect. 3. Table 1 shows the results for predicting the app
indicators like app category, age rating and app rating by using app’s descrip-
tion and reviews as the input sources. To evaluate the working of the proposed
approach, single-task models are also built to tackle each of the tasks separately.
These models are built using the structure similar to the Fig. 1 but with a single
output layer for the specific task to be performed. The results show that our
multi-task model out-perform the single-task approaches which were supposed
to be tuned for their specific task. This shows the capability of the proposed
architecture to learn a generic representation while also being time and resource
efficient.

Comparison with Single Input Predictions. For further analysis, we mod-
ified the input sources in Fig. 1 by toggling between the description and reviews
to understand their respective usefulness for predicting different app indicators.

36 A. Bajaj et al.

Table 1. Evaluation results for single and multi-task learning

Accuracy for different tasks

Model App category Age rating App rating

Single task 0.630 0.685 0.402

Proposed multi task 0.632 0.694 0.725

Multi-task learning is employed to perform this analysis and the results are
shown in Table 2. It can be seen that the app description significantly impacts
the prediction of app category and age rating. Whereas, user reviews play a
major role to estimate app ratings. This also makes sense because an app devel-
oper talks about the features of his/her app in the description and consumers
discuss these features in their reviews. Therefore, both of these can help to model
app category and age rating which are mostly feature driven. On the other hand,
app ratings are mostly based on the user sentiment depicted in their reviews.
Therefore, reviews directly impact the prediction of app rating. As both the
description and reviews are jointly modeled in the proposed technique, it per-
forms significantly well on all the given tasks.

Table 2. Evaluation results for different multi-task architectures

Accuracy for different tasks

Text sources App category Age rating App rating

App description 0.615 0.688 0.638

App reviews 0.544 0.615 0.716

Description and reviews 0.632 0.694 0.725

As shown in the results, the proposed network learns the useful correlations
in a noise-free manner. This helps to out-perform single-task as well as single-
input models. Results were also tested for statistical significance and achieved
p − value = 0.0 (for majority results) in hypothesis testing. This proves that
the results are not obtained due to randomness. The architecture discussed in
this paper is robust and also scalable. By changing or augmenting the input and
output data, it can adapt accordingly for performing different tasks in a suitable
manner. This architecture also gives the ability to generate dense application
embeddings as discussed further.

4.3 Analysis with Learned App Embeddings

The application embedding in Eq. 2 gives the low-dimensional representation
for the apps which are built during the process of multi-task learning. Since
the training was performed to optimize several classification tasks together, it

Learning Mobile App Embeddings Using Multi-task Neural Network 37

achieves generic embeddings at the last hidden layer. This section shows the nov-
elty of these embeddings with their usefulness for tasks related to app clustering
and recommendation.

Table 3. Evaluation results on Clustering Techniques

DBSCAN k-Means (k = 41)

Embeddings Silhouette
score

Davies
bouldin score

Silhouette
score

Davies
bouldin score

Doc2Vec −0.126 1.671 −0.014 3.997

AppEmb 0.324 0.99 0.411 1.647

App Clustering. For validating the usefulness of these generic app embeddings,
app clustering has been carried out using k-Means and DBSCAN algorithms.
These algorithms are commonly used clustering methods, where k-Means is a
common baseline and DBSCAN is a well-known density based clustering tech-
nique. Proposed embeddings (AppEmb) has been compared with the Doc2Vec
embeddings [24], trained on the same corpus of app descriptions and reviews.
For evaluating the performance of clustering, Silhouette [25] and Davies Bouldin
[26] scores have been calculated and are shown in Table 3. It is well known that
silhouette score is a measure of consistency within clusters of data. A high pos-
itive value indicates that the current assigned cluster is the best match for that
data point and vice versa. Silhouette score is positive for the proposed embed-
dings and is negative for the Doc2vec embeddings. This indicates a better cluster
assignment using AppEmb. For further validation, Davies Bouldin score has also
been calculated. It is defined as the ratio of within-cluster to between-cluster
distances. So, a value closer to zero indicates a better clustering and our embed-
dings have relatively better Davies Bouldin score than Doc2Vec embeddings. It
is clear from these two metrics that our proposed app embeddings outperform
Doc2Vec embeddings.

Nearest Neighbor Analysis. Qualitative analysis has also been carried out for
proving the worth of the proposed app embeddings. Multiple apps for serving a
simple purpose are being developed and in that case our generic app embeddings
(AppEmb) can be used for app recommendation task. Nearest neighbor analysis
finds the closest neighbors of a specific application, and AppEmb (Eq. 2) can
be used to represent the apps. Results in Table 4 show that for application of a
particular category (query), the closest matched apps mostly belong to the same
category. The results for the nearest neighbor analysis have also been represented
as a 2-D plot in Fig. 2 using t-SNE visualization [27]. The visualization also shows
accurate grouping for different categories of applications.

38 A. Bajaj et al.

Table 4. Qualitative results with Nearest Neighbors Analysis using AppEmb

Application Predicted nearest applications - name (Category)

Job Search

(Business)

Freelancer -

Hire & Work

(Business)

Tech Job

Search by

Dice

(Business)

JobStreet

(Business)

Job

Interview

(Business)

Confident

Interview

(Business)

9GAG - Funny

pics and videos

(Entertain)

Spider in

phone funny

joke

(Entertain)

Best Vines

(Entertain)

Discovery

Channel

(Entertain)

DIRECTV

for Tablets

(Entertain)

Helium

Voice

Change

(Entertain)

U.S. Bank

(Finance)

Bank of the

West Mobile

(Finance)

Western

Union

(Finance)

Esurance

Mobile

(Finance)

Bitcoin

Wallet

(Finance)

Wallet

(Finance)

Mobile Tracker

(Productiv-

ity)

Mobile

Number Call

Tracker

(Productivity)

Cell Tracker

(Productiv-

ity)

Family

Mobile

Tracker

(Productiv-

ity)

GPS

Location

Tracker

(Social)

Tornado -

American

Red Cross

(Weather)

Kids Learn

Write Letters

(Education)

Kids

Multiplication

Tables

(Education)

SchoolWay

-formerly

schConnect

(Education)

ABC for

Kids All

Alphabet

(Education)

The Wheels

On The Bus

(Education)

ABCs Kids

Tracing

Cursive

(Education)

Fig. 2. t-SNE projection for applications and their categories given in Table 4

5 Conclusions and Future Work

In this paper, generic application embeddings are learned with our multi-task
neural network architecture using the description and user reviews of mobile
applications. These embeddings are developed by keeping in mind the increasing
usage of mobile applications and the difficulties faced to find out relevant ones

Learning Mobile App Embeddings Using Multi-task Neural Network 39

from a large collection. The learning of these embeddings is carried out based on
correlation of app indicators with the textual data available for the apps. These
embeddings have outperformed Doc2vec on tasks like k-Means and DBSCAN
clustering. The results show that the predictions on this multi-task network out-
perform their single-task and single-input counterparts. These predictions which
are based on language-agnostic modeling of apps’ text data can be useful for the
users, app developers and also the companies which host applications on their
websites. In future, app data from stores of different regions can be evaluated to
solidify this claim. Another extension of this work can be to modify the neural
network as per the insights developed from the results of this paper. Using
different forward and back-propagation paths, a selective multi-task learning
can be performed where each input text affects different output indicators in an
independent way.

References

1. Statista: Number of available applications in the Google Play Store from December
2009 to December 2018. https://www.statista.com/statistics/266210/number-of-
available-applications-in-the-google-play-store/

2. Google: Play Store. https://play.google.com/store
3. Zhu, H., Chen, E., Xiong, H., Cao, H., Tian, J.: Mobile app classification with

enriched contextual information. IEEE Trans. Mob. Comput. 13, 1550–1563 (2014)
4. Park, D.H., Liu, M., Zhai, C., Wang, H.: Leveraging user reviews to improve accu-

racy for mobile app retrieval. In: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 533–542.
ACM (2015)

5. Park, D.H., Fang, Y., Liu, M., Zhai, C.: Mobile app retrieval for social media users
via inference of implicit intent in social media text. In: Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management,
pp. 959–968. ACM (2016)

6. Bajaj, A., Tiwari, H., Vala, V.: Enhanced learning to rank using cluster-loss adjust-
ment. In: Proceedings of the ACM India Joint International Conference on Data
Science and Management of Data, pp. 70–77. ACM (2019)

7. Radosavljevic, V., et al.: Smartphone app categorization for interest targeting
in advertising marketplace. In: Proceedings of the 25th International Conference
Companion on World Wide Web, International World Wide Web Conferences
Steering Committee, pp. 93–94 (2016)

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

9. Rustgi, P., Fung, C., Rashidi, B., McInnes, B.: Droidvisor: an android secure appli-
cation recommendation system. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pp. 1071–1076. IEEE (2017)

10. Bajaj, A., Krishna, S., Rungta, M., Tiwari, H., Vala, V.: Relemb: A relevance-
based application embedding for mobile app retrieval and categorization
arXiv:1904.06672 [cs.IR] (2019). http://arxiv.org/abs/1904.06672

11. Ruder, S.: Multi-Task Learning Objectives for Natural Language Processing.
http://ruder.io/multi-task-learning-nlp

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://play.google.com/store
http://arxiv.org/abs/1904.06672
http://arxiv.org/abs/1904.06672
http://ruder.io/multi-task-learning-nlp

40 A. Bajaj et al.

12. Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997)
13. Collobert, R., Weston, J.: A unified architecture for natural language processing:

deep neural networks with multitask learning. In: Proceedings of the 25th Inter-
national Conference on Machine Learning, pp. 160–167. ACM (2008)

14. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

15. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning
for speech recognition and related applications: an overview. In: 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
8599–8603. IEEE (2013)

16. Biswas, A., Bhutani, M., Sanyal, S.: MRNet-Product2Vec: a multi-task recurrent
neural network for product embeddings. In: Altun, Y., et al. (eds.) ECML PKDD
2017. LNCS (LNAI), vol. 10536, pp. 153–165. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71273-4 13

17. Luhn, H.P.: A statistical approach to mechanized encoding and searching of literary
information. IBM J. Res. Dev. 1, 309–317 (1957)

18. Sparck Jones, K.: A statistical interpretation of term specificity and its application
in retrieval. J. Documentation 28, 11–21 (1972)

19. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18, 613–620 (1975)

20. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814 (2010)

21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

22. Bridle, J.S.: Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In: Soulie, F.F.,
Herault, J. (eds.) Neurocomputing, vol. 68, pp. 227–236. Springer, Heidelberg
(1990). https://doi.org/10.1007/978-3-642-76153-9 28

23. Chollet, F., et al.: Keras (2015). https://keras.io
24. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:

International Conference on Machine Learning, pp. 1188–1196 (2014)
25. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
26. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern

Anal. Mach. Intell. (2), 224–7 (1979)
27. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.

9, 2579–2605 (2008)

https://doi.org/10.1007/978-3-319-71273-4_13
https://doi.org/10.1007/978-3-319-71273-4_13
https://doi.org/10.1007/978-3-642-76153-9_28
https://keras.io

Understanding User Query Intent
and Target Terms in Legal Domain

Sachin Kumar(B) and Regina Politi(B)

LexisNexis, Raleigh, USA
{sachin.kumar.1,regina.politi}@lexisnexis.com

Abstract. Lexis Advance is a legal research service provided by Lexis-
Nexis that can respond to natural language queries. It includes a mod-
ule called Lexis Answers which implements advanced Natural Language
Processing (NLP) capabilities to improve understanding of the intent of
the user’s queries. Lexis Answers can respond to natural language ques-
tions concerning legal question types such as statute of limitations, ele-
ments of a claim, definition of legal terms, and others. Herein, we report
on the successful use of advanced NLP approaches for detecting not
only named entities, but entire legal phrases, a skill previously requiring
domain knowledge and human expertise. We have utilized the Condi-
tional Random Fields (CRFs) approach that employs hand-engineered
features combined with word2vec embeddings trained on legal corpus.
Furthermore, to reduce our dependency on hand-engineered features, we
have also implemented deep learning architecture comprising of bidirec-
tional Long Short-Term Memory (BiLSTM) and linear chain CRF. Both
approaches were benchmarked against a rule-based approach for differ-
ent types of legal questions. We find that both CRF and BiLSTM-CRF
can identify query intents and legal concepts with comparable precision
but much higher recall and F-score than the baseline. The resulting mod-
els have been employed in Lexis Answers as critical improvement in our
natural language query understanding.

Keywords: Named Entity Recognition · Query intent · Target terms ·
Conditional random fields · Bidirectional LSTM ·
Natural language processing · Deep learning · Legal domain

1 Introduction

Electronic legal research using LexisNexis products involves searching for the
most relevant information within large databases of legal content, including
cases, treatises, statutes and regulations, etc. Researchers are generally required
to convert the legal question they need to answer into a search query that the
legal databases can effectively use. Lexis Advance, from LexisNexis, is typical
of modern legal research platforms where users enter search queries in various

Supported by LexisNexis, USA.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 41–53, 2019.
https://doi.org/10.1007/978-3-030-23281-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_4

42 S. Kumar and R. Politi

forms in order to find what they need as efficiently as possible. The volume
of search queries handled by platforms such as Lexis Advance is usually very
large. For instance, Lexis Advance handles up to 2 million queries a day. While
most of those queries are still either looking for a very specific known document,
or are in a pattern-matching form (e.g., keywords with Boolean logic), newer
generations of researchers are asking for better natural language support. It is
becoming clear that a modern, robust legal research system should be able to
go beyond simple document retrieval or explicit pattern matching toward truly
recognizing a user’s intent in a natural language query. There is a significant
commercial pressure to correctly understand natural language query intent and
deliver accurate and comprehensive answers so that attorneys can spend less
time looking for relevant information and more time wielding it in support of
their clients.

The underlying problem of finding the direct answer to legal queries is
very complex and challenging, primarily because of the complex nature of legal
queries. Queries submitted to the search engine can be very short and unclear in
terms of user real intent, i.e., “rape limitations period”. Or, they can be very com-
plex and linked with Boolean connectors as in “statute /s limitation or repose /s
Alabama /s negligent or defect! /s construction”. To be able to understand user’s
research interest we divide the task into two main categories: identification of
query intent and identification of target terms. Ambiguity is involved in these
type of tasks since not always the phrase has a legitimate target term. There
is even disagreement between Subject Matter Experts (SMEs) concerning the
identification of the correct target terms or query intents. Consider the following
query: “What are the elements of supplemental jurisdiction?”, this query from
the linguistic prospective may look legitimate as it asks about certain elements.
However, there is no such a thing as elements of supplemental jurisdiction and
expert knowledge is required to make this observation. Finding effective ways of
using advanced technologies to solve these challenges is a key to future success
of legal market research.

To address these challenging requirements, Lexis Answers service was estab-
lished within the Lexis Advance system to interpret searches and mine the
answers in order to provide concise responses to legal research questions. Indeed,
the system goes beyond simply providing documents with potentially relevant
sections highlighted: it actually extracts and delivers direct answers to legal
questions in combination with a results list that enables deeper research.

The technology behind Lexis Answers is powered by one of the most widely
used tasks of Information Extraction (IE). Its called Named Entity Recognition
(NER), and is a fundamental building block of complex NLP tasks. NER is
defined as a process of classifying entities in unstructured text into predefined
categories. It is widely used to process news, corporate files, medical records,
government documents, court hearings and social media. A recent survey [15]
summarized impressive results obtained with NER to identify persons, orga-
nizations, locations and many other miscellaneous named entity types. Many
other domains such as biomedical, chemical [4] as well as financial [2] have used

Understanding User Query Intent and Target Terms in Legal Domain 43

NER to locate information concerning personal patient data, or identify such
terms as proteins, DNA’s, RNA, drugs, stock market. etc. The success of these
applications of NER was enabled by the history of creating extensive dictionar-
ies and lookup tables complemented with large datasets essential for training
of statistical models capable of recognizing respective named entities. Despite
such versatile and growing usage of NER in multiple domains, its application in
legal domain remains challenging mostly because of ambiguity and complexity of
legal terms that had to be recognized, which requires the involvement of domain
experts.

The original implementation of NER in Lexis Answers was highly innovative
in its ability to go beyond simple retrieval of relevant documents and provide
more specific answers to user queries as described above. However, this imple-
mentation was not without certain deficiencies associated with the use of rule
based approaches for term retrieval. Such approaches are computationally effec-
tive but require a lot of manually annotated development data, together with
significant input from experienced rule writers, but still culminating in high
precision but low recall. In addition, maintenance of such rule sets can be a
challenge, since often the rules have intricate inter-dependencies that are easy
to forget, thus making modification risky.

Herein, we describe the development of novel NER models that can correctly
identify user intent and target terms. Thus delivering the most relevant answer
card for the user’s specific search request, without requiring domain knowl-
edge expertise. In this paper, we explore Conditional Random Fields (CRFs), a
machine learning method that employs hand-engineered features such as: part
of speech tagging, contextual features, gazetteers, etc. These hand-engineered
features were combined with word representations obtained from the word2vec
models trained on a large legal corpus. Furthermore, to reduce our dependency on
hand-engineered features we have also explored Recurrent Neural Networks that
have become highly popular in the machine learning community recently. We
have implemented a framework that consisted of bidirectional Long Short-Term
Memory (BiLSTM) and linear chain CRF. Both approaches were benchmarked
against the baseline, rule-based, approach. Our results show that both CRF and
BiLSTM-CRF outperformed the rule-based approach in identification of both
query intent as well as target terms. We have also shown that no significant
improvement was achieved in the target term recognition using BiLSTM-CRF
as opposed to CRF. This observation most probably results from the fact that
deep learning models normally require large amount of training data [8]. How-
ever, manual tagging of such large amounts of data is impractical in the company
setting. The resulting models have been implemented within Lexis Answers as
critical improvement in the ability of the system to understand and respond to
natural language queries.

2 Related Work

Many papers have been published in recent years that employed NER approaches
in legal domain. In Dozier et al. [2], NER was applied to legal documents with

44 S. Kumar and R. Politi

a machine learning based model to obtain named entities like person, place
or organization etc. With the advent of deep learning, many papers reported
the application of this approach for NER tasks. Most notably, Shankar and
Buddarapu [10] experimented with the application of multiple deep learning
models like LSTM, GRU, CNN to identify judges names in user queries. Previous
studies also used convolutional neural networks to detect the intent of queries [3].
Inspired by Sutton et al. [12] we have implemented a CRF based machine learning
approach. Additionally, studies described in [5,11] inspired us to implement the
BiLSTM-CRF architecture based deep learning model. In this paper, we use
CRF and BiLSTM-CRF models not only to detect search queries intent but also
the target terms within the query.

3 Methods

3.1 Data

Table 1 shows counts of different types of unique user queries collected in this
study and used for both training and external evaluation. The collected queries
consisted of different types of legal questions like statutes of limitations (SOL),
elements (ELO), doctrine (DOC), definitions (DEF) and jurisdiction related
(JURI) queries. In addition to those, other types of user queries which were not
associated with any of the types listed, called negatives, were collected as well.
Negative samples allow representation of discriminating queries, and ensure the
learning algorithm is not just focused on the desired queries. Dataset collected
for JURI did not require negative queries since no intent had to be recognized
in these queries but only target terms. All legal question type queries can have
jurisdiction mentioned and were part of our training dataset.

Table 1. Number of user queries used for training and test data sets for each legal
question type

Query type Training Test

SOL 5000 1327

Negative to SOL 3469 791

ELO 4698 1311

Negative to ELO 2348 587

DOC 3639 695

Negative to DOC 1766 612

DEF 2358 590

Negative to DEF 1753 439

JURI 9457 2339

For each specific legal question type dataset, for instance ELO, user queries
identified as ELO were treated as positives and all other user queries were treated

Understanding User Query Intent and Target Terms in Legal Domain 45

as negatives. The negative queries for each query type were randomly picked from
the pool of all negatives queries for that particular query type. Every query was
annotated by SMEs to identify phrases associated with query intent and target
term. An examples of annotated queries of each type are given in Fig. 1a. A
number of preprocessing steps were performed in order to standardize queries.
For instance: conversation to lowercase, removal of punctuation and other special
characters, removal of Boolean notation etc.

3.2 Tagging Scheme

The main goal of named entity recognition is to tag each token in a sentence
with an appropriate entity label. An entity can include more than one token, for
instance, when this entity is a target term. For example, reasonable attorneys
fees within “what is the definition of reasonable attorneys fees”. In this study we
use IOB tagging (Inside, Outside, Beginning) to label every token of the sentence
as “B-tag” if the token represents beginning of an entity, “I-tag” for token inside
the entity and “O” for tokens outside the entity. Annotations created by SMEs
allowed accurate labeling of tokens in the query with IOB tags as shown in
Fig. 1b.

Fig. 1. Examples of annotated user queries. Figure 1a shows the annotations performed
by SMEs when phrases associated with query intent are colored blue, target terms and
jurisdictions are colored pink. Figure 1b shows an example of IOB tagging created for
SOL and DOC query types, following SMEs annotations.

Two types of entities, i.e., intent (SOL, ELO, DOC, DEF) and target term,
have to be identified in the query in order to consider a given query actionable
for providing a relevant answer by Lexis Answers service. For the jurisdiction

46 S. Kumar and R. Politi

recognizer, the query had only one entity, jurisdiction. Recognition of jurisdiction
in the queries allows the search to be more specific to that location.

3.3 Named Entity Recognition with CRFs

Our first approach to identify query intent and target terms employed a linear-
chain factor graph known as Conditional Random Fields (CRFs) [12]. The CRF
algorithm implementation used in this paper was provided by sklearn-crfsuite
library.

Table 2. List of hand-engineered features.

Name Description

Word Lower cased current token

Lemma Base form of current token

Suffix Last two and three letters of the current token

Is digit Checking if current token is a digit

POS-tag Part of speech tag of the current token

Word1 Lower cased next token

Lemma1 Base form of the next token

POS − tag1 Part of speech tag of the next token

Suffix1 Last two and three letters of the next token

WNW Bi gram of current and next token

Word−1 Lower cased previous token

Lemma−1 Base form of the previous token

POS − tag−1 Part of speech tag of the previous token

Suffix−1 Last two and three letters of the previous token

WPW Bi gram of current and previous token

Word2 Lower cased next second token

Lemma2 Base form of the next second token

POS − tag2 Part of speech tag of the next second token

Suffix2 Last two and three letters of the next second token

Word−2 Lower cased previous previous token

Lemma−2 Base form of the previous previous token

POS − tag−2 Part of speech tag of the previous previous token

Suffix−2 Last two and three letters of the previous previous token

Gazetteers Geographical dictionary associated with jurisdictions in US

In CRFs the input is a sequence of words(tokens) in a query X = (x1, ...xn)
represented using a vector of features and corresponding tags Y = (y1, ...yn).

Understanding User Query Intent and Target Terms in Legal Domain 47

The conditional probability represents the probability of obtaining the output
Y given the input X and is given by

P (Y/X) =
1

Z(X)

X∏

i=1

exp
∑

n=1

λkfk(Yi−1, Yi,X, i)

where fk(Yi−1, Yi,X, i) is a feature function, λk is the weight learned about the
feature and Z(X) is a normalization function.

Features Used: In this study, we used a combination of both hand-engineered
and word embedding features. Table 2 lists hand-engineered features used for
recognition of query intent and target terms within SOL, ELO, DEF, and DOC
queries as well as features used for recognition of jurisdictions. Dictionary of geo-
graphical areas associated with jurisdictions in the US, so called gazetteers, were
used as one of the features in jurisdiction recognizer only. These features were
combined with vector representation of the word, also known as word embed-
ding [7,13]. The word vectors were created by training a word2vec continuous
bag of words (CBOW) model. To train the model, we randomly extracted 1M
legal corpus headnotes, which are the brief summaries of a particular point of
law that appears at the beginning of every case law document.

3.4 Bidirectional LSTM CRF Model

In traditional neural networks inputs and outputs are not independent of each
other and in order to predict the next word in a sentence, there is a need to know
which words came before it. So, our choice of neural networks had to capture the
information that had been calculated so far. Recurrent Neural Networks(RNN)
fits best with a property of having a “memory” to capture information calculated.
Moreover, in sequence tagging task, since both past features (via forward states)
and future input features (via backward states) for a given time are needed, we
used a bidirectional lstm [5]. Furthermore, we combined our bidirectional LSTM
with linear chain CRF to form a bidirectional LSTM-CRF network (Fig. 2).
Bidirectional LSTM enables to get past input and future input features, whereas
CRF layer provides sentence level tag information. At the architecture level, our
model can be broken into three components [5,6,11]:

– Dense word Representation:
For a dense representation of each word, we had the same previously used
Word2vec word embeddings of 100 dimensions which was trained on a corpus
of a 1M headnotes.
In detail: For each word, we captured meaning and relevant features. This was
achieved by building a vector formed by concatenation of word embeddings
and vector containing character level features to capture the word morphol-
ogy. Word embeddings wword2vec were extracted from word2vec and charac-
ter level features by using bidirectional LSTM over the sequence of character
embeddings and subsequent concatenation of final states to obtain a fixed size
vector wchar. As a result, each word was represented as w = wchar + wword2vec

48 S. Kumar and R. Politi

– Contextual Word Representation:
We ran our bidirectional LSTM over the sequence of word vectors obtained
in the previous part, to obtain another sequence of vectors that represented
the concatenation of two hidden states.

Fig. 2. Bidirectional LSTM-CRF Model architecture

Decoding:
In this phase for the contextual information obtained in previous state, lin-
ear chain CRF was used to make final prediction [12,14,16]. So for any given

Understanding User Query Intent and Target Terms in Legal Domain 49

sequence of words w1, ...wm, sequence of score vectors s1, ...sm and sequence of
tags y1, ...ym, linear chain CRF defined a global score C, such that

C(y1, ...ym) = b[y1] +
m∑

t=1

st[yt] +
m−1∑

t=1

T [yt, yt+1] + e[ym]

= begin + scores + transitions + end

where T is a transition matrix and b is a vector of scores that captures the cost
of beginning or ending with a given tag.

3.5 Rule-Based Model

We compared our approaches to rule-based model, which was part of the original
Lexis Answers service. The rule-based model used a set of hand crafted regular
expressions to label queries with their intent and target terms. This model can
successfully identify the query intent and target terms for well structured queries
in a specific format. For example, in the following query “what is statute of
limitations for mail fraud”, the intent will be recognized as SOL and the target
term will be mail fraud because of the manually collected keywords used by
experts. However, when the pattern changes slightly, this model is incapable of
recognizing the intent, or the target term, or both.

3.6 Evaluation Metrics

We utilize standard measures to evaluate the performance of our recognizers,
i.e. precision, recall and F1-measure for the intent and for each one of the target
term’ tags. F1 is the harmonic average of precision and recall which is defined as
F1 = 2PR/(P+R). For rule based model, variation of rules was used to identify
query intent and target terms. To calculate the measures, we referred to the gold
dataset (SMEs annotated dataset). For rule-based approach only full matching
target term phrases were considered as true positives, partially matching target
terms were considered as false positives, not recognized target terms were count
as false negatives and queries that did not have target terms at all were identified
as true negatives.

4 Results

Table 3 summarizes the results of applying different types of models. They were
obtained by training with over 20% of queries set aside for evaluation from each
specific legal question type dataset. The table also shows the results of the base-
line, rule-based, approach. CRF and BiLSTM-CRF models clearly outperformed
baseline model especially in measures of recall as well as F-scores in both intent
and target terms. Rule-based models are very specific and are based on strict
rules resulting in high precision scores, and low recall as a result of high num-
ber of false negatives. This is applicable to both query intent and target terms.

50 S. Kumar and R. Politi

Table 3. Results of testing different types of models over different types of user queries.

Type of model Type of query Type of entity/tag Precision Recall F1-score

Rule based ELO Intent 99.6 23.1 37.5

Target terms 63.3 29.3 40.0

SOL Intent 95.6 32.7 48.7

Target terms 57.7 29.3 44.4

DEF Intent 100.0 48.1 65.0

Target terms 96.5 60.0 74.0

DOC Intent 95.4 45.0 61.2

Target terms 95.8 63.8 76.6

JURI Target terms 100.0 9.9 18.1

CRF ELO Intent 98.0 99.5 98.8

B-Tterm 94.9 91.6 93.2

I-Tterm 96.2 94.7 95.4

SOL Intent 99.0 99.2 99.1

B-Tterm 95.9 96.3 96.1

I-Tterm 95.0 96.5 95.7

DEF Intent 96.8 94.9 95.8

B-Tterm 93.5 84.5 88.8

I-Tterm 91.0 80.2 85.2

DOC Intent 94.9 95.45 95.1

B-Tterm 91.6 91.3 91.4

I-Tterm 92.7 92.1 92.4

JURI B-Tterm 99.0 99.0 99.0

I-Tterm 99.0 100.0 99.0

BiLSTM-CRF ELO Intent 99.8 99.8 99.8

B-Tterm 97.3 97.3 97.3

I-Tterm 96.2 96.2 96.2

SOL Intent 95.4 95.4 95.4

B-Tterm 99.2 99.2 99.2

I-Tterm 98.3 98.3 98.3

DEF Intent 91.4 91.4 91.4

B-Tterm 94.1 94.1 94.1

I-Tterm 82.8 82.8 82.8

DOC Intent 94.2 94.2 94.2

B-Tterm 97.4 97.4 97.4

I-Tterm 88.7 88.7 88.7

JURI B-Tterm 99.4 99.4 99.4

I-Tterm 99.8 99.8 99.8

Understanding User Query Intent and Target Terms in Legal Domain 51

So overall, the coverage of machine learning and deep learning approaches is bet-
ter compared to rule based approach, which results in overall higher F-scores.

Correct identification of query intent using CRF and BiLSTM-CRF does not
require recognition of both B- and I-tags. An existence of only B-tag allowed the
identification of query intent. As a result, the table does not list B-intent and
I-intent measures but just an average of those, defined as Intent.

Our results show that the recognition of intents for every factoid are highly
accurate, reaching F-scores between 95.1 to 99 for most of the legal question
types. However, recognition of target terms for B- and I-target term tags were
comparatively lower. This happens because of the natural difficulties related to
these type of entities. Sometimes a phrase from a linguistic point of view based on
patterns learned by the model should be considered as the target term, however
SMEs will not identify those as such or only part of the phrase will be considered
as the target term. Target terms are vague and there is a need in expert knowl-
edge in order to say if the phrase is a target term or not. These conflicts were
resolved in a post processing phase where a crosscheck was performed against a
dictionary of legitimate legal concepts.

The Jurisdiction model mentioned in this paper is very different from other
legal question type queries. This model was solely trained to recognize particular
geographic areas as a target term. Unlike target terms, geographic areas are very
well defined thus making the recognition process easier overall. As described in
Methods in Sect. 3.3 jurisdiction gazetteers were used as part of features for
jurisdiction recognizer contributing significantly to the accuracy of the CRF
model. However, we also observed that BiLSTM-CRF model have also reached
high precision and recall (99.5%) without using gazetteers.

Finally, deep learning approaches have been as effective as CRF in NER tasks
for legal domain text. In this work, using BiLSTM-CRF, we observed state-of-
the-art metrics [10,11] for some but not all of the legal question types, most
probably due to limited amount of high quality SME-tagged data available for
some legal questions types used in training the models. These results show that
the decision on what approach to use is data driven and not always metrics
improvement will be reached when moving from machine learning to one of
recurrent neural networks such as Bi-LSTM.

5 Conclusion and Future Work

In this paper, for the first time, we have successfully utilized CRF and BiLSTM-
CRF to recognize user’s query intent and legal phrases as target terms. We
started from CRF model using hand-engineered features and moved to contex-
tual vector representation learned and leveraged by BiLSTM-CRF architecture.
We show that both methods significantly outperformed previously used rule-
based approach, specifically on recognition of target terms.

In future studies, we plan to expand datasets used for training and to explore
NER using several context sensitive embeddings such as ELMO [9] and BERT [1].
In addition, to make the recognition of terms more domain sensitive we want

52 S. Kumar and R. Politi

to improve post processing steps to extract the correct legal concepts out of the
identified target terms in user search queries.

References

1. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. CoRR abs/1810.04805 (2018)

2. Dozier, C., Kondadadi, R., Light, M., Vachher, A., Veeramachaneni, S., Wudali,
R.: Named entity recognition and resolution in legal text. In: Francesconi, E.,
Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal
Texts. LNCS (LNAI), vol. 6036, pp. 27–43. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-12837-0 2

3. Hashemi, H.B.: Query intent detection using convolutional neural networks. In:
International Conference on Web Search and Data Mining, Workshop on Query
Understanding (2016)

4. Hemati, W., Mehler, A.: Lstmvoter: Chemical named entity recognition using a
conglomerate of sequence labeling tools. J. Cheminformatics 11 (2019). https://
doi.org/10.1186/s13321-018-0327-2

5. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
CoRR abs/1508.01991 (2015)

6. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. CoRR abs/1603.01360 (2016)

7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Proceedings of the
26th International Conference on Neural Information Processing Systems, vol. 2,
pp. 3111–3119. NIPS 2013, Curran Associates Inc., USA (2013)

8. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R.,
Muharemagic, E.: Deep learning applications and challenges in big data analytics.
J. Big Data 2(1) (2015) https://doi.org/10.1186/s40537-014-0007-7

9. Peters, M.E., et al.: Deep contextualized word representations. CoRR abs/
1802.05365 (2018)

10. Shankar, A., Buddarapu, V.N.: Deep ensemble learning for legal query understand-
ing. In: CIKM (2019)

11. Sreelakshmi, K., Rafeeque, P.C., Sreetha, S., Gayathri, E.S.: Deep bi-directional
lstm network for query intent detection. Procedia Comput. Sci. 143, 939–946
(2018). https://doi.org/10.1016/j.procs.2018.10.341. 8th International Conference
on Advances in Computing & Communications (ICACC-2018)

12. Sutton, C., McCallum, A.: An introduction to conditional random fields. Found.
Trends Mach. Learn. 4(4), 267–373 (2012). https://doi.org/10.1561/2200000013

13. Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pp. 384–394. ACL 2010, Association
for Computational Linguistics, Stroudsburg, PA, USA (2010)

14. Xu, P., Sarikaya, R.: Convolutional neural network based triangular CRF for joint
intent detection and slot filling. In: 2013 IEEE Workshop on Automatic Speech
Recognition and Understanding, pp. 78–83 (2013). https://doi.org/10.1109/ASRU.
2013.6707709

https://doi.org/10.1007/978-3-642-12837-0_2
https://doi.org/10.1007/978-3-642-12837-0_2
https://doi.org/10.1186/s13321-018-0327-2
https://doi.org/10.1186/s13321-018-0327-2
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1016/j.procs.2018.10.341
https://doi.org/10.1561/2200000013
https://doi.org/10.1109/ASRU.2013.6707709
https://doi.org/10.1109/ASRU.2013.6707709

Understanding User Query Intent and Target Terms in Legal Domain 53

15. Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition
from deep learning models. In: Proceedings of the 27th International Conference
on Computational Linguistics, pp. 2145–2158. Association for Computational Lin-
guistics (2018)

16. Yao, K., Peng, B., Zweig, G., Yu, D., Li, X., Gao, F.: Recurrent conditional ran-
dom field for language understanding. In: 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4077–4081 (2014). https://
doi.org/10.1109/ICASSP.2014.6854368

https://doi.org/10.1109/ICASSP.2014.6854368
https://doi.org/10.1109/ICASSP.2014.6854368

Bidirectional Transformer Based Multi-Task
Learning for Natural Language Understanding

Suraj Tripathi(&), Chirag Singh(&), Abhay Kumar(&),
Chandan Pandey(&), and Nishant Jain(&)

Samsung R&D Institute, Bengaluru, India
{suraj.tri,c.singh,abhay1.kumar,chandan.p,

nishant.jain}@samsung.com

Abstract. We propose a multi-task learning based framework for natural lan-
guage understanding tasks like sentiment and topic classification. We make use
of bidirectional transformer based architecture to generate encoded representa-
tions from given input followed by task-specific layers for classification. Multi-
Task learning (MTL) based framework make use of a different set of tasks in
parallel, as a kind of additional regularization, to improve the generalizability of
the trained model over individual tasks. We introduced a task-specific auxiliary
problem using the k-means clustering algorithm to be trained in parallel with
main tasks to reduce the model’s generalization error on the main task. POS-
tagging was also used as one of the auxiliary tasks. We also trained multiple
benchmark classification datasets in parallel to improve the effectiveness of our
bidirectional transformer based network across all the datasets. Our proposed
MTL based transformer network improved state-of-the-art overall accuracy of
Movie Review (MR), AG News, and Stanford Sentiment Treebank (SST-2)
corpus by 6%, 1.4%, and 3.3% respectively.

Keywords: Bidirectional transformer � Sentiment classification �
Multi-task learning � Unsupervised learning

1 Introduction

The learning of representation is the cornerstone of every task of machine learning.
Deep learning became widely popular due to the very effective learning of represen-
tation through error backpropagation. The main issue with deep learning based
methods is that they require a large amount of labeled data to generalize well on unseen
data but in many Natural Language Processing (NLP) tasks, labeled data is scarce, so
usually, pre-training for a language model on unsupervised data is used for learning
universal language representations and transfer learning [1, 2].

Another widely used approach for feature learning is Multi-Task learning [3]. The
learning behavior of humans also inspires MTL since we are capable of capturing
general idea across tasks and easily transfer knowledge acquired from one task to

A. Kumar, C. Pandey and N. Jain—Equal Contribution.

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 54–65, 2019.
https://doi.org/10.1007/978-3-030-23281-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_5

another task. This is because human learning generalizes well and is not focused on
learning specific patterns of a task too well. It is useful for multiple tasks to be jointly
trained so that the features learned in one task can benefit other related tasks. Recently,
there is a lot of interest in applying MTL for representation learning especially using
deep neural networks [4, 5]. MTL helps by augmenting the dataset of all the tasks
involved since we are training multiple tasks in parallel. It also helps in reducing the
generalization error by preventing overfitting to a specific task. In an MTL setting, it is
crucial to select the relevant and related task, but to encourage cross-task learning,
diversity is also essential. We contend that if we combine the language pre-training
with MTL, both can help to learn even better representation for general Natural Lan-
guage Understanding (NLU) tasks. Following that, we decided to demonstrate the
effectiveness of our proposed networks on the tasks of Sentiment analysis and Topic
modeling, which are among the widely used tasks of NLP.

2 Related Work

Existing systems on Sentiment analysis are mostly deep learning based or some other
supervised learning approaches like Support Vector Machines (SVMs) over a carefully
constructed feature set. In spite of being one of the most explored tasks, it is still very
challenging due to the inherent ambiguity of natural language and the complexity of
human emotions. Work on Sentiment analysis can be broadly classified into Traditional
approaches and Deep learning based methods.

Traditional approaches [6, 7] are based on engineering features like Bag of words
model or a combination of words and their sentiment strength scores. These sentiment
scores are assigned to words by an algorithm and some manual engineering as well. As
expected these methods are cumbersome and error-prone. Manually covering all rel-
evant features is very difficult in practice. Also, a slight modification in dataset or
problem definition requires repetition of the whole process all over again.

Feature learning through back-propagating errors is one of the key strengths of
deep neural networks. Emergence of Deep networks like Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs) and word embedding methods
like Word2Vec, GloVe, etc. marked the new era of machine learning techniques where
there is no need for manual feature engineering. Word embeddings along with deep
neural network methods have outperformed traditional methods as shown in [8]. CNN
based methods capture the N-Gram features via convolutions whereas RNNs capture
sequential information and dependencies. Architectures based on BiLSTM-CRF also
have been employed for NLU task of sentiment analysis [9]. McCann et al. [10] makes
use of contextualized word vectors to capture sentiment present in text utterances
whereas Radford et al. [11] utilized byte-level recurrent language models for sentiment
analysis.

Deep learning methods are widely employed, but most of them contain either just
sequential information or structural information. Even after that, they are not able to
capture the complete meaning and context of the sentence. Also, deep networks lack
generalization over unseen input instances because of model complexity. Another
problem with word embeddings is that they capture only distributional information but

Bidirectional Transformer Based Multi-Task Learning 55

not the polarity. Sentiment analysis is heavily dependent on polarity information. The
lexicon-based polarity information has been integrated by Shin et al. [12] with word
embedding which is an improvement that shows in their result but again their network
architecture is not general and suffers from specific task limitations. Also, most of these
models are shallow and unidirectional. Bi-directionality, if any is at a very shallow
level.

Recent work on topic classification [13–15] is based on a variant of Long-short
term memory (LSTM) or CNN network. Howard et al. [13] have used fine-tuning over
a pre-trained language model whereas Johnson et al. [15] employs a deep pyramid
convolutional neural network for text categorization. Our proposed MTL based
Transformer encoder outperforms the state-of-the-art architectures of sentiment and
topic classification by a significant margin for three benchmarks NLU datasets. Our
model and motivation behind it are described below.

3 Bidirectional Transformer Network

3.1 Motivation

Every computational step in a deep neural network involves an approximation, and that
is the primary source of error propagation. Longer the computational path more the
error introduced. That is where self-attention [16] is helpful. Transformer model is first
introduced by Google [16] which makes use of self-attention layers that helps in
reducing computational path length in a deep network. The Transformer network is
essentially an Encoder-Decoder architecture for seq2seq learning tasks like Machine
Translation, Named-entity recognition (NER) tagging, etc. We are using just the
truncated (12 layers) encoder part of the Transformer since ours are classification tasks
only and hence do not require a decoder. Encoder stack in our model consists of 12
layers of encoders arranged in a stacked manner. Each Encoder layer, refer Fig. 1, in
turn, consists of two sublayers:

• Bidirectional Self-Attention layer
• Fully Connected layer

Self-attention layer enables context-aware learning for the encoder. Encoder layer
makes use of a self-attention mechanism which looks at the whole sequence of words
in a sentence while learning the embedding for a single word. This way encoder can
capture the sentence level context in embedding for each word. In contrast to RNNs,
encoder employs direct short circuit peep into the whole sentence context which
relieves the network of the burden of approximating long-term path dependency. It also
makes the attention deeply learn bidirectional context since the encoder is looking in
both directions. The bi-directionality in other models based on CNNs or LSTMs [17] is
shallow because they are just adding/concatenating forward and backward unidirec-
tional context representations rather than utilizing a single bidirectional attention
process.

The Transformer encoder is pre-trained for general language modeling task on a
huge corpus such as Wikipedia and publicly available book-corpus. It is an

56 S. Tripathi et al.

unsupervised training for a masked language model task. This pre-training is important
because language model is the most general form of language understanding and
therefore the knowledge acquired is easily transferred across multiple tasks, which is
very important for multi-task learning. We now describe the Transformer based model
in detail.

3.2 Word Embedding Layer

Embedding layer is before the first encoder layer. Each word token in the sentence is a
vector W, which is obtained by indexing a word-embedding matrix. After that W is
transformed into vector X, refer Eq. 1, by adding position encoding to it. The
dimensionality of X, W, P is 1024, which is the same as the hidden size H of an
encoder. We experimented with different values of hidden size H and finalized it to be
1024 based on the performance on the validation set. We utilize position vectors to
encode the relative sequential ordering of words in a sentence. For word embedding W,
we used sub-word tokens as done by [18], with the vocabulary of 30,000 tokens. It is
representative of that word for the current sentence, which captures bi-directional
context information due to self-attention. So, the model learns different word embed-
ding W for a word depending on the different context it appears in.

X ¼ Wþ P ð1Þ

Where W is a sub-word vector, P is position vector, and X is the final representation
of a single token and is input to the first encoder layer. The first token in any training
example is always a CLS token of the size of H; it is essentially a special classification
token containing the pooled (sum along the sequence) representation of the sequence.

Fig. 1. Encoder layer of transformer network

Bidirectional Transformer Based Multi-Task Learning 57

CLS token in the final hidden state (i.e., the output of Transformer) is the sequence
representation used in classification tasks.

3.3 Encoder Stack

The sequence of tensors X is fed into the first encoder layer, where self-attention layer
projects it into three vectors, Query vector, a Key vector, and a Value vector. These
vectors are obtained using three separate attention matrices WQ, WK , and WV which
are learned during training, and together they form an attention head. The Q, K, and V
vectors are a different abstraction of the same word, each playing a different role during
self-attention. Attention score of the current word with respect to each word in the
sentence is calculated using these vectors in the following manner:

Q ¼ X �WQ;K ¼ X �WK ;V ¼ X �WV ð2Þ

Z ¼ softmax
Q � KT

ffiffiffiffiffi
dk

p
� �

V ð3Þ

Query representation of current word W1 (i.e., Q1) dot product with Key vector of
some other word say W2 (i.e., K2), gives an importance score of W2 with respect to
current word W1. We then make use of softmax normalization to get the attention
scores of all words in the sentence with respect to the current word W1.

These attention scores are further multiplied with the value vectors to give weighted
importance to each word and then summed along the sentence length to get Z vector,
which is the output of self-attention layer for the current word/token. This score
determines how much attention/focus to give other parts of the sentence while encoding
the current word. Residual connection and layer normalization are done after each self-
attention and feedforward layer.

Z ¼ LayerNormðX þ ZÞ ð4Þ

Z is fed to feed-forward layer, which further processes it and forwards it to next
encoder layer. The feed-forward layer is of size 4H (H is hidden layer size of Encoder
as described in Sect. 3.2). Dropout is used for regularization after each sublayer before
adding it to the original input to the sublayer by a residual connection. The dropout rate
is a hyper-parameter and trained as part of the training process.

3.4 Combining the Multi-headed Attention

Each self-attention layer has multiple attention heads. The number of attention heads is
a hyperparameter. We used 12 heads in each self-attention layer for our tasks. Each
attention head of a self-attention layer calculates its representation Z, as explained
above, which are concatenated and multiplied with a weight matrix WO, to get the final
output for the fully connected output layer. Each head focusses on different parts of the
sentence to learn different dependencies and context rather than learning a particular

58 S. Tripathi et al.

peculiarity, which is then combined to form the complete embedding of the word/token
for better generalization.

3.5 Feed-Forward Layer

The output of self-attention layer, Z is input to this layer which is nothing but one layer
fully connected network with hidden size 4H and output size H.

R ¼ feedforwardðZÞ ð5Þ

R ¼ LayerNormalizeðRþ ZÞ ð6Þ

R is the final output of one encoder layer which is fed to the encoder stacked above.

4 Multi-Task Learning Approach

A simple technique for performing MTL is to train the target and auxiliary tasks
simultaneously. The model parameters are shared between tasks in this setting, pushing
the model to learn the representation of features that generalize better across tasks.

4.1 Auxiliary Task Definition

We defined a task-specific auxiliary problem to be used in parallel during training time
with our main natural language processing task of sentiment, and topic classification.
We employ unsupervised k-means algorithm in conjunction with input n-grams for the
auxiliary sub-task definition. Following subsections will briefly discuss the auxiliary
sub-task definition for different main NLU tasks.

Movie Review Auxiliary Task-1 Definition: Movie review (MR) corpus is composed
of text sequences with either positive or negative polarity. Each text sequence repre-
sents a single sentence consisting of words from the English dictionary. The polarity of
any text sequence is highly dependent on the consisting words and context of those
words, where the context of a word is defined by the content before and after the input
word. To explicitly model individual words meaning and its context, we make use of
word-based n-grams in conjunction with k-means algorithm, where n is a hyperpa-
rameter which is tuned as part of the training process.

For an input data instance X ¼ fx1; x2; . . .; xlg, where xi represents word at the ith

position and l denotes the length of the input text, we generate a set of n-grams. For
example, if n ¼ 2, the generated set will consist of all unigrams fxi; i ¼ 1; 2; . . .; lg and
bigrams f½xi; xiþ 1�; i ¼ 1; 2; . . .; l� 1g. Similarly, this process is repeated for all data
instances present in the MR corpus which results in an exhaustive list of n-grams. The
list of n-grams generated from the training part of MR dataset is being used as an input
to the k-means clustering algorithm.

For MR corpus, we assumed that polarity of each n-gram could be categorized into
3 clusters named as positive, negative and neutral as utterances in MR corpus belongs
to either positive or negative sentiment. We make use of the K-means clustering

Bidirectional Transformer Based Multi-Task Learning 59

algorithm to generate an assignment of each n-gram to a particular cluster. Embeddings
extracted from Google’s pre-trained word2vec model is used as input to the clustering
algorithm. A 300 dimension embedding replaces each n-gram, and n-grams with more
than one words are replaced by the average of the individual word embeddings. To
initialize the centroids of 3 clusters (positive, negative and neutral), we selected m
words relevant to each cluster, where m is a tunable parameter, and used the average of
the word embeddings obtained using word2vec as centroid values.

We will briefly describe the k-means algorithm used for generating the assignment
of individual n-grams. As mentioned above, we make use of a vector of 300 dimen-
sions to represent data and centroid points. After initialization of all the points, the
algorithm works in two phases: The first phase includes using a distance metric like
Euclidean distance (dðx; yÞ) to assign each data point to a particular cluster. When all
the data points are assigned to some cluster, the second phase starts which recalculate
the centroid of all the clusters by taking the average of the data points assigned to it.
This two-process keeps on repeating until there is no changing in the cluster assign-
ment in some iteration.

d x; yð Þ ¼
Xk

i¼1
ðxi � yiÞ2

h i1
2 ð7Þ

Euclidean Distance dðx; yÞ is used for calculating the distance between a data point
and centroids, where k denotes the length (300) of vector assigned to datapoints and
centroids. After the convergence of the k-means algorithm, a list of n-grams and its
corresponding cluster (positive, negative and neutral) assignment is generated. We
make use of this n-gram and cluster assignment to define our auxiliary task as follows:

• For each text sequence fx1; x2; . . .; xlg, where l denotes the length of the sequence in
the corpus. We assign a cluster class to each word xi based on the majority class of
all of its n-grams. In case of a tie, we break it by choosing the cluster class of bigger
n-gram. For example, if we are using n ¼ 2 and unigram of a word outputs cluster
label as neutral and its bigram outputs positive then will take positive as our final
cluster class for that particular word xi assuming that bigger n-gram can capture the
context in a better way.

• This process generates a set of data points \x; y[, where x ¼ fx1; x2; . . .; xlg
represents input text sequence and y ¼ fy1; y2; . . .; ylg represents its corresponding
cluster label sequence. This novel sequence to sequence mapping problem is used
as an auxiliary task in our proposed network.

Movie Review Auxiliary Task-2 Definition: Part-of-speech (POS) tagging of a word
make use of both its definition and context-i.e., the relationship of the word with
content before and after the word. Therefore, a single word can have different POS tag
based on the context in which it is used, for example in the sentence “Tell me your
answer,” answer is a noun whereas in “Answer the question,” it is being used as a verb.
This indicates that POS tagging can help in understanding and extracting relationship
present in the given input text instance. Following the same intuition, we decided to
make use of POS tagging as an auxiliary task in parallel with our main tasks. We make

60 S. Tripathi et al.

use of NLTK POS tagger to generate POS tags for each data instance present in the MR
corpus. For input instance x ¼ fx1; x2; . . .; xlg, where l denotes the length of the
sequence, we will have a corresponding POS tag set represented by p ¼ fp1; p2; . . .; plg
of the same length. We make use of a set of 15 POS tags as our output class corre-
sponding to each word.

Auxiliary Tasks Definition for AG News and SST-2 Corpus: AG News consists of
text utterances that belong to one of the four news categories, making it a multi-class
classification problem whereas SST-2 is a binary sentiment classification task like MR
classification problem. For AG News corpus, auxiliary task-1 assigns each word to one
of the five clusters representing world news, business news, sci-tech news, sports news
and neutral nature using a similar strategy as defined in auxiliary task 1 definition for
MR corpus. Following the same definition of auxiliary task-1 and task-2 of MR task,
we define sub-tasks for AG News and SST-2 corpus.

MTL based learning framework, refer Fig. 2(a), is trained by optimizing joint loss
LMTL, refer Eq. 8, which consists of Lmain�task, loss function of main task and
Lauxiliary�task, loss function of auxiliary task. The hyperparameter k is used to control the
effect of auxiliary task loss function on the MTL loss function, and it is optimized as
part of the training process.

LMTL ¼ Lmain�task þ k � Lauxiliary�task ð8Þ

4.2 Single-Task Model

We also analyzed the performance of the standalone Transformer encoder stack for
each task separately. The final output of the last layer of Transformer encoder is pooled
(summed), which is effectively CLS token from the final layer (as described in
Sect. 3.2), and is further input to a fully connected and then to a softmax layer. Softmax

Fig. 2. (a) Auxiliary task-based MTL framework. (b) Learning multiple tasks in parallel

Bidirectional Transformer Based Multi-Task Learning 61

output is a conditional class distribution over the vocabulary of output labels. We make
use of Cross-Entropy loss function, which is nothing but Negative log likelihood of
model output distribution (P) under the empirical distribution of the data (X).

Loss ¼ �Epdata yjxð Þ logpðyjxÞ ð9Þ

Where pdataðyjxÞ is empirical distribution of the data(X).

4.3 Multi-task Model

Training related tasks in parallel leads to learning robust shared features [19]. It is a
form of inductive bias like other regularization techniques, which causes the model not
to learn peculiarities of a single task but rather prefer models, which can explain
multiple tasks. This leads the learning to converge to models with better generalization
errors. We used hard parameter sharing method for multi-task learning approach, which
is generally applied by sharing the hidden layers among all tasks while keeping the
output and softmax layers different and task specific.

We are inspired by [19], which showed that chances of overfitting are inversely
proportional to the number of tasks jointly being learned by hard parameter sharing.
Multi-task learning leads to implicit Data Augmentation and Transfer Learning. Dif-
ferent task dataset has different kind of inherent noise which if learned in a stand-alone
manner leads to overfitting to corresponding data. Whereas, training two or more tasks
jointly reduces the risk of overfitting by enabling the model to average the noise rather
than sticking to particular data distribution. Following this, refer Fig. 2(b), we trained
AG, MR and SST-2 joint model:

Training Schedule: In every epoch, we are shuffling the individual datasets for each
sub-tasks. After that, refer Eqs. (10)–(12), we prepare separate batches for each dataset
represented by Bk , which leads to a total number of batches NBatch. We merge all the
batches in a single file which is then randomly shuffled and used to train on the joint
loss Ltotal.

Each mini-batch is task-specific and updates model weights by minimizing task-
specific part of the joint loss function Ltotal.

Di ¼ Shuffle Dið Þ; for i ¼ 1; 2; 3 ð10Þ

NBatch ¼ 1
Batch Size

X3

i¼1
sizeðDiÞ ð11Þ

[NBatch
k¼1 Bk ð12Þ

Joint loss function, which is a summation of individual loss, functions for each of
the subtasks is defined as

62 S. Tripathi et al.

Ltotal ¼ LAG þ LMR þ LSST ð13Þ

Where LAG, LMR, LSST are cross-entropy loss functions for individual subtasks and
Ltotal is the effective joint loss used for optimizing model parameters of our proposed
network.

5 Datasets

Sentiment Analysis: Our model is trained separately on two datasets for sentiment
analysis: Stanford Sentiment Treebank (SST) [20] and Movie Review (MR) [7]. Both
dataset consists of movie reviews and their sentiment. We use each dataset’s binary
version. SST-2 contains 76961 phrases, 6919 sentences for training and 1820 sentences
for testing. MR corpus consists of 10,662 reviews belonging to either positive or
negative sentiment, with 5331 reviews of each class. We make use of 5-fold cross-
validation to demonstrate the effectiveness of our proposed approaches.

Topic Classification: :The dataset is AG News corpus [21] in which the articles are
divided into four categories. Four categories represent news of different domains,
where domains are World, Business, Sports, and SciTech. This dataset comprises of
120,000 training and 7,600 test data instances.

6 Discussion

The presented accuracy Table 1 compares the performance of our proposed models
with the current state-of-the-art architectures and indicates a significant reduction in the
generalization error. We introduced four networks based on bidirectional transformer
based encoder, MTL technique and joint training of various NLU tasks and all of them
achieved start-of-the-art accuracies on the tasks of MR, AG News, SST-2 classification.
The inclusion of shared learning through MTL and joint training of multiple tasks
showed consistent improvement over the performance of standalone architecture.

Table 1. Datasets classification accuracies

Model architecture MR AG news SST-2

BiLSTM-CRF [9] 82.3 - -
WCCNN [14] 83.8 - -
KPCN [14] - 88.4 -
DPCNN [15] - 93.1 -
BCN + Char + CoVe [10] - - 90.3
bmLSTM [11] - - 91.8
Transformer Network (TN) 87.7 93.9 92.3
TN + POS auxiliary task 88.8 94.1 93.7
TN + Clustering auxiliary task 89.1 94.5 94.6
TN + All tasks trained in parallel (MR + AG News + SST-2) 89.8 94.2 95.1

Bidirectional Transformer Based Multi-Task Learning 63

For MR corpus, our best model achieved more than 6% improvement in overall
accuracy over the state-of-the-art accuracies mentioned in [9, 14] whereas for AG
News and SST-2 corpus our best model achieved 1.4% and 3.3% overall accuracy
improvement respectively compared to the current state-of-the-art results.

7 Conclusion

In this paper, we analyzed the effectiveness of MTL based bidirectional transformer
architecture for sentiment classification (MR and SST-2) and topic classification (AG
News) and showcased consistent improvement over current state-of-the-art architec-
tures. We introduced MTL based learning by proposing clustering based sequence-to-
sequence auxiliary task as well as by using POS-tagging as one of the auxiliary task to
further enhance the performance of our transformer network. We observed significant
improvement with the addition of MTL framework when compared with the standalone
network. We also analyzed the performance of our transformer based network by
training it with a combined corpus of MR, AG News, and SST-2, which led to the
improvement in generalization ability of our network across all the tasks. Our best
model improved state-of-the-art overall accuracy of MR, AG News and SST-2 corpus
by 6%, 1.4%, and 3.3% respectively. For future work, we will work on proposing other
related auxiliary tasks that can be jointly trained with the main tasks to improve
model’s generalization ability.

References

1. Gao, J., Galley, M., Li, L.: Neural approaches to conversational AI. In: The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval, pp. 1371–1374. ACM (2018)

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018)

3. Zhang, Y., Yang, Q.: A survey on multitask learning, arXiv:1707.08114 [cs], July 2017.
http://arxiv.org/abs/1707.08114

4. Liu, X., Gao, J., He, X., Deng, L., Duh, K., Wang, Y.: Representation learning using multi-
task deep neural networks for semantic classification and information retrieval. In:
Proceedings of NAACL (2015)

5. Luong, M., Le, Q., Sutskever, I., Vinyals, O., Kaiser, L.: Multitask sequence to sequence
learning. In: Proceedings of ICLR, pp. 1–10 (2016)

6. Mullen, T., Collier, N.: Sentiment analysis using support vector machines with diverse
information sources. In: Proceedings of the 2004 Conference on Empirical Methods in
Natural Language Processing (2004)

7. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization
with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pp. 115–124. Association for Computational Linguistics, June
2005

8. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha,
Qatar, October 2014, pp. 1746–1751. Association for Computational Linguistics (2014)

64 S. Tripathi et al.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1707.08114
http://arxiv.org/abs/1707.08114

9. Chen, T., Xu, R., He, Y., Wang, X.: Improving sentiment analysis via sentence type
classification using BiLSTM-CRF and CNN. Expert. Syst. Appl. 72, 221–230 (2017)

10. McCann, B., Bradbury, J., Xiong, C., Socher, R.: Learned in translation: contextualized
word vectors. In: NIPS (2017)

11. Radford, A., Jozefowicz, R., Sutskever, I.: Learning to Generate Reviews and Discovering
Sentiment, arXiv:1704.01444 [cs], April 2017. http://arxiv.org/abs/1704.01444

12. Shin, B., Lee, T., Choi, J.D.: Lexicon integrated CNN models with attention for sentiment
analysis. In: Proceedings of the 8th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis, pp. 149–158 (2017)

13. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In:
Proceedings of ACL, pp. 328–339 (2018)

14. Wang, J., Wang, Z., Zhang, D., Yan, J.: Combining knowledge with deep convolutional
neural networks for short text classification. In: Proceedings of IJCAI (2017)

15. Johnson, R., Zhang, T.: Deep pyramid convolutional neural networks for text categorization.
In: Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, pp. 562–570 (2017)

16. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing
Systems, pp. 5998–6008 (2017)

17. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL: HLT), New Orleans, Louisiana
(2018)

18. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144 (2016)

19. Baxter, J.: A Bayesian/information theoretic model of learning to learn via multiple task
sampling. Mach. Learn. 28(1), 7–39 (1997)

20. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment
treebank. In: Proceedings of EMNLP, pp. 1631–1642 (2013)

21. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in Neural Information Processing Systems, pp. 649–657 (2015)

Bidirectional Transformer Based Multi-Task Learning 65

http://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1609.08144

LSVS: Link Specification Verbalization
and Summarization

Abdullah Fathi Ahmed1(B), Mohamed Ahmed Sherif1,2,
and Axel-Cyrille Ngonga Ngomo1,2

1 Data Science Group, Paderborn University,
Pohlweg 51, 33098 Paderborn, Germany

afaahmed@mail.upb.de
2 Department of Computer Science, University of Leipzig, 04109 Leipzig, Germany

{mohamed.sherif,axel.ngonga}@upb.de

Abstract. An increasing number and size of datasets abiding by the
Linked Data paradigm are published everyday. Discovering links between
these datasets is thus central to achieve the vision behind the Data Web.
Declarative Link Discovery (LD) frameworks rely on complex Link Speci-
fication (LS) to express the conditions under which two resources should
be linked. Understanding such LS is not a trivial task for non-expert
users, particularly when such users are interested in generating LS to
match their needs. Even if the user applies a machine learning algorithm
for the automatic generation of the required LS, the challenge of explain-
ing the resultant LS persists. Hence, providing explainable LS is the key
challenge to enable users who are unfamiliar with underlying LS tech-
nologies to use them effectively and efficiently. In this paper, we address
this problem by proposing a generic approach that allows a LS to be ver-
balized, i.e., converted into understandable natural language. We propose
a summarization approach to the verbalized LS based on the selectivity
of the underlying LS. Our adequacy and fluency evaluations show that
our approach can generate complete and easily understandable natural
language descriptions even by lay users.

Keywords: Open linked data · Verbalization · Link discovery ·
Link specification · NLP · Text summarization

1 Introduction

With the rapid increase in the number and size of RDF datasets comes the need
to link such datasets. Declarative Link Discovery frameworks rely on complex
Link Specification to express the conditions necessary for linking resources within
these datasets. For instance, state-of-the-art LD frameworks such as Limes [13]
and Silk [9] adopt a property-based computation of links between entities. For
configuring LD frameworks, the user can either (1) manually enter a LS or (2)
use machine learning for automatic generation of LS.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 66–78, 2019.
https://doi.org/10.1007/978-3-030-23281-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_6

LSVS 67

There are a number of machine learning algorithms that can find LS auto-
matically, by using either supervised, unsupervised or active learning. For exam-
ple, the Eagle algorithm [15] is a supervised machine-learning algorithm able to
learn LS using genetic programming. In newer work, the Wombat algorithm [19]
implements a positive-only learning algorithm for automatic LS finding based on
generalization via an upward refinement operator. While LD experts can easily
understand the generated LS from such algorithms, and even modify if necessary,
most lay users lack the expertise to proficiently interpret those LSs. In addition,
these algorithms have been so far unable to explain the LS they generate to lay
users. Consequently, these users will face difficulty to (i) assess the correctness
of the generated LS, (ii) adapt their LS, or (iii) choose in an informed manner
between possible interpretations of their input.

In this paper, we address the readability of LS in terms of natural language.
To the best of our knowledge, this is the first work that shows how to verbalize
LS. As a result, it will help people who are unfamiliar with the underlying
technology of LS to understand and interact with it efficiently. The contribution
of this paper is twofold. First, we address the readability of LS and propose
a generic rule-based approach to produce natural text from LS. Second, we
present a selectivity-based approach to generate a summarized verbalization of
LS. Our approach is motivated by the pipeline architecture for natural language
generation (NLG) systems performed by systems such as those introduced by
Reiter and Dale [18].

The rest of this paper is structured as follows: First, we introduce our basic
notation in Sect. 2. Then, we give an overview of our approach underlying LS
verbalization in Sect. 3. We then evaluate our approach with respect to the ade-
quacy and fluency [5] of the natural language representations it generates in
Sect. 4. After a brief review of related work in Sect. 5, we conclude our work
with some final remarks in Sect. 6.

Throughout the rest of the paper, we use the following LS shown in Listing 1
as our running example, which is generated by the Eagle algorithm to link the
ABT-BUY benchmark dataset from [10], where the source resource x will be linked
to the target resource y if our running example’s LS holds.
1 OR(jaccard(x.name ,y.name)|0.42 , trigrams(x.name ,y.description)|0.61)

Listing 1. Running example.

2 Preliminary

In the following, we present the core of the formalization and notation necessary
to implement our LS verbalization. We first give an overview of the grammar
that underlies LS. Then, we describe the notation of LS verbalization.

2.1 Link Specification

The link discovery problem is formally defined as follows: Given an input relation
ρ (e.g., owl:sameAs), a set of source resources S and a set of target resources

68 A. F. Ahmed et al.

T , the goal of link discovery is to discover the set {(s, t) ∈ S × T : ρ(s, t)}.
Declarative link discovery frameworks define the conditions necessary to generate
such links using LS. Several grammars have been used for describing LS in
previous work [9,15,19]. In general, these grammars assume that a LS consists
of two types of atomic components: similarity measures m, which allow the
comparison of property values of input resources and operators op, which can
be used to combine these similarities to more complex specifications. Without
loss of generality, we define a similarity measure m as a function m : S × T →
[0, 1]. We use mappings M ⊆ S × T to store the results of the application of a
similarity function to S × T or subsets thereof. We define a filter as a function
f(m, θ). We call a specification atomic LS when it consists of exactly one filtering
function. A complex specification (complex LS) can be obtained by combining
two specifications L1 and L2 through an operator op that allows the results of
L1 and L2 to be merged. Here, we use the operators �, � and \ as they are
complete and frequently used to define LS [19]. A graphical representation of
our running example’s complex LS from Listing 1 is given in Fig. 1.

We define the semantics [[L]]M of a LS L w.r.t. a mapping M as given in
Table 1. Those semantics are similar to those used in languages like SPARQL,
i.e., they are defined extensionally through the mappings they generate. The
mapping [[L]] of a LS L with respect to S × T contains the links that will
be generated by L. We define the selectivity score of a sub-LS Ls ∈ L as a
function σ(L) that returns the F-Measure achieved by the mapping [[Ls]] of Ls

by considering the mapping [[L]] generated by the original LS L as its reference
mapping.

Fig. 1. Our running example complex
LS. The filter nodes are rectangles
while the operator nodes are circles.

Table 1. Link specification syntax and
semantics.

LS [[LS]]M

f(m, θ) {(s, t)|(s, t) ∈ M ∧ m(s, t) ≥ θ}
L1 � L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∈ [[L2]]M}
L1 � L2 {(s, t)|(s, t) ∈ [[L1]]M ∨ (s, t) ∈ [[L2]]M}
L1\L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) /∈ [[L2]]M}

2.2 Link Specification Verbalization

Our definition of realization function ζ relies on the formalization of the LS
declared in the previous Section. Let A be the set of all atomic LS that can be
combined in a complex LS L. Let CS resp. CT be two sets of constraints that
specify the sets S resp. T . Let M be a set of similarity measures and T a set of
thresholds. In General, a constraint C is a logical predicate. Constraints in LS
could state, for example, the rdf:type of the elements of the set they describe,
i.e., C(x) ↔ x rdf:type someClass, or the features that each element in the
set must have, e.g., C(x) ↔ (∃y : x someProperty y). Each s ∈ S must abide

LSVS 69

by each of the constraints CS
1 . . . CS

m, while each t ∈ T must abide by each of
the constraints CT

1 . . . CT
k . We call z ∈ A ∪ CS ∪ CT ∪ M ∪ T an atom. We

define the realization function ζ : A ∪ CS ∪ CT ∪ M ∪ T → Language, where
Language is our target language. In turn, this realization function ζ maps each
atom to a word or sequence of words in our target language. Formally, the goal
of this paper: first is to construct the extension of ζ to the entire LS so that
all atoms z can be mapped to their realization ζ(x). Second : how these atomic
realizations can be combined. For the sake of simplicity, we denote the extension
of ζ by the same label ζ. We adopt a rule-based approach to achieve this goal,
where the rule extending ζ to the entire LS is expressed in a conjunctive manner.
This means that for premises P1, . . . , Pn and consequences K1, . . . ,Km we write
P1 ∧ . . . ∧ Pn ⇒ K1 ∧ . . . ∧ Km. The premises and consequences are clarified
by using an extension of the Stanford dependencies1. Notably, we build on the
constructs explained in Table 2. For example, dependency between a verb and
its object is represented as dobj(verb, object).

Table 2. Dependencies used by LS verbalization.

Dependency Explanation

amod Represents the adjectival modifier dependency

For example, amod(ROSE,WHITE) stands for white rose

dobj Dependency between a verb and its direct object

For example, dobj(EAT,APPLE) expresses ‘‘to eat an/the apple”

nn The noun compound modifier is used to modify a head noun by
the means of another noun

For instance, nn(FARMER,JOHN) stands for farmer John

poss Expresses a possessive dependency between two lexical items

For example, poss(JOHN,DOG) express John’s dog

prep X Stands for the preposition X, where X can be any preposition,
such as via, of, in and between

subj Relation between subject and verb

For example, subj(PLAY,JOHN) expresses John plays

3 Approach

We have now introduced all ingredients necessary for defining our approaches
for LS verbalization and summarization. Our goal is to generate a complete
and correct natural language representation of an arbitrary LS. Our approach is
motivated by the pipeline architecture for natural language generation (NLG)

1 For a complete description of the vocabulary, see http://nlp.stanford.edu/software/
dependencies manual.pdf.

http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf

70 A. F. Ahmed et al.

systems as introduced by Reiter and Dale [18]. The NLG architecture consists of
three main stages: document-planner, micro-planner and surface realizer. Since
this work is the first step towards the verbalization of LS, our efforts will be
focused on document-planner (as explained in Sect. 3.1) with an overview of the
tasks carried out in the micro-planner (Sect. 3.2). The surface realizer is used
to create the output text.

3.1 Document-Planner

The document-planner consists of the content determination process to create
messages and the document structuring process that combines those messages.
We focus on document structuring to create independently verbalizable messages
from the input LS and to decide on their order and structure. These messages are
used for representing information. This part is carried out in the preprocessing
and processing steps.

Preprocessing: The goal of the preprocessing step is to extract the central
information of LS. This step mainly relies on the atomic LS where the necessary
information can be extracted. The input for this step is the atomic LS while the
output is the realization of each individual part of the atomic LS. To this end,
we break down the atomic LS into its individual parts, consisting of properties
p (for each atomic LS there are two properties - 1. ps for the resource s ∈ S
and 2. pt for the resource t ∈ T), threshold θ and similarity measure m. After
that, on each part of the atomic LS we apply the dependency rule introduced
in Table 1. We start with the realization of similarity measure m (e.g. jaccard
as stated in our running example in Listing 1) as follows:

1. ζ(m) ⇒ nn(m,similarity)

Now, we can combine ζ(m) and ζ(θ).

2. ζ(m,θ) = ζ(m)∧ ζ(θ) ⇒ prep of(ζ(θ),ζ(m))

Furthermore, if θ equals 1, we replace its value by “exact match” and in cases
where θ is equal to 0, we replace it by “complete mismatch”. Otherwise, we keep
the θ value (e.g., in the case of our running example). Regarding the properties
ps and pt, we move the explanation into the processing step since they play
an important role in the construction of a subject to be used later in sentence
building.

Processing: In this step, we aim to map all atoms z into their realization
function ζ(z) and to define how these atomic realizations are to be combined.
The input for this step is the LS and the output is the verbalization of the LS
at hand. Given our formalization of LS in Sect. 2.1, any LS is a binary tree,
where the root of the tree is an operator op and each of its two branches are
LSs. Therefore, we recursively in-order apply our processing step at the LS tree

LSVS 71

at hand. As the complete verbalization of an atomic LS mainly depends on the
properties ps and pt, we here distinguish two cases: a first case where ps and pt
are equal, so we only need to verbalize ps. In this case the realization function
of an atomic LS a ∈ A is constructed as follows:

3. ζ(a)⇒subj(have,nn(prep of(ζ(ps), ζ(source and target)),
ζ(resources))) ∧ dobj (have,ζ(m,θ))

The second case is where the ps and pt are not equal. Here, both properties need
to be verbalized as follows:

4. ζ(ps,pt)⇒ ζ(ps) ∧ ζ(pt)

3.2 Micro-planer

The micro-planner is divided into three processes: lexicalization, referring expres-
sion generation and aggregation. We explain each process in the following.

Lexicalization: Within the lexicalization process we decide what specific words
should be used to express the content. In particular, we choose the actual nouns,
verbs, adjectives and adverbs to appear in the text from a lexicon. Also, we
decide which particular syntactic structures to use, for example, whether to use
the phrase the name of the resource or resource’s name.

5. ζ(ps)⇒ prep of(poss(ζ(resource), ps),ζ(source))
6. ζ(pt)⇒ prep of(poss(ζ(resource), pt),ζ(target))
7. ζ(a)⇒ subj(have,ζ(ps,pt))∧ dobj(have,ζ(m,θ))

Applying preprocessing and processing steps followed by Lexicalization step
on our running example from Listing 1 generates the following verbaliza-
tion: The name of source and target resources has a 42% of Jaccard
similarity or the resource’s name of the source and the resource’s
description of the target have a 61% of Trigrams similarity. Note
that our running example contains both cases.

Referring Expression Generation: Here we carry out the task of deciding
which expressions should be used to refer to entities. Considering the exam-
ple, the source and the target have a resource’s name and they have
a 45% of Jaccard similarity, they is referring to the expression the source
and the target. However, we avoid such a construction in our verbalization
because we aim to generate a simple yet readable text that contains the central
information of the LS at hand.

Aggregation: The goal of aggregation in NLG is to avoid duplicating infor-
mation that has already been presented. In our LS verbalization, we mainly
focus on the subject collapsing, defined in [4] as the process of “collecting clauses

72 A. F. Ahmed et al.

with common elements and then collapsing the common elements”. Formally, we
define subject subj(vi, si) as si, object dobj(vi, oi) as oi

8. ζ(s1)= ζ(s2)=. . . =ζ(sn)⇒ subj(v1,s1)∧ dobj(v1, coord(o1,o2,. . . ,on))

In the Listing 2, we present a second example LS where grouping is
applicable.

1 OR(jaccard(x.name ,y.name)|0.42 , qgrams(x.name ,y.name)|0.61)

Listing 2. Grouping example.

The original verbalization of LS from Listing 2 is: The name of source
and target resources has a 42% of Jaccard similarity or the name
of source and target resources has a 61% of Qgrams similarity. And
after applying grouping, our verbalization will become more com-
pact as follows: The name of source and target resources has a 42% of
Jaccard similarity or a 61% of Qgrams similarity.

3.3 Summarization

We propose a sentence-scoring-based LS summarization approach. The basic
idea behind our summarization approach is to simplify the original LS tree by,
in order, pruning LS sub-trees that achieve the minimum selectivity score. i.e.,
keep the information loss minimum. Given an input LS Li, our summarization
approach first generates an ordered list L of simplified LSs of Li, where L is
ordered by the selective score of each of its elements in descending order. This
step is carried out by iteratively pruning the sub-tree of Li with the minimum
selectivity score.

In cases where a summarization threshold τ ∈ [0, 1] is given, the output of
our summarization algorithm will be generated by applying our LS verbalization
approach to the LS L ∈ L with the highest selectivity score σ(L) ≤ τ . Otherwise,
the output of our summarization approach will be a list of the verbalization of
the whole list L.

4 Evaluation

We evaluated our approaches for LS verbalization and summarization in order
to elucidate the following questions:

Q1: Does the LS verbalization help the user to better understand the conditions
sufficient to link the resources in comparison to the original LS?

Q2: How fluent is the generated LS verbalization? i.e., how good is the natural
language description of the LS verbalization in terms of comprehensibility
and readability?

Q3: How adequate is the generated LS verbalization? i.e., How well does the
verbalization capture the meaning of the underlying LS?

Q4: How much information do we lose by applying our summarization approach?

LSVS 73

4.1 Experimental Setup

To answer the first three questions, we conducted a user study in order to eval-
uate our LS verbalization. Therefore, we used our approach to verbalize a set of
five LSs automatically generated by the Eagle algorithm [15] for the benchmark
datasets of Amazon-GP, ABT-BUY, DBLP-ACM, and DBLP-Scholar from [10]. Our
user study consists of four tasks, where each task consists of five multiple choice
questions2. Altogether, we have a group of 18 participants in our user study from
the DICE3 and AKSW4 research groups. In the following, we explain each task:

– Task 1: This task consists of five identical sub-tasks. For each we present
the survey participant a LS and three pairs of source and target resources
represented by their respective concise bounded descriptions (CBD)5 graph.
These pairs are matched together based on the provided LS with different
degrees of confidence. To this end, the participant is asked to find the best
matched pair, and we measure the response time for each participant.

– Task 2: This task also consists of five identical sub-tasks. We again follow
the same process in Task 1 of presenting the participant with the CBDs of
matched resources, but this time we give the survey participant the verbal-
ization of the LSs. Again, we record the response time of each participant.

– Task 3: Within this task, a survey participant is asked to judge the fluency of
the provided verbalization. We follow here the machine translation standard
introduced in [5]. Fluency captures how good the natural language descrip-
tion is in terms of comprehensibility and readability according to the following
six ratings: (6) Perfectly clear and natural, (5) Sounds a bit artificial, but is
clearly comprehensible. (May contain minor grammatical flaws.), (4) Sounds
very artificial, but is understandable (although may contain significant gram-
matical flaws), (3) Barely comprehensible, but can be understood with some
effort, (2) Only a loose and incomplete understanding of the meaning can be
obtained, and (1) Completely not understandable at all.

– Task 4: In this task, we provide a survey participant with a LS and its ver-
balization. They are then asked to judge the adequacy of the verbalization.
Here we follow the machine translation standard from [5]. Adequacy addresses
how well the verbalization captures the meaning of the LS, according to the
following six ratings: (6) Perfect, (5) Mostly correct, although maybe some
expressions don’t match the concepts very well, (4) Close, but some infor-
mation is missing or incorrect, (3) There is significant information missing
or incorrect, (2) Natural Language (NL) description and LS are only loosely
connected, and (1) NL description and LS are in no conceivable way related.

For answering the last question, we conducted an experiment on the bench-
mark datasets from [10]. We ran the supervised version of the Wombat algo-
rithm to generate an automatic LS for each dataset. We again used [19] to
2 The survey interface can be accessed at https://umfragen.uni-paderborn.de/index.

php/186916?lang=en.
3 https://dice.cs.uni-paderborn.de/about/.
4 http://aksw.org/About.html.
5 https://www.w3.org/Submission/CBD/.

https://umfragen.uni-paderborn.de/index.php/186916?lang=en
https://umfragen.uni-paderborn.de/index.php/186916?lang=en
https://dice.cs.uni-paderborn.de/about/
http://aksw.org/About.html
https://www.w3.org/Submission/CBD/

74 A. F. Ahmed et al.

configure Wombat. Afterwards, we applied our summarization algorithm to
each of the generated LSs. Because of the space limitation, we present only the
verbalization of the original LS (the ones generated by Wombat) as well as
the first summarization of it for the Amazon-GP and DBLP-Scholar datasets in
Table 3. The complete results are available on the project website6.

Fig. 2. Average response time of our user
study.

Fig. 3. Correct answers of our user study.

4.2 Results and Discussion

After collecting all the responses of our user study, we filtered out those survey
participants who were unlikely to have thoroughly executed the survey (i.e., the
ones who took notably less time than the average response time of all other
participants) or who were likely distracted while executing it (i.e., the ones who
took notably more time than the average time of all other participants). This
process reduces the number of valid participants to 16. Our final accepted time
window was 3.5 − 38 min for Task 1 & 2. Accordingly, we start our evaluation
by comparing the user time required to find the best matched source-target pair
using LS (Task 1) against using the verbalization of the provided LS (Task 2).

As shown in Fig. 2, the average user response time with LS verbalization is
less than the ones for LS in all the 5 LSs in our users study. On average, using
verbalization is 36% faster than using LS. Additionally, we also compared the
error rates of participants in Task 1 & 2, i.e. the number of incorrect answers
per question. As shown in Fig. 3, using verbalization we have a higher error rate
(5% mean squared error) than when using LS. These results show that using LS
verbalization decreases the average response time, which is an indicator that our
participants were able to better understand underlying LS using verbalization.
Still, using the LS verbalization does not always lead our participants to select
the correct answer. This is due to the complexity involved in the underlying
LSs, which leads to verbalization that is too long. This answers Q1. Using our
simplification approach on the same LS verbalization leads our participants to
achieve better results.

6 https://bit.ly/2XKDpKZ.

https://bit.ly/2XKDpKZ

LSVS 75

The results of Task 3 (see Fig. 4) show that the majority of the generated
verbalizations (i.e., the natural language descriptions) were fluent. In particular,
87% of the cases achieved a rating of 3 or higher. On average, the fluency of the
natural language descriptions is 5.2 ± 1.8. This answers Q2.

For Task 4, the average adequacy rating of our verbalization was 5 ± 2.55
(see Fig. 5), which we consider to be a positive result. In particular, 40% of

Fig. 4. Fluency results. Fig. 5. Adequacy results.

Table 3. Verbalization of different summarization of a LS for the DBLP-SCHOLAR and
Amazon-GP dataset together with respective F-measure.

Dataset F Verbalization

DBLP-SCHOLAR 1 The link will be generated if the title of the source

and the target resources has a 66% of Cosine

similarity or the resource’s title of the source and

the resource’s author of the target has a 43% of

Jaccard similarity or the resource’s author of the

source and the resource’s title of the target has a

43% of Trigram similarity

DBLP-SCHOLAR 0.88 The link will be generated if the title of the source

and the target resources has a 66% of Cosine

similarity

Amazon-GP 1 The link will be generated if the resource’s title of

the source and the resource’s name of the target has

a 48% of Cosine similarity or the description of the

source and the target resources has a 43% of Cosine

similarity or the resource’s title of the source and

the resource’s description of the target has a 43% of

Jaccard similarity

Amazon-GP 0.97 The link will be generated if the resource’s title of

the source and the resource’s name of the target has

a 48% of Cosine similarity

76 A. F. Ahmed et al.

all verbalizations were judged to be perfectly adequate and 83% of the cases
achieved a rating of 3 or higher. This answers Q3.

As we can see in Table 3, applying our summurization approach reduces the
verbalization of the original LS to more that half of its original size. At most our
summarization approach loses an F-Measure of 12% of the original description,
which we conceder a fair price given the high summarization rate. This clearly
answer our last question.

5 Related Work

While we believe that this is the first work that shows how to verbalize LS, related
work comes from three research areas: declarative link discovery approaches,
verbalization of Semantic data and text summarization.

Declarative Link Discovery frameworks rely on complex LS to express the
conditions necessary for linking resources within RDF datasets. For instance,
state-of-the-art LD frameworks such as Limes [13] and Silk [9] adopt a property-
based computation of links between entities. All such frameworks enable their
users to manually write LS and excute it against source-target resources. In
recent years, the problem of using machine learning for the automatic genera-
tion of accurate LS has been addressed by most of the link discovery frameworks.
For example, the Silk framework [9] implements a batch learning approach for
the discovery LS, based on genetic programming, which is similar to the app-
roach presented in [3]. For the Limes framework, the Raven algorithm [14]
is an active learning approach that treats the discovery of specifications as a
classification problem. In RAVEN, the discovery of LS is done by first finding
class and property mappings between knowledge bases automatically. It then
uses these mappings to compute linear and boolean classifiers that can be used
as LS. Eagle [15] has addressed the readability of LS alongside accuracy and
efficiency. However,the generated LS is still expressed in a declarative manner.
Recently, the Wombat algorithm [19] has implemented a machine leaning algo-
rithm for automatic LS finding by using generalization via an upward refinement
operator.

With the recent demand on new explainable machine learning approaches,
comes the need for the verbalization of semantic data involved within such
approaches. For example, [17] expands on an approach for converting RDF triples
into Polish. The authors of [12] espouse a reliance on the Linked Data Web being
created by reversing engineered structured data into natural language. In their
work [20], the same authors show how this approach can be used to produce text
out of RDF triples. Yet another work, [11], generated natural language out of
RDF by depending on the BOA framework [7,8] to compute the trustworthiness
of RDF triples using the Web as background knowledge. Other approaches and
concepts for verbalizing RDF include [16] and [22]. Moreover, approaches to ver-
balizing first-order logics [6] are currently being devised. In very recent work [21],
the authors have addressed the limitations of adapting rule-based approaches to
generate text from semantic data by proposing a statistical model for NLG using
neural networks.

LSVS 77

The second fold of our approach is the summarization of LS, which is related
to work in the area of text summarization with a focus on sentence scoring
techniques. The work [1] surveys many sentence scoring techniques. Furthermore,
the survey [2] addresses many text summarization methods. However, in our
summarization technique the summarization score is user-defined.

6 Conclusions and Future Work

In this paper, we presented LSVS, an approach for verbalizing LS. LSVS pro-
duces both a direct literal verbalization of the content of the LS and a more
natural aggregated version of the same content. We presented the key steps of
our approach and evaluated it with a user study. Our evaluation shows that
the verbalization generated by our approach is both complete and easily under-
standable. Our approach not only accelerates the understanding of LS by expert
users, but also enables non-expert users to understand the content of LS. Still,
our evaluation shows that the fluency of our approach is worse when the LS
gets more complex and contains different operators. In future work, we will thus
improve upon our aggregation to further increase this fluency. Moreover, we will
devise a consistency checking algorithm to improve the correctness of the natural
language generated by our approach.

Acknowledgement. This work has been supported by the BMVI projects LIMBO
(GA no. 19F2029C) and OPAL(no. 19F2028A), Eurostars Project SAGE (GA no.
E!10882) as well as the H2020 projects SLIPO (GA no.731581).

References

1. Assessing sentence scoring techniques for extractive text summarization. Expert
Systems with Applications (2013)

2. Allahyari, M., et al.: Text summarization techniques: a brief survey. CoRR (2017)
3. Carvalho, M.G., Laender, A.H.F., Gonçalves, M.A., da Silva, A.S.: Replica Identi-

fication Using Genetic Programming. ACM, New York (2008)
4. Dalianis, H., Hovy, E.: Aggregation in natural language generation. In: Adorni, G.,

Zock, M. (eds.) EWNLG 1993. LNCS, vol. 1036, pp. 88–105. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-60800-1 25

5. Doddington, G.: Automatic evaluation of machine translation quality using n-gram
co-occurrence statistics. In: Proceedings of HLT, pp. 138–145 (2002)

6. Fuchs, N.E.: First-order reasoning for attempto controlled english (2010)
7. Gerber, D., Ngomo, A.-C.N.: Extracting multilingual natural-language patterns

for rdf predicates. In: EKAW, pp. 87–96 (2012)
8. Gerber, D., Ngonga Ngomo, A.-C.: Bootstrapping the linked data web. In: 1st

Workshop on Web Scale Knowledge Extraction @ ISWC 2011 (2011)
9. Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link dis-

covery without losing Recall. In: WebDB (2011)
10. Köpcke, H., Thor, A., Rahm, E.: Comparative evaluation of entity resolution

approaches with fever. Proc. VLDB Endow. 2(2), 1574–1577 (2009)

https://doi.org/10.1007/3-540-60800-1_25

78 A. F. Ahmed et al.

11. Lehmann, J., Gerber, D., Morsey, M., Ngonga Ngomo, A.-C.: Defacto - deep fact
validation. In: ISWC (2012)

12. Mellish, C., Sun, X.: The semantic web as a linguistic resource: opportunities for
natural language generation (2006)

13. Ngomo, A.-C.N., Auer, S.: Limes - a time-efficient approach for large-scale link
discovery on the web of data. In: IJCAI (2011)

14. Ngonga Ngomo, A.-C., Lehmann, J., Auer, S., Höffner, K.: Raven - active learning
of link specifications. In: Proceedings of OM@ISWC (2011)

15. Ngonga Ngomo, A.-C., Lyko, K.: EAGLE: efficient active learning of link specifica-
tions using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho,
O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-30284-8 17

16. Piccinini, H., Casanova, M.A., Furtado, A.L., Nunes, B.P.: Verbalization of rdf
triples with applications. In: ISWC - Outrageous Ideas Track (2011)

17. Pohl, A.: The polish interface for linked open data. In: Proceedings of the ISWC
2010 Posters & Demonstrations Track, pp. 165–168 (2011)

18. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press, New York (2000)

19. Sherif, M.A., Ngonga Ngomo, A.-C., Lehmann, J.: Wombat – a generalization
approach for automatic link discovery. In: Blomqvist, E., Maynard, D., Gangemi,
A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp.
103–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5 7

20. Sun, X., Mellish, C.: An experiment on “free generation” from single rdf triples.
In: Association for Computational Linguistics (2007)

21. Vougiouklis, P., et al.: Neural wikipedian: generating textual summaries from
knowledge base triples. J. Web Semant. 52–53, 1–15 (2018)

22. Wilcock, G., Jokinen, K.: Generating Responses and Explanations from RDF/XML
and DAML+OIL (2003)

https://doi.org/10.1007/978-3-642-30284-8_17
https://doi.org/10.1007/978-3-319-58068-5_7

Deceptive Reviews Detection Using Deep
Learning Techniques

Nishant Jain(&), Abhay Kumar(&), Shekhar Singh(&),
Chirag Singh(&), and Suraj Tripathi(&)

Samsung R&D Institute India, Bangalore, India
{nishant.jain,abhay1.kumar,s.singh02,c.singh,

suraj.tri}@samsung.com

Abstract. With the increasing influence of online reviews in shaping customer
decision-making and purchasing behavior, many unscrupulous businesses have
a vested interest in generating and posting deceptive reviews. Deceptive reviews
are fictitious reviews written deliberately to sound authentic and deceive the
consumers. Traditional deceptive reviews detection methods are based on var-
ious handcrafted features, including linguistic and psychological, which char-
acterize the deceptive reviews. However, the proposed deep learning methods
have better self-adaptability to extract the desired features implicitly and out-
perform all traditional methods. We have proposed multiple Deep Neural Net-
work (DNN) based approaches for deceptive reviews detection and have
compared the performances of these models on multiple benchmark datasets.
Additionally, we have identified a common problem of handling the variable
lengths of these reviews. We have proposed two different methods – Multi-
Instance Learning and Hierarchical architecture to handle the variable length
review texts. Experimental results on multiple benchmark datasets of deceptive
reviews have outperformed existing state-of-the-art. We evaluated the perfor-
mance of the proposed method on other review-related task-like review senti-
ment detection as well and achieved state-of-the-art accuracies on two
benchmark datasets for the same.

Keywords: Deceptive reviews � Fake reviews � Deep learning �
Convolutional neural network � Recurrent neural network � Word embedding

1 Introduction

In recent years, there has been a dramatic increase in the number of online user-
generated reviews for a plethora of products and services across multiple websites.
These reviews contain the subjective opinion of the users along with various detailed
information. We rely a lot on these user-reviews before making up our mind, like
which restaurant to go, what to buy, which hotel to stay in, and so on. Given the
increased influence of these reviews in shaping customer’s decision making, there is an
incentive and opportunities for unscrupulous business to generate and post fake

N. Jain and A. Kumar—equal contribution. S. Singh, C. Singh and S. Tripathi—equal contribution.

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 79–91, 2019.
https://doi.org/10.1007/978-3-030-23281-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_7

reviews, either in favor of themselves or in disapproval of competition rivals.
Deceptive reviews are deliberately written to sound authentic and help businesses to
gain financial advantage and enhance their reputation. In addition, online reviews are of
varied writing styles, linguistic types, content and review lengths, making it difficult for
human readers to identify themselves as well.

With ever-increasing instances of deceptive reviews, there has been a series of
research works to identify deceptive/fake reviews using different linguistic and psy-
chological cues. In a marketing research study by Spiegel1, it has been shown that
nearly 95% of shoppers make a purchase after reading online reviews and that the
product with at least five reviews has 270% greater likelihood to be purchased than the
products with no reviews. This shows the necessity of robust deception detection
methods to maintain the reliability and facticity of online reviews. Recently, this has
captured the attention of both businesses and research community; giving rise to state-
of-the-art results.

2 Related Work

Spam detection has been historically researched extensively in the contexts of e-mails
[1] and web-texts [2]. In recent years, researchers have proposed various approaches
for deceptive or manipulative reviews detection. Jindal et al. [3] proposed a supervised
classifier (Logistic Regression) using features based on review content, reviewer pro-
file, and the product descriptions. Yoo et al. [4] presented the comparative study of
language structure of truthful and deceptive reviews using deception theory and
demonstrated the difficulty of detecting deceptive reviews based on the structural
properties, i.e. lexical complexity. Ott et al. (2011) [5] employed Turkers to write
deceptive reviews and created a benchmark dataset of 800 reviews (400 gold-standard
deceptive reviews and 400 truthful reviews) to be used in subsequent works. They
modeled it as n-gram based text categorization task and proposed a Support Vector
Machine (SVM) classifier exploiting the computational linguistics and psychological
approaches for detecting deceptive reviews. They have also framed it as a genre
classification task, exploiting the writing style difference between informative and
imaginative reviews for truthful and deceptive reviews respectively. Additionally, they
have assessed the human performance for the task; the average accuracy of three
human judges were meager 57.3% as compared to 89.9% accuracy of their proposed
classifier. Feng et al. [6] investigated the syntactic stylometry approach and achieved
better performance by using syntactic features from context-free-grammar parse trees.
Most of these works were focused on extracting the richer textual features to improve
deception detection performance. However, the difficulty of creating human-labeled
data and the inability of hand-crafted features to capture non-local semantic informa-
tion over a discourse solicited various alternative approaches, like semi-supervised
learning approach, approaches exploiting the user behavioral aspects, etc.

1 https://spiegel.medill.northwestern.edu/online-reviews/.

80 N. Jain et al.

https://spiegel.medill.northwestern.edu/online-reviews/

Feng et al. [7] used aspect based profile compatibility measure to compare the test
review with the product profile, built from a separate collection of reviews for the same
product. Mukherjee et al. [8] modeled the spamicity of an author using various
observed reviewer’s behavior to identify spammer. Apart from the textual features,
many other works also have been focused on the behavioral aspects (like extreme
ratings, too many reviews in short time, duplicate content or ratings, etc.) of the
spammers. Ren et al. [9] proposed and Fusilier et al. [20] improved the semi-supervised
learning method to detect deceptive reviews.

In recent years, Deep Neural Network (DNN) models have been used to learn better
semantic representations for improved performance in various NLP tasks. Kim [10]
introduced Convolutional Neural Network (CNN) model for text classification to
capture the frame-based semantic features. Ren et al. [11] explore a neural network
model to learn document-level representation for detecting deceptive reviews. They
make use of gated recurrent neural network model with attention mechanism for
detecting deceptive opinion; by capturing non-local discourse information over sen-
tence vectors. Zhao et al. [12] use a convolution neural network model by embedding
the word order characteristics in its convolution and pooling layer; this makes the
model more efficient in detecting deceptive opinions.

3 Datasets

We evaluate our architectures quantitatively on three different benchmark datasets for
deceptive reviews detection (Sects. 3.1 to 3.3). Additionally, we evaluated our pro-
posed architecture for addressing variable length text sequences on another related task,
i.e. Review Sentiment Detection. We evaluate our proposed model on two additional
datasets (Sects. 3.4 and 3.5) for review sentiment detection to show the scalability of
the proposed network for various text classification task. The statistics of these datasets
is summarized in Table 1.

3.1 Deceptive Opinion Spam Corpus v1.4 (DOSC)

Deceptive opinion dataset [5] consists of real and fake reviews about 20 separate hotels
in Chicago. It contains 400 real and 400 fake reviews of both positive and negative
sentiments respectively. The truthful reviews have been collected from online websites
like TripAdvisor2, Expedia3 etc., while the deceptive opinions have been collected
using Amazon’s Mechanical Turk. It also provides a predetermined five folds for 5-fold
cross-validation.

2 https://www.tripadvisor.com.
3 https://www.expedia.com/.

Deceptive Reviews Detection Using Deep Learning Techniques 81

https://www.tripadvisor.com
https://www.expedia.com/.

3.2 Four-City Dataset

Four-city Dataset [13] consists of 40 real and 40 fake reviews for each of the eight
hotels in four different cities. The real reviews were chosen using random sampling on
positive 5-star reviews. Amazon’s Mechanical Turk was used to write fake reviews to
get gold-standard deception dataset.

3.3 YelpZip Dataset

YelpZip dataset [14] consists of real world reviews of restaurants and hotels sampled
from yelp along with near ground truth as provided by the Yelp review filter. YelpZip
consists of reviews from 5044 hotels by 260,277 reviewers from various New York
State zip codes. There are 608598 total reviews with 528141 true and 80457 deceptive
review dataset. Due to high data-imbalance, Fontanarava et al. [15] created a balanced
dataset by under-sampling the truthful reviews. We follow the same setting as well.

3.4 Large Movie Review Dataset

Large Movie Review Dataset (LMRD) [16] is a sentiment classification benchmark
dataset that contains 50,000 reviews from IMDB, with no more than 30 reviews per
film. The dataset provides a train-test split with both training and testing split con-
taining 25,000 reviews respectively. Both splits are further evenly divided into positive
and negative reviews with 12,500 reviews in each category.

3.5 Drug Review Dataset

Drug Review Dataset (DRD) [17] is a review sentiment dataset with 215063 reviews
from drugs.com website. The reviews in this dataset have three different polarities –

positive, negative and neutral. The dataset provides a 75%–25% train-test split using
stratified random sampling.

3.6 Dataset Statistics and Visualization

We have shown (in Fig. 1) the word-cloud diagrams to visualize the word frequencies
in truthful and deceptive reviews. Both the word-clouds have occurrences of very

Table 1. Dataset statistics

Dataset name Total number of reviews Word-length of review text
Minimum Maximum Mean Standard deviation

YelpZip 608598 1 5213 115 106
DOSC 1600 26 784 149 87
Four-city 640 4 413 138 47
DRD 215063 1 1857 86 46
LMRD 50000 4 2470 234 173

82 N. Jain et al.

similar words. We found that the frequencies of the top hundred words per review in
both truthful and deceptive reviews are similar. This makes it very difficult for tradi-
tional methods like tf-idf to identify the deceptive reviews correctly. This calls for deep
learning based approaches to learn the semantic and syntactic differences between the
truthful and deceptive reviews. We have also shown (in Fig. 2) the frequency distri-
bution of data with respect to the length for two different datasets.

4 Neural Network Models

For both Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN),
due to computational limitations, we decided to trim the input sequence to 150 words
(average word-length for all the datasets derived from the statistic shown in Table 1)
since this led to reasonable convergence time and memory footprint.

Also, inputs (reviews) are represented using word embedding as discussed below.

Fig. 1. Word-cloud of frequently used words in truthful and deceptive reviews

Fig. 2. Histogram plot of sequence length of reviews (for Yelp & LMRD datasets respectively)

Deceptive Reviews Detection Using Deep Learning Techniques 83

4.1 Word Embedding

Word embedding gained popularity through its use in various NLP tasks say, language
modelling, text classification and sentiment analysis in recent past. Word embedding is
a distributed representations of a word in an n-dimensional space using high-
dimensional vectors (say, 200 to 500 dimensions).

Mikolov et al. [18] proposed an unsupervised architecture to learn the distributed
representation of words in a corpus. He gave two different architecture namely con-
tinuous bag of words (CBOW) and skip-gram. CBOW predicts the current word based
on surrounding words while skip-gram predicts the surround words based on the given
word. Mikolov et al. [18] also provided pre-trained word embedding based on google
news corpus.

We experimented with both pre-trained and randomly initialized word embedding
in our experiment and found pre-trained embedding to be more accurate. We also
experimented with training our own word vector and have discussed its effects in the
discussions section below.

4.2 Convolutional Neural Network

CNN uses convolutional and pooling to extract spatial features based on the locality of
reference in images. In recent studies, CNNs have been extended to NLP tasks as well.
Kim [10] showed that CNN can be used effectively for the text classification task and
gives promising results. In our model, we use three parallel convolutional layers with
100 filters each. The kernel shape for the three convolutional blocks are-f hi � f wi ,
where, f wi ¼ dimension of word embedding vector and f hi ¼ 3; 5;&7. The feature maps
generated by all three convolutional blocks are max-pooled, concatenated and fed to
the hidden fully connected (FC) layer of 1024 and 256 neurons sequentially. The
output of hidden FC is fed to the output softmax layer to give the class probabilities.
Dropout regularization is also used between concatenation layer and first FC layer to
counter the effect of overfitting (Fig. 3).

4.3 Recurrent Neural Network

CNN is a great tool to extract features from a local region but less effective while
learning long term dependencies. To overcome this obstacle, RNNs are used which are

Fig. 3. Architecture diagram of convolutional neural network

84 N. Jain et al.

capable of learning features from long term dependencies through their recurrent
structure. But the vanilla RNN in practice suffers from problems of short-term memory.
They are not able to retain information over longer sentences due to vanishing gradient
problem. To handle this issue, we use Gated Recurrent Unit (GRU) [19] in our
experiments, which can overcome this problem by regulating the flow of information
through them.

The architecture consists of a single GRU of 1024 units along with attention
module. The attention module assigns a value between zero and one to each word;
depicting its importance or relevance to the context vector. The output of GRU
weighted by attention values is fed to the FC layer, which outputs the final class
probability distribution. The GRU unit can be defined as below:-

zt ¼ rg ðWzxt þUzht�1 þ bzÞ ð1Þ

rt ¼ rh ðWrxt þUrht�1 þ brÞ ð2Þ

ht ¼ 1� ztð Þ � ht�1 þ zt � rhðWhxt þUhðrt � ht�1Þþ bhÞ ð3Þ

where xt is input vector and ht is output vector at time t. zt is the update gate vector and
rt is the reset gate vector. W ;U and b are learnable matrices and vectors. rg and rh
represents activation functions and � is Hadamard operator and h0 ¼ 0.

5 Proposed Methods for Handling Variable Length Reviews

We observe a large variation in the sequence length of review texts, and therefore we
need to decide the maximum sequence length of the input review texts. Usually, we set
a maximum sequence length to get optimal computation cost and accuracies. If the
max-sequence length is small, then some part of the text is trimmed and not exposed to
the network. This affects the accuracies worst in those cases, where the user summarize
their opinion in the last few sentences. Selecting larger sequence length leads to high
computation cost and slow convergence. Having observed this common problem across
various text classification task especially review-text related tasks, we proposed two
different architectures to address the problem. The proposed models are described in
the following sub-sections.

5.1 Hierarchical Model Architecture

We propose a hierarchical model architecture with CNN followed by GRU to take
variable length text sequences as input. The input review text is divided into multiple
instances, each having twenty words. The total number of instances is a variable
depending on the actual word length of the given review. Each instance is fed to a CNN
network to extract localized regional features from the words in the instances. These
features from CNN are able to capture lexical n-gram characteristics by using con-
volutional kernels of different shapes. We use three different convolution blocks with

Deceptive Reviews Detection Using Deep Learning Techniques 85

dimension f hi � f wi , where f wi ¼ dimension of word embedding vector, and f hi ¼
3; 5;&7: Different convolutional kernels are capable of capturing n-gram semantics of
varying granularities, i.e., tri-gram, five-gram, and seven-gram. The convolutional layer
features are fed to max-pooling layer and the output is flattened. The flattened output
from the CNN network acts as instance representation. The CNN block is the same as
the one described in Sect. 4.2.

At the next stage, different instance representations are passed to a GRU network.
The GRU model is good at capturing long-range discourse structures among the
instance representations. The output representation of the GRU is fed to the FC layer
and subsequently to the softmax layer to predict the class label probabilities. The
detailed architecture of the proposed hierarchical CNN-GRU network is shown in
Fig. 4.

5.2 Multi-Instance Learning (MIL)

We also propose a simplistic way to handle variable length review text using any deep
learning architectures. In the multi-instance paradigm, we split the input text sequence
into multiple instances of a fixed length (shown in Fig. 5). These different splits are fed
as different instances to the model and act as different training examples with the same
labels. We discard the last instance if its word-length is less than fifteen. During test
time, we evaluate the class probabilities for all instances and assign the label by taking
max-vote of predictions of all instances.

Fig. 4. Schematic diagram of hierarchical CNN-GRU model

86 N. Jain et al.

6 Evaluations and Discussions

We have performed a series of experiments for the deceptive review detection and the
experimental results are presented and discussed in the following sub-sections. In case
of no predefined train-test splits available for the dataset, we have split the data using
stratified k-fold method and presented 5-fold cross validation scores.

6.1 Evaluation of Various DNN Based Models for Deceptive Review
Detection

We have experimented with different model architectures for deceptive review detec-
tion. We have presented the 5-fold cross validation in Table 2. Baseline model accu-
racy for each dataset is also shown in the table for comparative study. Most literature

Fig. 5. Schematic diagram of traditional and multi-instance learning.

Table 2. Experimental results for various deceptive review datasets.

Dataset Models Accuracy (%) Precision Recall

Deceptive opinion spam corpus v1.4 Baseline [5] 86.5 0.86 0.87
CNN 89.6 0.89 0.89
GRU 90.3 0.91 0.90
MIL 90.1 0.90 0.90
CNN-GRU 91.9 0.92 0.91

Four-city dataset Baseline [13] 80.1 0.79 0.82
CNN 82.4 0.82 0.81
GRU 82.9 0.83 0.83
MIL 82.8 0.83 0.83
CNN-GRU 84.7 0.85 0.85

YelpZip dataset Baseline [15] 54.2 0.63 0.48
CNN 63.8 0.59 0.61
GRU 64.2 0.63 0.62
MIL 64.6 0.60 0.62
CNN-GRU 66.4 0.67 0.65

Deceptive Reviews Detection Using Deep Learning Techniques 87

on deceptive review detection covers traditional approaches by exploiting hand-crafted
features- linguistic or psychological. DNN based models have outperformed traditional
methods by adaptively learning the best possible contextual features, responsible to
distinguish the truthful and deceptive reviews. For all three datasets, CNN and GRU
models have achieved better accuracies, with GRU using attention mechanism being
marginally better than CNN. GRU model is capable of capturing the long range
dependencies inherent in the review text and giving adequate attention to the words
aligned with the review context. Whereas, CNN fails to capture context-dependent
semantic relationships in the long texts. For all three datasets, our models have out-
performed state-of-the-art result by atleast 2.8%.

6.2 Evaluation of Proposed Models for Handling Variable Length
Reviews

As evident from Table 1, the review texts are varied in its length and follow a long-tail
distribution as shown in Fig. 2. Although majority of the reviews are less than roughly
hundred words, there are many reviews with much larger word-length. Usually, the
decision to trim the long review text assumes that the underlying semantic and syntactic
features, responsible for distinguishing truthful and deceptive reviews are present
throughout the review text. But, this assumption ignores the human tendency or
standard writing structure to conclude important factors at the end of review texts.
Owing to this fact, we don’t want to discard any valuable part of the review text and
expose the complete review during the model training process. Our claims are verified
by the increased performances of both our proposed models as compared to the vanilla
CNN and GRU models. In Table 2, we have made a comparative study of two pro-
posed approaches for handling variable length deceptive reviews. Hierarchical CNN-
GRU model outperforms CNN or GRU models by at least 1.6% for all three datasets.

6.3 Evaluation on Proposed Models for Handling Variable Length
Reviews on Another Task (Review Sentiment Detection)

To show the effectiveness and scalability of our proposed models in handling variable
length text sequences, we evaluated them on two benchmark review sentiment
detection task as well. In Table 3, we have made a comparative study of proposed

Table 3. Accuracy for the proposed models for review sentiment detection datasets

Dataset Models Accuracy (%) Precision Recall

LMRD CNN 86.5 0.87 0.86
GRU 86.8 0.87 0.87
MIL 87.1 0.87 0.87
CNN-GRU 88.9 0.88 0.89

DRD CNN 76.8 0.77 0.77
GRU 76.3 0.76 0.76
MIL 78.2 0.78 0.78
CNN-GRU 83.8 0.84 0.83

88 N. Jain et al.

approaches and standard DNN models. Hierarchical CNN-GRU model outperforms
standard CNN/GRU models by 2.1% and 7% on LMRD and DRD datasets respec-
tively. Improved performance of the proposed models on two different tasks and 5
different datasets illustrates the importance of considering the entire review to get the
complete context and not missing out any important and distinguishing aspects.

6.4 Discussions

Effect of Different Lengths of Review Texts: Review texts vary a lot in its word
length, ranging from 1 to 5213 in our datasets. In the vanilla CNN and GRU archi-
tectures, we need to decide the maximum sequence length of the input review text, and
the text is either trimmed or zero-padded accordingly. However, by restricting the
review text to a smaller fixed length, the models are not exposed to the complete review
and hence perform poorly in learning the overall context of the reviews. In addition,
adopting a larger maximum sequence length increases both the number of learnable
parameters and computational cost. Our proposed models take a different number of
instances depending on the length of an input review text and learns the complete
context of the review. The better performance of our proposed models; confirms the
hypothesis that discriminative semantic and syntactic features are not evenly distributed
throughout the review texts and could be even present in the concluding sentences.

Effect of Pre-trained Word Embeddings: We used word2vec models to get word-
embedding vector. We experimented with both pre-trained word2vec on Google News
corpus and pre-trained on review dataset (combined corpus of all dataset mentioned in
Sect. 3). There is a marginal improvement in accuracies by using pre-trained word2vec
embedding on review datasets. Empirically, we find that 300-dimensional embedding
performs better than 150-dimensional one.

7 Conclusions

In the paper, we have experimented with various deep learning based models for
identifying deceptive reviews. We presented a comparative study of the experimental
results of the various models on four different benchmark datasets. Additionally, we
have identified a common problem across all datasets, i.e., variable length of the
reviews. In other text classification task, we usually trim the long text sequences and
zero-pad the short ones. However, we lose a significant part of the review’s semantic
information. We have proposed two different approaches to handle the high variance of
review textual lengths. Multi-Instance Learning approach is based on feeding different
instances of the same training example to the same model. Hierarchical CNN-GRU
model is based on extracting n-gram like semantic features using Convolutional Neural
Network (CNN) and learning semantic dependencies among the extracted features from
CNN modules. Both these models are capable of handling very long reviews texts and
are better at deception detection. We have demonstrated that the proposed MIL and
Hierarchical CNN-GRU models outperform the classical CNN and RNN models on all
four benchmark datasets. For the future work, we will consider adding metadata of the

Deceptive Reviews Detection Using Deep Learning Techniques 89

reviews in our proposed models to make it more robust and accurate. We will also
study and analyse the effect of our models on different NLU tasks; involving long and
variable length features.

References

1. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank. In:
Proceedings of the 13th International Conference on Very Large Data Bases, vol. 30,
pp. 576–587 (2004)

2. Ntoulas, A., Najork, M., Manasse, M., Fetterly, D.: Detecting spam web pages through
content analysis. In: Proceedings of the 15th International Conference on World Wide Web,
pp. 83–92. May 2006 (2016)

3. Jindal, N., Liu, B.: Opinion spam and analysis. In: Proceedings of the 2008 International
Conference on Web Search and Data Mining, pp. 219–230, February 2008

4. Yoo, K.H., Gretzel, U.: Comparison of deceptive and truthful travel reviews. Information
and Communication Technologies in Tourism. Springer, Vienna (2009)

5. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by any stretch
of the imagination. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, vol. 1, pp. 309–319 (2011)

6. Feng, S., Banerjee, R., Choi, Y.: Syntactic stylometry for deception detection. In:
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Short Paper, vol. 2, pp. 171–175, July 2012

7. Feng, V.W., Hirst, G.: Detecting deceptive opinions with profile compatibility. In:
Proceedings of the Sixth IJCNLP, pp. 338–346 (2013)

8. Mukherjee, A., et al.: Spotting opinion spammers using behavioral footprints. In:
Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 632–640 (2013)

9. Ren, Y., Ji, D., Zhang, H.: Positive unlabeled learning for deceptive reviews detection.
In EMNLP, pp. 488–498 (2014)

10. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:
1408.5882(2014)

11. Ren, Y., Ji, D.: Neural networks for deceptive opinion spam detection: an empirical study.
Inf. Sci. 385, 213–224 (2017)

12. Zhao, S., Xu, Z., Liu, L., Guo, M., Yun, J.: Towards accurate deceptive opinions detection
based on word order-preserving CNN. Math. Probl. Eng., 2018 (2018)

13. Li, J., Ott, M., Cardie, C.: Identifying manipulated offerings on review portals. In:
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pp. 1933–1942 (2013)

14. Rayana, S., Akoglu, L.: Collective opinion spam detection: bridging review networks and
metadata. In: Proceedings of the 21 thacmsigkdd International Conference on Knowledge
Discovery and Data Mining, pp. 985–994, August 2015

15. Fontanarava, J., Pasi, G., Viviani, M.: Feature analysis for fake review detection through
supervised classification. In: IEEE International Conference on Data Science and Advanced
Analytics, pp. 658–666, October 2017

16. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A. Y., Potts, C.: Learning word vectors
for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 142–150, June 2011

90 N. Jain et al.

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882

17. Gräßer, F., Kallumadi, S., Malberg, H., Zaunseder, S.: Aspect-based sentiment analysis of
drug reviews applying cross-domain and cross-data learning. In: Proceedings of the 2018
International Conference on Digital Health, pp. 121–125, April 2018

18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781(2013)

19. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555(2014)

20. Fusilier, D.H., Montes-y-Gómez, M., Rosso, P., Cabrera, R.G.: Detecting positive and
negative deceptive opinions using PU-learning. Inf. Process. Manag. 51, 433–443 (2015)

Deceptive Reviews Detection Using Deep Learning Techniques 91

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1412.3555

JASs: Joint Attention Strategies
for Paraphrase Generation

Isaac K. E. Ampomah(B), Sally McClean, Zhiwei Lin, and Glenn Hawe

Faculty of Computing, Engineering and Built Environment,
Ulster University, Belfast, UK

{ampomah-i,si.mcclean,z.lin,gi.hawe}@ulster.ac.uk

Abstract. Neural attention based sequence to sequence (seq2seq) net-
work models have achieved remarkable performance on NLP tasks such
as image caption generation, paraphrase generation, and machine trans-
lation. The underlying framework for these models is usually a deep neu-
ral architecture comprising of multi-layer encoder-decoder sub-networks.
The performance of the decoding sub-network is greatly affected by how
well it extracts the relevant source-side contextual information. Conven-
tional approaches only consider the outputs of the last encoding layer
when computing the source contexts via a neural attention mechanism.
Due to the nature of information flow across the time-steps within each
encoder layer as well flow from layer to layer, there is no guarantee that
the necessary information required to build the source context is stored
in the final encoding layer. These approaches also do not fully capture the
structural composition of natural language. To address these limitations,
this paper presents several new strategies to generating the contextual
feature vector jointly across all the encoding layers. The proposed strate-
gies consistently outperform the conventional approaches to performing
the neural attention computation on the task of paraphrase generation.

Keywords: Neural attention · Source context ·
Multi-layer encoder-decoder

1 Introduction

The goal of a paraphrase generator is to generate an output sentence that conveys
the same/similar meaning as the input sentence but with different words and
expressions. Paraphrase generation plays a fundamental role in many NLP tasks
such as summarization, question answering, query re-writing in web searches
and machine translation. For example under machine translation task, para-
phrase generator can be used to rewrite or simplify complex input sentences to
further enhance their translations [21]. However, the task of generating diverse
and accurate paraphrases poses a big challenge. This can be attributed to the
diversity and complexity of natural language.

Several neural based sequence to sequence (seq2seq) architectures have been
proposed for the task of paraphrase generation. At the core of these models is
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 92–104, 2019.
https://doi.org/10.1007/978-3-030-23281-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_8

JASs: Joint Attention Strategies for Paraphrase Generation 93

the encoder-decoder framework. The basic seq2seq model first encodes an input
sentence of arbitrary length into a fixed length hidden representation which is
then processed by the decoder in order to generate a satisfactory target sentence.
As observed by [1], learning the fixed length hidden representation creates a
bottleneck during the decoding phase. The local contextual information gets
diluted as information flows through the encoder network which results in the
loss of information and consequently poor target sentence generation. To improve
the performance, attention neural mechanism [1,12] was introduced to compute
the alignment between the encoder network’s output and the current decoding
step. That is, instead of learning a fixed length vector, the contextual information
for every word is kept and later referenced by the decoder. During decoding,
this mechanism makes it possible for the decoder to peek through the encoder
to utilize the local contextual information for a better mapping of the input
sequence to the output sequence.

The encoder and decoder sub-networks employed by many state of the art
models are composed of multiple RNN layers. Generally, deeper networks are
expected to outperform shallow ones [18,20]. But simply stacking multiple layers
do not always lead to better performance. Consider a multi-layer encoding sub-
network, the existing attention mechanism is performed across only the outputs
of the top-most encoding layer. As we increase the number of encoding layers,
the conventional/vanilla attention failed to train efficiently. A common problem
with very deeper networks is vanishing/exploding gradients which affects the
convergence of the model. Also, the accuracy gets saturated and degrades as the
depth increases [9]. Furthermore, due to the nature of information flow across the
time steps and the multiple layers, there is no guarantee that all the necessary
features needed to capture the local context information is stored within the
last layer (even with the addition of residual/highway connections between the
encoding layers). This is because the memory of each encoding layer is shared
among the multiple time steps and as such is prone to the recency bias problem
[4]. Each layer within the encoding sub-network learns/extracts a particular set
of features which are then passed to the upper layers for further processing
and feature extraction. Therefore it seems reasonable to perform the attention
mechanism collaboratively across all the layers within the encoding sub-network.
For instance, computing the attention/alignment over the embedding layer’s
output vector allows the decoder a direct access to the source tokens and this as
shown by [5] can further improve the performance.

In this work, we investigate different strategies to performing neural attention
mechanism jointly across the multiple encoding layers as presented in Fig. 1. Dur-
ing each decoding step, the decoder is exposed to the entire encoding network.
This approach called JASs enhances the flow of error signal along the depth of
the encoder as well as the time-step within each encoding layer. Evaluations on
two paraphrase datasets show that unlike the Vanilla approach (which performs
the alignment computation across only the final encoding layer’s output), the
joint attention mechanism across the entire encoding sub-network produces a
better performance in terms of the evaluation metrics (Translation Edit Rates

94 I. K. E. Ampomah et al.

Layer 1

Layer 2

Layer L

Attention
Module

...…

merge

DecoderEn
co

de
r

(a) Naive Joint Attention: performs the attention mechanism across a joint
encoder output vector v generated via the merge module.

Layer 1

Layer 2

Layer L

Multi-Attention
Module

...…

Decoder

En
co

de
r

(b) Multi-Attention Mechanism: performs the neural alignment computation
directly across each encoding layers via the Multi-Attention Module based on
the binary vector Ẑ = [Ẑ1, Ẑ2], where Ẑi ∈ {0, 1}.

Ẑ

x2 xx1,[[

[[

m

y1, y2 yt

x2 xx1,[[

m

[[y1, y2 yt

Fig. 1. Joint attention strategies for generating the overall source context vector ct
across a multi-layer encoding sub-network, where x and y are the source and target
sequence respectively. yt is the target token at decoding time-step t.

JASs: Joint Attention Strategies for Paraphrase Generation 95

(TER) [16], BLEU [14] and METEOR [11]). In some cases, the gain in perfor-
mance was achieved with no increase in the number of the model’s parameters
and only a small increase in the computational overhead. The contributions of
this work are:

1. Proposing new approaches to perform attention computations efficiently
across all the layers of a multi-layer encoding sub-network for the task of
paraphrase generation.

2. Demonstrating consistent improvement over the Vanilla approach on two
paraphrase datasets (Quora question pair dataset and Opusparcus [6]).

3. Determining the impact of varying the number of encoding layers which pro-
vides further insights on the actual contributions of the proposed joint atten-
tion strategies.

The remainder of the paper is organized as follows. Section 2 provides a back-
ground to generating paraphrases via neural attention mechanism. The proposed
attention strategies are presented in Sect. 3. The experiments conducted are pre-
sented in Sect. 4, and the results are compared and discussed in Sect. 5. The
conclusion is presented in Sect. 6.

2 Background

Given a source sentence x, represented as a sequence of m tokens
(x1, x2, · · · , xm), where xi is the i th source token, the aim is to generate a target
sequence of tokens y = (y1, y2, · · · , yk) of length k. Under the task of sentence
paraphrasing, the pair of sentences is denoted as (x,y) and the y and x shares
the same meaning. Paraphrase generation is a seq2seq problem and as such an
encoder-decoder framework is employed to generate the target y from a given x.

The goal of the encoding sub-network is to generate a source hidden vector
representation he from a given sentence x. Each source token xi is represented by
its embedding (distributed representation) ei ∈ R

d generated by a word embed-
ding layer W(xi). From the embedding vectors e = [e1, · · · , em], the encoder
computes source hidden annotation he = [he

1, · · · ,he
m] using a bi-directional

RNN where each he
i = [

−→
he
i ⊕ ←−

he
i],

−→
he
i and

←−
he
i are the hidden states generated by

the forward RNN and backward RNN respectively for the token xi.
The decoder generates the output sentence y based on the hidden annota-

tion of the source sentence. During the decoding step t, the probability of the
target token is computed based on the hidden state of the decoder st, previously
generated tokens, y1, y2, · · · , yt−1, and a context vector ct generated via neural
attention mechanism over the output of the encoder network. This as shown in
Eq.(1):

p (yt|y1, · · · , yt−1,x) = σ (Wo [ct ⊕ st] + bo) . (1)

where Wo and bo are trainable parameters. σ(·) is the softmax activation func-
tion and ⊕ is a concatenation operator. The context vector is computed as

96 I. K. E. Ampomah et al.

a weighted sum of the encoder output annotations he with attention weight
vectors at :

ct =
m∑

i=1

at,i · he
i . (2)

The attention weight for each he
i at the decoding step t is computed as:

at,i =
exp (score(st,h

e
i))∑m

i=1 exp (score(st,he
i))

. (3)

where score(v1,v2) is a function modeling the alignment between the st and he
i

vectors. A number of alignment functions exist in literature including:

– bilinear [12]: score(v1,v2) = vT
1Wav2, where Wa is a trainable parameter.

– dot product : score(v1,v2) = vT
1v2

The dot product variant is used for all experiments in this work.

3 JASs: Joint Attention Strategies

Consider a model with L encoding layers, the outputs from all the layers
h =

[
h1,h2, · · · ,hL

]
, where hl =

[
hl
1,h

l
2, · · · ,hl

m

]
is the output from layer

l, conventional models proposed by [1,3,7,12] computes the alignment weights
and context vector (see Eqs. (3) and (2)) based on only the outputs of the last
encoding layer hL (i.e he = hL).

As the depth of the encoder increases, these models fail to train successfully
as a result of the vanishing gradient or exploding gradients [9]. To improve the
flow of information between the encoder-decoder sub-networks during training,
we present strategies to perform the neural attention computation jointly across
the entire encoding network.

3.1 Naive Joint Attention Mechanism

Instead of performing the attention computation across only the output hL of
the top-most encoding layer, the decoder is allowed to attend over a joint encoder
output vector v = [v1,v2, · · · ,vm] generated as a combination of the outputs
of all the encoding layers via a merging module as shown in Fig. 1a. We refer to
this approach as the “Naive joint attention” strategy. Two merging function are
considered in this work:

– concatenation: vi =
[
h1
i ⊕ h2

i ⊕ · · · ⊕ hL
i

]

– summation: vi =
∑L

l=1 h
l
i

Model employing the concatenation approach is referred to as the Naive-concat
model and the summation strategy as Naive-sum. The overall context vector ct
is then computed as:

ct =

m∑

i=1

ât,i · vi . (4)

where ât,i is the joint attention weights computed similarly as shown in Eq. (3)
across vi.

JASs: Joint Attention Strategies for Paraphrase Generation 97

3.2 Multi-Attention Mechanism

The naive approaches provide a simplistic way of performing neural attention
across the entire encoding network but we hypothesis that a more direct access
to each encoding layer can further enhance gradient flow hence improving per-
formance. This implies performing the neural alignment computation directly
across each of the encoding layers via the Multi-Attention Module as shown in
Fig. 1b. The attention weight alt,i across the encoding layer l is computed as:

al
t,i =

exp (score(st,h
l
i))∑m

i=1 exp (score(st,hl
i))

. (5)

Given the attention weights across all encoding layers at = [a1t ,a
2
t , · · · ,aLt], a

joint attention weight is computed as the summation of all the at vectors:

ât,i =

L∑

l=1

al
t,i . (6)

The operation of the Multi-Attention Module is controlled by the value of the
binary vector Ẑ = [Ẑ1, Ẑ2], where Ẑi ∈ {0, 1}. The Ẑ1 controls the choice of
attention vector (either ât or alt) employed to compute the context vector clt
across the encoding layer l :

clt =

{∑m
i=1ât,i · hl

i Ẑ1 = 0
∑m

i=1a
l
t,i · hl

i Ẑ1 = 1
(7)

The overall context vector ct is then generated as the combination of all the
clt. The choice of the combination function (either summation or concatenation)
employed by the Multi-Attention Module is also controlled by the value of Ẑ2 as
shown in Eq. (8).

ct =

{∑L
l=1c

l
t Ẑ2 = 0

[
c1t ⊕ c2t ⊕ · · · ⊕ cLt

]
Ẑ2 = 1

(8)

Depending on the values of Ẑ, the Multi-Attention Module is termed as oper-
ating in a particular mode (either 0, 1, 2 or 3) as summarized in Table.1.

Table 1. Mode of operation of the Multi-Attention Module as determined by the values
of Ẑ1 and Ẑ2. c

l
t is the context vector computed across the encoding layer l and ct is

the overall context vector across the entire encoding sub-network.

Mode Ẑ1 Ẑ2 clt ct

0 0 0
∑m

i=1 ât,i · hl
i

∑L
l=1 c

l
t

1 0 1
∑m

i=1 ât,i · hl
i

[
c1t ⊕ c2t ⊕ · · · ⊕ cLt

]

2 1 0
∑m

i=1 a
l
t,i · hl

i

∑L
l=1 c

l
t

3 1 1
∑m

i=1 a
l
t,i · hl

i

[
c1t ⊕ c2t ⊕ · · · ⊕ cLt

]

98 I. K. E. Ampomah et al.

4 Experimental Setup

4.1 Dataset and Preprocessing

Quora dataset1 consists of question-pairs labeled as either paraphrase or non-
paraphrase pair. Only the positive pairs are extracted. Sentences with length
greater than 30 words were removed resulting in about 148 K question pairs.
The models are evaluated on 143 K training and 5 K test set splits.

Opusparcus2 is a large corpus consisting of sentential paraphrase pairs of
extracted translation of subtitles from movies/TV shows. The dataset comes
with separate training, validation and test set splits. The test and validation
set splits (each consisting of about 1 K subtitle pairs) are manually annotated
by two annotators and verified as acceptable paraphrase pairs. The training set
consists of over 40M “potential” paraphrase pairs automatically ranked based
on multiple probability ranking functions. The size of the training set comes at
the cost of quality and also the sentence pairs have not been manually checked
as paraphrase pairs. As a result, the training set is assumed to contain noise to
some extent. To reduce the training time, about 1.16M highly ranked pairs from
the training set were selected for evaluation with about 1.14M pairs for train-
ing and 20 K for validation. The manually annotated test and validation splits
(clean pairs) are combined to create the evaluation test set (approximately 2 K
paraphrase pairs).

NLTK is employed to tokenize the sentences. The vocabulary is limited to the
top 28 K and 29.8 K frequent word (including the special BOS, EOS symbols)
for experiments on the Quora and Opusparcus dataset respectively.

4.2 Model Setup and Hyperparameters

The focus of this study is to explore strategies for computing the overall context
vector across all the layers within the encoder sub-network. The encoder consists
of a 3-layers Bi-LSTM with the size of the LSTM’s hidden units set as 256 across
all the layers and a single layer LSTM for the decoder. The outputs from all the
encoding layers are of the same size. The size of the decoder’s hidden unit is set
as 512 to be consistent with the dot product attention score function.

The hyperparameters were tuned in preliminary experiments conducted on a
subset of each dataset. The word embedding layer is initialized with 300-D pre-
trained fastText vectors [2] for experiments on the Quora dataset and on the
Opusparcus dataset, 300-D pre-trained ConceptNet vectors [17]. These embed-
ding vectors are not updated during training. The dropout with probability 0.1
is applied across the embedding, the LSTM layers for regularization. RMSProp
optimizer was used to optimize the objective function for experiments on the

1 https://www.kaggle.com/c/quora-question-pairs.
2 http://urn.fi/urn:nbn:fi:lb-201804191.

https://www.kaggle.com/c/quora-question-pairs
http://urn.fi/urn:nbn:fi:lb-201804191

JASs: Joint Attention Strategies for Paraphrase Generation 99

Quora corpus and the Nadam optimizer was employed in the case of Opuspar-
cus dataset. The initial learning rate and the batch size are set as 0.001 and 256
respectively. All models are implemented in Keras (version 2.2.4 with tensorflow
backend).

The performance of a sequence generation model is affected by several param-
eters such as dropout rate, choice of embedding vectors and the RNN cell vari-
ants. We mainly focus on the performance impact base on the attention compu-
tation strategy (Vanilla attention, “naive joint attention” and Multi-Attention)
and the number of encoding layers (depth of the encoder). The models pre-
sented in this work are evaluated based on the paraphrase sentences generated
via greedy search. The greedy search algorithm selects the most likely word at
each decoding time step in the output/target sequence.

4.3 Evaluation Metric

Following previous works [8,10], we evaluate the performance of our models
using well known evaluation metrics3 for comparing multiple corpora: TER [16],
BLEU [14] and METEOR [11]. The TER measures the number of edits required
to transform a system generated paraphrase into the reference paraphrase. The
BLEU score considers the exact matching between the system generated para-
phrases and reference paraphrases by considering the n-gram overlaps. METEOR
employs stemming and synonymy in WordNet to improve this measure. These
metrics perform well for the paraphrase identification task [13] and in most
instances correlates well with human judgement for evaluating the performance
of sentence generation models [19]. The results are reported with the p-values at
95% confidence interval. Higher BLEU and METEOR score is better. But for
the TER, the lower the score the better the model.

5 Results

In this section, we discuss the performance impact of the attention computation
and aggregation strategies presented in this paper. In the result tables, the num-
ber of trainable parameters per model is reported under the Params column and
in Tables 4 and 5, Depth refers to the number of encoding layers including the
word embedding layer. As shown in Tables 2, 3, 4 and 5, exposing the decoder to
all the encoding layers can significantly enhance the performance of the sequence
generation model. In most cases (Naive-sum, Mode 0 and Mode 2), the perfor-
mance gain from employing the joint attention approaches comes at no increase
in the number of trainable parameters. Compared to the “Naive joint attention”
(Naive-concat and Naive-sum) models, the Multi-Attention strategies achieved
the better performance with the Mode 1 (Ẑ1 = 0 and Ẑ2 = 1) strategy yielding
the overall best performance on both datasets.

3 https://github.com/jhclark/multeval.

https://github.com/jhclark/multeval

100 I. K. E. Ampomah et al.

5.1 Attention Strategies

We first evaluate the performance of the attention strategies presented in this
work. Tables 2 and 3 show that the Multi-Attention strategies consistently out-
perform the Vanilla attention and the “Naive joint attention” approaches with
the Mode 1 model achieving the higher performance in terms of the BLEU,
METEOR and TER metrics on both datasets. Each mode allows the decoding
sub-network direct access to not only the last layer but the individual layers
within the entire encoding sub-network. The Vanilla attention approach offers
a simplistic approach but for the same number of trainable parameters, models
trained via Naive-sum(for the Quora dataset), Multi-Attention modes 0 and 2
produced higher performance improvement at a small overhead of computational
cost.

On the Quora dataset (Table 2), the “naive joint attention” approaches
achieved similar performance gain over the Vanilla attention strategy in terms of
both the METEOR and BLEU score but Naive-concat approach had the worse

Table 2. Performance on the Quora dataset.

Model Params METEOR ↑ BLEU ↑ TER ↓
Vanilla attention 36.2M 28.1 25.8 55.6

Naive joint attention

Naive-sum 36.2M 29.5 27.5 54.4

Naive-concat 142.6M 29.5 27.3 55.8

Multi-attention

Mode 0 36.2M 30.7 28.8 52.8

Mode 1 80.6M 30.9 29.0 52.4

Mode 2 36.2M 29.9 27.6 53.5

Mode 3 80.6M 29.7 27.3 53.7

Table 3. Performance on the Opusparcus paraphrase dataset.

Model Params METEOR ↑ BLEU ↑ TER ↓
Vanilla attention 37.1M 23.1 18.2 57.7

Naive joint attention

Naive-sum 37.1M 21.3 15 61

Naive-concat 146.3M 23.6 19.1 57.7

Multi-attention

Mode 0 37.1M 23.5 18.8 57.7

Mode 1 83M 23.9 19.8 56.8

Mode 2 37.1M 23.4 18.5 57.5

Mode 3 83M 23.9 19.1 56.9

JASs: Joint Attention Strategies for Paraphrase Generation 101

Table 4. Performance impact of varying the depth the encoding sub-network on the
Quora dataset.

Model Depth Params METEOR ↑ BLEU ↑ TER ↓
Vanilla attention 3 34.6M 29.2 27.0 54.3

4 36.2M 28.1 25.8 55.6

5 37.8M 27.1 24.7 56.6

Naive joint attention

Naive-sum 3 34.6M 28.2 25.4 55.8

4 36.2M 29.5 27.6 54.4

5 37.8M 29.8 27.7 53.7

Naive-concat 3 103.4M 29.5 27.1 55.3

4 142.6M 29.5 27.3 55.8

5 183.9M 29.5 27.2 56.0

Multi-attention

Mode 0 3 34.6M 30.4 28.6 53.1

4 36.2M 30.7 28.8 52.8

5 37.8M 30.7 28.9 53.2

Mode 1 3 64.2M 30.8 28.9 52.2

4 80.6M 30.9 29.0 52.4

5 97M 31.0 29.0 51.9

Mode 2 3 34.6M 29.8 27.6 53.8

4 36.2M 29.9 27.6 53.5

5 37.8M 30.1 28.0 53.3

Mode 3 3 64.2M 30.3 28.2 53.1

4 80.6M 29.7 27.3 53.7

5 97M 29.8 27.6 53.3

TER score among all the models under consideration. In the case of the Multi-
Attention strategies, models trained via modes 0 and 1 obtained the best evalua-
tion scores. For example, the Mode 1 strategy yields a performance improvement
of about, −1.3 TER, 1.2 METEOR and 2.3 BLEU scores.

As shown in Table 3, among the joint attention strategies the Naive-sum
model achieved the worse performance as it failed to match the performance
of the Vanilla strategy on the Opusparcus dataset. The Opusparcus dataset as
observed by [15] is quite noisy and as such the paraphrase generation mod-
els have to be more robust to noisy training data in order to achieve higher
performance. The models trained via Multi-Attention modes 1 and 3 achieved
the best performance. Clearly unlike the other joint attention approaches, the
Naive-sum failed to deal efficiently with the noise within the training set result-
ing in the poor performance. On this dataset, the Naive-concat approach was

102 I. K. E. Ampomah et al.

Table 5. Performance impact of varying the depth the encoding sub-network on the
Opusparcus dataset.

Model Depth Params METEOR ↑ BLEU ↑ TER ↓
Vanilla attention 3 35.6M 23.0 18.1 57.9

4 37.1M 23.1 18.2 57.7

5 38.7M 23.1 18.6 57.5

Naive joint attention

Naive-sum 3 35.6M 21.2 14 62

4 37.1M 21.3 15 61

5 38.7M 21.4 14.2 61.8

Naive-concat 3 106.2M 23.4 19.5 57.7

4 146.3M 23.6 19.2 57.7

5 188.5M 23.7 19.8 56.8

Multi-attention

Mode 0 3 35.6M 23.2 18.9 57.7

4 37.1M 23.5 18.8 57.4

5 38.7M 23.6 19.4 57.3

Mode 1 3 66.1M 23.7 20.1 56.9

4 83M 23.9 19.8 56.8

5 99.8M 24.1 20.1 56.7

Mode 2 3 35.6M 23.1 18.4 58.1

4 37.1M 23.4 18.5 57.5

5 38.7M 23.7 19.2 57

Mode 3 3 66.1M 23.6 19.4 57.1

4 83M 23.9 19.1 56.9

5 99.8M 23.7 19.6 57

able to match the performance of the Multi-Attention strategies but at the cost
of a higher number of trainable model parameters of about 146.3M compared to
that of Mode 1 and Mode 3 (83M parameters each).

Overall, the value of Ẑ clearly contributes the most to the degree of perfor-
mance gain obtained by the Multi-Attention strategies with Ẑ = [0, 1] consis-
tently providing the best evaluation scores.

5.2 Impact of Encoder Depth

Tables 4 and 5 show the impact of varying the depth of the encoder sub-network.
Due to resource constraints, here we only explored the impact of the depth of
the encoding sub-network up to 5 layers. The encoder depth count includes the
embedding layer, therefore a model trained with encoder depth of 3 is equivalent
to training the model with 2-layers BiLSTM on top of the word embedding layer.

JASs: Joint Attention Strategies for Paraphrase Generation 103

The depth of the encoding sub-network clearly affects the overall performance
of the models. For the Vanilla attention model, propagating information beyond
a depth of 3 did not lead to any significant gain in performance especially on
the Quora dataset. But on the Opusparcus dataset (as shown in Table 5), the
Vanilla approach consistently outperforms only Naive-sum strategy as the depth
increases but on the other hand the Naive-concat approach achieved a gain
of about 0.6 METEOR, 1.2 BLEU and −0.7 TER over the Vanilla attention
mechanism.

All the Multi-Attention strategies outperformed the Vanilla attention and the
naive joint attention strategies (both Naive-sum and Naive-concat on the Quora
dataset and Naive-sum on the Opusparcus dataset). Across the different opera-
tional modes, there is not much difference in performance as the depth increases
from 3 to 5. Overall, the results obtained by the multi-attention and naive joint
attention strategies prove that exposing the decoder to all the encoding layers
can significantly enhance the performance of the sequence generation model.

6 Conclusion

In this work, we investigate different attention computation strategies which
allow the decoder direct access to all layers within a multi-layer encoding sub-
network. The experimental results showed the drawback of the Vanilla attention
mechanism performed based on only the final layer of the encoding sub-network.
The joint attention mechanisms (“naive joint attention” and Multi-Attention)
consistently outperforms the Vanilla attention strategy under all the training
instances.

As future work, we plan to further explore the impact of hyperparameters
such as the choice of RNN cell variants, as well as the depth of decoding sub-
network.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv:1409.0473 (2014)

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

3. Britz, D., Goldie, A., Luong, M.T., Le, Q.: Massive exploration of neural machine
translation architectures. In: Proceedings of the EMNLP, pp. 1442–1451 (2017)

4. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine
reading. In: Proceedings of the Conference on EMNLP, pp. 551–561 (2016)

5. Chollampatt, S., Ng, H.T.: A multilayer convolutional encoder-decoder neural net-
work for grammatical error correction. In: Thirty-Second AAAI Conference on
Artificial Intelligence (2018)

6. Creutz, M.: Open subtitles paraphrase corpus for six languages. In: Proceedings of
the LREC (2018)

7. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. In: Proceedings of the 34th International Conference
on Machine Learning, vol. 70, pp. 1243–1252. JMLR. org (2017)

http://arxiv.org/abs/1409.0473

104 I. K. E. Ampomah et al.

8. Hasan, S.A., et al.: Neural paraphrase generation with stacked residual lstm net-
works. In: Proceedings of COLING: Technical Papers, pp. 2923–2934 (2016)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

10. Huang, S., Wu, Y., Wei, F., Zhou, M.: Dictionary-guided editing networks for
paraphrase generation. arXiv:1806.08077 (2018)

11. Lavie, A., Agarwal, A.: Meteor: an automatic metric for mt evaluation with high
levels of correlation with human judgments. In: Proceedings of the Second Work-
shop on Statistical Machine Translation, pp. 228–231. ACL (2007)

12. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-
ral machine translation. In: Proceedings of EMNLP, pp. 1412–1421 (2015)

13. Madnani, N., Tetreault, J., Chodorow, M.: Re-examining machine translation
metrics for paraphrase identification. In: Proceedings of the Conference of the
NAACL:HLT, pp. 182–190. ACL (2012)

14. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the ACL, pp. 311–318 (2002)

15. Sjöblom, E., Creutz, M., Aulamo, M.: Paraphrase detection on noisy subtitles in
six languages. W-NUT 2018, 64 (2018)

16. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of transla-
tion edit rate with targeted human annotation. In: Proceedings of Association for
Machine Translation in the Americas. vol. 200 (2006)

17. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of
general knowledge. In: AAAI Conference (2017)

18. Wu, Y., et al.: Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv:1609.08144 (2016)

19. Wubben, S., Van Den Bosch, A., Krahmer, E.: Paraphrase generation as monolin-
gual translation: data and evaluation. In: Proceedings of the NLG, pp. 203–207.
ACL (2010)

20. Zhou, J., Cao, Y., Wang, X., Li, P., Xu, W.: Deep recurrent models with fast-
forward connections for neural machine translation. Trans. ACL 4, 371–383 (2016)

21. Zhu, J., Yang, M., Li, S., Zhao, T.: Sentence-level paraphrasing for machine trans-
lation system combination. In: Che, W., et al. (eds.) ICYCSEE 2016. CCIS, vol.
623, pp. 612–620. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-
2053-7 54

http://arxiv.org/abs/1806.08077
http://arxiv.org/abs/1609.08144
https://doi.org/10.1007/978-981-10-2053-7_54
https://doi.org/10.1007/978-981-10-2053-7_54

Structure-Based Supervised Term
Weighting and Regularization

for Text Classification

Niloofer Shanavas(B), Hui Wang, Zhiwei Lin, and Glenn Hawe

School of Computing, Ulster University, Jordanstown, UK
shanavas-n@ulster.ac.uk

Abstract. Text documents have rich information that can be useful for
different tasks. How to utilise the rich information in texts effectively and
efficiently for tasks such as text classification is still an active research
topic. One approach is to weight the terms in a text document based on
their relevance to the classification task at hand. Another approach is
to utilise structural information in a text document to regularize learn-
ing so that the learned model is more accurate. An important question
is, can we combine the two approaches to achieve better performance?
This paper presents a novel method for utilising the rich information in
texts. We use supervised term weighting, which utilises the class infor-
mation in a set of pre-classified training documents, thus the result-
ing term weighting is class specific. We also use structured regulariza-
tion, which incorporates structural information into the learning process.
A graph is built for each class from the pre-classified training documents
and structural information in the graphs is used to calculate the super-
vised term weights and to define the groups for structured regularization.
Experimental results for six text classification tasks show the increase in
text classification accuracy with the utilisation of structural information
in text for both weighting and regularization. Using graph-based text
representation for supervised term weighting and structured regulariza-
tion can build a compact model with considerable improvement in the
performance of text classification.

Keywords: Text mining · Classification ·
Graph-based text representation · Supervised term weighting ·
Node centrality · Structured regularization

1 Introduction

With the amount of text data increasing day by day, the ability to process this
information effectively and efficiently also needs to increase [4]. Text mining
helps to discover useful patterns in unstructured text data. An important step
in text mining task is the effective representation of documents which involves
the identification of relevant features that are useful for the task. Extracting a
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 105–117, 2019.
https://doi.org/10.1007/978-3-030-23281-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_9

106 N. Shanavas et al.

relevant subset of features efficiently from the large pool of text data available
is becoming challenging.

A natural language document has a syntactic and semantic structure which
is implicit and hidden [4]. The features that represent the document should be
effective to improve the performance of the text mining system. The bag-of-words
model is simple, fast and most commonly used for document representation. It
is based on a term independence assumption and represents a document as
a set of weights that usually corresponds to the frequency of the terms in the
document. However, it does not consider the structure of terms in the document,
such as the order of terms or the syntactic and the semantic information. Since
the structure of terms in the document is important to portray the meaning of
the document, eliminating the structural information in the representation of a
natural language document negatively affects the performance of a text mining
system. A graph-based representation of text can capture important information
in text, such as term order, term co-occurrence, and term context, that is lost in
the bag-of-words model. Text modelled as graphs have been used for several text
processing applications including classification, information retrieval, word-sense
disambiguation, keyword extraction, sentence extraction and summarization.

Automatic text classification has gained more importance with the increased
availability of text data. Text classification assigns natural language texts with
class labels from a predefined set. Machine learning is the most commonly used
approach for classifying texts automatically as it is effective and reduces expert
labour [9]. The performance of text classification is strongly influenced by the
features used to represent a text document [7]. Graphs help to encode the rela-
tionship between different text units that contribute to the meaning of text. The
graph-based representation of text enhances the performance of text classifica-
tion as it considers the rich structural information ignored by the bag-of-words
model.

Overfitting is a problem in machine learning that results in poor general-
ization due to the model fitting the noise in the data. Regularization is a tech-
nique generally used to reduce overfitting. There are recent works on struc-
tured regularization based on the structural information in text [8,11,12,14,15],
which serves two purposes: (i) to reduce overfitting and (ii) to consider the prior
knowledge on the terms in the documents. It applies structured regularization
to improve machine learning to classify text documents with a term frequency
based representation. In this paper, we present a structure-based text classifi-
cation system, that uses graphs to represent each document and class, and the
structural information in the graphs is used not only for weighting the terms
but also for regularization. Encoding the structural information in the regular-
ization term in addition to the supervised graph-based term weights boosts the
performance of text classification. To the best of our knowledge, this paper is
the first work that applies structured regularization to classify text documents
represented as graphs and explores the effect of term weighting methods on the
performance of structured regularization.

Structure-Based Supervised Term Weighting and Regularization 107

The rest of the paper is organised as follows. Section 2 explains the proposed
structure-based text classification system. Section 3 describes the experiments
performed. The results of the experiments and the evaluation of the proposed
system are discussed in Sect. 4. Finally, Sect. 5 summarises the paper and dis-
cusses the possible future work.

2 Structure-Based Approach for Text Classification

Graphs are becoming an alternative text representation as they have the ability
to capture important information in text, such as term order, term co-occurrence
and term relationships, that is not considered by the bag-of-words model. The
nodes correspond to textual units and the links denote a relationship between
the nodes it connects in a graph-based representation of text. The links can be
directed or undirected. The directed links can capture information such as the
dependency or the order of the textual units. In a weighted graph, the weights
denote the strength of the relationship. The relationships encoded in a graph-
based representation of text can be word co-occurrences, syntactic dependency,
semantic information, cosine similarity, etc. The centrality measure helps to
determine the importance of a node in a graph. The node centrality values help
to convert a graph-based representation to a vector space representation.

2.1 Structure-Based Supervised Term Weighting

The performance of a text mining task depends on the weights of the features i.e.
the values by which the features in the documents are represented. To improve
the performance of text classification, terms should be assigned weights based
on their relevance to the text classification task. In a supervised learning task,
we can utilise the information in the labelled training documents to weight the
terms. Term weighting schemes can be divided into unsupervised and supervised
term weighting schemes based on whether we utilise the class-specific informa-
tion in the training documents. The supervised term weighting schemes improve
the performance of text classification compared to unsupervised term weighting
schemes as each term is weighted based on its ability to place the documents in
the right class.

tw-crc is an effective centrality-based supervised term weighting method that
we developed and is explained in [10] how it utilises the rich information in text
and the relationship of the terms to the predefined classes. Each document to
be classified is represented as an undirected co-occurrence graph (called the
document graph) where each node represents a unique term and the edges link
terms that co-occur within a predefined sliding window (of size 2). We build a
similar graph (called the class graph) for each class from the labelled training
documents. The weight of the term in the document depends on the centrality of
the node corresponding to the term in the document graph and the supervised
term weight factor - class relevance centrality (crc). crc gives more weight to
terms that are relevant to the text classification task. The term’s relevance to

108 N. Shanavas et al.

the text classification task is based on the variation of its centrality in the class
graphs. This results in higher weighting of class specific terms compared to
common terms.

The computation of crc, the supervised term weight factor, is given in Eq. (1)
where M(t) is the maximum of the centralities of the term t in the class graphs,
λ(t) is the sum of the centralities of the term t in the class graphs, L(t) is the
number of classes in which the term t exists, |S| is the total number of classes,
minc is the minimum of centralities in the class graphs and A(t) = λ(t)−M(t)

L(t)−1 .

crc = log2

(
2 +

M(t)
max(minc,A(t))

× |S|
L(t)

)
(1)

2.2 Structured Regularization

Machine learning helps to build models that are learned from data. One common
problem in machine learning is overfitting, resulting in a complex model having
a large number of parameters that has good performance on training data and
poor performance on predicting the labels of unseen data. This happens when
the model learns the training data too well that it even captures the noise in it.

Regularization is a technique that reduces overfitting by penalizing models
that are too complex. It adds a penalty term to the loss function. The loss func-
tion defines the cost associated with the error in prediction and hence measures
the performance or predictive accuracy of the model. The loss functions can be
log loss, hinge loss, square loss, etc. The regularization strength is controlled by
the regularization parameter λ. The learning process finds the vector of optimal
weight coefficients (or feature coefficients), w∗, by minimizing the combination
of loss function and penalty term as shown in Eq. (2) where L(xi,w, yi) is the
loss function, N is the number of training documents, xi is the feature vector
representation of ith document, yi corresponds to the class of ith document and
Ω(w) is the regularizer. As the regularization strength increases, the coefficients
of the weight vector w decrease.

w∗ = arg min
w

N∑
i=1

L(xi,w, yi) + λΩ(w) (2)

The most common regularization methods to build a compact model are L1
regularization (aka lasso), L2 regularization (aka ridge) and elastic net regular-
ization. L1 regularization, also called Least Absolute Shrinkage and Selection
Operator (LASSO), adds the L1 norm of the coefficients of w to the loss func-
tion [13]. When the coefficients in w are set to 0, the corresponding features
are removed during learning. Hence, it results in a model with a small set of
features. L2 regularization, also called ridge, adds the square of the L2 norm of
the coefficients of w to the loss function [6]. It has the effect of shrinking the
magnitude of the weight coefficients. Elastic net is a linear combination of L1 and
L2 regularization [17]. The L1, L2 and elastic net regularizers are unstructured

Structure-Based Supervised Term Weighting and Regularization 109

regularizers as they do not consider the structure of the features and penalize the
coefficients of weight vector in isolation. Structured regularizers have been intro-
duced that allow groups of weight coefficients to be penalized together. Group
lasso, based on mixed-norm, is a structured regularizer that sets the coefficients
in a group to zero together resulting in group sparsity [2,16]. Sparse group lasso
is a combination of lasso and group lasso [5]. It has the benefits of lasso and
group lasso and brings sparsity at both feature and group level. Hence in sparse
group lasso, unlike group lasso, all the features in the selected group need not
be selected. The difference between lasso, group lasso and sparse group lasso is
illustrated in Fig. 1 [1].

Fig. 1. Example of Lasso, Group Lasso, Sparse Group Lasso. The features are grouped
into five non-overlapping groups - G1, G2, G3, G4 and G5. The dark block corresponds
to the features selected and the light block denotes the discarded features.

Text contains features that are correlated. The prior knowledge on the groups
of correlated features can be included in the penalty term. Recent works have
incorporated linguistic structure information in statistical models as a regulariza-
tion term that enhanced the effectiveness of text classification. Different kinds of
linguistic information such as sentences, parse trees, word clusters, topics have
been used to construct the sparse group lasso variants that encourages group
behaviour of words [8,11,14,15]. The greedy variable selection algorithms such
as Orthogonal Matching Pursuit (OMP) and group Orthogonal Matching Pur-
suit (GOMP) have been applied for regularization for text classification [12].
Even though the OMP and GOMP regularizers produce sparser models com-
pared to sparse group lasso variants such as sentence, lda, lsi, graph-of-words
(GoW) and word2vec regularizers, they do not consistently outperform these
sparse group lasso variants in terms of text classification accuracy.

In a sentence regularizer, a group is defined for every sentence and contains
the coefficients of words in a sentence [14,15]. Hence, it results in many overlap-
ping groups. When there are overlapping groups, many coefficients are not set
to zero. So a linear combination of lasso and sentence regularizer has been used
to set the coefficients of irrelevant words to zero. In the parse tree regularizer,
the sentences in training documents are parsed and a group is defined for every
constituent in the parse [15]. The lasso-like penalty occurs naturally in the parse
tree regularizer.

110 N. Shanavas et al.

The unsupervised methods, Latent Dirichlet Allocation (LDA) and Latent
Semantic Indexing (LSI), have been used to identify topics in the training doc-
uments and construct groups for each topic by selecting the top n words in it
[11,15]. The lasso-like penalty is added to the LDA and LSI regularizers to penal-
ize features at group and feature level. Brown clustering is also used for group
identification where each node in the brown cluster is used to create a group, and
like the parse tree regularizer, it includes the lasso-like penalty naturally [15].

Structured regularizers have been introduced based on graph-of-words and
word2vec [11]. A single graph-of-words is created from the entire set of training
documents, where each node corresponds to a term and the edges link terms that
co-occur within a predefined sliding window. The Louvain community detection
method [3] is applied on the graph to identify communities or groups. In the
word2vec regularizer, the word2vec semantic vectors are clustered using k-means
clustering algorithm to identify the clusters or groups.

In the proposed structure-based approach to text classification, we consider
the structure of terms in the documents to weight the terms during document
representation stage and also to penalize collectively the coefficients of features
that are correlated or belong to the same topic. The commonly used regulariz-
ers penalize the terms in isolation and do not consider the structure of terms.
Structured regularizers that encourage group behaviour of words have shown to
improve the text classification performance. Studies show that the way by which
the correlated terms are identified to build the groups for a structured regularizer
affects the text classification performance [14,15]. The structured regularizers in
the literature add linguistic bias to the bag-of-words model. Our work applies
a graph-based regularizer to a linear model with graph-based representation of
text where the terms are weighted by tw-crc, an effective graph-based supervised
term weighting scheme [10], to boost the text classification performance.

Class Graph Regularizer. The class graphs that utilise the information in the
training documents are used for building the proposed graph-based regularizer
which is a variant of graph-of-words regularizer. We add the semantic similarity
information to the class graphs to define accurate groups of correlated features.
The semantic similarity between terms is determined using a word2vec model
built from training documents. The terms that have semantic similarity greater
than a particular threshold are linked by edges. The community detection algo-
rithm, the Louvain method [3], is then applied to the class graphs to obtain the
communities or groups. In this way, the relevant topics in each class are iden-
tified and the correlated terms in a topic define a group. Hence, we utilise the
co-occurrence information and the semantic similarity information in the class
graphs to create the proposed structured regularizer called the class graph regu-
larizer as shown in Eq. (3) where ΩCG(w) is the group lasso regularization term,
s corresponds to the communities identified in the class graphs and ws is the
sub-vector of the weight vector w that contains the coefficients of the features
in the community s.

Structure-Based Supervised Term Weighting and Regularization 111

ΩCG(w) =
S∑

s=1

λs||ws||2 (3)

The group identification is a step before learning the classification model.
Each training document is represented as (xi, yi) where yε(−1,+1) is the class
label and xi is the feature vector of document i.

The loss function used in our work is the log loss function as shown in Eq. (4).

L(xi,w, yi) = log(1 + exp(−yiwTxi)) (4)

We add the sparse group lasso regularization to the loss function. The optimal
set of weight coefficients is estimated by minimizing the regularized training data
loss shown in Eq. (5) where ΩL(w) is the lasso penalty for each feature, w is the
weight vector and N is the total number of training documents. This gives the
following learning objective:

min
w

ΩL(w) + ΩCG(w) +
N∑

i=1

L(xi,w, yi) (5)

We used the optimization method based on alternating direction method of
multipliers (ADMM) defined in [14] which has been proved to obtain a good
solution for overlapping sparse group lasso.

2.3 Structure-Based Text Classification Pipeline

The goal of our proposed structure-based text classification pipeline is to take
advantage of the structural information in text in order to build a model that is
both accurate and compact. The first step in the pipeline is the pre-processing
of the documents where the terms are stemmed by the Porter stemming algo-
rithm. The pre-processing of documents plays an important role in the perfor-
mance of the system as the representation, term weighting and the topics iden-
tified are dependent on it. Each pre-processed document is then converted to an
undirected co-occurrence graph (document graph). An undirected co-occurrence
graph (class graph) is created for each class from the pre-processed labelled
training documents. The importance (or weight) of a term in a document is
determined by the centrality (tw) of the node that corresponds to the term in
the document graph and the supervised term weight factor (crc) that calculates
the term’s relevance to the text classification task using the centrality of the
node that corresponds to the term in the class graphs. The graph-based rep-
resentations of documents are converted to a document term matrix using the
centrality-based weights of terms in the documents.

There are often many irrelevant parts in text that do not contribute to the
classification task and can be eliminated. Discarding the irrelevant features can
help in building a compact model that generalizes well on unseen data, improving
its performance. The proposed structured regularizer, an instance of sparse group
lasso, helps to incorporate the co-occurrence and semantic similarity information

112 N. Shanavas et al.

available in the class graphs for penalizing weight coefficients jointly. Hence,
weight coefficients in the groups containing words belonging to irrelevant topics
are driven to zero resulting in group sparsity. This leads to a compact model as
words not contributing to the prediction are eliminated with this method.

3 Experiments

The performance of the proposed text classification approach is evaluated for
six binary text classification tasks. The tasks involve classifying documents with
closely related topics as it is more challenging than documents having distinct
topics. The documents belong to subtopics within the area of computers, sports,
science, religion, finance and diseases as given below.

• Computers: ‘comp.sys.ibm.pc.hardware’ vs ‘comp.sys.mac.hardware’
• Sports: ‘rec.sport.baseball’ vs ‘rec.sport.hockey’
• Science: ‘sci.med’ vs ‘sci.space’
• Religion: ‘alt.atheism’ vs ‘soc.religion.christian’
• Finance: ‘oilseed’ vs ‘grain’
• Diseases: ‘virus diseases’ vs ‘hemic & lymphatic diseases’

The documents in the topics of computers, sports, science and religion are
obtained from the 20 newsgroup dataset (in scikit-learn). The documents related
to finance and diseases are collected from reuters corpus (in NLTK) and ohsumed
dataset1 respectively. The number of training and testing documents in each of
the six tasks is shown in Table 1. We split 20% of the training data for develop-
ment dataset.

In our experiments, we show the effectiveness and the model compactness
with the structure-based approach to text classification that uses structural
information for both weighting the terms and regularization. The class graph
regularizer that considers the semantic and co-occurrence information in text is
used in our graph-based text classification system where the terms are weighted
by the supervised graph-based term weighting scheme - tw-crc. tw is computed
using the degree centrality of the node in the document graph and crc is cal-
culated based on the variation of the degree centrality of the node in the class
graphs. The semantic information is obtained by building a word2vec model
from the training documents to link terms that have similarity greater than 0.9.

In the baseline systems, the features in the document representation are
weighted by tf (term frequency) or tf-idf (term frequency-inverse document
frequency) and the model is regularized using different standard regularizers
and structured regularizers including the proposed class graph regularizer. The
results of the experiments on the comparison of proposed text classification sys-
tem with the baseline systems are shown in Tables 2, 3, 4, 5, 6 and 7. Tables 2, 4
and 6 show the classification results (in terms of accuracy and F1 score) of using
regularizers in the baseline systems and the proposed system. Tables 3, 5 and 7

1 http://disi.unitn.it/moschitti/corpora.htm.

http://disi.unitn.it/moschitti/corpora.htm

Structure-Based Supervised Term Weighting and Regularization 113

present the percentage of non-zero features in the baseline models and the pro-
posed model. The unstructured regularizers used are the standard regularizers
- lasso, ridge and elastic net that penalize the weight coefficients independently.
The structured regularizers compared are sentence regularizer, latent semantic
indexing regularizer, graph-of-words regularizer, word2vec and the class graph
regularizer which is the proposed regularizer based on class graphs. Regulariza-
tion hyperparameters are tuned on the development dataset by performing a

Table 1. No of training and testing documents

Dataset No of training documents No of testing documents

Computers 1168 777

Sports 1197 796

Science 1187 790

Religion 1079 717

Finance 437 140

Diseases 1889 473

Table 2. Accuracy (in %) and F1 score (in %) of baseline system with tf weighting

Accuracy & F1 Score

tf

Dataset Unstructured regularizer Structured regularizer

L1 L2 Elastic Sentence Lsi GoW Word2vec Class graph

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Computers 85.97 85.52 84.94 84.54 85.84 84.89 90.35 89.99 87.64 87.43 89.45 89.43 89.58 89.55 89.45 89.43

Sports 93.47 93.42 93.47 93.48 93.47 93.42 96.61 96.60 96.11 96.12 96.11 96.12 96.23 96.25 95.85 95.85

Science 94.30 94.41 95.95 95.90 95.95 95.96 96.96 96.92 97.47 97.46 97.72 97.70 97.72 97.71 97.85 97.84

Religion 86.19 87.79 90.52 91.85 85.63 86.54 91.91 93.11 91.91 93.13 91.77 93.00 91.35 92.64 92.19 93.35

Finance 97.14 98.37 95.71 97.54 97.14 98.37 97.14 98.36 95.71 97.52 97.86 98.78 96.43 97.98 97.86 98.78

Diseases 89.43 90.27 91.33 91.98 89.22 90.10 93.66 94.14 91.97 92.55 92.81 93.36 92.39 92.94 92.18 92.73

Table 3. Percentage of non-zero features in baseline system with tf weighting

Model size

tf

Dataset Unstructured regularizer Structured regularizer

L1 L2 Elastic Sentence Lsi GoW Word2vec Class graph

Computers 86.46 99.99 89.34 12.05 98.08 97.71 93.20 85.92

Sports 64.01 100.00 63.99 25.59 11.15 10.39 9.93 8.89

Science 59.11 100.00 84.83 15.49 41.10 33.44 41.04 42.93

Religion 93.05 100.00 99.99 80.15 73.37 61.84 70.52 91.46

Finance 4.98 100.00 3.83 2.92 6.08 2.57 4.82 2.57

Diseases 77.65 100.00 75.87 15.43 14.16 69.26 37.81 28.08

114 N. Shanavas et al.

grid search on the values 0.01, 0.1, 1, 10, 100 for each of the hyperparameters,
with accuracy as the evaluation criterion. Since there are more hyperparameters
for structured regularizers compared to unstructured regularizers, the computa-
tional complexity is increased.

Table 4. Accuracy (in %) and F1 score (in %) of baseline system with tf-idf weighting

Accuracy & F1 Score

tf-idf

Dataset Unstructured regularizer Structured regularizer

L1 L2 Elastic Sentence Lsi GoW Word2vec Class graph

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Computers 88.03 87.78 90.0990.0686.8785.3987.77 86.68 86.23 85.75 86.2384.9586.36 85.11 86.36 85.07

Sports 96.61 96.60 95.85 95.80 95.3595.3095.60 95.61 95.98 95.99 96.1196.1297.4997.5097.4997.50

Science 96.08 95.97 97.5997.5896.0895.9895.32 95.33 95.95 95.94 95.7095.6995.70 95.67 94.81 94.80

Religion 89.26 90.99 89.96 91.59 89.1290.8991.9193.1391.9193.1391.4992.7691.9193.11 91.63 92.84

Finance 97.1498.3694.29 96.72 95.7197.5495.00 97.10 95.71 97.52 96.4397.9495.00 97.14 96.43 97.94

Diseases 92.60 93.07 91.97 92.46 92.3992.8994.2994.5293.87 94.26 93.8794.2693.87 94.26 93.87 94.26

Table 5. Percentage of non-zero features in baseline system with tf-idf weighting

Model size

tf-idf

Dataset Unstructured regularizer Structured regularizer

L1 L2 Elastic Sentence Lsi GoW Word2vec Class graph

Computers 7.85 99.88 1.10 1.12 1.24 0.96 1.02 0.97

Sports 12.86 99.89 9.38 5.08 5.71 6.03 10.62 10.62

Science 2.79 99.89 2.82 3.29 4.20 4.15 4.10 3.36

Religion 17.70 99.79 17.37 91.89 81.11 44.56 55.52 24.95

Finance 6.42 99.87 1.50 5.41 6.08 6.32 8.89 6.26

Diseases 35.00 99.92 31.80 7.52 11.43 11.43 11.43 11.44

Table 6. Accuracy (in %) and F1 score (in %) of proposed structure-based text clas-
sification system

Accuracy & F1 Score

tw-crc

Dataset Unstructured regularizer Structured regularizer

L1 L2 Elastic Sentence Lsi GoW Word2vec Class graph

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Computers90.2289.7389.5889.1689.8389.5192.02 91.67 92.02 91.80 92.28 92.00 92.4192.1492.4192.14

Sports 97.3697.3597.6197.6097.6197.6099.0099.0098.37 98.39 98.37 98.39 98.37 98.39 98.74 98.75

Science 97.2297.1497.8597.8197.2297.1498.10 98.10 98.3598.3598.3598.3597.85 97.86 98.3598.35

Religion 88.1590.0690.3891.8088.1590.0692.05 93.19 91.63 92.92 90.10 91.72 92.89 93.79 93.0393.95

Finance 97.8698.7896.4397.9897.8698.7897.14 98.37 97.14 98.37 97.14 98.37 97.14 98.37 99.2999.59

Diseases 93.4593.8494.0894.4793.2393.6395.1495.4394.71 95.05 94.29 94.61 94.29 94.55 94.93 95.24

Structure-Based Supervised Term Weighting and Regularization 115

Table 7. Percentage of non-zero features in proposed structure-based text classification
system

Model size

tw-crc

Dataset Unstructured regularizer Structured regularizer

L1 L2 Elastic Sentence Lsi GoW Word2vec Class graph

Computers 66.60 99.99 68.54 12.71 21.66 91.36 92.45 91.07

Sports 40.67 100.00 37.63 15.66 21.24 21.24 21.28 17.62

Science 5.97 100.00 6.05 43.22 13.37 11.03 15.59 12.84

Religion 59.97 100.00 58.08 78.96 77.16 17.67 18.23 18.11

Finance 2.41 100.00 2.92 1.23 1.18 1.18 1.18 2.38

Diseases 63.64 100.00 64.04 19.80 25.56 32.89 95.83 22.79

4 Results and Discussion

The effectiveness of text classification depends on the representation of text and
the way in which the terms in the text are weighted. Tables 2, 4 and 6 show
the classification accuracy obtained for the tf weighting, tf-idf weighting and tw-
crc weighting with different regularizers. Regularization reduces overfitting by
improving its generalization capability. Tables 3, 5 and 7 show the percentage of
non-zero features in the baseline systems and the proposed text classification sys-
tem. L2 regularization results in shrinkage of the weight coefficients and hence,
it does not lead to a sparse model. L1 regularization increases sparsity resulting
in a compact model. The structured regularizers increase sparsity and accuracy
simultaneously. Hence, structured regularizers help in building a compact and
accurate model. As there are more parameters to tune in structural regularizers,
the computational complexity is high for structured regularizers compared to
unstructured regularizers. In the structured regularizers compared, the sentence
regularizer takes the maximum time to converge as there are a large number
of overlapping groups, whereas the graph-based regularizers i.e. GoW regular-
izer and class graph regularizer, have a considerably faster convergence. The
structured regularizers reach convergence with tw-crc term weighting method
significantly faster than tf and tf-idf term weighting methods.

A structured regularizer encourages group behaviour of words and promotes
group sparsity, thus performing better than unstructured regularizers as text has
a structure and contains many irrelevant words not useful for the text classifica-
tion task. The proposed text classification system with the class graph regularizer
outperforms the baseline systems as shown in Table 6. The performance of text
classification is dependent on both the term weighting scheme and the regular-
ization method. The combination of the graph based term weighting scheme,
tw-crc, and class graph regularizer improves the accuracy of text classification.

116 N. Shanavas et al.

5 Conclusion

Text has an implicit syntactic and semantic structure that needs to be utilised
to make the text processing more effective. We proposed a structure-based text
classification pipeline where each document is represented by a graph and each
class is represented by a class graph built from the labelled training documents.
The information in the class graphs is used to weight the terms based on their
relevance to the text classification task and also to build the structured regu-
larizer. A graph is a powerful data structure where structural information can
be encoded and utilised for different text processing applications. The outper-
formance of the proposed structure-based text classification framework over the
baseline systems is due to the utilisation of structural information for both term
weighting and regularization. In the future, the proposed system can be fur-
ther improved by encoding more information in the graph and utilising it for
weighting and regularization.

References

1. Aggarwal, C.C.: Data Classification: Algorithms and Applications. CRC Press,
Boca Raton (2014)

2. Bakin, S., et al.: Adaptive regression and model selection in data mining problems
(1999)

3. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008)

4. Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data. Cambridge University Press, New York (2007)

5. Friedman, J., Hastie, T., Tibshirani, R.: A note on the group lasso and a sparse
group lasso. arXiv preprint arXiv:1001.0736 (2010)

6. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal
problems. Technometrics 12, 55–67 (1970)

7. Lewis, D.D.: Representation quality in text classification: an introduction and
experiment. In: Speech and Natural Language: Proceedings of a Workshop Held
at Hidden Valley, Pennsylvania, 24–27 June 1990 (1990)

8. Martins, A.F., Smith, N.A., Aguiar, P.M., Figueiredo, M.A.: Structured sparsity
in structured prediction. In: Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pp. 1500–1511 (2011)

9. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. (CSUR) 34, 1–47 (2002)

10. Shanavas, N., Wang, H., Lin, Z., Hawe, G.: Centrality-based approach for super-
vised term weighting. In: 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW), pp. 1261–1268. IEEE (2016)

11. Skianis, K., Rousseau, F., Vazirgiannis, M.: Regularizing text categorization with
clusters of words. In: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 1827–1837 (2016)

12. Skianis, K., Tziortziotis, N., Vazirgiannis, M.: Orthogonal matching pursuit for
text classification. In: Proceedings of the 2018 EMNLP Workshop W-NUT: The
4th Workshop on Noisy User-generated Text, pp. 93–103 (2018)

http://arxiv.org/abs/1001.0736

Structure-Based Supervised Term Weighting and Regularization 117

13. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Ser. B 58, 267–288 (1996)

14. Yogatama, D., Smith, N.: Making the most of bag of words: sentence regularization
with alternating direction method of multipliers. In: International Conference on
Machine Learning, pp. 656–664 (2014)

15. Yogatama, D., Smith, N.A.: Linguistic structured sparsity in text categorization.
In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 786–796 (2014)

16. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. J. R. Stat. Soc. Ser. B 68, 49–67 (2006)

17. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R.
Stat. Soc. Ser. B 67, 301–320 (2005)

Gated Convolutional Neural Networks
for Domain Adaptation

Avinash Madasu and Vijjini Anvesh Rao(B)

Samsung R&D Institute, Bangalore, India
{m.avinash,a.vijjini}@samsung.com

Abstract. Domain Adaptation explores the idea of how to maximize
performance on a target domain, distinct from source domain, upon
which the model was trained. This idea has been explored for the task of
sentiment analysis extensively. The training of reviews pertaining to one
domain and evaluation on another domain is widely studied for model-
ing a domain independent algorithm. This further helps in understand-
ing corelation of information between domains. In this paper, we show
that Gated Convolutional Neural Networks (GCN) perform effectively at
learning sentiment analysis in a manner where domain dependant knowl-
edge is filtered out using its gates. We perform our experiments on mul-
tiple gate architectures: Gated Tanh ReLU Unit (GTRU), Gated Tanh
Unit (GTU) and Gated Linear Unit (GLU). Extensive experimentation
on two standard datasets relevant to the task, reveal that training with
Gated Convolutional Neural Networks give significantly better perfor-
mance on target domains than regular convolution and recurrent based
architectures. While complex architectures like attention, filter domain
specific knowledge as well, their complexity order is remarkably high as
compared to gated architectures. GCNs rely on convolution hence gain-
ing an upper hand through parallelization.

Keywords: Gated convolutional neural networks ·
Domain adaptation · Sentiment analysis

1 Introduction

With the advancement in technology and invention of modern web applications
like Facebook and Twitter, users started expressing their opinions and ideolo-
gies at a scale unseen before. The growth of e-commerce companies like Amazon,
Walmart have created a revolutionary impact in the field of consumer business.
People buy products online through these companies and write reviews for their
products. These consumer reviews act as a bridge between consumers and com-
panies. Through these reviews, companies polish the quality of their services.
Sentiment Classification (SC) is one of the major applications of Natural Lan-
guage Processing (NLP) which aims to find the polarity of text. In the early
stages [1] of text classification, sentiment classification was performed using tra-
ditional feature selection techniques like Bag-of-Words (BoW) [2] or TF-IDF.
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 118–130, 2019.
https://doi.org/10.1007/978-3-030-23281-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_10

Gated Convolutional Neural Networks for Domain Adaptation 119

These features were further used to train machine learning classifiers like Naive
Bayes (NB) [3] and Support Vector Machines (SVM) [4]. They are shown to
act as strong baselines for text classification [5]. However, these models ignore
word level semantic knowledge and sequential nature of text. Neural networks
were proposed to learn distributed representations of words [6]. Skip-gram and
CBOW architectures [7] were introduced to learn high quality word representa-
tions which constituted a major breakthrough in NLP. Several neural network
architectures like recursive neural networks [8] and convolutional neural networks
[9] achieved excellent results in text classification. Recurrent neural networks
which were proposed for dealing sequential inputs suffer from vanishing [10] and
exploding gradient problems [11]. To overcome this problem, Long Short Term
Memory (LSTM) was introduced [12].

All these architectures have been successful in performing sentiment classi-
fication for a specific domain utilizing large amounts of labelled data. However,
there exists insufficient labelled data for a target domain of interest. There-
fore, Domain Adaptation (DA) exploits knowledge from a relevant domain with
abundant labeled data to perform sentiment classification on an unseen target
domain. However, expressions of sentiment vary in each domain. For example,
in Books domain, words thoughtful and comprehensive are used to express sen-
timent whereas cheap and costly are used in Electronics domain. Hence, models
should generalize well for all domains. Several methods have been introduced
for performing Domain Adaptation. Blitzer [13] proposed Structural Correspon-
dence Learning (SCL) which relies on pivot features between source and target
domains. Pan [14] performed Domain Adaptation using Spectral Feature Align-
ment (SFA) that aligns features across different domains. Glorot [15] proposed
Stacked Denoising Autoencoder (SDA) that learns generalized feature represen-
tations across domains. Zheng [16] proposed end-to-end adversarial network for
Domain Adaptation. Qi [17] proposed a memory network for Domain Adapta-
tion. Zheng [18] proposed a Hierarchical transfer network relying on attention
for Domain Adaptation.

However, all the above architectures use a different sub-network altogether
to incorporate domain agnostic knowledge and is combined with main network
in the final layers. This makes these architectures computationally intensive. To
address this issue, we propose a Gated Convolutional Neural Network (GCN)
model that learns domain agnostic knowledge using gated mechanism [19]. Con-
volution layers learns the higher level representations for source domain and
gated layer selects domain agnostic representations. Unlike other models, GCN
doesn’t rely on a special sub-network for learning domain agnostic representa-
tions. As, gated mechanism is applied on Convolution layers, GCN is computa-
tionally efficient.

2 Related Work

Traditionally methods for tackling Domain Adaptation are lexicon based. Blitzer
[20] used a pivot method to select features that occur frequently in both domains.

120 A. Madasu and V. A. Rao

Fig. 1. Architecture of the proposed model

It assumes that the selected pivot features can reliably represent the source
domain. The pivots are selected using mutual information between selected fea-
tures and the source domain labels. SFA [14] method argues that pivot features
selected from source domain cannot attest a representation of target domain.
Hence, SFA tries to exploit the relationship between domain-specific and domain
independent words via simultaneously co-clustering them in a common latent
space. SDA [15] performs Domain Adaptation by learning intermediate repre-
sentations through auto-encoders. Yu [21] used two auxiliary tasks to help induce
sentence embeddings that work well across different domains. These embeddings
are trained using Convolutional Neural Networks (CNN).

Gated convolutional neural networks have achieved state-of-art results in
language modelling [19]. Since then, they have been used in different areas of
natural language processing (NLP) like sentence similarity [22] and aspect based
sentiment analysis [23].

3 Gated Convolutional Neural Networks

In this section, we introduce a model based on Gated Convolutional Neural
Networks for Domain Adaptation. We present the problem definition of Domain
Adaptation, followed by the architecture of the proposed model.

3.1 Problem Definition

Given a source domain DS represented as DS =
{
(xs1 , ys1), (xs2 , ys2)....

(xsn , ysn)
}

where xsi ∈ R represents the vector of ith source text and ysi rep-
resents the corresponding source domain label. Let TS represent the task in
source domain. Given a target domain DT represented as DT = {(xt1 , yt1),
(xt2 , yt2)....(xtn , ytn)}, where xti ∈ R represents the vector of ith target text
and yti represents corresponding target domain label. Let TT represent the task

Gated Convolutional Neural Networks for Domain Adaptation 121

in target domain. Domain Adaptation (DA) is defined by the target predictive
function fT (DT) calculated using the knowledge of DS and TS where DS �= DT

but TS = TT . It is imperative to note that the domains are different but only a
single task. In this paper, the task is sentiment classification.

3.2 Model Architecture

The proposed model architecture is shown in the Fig. 1. Recurrent Neural Net-
works like LSTM, GRU update their weights at every timestep sequentially and
hence lack parallelization over inputs in training. In case of attention based mod-
els, the attention layer has to wait for outputs from all timesteps. Hence, these
models fail to take the advantage of parallelism either. Since, proposed model
is based on convolution layers and gated mechanism, it can be parallelized effi-
ciently. The convolution layers learn higher level representations for the source
domain. The gated mechanism learn the domain agnostic representations. They
together control the information that has to flow through further fully connected
output layer after max pooling.

Let I denote the input sentence represented as I = {w1w2w3...wN} where wi

represents the ith word in I and N is the maximum sentence length considered.
Let B be the vocabulary size for each dataset and X ∈ R

B×d denote the word
embedding matrix where each Xi is a d dimensional vector. Input sentences
whose length is less than N are padded with 0s to reach maximum sentence
length. Words absent in the pretrained word embeddings1 are initialized to 0s.
Therefore each input sentence I is converted to P ∈ R

N×d dimensional vector.
Convolution operation is applied on P with kernel K ∈ R

h×d. The convolution
operation is one-dimensional, applied with a fixed window size across words. We
consider kernel size of 3, 4 and 5. The weight initialization of these kernels is
done using glorot uniform [24]. Each kernel is a feature detector which extracts
patterns from n-grams. After convolution we obtain a new feature map C =
[c1c2..cN] for each kernel K.

Ci = f(Pi:i+h ∗ Wa + ba) (1)

where f represents the activation function in convolution layer. The gated mecha-
nism is applied on each convolution layer. Each gated layer learns to filter domain
agnostic representations for every time step i.

Si = g(Pi:i+h ∗ Ws + bs) (2)

where g is the activation function used in gated convolution layer. The outputs
from convolution layer and gated convolution layer are element wise multiplied
to compute a new feature representation Gi

Gi = Ci × Si (3)

1 https://nlp.stanford.edu/data/glove.840B.300d.zip.

https://nlp.stanford.edu/data/glove.840B.300d.zip

122 A. Madasu and V. A. Rao

(a) GTRU (b) GTU (c) GLU

Fig. 2. Variations in gates of the proposed GCN architecture.

Maxpooling operation is applied across each filter in this new feature repre-
sentation to get the most important features [9]. As shown in Fig. 1 the outputs
from maxpooling layer across all filters are concatenated. The concatenated layer
is fully connected to output layer. Sigmoid is used as the activation function in
the output layer.

3.3 Gating Mechanisms

Gating mechanisms have been effective in Recurrent Neural Networks like GRU
and LSTM. They control the information flow through their recurrent cells. In
case of GCN, these gated units control the domain information that flows to
pooling layers. The model must be robust to change in domain knowledge and
should be able to generalize well across different domains. We use the gated
mechanisms Gated Tanh Unit (GTU) and Gated Linear Unit (GLU) and Gated
Tanh ReLU Unit (GTRU) [23] in proposed model. The gated architectures are
shown in Fig. 2. The outputs from Gated Tanh Unit is calculated as tanh(P ∗
W + c) × σ(P ∗ V + c). In case of Gated Linear Unit, it is calculated as (P ∗
W + c) × σ(P ∗ V + c) where tanh and σ denotes Tanh and Sigmoid activation
functions respectively. In case of Gated Tanh ReLU Unit, output is calculated
as tanh(P ∗ W + c) × relu(P ∗ V + c).

4 Experiments

4.1 Datasets

Multi Domain Dataset (MDD). Multi Domain Dataset [20] is a short
dataset with reviews from distinct domains namely Books(B), DVD(D), Elec-
tronics(E) and Kitchen(K). Each domain consists of 2000 reviews equally divided
among positive and negative sentiment. We consider 1280 reviews for training,
320 reviews for validation and 400 reviews for testing from each domain.

Amazon Reviews Dataset (ARD). Amazon Reviews Dataset [25] is a large
dataset with millions of reviews from different product categories. For our exper-
iments, we consider a subset of 20000 reviews from the domains Cell Phones and

Gated Convolutional Neural Networks for Domain Adaptation 123

Accessories(C), Clothing and Shoes(S), Home and Kitchen(H) and Tools and
Home Improvement(T). Out of 20000 reviews, 10000 are positive and 10000 are
negative. We use 12800 reviews for training, 3200 reviews for validation and 4000
reviews for testing from each domain.

4.2 Baselines

To evaluate the performance of proposed model, we consider various baselines
like traditional lexicon approaches, CNN models without gating mechanisms and
LSTM models.

BoW+LR. Bag-of-words (BoW) is one of the strongest baselines in text clas-
sification [5]. We consider all the words as features with a minimum frequency
of 5. These features are trained using Logistic Regression (LR).

TF-IDF+LR. TF-IDF is a feature selection technique built upon Bag-of-
Words. We consider all the words with a minimum frequency of 5. The features
selected are trained using Logistic Regression (LR).

PV+FNN. Paragraph2vec or doc2vec [26] is a strong and popularly used base-
line for text classification. Paragraph2Vec represents each sentence or paragraph
in the form of a distributed representation. We trained our own doc2vec model
using DBOW model. The paragraph vectors obtained are trained using Feed
Forward Neural Network (FNN).

CNN. To show the effectiveness of gated layer, we consider a CNN model which
does not contain gated layers. Hence, we consider Static CNN model, a popular
CNN architecture proposed in Kim [9] as a baseline.

CRNN. Wang [27] proposed a combination of Convolutional and Recurrent
Neural Network for sentiment Analysis of short texts. This model takes the
advantages of features learned by CNN and long-distance dependencies learned
by RNN. It achieved remarkable results on benchmark datasets. We report the
results using code published by the authors2.

LSTM. We offer a comparison with LSTM model with a single hidden layer.
This model is trained with equivalent experimental settings as proposed model.

LSTM+Attention. In this baseline, attention mechanism [28] is applied on
the top of LSTM outputs across different timesteps.

2 https://github.com/ultimate010/crnn.

https://github.com/ultimate010/crnn

124 A. Madasu and V. A. Rao

Table 1. Average training time for all the models on ARD

Model Batchsize Time for 1 epoch (in Sec)

CRNN 50 50

LSTM 50 70

LSTM+Attention 50 150

GLU 50 10

GRU 50 10

GTRU 50 10

4.3 Implementation Details

All the models are experimented with approximately matching number of param-
eters for a solid comparison using a Tesla K80 GPU.

Input. Each word in the input sentence is converted to a 300 dimensional vector
using GloVe pretrained vectors [29]. A maximum sentence length 100 is consid-
ered for all the datasets. Sentences with length less than 100 are padded with 0s.

Architecture Details: The model is implemented using keras. We considered
100 convolution filters for each of the kernels of sizes 3, 4 and 5. To get the same
sentence length after convolution operation zero padding is done on the input.

Training. Each sentence or paragraph is converted to lower case. Stopword
removal is not done. A vocabulary size of 20000 is considered for all the datasets.
We apply a dropout layer [30] with a probability of 0.5, on the embedding layer
and probability 0.2, on the dense layer that connects the output layer. Adadelta
[31] is used as the optimizer for training with gradient descent updates. Batch-
size of 16 is taken for MDD and 50 for ARD. The model is trained for 50 epochs.
We employ an early stopping mechanism based on validation loss for a patience
of 10 epochs. The models are trained on source domain and tested on unseen
target domain in all experiments.

5 Results and Discussion

5.1 Results

The performance of all models on MDD is shown in Tables 2 and 3 while for ARD,
in Tables 4 and 5. All values are shown in accuracy percentage. Furthermore time
complexity of each model is presented in Table 1.

Gated Convolutional Neural Networks for Domain Adaptation 125

Table 2. Accuracy scores on Multi Domain Dataset.

Source− >Target BoW TFIDF PV CNN CRNN LSTM

B− >D 72.5 73.75 63.749 57.75 68.75 69.5

B− >E 67.5 68.5 53.25 53.5 63.249 58.75

B− >K 69.25 72.5 57.75 56.25 66.5 64.75

D− >B 66 68.5 64.75 54.25 66.75 74.75

D− >E 71 69.5 56.75 57.25 69.25 64.25

D− >K 68 69.75 60 58.25 67.5 70

E− >B 63.249 64 54 57.25 69.5 67.75

E− >D 65 66 47.25 56.499 64.5 67

E− >K 76.25 76.75 59.25 63.249 76 76

K− >B 61.5 67.75 50 57.75 69.25 66.25

K− >D 68 70.5 52.25 60 64.75 71

K− >E 81 80 50 59.25 69 76.75

Table 3. Accuracy scores on Multi Domain Dataset.

Source− >Target LSTM.Attention GLU GTU GTRU

B− >D 76.75 79.5 79.25 77.5

B− >E 70 71.75 71.25 71.25

B− >K 74.75 73 72.5 74.25

D− >B 72.5 78 80.25 77.25

D− >E 71 73 74.5 69.25

D− >K 72.75 77 76 74.75

E− >B 64.75 71.75 68.75 67.25

E− >D 62.749 71.75 69 68.25

E− >K 72 82.25 80.5 79

K− >B 64.75 70 67.75 63.249

K− >D 75 73.75 73.5 69.25

K− >E 75.5 82 82 81.25

5.2 Discussion

Gated Outperform Regular Convolution. We find that gated architectures
vastly outperform non gated CNN model. The effectiveness of gated architectures
rely on the idea of training a gate with sole purpose of identifying a weightage.
In the task of sentiment analysis this weightage corresponds to what weights
will lead to a decrement in final loss or in other words, most accurate prediction
of sentiment. In doing so, the gate architecture learns which words or n-grams
contribute to the sentiment the most, these words or n-grams often co-relate with

126 A. Madasu and V. A. Rao

Table 4. Accuracy scores on Amazon Reviews Dataset.

Source− >Target BoW TFIDF PV CNN CRNN LSTM

C− >S 79.3 81.175 69.625 62.324 84.95 83.7

C− >H 81.6 82.875 70.775 59.35 81.8 81.175

C− >T 76.25 77.475 66.4 54.5 79.025 77.175

S− >C 76.925 76.525 69.425 55.375 79.975 79.85

S− >T 80.125 81.575 74.524 62.7 81.45 82.925

S− >H 74.275 75.175 67.274 61.925 76.05 77.7

H− >S 76.149 73.575 65.3 53.55 79.074 78.574

H− >C 81.225 80.925 70.7 58.25 74.275 81.95

H− >T 79.175 75.449 69.425 59.4 76.325 76.725

T− >C 75.1 73.875 56.85 56 80.25 76.9

T− >S 78.875 80.5 59.199 60 85.824 81.8

T− >H 81.325 81.875 66.8 61.25 83.35 81

Table 5. Accuracy scores on Amazon Reviews Dataset.

Source− >Target LSTM.Attention GLU GTU GTRU

C− >S 84.15 85.125 84.95 84.8

C− >H 82.6 84.85 84.2 84.55

C− >T 77.9 79.5 79.274 80.225

S− >C 78.075 80.925 80.25 83.1

S− >H 82.325 83.95 83.399 84.025

S− >T 78.425 79.475 77.85 79.375

H− >C 81.375 83.175 81.85 82.1

H− >S 81.975 82.75 84.1 85.425

H− >T 80.95 82.55 81.774 81.825

T− >C 75.55 82.125 80.805 81.825

T− >S 82.375 82.625 83.975 84.775

T− >H 80.5 84.7 83.95 85.275

domain independent words. On the other hand the gate gives less weightage to
n-grams which are largely either specific to domain or function word chunks
which contribute negligible to the overall sentiment. This is what makes gated
architectures effective at Domain Adaptation.

In Fig. 3, we have illustrated the visualization of convolution outputs (kernel
size = 3) from the sigmoid gate in GLU across domains. As the kernel size is 3,
each row in the output corresponds to a trigram from input sentence. This heat
map visualizes values of all 100 filters and their average for every input trigram.
These examples demonstrate what the convolution gate learns. Trigrams with

Gated Convolutional Neural Networks for Domain Adaptation 127

domain independent but heavy polarity like “ good” and “ costly would”
have higher weightage. Meanwhile, Trigrams with domain specific terms like
“quality functional case” and “sell entire kitchen” get some of the least weights.
In Fig. 3(b) example, the trigram “would have to” just consists of function words,
hence gets the least weight. While “sell entire kitchen” gets more weight com-
paratively. This might be because while function words are merely grammatical
units which contribute minimal to overall sentiment, domain specific terms like
“sell” may contain sentiment level knowledge only relevant within the domain.
In such a case it is possible that the filters effectively propagate sentiment level
knowledge from domain specific terms as well.

(a) “good cell phone” (b) “costly would have to sell entire
kitchen”

(c) “great quality functional case”

Fig. 3. Visualizing outputs from gated convolutions (filter size = 3) of GLU for example
sentences, darker indicates higher weightage

Gated Outperform Attention and Linear. We see that gated architectures
almost always outperform recurrent, attention and linear models BoW, TFIDF,
PV. This is largely because while training and testing on same domains, these
models especially recurrent and attention based may perform better. However,
for Domain Adaptation, as they lack gated structure which is trained in parallel
to learn importance, their performance on target domain is poor as compared
to gated architectures. As gated architectures are based on convolutions, they
exploit parallelization to give significant boost in time complexity as compared
to other models. This is depicted in Table 1.

Comparison Among Gates. While the gated architectures outperform other
baselines, within them as well we make observations. Gated Linear Unit (GLU)
performs the best often over other gated architectures. In case of GTU, outputs

128 A. Madasu and V. A. Rao

from Sigmoid and Tanh are multiplied together, this may result in small gradi-
ents, and hence resulting in the vanishing gradient problem. However, this will
not be the in the case of GLU, as the activation is linear. In case of GTRU,
outputs from Tanh and ReLU are multiplied. In ReLU, because of absence of
negative activations, corresponding Tanh outputs will be completely ignored,
resulting in loss of some domain independent knowledge.

6 Conclusion

In this paper, we proposed Gated Convolutional Neural Network (GCN) model
for Domain Adaptation in Sentiment Analysis. We show that gates in GCN, filter
out domain dependant knowledge, hence performing better at an unseen target
domain. Our experiments reveal that gated architectures outperform other pop-
ular recurrent and non-gated architectures. Furthermore, because these architec-
tures rely on convolutions, they take advantage of parellalization, vastly reducing
time complexity.

References

1. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: Proceedings of the ACL-02 Conference on Empir-
ical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for
Computational Linguistics (2002)

2. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)
3. McCallum, A., Nigam, K., et al.: A comparison of event models for Naive Bayes

text classification. In: AAAI-98 Workshop on Learning for Text Categorization,
vol. 752, pp. 41–48. Citeseer (1998)

4. Joachims, T.: Text categorization with Support Vector Machines: learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0026683

5. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic
classification. In: Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers, vol. 2, pp. 90–94. Association for Com-
putational Linguistics (2012)

6. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

8. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural
language with recursive neural networks. In: Proceedings of the 28th International
Conference on Machine Learning (ICML 2011), pp. 129–136 (2011)

9. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

10. Bengio, Y., Simard, P., Frasconi, P., et al.: Learning long-term dependencies with
gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

https://doi.org/10.1007/BFb0026683
https://doi.org/10.1007/BFb0026683
http://arxiv.org/abs/1408.5882

Gated Convolutional Neural Networks for Domain Adaptation 129

11. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

13. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural corre-
spondence learning. In: Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, pp. 120–128. Association for Computational Lin-
guistics (2006)

14. Pan, S.J., Ni, X., Sun, J.-T., Yang, Q., Chen, Z.: Cross-domain sentiment classi-
fication via spectral feature alignment. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 751–760. ACM (2010)

15. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment
classification: a deep learning approach. In: Proceedings of the 28th International
Conference on Machine Learning (ICML 2011), pp. 513–520 (2011)

16. Li, Z., Zhang, Y., Wei, Y., Wu, Y., Yang, Q.: End-to-end adversarial memory
network for cross-domain sentiment classification. In: IJCAI, pp. 2237–2243 (2017)

17. Liu, Q., Zhang, Y., Liu, J.: Learning domain representation for multi-domain senti-
ment classification. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), vol. 1, pp. 541–550 (2018)

18. Li, Z., Wei, Y., Zhang, Y., Yang, Q.: Hierarchical attention transfer network for
cross-domain sentiment classification. In: Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2018)

19. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated
convolutional networks. In: Proceedings of the 34th International Conference on
Machine Learning, vol. 70, pp. 933–941. JMLR.org (2017)

20. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and
blenders: domain adaptation for sentiment classification. In: Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, pp. 440–
447 (2007)

21. Yu, J., Jiang, J.: Learning sentence embeddings with auxiliary tasks for cross-
domain sentiment classification. In: Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing, pp. 236–246 (2016)

22. Chen, P., Guo, W., Chen, Z., Sun, J., You, L.: Gated convolutional neural network
for sentence matching. In: Interspeech (2018)

23. Xue, W., Li, T.: Aspect based sentiment analysis with gated convolutional net-
works. arXiv preprint arXiv:1805.07043 (2018)

24. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256 (2010)

25. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends
with one-class collaborative filtering. In: Proceedings of the 25th International
Conference on World Wide Web, pp. 507–517. International World Wide Web
Conferences Steering Committee (2016)

26. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

27. Wang, X., Jiang, W., Luo, Z.: Combination of convolutional and recurrent neural
network for sentiment analysis of short texts. In: Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical Papers,
pp. 2428–2437 (2016)

http://arxiv.org/abs/1805.07043

130 A. Madasu and V. A. Rao

28. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

29. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

31. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1212.5701

A Keyword Search Approach
for Semantic Web Data

Mohamad Rihany(B), Zoubida Kedad, and Stéphane Lopes

DAVID Lab, University of Versailles Saint-Quentin-en-Yvelines, Versailles, France
{Mohamad.rihany,zoubida.kedad,Stephane.lopes}@uvsq.fr

Abstract. More and more RDF datasets are available on the web. These
datasets can be queried using the SPARQL language; to do so, one must
be familiar with the query language itself, but also with the content of
the dataset in terms of resources and properties in order to formulate
the queries. Keyword search is an alternative way to query RDF data.
In this paper, we present a keyword search approach which uses online
lexical databases to bridge the terminological gap between the keywords
and the dataset when searching for matching elements in the dataset. We
formulate the problem of aggregating the matching elements as a Steiner
tree problem and we adapt Kruskal’s algorithm to provide a solution. We
also propose a ranking approach if several answers are found for a given
query. We have performed some experiments on the DBpedia and the
AIFB datasets to illustrate the effectiveness of our approach.

Keywords: Keyword search · RDF graph · Steiner tree

1 Introduction

The rapid growth and huge amount of data published on the web in recent
years has led to many challenges in searching and gathering meaningful infor-
mation. These data are described by languages proposed by the W3C, such as
the Resource Description Framework (RDF) [8]; the building block in RDF is
a triple (subject, predicate, object). An RDF dataset can be viewed as a labeled
directed graph where nodes are resources or literals and where labeled edges rep-
resent properties. Figure 1 shows an example of an RDF graph. The SPARQL
query language is used to query RDF datasets. A SPARQL query consists of a
set of triples where the subject, predicate and/or object can be variables. The
idea is to match the triple patterns of the query with the triples of the dataset,
and to find the possible instances for the variables. Considering the dataset of

This work was funded by the National Council for Scientific Research of Lebanon
(CNRS-L) and the French National Research Agency through the CAIR ANR-14-
CE23-0006 project.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 131–143, 2019.
https://doi.org/10.1007/978-3-030-23281-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_11

132 M. Rihany et al.

Fig. 1, finding the director and released date of the movie “Man on Fire” is
expressed using the following query:

SELECT ?x ?y
WHERE {Man_on_Fire director ?x. Man_on_Fire Released_date ?y.}

Fig. 1. An example of RDF dataset about movies

In order to write such queries, the user should be familiar with SPARQL, and
should have some knowledge about the schema of the RDF data. An alternative
way of querying RDF datasets is keyword search, in which a query is formulated
as a set of keywords. This approach raises several challenges. One of them is
finding the relevant elements by matching the keyword query with the elements
of the dataset, taking into account the differences of terminology which may
exist between them. In previous works, we have proposed a matching approach
capable of handling these terminological differences [12]. In this paper, we will
present some improvements of this approach

Another challenge addressed in this paper is aggregating the relevant ele-
ments, building the subgraphs which represent possible answers to the initial
query, and ranking these results.

In this paper, we describe a keyword search approach for RDF datasets and
present a novel method to aggregate the matching elements and to find the
best paths between them in order to extract the subgraph corresponding to the
keyword query. Our solution is an adaptation of an algorithm used to solve the
Steiner tree problem and the minimum spanning tree problem; we also propose
a method to rank the set of possible answers.

The rest of this paper is organized as follows. An overview of the approach is
provided in Sect. 2. We present our solution for matching keywords with graph
elements using external knowledge in Sect. 3. Section 4 presents the process of
building the end results from the matching elements. The ranking method is

A Keyword Search Approach for Semantic Web Data 133

discussed in Sect. 5. Section 6 presents our experiments and Sect. 7 reviews the
related works. Finally, we conclude the paper and present some future works in
Sect. 8.

2 Approach Overview

Our framework for keyword search, presented in Fig. 2, comprises three compo-
nents: a matching component, which searches the graph elements corresponding
to the keywords, a component aggregating the graph elements into a subgraph,
and a ranking element to deal with multiple results for a given query.

Fig. 2. Approach overview

The matching component takes as input the keyword query and searches for
the matching elements in the dataset. Each keyword is compared to the graph
elements (resource, class or property) and the matching elements are identified.
In some cases, the user may enter a keyword for which an exact match can not
be found in the dataset, but some graph elements could be close to the keyword
such as a synonym or a close concept. The problem is to identify the equivalent
concepts and the close concepts to a keyword in the dataset. To do so, we propose
the use of external knowledge sources such as online linguistic dictionaries.

Once the matching elements in the RDF graph are identified for each key-
word, the problem is to build the final result from these elements, and to aggre-
gate them into a connected subgraph representing an answer to the query. Each
keyword can be associated to more than one element in the RDF graph; we
consider that each combination of matching elements containing exactly one ele-
ment for each keyword is a possible answer to the query. The problem is to build
the subgraph containing the elements of the considered combination.

As each keyword may have more than one matching element in the dataset,
there may be several possible results to the query. The problem is to rank the
different results and to find a ranking method capable of determining if there
are better results than others.

3 Matching Keywords with the Dataset

One of the problems raised by keyword search in RDF datasets is matching the
query keywords with the elements of the dataset. Let Q = {k1, k2, ..., kn} be the

134 M. Rihany et al.

keyword query and let G = (V, E) be the data graph, where V is the set of vertices
and E the set of edges. The goal of the matching process is to find for each ki the
set of matching elements from the data graph G. A matching element can either
be a node or an edge of G. To this end, we need to solve the terminological gap
which may exist between the keywords and the data graph elements. Indeed, the
keyword ki itself may not be found in the dataset, but an equivalent or a close
element could be found. We have proposed the use of some external knowledge
stored in online linguistic resources such as observe from1, which is a large lexical
database of English providing numerous semantic relations among concepts. In
our work, we have used WordNet in order to find the possible matchings between
ki and G by taking into account the provided semantic relations. We have first
divide the semantic relations provided by WordNet into two sets:

– Exact semantic relations, which may be used to find out if two concepts are
either equivalent, or if one is a super concept of the other; these semantic
relations are: synonymy, antonymy and hypernymy;

– Close semantic relations, which express other relations than equivalence or
generalization; the considered concepts are not synonyms, but are linked
by some other semantic relation, which could be hyponymy, meronymy and
holonymy.

An inverted index is used to improve the efficiency of the process of extracting the
matching elements. Our index contains a set of documents, each one representing
a graph element (resource, literal or property). Our matching process operates
in two phases; firstly, all the exact matching relations for the keyword ki are
retrieved; secondly, the close semantic relations for ki are retrieved. For each ki in
Q we start by querying WordNet to extract the exact semantic relations involving
ki; as a result, we obtain a set ESi such that: ESi = {cij | ∃ sem − rel(ki, cij)}
where sem-rel(ki, cij) is one of the following semantic relations: synonymy,
antonymy or hypernymy between ki and cij . For each concept cij in ESi, and
for ki we check the index table to find matching elements in G and add them to
a set of matching elements MEi(ki).

At the end of this phase, if MEi(ki) is empty, then we search for close
semantic relations. This consists in querying WordNet to extract the close
semantic relations involving ki; as a result, we obtain a set CSi such that:
CSi = {cij | ∃ sem − rel(ki, cij)} where sem-rel(ki, cij) is one of the following
semantic relations: hyponymy, meronymy or holonymy between ki and cij . This
whole process is repeated for each concept cij in CSi.

The matching process is presented in Algorithm 1; let us start by pre-
senting the notations used in the algorithm. Let K = {k1, k2, k3...kn} be the
keyword query, and ME(ki) a function to extract the matching elements for
ki in the dataset (these elements can be literals, instances, classes, proper-
ties). The semantic relations between the keyword query ki and WordNet are
extracted by using two functions, SemanticRelationsExact(ki) which returns the

1 https://wordnet.princeton.edu/.

https://wordnet.princeton.edu/

A Keyword Search Approach for Semantic Web Data 135

synonymy, antonymy and hypernymy relations and SemanticRelationsClose(ki)
which returns the hyponymy, meronymy and holonymy relations.

For each keyword ki in the query, the matching elements ME(ki) are extracted
(line 4–5). Then WordNet is queried to extract the set SemanticRelationsExact
of synonyms, antonyms and hyponyms. For each element of SemanticRelation-
sExact, the dataset is accessed to check if there is a matching element (line 6–9).
If no matching element has been found, then a search for close matching elements
is performed (line 12). In this phase, WordNet is queried to find close matching
elements by searching for the hypernymy, holonymy and meronymy semantic
relations involving ki. For each concept c related to ki by one of these relations,
we search for elements labeled c in the dataset; these elements are added to the
set of matching elements for the keyword ki (line 13–20).

Algorithm 1. Matching the Query Keywords with the RDF Graph
1: keywordQuery = {k1, k2, k3, ...ki}
2: procedure Matching(keywordQuery)
3: hashmap(keyword, MatchingElements)
4: for each keyword ki in keywordQuery do
5: ME(ki)
6: SemanticRelationsExact ← SemanticRelationsExact(ki)
7: for each sj in SemanticRelations do
8: ME(ki) ← ME(ki) + ME(sj)
9: end for

10: hashmap.add(ki, ME(ki))
11: if ME(ki) is empty then
12: SemanticRelationsClose ← SemanticRelationsClose(ki)
13: for each sk in SemanticRelationsClose do
14: ME(ki) ← ME(ki) + ME(sk)
15: end for
16: hashmap.add(ki, ME(ki))
17: end if
18: end for
19: Return hashmap
20: end procedure

Let us consider Q = {brother, Dakota, Washington, Hollywood} be a keyword
query, if the user issues this keyword query on the data graph of Fig. 1 we will
get a set of matching elements for each keyword.

As we can observe from the data graph, there is no graph element corre-
sponding to the keyword “brother”; in previous work [14], we have introduced
the notion of pattern, representing equivalences between a property and a path.
These equivalences enable us to infer that “brother” is equivalent to the graph
shown in Fig. 3, which can therefore be selected as a matching element for the
keyword “brother”. For the other keywords, the matching elements are presented
in Fig. 4.

136 M. Rihany et al.

Fig. 3. Example of equivalent path for the keyword brother

Fig. 4. Matching elements for each keyword in the query K

4 Aggregating Matching Elements

The matching process produces for each keyword ki in a query Q a set Si =
{si1, si2, ..., sin} of matching elements. From the sets of matching elements cor-
responding to each keyword, all the possible combinations are built by selecting
one element from each set Si. A combination C is a set C = {s1, s2, s3..sn}
where each si in the set Si is a matching element for the keyword ki. Our chal-
lenge is to aggregate the elements in the combination and produce the minimal
connected subgraph containing the matching elements of the considered combi-
nations. Each subgraph is a possible answer to the initial query. To derive all
the possible combinations we compute the cartesian product of the different sets
of matching elements. Let us consider the keyword query Q = {brother, Dakota,
Washington, Hollywood}; the set of matching elements corresponding to each
keyword is given in Fig. 4.

In Fig. 5, we can see all the possible combinations, obtained by performing
the cartesian product of the sets of matching elements shown in Fig. 4. For each
combination, a connected subgraph will be extracted.

Our problem can be stated as a Steiner tree problem [6]: given a graph
G = (V, E), a subset T ⊆ V of vertices called terminals, and a weighted function
d : E → R on the edges, the goal is to find a subgraph S of minimal weight in
G containing all the terminals. Other nodes than the terminals can be added

Fig. 5. Combinations of matching elements

A Keyword Search Approach for Semantic Web Data 137

to S; they are called Steiner nodes. S should be a tree, which means that from
every node s and t ∈ V there should exist exactly one path between s and t.
The Steiner tree problem is NP-hard, and there are many research works on
finding approximate solutions to this problem. The quality of the approximation
algorithm is measured by calculating the ratio between the weight of the resulting
tree and the optimal Steiner tree.

If we compare the Steiner tree problem with the aggregation of matching ele-
ments in our context, the set of terminals represents a combinations of matching
elements. But in our case, the terminals can be either nodes, or edges, or sub-
graphs. We assume that all the nodes have a weight equal to one.

We have adapted the distance network heuristic (DNH) [9] with some
modifications to solve our problem. The distance network heuristic has an
approximation ratio equal to 2 − 2

p where p is the total number of the terminal
nodes. The distance network heuristic comprises the following steps:

1. Compute the complete distance graph DG = (T, E, d) induced by T.
2. Compute the minimum spanning tree T for the distance graph DG.
3. Construct a subgraph G′ of G by replacing each edge in T by a corresponding

minimum cost path in G; if several paths are found, one of them is randomly
selected.

4. Compute a minimum spanning tree T′ for the subgraph G′.
5. Delete from T′ all non-terminals of degree 1.
6. The resulting tree T′′ is the solution.

As the DNH requires some modifications to fit our needs, we first translate
all the matching elements (nodes, edges and subgraphs) into terminal nodes.

A matching element mi is translated into a node as follows:

– If mi is a node then the resulting node is mi

– If mi is a edge then the edge and the 2 connected nodes are replaced by a
single node mi

– If mi is a subgraph then the subgraph is replaced by one node.

Another adaptation of DNH is related to the selection of the most relevant
path. In our approach, we have introduced the notion of centrality degree weight
instead of selecting an arbitrary path if there are several paths between a pair
of terminals. The centrality degree weight is defined for a node as the number
of both incoming and outgoing edges. The centrality degree of a path is calcu-
lated as follows. Let p = {(v1, e1, v2)(v2, e2, v3)....(vn−1, en−1, vn)} be the path
connecting v1 to vn; the centrality degree weight of p CDW (p) = A(p), where
A(p) =

∑n
i=1

deg(vi)
n is the average degree of the nodes in the path. We can also

limit the computation of A(p) to the top k nodes having the highest centrality.
The distance graph DG is computed from G by using the shortest path

between all the matching elements. Let mei and mej be two matching elements,
then w(mei, mej) is the number of edges in the shortest path connecting mei
and mej . We compute the MST of DG by using the modified Kruskal’s algorithm
presented in Algorithm 2.

138 M. Rihany et al.

Algorithm 2. Modified Kruskal’s algorithm
1: A = φ
2: procedure Kruskal(G)
3: Make − set(V)
4: for each v ∈ G.V do
5: Make-set(v)
6: end for
7: for each (u, v) in G.E ordered by weight(u, v) and CDW, increasing do
8: if FIND − SET (u) �= FIND − SET (v) then
9: A = A ∪ {(u, v)}

10: UNION(u, v)
11: end if
12: end for
13: return A
14: end procedure

The Kruskal’s algorithm consists in creating a forest F (a set of trees) where
each vertex in the graph is a separate tree, and creating a set S containing all the
edges in the graph. The algorithm finds an edge with minimal weight connecting
any pair of trees in the forest and without forming a cycle. If several edges match
these criteria, then one is chosen arbitrarily. The edge is added to the spanning
tree, and this step is repeated until there are |V|-1 edges in the spanning tree
(where V is the number of vertices). We have adapted Kruskal’s algorithm by
modifying the weights of the edges and taking into account the centrality degree
weight. If w(i, j) in DG represents the shortest path connecting i with j, CDW
is calculated for each path. The edges are first sorted according to w and then if
we have two or more edges having the same w, we sort them according to CDW.

Let us take the combination C3 as an example. We first translate the match-
ing elements into nodes, and create the distance graph shown in Fig. 6a.

(a) Distance Graph (b) Steiner Tree

Fig. 6. From distance graph to Steiner tree

Fig. 7. Steiner tree using Kruskal’s algorithm

A Keyword Search Approach for Semantic Web Data 139

Figure 6b shows the Steiner tree constructed using the adapted Kruskal’s
algorithm. The steps are shown in Fig. 7. After selecting the first edge which
connects “Hollywood” with “Dakota” in Fig. 7a, we select the edge with the
minimal weight. But as we can see from Fig. 6a, there are four edges with the
same weight equals to three. We then compute the CDW for these edges; the
results are shown in the table below (Table 1). We select the edge with the highest
CDW as shown in Fig. 7c and then select the edge connecting “Washington” and
“Dakota” as presented in Fig. 7d. If the number of edges equals |V|-1, then we
can deduce that this is the Steiner tree for the distance graph (Fig. 6a). After
replacing the nodes and the edges in ST by the matching elements and the paths
in G then we obtain the subgraph of Fig. 8.

Table 1. CDW for edges in distance graph

Path A(p) Atop2(p) CDW

Brother-Hollywood 3.75 5 3.95

Brother-Dakota 4.25 5 4.45

Dakota-washington 4 5 4.2

Washington-Hollywood 3.5 5 3.7

Fig. 8. Solution for the keyword query

5 Ranking the Results

The elicitation of all the combinations of graph elements and the aggregation of
graph elements for each combination lead to several subgraphs, each one being
a possible answer for the query. One problem is to rank these answers, and to
determine if there are better results than others. In our approach, we have ranked
the results according to the matching process. We calculate the ranking score as
follows:

Score = 1 − [wa ∗ A + (1 − wa) ∗ L]
N

where A is the number of approximate matching elements, L is the number of
linking elements, N is the total number of nodes and edges in the subgraph and

140 M. Rihany et al.

wa is the weight for A. Intuitively, the above score expresses that the less linking
elements in a subgraph, the better the solution. It also expresses that the more
exact matching elements in a subgraph, the better the solution.

6 Experimental Evaluation

Our approach is implemented in Java, we have used the Jena API for the manip-
ulation of RDF data. For indexing and searching the keyword query, we have
used the Lucene API. The Jung API is used for graph manipulation and visual-
ization.

In the rest of this section, we describe our experiments to validate the per-
formances of our approach. Our goal is to study the impact of using WordNet
as an external knowledge source to fill the gap between the keywords and the
dataset terminologies, as well as to evaluate the ranking model with various key-
word queries. All the experiments have been performed on Intel Core i7 with
32 GB RAM. We have used two datasets: AIFB and DBpedia. AIFB contains
8281 entities and 29 233 triples. The subset of DBpedia we have used is related
to movies, their title, stares, director, released data and other properties. This
dataset contains 30 793 triples. The size of the keyword queries was between 3
and 7 keywords. The total number of queries was 30 queries (15 for each dataset).

Fig. 9. Average execution time according to the size of the query

Figure 9 shows the execution time with respect to the size of the query. The
graph shows that the execution time increases when the number of keywords
increases for both datasets. We can also see that the execution time for AIFB is
greater than the execution time of DBpedia because the size of data in AIFB is
greater than the size of the dataset extracted from DBpedia.

We have tested and compared our keyword search approach both with and
without the use of the adapted Kruskal’s algorithm to solve the Steiner tree
problem. We have compared our approach (referred to as ST) to an approach
consisting in picking a random matching element and computing the shortest
path between this element an all the other ones in a combination. We refer to

A Keyword Search Approach for Semantic Web Data 141

this approach as the basic approach. As we can observe from Table 2, the number
of results decreases when the adapted Kruskal’s algorithm is used during aggre-
gation process, because using this method decreases the number of inaccurate
results as shown in Table 3.

Table 2. Number of results for each keyword query (DBpedia)

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Number of results (ST approach) 5 17 7 5 32 48 4 10 2 9

Number of results (basic approach) 7 32 9 5 53 62 6 17 3 11

To check the effectiveness of our approach we have used 10 queries from
Table 2 and asked five users to check the top-k results for each query and give
the number of relevant results. We have computed the Top-K precision as follows:
Top − kPrecision = NumberOfRelevantResults

K .
All the results were above 0.92 as shown in Table 3; this means that the

results were accurate according to the users.

Table 3. Top-K precision

Data AIFB

K 5 10

Top-K ST approach 0.98 0.94

Top-K basic approach 0.89 0.87

7 Related Words

Keyword search and the translation of a keyword query into a formal query
have been the topic of several research works. The early research works were on
keyword query over relational databases [5], XML data [2] and then RDF data
[4,10,15,17].

The SPARK approach [17] consists in finding the corresponding ontology for
each term in the keyword query and try to map and find a relation between
the ontology and the keyword query; other approaches use external knowledge
or resources such as in the Q2semantic approach [15], where Wikipedia is used
to extract related keywords; for each keyword in the dataset, a document is
created containing features that are matched to the keyword query. The app-
roach described in [18] also uses some external knowledge; it uses the supporting
entity pairs in order to paraphrase dictionary records. Each record represents the
semantic equivalence between an entity in the phrase and the dataset; but the
supporting entity pairs are specific to Wikipedia and the New York Times [13].

142 M. Rihany et al.

In order to aggregate the matching elements in a dataset, SPARK [17] uses
an ontology to discover the relations between the keywords and the dataset and
uses a minimal spanning tree algorithm to create a possible query graph. The
approaches described in [1,4,10,11,15] transform the data graph into a sum-
marized graph; some of them start from the leaf nodes containing the keyword
query and perform a traversal until all the paths converge to the same node; the
other works use a summarized graph and try to extract a SPARQL query by
finding relationships between the nodes. In [3], keywords are classified into two
sets: the first one contains the vertices and the second one contains the edges;
then the final possible solutions are computed. In [16] and [7], the keywords are
translated into SPARQL by using schema-related declarations in the dataset.

In all these works, the keywords in the query are matched with the nodes
of the considered graph, unlike our approach which considers semantic relations
and searches for matching elements in both the nodes and the edges in order to
build the final result. For the aggregation of matching elements, some approaches
have formulated the problem as a Steiner tree problem, like our approach. Our
approach differs in the selection of the edges, which is done using the concept of
node centrality.

8 Conclusion and Future Works

In this paper we have provided an approach for keyword search over RDF
datasets. We have focused on two problems, the first one is bridging the termi-
nological gap between the keyword query and the terms in the dataset by using
an online linguistic dictionary, the second problem is aggregating the matching
elements to find the best way to connect them; we have adapted the Kruskal’s
algorithm after stating our problem as a Steiner tree problem. We have con-
ducted some experiments that shows a good quality and the efficiency of our
approach.

In future works, we will study the scalability issues and enable efficient key-
word search for massive datasets.

References

1. Ayvaz, S., Aydar, M.: Using RDF summary graph for keyword-based semantic
searches. arXiv preprint arXiv:1707.03602 (2017)

2. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword
search over xml documents. In: Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 16–27. ACM (2003)

3. Han, S., Zou, L., Yu, J.X., Zhao, D.: Keyword search on RDF graphs-a query
graph assembly approach. In: Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pp. 227–236. ACM (2017)

4. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs.
In: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 305–316. ACM (2007)

http://arxiv.org/abs/1707.03602

A Keyword Search Approach for Semantic Web Data 143

5. Hristidis, V., Papakonstantinou, Y.: DISCOVER: keyword search in relational
databases. In: VLDB 2002: Proceedings of the 28th International Conference on
Very Large Databases, pp. 670–681. Elsevier (2002)

6. Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22(1), 55–89 (1992)
7. Izquierdo, Y.T., Garćıa, G.M., Menendez, E.S., Casanova, M.A., Dartayre, F.,

Levy, C.H.: QUIOW : a keyword-based query processing tool for RDF datasets
and relational databases. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G.,
Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 259–269. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98812-2 22

8. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and
abstract syntax. W3C Recommendation (2004). http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/

9. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for steiner trees. Acta
Informatica 15(2), 141–145 (1981)

10. Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword search on large
RDF data. IEEE Trans. Knowl. Data Eng. 26(11), 2774–2788 (2014)

11. Lin, X.q., Ma, Z.M., Yan, L.: RDF keyword search using a type-based summary.
J. Inf. Sci. Eng. 34(2), 489–504 (2018)

12. Rihany, M., Kedad, Z., Lopes, S.: Keyword search over RDF graphs using WordNet.
In: Big Data and Cyber-Security Intelligence (2018)

13. Nakashole, N., Weikum, G., Suchanek, F.: PATTY: a taxonomy of relational pat-
terns with semantic types. In: Proceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Computational Natural Language
Learning, pp. 1135–1145. Association for Computational Linguistics (2012)

14. Ouksili, H., Kedad, Z., Lopes, S., Nugier, S.: Using patterns for keyword search in
RDF graphs. In: EDBT/ICDT Workshops (2017)

15. Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2Semantic: a lightweight key-
word interface to semantic search. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 584–598. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68234-9 43

16. Wen, Y., Jin, Y., Yuan, X.: KAT: keywords-to-SPARQL translation over RDF
graphs. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS,
vol. 10827, pp. 802–810. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-91452-7 51

17. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: adapting keyword
query to semantic search. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS,
vol. 4825, pp. 694–707. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76298-0 50

18. Zou, L., Huang, R., Wang, H., Yu, J.X., He, W., Zhao, D.: Natural language
question answering over RDF: a graph data driven approach. In: Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data, pp.
313–324. ACM (2014)

https://doi.org/10.1007/978-3-319-98812-2_22
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://doi.org/10.1007/978-3-540-68234-9_43
https://doi.org/10.1007/978-3-319-91452-7_51
https://doi.org/10.1007/978-3-319-91452-7_51
https://doi.org/10.1007/978-3-540-76298-0_50
https://doi.org/10.1007/978-3-540-76298-0_50

Intent Based Association Modeling
for E-commerce

Sailesh Kumar Sathish(&) and Anish Patankar

Samsung R&D Institute Bangalore – India, Bengaluru, India
{sailesh.sk,anish.p}@samsung.com

Abstract. Online e-commerce sites track user behavior through use of in-house
analytics or by integrating with third party platforms such as Google Analytics.
Understanding user behavioral data assists with strategies for user retention,
buy-in loyalty and optimizing objective completions. One of the more difficult
problems though is understanding user intent that can be dynamic or built over
time. Knowing user intent is key to enabling user conversions - the term used to
denote completion of a particular goal. Current industry approaches for intent
inference have an inherent disadvantage of having the need for embedded
tracking code per site-sections as well as the inability to track user’s intent over
longer periods. In this paper, we present our work on mining dynamic as well as
evolving user’s intents, using a latent multi-topic estimation approach over
user’s web browsing activity. Further, based on the intent patterns, we look at
generating association rules that model purchasing behavior. Our studies show
that users typically go through multiple states of intent behavior, dependent on
key features of products under consideration. We test the behavioral model by
coupling it with Google Analytics platform to augment a re-marketing cam-
paign, analyzing purchasing behavior changes. We prove statistically that user
conversions are possible, provided purchase category dependent associations are
effectively used.

Keywords: Intent mining � Latent models � Association modeling

1 Introduction

The market for global online shopping, as of 2018, is estimated at US$ 1.9 trillion [1].
A foothold into this ever-competitive market requires a thorough understanding of
one’s user base. E-commerce sites are now capable of monitoring every single of their
user’s online activities and are coming up with ingenious ways to make use of such
information in order to translate them into valued transactions. The term used is “user
conversions”, where conversion means the execution of a series of steps that result in a
goal completion. Using third party analytics services such as Google Analytics
(GA) [2] and Microsoft Azure Analytics [3], services can now go beyond their own
domains to track user activity through cross-domain linking. Such services can track
and identify user events, building higher-level inferences, and simultaneously track the
number of goal completions resulting from individual marketing campaigns. In the case
of Google Analytics, by linking with Google Ads, entities can track full customer cycle

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 144–156, 2019.
https://doi.org/10.1007/978-3-030-23281-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_12

through ad impressions and enable better remarketing campaigns. Such cycles translate
to short-term intent of users, which being generally dynamic, is difficult to predict
based on past behavior. The difference between intent and long term profiling is that
intent behavior does not conform to consistent preferences that are categorical and
contextual as captured by a profile. From an industry perspective, services such as GA
have made a big impact on the way user behavior and conversions are affected. The
disadvantage is that such services require embedded scripts that address each page
sections and events requiring tracking in order to do backend analysis. External mar-
keting channels require proprietary campaign tagging with explicit tracking that makes
scaling over other sites difficult. Furthermore, such systems only capture short-term
intents, relying more on syntactic matches than a semantic behavioral understanding
behind user intents.

The paper describes our intent mining framework that captures short and long-term
user intent. The aim is to aid third party services (subject to user permission) with
remarketing campaigns. By using web browser as application platform, we are able to
model an original intent that may have evolved over multiple sessions and across
content categories. Our goal is to recognize, understand and model accurately the
evolution of user intent over time and study behavioral aspects on the different content
associations that user makes based on their intent.

2 Prior Art

The study and analysis of online consumer behavior is a well-researched subject that
can be traced back to the onset of e-commerce on web. The fields of research in this
area mainly focus on profile-based behavior, prediction models based on user purchase
expectations, social media based behavior correlations and works that model user intent
itself. Work done by Kumar et al. [4] looks at how profile based behaviors including
demography affects purchase behavior. Other works look at predicting purchase
behavior. Several diverse approaches have been proposed such as predictions based on
statistical purchase probability based on pre-modeled scales [5], visual feature based
matching and recommendation [6], modeling customer attitudes towards products &
companies [7], machine learning based approaches on customer segmentation with
predictive analysis [8], looking at repeat behaviors to predict future purchases [9, 10]
and using web search data [11]. Work done by Ioanas et al. [12] looks at social media
behavior and its correlation with online purchase behavior. A study on user behavior
over Pinterest [13] looks at predicting intent spread between applications through use
of a cross application model. Our work differs in the way intents are inferred and
modeled. We account for reinforcement and decay of intent and associate intents with a
step transition model based on pre-determined threshold values. Our study goes a step
further by generating unsupervised association models for user behavior based on
intents inferred.

Intent Based Association Modeling for E-commerce 145

3 Intent Capture and Analysis Framework

We have implemented the intent mining software framework as a hybrid client-server
model, with the client part provided as an extension to Samsung Internet Browser v6.2.
To address the issue of cross-content analysis, we analyze all web content that are
article qualified (over 200 words) that contribute to user intent. The framework creates
intent objects for the user based on the topics user consumes through the web browser.
An intent object expires when that intent results in a successful purchase.

3.1 Intent States

We look at only those intents that may result in purchase of a particular product or
service. All other categories, which are unrelated to any commercial transactions are
ignored as they are outside the scope of our study. We observed that users go through at
least three phases between recognition of a first intent and a consequent purchase
decision. When user browse a new product related topic, a “weak intent” is generated
for that topic. The product or category is referenced through our ontology and intent
recognition can be seen as the predominant topic identification for that page. We use a
refined latent multi-topic classification that follows from our earlier work [14], which
can perform multi-categorical inference within a single page.

The second phase of intent transition is “in-progress” that represents a stronger
conviction on the intent state. In this state, we observed that typically, the user’s
browsing habits indicated a more narrowed focus on a specific range of products as
opposed to a topic related to that product. Example, when user starts browsing on
“home theatre audio reviews”, the system generates a “weak intent” for “Technol-
ogy => home audio”. The “weak intent” transitions into an “in-progress” state once
user reinforces the intent through consistent browsing on that topic. It is also typical
that user may have narrowed on particular brands at this stage.

The final intent phase is “strong” phase. This is the typical phase where users may
make a purchase (conversion) decision. The modeling function takes into account
reinforcement and decay of intent with respect to other active intents within a user
dependent activity period. In calculating reinforcement and decay, we do not take into
account the correlation or independence between the products and categories. Instead,
we factor in topic dependence. This is because relational intent is hard to model, as
product relations, even if modeled within the ontology, often results in erroneous
inference.

Figure 1 shows the normalized intent progression time against intent level values
for two product’s price range: less than and greater than 100 USD. We normalized
progression time, as users have different time range for intent realization but on
average, apart from outliers, tend to follow a similar transition pattern. We observed
that the intent state times are highly dependent on price of the product under consid-
eration. We observed variance between product classes but for brevity, we factor for
price, which is the more significant influencer.

146 S. K. Sathish and A. Patankar

3.2 Modeling Intent

Figure 1 shows the progression of user intent states. The three regions denote states of
“weak”, “in-progress” and “strong” respectively. The two curves indicate progression
for low value (<100 USD) and high value priced (>=100 USD) products respectively.
We chose to make our analysis over these two price points as we were able to cluster
behavior patterns to within these brackets. Based on captured data points, we present an
empirical model for user intent. We use co-occurrence of categories as well as specific
product models within each category. Some categories have well defined product
names while other product types have generic names. We observed that having specific
product names resulted in stronger intent.

To normalize across such categories, we use a factor called Product Specificity for a
category (CPS). The categories having specific product names get lower weightage
while other categories get higher weightage. In addition, extracting product category
and product names is important for estimating price. It so happens that products with
less monetary value move from weak to strong intent faster than products with high
monetary value. We factor in the inverse relation with monetary value using parameter
Z = k/V, where, V is price of product and k is a constant empirically taken as 100.
Occurrences of category and products in the user topic vector are referred as CC and PC

respectively. From e-commerce data [4], we understand that certain categories have
more customers as compared to others. This variation across categories is captured as
CW . The intent capture model is given in (1).

I ¼ f CW ;CC;PC; Zð Þ ¼ u CW CCCPS þPCð ÞZð Þ ð1Þ

Where, u is a constant, and I is the intent score. It should be noted that this intent
score is for a category for a given time window and needs to be adapted as new data
becomes available. We applied temporal learning to learn the intent score for category

Fig. 1. User intent state progression. The three regions denote states of “weak”, “in-progress”
and “strong” respectively. The two curves indicate, progression for low value (<100 USD) and
high value priced (>=100 USD) products respectively

Intent Based Association Modeling for E-commerce 147

over a period. Therefore, within a time window if intent score for a category is
improved, it adds up to current aggregate intent score. For high monetary value items,
linear learning works better while inverse learning is better suited for lower valued
items.

3.3 Topic Modeling

We analyzed topic distributions within web content that users consumed to determine
intent. We modeled web article content into topics using well-known Latent Dirichlet
Allocation (LDA) based modeling [15]. For topic inference, we first built a supervised
model for 36 categories (from our internal ontology) for English language resulting in a
model size of 2 MB. We used a pre-categorized 6K URL corpus taken from our
internal web proxy service for training. We built the models using a proprietary batch
integration process including a hyper-parameter estimation method for accurate model
convergence. This derives from our earlier work on building semantic indices [18],
described briefly in following sub-sections.

Determination of Hyper-parameters
For LDA model, hyper-parameter a indicates the distribution of topics over a document
and b indicates the distribution of words over a given topic. We need optimal a, and b
values that give best converged model for a given set of topics. For this reason, we use
an internally developed metric called Averaged Normalized Mode (ANM), given by
Eq. 2 as a score to compare the purity of the mixture produced by LDA clustering.

ANM ¼ 1
n

Pmax Tif g
Ci

ð2Þ

Where Ci denotes the i
th cluster out of n and Ti represents the i

th topic. The ANM
score is computed for 8 a 2 [0.1, 3.0] and 8 b 2 [0.1, 1.0], with incremental steps of
0.1 each. In repeated runs with fixed a and b, if the ANM score of 1.0 repeats
consistently, then the model is considered stable.

Incremental LDA
Incremental LDA (iLDA) performs supervised inference against a set of pre-built LDA
batch models. Inference is performed thorough an incremental Gibbs sampler by
applying sampling process to a pre-set of the sampled distribution and sampling for
particular topic to which word i belongs conditioning on the previous word model
(i − n) (as shown in (3)).

PðZijZi=jwiÞa
nðWjÞ
Zi;ijj þ bnðdjÞZi;ijj þ a

nðiÞZi;ijj þWbnðdjÞi;ijj þKa
ð3Þ

Here, K is the number of topics, W is vocabulary size, Zi represents ith topic

assignment; n Wið Þ
Zi;ijj represents word – topic Zj assignment, and n

djð Þ
Zi;ijj is document-to-topic

Zj assignment. After incremental inference, we perform cluster process by aligning all
vectors together that fall within a set threshold.

148 S. K. Sathish and A. Patankar

3.4 Product Name Extraction

We further developed a product name extractor to detect product name from web
content. The product name extractor is based on Stanford NLP’s Named Entity
Recognition (NER) extractor software [16]. A rule-based module augments the NER to
capture n-gram tokens as probable candidate for product names. The rules were written
specifically for every base category. The title and URL tokens extracted helped in
boosting the confidence level in the product names from the web page content.

3.5 User Intent Structure

A data structure, called User Intent Structure (UIS) hosts the identified user intent. The
client generates the UIS and depending on the application, the UIS may be used locally
or sent to an external service. When there is a change in intent data, the client sends an
updated UIS to server for use by validated services. The UIS covers intent, topic vector,
state values, categories and optional fields for URL values.

3.6 Observations on User Intent

The cut-off threshold values for the intent states were determined based on the observed
drop-off probability values and the amount of time users spent within these states. We
observed that users spent least time within the “strong” intent state, often marked by
increased activity and lowest time intervals between topic reads. When in weak intent
state, user concentration on topic was lower and on average, users created more intent-
objects during this time. When user intent was in “in-progress” state, the number of
weak intents created (for other intents than the current one) were lower. The number of
new intent creation was another way of observing whether other user intents were in
weak or in-progress state. The observations made here were for majority users and
there were few outlier cases where users did not fit within this model. As Fig. 1 shows,
purchase intent for higher priced products follows a lower level of intent between weak
and in-progress states. We also observed that activities on search and reviews pick up at
a much higher rate during the strong intent phase. Such observations were not appli-
cable across categories. One example was “Fashion Apparels” where the transition
states were not applicable for majority users.

4 Association Mining

Our association-mining engine looked at intent-based purchase paths that led to actual
purchases on partner web sites. The association-mining engine is part of the intent
mining and reinforcement framework.

4.1 Unsupervised Association Rule Mining

The association rule-mining engine on server generated unsupervised rules pertaining
to user journey on specific topics and associated topic features similar to “if-then” rules.
A typical rule may encompass one of the many user journeys possible from the

Intent Based Association Modeling for E-commerce 149

beginning of an identified intent to a goal completion (such as a purchase). Association
rules or affinity rules look at identifying proper antecedents (X) and their corresponding
consequents (Y). The antecedents and their corresponding consequents form item sets
where the items within the sets are disjoint. We derived association rules from user
behavioral patterns and thus, the probabilistic nature of behaviors also extend to
association rules. The association rules were generated for each topic/product items
identified as an intent (indicated via UIS).

Clients would send UIS updates on identified intent that contain fields for “rec-
ognized association journey” for that intent. Clients (in default mode) sent updates
through UIS once a week to server and when connected over Wi-Fi. The association
“journey” captured on the client side will identify the next “similar” topic (web page)
user had consumed, either as search and read, direct read and/or bookmarked by the
user. The capture and update to server continued until the intent (UIS) closed at user
end.

The server combined all the UIS received to date (within a processing window) and
computed association rules per intent. The first stage of the process was to group all
similar intents together. This was done based on topics contained with the UIS that
were used for grouping. Note that even though the topics were same, the underlying
vectors that defined each topic could be different. At this stage though, the differences
in topics were not considered. Topic based identification of frequent sets were done in
second stage. The set of UIS with their unique IDs were stored within a table in the
server database for a particular intent (topic). All subsequent updates received from
clients for the same UIS were stored against the corresponding entry within the data-
base. If a new UIS was received for an existing topic, a new entry for that UIS was
made within the association content table for that topic. The further steps for identi-
fying a set of unsupervised association rules per intent is described in subsection B. At
present, we are only focusing on positive rule mining (X ! Y) and not considering
negative rule mining. Considering that total product catalog can be huge, all types of
negative rule associations (¬X ! Y, X ! ¬Y,¬X ! ¬Y) are computationally
expensive and cumbersome to formulate. However, since, we have only 36 topics
negative rule mining of type ¬X ! Y is still possible to some extent with compara-
tively less computational complexity. That is absence of topic from browsing history
can be a cue for intent. E.g., Person not interested in Science might be interested in
fashion accessories.

4.2 Identifying Frequent Sets

After grouping of intent sets were made in first stage, the following stage looked to
identify frequent item sets within the intent and its associations. The second stage for
identifying frequent items consisted of two sub stages. The first sub-stage performed a
time-windowed alignment of page jumps by a single user based on the unique UIS.
What this did was, within a time window (2 days), all the UIS association updates
received were considered as a single journey path so as to build a simple and rea-
sonable corpus for rule mining. Any sites re-visited by the user within this window was
ignored and the first visit time (or bookmark) of that URL (within the window) was
used in building the disjoint path set. After this process, we ended up with a corpus for

150 S. K. Sathish and A. Patankar

a topic with sets ranging from single antecedent – single consequent to single ante-
cedent – multi consequents.

For the second sub-stage, we used the Apriori algorithm [17] for reducing set
complexity for generating frequent item sets. If we use all antecedent-consequents –

combinations of single items, paired items, and triples, it would require high compu-
tational resources that would grow exponentially with each combination addressed.
With the Apriori algorithm, we initially generated frequent item sets with just one item.
The frequency of occurrence formed the support for that set. The one-item lists where
the support was below our set threshold were dropped and only those above the
threshold were chosen. The next step was to identify the most frequent sets containing
at least two consequents by using the frequent one-item sets that were identified in the
first iteration. We used the same one item set for identifying the next two-item set that
contained the same antecedent and consequent sets and so on. Through this iterative
process, we identified all k-item sets based on the frequent (k − 1) item sets identified
through the preceding step with each step calculation requiring only a single database
query. The second stage of association mining still produced a large set of association
rules that did not indicate the level of bond between the antecedents and the conse-
quents. In order to filter out the weak associations and to end up with a convincing rule
set, we used two additional metrics: confidence score and lift ratio, described in sub-
section C.

4.3 Determining Association Strength

Confidence score measures the degree of uncertainty amongst the identified association
set. Confidence score compares the item co-occurrences (transactions with both ante-
cedent and consequent sets) to the total antecedent occurrences. Confidence is given
by (4).

Cf ¼ P antecedent AND consequentð Þ
P antecedentð Þ ð4Þ

Where Cf , denotes the conditional probability that a randomly selected rule cor-
responding to an antecedent will contain all consequent transactions.

Once confidence score Cf , was calculated for an association rule, we further filtered
the rule based on lift ratio. Confidence score is a conditional probability score with the
consequent dependent on an antecedent occurrence. Lift gives us a benchmark ratio
that compares an independent probability score against the conditional probability. Lift
metric thus indicates how valuable the conditional clause is as compared to the case
where the antecedent set and the consequent sets are independent of each other. Lift is
interpreted as a benchmark score (5).

Lift ratio; Lr ¼ Cf

PðconsequentÞ ð5Þ

A value for Lr > 1 indicates that the level of antecedent ! consequent association
is higher than what would be expected if the two sets were independent. It gives the

Intent Based Association Modeling for E-commerce 151

level of correlation between the two sets and is thus a useful metric for determining
strength of associations. Table 1 shows a sample of the mined association rules. Note
that some of the association rules gets repeated. For these rules, even though the topic
association was the same, the underlying sub-topics or their corresponding token
vectors would be different indicating the various user preferences on topic variations
among users.

5 Evaluating Intent Behavior

We used the browser client extension running the intent mining engine for both user
data collection and for validating behavioral activities. Users could invoke a mock
screen which showed a dynamic selection UI with a purchase button next to the
detected intent. Users, when they were ready to make a purchase, could invoke this UI
and click the purchase icon. A modified version of this client was used for our

Table 1. Association rules example

Rule# Antecedent
(a)

Consequent
(c)

Antecedent
Vector (Va)

Consequent
Vector (Vc)

Lift ratio

1 Photography Camera,
Smartphone

{mirrorless,
speedlite, AI,
BSI, image
processing,
autofocus, EV,
AF, exposure,
buffer, JPEG,
log gamma, SD,
UHS-C…}

{Google, clips,
shutter, AI
smarts, gesture,
goofy,
galaxy…},
{aperture,
variable, dual
lens, jack,
snapdragon,
android, exynos,
IP68, emoji,
iPhoneX…}

1.38

2 Photography Camera,
Smartphone

{macro, large
aperture,
landscape, focal
points, horizon,
sport metering,
exposure
lock…}

{dual pixel,
cmos, eye
detection,
autofocus, dual
lens, touch and
drag, itu, cr3,
digic, 4k…},
{OIS, lowlight,
android,
portrait,
dualcamera,
wireless, pixel,
poled,
amoled…}

1.265553

152 S. K. Sathish and A. Patankar

evaluation phase. The association engine, user account management and recommender
(rule based) is server based running on an AWS (Amazon Web Service) instance.

The trial and evaluation period was spread over 3.5 months. We collected 873
intents from the 53 users over approximately 11K URLs. Using this set, we built 903
association rules. The second activity was to validate our hypothesis that intent
behavior could be affected through effective content recommendations. 88 users par-
ticipated in this trial over a 45-day period. We benchmarked user click through rate
(CTR) against Google AdWords in order to determine whether provisioning additional
intent information can help with user conversions. We omit implementation details due
to space constraints.

AdWords can track user activity through Google ID across domain and service
provided ID linking if coupled with Google Analytics backend. Google uses a com-
bination of search keywords, extracted keys, keyword bids, quality score (for ads) and
cost-per-click (CPC) factors to determine what adverts to serve to user. Our end goal
was to make this more relevant by feeding contextually, intent keywords at the right
context through Google Ads or other services such as Yahoo Bing Network and
Samsung’s own Ad platform. The program scope was limited to evaluating effec-
tiveness of intent based recommendations through a simulated UI in addition to Google
Ads. We base our observations on relative CTR with respect to Google Ads. Our
comparative analysis only looks at the time when we do an intent based recommen-
dation to user. This happened for under 5% of total user session time. Ad word
interactions (as a non-recommended set) during the overlap time per user was collected
over GA data by using Google Ad id of user while intent recommendations were
collected as a custom dimension over GA. Figure 2 shows the CTR differences
between the two sets. A second collection looked at a specific category of purchase. We
figured that decision time taken for a purchase differed between categories. Seasonal
factors can also affect decision times. We found that mobile category had an overlap of
28% on the topics searched, and so we analyzed specifically the topic of mobile related
purchases. Twenty-seven users from the content recommended set ended up purchasing
within the mobile category while corresponding number of buyers from the

(b)(a)

Fig. 2. (a) Purchase decision time plot: Set 1 represents recommended content group. Set 2
represents non-recommended group. (b) Purchase decision time plot for mobile category: Set 1
represents recommended content group. Set 2 represents non-recommended group.

Intent Based Association Modeling for E-commerce 153

non-recommended set was 22. We used the two different data sets to validate two
hypotheses.

1. There is a significant difference on purchase decision time between the intent
determined content recommendations set vs. the non-recommended ad-word set
over all shopping categories.

2. There is a significant difference on purchase decision time between the intent
determined content recommendations set vs. the non-recommended set on any
particular shopping category (in this case mobile shopping category).

We used the two means t-test for statistically evaluating our hypothesis. The values
within the two sets were independent and we assumed a normal distribution of the
values. Set 1, in Fig. 2a, shows a sample plot for average CTRs for 44 users belonging
to the recommended content group. Set 2 gives the corresponding plots (average CTR)
for the users based on AdWords recommendation. Set 1 plots the purchase decision
time, recorded as day counts, for the 44 user set who were provided with recommended
content once the intent was captured based on the pre-modeled association rules. For
Set 1, the mean value for the purchase decision time was 5.15 days with a standard
deviation of 4.17. The average decision time for a purchase was 7.16 days with a
standard deviation of 5.38 in Set 2. Our t-test evaluation over the two distributions,
taking an un-paired two-tail analysis gave a p-value of 0.1002. Given that the p-value
exceeds the alpha value of 0.05, we cannot claim statistical significance for our
hypothesis 1. One reason for this may be that the data has a wide spread of category
specific purchases. In addition, since the concentration of categories is non-uniform,
this would affect the average purchase time as well as the deviation.

Figure 2b shows the plot for purchase decision time taken within the mobile
shopping category by two different user sets. The mean value for the content recom-
mended group (set 1) was 3.97 days as compared to decision time of 7.87 days for
users within set 2. Set 1 also showed a smaller standard deviation of 3.44 as against
5.58 for users within set 2. The un-paired two-tailed p-value for our hypothesis 2 was
0.007268 indicating a high statistical significance. The value indicates a confi-
dence > 99% that our hypothesis holds, meaning there is a significant difference
between purchase decision times on mobile category between the two sets.

The average time and lower deviation also suggests acceleration in purchase
decision times. We believe this validates our assumption that recommending latest
content based on intent detection might work to reduce average purchase decision
times. We inferred that keeping intent “alive” was key to boosting intent transitions
achieved through our content recommendation service. The rate of keeping “alive” i.e.
recommendation rate was however user specific (according to their preference), as was
revealed through our user questionnaire. We acknowledge that this is still a small
sample set and validated for a single category. It is difficult to validate hypothesis 1
given a mixture of purchases across categories. To do a full evaluation, we need to
consider multiple category purchase timelines by users.

154 S. K. Sathish and A. Patankar

6 Conclusion

As part of our user insight activity, we have built an intent mining engine, as an
experimental extension to our browser (Samsung Internet). The intents were created
based on topic inference over web articles browsed by user and maintained within
client till the user made a purchase decision based on the intent. Our experimental
activity for intent behavioral inference, conducted using 53 volunteers gave interesting
insights into each of these states, helping us to derive a user model that brought in a
quantitative measure to intent calculations. Based on the behavioral data collection
activity, we built a further unsupervised association rule set allowing us to test our
hypothesis, using a further 88 volunteer set, as to whether targeted recommendations
can affect intent behavior. We found that intent state transitions can be affected if done
over specific categories. Our future task will to be increase our test user base through a
beta release of the system with more user controls and permissions on mining intent
categories. We aim to study correlations between demography and intent to check if
intent dependent personalized content can further reinforce and assist in purchase
decisions.

References

1. KPMG: Truth about online consumers, 2017 Global Online Consumer Report (2017)
2. Google Analytics. https://analytics.google.com/analytics/web
3. Microsoft Azure Analytics. https://azure.microsoft.com/en-us/product-categories/analytics/
4. Kumar, A.H., John, S.F., Senith, S.: A study on factors influencing consumer buying

behavior in cosmetic products. Int. J. Sci. Res. Publ. 4(9), 6 (2014)
5. Day, D., Gan, B., Gendall, P., Esslemont, D.: Predicting purchase behavior. Market. Bull. 2,

18–30 (1991). Article 3
6. Bell, S., Bala, K.: Learning visual similarity for product design with convolutional neural

networks. ACM Trans. Graph. (TOG) 34(4) (2015). SIGGRAPH 2015. Article no 98
7. Cesar, A.C.: Impact of Consumer Attitude in Predicting Purchasing Behaviour (2007)
8. Arulkumar, S., Kannaiah, D.: Predicting purchase intention of online consumers using

discriminant analysis approach. Eur. J. Bus. Manag. 7(4), 319–324 (2015)
9. Pal, S.: Know your buyer: a predictive approach to understand online buyer’s behavior’,

white paper, Happiest Minds
10. Banerjee, N., Chakraborty, D., Joshi, A., Mittal, S., Rai, A., Ravindran, B.: Towards

analyzing micro-blogs for detection and classification of real-time intentions. In: Interna-
tional Conference on Web and Social Media (2012)

11. Rose, D.E., Levinson, D.: Understanding user goals in web search. In: Proceedings of the
13th Conference on World Wide Web (2004)

12. Ioanas, E., Stoica, I.: Social media and its impact on consumers behavior. Int. J. Econ. Pract.
Theor. 4(2), 295–303 (2014)

13. Guo, S., Wang, M., Leskovec, J.: The role of social networks in online shopping:
information passing, price of trust, and consumer choice. In: Proceedings of the 12th ACM
Conference on Electronic Commerce, pp. 157–166 (2011)

14. Sathish, S., Patankar, A., Neema, N.: Semantics-based browsing using latent topic warped
indexes. In: International Conference on Semantic Computing, ICSC 2016

Intent Based Association Modeling for E-commerce 155

https://analytics.google.com/analytics/web
https://azure.microsoft.com/en-us/product-categories/analytics/

15. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3,
993–1022 (2003)

16. Finkel, J.R., Manning, C.D.: Nested named entity recognition. In: Conference on Empirical
Methods in Natural Language Processing, vol. 1, pp. 141–150 (2009)

17. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the
20th VLDB Conference, Chile (1994)

18. Sathish, S., Patankar, A., Priyodit, N.: Enabling multi-topic and cross-language browsing
using web-semantics service. In: International Conference on Web Services (ICWS) (2017)

156 S. K. Sathish and A. Patankar

From Web Crawled Text to Project
Descriptions: Automatic Summarizing

of Social Innovation Projects

Nikola Milošević1(B) , Dimitar Marinov1 , Abdullah Gök2 ,
and Goran Nenadić1

1 School of Computer Science, University of Manchester, Manchester M13 9PL, UK
nikola.milosevic@manchester.ac.uk,

dimitar.marinov@student.manchester.ac.uk
2 Hunter Centre For Entrepreneurship, Strathclyde Business School,

University of Stratclyde, Glasgow, UK

Abstract. In the past decade, social innovation projects have gained
the attention of policy makers, as they address important social issues
in an innovative manner. A database of social innovation is an impor-
tant source of information that can expand collaboration between social
innovators, drive policy and serve as an important resource for research.
Such a database needs to have projects described and summarized. In
this paper, we propose and compare several methods (e.g. SVM-based,
recurrent neural network based, ensambled) for describing projects based
on the text that is available on project websites. We also address and
propose a new metric for automated evaluation of summaries based on
topic modelling.

Keywords: Summarization · Evaluation metrics · Text mining ·
Natural language processing · Social innovation · SVM ·
Neural networks

1 Introduction

Social innovations are projects or initiatives that address social issues and needs
in an innovative manner [3]. In the past decade, social innovation has gained sig-
nificant attention from policy makers and funding agencies around the worlds,
especially in the EU, USA, and Canada. Policy makers and researchers are par-
ticularly interested in monitoring social innovation projects, the effects of policies
on these projects and the effects of these projects for the society.

In order to enable monitoring of social innovation projects a number of
database creation projects were funded over time. In the KNOWMAK project,
we aim to integrate and expand on previously collected information by utiliz-
ing automation approaches enabled by machine learning and natural language
processing techniques.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 157–169, 2019.
https://doi.org/10.1007/978-3-030-23281-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_13&domain=pdf
http://orcid.org/0000-0003-2706-9676
http://orcid.org/0000-0001-6197-9679
http://orcid.org/0000-0002-9378-3336
http://orcid.org/0000-0003-0795-5363
https://doi.org/10.1007/978-3-030-23281-8_13

158 N. Milošević et al.

The existing data sources for social innovation are varied in their levels of
depth and detail. Therefore, in KNOWMAK we aim to normalize the informa-
tion, providing the same wealth of information for each reported project. In
order to do this, we utilize the data from original data sources, as well as the
data from the projects’ webpages and social media sites, such as Facebook and
Twitter.

In order to provide relevant information to the researchers and policy makers,
the projects in the database need to be described. Some of the original data
sources have descriptions, but many data sources do not have. Additionally,
some of the descriptions in existing data sources may be too long (e.g. over 500
words), or too short (1 sentence) and therefore need to be normalized.

Automated summarization can be used to automate and speed up the pro-
cess of summarizing texts about a project in the database. Summarization is
a well-known task in natural language processing, however solutions in litera-
ture do not address the domain specific issues. Project description building using
summarization has challenges that may not be present with a usual text summa-
rization task. In this task, it is necessary to generate short, cohesive description
that best portrays the project, which may be described over several web pages,
contain noisy text (pages or portions of pages with irrelevant text) and align
project description to the theme of the database.

In this paper, we compare several methods for creating project descriptions
and summaries in the semi-automated system that takes texts about social inno-
vation projects from the web. We develop a method that makes human readable
project descriptions from the scraped pages from the project web sources. This
paper presents an automated project description method applied in the KNOW-
MAK project that aims to create a tool for mapping knowledge creation in the
European area. The project focuses on collecting information on publications,
patents, EU projects and social innovation projects. As publications, patents
and EU projects would have abstracts or short descriptions, this paper aims at
the particular case of describing social innovation projects.

2 Background

Automatic summarization is a complex natural language processing task which
has been approached from several perspectives. We will review the main
approaches.

On the whole, it is challenging to evaluate automatic summarization. Sum-
maries of text will look different depending on who is doing them and which
approach is used. However, it has to be ensured that the main points of the text
that is analysed have been retained. Over the years, there have been a couple
of evaluation metrics proposed. In this section, we will also review the proposed
metrics.

Automatic Summarization of Social Innovation 159

2.1 Summarization Approaches

Summarization approaches can be classified into two main categories: (1) extrac-
tive and (2) abstractive [11]. Extractive approaches try to find snippets, sentences
and paragraphs that are important, while abstractive approaches attempt to
paraphrase important information from the original text. The types of sum-
marizers may also depend on how many documents are used as input (single-
document or multi-document), on the languages of input and output (monolin-
gual, multilingual or cross-lingual), or purpose factors (informative, indicative,
user-oriented, generic or domain specific) [5].

Summarization approaches can be both supervised and unsupervised. Unsu-
pervised methods usually use sentence or phrase scoring algorithms to extract the
relevant parts of the original text [6,16]. Most of the extractive summarization
approaches model the problem as a classification task, classifying whether cer-
tain sentences should be included in the summary or not [19]. These approaches
usually use graphs, linguistic scoring or machine learning in order to classify sen-
tences. Standard machine learning classifiers, such as Naive Bayes or Support
Vector Machines (SVM) using features such as the frequency of words [1,14,18],
as well as neural network-based classifiers [5,11,19] have been proposed. Tra-
ditional machine learning classifiers usually use features such as the frequency
of phrases, relational ranks, positions of the sentences in the text, or overlap-
ping rate with the text title. Neural network approaches utilize word, sentence
and document representations as vectors, pre-trained on large corpora (word,
document or sentence embeddings). Then these vectors are imputed into convo-
lutional or recurrent neural networks for classification training.

Abstractive summarization is considered less traditional [21]. Approaches
usually include neural network architectures trained on both original texts and
human created summaries. Approaches using sequence-to-sequence neural archi-
tectures [12], but also attention mechanism have been proposed [17].

2.2 Evaluation Measures for Summarization

A good summary should be a short version of the original text, carrying the
majority of relevant content and topics in condensed format. Summarization of
a text is a subjective problem for humans and it is hard to define what a good
summary would consist of. However, a number of quantitative metrics have been
proposed, such as ROUGE or Pyramid.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a commonly
used metric in summarization literature [5] that is based on overlapping n-
grams in summary and original text. There are several variants of ROUGE, such
as ROUGE-N (computing percentage of the overlapping n-grams), ROUGE-L
(computing the longest overlapping N-gram), ROUGE-S (computing the over-
lapping skip-grams in the sentence) [7]. Since ROUGE takes into account only
overlapping n-grams, it often favors the summaries that are long, where the
summarizer did not sufficiently reduced the size of the original text.

160 N. Milošević et al.

Pyramid is another metric that is based on the assumption that there is no
one best summary of the given original text [13]. Pyramid requires a number
of human generated summaries for each text as well as human annotations for
summarization content units (SCU). For each SCU a weight is assigned based
on the number of human generated summaries containing it. Newly created
summaries are evaluated based on the overlapping SCUs and their weights. This
method is expensive, since it requires a lot of human labour for annotating and
generating multiple summaries for evaluated texts [5].

While ROUGE and Pyramid metrics are the most used in current literature,
other approaches have been proposed. A Latent Semantic Analysis-based metric
was proposed based on the hypothesis that the analysis of semantic elements of
the original text and summary will provide a better metric about the portion
of important information that is represented in the summary [20]. As ROUGE
metrics often do not correlate with human rankings, the evidence was provided
that LSA based metric correlates better than ROUGE and cosine similarity
metric based on the most significant terms or topics.

Human ranking and scoring is a measure that is often used for evalua-
tion of summarization systems [20]. Human annotations are more expensive
than automatic annotations, however, they provide a good metric that accounts
for all elements of a good summary definition (main topics, condensed length,
readability).

3 Method

3.1 Method Overview

We present a comparison and implementation of four summarization or descrip-
tion generation methods for social innovation. The input to all summarization
methods is text crawled from the social innovation project websites, while the
expected output is a short and condensed description of the project (summary).

The method consists of data collection, training data set generation, data
cleaning, classification and evaluation steps. Figure 1 presents the methodology
overview.

3.2 Data Collection and Data Set Generation

The initial set of social innovation projects was collected using existing databases
of social innovation, such as MOPACT, Digital Social Innovation, InnovAge,
SI-Drive, etc. The data was collected from a compiled list of about 40 data
sources. Some of the data sources contained data that can be downloaded in CSV,
JSON or XML format, however many data sources contained data accessible only
through the website and therefore needed to be crawled. As these data sources
contained structured data, with humanly created descriptions of the projects,
websites and social media, a set of crawlers were created that were able to locate
these structured data points on the page and store them in our database. Only

Automatic Summarization of Social Innovation 161

Fig. 1. Methodology overview

a small number of data sources already contained descriptions of the projects
and they were used for the creation of the training set.

We collected 3560 projects. Out of these, 2893 project had identifiable web-
sites. In order to provide data for describing the projects, we created a crawler
that collects text from the websites.

We performed a set of annotation tasks in which annotators were annotating
sentences that describe how each project satisfies some of the following social
innovation criteria:

– Social objective - project addresses certain (often unmet) societal needs,
including the needs of particular social groups; or aims at social value cre-
ation.

– Social actors and actor interactions - involves actors who would not normally
engage in innovation as an economic activity, including formal (e.g. NGOs,
public sector organisations etc.) and informal organisations (e.g. grassroots
movements, citizen groups, etc.) or creates collaborations between “social
actors”, small and large businesses and the public sector in different combi-
nations

– Social outputs - creates socially oriented outputs/outcomes. Often these out-
puts go beyond those created by conventional innovative activity (e.g. prod-
ucts, services, new technologies, patents, and publications), but conventional
outputs/outcomes might also be present.

– Innovativeness - There should be a form of “implementation of a new or
significantly improved product (good or service), or process, a new marketing
method, or a new organisational method”.

Data annotation is further explained in [10]. The data set contained 315 docu-
ments, 43 of which were annotated by 4 different annotators, while the rest were
mainly single annotated. The distribution of annotated sentences is presented in
Table 1. Annotated data, descriptions from the original data sources and crawled
websites were used for training and evaluating summarization approaches.

162 N. Milošević et al.

Table 1. Number of sentences satisfying social innovation criteria

Criteria Number of sentences

Social innovation criteria

Objectives 374

Actors 217

Outputs 309

Innovativeness 256

Not satisfying any criteria 3167

Binary (inside/outside summary)

Inside 2459

Outside 12962

3.3 Data Cleaning

The data from the websites may be quite noisy, as the crawler was collecting all
textual information, including menus, footers of the pages and at times adver-
tisements. Additionally, many pages contained events and blog posts that were
not relevant for describing the core of the project. Therefore, we have performed
some data cleaning before proceeding with training the summarizers.

In order to reduce the amount of irrelevant text in form of menus and footers,
we have performed part of speech tagging and excluded sentences that did not
contain verbs.

For further summarization, only main pages, about pages and project descrip-
tion pages were used. In case the page was not in English it was translated using
Google Translate.

3.4 SVM Based Summarizer

The first summarization approach is based on the assumption that the task
can be modelled as a classification task, where sentences would be classified as
part of a summary or not. It was hypothesized that words in a sentence would
indicate whether it describes the project (e.g. “project aims to...”, “the goal of
the project is to...”, etc.).

In order to create a training data set, we utilized projects that had both
project description in the original data sources and crawled websites. Since the
descriptions were created by humans, they usually cannot be matched with the
sentences from the website. In order to overcome this issue, we generated sent2vec
embedding vectors of the sentences in both the description and the crawled
text [15]. We then computed cosine similarities between the sentences from the
description and the ones from the crawled text. If the cosine similarity is higher
than 0.8, the sentence is labeled as part of the summary, otherwise it is labeled
as a sentence that should not be part of the summary.

Automatic Summarization of Social Innovation 163

These sentences were used as training data for the SVM classifier. Before
training we balanced the number of positive (sentences that should be part of
the summary) and negative (sentences that should remain outside the summary)
instances. The bag-of-words transformed to TF-IDF scores, the position of a
sentence in the document (normalized to the score between 0–1) and keywords
were used as features for the SVM classifier. The keywords are extracted using
KNOWMAK ontology [8,22] API that for the given text returns grand societal
challenge topics and a set of keywords that were matched for the given topic and
text1.

3.5 Social Innovation Criteria Classifier

The social innovation criteria classifier utilized an annotated data set. In this
data set, sentences that were marked as explaining why a project satisfies any of
the social innovation criteria (objectives, actors, outputs, innovativeness), were
used as positive training instances for the SVM classifier. The classifier used a
bag-of-words transformed to TF-IDF scores.

3.6 Summarunner

Summarunner is an extractive summarization method developed by IBM Watson
[11] that utilizes recurrent neural networks (GRU). If compared using ROUGE
metrics, the algorithm outperforms state-of-the-art methods. The method visits
sentences sequentially and classifies each sentence by whether or not it should be
part of the summary. The method is using a 100-dimensional word2vec language
model [9]. The model was originally trained on a CNN/DailyMail data set [4].
The social innovation data set that we have created was quite small and not
sufficient for training a neural network model (about 350 texts compared to over
200,000 in DailyMail data). However, we performed a model fitting on our social
innovation data set.

3.7 Stacked SVM-Based Summarizer and Summarunner

Our final summarization method was developed as a combination of SVM-based
method and Summarunner. We have noticed that binary SVM model produces
quite long summaries and may be efficient for initial cleaning of the text. Once
the unimportant parts have been cleaned up by the SVM-based classifier, Sum-
marunner shortens the text and generates the final summary.

4 Evaluation Methodology

In order to evaluate our methodologies and select the best performing model we
used ROGUE metrics, human scoring and two topic-based evaluation methods.

1 https://gate.ac.uk/projects/knowmak/.

https://gate.ac.uk/projects/knowmak/

164 N. Milošević et al.

ROUGE metrics are the most popular and widely used summarization scoring
approaches which were presented back in 2004 [5,7,11]. As such, we are utilizing
them as well.

Since a good summary should include the most important topics from the
original text, topic-related metrics can be devised. We have used two topic based
metrics: one was based on KNOWMAK ontology and the proportion of matched
topics related to EU defined Grand Societal Challenges2 and Key Enabling Tech-
nologies3 in the original and summarized text. The other method was based on
latent Dirichlet allocation (LDA) [2]. We have extracted 30 topics using LDA
from merged corpus of original texts and summaries and then we have calcu-
lated the proportion of topics that match. In order to prevent favouring long
summaries, we have normalized the scores, assuming that the perfect summary
should be no longer than 25% of the length of the original text (longer texts
were penalized).

5 Evaluation and Results

The evaluation of summarization techniques is a challenging process, therefore,
we have employed several techniques.

Since SVMs classifiers are utilizing classification, we have calculated their
precision, recall and F1-scores. These are measures commonly used for evalu-
ating classification tasks. These metrics are calculated on a test (unseen) data
set, containing 40 documents (286 sentences labeled as inside summary, 2014
sentences as outside). The results can be seen in Table 2.

Table 2. Evaluation based on classification metrics (precision, recall and F1-score) for
classification-based summarizers (binary and social innovation criteria-based)

Classifier Precision Recall F1-score

Binary SVM 0.8601 0.7130 0.7594

Objectives SVM 0.8423 0.5601 0.6226

Actors SVM 0.8821 0.4687 0.5659

Innovativeness SVM 0.8263 0.4456 0.5166

Outputs SVM 0.8636 0.6284 0.7089

The data set for training these classifiers is quite small, containing between
200–400 sentences. It is interesting to note that the criteria classifiers containing
larger number of training sentences (compare Tables 1 and 2), perform with a
better F1-score (Objectives and Outputs). This indicates that scores can be

2 https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-
challenges.

3 http://ec.europa.eu/growth/industry/policy/key-enabling-technologies en.

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges
http://ec.europa.eu/growth/industry/policy/key-enabling-technologies_en

Automatic Summarization of Social Innovation 165

improved by creating a larger data set. The classifiers perform with quite good
precision, which means there are few false positive sentences (the majority of
the sentences that end up in summary are correct).

Since ROUGE metrics are commonly used in summarization literature, we
have evaluated all our summarization approaches with ROUGE 1, ROUGE 2
and ROUGE-L metrics. The evaluation was performed again on an unseen test
set, containing 40 documents and their summaries. The results can be seen in
Table 3.

Table 3. ROUGE scores for the developed summarization methodologies

Classifier ROUGE 1 ROUGE 2 ROUGE-L

Binary SVM 0.6096 0.5544 0.5553

Social innovation SVM 0.6388 0.6140 0.5846

Summarunner 0.6426 0.5788 0.5762

Binary SVM + Summarunner 0.5947 0.5197 0.5279

Binary SVM + Summarunner relative length 0.5496 0.4731 0.4668

Summarunner has the best performance based on unigram ROUGE
(ROUGE-1) score. However, the social innovation SVM-based summarizer per-
forms better in terms of bigram ROUGE (ROUGE-2) and ROUGE-L score (mea-
suring longest common token sequence). Based on these results, it is possible to
conclude that a specifically crafted classifier for the problem will outperform a
generic summarizer, even if it was trained only on a small data set. Stacked
binary SVM and Summarunner perform worse than single summarizers on their
own in terms of ROUGE.

In order to further evaluate the methodologies used, we have used an LDA-
based metric. The assumption behind using this approach was that a good sum-
marizer would have a high number of topics in the summary/description and
the original text matching. The results of the LDA topic similarity evaluation
can be seen in Table 4.

Table 4. LDA topic similarity scores for the developed summarization methodologies

Classifier LDA topic similarity

Binary SVM 0.2703

Social innovation SVM 0.2485

Summarunner 0.2398

Binary SVM + Summarunner 0.2683

166 N. Milošević et al.

The most matching topics are found with the binary SVM classifier. However,
this classifier is also producing the longest summaries. Stacked SVM and Sum-
marunner are performing similar matches with much shorter summaries being
generated.

The second topic-based approach utilizes topics about grand societal chal-
lenges and key-enabling technologies retrieved from the KNOWMAK topic-
modelling tool. The results can be seen in Table 5.

Table 5. Topic similarity evaluation using KNOWMAK ontology topics

Classifier KNOWMAK topic similarity

Binary SVM 0.3725

Social innovation SVM 0.3625

Summarunner 0.3025

Binary SVM + Summarunner 0.3025

The binary SVM summarizer, followed by the social innovation summarizer
are the best methodologies according to this metric.

Finally, summaries were scored by human annotators. Human scorers were
presented with an interface containing the original text and a summary for each
of the three methods (binary SVM, social innovation SVM and Summarunner).
For each of the summaries they could give a score between 0–5. In Table 6 are
presented averaged scores made by the human scorers. We have also averaged
the scores in order to account for document length. In order to do that we used
the following formula:

LengthAveragedScore =
docLen − summaryLen

docLen
∗ human score

Table 6. Human scores for the developed summarization methodologies

Classifier Number of ratings Human score Length averaged
human score

Binary SVM 23 2.7391 0.8647

Social innovation SVM 20 2.4500 1.6862

Summarunner 22 2.0000 1.5110

The best human scores were for binary SVM. However, this classifier excluded
only a few sentences from the original text, and it was generally creating longer
summaries. If the scores are normalized for length, the best performing summa-
rizer was the one based on social innovation criteria, followed by Summarunner.

Automatic Summarization of Social Innovation 167

At the time of the human scoring, the stacked approach consisting of binary
SVM and Summarunner was not yet developed, so results for this approach are
not available.

We have used stacked (SVM+Summarunner) and social innovation classifier
in order to generate summaries for our database. Stacked model was used as
fallback, in case summary based on social innovation model was empty or con-
tained only one sentence. The approach was summarizing and generating project
descriptions where either the description was too long (longer than 1000 words),
or was missing. The summarizer generated new summaries for 2186 projects.

6 Conclusion

Making project descriptions and summaries based on the textual data available
on the internet is a challenging task. The text from the websites may be noisy,
different length, and important parts may be presented in different pages of the
website. In this paper, we have presented and compared several approaches for
a particular problem of summarizing social innovation projects based on the
information that is available about them on the web. The presented approaches
are part of a wider information system, including the ESID database4 and the
KNOWMAK5 tool. Since these approaches make extractive summaries, they
may not have connected sentences in the best manner, and therefore additional
manual checks and corrections would be performed before final publication of the
data. However, these approaches significantly speed up the process of generating
project descriptions.

Evaluating automatically-generated summaries remains a challenge. A good
summary should carry the most important content, but also significantly shorten
the text. Finding a balance between the content and meaning that was carried
from original text to the summary and final length can be quite challenging.
Most of the currently used measures in the literature do not account for the
summary length, which may lead to biases towards longer summaries. There are
a number of measure that we have used and proposed in this work. Often, it
is not easy to indicate strengths and weaknesses of summarization approaches
using single measures and using multiple measures may be beneficial.

Most of the current research presents summarization approaches for general
use. Even though, these approaches can be used in specific domains and for
specific cases (such as social innovation), our evaluation shows that approaches
developed for a particular purpose perform better overall.

Our evaluation indicated that it may be useful to combine multiple summa-
rization approaches. Certain approaches can be used to clear the text, while the
others may be used to further shorten the text by carrying the most important
elements of the text. In the end, we used a combined approach for the production
of the summaries in our system.

4 https://esid.manchester.ac.uk/.
5 https://www.knowmak.eu/.

https://esid.manchester.ac.uk/
https://www.knowmak.eu/

168 N. Milošević et al.

Acknowledgments. The work presented in this paper is part of the KNOWMAK
project that has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 726992.

References

1. Bazrfkan, M., Radmanesh, M.: Using machine learning methods to summarize
persian texts. Indian J. Sci. Res. 7(1), 1325–1333 (2014)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

3. Bonifacio, M.: Social innovation: a novel policy stream or a policy compromise?
An EU perspective. Eur. Rev. 22(1), 145–169 (2014)

4. Cheng, J., Lapata, M.: Neural summarization by extracting sentences and words.
arXiv preprint arXiv:1603.07252 (2016)

5. Dong, Y.: A survey on neural network-based summarization methods. arXiv
preprint arXiv:1804.04589 (2018)

6. Fattah, M.A., Ren, F.: GA, MR, FFNN, PNN and GMM based models for auto-
matic text summarization. Comput. Speech Lang. 23(1), 126–144 (2009)

7. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. Text Sum-
marization Branches Out (2004)

8. Maynard, D., Lepori, B.: Ontologies as bridges between data sources and user
queries: the KNOWMAK project experience. In: Proceedings of Science, Technol-
ogy and Innovation Indicators 2017, STI 2017 (2017)

9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

10. Milosevic, N., Gok, A., Nenadic, G.: Classification of intangible social innovation
concepts. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F.
(eds.) NLDB 2018. LNCS, vol. 10859, pp. 407–418. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-91947-8 42

11. Nallapati, R., Zhai, F., Zhou, B.: SummaRuNNer: a recurrent neural network based
sequence model for extractive summarization of documents. In: Thirty-First AAAI
Conference on Artificial Intelligence (2017)

12. Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al.: Abstractive text
summarization using sequence-to-sequence RNNs and beyond. arXiv preprint
arXiv:1602.06023 (2016)

13. Nenkova, A., Passonneau, R.: Evaluating content selection in summarization: the
pyramid method. In: Proceedings of the Human Language Technology Conference
of the North American Chapter of the Association for Computational Linguistics:
HLT-NAACL 2004 (2004)

14. Neto, J.L., Freitas, A.A., Kaestner, C.A.A.: Automatic text summarization using a
machine learning approach. In: Bittencourt, G., Ramalho, G.L. (eds.) SBIA 2002.
LNCS (LNAI), vol. 2507, pp. 205–215. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-36127-8 20

15. Pagliardini, M., Gupta, P., Jaggi, M.: Unsupervised learning of sentence embed-
dings using compositional n-gram features. In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long Papers), vol. 1, pp. 528–540
(2018)

http://arxiv.org/abs/1603.07252
http://arxiv.org/abs/1804.04589
https://doi.org/10.1007/978-3-319-91947-8_42
https://doi.org/10.1007/978-3-319-91947-8_42
http://arxiv.org/abs/1602.06023
https://doi.org/10.1007/3-540-36127-8_20
https://doi.org/10.1007/3-540-36127-8_20

Automatic Summarization of Social Innovation 169

16. Riedhammer, K., Favre, B., Hakkani-Tür, D.: Long story short-global unsupervised
models for keyphrase based meeting summarization. Speech Commun. 52(10), 801–
815 (2010)

17. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685 (2015)

18. Sarkar, K., Nasipuri, M., Ghose, S.: Using machine learning for medical document
summarization. Int. J. Database Theory Appl. 4(1), 31–48 (2011)

19. Sinha, A., Yadav, A., Gahlot, A.: Extractive text summarization using neural net-
works. arXiv preprint arXiv:1802.10137 (2018)

20. Steinberger, J., Ježek, K.: Evaluation measures for text summarization. Comput.
Inform. 28(2), 251–275 (2012)

21. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018)

22. Zhang, Z., Petrak, J., Maynard, D.: Adapted textrank for term extraction: a generic
method of improving automatic term extraction algorithms. Procedia Comput. Sci.
137, 102–108 (2018)

http://arxiv.org/abs/1509.00685
http://arxiv.org/abs/1802.10137

Cross-Corpus Training with CNN to Classify
Imbalanced Biomedical Relation Data

S. S. Deepika(&), M. Saranya, and T. V. Geetha

CEG, Anna University, Chennai 600025, Tamilnadu, India
deepu.deepika26@gmail.com

Abstract. Information extraction from unstructured text is a challenging task
which demands automation. Relation extraction is an important sub-task of
information extraction and it is usually modeled as a classification problem. In
the field of biomedicine, relation extraction helps in improving the health-care
system and also in manufacturing safer drugs. But lack of a huge single
annotated corpus for all biomedical relation types and the presence of class
imbalance problem hinders most of the classifier’s performance. For this reason,
cross-corpus training of a deep-learning model namely the convolutional neural
network (CNN) is carried out with annotated corpora developed for different
biomedical relation types. Before modeling the CNN, SMOTE, an oversampling
technique is used to balance the dataset. The input to the CNN is a concatenated
feature embedding vector of a sentence obtained from six distinct features. From
the six distinct features, word context and dependency context primarily con-
tributed to the system’s performance. Three types of biomedical relations
namely drug-drug, drug-adverse effect and drug-disease are handled in this
work. The experimental results showed that training an algorithm with a bal-
anced dataset gives better results than using an imbalanced dataset. Additionally,
use of cross-corpus training improves the relation classification task’s perfor-
mance for annotated datasets that are limited in size.

Keywords: Biomedical relation extraction � Cross-corpus training
Class-imbalance � CNN

1 Introduction

In the digital era, one of the biggest challenges is handling the vast amount of complex,
unstructured text data. The biomedical domain is one such field where there is data
explosion due to the advancement in drug discovery and development technologies [1].
The number of biomedical-related articles being published has seen an exponential
growth in the last few years. It is important to mine these scientific articles to extract
information submerged in it. Manual curation of the articles consumes a lot of time and
it is a very expensive task [1]. So, automatic text mining methods are being used for
information extraction. Biomedical relation extraction from text has gained a lot of
attention in recent times because of the insights it gives about the different types of
interactions that happens among the biomedical entities.

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 170–181, 2019.
https://doi.org/10.1007/978-3-030-23281-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_14

One of the crucial problems in the clinical care system is the adverse drug reaction.
The US Food and Drug Administration (FDA) has reported a situation of polyphar-
macy (use of four or more drugs) in U.S patients especially among older patients [2].
Over 35.8% of adults in U.S aged over 65 are prescribed 5 or more drugs [2]. In a
polypharmacy situation, there is a very high chance for the drugs to interact with each
other. Drug-Drug Interaction (DDI), a type of biomedical relation happens when two
drugs interact with each other causing a positive or negative effect on the patient [3].
Besides, DDI is an important factor contributing towards Adverse Drug Effects (ADE).
Adverse drug effects lead to more deaths per year in most of the countries and increases
the health care expenditure [4]. Hence, identifying drug-drug interaction and adverse
drug effects from the scientific literature would help in improving the health-care
system. When identifying the adverse drug effects, it is also important to distinguish it
from the drug-disease treatment relations present in the documents. So, in this paper
three types of biomedical relations are handled namely drug-drug, drug-disease and
adverse drug effects.

Recently deep learning methods are used in the Natural Language Processing
(NLP) problems and have achieved state-of art results [5]. Deep learning models learn
the required high-level features from the given data on its own and this makes it more
powerful. In this work, we design a Convolutional Neural Network (CNN) with cross-
corpus training incorporating six features based on the word-context, entity-position,
concept-type, part-of-speech tagging, parse-tree and dependency tree. These features
are represented as vector embedding and given as input to the CNN. Many relation
classification datasets do not contain equal number of instances in each class and it
affects the classifier’s performance. Consequently, before training the CNN, a random
over sampling algorithm named SMOTE [6] is used to resolve the class imbalance
problem.

2 Related Work

In the past decade, computational methods using machine-learning algorithms with
different feature sets have been designed to address the biomedical relation extraction
task [7]. Traditional machine learning methods needs a lot of feature engineering to
model the relation extraction task. It is time-consuming, expensive and needs domain
expertise. Deep neural networks (DNN) automatically learn the features necessary for a
particular task and have demonstrated good performance for the relation extraction
tasks [8]. Convolutional neural network (CNN), a deep learning model which has
proved in the image processing field is being utilized for the NLP tasks in recent times
[5]. Clinical records have a lot of medical concepts and relations. CNN model has been
used by He et al. [8] to classify these relations and was able to extract rich and precise
features. The system performed better compared to the supervised learning algorithms
for the 2010 i2b2/VA relation corpus. CNN-based approach is also used for DDI
extraction by Liu et al. [9] and it has achieved a better F1-score compared to the other
state-of-art methods that existed.

Supervised deep learning models require a lot of annotated training data to model a
system that performs fairly well. Due to the limited availability of huge annotated

Cross-Corpus Training with CNN 171

corpora for each and every domain-specific task, alternate solutions like semi-
supervised learning [10], multi-task learning [11] and transfer-learning [12] are being
employed. Multi-task learning learns a shared representation for various related tasks
and improves the model generalization. Collobert et al. [13], trained a single CNN
model for various NLP tasks like named entity recognition, POS tagging, chunking and
semantic role labelling. Each NLP task performed better by sharing the learned weights
across the tasks. Multi-task learning and cross-corpus training is utilized to recognize
the audio emotions by Zhang et al. [14]. The system through multi-task learning
incorporates the domain, gender and corpus variability and found that it outperforms
the independent task learning approach.

Most of the deep-learning approaches for NLP tasks utilize embedding methods to
represent their input sentences. To mitigate the drawbacks of traditional feature rep-
resentation (sparse, high dimension, varying length vectors), word embedding methods
are being employed. Word embedding [15] is a language modelling technique used in
NLP tasks to learn the features and represent it in a dense, low-dimensional vector
representation of fixed length. In the biomedical domain, word embedding has been
successfully applied for named entity recognition [16] and relation extraction tasks [9].
Along with word context features, lexical and syntactic features also contribute to
relation classification task. Ghannay et al. [17] carried out experiments to evaluate the
different word embedding models for four NLP tasks. The experiments showed that
dependency-based embedding performs well and there would be significant improve-
ment if combination of embeddings are used.

One of the major problems in any biomedical relation classification task is the
uneven distribution of the data samples across the distinct classes causing a class
imbalance problem. Experimental studies show that an unbalanced dataset degrades the
classifier’s performance and it should be handled [18]. Over-sampling and under
sampling techniques are two techniques that are frequently used to handle the imbal-
ances. Synthetic Minority Oversampling Technique (SMOTE) [6], is an oversampling
method to generate new instances for the minority classes instead of just duplicating the
existing instances. SMOTE has the potential to avoid overfitting to a certain extent.
Zhao et al. [19] incorporated different rebalancing strategies to identify rare events in
the health care data. The experimental study showed that SMOTE combined with
logistic regression increased the recall by 45.3%. To resolve the issues arising out of an
unbalanced, small-sized dataset, SMOTE algorithm is employed along with cross-
corpus training to build a CNN model. The input to the CNN is the feature embedding
vector obtained using the six features namely word-context, entity-position, concept-
type, part-of-speech tagging, parse-tree and dependency tree.

3 Biomedical Relation Extraction

Biomedical relation extraction is modeled as a classification problem, where the
classifier outputs the class label for each entity pair. The proposed system identifies
relation between entity pairs that are present within a sentence. Depending on the type
of biomedical relation, the classification can be binary or multi-class. A CNN model
with cross-corpus training is built to classify the drug-drug pairs, drug-adverse effects

172 S. S. Deepika et al.

pairs and drug-disease pairs present within a sentence. It is a modeled as a multi-class
problem with six positive classes - four DDI types, one drug-adverse effect type and
one drug-disease type. The system architecture for the proposed system is illustrated in
Fig. 1. The system uses different types of feature embedding to represent the input
sentence and employs SMOTE [6] algorithm to mitigate the class imbalance problem.

3.1 Pre-processing

Considering the different formats (xml, csv etc.,) in which the annotated corpus is
available, sentence splitting and entity extraction is done in the pre-processing stage for
both the positive and negative instances. Then, the sentences are tokenized using
GENIA Tagger [20] and converted to lower-case. Float and integer numbers commonly
occurs in the biomedical corpora as they show the results of various experiments. As
these numbers are not important for the relation extraction task, they are converted to a
common representation named ‘number’. This would improve the result of the context-
based embedding and reduce the vocabulary size.

3.2 Representation Learning

Data representation plays a vital role in any machine learning algorithm’s performance.
In case of unstructured data like text, it is even more essential to represent the data in a
way that is useful for the learning algorithm. In the proposed work, each word in the
sentence is represented using the concatenation of different feature embedding vectors
and this concatenated vector is fed as input to the CNN. The beneficial features
identified for relation extraction are (a) word-context (b) entity position (c) entity type,
(d) part-of-speech tag (e) chunk tag and (f) dependency path. Based on the popular
skip-gram model [15], feature embedding vector for each considered feature is
generated.

In this work, the word context feature is represented using word embedding vector,
wi obtained by using the word2vec [15] on the extracted sentences. The two associated
entities in the sentence are represent using BIO tags where B and I tagare used to

Fig. 1. System architecture

Cross-Corpus Training with CNN 173

represent the entities and O for non-entity words. Based on these tags, entity type
embedding, ti is generated. P1 and P2 are positions of the entities that are present in the
sentence and are related. The relative distance of each word from entity position, P1

and P2 is embedded as two position embedding vectors, pi1 and pi2 respectively.
GENIA Tagger [20] is used to obtain the POS tag and chunk tag of the words in the
sentence. After which, POS-based embedding, si and chunk-tag based embedding, ci
are generated. The above mentioned features exploit the linguistic features along the
linear context of the sentence. Two words located far away in the sentence can be
related to each other. To handle this, dependency based embedding is used to exploit
the syntactic context of the words. Stanford parser [21] is used to get the dependency
tree of the sentence, from which dependency context of the words are obtained. For
each word, dependency embedding ei is generated using this context. An example
sentence with word context and dependency context is shown in Fig. 2. Finally, all the
generated embeddings are concatenated to get the word’s feature embedding vector as
shown in Eq. 1.

fi ¼ wi � ti � pi1 � pi2 � si � ci � ei ð1Þ

where; fi � concatenated feature embedding for word i;

wi � word embedding; ti � entity type embedding;

pi1 � position embedding w:r:t entity1;

pi2 � position embedding w:r:t entity2; si � POS embedding;

ci � chunk embedding; ei � dependency embedding

Fig. 2. Word and dependency context

174 S. S. Deepika et al.

3.3 SMOTE

Before training the CNN model with the generated feature embedding, the imbalance
present in the dataset has to be addressed. SMOTE, a synthetic sampling technique is
used to balance the unbalanced dataset. The minority classes which have a smaller
number of samples are first selected and the SMOTE algorithm is applied. For each
minority class instance, k-nearest neighbors are found using kNN algorithm. For each
nearest neighbor, the difference between the instance and the considered nearest
neighbor is calculated as Zi. Then this value is multiplied with a random vector R and
added to the instance to generate the synthetic instance. The input representation is in
the form of numeric vector with value range of −1 to +1, as sigmoid activation function
is used in the skip-gram model. Hence, the random vector values are generated from
−0.1 to +0.1. The number of neighbors that should be considered for each class
instance depends on the degree of imbalance present in the class.

3.4 Convolutional Neural Network

Convolutional neural networks extract the informative features present in the text based
on the set of convolution filters applied on n-grams of different length. To train the
CNN, a sequence of embedding representation for each sentence is given as input. The
output of CNN is a vector of length equaling the number of relation types (in this work
including the negative type, there are 7 relation types) and the vector has the probability
values corresponding to each relation type. The different layers in the CNN are con-
volution layer, max-pooling layer and feed-forward, fully-connected layer. The CNN
architecture for the proposed biomedical relation extraction task is illustrated in Fig. 3.

Convolution Layer. Convolution layer is the core component of CNN, where mul-
tiple filters of varying size are used to extract the local features present in the sentence.
As mentioned in Eq. 1, fi is the concatenated feature embedding for word i. f1 f2. . .fn is
the sequence of feature embedding for a sentence of length n. In Fig. 3, for illustration

Fig. 3. Convolutional neural network with feature embedding

Cross-Corpus Training with CNN 175

filter of length three is used. Each convolution layer outputs ci as shown in Eq. 2.
Rectified linear unit (ReLU) is used as the activation function, w and b are the learning
parameters.

ci ¼ g w:fi:iþ l�1 þ bð Þ for i ¼ 1; 2; . . .n� lþ 1 ð2Þ

where; g� activation function; l� length of the filter;

w� weight vector; b � bias term; n � length of the sentence

Max-Pooling Layer. The output of the convolution layer i.e. convolved vectors will
vary in length as different length filters are used. To obtain the global and the most
relevant features from the sentence, max-pooling aggregation function is utilized. For
each filter, max pooling is applied and vector of fixed size is generated using Eq. 3.

z ¼ ½cmax1 ; cmax2 ; . . .cmaxp � ð3Þ

where; cmaxj ¼ max ðc1j ; c2j ; . . .cn�lþ 1
j Þ;

Fully Connected Layer. The output of the max pooling layer is fed to the fully
connected layer and soft-max classifier is used to predict the type of biomedical
relation. Before giving the output of the max pooling layer to the fully connected layer,
dropout, a regularization technique is used to prevent overfitting. Objective of the soft-
max classifier is the minimization of the loss function given in the Eq. 4.

Li ¼ � log
ex

ið Þ
yi

P
k e

x ið Þ
j

 !

ð4Þ

where; x ið Þ � output of the fully connected layer for instance i;

yi � correct class for instance i

4 Results and Discussion

The proposed work is evaluated using 5-fold cross validation of considered datasets.
The essential evaluation metrics for any classification task namely precision, recall and
F1-score are used in this work and their equations are given below.

Precision ¼ TruePositive
TruePositiveþFalsePositive

Recall ¼ TruePositive
TruePositiveþFalseNegative

176 S. S. Deepika et al.

F1Score ¼ 2 � Precision � Recall
PrecisionþRecall

4.1 Dataset

The proposed system is experimentally evaluated using DDI extraction challenge 2013
dataset [22], ADE corpus [23] and EU-ADR corpus [24] for the drug-drug, drug-
adverse effect and drug-disease relations respectively. DDI corpus has 233 MEDLINE
abstracts and 792 DrugBank documents. DDI has four types of interactions namely
(a) mechanism (b) effect (c) advice and (d) int. The ADE corpus contains 2,972
MEDLINE case reports annotated with drugs, adverse effects and dosages from which
20,967 sentences were generated. The corpus has 4,272 positive and 16,695 negative
instances. EU-ADR corpus has annotations for relations among drug, gene and disease
entities. Drug-disease relation has been annotated for 100 abstracts and contains three
sub-types in which only positive and negative associations are considered. The dataset
description is given in Table 1.

4.2 Convolutional Neural Network

CNN can be modeled using filters of varying size. For the considered corpora, the
optimal filter length is chosen as two, four and six. In the convolution layer, 100 filters
for each filter length (2, 4, and 6) are being used. Dropout rate probability is fixed as
0.2. The performance of the deep-learning CNN model is compared to best performing
machine learning algorithm for the considered application. Support vector machine
(SVM) algorithm with the same set of features is used as the baseline model. Table 2
shows the comparison between the precision, recall and F1-score of the baseline and the
CNN model using 5-fold cross validation. For both SVM and CNN, all three datasets
are used for training and SMOTE is used to solve the imbalance present in the corpora.
CNN has improved the system performance for all the considered corpora. This is
because, CNN extracts both local and global features and also it uses filters of varying
size. The highest F1-score gain of 4.6% is achieved for the DDI-DrugBank corpora.

Table 1. Dataset description

Relation type Positive instances Negative instances

DDI-mechanism 1625 28,554
DDI-effect 2069
DDI-advice 1050
DDI-int 284
Drug-adverse effect 4272 16,695
Drug-disease 162 68
Total: 9462 45,317

Cross-Corpus Training with CNN 177

4.3 Contribution of Different Features

A total of six features are considered to train the CNN with cross-corpus training. The
optimal embedding vector size for word-embedding, entity-type embedding, position
embedding, POS embedding, chunk embedding (parse tree) and dependency embed-
ding (dependency tree) is fixed as 50, 10, 10, 10, 20. The contribution of each feature,
Xi is calculated by assessing the drop in F1-score of the model, after removing the
feature, Xi. Among the various features considered, some features contributed more to
the system’s performance and it is illustrated in Fig. 4. The drop in F1-score from the
original value (considering all features) is high for word context and dependency-tree
feature. The ADE dataset without the word embedding showed the highest drop in
F1-score of 9%. By removing the dependency embedding, DDI dataset showed the
highest drop in F1score of 7%.

Table 2. Performance comparison between CNN and SVM

Learning model Corpora Precision Recall F1-Score

CNN ADE 0.772 0.716 0.743
DDI-DrugBank 0.787 0.701 0.742
DDI-Medline 0.775 0.686 0.728
EU-ADR 0.726 0.679 0.702

SVM ADE 0.719 0.697 0.707
DDI-DrugBank 0.714 0.678 0.696
DDI-Medline 0.711 0.661 0.685
EU-ADR 0.699 0.664 0.681

Fig. 4. Contribution of each feature to the system performance

178 S. S. Deepika et al.

4.4 SMOTE

The ratio of positive to negative instance in total is approximately 1:4.8. The ratio of
the small positive relation type (drug-disease) to the predominant positive relation type
(drug-adverse effect) is 1:26.3. The ratio of positive to negative instance separately for
DDI, drug-ADE and drug-disease relation type are 1:5.7, 1:3.9 and 1:2.4 respectively.
The imbalance present in the datasets are mitigated using the SMOTE algorithm.
Table 3, shows the performance on different datasets when the CNN is trained with all
the three considered datasets with and without the SMOTE algorithm. The results show
that the CNN classifier performs better with balanced dataset generated from SMOTE
than with the unbalanced data. The highest increase in F1-score of 7.1% is achieved for
the EU-ADR corpus. This is due to the highly imbalanced nature of the EU-ADR
corpus with respect to the other corpora.

4.5 Cross-Training

In this work, the CNN is trained with all the three datasets which has annotated
instances for different biomedical relations. The advantage of cross-corpus training is
that it increases the generalization of model and also it helps the relations with very
minimal dataset instances to perform better. The performance of the cross-corpus
training is evaluated by training the CNN with different combinations of the datasets
and tested across all the three datasets as demonstrated in Table 4. EU-ADR corpus has
comparatively very less positive and negative instances. By training the CNN with
additional corpus, there is an improvement in the performance of drug-disease

Table 3. Performance of SMOTE

Corpus F1-score (without SMOTE) F1-score (with SMOTE)

ADE 0.707 0.743
DDI-DrugBank 0.713 0.742
DDI-Medline 0.691 0.728
EU-ADR 0.631 0.702

Table 4. Performance of cross-corpus training

Training set Testing set (F1-score
with SMOTE)
ADE DDI EU-ADR

ADE 0.790 0.561 0.562
DDI 0.554 0.712 0.579
EU-ADR 0.557 0.579 0.648
ADE+DDI 0.781 0.724 0.645
ADE+EU-ADR 0.713 0.654 0.666
DDI+EU-ADR 0.673 0.679 0.753
ADE+DDI+EU-ADR 0.743 0.732 0.702

Cross-Corpus Training with CNN 179

classification task as seen in Table 4. EU-ADR corpus performs best with an F1-score
of 0.753 when trained with DDI and EU-ADR corpus. The DDI corpus has the best
F1-score of 0.732 when trained with all the three datasets. But ADE corpus is not
benefitted by the cross-corpus training method. The F1-score decreases when additional
dataset is used to train the CNN. So, cross-corpus training is very beneficial for small-
size corpora.

5 Conclusion

A CNN model with SMOTE and cross-corpus training has been developed to extract
the biomedical relations from text. The CNN model trained with balanced corpora
obtained by applying SMOTE algorithm gave better results. Besides, the experiments
showed that relations with small annotated corpus can be benefitted from cross-corpus
training. In this work, only a single deep-learning model (CNN) has been modeled with
three biomedical relation types. In the future, the same framework can be modeled
using various other types of biomedical relations and also can be experimented with
different deep-learning techniques like recursive neural networks, auto-encoders etc.

References

1. Nagaraj, K., Sharvani, G.S., Sridhar, A.: Emerging trend of big data analytics in
bioinformatics: a literature review. Int. J. Bioinform. Res. Appl. 14(1–2), 144–205 (2018)

2. Qato, D.M., Wilder, J., Philip Schumm, L., Gillet, V., Caleb Alexander, G.: Changes in
prescription and over-the-counter medication and dietary supplement use among older adults
in the United States, 2005 vs 2011. JAMA Intern. Med. 176(4), 473–482 (2016)

3. Sutherland, J.J., Daly, T.M., Liu, X., Goldstein, K., Johnston, J.A., Ryan, T.P.: Co-
prescription trends in a large cohort of subjects predict substantial drug-drug interactions.
PLoS ONE 10(3), e0118991 (2015)

4. Giardina, C., et al.: Adverse drug reactions in hospitalized patients: results of the
FORWARD (facilitation of reporting in hospital ward) Study. Front. Pharmacol. 9, 350
(2018)

5. Sharma, R.D., Tripathi, S., Sahu, S.K., Mittal, S., Anand, A.: Predicting online doctor ratings
from user reviews using convolutional neural networks. Int. J. Mach. Learn. Comput. 6(2),
149 (2016)

6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Philip Kegelmeyer, W.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

7. Kim, S., Liu, H., Yeganova, L., John Wilbur, W.: Extracting drug–drug interactions from
literature using a rich feature-based linear kernel approach. J. Biomed. Inf. 55, 23–30 (2015)

8. He, B., Guan, Y., Dai, R.: Classifying medical relations in clinical text via convolutional
neural networks. Artif. Intell. Med. 93, 43–49 (2019)

9. Liu, S., Tang, B., Chen, Q., Wang, X.: Drug-drug interaction extraction via convolutional
neural networks. Comput. Math. Methods Med. 2016 (2016)

10. Krasakis, A.M., Kanoulas, E., Tsatsaronis, G.: Semi-supervised ensemble learning with
weak supervision for biomedical relationship extraction (2018)

11. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

180 S. S. Deepika et al.

12. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning
Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI Global
(2010)

13. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural
language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

14. Zhang, B., Provost, E.M., Essl, G.: Cross-corpus acoustic emotion recognition with multi-
task learning: seeking common ground while preserving differences. IEEE Trans. Affect.
Comput. (2017)

15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in Neural Information
Processing Systems, pp. 3111–3119 (2013)

16. Habibi, M., Weber, L., Neves, M., Wiegandt, D.L., Leser, U.: Deep learning with word
embeddings improves biomedical named entity recognition. Bioinformatics 33(14), i37–i48
(2017)

17. Ghannay, S., Favre, B., Esteve, Y., Camelin, N.: Word embedding evaluation and
combination. In: LREC, pp. 300–305 (2016)

18. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data
Anal. 6(5), 429–449 (2002)

19. Zhao, Y., Wong, Z.S.-Y., Tsui, K.L.: A framework of rebalancing imbalanced healthcare
data for rare events’ classification: a case of look-alike sound-alike mix-up incident
detection. J. Healthc. Eng. 2018 (2018)

20. Tsuruoka, Y., Tateishi, Y., Kim, J.-D., Ohta, T., McNaught, J., Ananiadou, S., Tsujii, J.:
Developing a robust part-of-speech tagger for biomedical text. In: Bozanis, P., Houstis, E.N.
(eds.) PCI 2005. LNCS, vol. 3746, pp. 382–392. Springer, Heidelberg (2005). https://doi.
org/10.1007/11573036_36

21. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The stanford
CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

22. Segura-Bedmar, I., Martínez, P., Herrero Zazo, M.: Semeval-2013 task 9: extraction of drug-
drug interactions from biomedical texts (ddiextraction 2013). In: Second Joint Conference on
Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh
International Workshop on Semantic Evaluation (SemEval 2013), vol. 2, pp. 341–350
(2013)

23. Gurulingappa, H., Rajput, A.M., Roberts, A., Fluck, J., Hofmann-Apitius, M., Toldo, L.:
Development of a benchmark corpus to support the automatic extraction of drug-related
adverse effects from medical case reports. J. Biomed. Inf. 45(5), 885–892 (2012)

24. Van Mulligen, E.M., et al.: The EU-ADR corpus: annotated drugs, diseases, targets, and
their relationships. J. Biomed. Inf. 45(5), 879–884 (2012)

Cross-Corpus Training with CNN 181

http://dx.doi.org/10.1007/11573036_36
http://dx.doi.org/10.1007/11573036_36

Discourse-Driven Argument Mining
in Scientific Abstracts

Pablo Accuosto(B) and Horacio Saggion

LaSTUS/TALN Research Group, DTIC, Universitat Pompeu Fabra,
C/Tànger 122-140, 08018 Barcelona, Spain

{pablo.accuosto,horacio.saggion}@upf.edu

Abstract. Argument mining consists in the automatic identification of
argumentative structures in texts. In this work we address the open ques-
tion of whether discourse-level annotations can contribute to facilitate
the identification of argumentative components and relations in scientific
literature. We conduct a pilot study by enriching a corpus of computa-
tional linguistics abstracts that contains discourse annotations with a
new argumentative annotation level. The results obtained from prelimi-
nary experiments confirm the potential value of the proposed approach.

Keywords: Argument mining · RST · Scientific corpus

1 Introduction

Argument mining [16,18]–the automatic identification of arguments, its compo-
nents and relations in texts–, has recently gained increased interest in natural
language processing and computational linguistics research both in the academia
[16] and the industry [1]. Being able to automatically extract not only what is
being stated by the authors of a text but also the evidence that they provide
to support their claims would enable multiple applications, including argumen-
tative summarization, computer-assisted text quality assessment, information
retrieval systems, reasoning engines and fact-checking tools. The identification of
argumentative units and relations in scientific texts, in particular, would enable
tools that could contribute to alleviate the information overload experienced by
researchers, editors and students as a consequence of the accelerated pace at
which scientific knowledge is being produced [3]. Argument mining in scientific
texts has, however, proven as a highly challenging task. This is, mainly, due
to the complexity of the underlying argumentative structures of the scientific
discourse [9]. These difficulties are not only faced when trying to develop auto-
mated systems but also in the production of gold standards with which to train
those systems. It has been observed [7] that even humans with expert domain
knowledge can find it difficult to unambiguously identify premises, conclusions
and argumentation schemes in scientific articles. The lack of annotated corpora,
in turn, represents a major barrier for advancing argumentation mining research
in the scientific domain.
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 182–194, 2019.
https://doi.org/10.1007/978-3-030-23281-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_15

Discourse-Driven Argument Mining in Scientific Abstracts 183

In this work we investigate the potential exploitation of existing linguistic
resources in order to facilitate the annotation of argumentative components and
relations in the domain of computational linguistics. We propose a fine-grained
annotation schema particularly tailored at scientific texts which we use to enrich
a subset of abstracts from the SciDTB corpus [33], which have been previously
annotated with discourse relations from the Rhetorical Structure Theory (RST)
[17]. RST provides a set of coherence relations with which adjacent spans in a
text can be linked together in a discourse analysis, resulting in a tree structure
that covers the whole text. The minimal units that are joined together in RST are
called elementary discourse units (EDUs). Let us consider the following example
from [32], included in the SciDTB corpus, in which EDUs are numbered and
identified by square brackets:

[Text-based document geolocation is commonly rooted in language-based
information retrieval techniques over geodesic grids.]1 [These methods
ignore the natural hierarchy of cells in such grids]2 [and fall afoul of
independence assumptions.]3 [We demonstrate the effectiveness]4 [of using
logistic regression models on a hierarchy of nodes in the grid,]5 [which
improves upon the state of the art accuracy by several percent]6 [and
reduces mean error distances by hundreds of kilometers on data from Twit-
ter, Wikipedia, and Flickr.]7 [We also show]8 [that logistic regression per-
forms feature selection effectively,]9 [assigning high weights to geocentric
terms.]10

From the argument mining perspective, we would like to identify, for instance,
that the authors support their claim about the effectiveness of using regression
models for text-based document geolocation (EDUs 4–5) by stating that this
method improves upon the state of the art accuracy (EDU 6) and it performs
feature selection effectively (EDU 9), which in turn is supported by the fact that
it assigns high weights to geocentric terms (EDU 10).

In this work we aim at exploring if the information provided by the discourse
layer of the corpus, which establishes that these elements are linked by chains of
discourse relations1 can contribute to facilitate this task. With this objective we
conduct a set of experiments aimed at the identification of argumentative struc-
tures in the abstracts, including their argumentative components, functions and
attachment. As described in Sect. 5, we propose to learn each of these subtasks
separately as well as together, in a multi-task framework. Multi-task learning is
a way of transferring information between machine learning processes, so they
can positively influence each other. Caruana [5] describes multi-task learning
as a way of improving generalization when training a machine learning model,
by taking advantage of information contained in the training signals of related
tasks. In order to do this, the tasks are trained in parallel while using a shared
representation (such as the hidden layers of a neural newtork). We propose to

1 For instance, EDUs 4 and 9 are linked by an evaluation relation, which can provide a
clue for the identification of a support relation from the argumentative perspective.

184 P. Accuosto and H. Saggion

compare the performance of training the argument mining subtasks in a multi-
task architecture in order to explore to what degree the natural connections
between them is actually captured in the training process and reflected in an
improved performance of the resulting models. This idea is in line with current
research across multiple natural language processing problems. In particular,
those that include the identification of units and relations as related tasks, as is
the case of argument mining. In [24], Ruder provides a thorough overview of the
current state of multi-task learning in the context of deep learning architectures.

Contributions. Our main contributions can therefore be summarized as:

– The proposal of a new, fine-grained, schema for the annotation of arguments
in scientific texts;

– The first iteration in the development of a corpus of computational linguistic
abstracts containing a layer of argumentative annotations (in addition to a
previously existing discourse annotation layer);

– New evidence for analyzing the interplay between argumentative and dis-
cursive components and relations and how existing tools and resources for
discourse analysis can effectively be exploited in argument mining;

– Experimental results obtained by neural and non-neural architectures for min-
ing arguments in scientific short texts;

– Additional elements to feed ongoing investigations on scenarios in which
multi-task architectures have a positive effect over the independent learning
of related tasks.

The rest of the paper is organized as follows: in Sect. 2 we briefly report
previous work in the area. In Sect. 3 we describe the SciDTB corpus and in Sect. 4
our proposed annotation schema for new the argumentative layer. In Sect. 5 we
describe our experimental settings and in Sect. 6 we report and analyze the
results. Finally, in Sect. 7, we summarize our main contributions and propose
additional research avenues as follow-up to the current work.

2 Related Work

The Argumentative Zoning (AZ) model [30,31] is a key antecedent in the identi-
fication of the discoursive and rhetorical structure of scientific papers. It includes
annotations for knowledge claims made by the authors of scientific articles. In
turn, the CoreSC annotation scheme [14] adopts the view of a scientific paper
as a readable representation of a scientific research by associating research com-
ponents to the sentences describing them. Our proposal for annotating argu-
mentative units (described in Sect. 4), lies between CoreSC and AZ: while the
set of annotation labels resembles that of CoreSC, they are intended to express
argumentative propositions, as in the case of AZ. Unlike our proposal, neither
AZ nor CoreSC consider relations between rhetorical units.

Discourse-Driven Argument Mining in Scientific Abstracts 185

Due to the challenges posed by the identification of arguments in scientific
texts, most of the previous works in argument mining are targeted at other
textual registers (news, product reviews, online discussions). Lippi and Torroni
[16] provide a thorough summary of initiatives in these areas. The corpus cre-
ated by Kirschner et al. [9] was one of the first intended for the analysis of the
argumentative structure of scientific texts. The authors introduce an annota-
tion schema that represents arguments as graph structures with two argumen-
tative relations (support, attack) and two discourse relations (detail, sequence).
Recently, Lauscher et al. [12] enriched a corpus of scientific articles with argu-
mentative components and relations and analyzed the information shared by the
rhetorical and argumentative structure of the documents by means of normalized
mutual information (NMI) [29]. They then used the enriched corpus to train a
tool (ArguminSci2) aimed at the automatic analysis of scientific publications,
including the identification of claims, and citation contexts and the classifica-
tion of sentences according to their rhetorical role, subjective information and
summarization relevance [11]. Stab et al. [27] conducted preliminary annotation
studies to analyze the relation between argument identification and discourse
analysis in scientific texts and persuasive essays. In line with previous work
[2,4], the authors acknowledge the differences between both tasks (in particu-
lar, as discourse schema are not specifically aimed at identifying argumentative
relations), while they also affirm that work in automated discourse analysis is
highly relevant for argumentation mining, leaving as an open question how can
this relation be exploited in practice.

Our work is inspired by that of Peldszus and Stede [20]. In this work, an
annotation study of 112 argumentatively rich short texts using RST and argu-
mentation schemes is produced. The authors provide a qualitative analysis of
commonalities and differences between the two levels of representation in the
corpus and report on experiments in automatically mapping RST trees to argu-
mentation structures. The argumentative components that they consider are
argumentative discourse units (ADUs), which consist of one or more EDUs of
the RST scheme. They propose two basic argumentative relations: support and
attack, further dividing attacks between rebutals (denying the validity of a claim)
and undercuts (denying the relevance of a premise for a claim). They also include
a non-argumentative meta-relation (join) to link together EDUs that are part
of the same argumentative unit. In their case the experiments are conducted
at the discourse units level.3 We, instead, propose our analysis at the level of
the argumentative units (which can be formed by more than one EDU) and
can therefore compare the results obtained with and without including explicit4

discourse information in argument mining tasks.

2 http://lelystad.informatik.uni-mannheim.de/.
3 For instance, if given two EDUs they are connected by an argumentative relation.
4 We have not generated annotations without previously segmented text, so the

implicit effect of considering already available EDUs as building blocks is not ana-
lyzed in this work.

http://lelystad.informatik.uni-mannheim.de/

186 P. Accuosto and H. Saggion

3 SciDTB Corpus

The Discourse Dependency TreeBank for Scientific Abstracts (SciDTB) [33] is
a corpus containing 798 abstracts from the ACL Anthology [22] annotated with
elementary discourse units and relations from the RST Framework with minor
adaptations to the scientific domain.

The SciDTB annotations use 17 coarse-grained relation types and 26 fine-
grained relations. Polynary discourse relations in RST are binarized in SciDTB
following a criteria similar to the “right-heavy” transformation used in other
works that represent discourse structures as dependency trees [13,19,28], which
makes it particularly suitable as input of sequence tagging algorithms.

4 Argumentation Annotations

We propose an annotation schema for scientific argument mining and test it in a
pilot study with 60 abstracts.5 The annotation are made by means of an adapted
version of the GraPAT [26]6 tool for graph annotations.

4.1 Relations

In line with [9], we adopt in our annotation scheme the classic support and
attack argumentative relations and the two discourse relations detail and
sequence. In order to simplify both the creation and processing of the annota-
tions we restrict the accepted argumentative structures to dependency trees.7 To
account for cases in which two or more units are mutually needed to justify an
argumentative relation, we introduce the additional meta-relation. In this case
the annotator chooses one premise to explicitly link to the supported or attacked
unit while the rest are chained together by additional links. We observed that
this restriction does not limit the expressiveness of the schema but, on the con-
trary, contributes to hierarchically organize the arguments according to their
relevance or logical sequence.

4.2 Argumentative Units

Previous works in argument mining [16] frequently use claims and premises as
basic argumentative units. Due to the specificity of the scientific discourse in
general [8], and abstracts, in particular, we consider this schema to be too lim-
iting, as it does not account for essential aspects such as the degree of assertive-
ness and subjectivity of a given statement. We therefore propose a finer-grained
annotation schema that includes the following set of classes for argumentative
5 All of the abstracts are from papers included in the Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP).
6 http://angcl.ling.uni-potsdam.de/resources/grapat.html.
7 Each argumentative unit can only have one argumentative function and is attached

to one parent.

http://angcl.ling.uni-potsdam.de/resources/grapat.html

Discourse-Driven Argument Mining in Scientific Abstracts 187

components: proposal (problem or approach), assertion (conclusion or known
fact), result (interpretation of data), observation (data), means (implemen-
tation), and description (definitions/other information). While proposal could
broadly be associated with claims, result and observation are in general used to
provide supporting evidence. The units labeled as assertion can have a dual role
of claim and premise and means and description are, in general, used to provide
non-argumentative information.

In line with [20], and unlike previous works that consider sentences as anno-
tation units [15,30], we consider EDUs as the minimal spans that can be anno-
tated, while there is not a pre-established maximum span. Argumentative units
can cover multiple sentences.

Figure 1 shows a subset of the argumentative components and relations anno-
tated in the abstract included in Sect. 1. The color of the units represent their
type: yellow for units of type result, pink and red for assertion.8

Fig. 1. Argumentative tree

The example shows how, in the case of scientific abstracts, claims and evi-
dence provided to support them are frequently not stated explicitly in an argu-
mentative writing style but are instead implicit.9

4.3 Argumentation Corpus Statistics

The corpus enriched with the argumentation level contains 60 documents with
a total of 327 sentences, 8012 tokens, 862 discourse units and 352 argumentative
units.10 Even if not enforced by the annotation schema, argumentative unit
boundaries coincide with sentences in 93% of the cases.
8 Background assertions are displayed with a red border while assertions stated by the

authors of the paper are displayed with a pink border.
9 For instance, implicit claims in relation to the relevance of the problem at stake.

10 The annotations are made available to download at http://scientmin.taln.upf.edu/
argmin/scidtb argmin annotations.tgz.

http://scientmin.taln.upf.edu/argmin/scidtb_argmin_annotations.tgz
http://scientmin.taln.upf.edu/argmin/scidtb_argmin_annotations.tgz

188 P. Accuosto and H. Saggion

Table 1 shows the distribution of the argumentative units in relation to their
type, argumentative function and distance to their parents.11

Table 1. Statistics of the corpus enriched with the argumentative layer.

Type Function Distance to parent

proposal 110 support 124 adjacent 167

assertion 88 attack 0 1 arg. unit 55

result 73 detail 130 2 arg. units 36

observation 11 additional 27 3 arg. units 17

means 63 sequence 11 4 arg. units 11

description 7 5 arg. units 5

6 arg. units 1

It is relevant to note that, while almost every document considered contains
one or more support relations, there are no attacks identified in the set of doc-
uments currently annotated. We maintain the attack relation in our schema,
nevertheless, as we plan to expand our work to longer scientific texts, where
argumentative relations with different polarities are more likely to occur.

5 Argument Mining Experiments

In this section we describe experiments conducted to assess the potential of
discourse annotations for the extraction of argumentative structures (units and
relations) in computational linguistics abstracts. We model all of these sub-
tasks as sequence tagging problems, which allows us to compare the performance
obtained by learning them separately as well as jointly, in a multi-task setting.
We also compare the performance obtained when learning and evaluating these
high-level tasks with neural and non-neural models.

5.1 Tasks

In order to capture the argumentative structure of a text it is necessary to
identify its components and how they are linked to each other. The following set
of interrelated tasks are aimed at this objective:

– B (units): Identify the boundaries of the argumentative units.
– Ty (types): Identify the types of the units (i.e.: proposal)
– Fu (function): Identify the argumentative functions (i.e.: support).
– Pa (attachment): Identify the position of the parent argumentative unit.

11 According to the position of the parent unit, there are 200 relations pointing forward
and 92 in which the parent appears before in the text.

Discourse-Driven Argument Mining in Scientific Abstracts 189

5.2 Experimental Setups

We compare the results obtained for each of the tasks mentioned in Sect. 5.1
with and without considering rhetorical information available in the RST layer
of the corpus. In each case, we run four different learning algorithms.

– Baselines: Basic classifiers, that exploit correlations between the abstracts’
argumentative structure and rhetorical or syntactic information.

– CRF: Conditional random fields (CRF) tagger.
– BiLSTM-ST: A separate BiLSTM-CRF sequence tagger for each task.
– BiLSTM-MT: A BiLSTM-CRF sequence tagger with the four main tasks

jointly trained in a mult-task setting.

In all of the settings the tasks are modeled as token classification problems
where the argumentative units are encoded with the BIO tagging scheme. All
the classifiers (including the baselines) are trained and evaluated in a 10-fold
cross-validation setting.12

Baselines. The result of the annotation process shows a correspondence of 93%
between argumentative units and sentence boundaries. We therefore consider
sentences as argumentative components for the implementation of the baseline
algorithms. In order to predict argumentative functions, types and parents we
generate simple classifiers based on the values of syntactic and/or discourse-level
features and the classes to be predicted. We do this by mapping each value of
the considered feature to its most frequent class in the training set. When no
rhetorical information is included, we observed that the concatenation of the
lemma of the syntactic root of the sentence and the sentence position is the
best predictor in average (when all the tasks are considered). When rhetorical
information is available, instead, the concatenation of the discourse function in
which the token participates and the sentence BIO tag is the most predictive
feature. It is relevant to note that this is a strong baseline to beat. For instance,
the discourse relation predicts correctly the argumentative parent (Pa) for 57%
of the argumentative units.13

CRF. For the CRF classifier we used Stanford’s CRFClassifier [6] with un-
weighted attributes, including positional, syntactic and discourse features for
the current, previous and next tokens.

– Positional features: sentence and EDU information: their position in the
text, their boundaries and position of the token within them;

12 For this pilot study the algorithms’ hyperparameters–including the number of train-
ing epochs in the case of BiLSTM networks–were not optimized, as the main goal
of this work was not to produce the best possible argument mining system but to
obtain elements that would allow us to establish comparisons between the proposed
approaches.

13 In particular, for units that correspond to discourse roots–17% of all the units–the
argumentative parent is predicted correctly 95% of the times.

190 P. Accuosto and H. Saggion

– Syntactic features: lemma, POS; dependency-tree parent; dependency-tree
relation;

– Discourse features: discourse function and parent in the discourse tree.

BiLSTM. For the BiLSTM networks we used the implementation made by the
Ubiquitous Knowledge Processing Lab of the Technische Universität Darmstadt
[23].14 We used one BiLSTM layer with 100 recurrent units with Adam optimizer
and naive dropout probability of 0.25. For the parent attachment task (Pa)
we included an additional BiLSTM layer of 100 recurrent units. We used a
Softmax classifier as the last layer of the network, except in the case of the
task B (boundary prediction), in which we used a CRF classifier. We used a
batch size of 10 and trained the networks for 30 epochs for each task and each
training-test split of our cross-validation setting. The tokens were encoded as
the concatenation of 300 dimensional dependency-based word embeddings [10]
and 1024-dimensional ELMo word embeddings [21]. In addition to the tokens,
the BiLSTMs are fed with the same features used for the implementation of the
baselines (sentence boundaries and position, lemma of the syntactic root and
discourse function), which are encoded as 10-dimensional embeddings.

6 Results and Analysis

The experiments are evaluated with the ConNLL criteria for named-entity recog-
nition. A true positive is considered when both the boundaries and class (type,
function, parent) match. A post-processing filter is run in order to ensure that
all the BIO-encoded identified units are well-formed. In the case of impossible
sequences (e.g. an I tag without the preceding B), the labels are changed to the
most frequent ones in the argumentative unit (the boundaries are considered to
be correct). In the reported results the predicted boundaries are considered.

Table 2. F1-measures with and without discourse info.

Algorithm Function (B+Fu) Type (B+Ty) Attachment (B+Pa)

RST No RST RST No RST RST No RST

Baseline 57.04 46.52 56.03 43.84 47.06 31.26

BiLSTM-MT 71.88 62.22 68.78 68.03 45.70 45.05

BiLSTM-ST 71.38 68.50 67.81 66.18 47.90 43.61

CRF 62.51 53.33 65.77 61.62 44.96 39.81

Table 2 shows the F1-measure obtained in average for each task with and
without discourse information, respectively. Explicitly incorporating discourse
information significantly contributes to the identification of the argumentative
14 https://github.com/UKPLab/elmo-bilstm-cnn-crf.

https://github.com/UKPLab/elmo-bilstm-cnn-crf

Discourse-Driven Argument Mining in Scientific Abstracts 191

function. It has also a more moderate but positive effect in predicting the argu-
mentative units’ types and attachment. It can be observed that, even with the
limited amount of training data available and without optimizing their hyper-
parameters, the neural models perform considerably better than more traditional
sequence labelling algorithms such as CRF. In particular, for the prediction of the
argumentative units’ functions. No strong conclusions can be drawn from these
results with respect the advantage of training the tasks separately or jointly in
a multi-task framework. Diverging results can be attributed to the different dif-
ficulty levels of the tasks and the small number of training examples. As more
annotated data becomes available, we will be in a better position to explore
how these tasks relate to each other and their mutual effect in a joint-learning
setting. More experiments with different values for the hyperparameters and
different regularization strategies need to be conducted in order to explore the
effects of the inductive biases introduced by means of training several tasks in
parallel. In this sense, we believe that it could be productive to explore other
multi-task learning architectures, that account for the differences of difficulties
of the various tasks, such as the hierarchical architecture proposed in [25].

6.1 Error Analysis

In terms of the observed errors, we see the same patterns in all the experimental
settings, with the numbers varying according to the respective performances of
the systems. In particular, for the Ty task, the highest rate of errors are due to
mis-classifying units of type means as either proposal, which accounts for 21% of
all the errors (in average), or result, which accounts for 11% of the errors. The
mis-classification in the other direction: units of type proposal or result being
mis-classified as means is less frequent but still significant, as it accounts for 9%
and 5% of all the errors, respectively. Of significance are also the errors generated
by the mis-classification of units of type assertion as either proposal or result,
giving origin to 11% and 9% of all the errors produced in average by all the
systems. In the case of the identification of the argumentative function (Fu),
the main source of errors are due to the mis-classification between the classes
support and detail, which accounts for 59% of all the errors (with roughly the
same number of errors in both directions). In the case of the parent attachment
task (Pa), the two most frequent errors are due to missing one argumentative
unit (for instance, attaching a unit to the adjacent unit instead of the following
one in the text), which accounts for 30% of all the errors and in assigning the
wrong direction to the relation, which accounts for 35% of all the errors.

7 Conclusions

In this work we addressed the problem of identifying argumentative components
and relations in scientific texts, a domain that has been recognized as particu-
larly challenging for argument mining. We presented work aimed at assessing the
potential value of exploiting existing discourse-annotated corpora for the extrac-
tion of argumentative units and relations in texts. Our motivation lies in the fact

192 P. Accuosto and H. Saggion

that discourse analysis, in general, and in the context of the RST framework,
in particular, is a mature research area, with a large research community that
have contributed a considerable number of tools and resources–including corpora
and parsers–which could prove valuable for the advancement of the relatively
newer area of argument mining. In order to test our hypothesis, we proposed
and pilot-tested an annotation schema that we used to enrich, with a new layer
of argumentative structures, a subset of an existing corpus that had previously
been annotated with discourse-level information. The resulting corpus was then
used to train and evaluate neural and non-neural models. Based on the obtained
results, we conclude that the explicit inclusion of discourse data contributes to
improve the performance of the argument mining models.

The results of this preliminary study are auspicious and motivate us to
expand it. In particular, we aim at extending our argumentative layer of annota-
tions to the full SciDTB corpus in an iterative process of semi-automatic anno-
tation and evaluation. We believe that this enriched corpus would become a
valuable resource to advance the investigation of argument mining in scientific
texts. In order to identify arguments in un-annotated abstracts, we will also
analyze the results obtained by training our models with discourse annotations
obtained automatically, by means of existing RST parsers. In a complementary
line, we will explore the potential offered by jointly learning to predict argu-
mentative and discourse annotations in a multi-task environment. The models
thus obtained could then be used to identify argumentative structures when no
discourse annotations are available.

Acknowledgments. This work is (partly) supported by the Spanish Government
under the Maŕıa de Maeztu Units of Excellence Programme (MDM-2015-0502).

References

1. Aharoni, E., et al.: Context-dependent evidence detection, 3 July 2018. US Patent
App. 14/720,847

2. Biran, O., Rambow, O.: Identifying justifications in written dialogs by classifying
text as argumentative. Int. J. Semant. Comput. 5(04), 363–381 (2011)

3. Bornmann, L., Mutz, R.: Growth rates of modern science: A bibliometric analy-
sis based on the number of publications and cited references. J. Assoc. Inf. Sci.
Technol. 66(11), 2215–2222 (2015)

4. Cabrio, E., Tonelli, S., Villata, S.: From discourse analysis to argumentation
schemes and back: Relations and differences. In: Leite, J., Son, T.C., Torroni,
P., van der Torre, L., Woltran, S. (eds.) CLIMA 2013. LNCS (LNAI), vol. 8143,
pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40624-
9 1

5. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
6. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into

information extraction systems by gibbs sampling. In: Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics, pp. 363–370.
Association for Computational Linguistics (2005)

https://doi.org/10.1007/978-3-642-40624-9_1
https://doi.org/10.1007/978-3-642-40624-9_1

Discourse-Driven Argument Mining in Scientific Abstracts 193

7. Green, N.: Identifying argumentation schemes in genetics research articles. In: Pro-
ceedings of the 2nd Workshop on Argumentation Mining, pp. 12–21 (2015)

8. Hyland, K.: Hedging in Scientific Research Articles, vol. 54. John Benjamins Pub-
lishing, Amsterdam (1998)

9. Kirschner, C., Eckle-Kohler, J., Gurevych, I.: Linking the thoughts: Analysis of
argumentation structures in scientific publications. In: Proceedings of the 2nd
Workshop on Argumentation Mining, pp. 1–11 (2015)

10. Komninos, A., Manandhar, S.: Dependency based embeddings for sentence clas-
sification tasks. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pp. 1490–1500 (2016)

11. Lauscher, A., Glavaš, G., Eckert, K.: ArguminSci: A tool for analyzing argumenta-
tion and rhetorical aspects in scientific writing. In: Association for Computational
Linguistics (2018)

12. Lauscher, A., Glavaš, G., Ponzetto, S.P.: An argument-annotated corpus of scien-
tific publications. In: Proceedings of the 5th Workshop on Argument Mining, pp.
40–46 (2018)

13. Li, S., Wang, L., Cao, Z., Li, W.: Text-level discourse dependency parsing. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, pp. 25–35 (2014)

14. Liakata, M., Saha, S., Dobnik, S., Batchelor, C., Rebholz-Schuhmann, D.: Auto-
matic recognition of conceptualization zones in scientific articles and two life science
applications. Bioinformatics 28(7), 991–1000 (2012)

15. Liakata, M., Teufel, S., Siddharthan, A., Batchelor, C.: Corpora for the conceptu-
alisation and zoning of scientific papers (2010)

16. Lippi, M., Torroni, P.: Argumentation mining: State of the art and emerging trends.
ACM Trans. Internet Technol. 16(2), 10 (2016)

17. Mann, W.C., Matthiessen, C., Thompson, S.A.: Rhetorical Structure Theory and
text analysis. In: Mann, W.C., Thompson, S.A. (eds.) Discourse Description:
Diverse Linguistic Analyses of a Fund-Raising Text. Pragmatics & Beyond New
Series 16, pp. 39–78 (1992)

18. Moens, M.F.: Argumentation mining: Where are we now, where do we want to be
and how do we get there? In: Post-Proceedings of the 4th and 5th Workshops of
the Forum for Information Retrieval Evaluation, Article no. 2 (2013). https://dl.
acm.org/citation.cfm?doid=2701336.2701635

19. Morey, M., Muller, P., Asher, N.: How much progress have we made on RST dis-
course parsing? A replication study of recent results on the RST-DT. In: Conference
on Empirical Methods on Natural Language Processing, pp. 1319–1324(2017)

20. Peldszus, A., Stede, M.: Rhetorical structure and argumentation structure in mono-
logue text. In: Proceedings of the Third Workshop on Argument Mining, pp. 103–
112 (2016)

21. Peters, M., et al.: Deep contextualized word representations. In: Proceedings of the
2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), vol.
1, pp. 2227–2237 (2018)

22. Radev, D.R., Muthukrishnan, P., Qazvinian, V., Abu-Jbara, A.: The ACL anthol-
ogy network corpus. Lang. Resour. Eval. 47(4), 919–944 (2013)

23. Reimers, N., Gurevych, I.: Reporting score distributions makes a difference: Perfor-
mance study of LSTM-networks for sequence tagging. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pp. 338–348
(2017)

https://dl.acm.org/citation.cfm?doid=2701336.2701635
https://dl.acm.org/citation.cfm?doid=2701336.2701635

194 P. Accuosto and H. Saggion

24. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv
preprint arXiv:1706.05098 (2017)

25. Sanh, V., Wolf, T., Ruder, S.: A hierarchical multi-task approach for learning
embeddings from semantic tasks. arXiv preprint arXiv:1811.06031 (2019)

26. Sonntag, J., Stede, M.: GraPAT: A tool for graph annotations. In: Proceedings
of the 2014 The International Conference on Language Resources and Evaluation,
pp. 4147–4151 (2014)

27. Stab, C., Kirschner, C., Eckle-Kohler, J., Gurevych, I.: Argumentation mining in
persuasive essays and scientific articles from the discourse structure perspective.
In: ArgNLP, pp. 21–25 (2014)

28. Stede, M., Afantenos, S.D., Peldszus, A., Asher, N., Perret, J.: Parallel discourse
annotations on a corpus of short texts. In: Proceedings of the 2016 The Interna-
tional Conference on Language Resources and Evaluation (2016)

29. Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for com-
bining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

30. Teufel, S.: Argumentative Zoning: Information extraction from scientific text.
Ph.D. thesis, University of Edinburgh (1999)

31. Teufel, S., Siddharthan, A., Batchelor, C.: Towards discipline-independent argu-
mentative zoning: Evidence from chemistry and computational linguistics. In: Pro-
ceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing: Volume 3-Volume 3, pp. 1493–1502. Association for Computational Lin-
guistics (2009)

32. Wing, B., Baldridge, J.: Hierarchical discriminative classification for text-based
geolocation. In: Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational Linguistics, Doha, Qatar,
October 2014

33. Yang, A., Li, S.: SciDTB: Discourse dependency treebank for scientific abstracts.
In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), vol. 2, pp. 444–449 (2018)

http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1811.06031

TAGS: Towards Automated Classification
of Unstructured Clinical Nursing Notes

Tushaar Gangavarapu(B) , Aditya Jayasimha, Gokul S. Krishnan ,
and Sowmya Kamath S.

Healthcare Analytics and Language Engineering (HALE) Lab,
Department of Information Technology, National Institute of Technology Karnataka,

Surathkal, Mangaluru, India
tushaargvsg45@gmail.com, adityajayasimha@gmail.com, gsk1692@gmail.com,

sowmyakamath@nitk.edu.in

Abstract. Accurate risk management and disease prediction are vital
in intensive care units to channel prompt care to patients in critical con-
ditions and aid medical personnel in effective decision making. Clinical
nursing notes document subjective assessments and crucial information
of a patient’s state, which is mostly lost when transcribed into Elec-
tronic Medical Records (EMRs). The Clinical Decision Support Systems
(CDSSs) in the existing body of literature are heavily dependent on the
structured nature of EMRs. Moreover, works which aim at benchmarking
deep learning models are limited. In this paper, we aim at leveraging the
underutilized treasure-trove of patient-specific information present in the
unstructured clinical nursing notes towards the development of CDSSs.
We present a fuzzy token-based similarity approach to aggregate volu-
minous clinical documentations of a patient. To structure the free-text
in the unstructured notes, vector space and coherence-based topic mod-
eling approaches that capture the syntactic and latent semantic infor-
mation are presented. Furthermore, we utilize the predictive capabilities
of deep neural architectures for disease prediction as ICD-9 code group.
Experimental validation revealed that the proposed Term weighting of
nursing notes AGgregated using S imilarity (TAGS) model outperformed
the state-of-the-art model by 5% in AUPRC and 1.55% in AUROC.

Keywords: Healthcare analytics · Disease group prediction ·
Natural Language Processing · Risk assessment systems · Deep learning

1 Introduction

Risk assessment and disease prediction in Intensive Care Units (ICUs) have had
a prominent impact on clinical care and management [13]. As per US healthcare

This work is funded by the Government of India’s DST-SERB Early Career Research
Grant (ECR/2017/001056) to Sowmya Kamath S.
T. Gangavarapu and A. Jayasimha—contributed equally to this work.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 195–207, 2019.
https://doi.org/10.1007/978-3-030-23281-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_16&domain=pdf
http://orcid.org/0000-0002-0489-9573
http://orcid.org/0000-0002-1344-4722
http://orcid.org/0000-0002-0888-7238
https://doi.org/10.1007/978-3-030-23281-8_16

196 T. Gangavarapu et al.

reports, more than 30 million patients visit hospitals annually, and 83% of these
hospitals have adopted the Electronic Medical Record (EMR) systems [6]. In the
recent years, a rapid increase in the adoption of EMRs in the hospitals of devel-
oped countries is also observed, which has prompted significant research towards
modeling the patient data for diverse clinical tasks like mortality, length of stay,
and hospital readmission prediction using various machine and deep learning
approaches [15]. Such works have further been employed towards determining
diagnostic measures needed to design and implement effective healthcare policies
[8]. Despite these trends in western countries, hospitals in developing countries
are yet to gain momentum in the implementation of EMRs.

Caregivers in developing countries most often resort to a human evaluation
of available clinical notes for decision making and cause-effect inference [10].
Clinicians and nurses document subjective assessments and crucial information
about a patient’s state, which is often lost when transcribed into EMRs [4].
Clinical nursing notes remain largely unexplored for mining and modeling the
rich and valuable patient-specific information. It is challenging to utilize unstruc-
tured clinical nursing notes to predict the clinical outcomes and events primarily
due to their sparsity, rawness, complex linguistic and temporal structure, high-
dimensionality, rich medical jargons, and abundant abbreviations [7]. How effec-
tively the rich information embedded in unstructured clinical text is extracted
and consolidated, determines the efficacy of their usage [14]. Due to the diverse
manifold nature of prevalent disease symptoms, there is often a need for assign-
ing multiple labels to a patient record in the database [1]. Risk assessment as
ICD-91 code group prediction using clinician’s notes can help in recognition
of the onset and severity of the disease. Such assessments, when preceded by
a timely response and effective communication by interdisciplinary care team
members have been reported to result in a reduction in the hospital mortality
rate [3].

Most state-of-the-art works [8,12] present machine learning models built on
structured EMR data to facilitate various clinical prediction tasks. The few works
that adopt deep learning models [5,13] neglect the rich patient-specific informa-
tion present in the clinical nursing notes. In this paper, we utilize term weight-
ing, word embedding (Doc2Vec), and coherence-based topic modeling (Latent
Dirichlet Allocation (LDA)) approaches to structure the clinical nursing notes
for capturing both the syntactic and semantic relationships between the textual
features of the nursing notes, to aid in the accurate prediction of the ICD-9 code
group. Deriving optimal data representations and eliminating redundant data
from the nursing notes is achieved using a fuzzy similarity based data cleansing
approach. Furthermore, we report the results of our exhaustive experimentation
with three deep architectures including Multi-Layer Perceptron (MLP), Long
Short Term Memory (LSTM), and Convolutional Neural Network (CNN).

The rest of this paper is structured as follows: Sect. 2 discusses relevant work
in the area of our work. Section 3 presents our detailed methodology for deriving
optimal data representations. Data modeling and deep architectures used in

1 International Statistical Classification of Diseases and Related Health Problems.

TAGS: Multi-label ICD-9 Code Group Prediction 197

ICD-9 code group prediction are discussed in Sect. 4. The experiments,
evaluation, and results are discussed in detail in Sect. 5. Finally, we conclude
with a summary and future research possibilities in Sect. 6.

2 Related Work

The prediction of prominent clinical outcomes and benchmarking the perfor-
mance of the proposed machine and deep learning models is greatly facilitated
by the availability of sizeable public patient datasets such as MIMIC-III [9]. In
2016, Pirracchio [12] presented a super learner algorithm which was an ensem-
ble of various machine learning models. For the task of ICU mortality predic-
tion, the super learner algorithm outperformed various severity scores includ-
ing SAPS-II, SOFA, and APACHE-II. The preponderance of machine learning
approaches over traditional prognostic scoring systems was emphasized. How-
ever, the obtained results were not benchmarked against the latest machine and
deep learning models. The clinical task of mortality prediction was presented as
a case study by Johnson et al. [8], who highlighted the challenges in replicating
the results reported by 28 related and recent prominent publications on pub-
licly available MIMIC-III database. They used an extracted set of features from
the database and compared the reported performance against gradient boosting
and logistic regression models. In order to take into consideration the significant
heterogeneity in the studies and ensure a fairer comparison between approxi-
mate approaches, Johnson et al. [8] emphasized the need to improve the way of
reporting the performance of clinical prediction tasks.

Harutyunyan et al. [5] used multitask recurrent neural networks to develop a
comprehensive deep learning model and benchmarked their outcomes on four dis-
parate clinical prediction tasks on the MIMIC-III database. Their work showed
encouraging results in clinical prediction tasks with the use of deep learning
approaches. However, their obtained performance was only benchmarked against
a standard logistic regression model and LSTM model, and did not benchmark
against machine learning models (including super learner) or severity scoring
systems. An extensive set of benchmarking results on various clinical tasks such
as the prediction of the ICD-9 code group, length of stay, and several versions
of in-hospital mortality was presented by Purushotham et al. [13] on MIMIC-
III, against various severity scoring systems and machine learning models. More
recently, Krishnan and Kamath [10] benchmarked their performance for the ICU
mortality prediction task. They used Word2Vec embeddings of the electrocar-
diogram reports in the MIMIC-III database and an unsupervised data cleaning
approach using K-means clustering, followed by an extreme learning machine
classifier for the prediction task.

Our work advances the efforts of these previous state-of-the-art approaches
by exploring the potential use and availability of unstructured clinical notes,
an under-tapped resource of rich patient-specific information. The EMR coding
process often decimates the treasure-trove of information present in the clini-
cian’s notes. Our work addresses this issue by designing a clinical processing

198 T. Gangavarapu et al.

and representation generation methodology based on clinical concept extrac-
tion and topic modeling using deep learning models. Furthermore, we present
an exhaustive comparative study to evaluate the performance of the proposed
fuzzy similarity based data cleansing approach across a variety of deep learning
models in the clinical task of multi-label ICD-9 code group prediction.

3 Materials and Methods

In this section, we present a brief description of the Natural Language Process-
ing (NLP) pipeline depicted in Fig. 1. We also discuss the preprocessing steps
employed to derive optimal data representations for the multi-label classification
task of ICD-9 code group prediction.

MIMIC-III
database

Cohort selection
of nursing notes

Similarity-based
data cleansing

Preprocessing

Term weighting
Doc2Vec
embedding

LDA with
topic coherence

ICD-9 group
prediction

Vector space modeling

Topic modeling

Fig. 1. NLP pipeline used to predict the ICD-9 code group.

3.1 Dataset and Cohort Selection

The Massachusetts Institute of Technology Lab for Computational Physiology
developed MIMIC-III, a freely accessible large healthcare database. It comprises
comprehensive and diverse de-identified healthcare data of more than 40, 000
intensive care patients. Also provided are 223, 556 nursing notes corresponding
to 7, 704 distinct ICU patients (diagnoses icd table) extracted from 2, 083, 180
note events (noteevents table). For the preparation of our datasets, two criteria
were employed in selecting the MIMIC-III subjects. First, the age at the time of a
subject’s admission to the ICU was used to identify subjects with age less than 15
(patients and admissions tables), and their records were removed. Second, only
the first admission of each MIMIC-III subject to the hospital was considered,
and all later admissions were discarded. Such selection was made to assure the
prediction with the earliest detected symptoms aiding in faster risk assessment.
Both steps were carried out in accordance with the existing literature [8,10,13].
Overall, the dataset elicited from the selected tables of the database encompassed
nursing notes corresponding to 7, 638 subjects with a median age of 66 years
(Quartile Q1–Q3: 52–78 years).

TAGS: Multi-label ICD-9 Code Group Prediction 199

3.2 Data Cleaning and Aggregation

It was observed that the data extracted from the MIMIC-III database had erro-
neous entries due to various factors including outliers, noise, duplicate or incor-
rect records, and missing values. First, we identified and removed the erroneous
entries in these nursing notes by using the iserror attribute of the noteevents
table set to 1. Second, the MIMIC-III subjects with duplicate records were iden-
tified and such records were deduplicated. After handling these erroneous entries,
the resulting data corresponded to 6, 532 patients.

A significant challenge in modeling the voluminous nursing notes and facil-
itating multi-label ICD-9 code group classification is the aggregation of mul-
tiple such notes of a specific MIMIC-III subject. Such notes may have many
similar terms which can affect the vector representations significantly. Monge-
Elkan (ME) token-based fuzzy similarity scoring approach is coalesced with Jaro
internal scoring scheme to enable decision-making while handling multiple near-
duplicate nursing notes of a subject. ME similarity handles alternate names,
clinical abbreviations, and medical jargons. Jaro similarity, as an internal scoring
strategy effectively handles spelling errors and produces a normalized similar-
ity score between 0 and 1. Given two nursing notes ηp and ηq with |ηp| and |ηq|
tokens (C(p)

i s and C(q)
j s) respectively, their ME similarity score with Jaro internal

scoring is computed using,

MEJaro(ηp, ηq) =
1

|ηp|
|ηp|∑

i=1

max
{

Jaro(C(p)
i , C(q)

j)
}|ηq|

j=1
(1)

where, the Jaro similarity score of two given tokens Cm of length |Cm| and Cn of
length |Cn| with c matching characters and t transpositions, is computed using,

Jaro(Cm, Cn) =

{
0, if c = 0
1
3

(
c

|Cm| + c
|Cn| + 2c−t

2c

)
, otherwise

(2)

A pair of nursing notes are merged only if the ME score of that pair is
lower than a preset threshold. Only the first record is retained and the second is
purged when the ME score of a pair of nursing notes is greater than the threshold.
Note that only the nursing notes and not the ICD-9 code groups are merged or
purged based on similarity. To facilitate multi-label classification, we merge the
corresponding ICD-9 codes across multiple nursing notes of a patient. We refer
to the resultant nursing note for a patient obtained as a result of merging as
the aggregate nursing note of that patient. In this study, the fuzzy-similarity
threshold (θ) was empirically determined to be 0.825.

3.3 Data Preprocessing

The next step in the NLP pipeline is preprocessing the nursing notes to achieve
data normalization. Preprocessing includes tokenization, stop-word removal,

200 T. Gangavarapu et al.

and stemming/lemmatization. Firstly, multiple spaces, punctuation marks, and
special characters are removed. During tokenization, we split the text in each
clinical nursing note into numerous smaller words (tokens). Using the NLTK
English stopword corpus, stopwords among the generated tokens are removed.
Furthermore, any references to images (file names such as ‘MRI Scan.jpg ’) are
removed, and character case folding is performed. Token removal based on its
length based was not performed to mitigate any loss of vital medical informa-
tion (such as ‘MRI ’ in ‘MRI Scan’). Finally, suffix stripping was facilitated by
stemming, followed by lemmatization which aimed at converting the stripped
words to their base forms. The words appearing in less than ten nursing notes
were removed to lower the computational complexity and avoid overfitting.

3.4 Feature Modeling of Clinical Concepts

Let S denote the set of all aggregate nursing notes. Each aggregate nursing note
ηi in S constitutes a variable length of tokens from a sizeable vocabulary V, thus
making S very complex. Therefore, a transformation of unstructured clinical text
into an easier-to-use machine processable form is critically important. The per-
formance and efficacy of the utilized deep architectures are heavily reliant on the
optimal vector representations of the underlying corpus. We used vector space
modeling and coherence-based topic modeling for feature modeling to enable an
optimal representation of the patient cohort.

Vector Space Modeling. Vector space modeling of clinical concepts aims at
representing each nursing note as a point in a multidimensional vector space of
d dimensions (usually, d � |V|). The term weighting scheme is a transformation
of the Bag of Words (BoW) that assigns weight to tokens in an unsupervised
manner. This scheme captures both the importance (occurrence frequency) and
rarity (specificity) of a token in the given vocabulary. The weight (W (p)

i) assigned
to a term w (p)

i (of total |w(p)| terms) in a nursing note ηp (of total N nursing
notes) occurring f (p)i times is given by,

W
(p)
i =

{(
1 + log2f

(p)
i

) (
log2

N
|w(p)|

)
, if f

(p)
i > 0

0, otherwise
(3)

The term weights of all the tokens in an aggregate nursing note are computed
to obtain a vector ({W

(p)
i }|V|

i=1) in the machine processable form.
Although the term weighting scheme effectively captures the syntactic rela-

tion between the textual features, it often suffers from the curse of high dimen-
sionality and sparsity. Furthermore, it does not capture the intuition that seman-
tically similar nursing notes have similar representations (e.g., ‘bone’ and ‘frac-
ture’). Doc2Vec or Paragraph Vectors (PVs) overcome these shortcomings by
efficiently learning the term representations in a data-driven manner. Doc2Vec
numerically represents variable length documents as low dimensional, fixed
length document embeddings. It is a simple neural network with one shallow

TAGS: Multi-label ICD-9 Code Group Prediction 201

hidden layer that learns the distributed representations and provides content-
related measurement. It captures both semantic and syntactic textual features
obtained from the nursing notes text corpus. The implementations in the Python
Scikit-learn and Gensim packages were used on the transcribed clinical words,
to extract the features modeled using vector space models. In this study, we
used the PV distributed memory variant of Doc2Vec with a dimension size of
500 (trained for 25 epochs) due to its ability to preserve the word order in the
nursing notes.

Coherence-Based Topic Modeling. Topic modeling aims at finding a set
of topics (collection of terms) from a collection of documents (nursing notes)
that best represents the documents in the corpus. LDA, a popular cluster anal-
ysis approach is a generative topic model based on the Bayesian framework of a
three-layer structure including documents, topics, and terms. A soft probabilistic
and flat clustering of terms into topics and documents into topics is facilitated
by LDA. It posits that each nursing note and each term, belong, with a cer-
tain probability, to a set of topics. This topic modeling approach can capture
the context of occurrence which is essential for accurate predictability by the
underlying deep architectures.

Similar to other clustering methods, the challenge is to determine the correct
number of LDA clusters. To cope with this issue, the Topic Coherence (TC)
between topics is used to derive the optimal number of topics. TC is a way to
evaluate the topic models with a much higher guarantee on human interpretabil-
ity. In our work, we adopt coherence-based LDA as it accounts for the seman-
tic similarity between the higher scoring terms. The implementation available
in Python Gensim package was used implement LDA with TC. A normalized
pointwise mutual information score was used as a confirmation measure due to
its high correlation with human interpretability [2]. The number of topics for
LDA models was set to 100 and the LDA matrix was built on a BoW represen-
tation of the nursing notes. Furthermore, the number of topics was determined
to be 100, by comparing the coherence scores of several LDA models obtained
by varying the number of topics from 2 to 500 (increments of 100).

4 ICD-9 Code Group Prediction

ICD-9 codes are a taxonomy of diagnostic codes used by medical personnel
including doctors and public health agencies to classify diseases and a wide
variety of symptoms, infections, disorders, causes of injury etc. Researchers have
stressed the need to differentiate between full-code predictions and category-level
(group) predictions due to the high granularity in the diagnostic code hierarchy
[11]. Each code group2 includes a set of similar diseases, and almost every health
condition can be classified into a unique code group. In this research, we focus on

2 The code ranges used for mapping can be found at http://tdrdata.com/ipd/
ipd SearchForICD9CodesAndDescriptions.aspx.

http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx
http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx

202 T. Gangavarapu et al.

ICD-9 code group predictions as a multi-label classification problem, with each
patient’s nursing note mapped to more than one code group. All the ICD-9 codes
for a given admission are mapped into 19 distinct diagnostic classes. Note that
there are no records in the MIMIC-III database within the ICD-9 code range
of 760–779. Furthermore, this study classifies all the Ref and V codes into the
same code group.

4.1 Deep Neural Architectures

We used three deep neural architectures including MLP, LSTM, and CNN to
make the ICD-9 code group predictions. We used the implementations available
in the Python Keras package with Tensorflow backend for this purpose. All the
presented deep models were trained to minimize a binary cross entropy loss
function using an Adam optimizer, with a batch size of 128, for eight epochs.

Multi-layer Perceptron. MLP is a feed-forward neural network with an input
layer, one or more hidden layers, and an output layer. The first layer takes the
clinical terms in an aggregate nursing note as the input and uses the output
of each layer as the input to the following layer. Each node of the hidden or
output layer l is associated with a bias (b(l)) and each node to node connection
(from layer l to l + 1) has a weight (W (l,l+1)). A node in a layer l with an input
s(l) is activated in the layer l + 1 using an activation function g as g(W (l,l+1) ·
s(l)+b(l+1)). Furthermore, MLP uses the backpropagation algorithm to calculate
the gradient of the loss function, allowing it to learn an optimal set of weights
and biases needed to minimize a suitable loss function. The ability of MLPs to
solve problems stochastically enables them to approximate solutions even for
extremely complex problems. In this research, we utilize an MLP network with
one hidden layer of 75 nodes with a Rectified Linear Unit (ReLU) activation
function and an output layer of 19 nodes with a sigmoid activation function.

Long Short Term Memory. LSTMs are a special type of Recurrent Neural
Networks (RNNs) that effectively capture the long-term dependencies. LSTMs
overcome the problem of vanishing gradients, typically observed in traditional
RNNs. Capturing the context and long-term dependencies in the raw clinical
text would be crucial in the accurate prediction of the ICD-9 code groups. A
recurrent neuron in RNNs has a simple activation structure, similar to that in
MLP. In LSTM networks, however, the recurrent neuron, termed as the LSTM
memory cell is equipped with a much more complex structure. More specifically,
given a nursing note ηi at a time step t, with an embedding of s

(i)
t , the output

(ht) and the state (ct) of an LSTM memory cell can be given by,

ct = f � ct−1 + i � g; ht = o � tanh(ct) (4)

where, � represents element-wise multiplication, tanh(·) is the hyperbolic tan-
gent function, and i, f , o, and g are the values at the input gate, forget gate,

TAGS: Multi-label ICD-9 Code Group Prediction 203

output gate, and cell state respectively and are computed as (σ(·) denotes the
sigmoid function),

⎛

⎜⎜⎝

i
f
o
g

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

σ
σ
σ

tanh

⎞

⎟⎟⎠ W (l,l+1)

(
ht−1

s
(i)
t

)
(5)

Note that W (l,l+1) varies between the layers but is shared through time. In
this study, the dimensions of the embedding and LSTM hidden state are 289 (17
time steps with 17 features each) and 300. The multi-label prediction is achieved
by a sigmoid activation of the final LSTM output.

Convolutional Neural Network. CNN is a deep feed-forward neural network
architecture which uses a variation of the MLP aimed at minimal processing. Let
an aggregate nursing note ηi be modeled to produce an embedding of s

(i)
1:n, where

tk:k+l refers to the concatenation of the terms tk, tk+1, . . . , tk+l. The computation
of a new feature involving a convolution operation using a filter f ∈ R

wn on a
window of w terms and bias b is given as g(f ·s(i)k:k+w−1+b). The filter f is applied

to every possible window of terms in the embedding {s
(i)
1:w, s

(i)
2:w+1, . . . , s

(i)
n−w+1:n}

to produce a feature map. The same process can be extended to multiple filters
(with varying window sizes) to obtain multiple feature maps. The features from
the penultimate layer are passed to a fully connected layer using an activation
function. CNNs drastically reduce the number of hyper-parameters (weights and
biases) to be learned by the network, thus reducing the training overhead. In
this research, we employed one fully connected layer of 289 nodes with ReLU
activation function, one CNN layer with 3 × 3 convolution window size and 19
feature map size. The multi-label prediction is achieved by a sigmoid activation
of the final convolved output.

5 Experimental Results and Discussion

The experiments were performed using a server running Ubuntu OS with 56 cores
of Intel Xeon processors, 128 GB RAM, 3 TB hard drive, and two NVIDIA Tesla
M40 GPUs. To validate the proposed data modeling and prediction approaches,
we performed an exhaustive benchmarking over the nursing notes data obtained
from the MIMIC-III database. The primary challenge is the multi-label classifi-
cation, where a set of ICD-9 code groups are predicted for each nursing note and
a pairwise comparison of actual and predicted ICD-9 code groups for nursing
note is performed. Seven standard evaluation metrics were used to evaluate the
performance of each of the three deep learning models with respect to each of the
four presented data modeling approaches. The evaluation metrics include Accu-
racy (ACC), F1 score, MCC score, Label Ranking Loss (LRL), Coverage Error
(CE), Area Under the Precision-Recall Curve (AUPRC), and Area Under the

204 T. Gangavarapu et al.

T
a
b
le

1
.
E

x
p
er

im
en

ta
l
re

su
lt

s
fo

r
IC

D
-9

co
d
e

g
ro

u
p

p
re

d
ic

ti
o
n

u
si

n
g

M
L
P
,
L
S
T

M
,
a
n
d

C
N

N
m

o
d
el

s

D
a
ta

m
o
d
el

C
la

ss
ifi

er
P
er

fo
rm

a
n
ce

sc
o
re

s

A
C

C
F
1

M
C

C
L
R

L
C

E

T
A
G
S

(6
,5

3
2
×

1
4
,6

5
0
)

M
L
P

0
.8
1
3
0
±

0
.0
0
0
5

0
.6
8
0
3
±

0
.0
0
2
4

0
.5
7
0
4
±

0
.0
0
2
0

0
.4

1
9
9
±

0
.0

0
2
4

1
8
.5

0
4
8
±

0
.0

5
4
4

L
S
T

M
0
.7

9
4
6
±

0
.0

0
1
1

0
.6

6
6
1
±

0
.0

0
2
8

0
.5

3
6
5
±

0
.0

0
2
7

0
.4

2
9
3
±

0
.0

0
4
8

1
8
.2

4
7
7
±

0
.1

0
1
0

C
N

N
0
.8

0
4
9
±

0
.0

0
0
7

0
.6

7
8
5
±

0
.0

0
3
2

0
.5

5
9
4
±

0
.0

0
2
2

0
.4
1
2
4
±

0
.0
0
4
7

1
8
.1
3
0
0
±

0
.1
0
8
8

D
o
c2

V
ec

(6
,5

3
2
×

5
0
0
)

M
L
P

0
.7

9
0
3
±

0
.0

0
1
9

0
.6

5
5
9
±

0
.0

0
1
9

0
.5

2
1
2
±

0
.0

0
3
2

0
.4

4
2
6
±

0
.0

0
2
1

1
8
.6
4
8
5
±

0
.0
5
3
9

L
S
T

M
0
.8
0
0
5
±

0
.0
0
1
7

0
.6
6
5
5
±

0
.0
0
2
2

0
.5
3
8
6
±

0
.0
0
3
2

0
.4
3
8
8
±

0
.0
0
1
9

1
8
.6

7
0
9
±

0
.0

7
9
6

C
N

N
0
.7

7
3
7
±

0
.0

0
1
2

0
.6

3
8
1
±

0
.0

0
2
8

0
.4

8
7
9
±

0
.0

0
3
4

0
.4

5
9
9
±

0
.0

0
3
3

1
8
.6

6
6
4
±

0
.0

4
9
0

L
D

A
(6

,5
3
2
×

1
0
0
)

M
L
P

0
.7

9
0
5
±

0
.0

0
1
7

0
.6

3
9
7
±

0
.0

0
2
7

0
.5

2
2
1
±

0
.0

0
3
1

0
.4

6
1
0
±

0
.0

0
3
0

1
8
.8

9
9
7
±

0
.0

5
3
4

L
S
T

M
0
.7

8
4
2
±

0
.0

0
1
3

0
.6

3
2
9
±

0
.0

0
2
7

0
.5

0
7
8
±

0
.0

0
1
4

0
.4

6
9
7
±

0
.0

0
4
4

1
8
.9

2
5
2
±

0
.0

6
0
7

C
N

N
0
.8
0
3
4
±

0
.0
0
1
6

0
.6
6
4
3
±

0
.0
0
1
3

0
.5
5
4
2
±

0
.0
0
2
2

0
.4
3
6
1
±

0
.0
0
1
8

1
8
.6
2
4
3
±

0
.0
6
7
9

TAGS: Multi-label ICD-9 Code Group Prediction 205

ROC Curve (AUROC). Five-fold cross-validation was used to evaluate the pre-
dictability of the proposed models. Furthermore, the mean and standard errors
(of the mean) of all the performance scores are presented. Table 1 shows the
performance of all data modeling approaches and all deep prediction models
processed using the proposed fuzzy token-based similarity approach (θ = 0.825).
We observe that the proposed Term weighting of nursing notes AGgregated
using S imilarity (TAGS) model, modeled with MLP outperforms more complex
vector space and topic models.

Table 2. AUPRC and AUROC performance of the proposed ICD-9 code group pre-
diction models

Data model Classifier Performance scores

AUPRC AUROC

TAGS (6,532 × 14,650) MLP 0.6291± 0.0027 0.7738 ± 0.0013

LSTM 0.5990 ± 0.0014 0.7646 ± 0.0025

CNN 0.6153 ± 0.0031 0.7817± 0.0023

Doc2Vec (6,532 × 500) MLP 0.5914 ± 0.0016 0.7562 ± 0.0013

LSTM 0.6076± 0.0033 0.7600± 0.0010

CNN 0.5686 ± 0.0030 0.7433 ± 0.0019

LDA (6,532 × 100) MLP 0.5965 ± 0.0016 0.7497 ± 0.0017

LSTM 0.5865 ± 0.0012 0.7431 ± 0.0017

CNN 0.6181± 0.0011 0.7649± 0.0011

AUPRC measures the number of true positives from positive predictions
and is more relevant since the data extracted from the MIMIC-III database is
highly imbalanced. Most previous works including the state-of-the-art model [13]
are heavily reliant on the structured nature of the EMRs modeled in the form
of feature sets to aid the prediction of clinical outcomes. Table 2 presents the
AUPRC and AUROC performance of the proposed ICD Code group prediction
models. From Fig. 2, it can be noted that the proposed TAGS model consistently
outperforms the existing state-of-the-art model by 5% in AUPRC and 1.55% in
AUROC. The previous works do not benchmark metrics other than AUROC and
AUPRC presented in this study. We argue that the presented metrics aid in the
measurement of various aspects of the predictive model’s performance including
precision and recall which are vital in critical clinical tasks. The richness and
abundance of information captured by the unstructured nursing notes are often
lost in the structured EMRs coding process [4]. From the results, it can be noted
that the TAGS model captures the discriminative features of the clinical nursing
notes, eliminates redundancy, and purges anomalous data effectively aiding the
deep learning classifier to learn and generalize, and such modeling results in the
improvement of the clinical decision-making process.

206 T. Gangavarapu et al.

AUROC AUPRC

40

50

60

70

80 78.2

62.9

77

60

Evaluation metric

P
er
fo
rm

an
ce

sc
or
e
(%

)
TAGS (θ = 0.825) State-of-the-art [13]

Fig. 2. Comparison of the TAGS model with the state-of-the-art model.

6 Concluding Remarks

Clinical nursing notes hold a treasure trove of patient-specific information. The
voluminous and heterogeneous nature of the unstructured nursing notes with
complex linguistic structure makes it hard to model them. In this paper, we
presented a fuzzy similarity based matching approach to eliminate redundant
and anomalous data resulting in reduced cognitive burden and enhancement in
the clinical decision-making process. Vector space modeling and Coherence topic
modeling approaches were built on the aggregated data to capture the syntactic
and latent semantic information in the nursing notes and effectively leverage it
for disease prediction. It was observed that the proposed TAGS model achieved
superior performance when benchmarked against the structure EMR based state-
of-the-art model by 5% in AUPRC and 1.55% in AUROC. Furthermore, its
performance was benchmarked using seven evaluation metrics which are vital in
the assessment of the predictive capability of the proposed models, especially in
clinical tasks. Our model built on unstructured text eliminates the dependency
on EMRs which is extremely useful in countries with low EMR adoption rates. As
part of future work, we aim at validating the TAGS model on real-time clinical
records. We also intend to improve the predictive capabilities of our models,
focusing on building time-aware prediction architectures in real-time.

References

1. Baumel, T., Nassour-Kassis, J., Cohen, R., Elhadad, M., Elhadad, N.: Multi-label
classification of patient notes a case study on ICD code assignment. arXiv preprint
arXiv:1709.09587 (2017)

http://arxiv.org/abs/1709.09587

TAGS: Multi-label ICD-9 Code Group Prediction 207

2. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction.
Proc. GSCL, 31–40 (2009)

3. Collins, S.A., Cato, K., Albers, D., Scott, K., et al.: Relationship between nursing
documentation and patients’ mortality. Am. J. Crit. Care 22(4), 306–313 (2013)

4. Dubois, S., Romano, N., Kale, D.C., Shah, N., Jung, K.: Learning effective repre-
sentations from clinical notes. arXiv preprint arXiv:1705.07025 (2017)

5. Harutyunyan, H., Khachatrian, H., Kale, D.C., Galstyan, A.: Multitask learning
and benchmarking with clinical time series data. arXiv preprint arXiv:1703.07771
(2017)

6. Henry, J., Pylypchuk, Y., Searcy, T., Patel, V.: Adoption of electronic health record
systems among us non-federal acute care hospitals: 2008-2015. ONC Data Brief 35,
1–9 (2016)

7. Jo, Y., Lee, L., Palaskar, S.: Combining LSTM and latent topic modeling for mor-
tality prediction. arXiv preprint arXiv:1709.02842 (2017)

8. Johnson, A.E., Pollard, T.J., Mark, R.G.: Reproducibility in critical care: a mor-
tality prediction case study. In: Machine Learning for Healthcare Conference, pp.
361–376 (2017)

9. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci.
Data 3, 160035 (2016)

10. Krishnan, G.S., Sowmya Kamath, S.: A supervised learning approach for ICU
mortality prediction based on unstructured electrocardiogram text reports. In:
Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds.) NLDB
2018. LNCS, vol. 10859, pp. 126–134. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91947-8 13

11. Larkey, L.S., Croft, W.B.: Automatic assignment of ICD9 codes to discharge sum-
maries. Technical report, University of Massachusetts at Amherst, Amherst, MA
(1995)

12. Pirracchio, R.: Mortality prediction in the ICU based on MIMIC-II results from the
super ICU learner algorithm (SICULA) project. Secondary Analysis of Electronic
Health Records, pp. 295–313. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43742-2 20

13. Purushotham, S., Meng, C., Che, Z., Liu, Y.: Benchmarking deep learning models
on large healthcare datasets. J. Biomed. Inform. 83, 112–134 (2018)

14. Wang, Y., et al.: MedSTS: a resource for clinical semantic textual similarity. Lang.
Resour. Eval., 1–16 (2018)

15. Waudby-Smith, I.E., Tran, N., Dubin, J.A., Lee, J.: Sentiment in nursing notes
as an indicator of out-of-hospital mortality in intensive care patients. PLoS ONE
13(6), e0198687 (2018)

http://arxiv.org/abs/1705.07025
http://arxiv.org/abs/1703.07771
http://arxiv.org/abs/1709.02842
https://doi.org/10.1007/978-3-319-91947-8_13
https://doi.org/10.1007/978-3-319-91947-8_13
https://doi.org/10.1007/978-3-319-43742-2_20
https://doi.org/10.1007/978-3-319-43742-2_20

Estimating the Believability of Uncertain Data
Inputs in Applications for Alzheimer’s

Disease Patients

Fatma Ghorbel1,2(&), Fayçal Hamdi1, and Elisabeth Métais1

1 CEDRIC Laboratory, Conservatoire National des Arts et Métiers (CNAM),
Paris, France

fatmaghorbel6@gmail.com,

{faycal.hamdi,metais}@cnam.fr
2 MIRACL Laboratory, University of Sfax, Sfax, Tunisia

Abstract. Data believability estimation is a crucial issue in many application
domains. This is particularly true when handling uncertain input data given by
Alzheimer’s disease patients. In this paper, we propose an approach, called
DBE_ALZ, to estimate quantitatively the believability of uncertain input data in
the context of applications for Alzheimer’s disease patients. In this context, data
may be given by Alzheimer’s disease patients or their caregivers. The believ-
ability of an input data is estimated based on its reasonableness compared to
common-sense standard and personalized rules and the reliability of its authors.
This estimation is based on Bayesian networks and Mamdani fuzzy inference
systems. We illustrate the usefulness of our approach in the context of the
Captain Memo memory prosthesis. Finally, we discuss the encouraging results
de-rived from the evaluation of our approach.

Keywords: Applications for Alzheimer’s disease patients �
Uncertain data inputs � Data believability estimation � Probability theory �
Fuzzy set theory � Patterns

1 Introduction and Motivation

In the context of the VIVA1 project (“Vivre à Paris avec Alzheimer en 2030 grâce aux
nouvelles technologies”), we are proposing a memory prosthesis, called Captain Memo
[1], to help Alzheimer’s patients to palliate mnesic problems. In this prosthesis, per-
sonal data of the patient are structured as a semantic knowledge base using an ontology
called, PersonLink [2]. This multicultural and multilingual OWL 2 ontology enables
storing, modeling and reasoning about interpersonal relationships (e.g. husband, half-
brothers) and people description (e.g., name and lived events).

Captain Memo is conceived to be used by patients having earliest symptoms of
Alzheimer. As this disease progresses, Captain Memo will use the stored data, entered
by patients, to afterwards supply a set of services that help them in some of their

1 http://viva.cnam.fr/.

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 208–219, 2019.
https://doi.org/10.1007/978-3-030-23281-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_17&domain=pdf
http://viva.cnam.fr/
https://doi.org/10.1007/978-3-030-23281-8_17

daily activities. However, these particular users, living in a form of uncertainty, may
introduce inconsistent data. For example, an Alzheimer’s patient who has, in reality,
only one son named Paul, could declare that he also has a daughter named Juliette.
Captain memo should verify this information before introducing it in the knowledge
base, as it will lead the system to infer wrong conclusions or, worst, to undecidable
reasoning. For the previous example, the Captain Memo service that generates gen-
ealogic trees, will show that Juliette is the daughter of the patient and the sister of Paul.
The wrong fraternity link was automatically inferred from the wrong entered input.

To deal with this issue, a process estimating data believability should be added to
our prosthesis. This process, which assigns to each input a believability value, will
allow Captain Memo to only accept input having a high believability degree. In the
literature, only a few approaches address the assessment of data believability. In [6] and
[7], the authors proposed a general context-independent estimation of believability.
However, in the context of Alzheimer’s disease, it is necessary to consider the par-
ticular profile of patients to correctly estimate the believability of data they entered.
Indeed, the fuzziness and imprecision of input data related to the profile of each patient
should be taken into account. Some of the existing applications intended to this cat-
egory of users, deal with this problem by only considering inputs of the patients’
caregivers (they assume that they should be more accurate than the patients’ inputs).
The issue is that, also these inputs have to be assessed as, for instance, caregivers may
not necessarily know all information related to the patient’s life.

In this paper, we propose an approach, called DBE_ALZ, to estimate quantitatively
the believability of uncertain input data in the context of applications for Alzheimer’s
disease patients. Data may be given by Alzheimer’s disease patients or their caregivers.
Based on generated believability degrees, a set of decisions can be made (e.g., inferring
or not based on given data). Our approach is based on probability and fuzzy set theories
to reason about uncertain and imprecise knowledge.

The rest of the present paper is organized as follows. Section 2 is devoted to present
the data believability research field. Section 3 details the proposed DBE_ALZ
approach. Section 4 presents and discusses experimental results. Finally, Sect. 5
summarizes the main contributions of our work and gives some future directions.

2 Data Believability: Definition and Estimation

In [3, 4] and [5] data believability is defined by authors as “the extent to which data are
accepted or regarded as true, real and credible”. We have adapted this definition to
our case by adding the relationship with the context of use. Thus, we defined believ-
ability as “the extent to which data are, in a specific context, accepted or regarded as
true, real and credible”.

The estimation of data believability is based on the definition of a set of dimen-
sions. To each dimension, a set of metrics are defined. Dimensions are used to evaluate
qualitatively the believability and the metrics are used to evaluate it quantitatively.

Only a few approaches have been proposed to estimate believability of the data e.g.,
[6] and [7]. Lee et al. [6] proposed three dimensions to evaluate the data’s believability:
(i) the believability of source which is defined as the data originating from a

Estimating the Believability of Uncertain Data Inputs 209

trustworthy source (ii) the believability according to internal common-sense standard
which is the extent to which a data value is possible, consistent over sources (different
sources agree on the data value) and consistent over time (data value is consistent with
past data values), and (iii) the believability based on temporality of data which is the
extent to which a data value is credible based on proximity of transaction time to valid
times and derived from data values with overlapping valid times. These dimensions
remain quite general and enable only qualitative estimation. Besides, they do not
provide a formal definition of their metric. Prat and Madnick [7] proposed an approach
to estimate quantitatively the data’s believability based on provenance metadata i.e., the
origin and subsequent processing history of data. This approach uses the believability
assessment dimensions proposed by [6]. It is 3 aspects: (i) definition of metrics for
assessing the believability of data sources (ii) definition of metrics for assessing the
believability of data resulting from one process run, and (iii) assessment of believability
as a whole based on all the sources and processing history of data.

Compared to existing approaches, our work provides dimensions and metrics that
are suitable for a context of use ‘Alzheimer’s patients’. To assess data believability,
profiles of both patients and caregivers are taken into account. Parameters such as
fuzziness introduced by patients or caregiver knowledge are considered to better ad-just
the calculation of the data believability degree.

3 DBE_ALZ Approach: Estimating the Believability
of Uncertain Data Inputs in Applications for Alzheimer’s
Disease Patients

Our DBE_ALZ approach provides a quantitative estimation of the believability of
uncertain data inputs in applications for Alzheimer’s patients. In this context, data may
be given by Alzheimer’s patients or their caregivers. It generates, for each input, a
degree of credibility C (C 2 [0, 1], 0 and 1 represent, respectively, completely unbe-
lievable and completely believable). It is based on probabilities and fuzzy set theories
and is composed of three modules: “data reasonableness estimation”, “author reliability
estimation” and “data believability estimation”. Figure 1 summarizes this approach.

3.1 Data Reasonableness Estimation

This module estimates the reasonableness of the uncertain input data. It generates a
score R (R 2 [0, l], 0 and 1 represent, respectively, completely unreasonable and
completely reasonable). It is based on the probability theory to deal with uncertainty
and the Bayesian Network model. It is composed of three sub-modules: “input data
pattern matching”, “verification rule pattern generation” and “verification rule
fulfillment”.

Input Data Pattern Matching. This sub-module takes as input the given uncertain
data IK. It returns the associated pattern PIK thanks to a matching process with the pre-
established input data patterns base PI = {PI1, PI2… PIN}. For instance, if we have the

210 F. Ghorbel et al.

following data: “Philippe is the father of Pierre”. The corresponding pattern is “Per-son
X father Person Y”.

Verification Rule Pattern Generation. This sub-module takes as input the input data
pattern PIK and returns the associated verification rule pattern PRK.

RP = {RP1, RP2… RPN} is a verification rule patterns base. For each input data pat-
tern IPK, a rule pattern PRK is associated. A verification rule pattern is defined as the
following:

IF PIKTHEN AK=1. . .AK=N

The resulting part consists of a conjunction and/or disjunction of one or more
assertions AK/I that ought to be fulfilled to confirm that IK is reasonable. We classify
them into common sense and personalized assertions. Common sense ones estimate the
data reasonableness regarding common sense standards. For instance, the father’s age
is always higher than the son’s age. We use OpenCyc2 ontology that proposes millions
of pieces of knowledge that compose human common sense. Personalized assertions
estimate the data reasonableness based on user’s background. They depend on a
number of parameters specified by an expert e.g., culture. For instance, in the United
States, there is a high probability that the first name of a son is the same as that of the
father (or at least includes the father first name). However, most likely it is not the same
in many other cultures.

We associate a weight WK/I to each personalized assertion AK/I to estimate its
validity according to the associated parameters. These weights are determined by
interrogating, via a set of SPARQL queries, Linked Open Data datasets e.g., DBpedia3

and Wikidata4.

Fig. 1. Our DBE_ALZ approach.

2 http://www.cyc.com/opencyc/.
3 http://dbpedia.org/.
4 https://www.wikidata.org/.

Estimating the Believability of Uncertain Data Inputs 211

http://www.cyc.com/opencyc/
http://dbpedia.org/
https://www.wikidata.org/

An assertion AK/I is defined based on one of the following two patterns:

PA1 ¼ V1ð ÞC1; OP; V2ð ÞC2;WAI

n o

PA2 ¼ V1ð ÞC1; OP; C; WAIf g

(VI)CI represents a variable already saved in the knowledge base of the patient. Its
believability degree is CI which was determined based on the proposed approach. C is
a constant value. OP is an operator such as =, 6¼, <, >, � , � and 2. WAI is the
corresponding weight of the assertion.

Taking the example of the paternity relation, mentioned in the last subsection, the
corresponding verification rule pattern is the following:

IF (“Person X father Person Y”) THEN ({Age (X) C1 > Age (Y) C2; WA1 = 1}
V

{Gender(X) C3 = “Man”; WA2 = 1}
V

{Last name(X) C4 = Last name(Y) C5;
WA3 = 0.99}

V
{Nationality(X) C6 = Nationality(Y) C7; WA4 = 0.99}

V
{First name

(X) C8 <> First name(Y) C9 WA5 = 0.99}).

Verification Rule Fulfillment. This sub-module takes as input the verification rule
pattern PRK and returns the associated data reasonableness score R.

The verification rule pattern presents two sources of uncertainty. First, each per-
sonalized assertion is uncertain. Its certainty is equal to its associated weight. Second,
each assertion refers to at least one variable VI that represents a data stored in the
knowledge base of the patient. Its certainty is equal to the believability degree CI. We
use Bayesian networks to reason about uncertain facts.

For each assertion AK/I, a Bayesian network pattern BNK/I is associated to
determinate a score representing the extent to which the assertion is fulfilled. It is
determined based on the pattern of the assertion, as shown in Table 1.

V_VI, V_WK/I and V_AK/I are probabilistic variables. They represent, respec-
tively, a data stored in the knowledge base of the patient, the assertion’s weight and the
probability of fulfilling the assertion.

For each verification rule pattern PRK, we associate a Bayesian network pattern
BNK. It is formed by the N Bayesian networks BNK/I and a probabilistic variable R.
This variable depends on the probabilistic variables V_AK/I, as shown in Fig. 2.

Finally, we instantiate the Bayesian network pattern BNK based on the input data
IK and the data saved in the knowledge base of the patient.

Taking the mentioned example of the paternity relation, the corresponding Baye-
sian Network pattern is shown in Fig. 3.

3.2 Author Reliability Estimation

This module estimates the reliability of the data’s author (Alzheimer’s disease patient
or caregiver). It generates a score F (F 2 [0, l], 0 and 1 represent, respectively,
completely unreliable and completely reliable). It is composed of two sub-modules:
“Alzheimer’s patient reliability estimation” and “caregiver reliability estimation”. The
first sub-module is activated when the data input is given by the patient. The second
one when it is given by a person from the patient’s surroundings.

212 F. Ghorbel et al.

Table 1. Bayesian network patterns associated to assertion patterns.

Assertion pattern Associated Bayesian network pattern

PA1 = {(V1)C1, OP,
(V2)C2 ; WAI}

PA2 = {(V1)C1, OP, C
; WAI}

V_V2 = true | P(V_V2) = C2

V_V1

V_V1 = true and V_V2 = true et V_WK/I = true| P(V_AK/I) = 1

V_V1 = true | P(V_V1) = C1 V WK/I = true | P(V WK/I) = WK/I

V_WK/IV_V1

1 = Vrai | P(V_V1) = C1 V_WK/I = false | P(V_WK/I) = 1 – WK/I

V_V2V_WK/I

V_AK/I

V_AK/I

V_V1 = true et V_WK/I = true | P(V_AK/I) = 1

R

BNK/1

V AK

BNK/2

V_AK

BNK/N

V AK/1

….

Fig. 2. Bayesian network pattern associated to verification rule pattern.

Age(X Age(Y

V AK/1

P = C1 P = C2

Gen-

P = C3

V AK/2

Last Last N

V AK/3

P = C4 P = C5

Nationality(X) Nationality(Y)

V AK/4

P = C6 P = C7

First N(X) First N(Y)

V AK/5

P = C6 P = C7

R

Fig. 3. An example of a Bayesian network pattern.

Estimating the Believability of Uncertain Data Inputs 213

These two sub-modules are based on the fuzzy set theory to deal with imprecision.
Precisely, we use the Mamdani fuzzy inference system. For the rest of this paper, we
use the membership functions defined in [8] and shown in Fig. 4.

Alzheimer’s Patient Reliability Estimation. To estimate qualitatively the Alzhei-
mer’s disease patient reliability score, two dimensions are proposed: “stage of Alz-
heimer” and “state of the moment”.

To determinate the stage of Alzheimer, we used the Mini Mental State Examination
(MMSE). It is a 30-point questionnaire, which includes 12 questions, that is used
extensively in clinical and research settings to measure cognitive impairment. Scores
range from 0 to 30, with higher scores indicating better performance. According to [9],
MMSE better than 20 means “mild stage”, MMSE between 10 and 19 means “mod-
erate stage”, MMSE below than 10 means “severe stage” and very low MMSE means
“terminal stage”.

The memory capability of Alzheimer’s patients depends on the actual moment.
Sometimes, patients have stunning moments of total lucidity. Their minds have seemed
to return in an amazingly complete and coherent form, even as their brains have
deteriorated further than ever. To estimate the momentary memory capability, we use
our earlier work Autobiographical Training [10]. It is a “Question and Answer” training
that uses the patient’s private life as a knowledge source input. The generated questions
are based on information that the patient introduced before. Each Alzheimer’s disease
patient has his or her own collection of questions. After each session, it calculates the
percentage of the correct answers (“Successful Score”).

To deal with the fact that “stage of Alzheimer” and “state of the moment”
dimensions are imprecise, we implement them as a Mamdani fuzzy inference system.

Fig. 4. L-Function, R-Function and Trapezoidal membership functions [8].

214 F. Ghorbel et al.

This system takes as input two fuzzy variables related to the two dimensions and
returns the patient reliability score F. The variable “Alzheimer_Stage” related to the
“stage of Alzheimer” dimension has four linguistic labels {TerminalStage, SevereS-
tage, ModerateStage and MildStage}. TerminalStage has a L-Function membership
function which has as parameters A = 2 and B = 5. SevereStage has a trapezoidal
member-ship function which has as parameters A = 2, B = 5, C = 8 and D = 12.
ModerateStage has a trapezoidal membership function which has as parameters A = 8,
B = 12, C = 18 and D = 22. MildStage has R-Function membership function which
has as parameters A = 18 and B = 22. The variable “Momentary_State_Memory”
related to the “state of the moment” dimension is based on the “Successful Score”
returned by the “Question and Answer” training. It has the linguistic labels: {Confused,
Average and Well-Remembered}. Confused has a L-Function membership which has
as parameters A = 20 and B = 40. Average has a trapezoidal function membership
which has as parameters A = 20, B = 40, C = 60 and D = 80. Well-Remembered has
an R-Function membership function which has as parameters A = 60 and B = 80. The
generated score is based on pre-established fuzzy rules base.

Caregiver Reliability Estimation. To estimate qualitatively the caregiver reliability
score, two dimensions are proposed: “knowledge field” and “age”.

The caregivers do not necessarily know all information related to the patient’s life.
For instance, a friend of the patient knows all their friends in common. However, he or
she does not necessarily know, for example, all his or her family members and his or
her colleague. To estimate the “knowledge field” dimension, we also use our earlier
work Autobiographical Training. The caregiver response to a set of questions related to
a specific field. After responding all questions, it calculates the percentage of the correct
answers (“Successful Score”). Based on this score, we estimate the extent to which the
caregiver is reliable on this specific field.

The reliability of the caregivers depends on their age. We consider that all users
under the age of six and over ninety are unreliable. Users between the ages of thirty and
sixty are very reliable. These values are validated by a neurologist doctor.

As the mentioned dimensions are imprecise, we infer the caregiver reliability score
using a Mamdani fuzzy inference system. This system takes as input two fuzzy vari-
ables related to the two dimensions and returns the author reliability score F of the
caregiver. For instance, the variable “Knowledge_Field” related to the “knowledge
field” dimension has the linguistic labels {WeakKF, GoodKF and VeryGoodKF}.
WeakKF has a L-Function membership function which has as parameters A = 20 and
B = 40. GoodKF has a trapezoidal membership function which has as parameters
A = 20, B = 40, C = 60 and D = 80. VeryGoodKF has a R-Function membership
function which has as parameters A = 80 and B = 100. A fuzzy rules base is
pre-established.

3.3 Data Believability Estimation

This module takes as input the inputs of the two other modules. It returns the
believability degree of the input data. The author reliability score F and the data
reasonableness score R are imprecise. Thus, we implement this module as a Mamdani

Estimating the Believability of Uncertain Data Inputs 215

fuzzy inference system that takes into account two fuzzy variables representing these
scores. For instance, the variable “Reasonableness_Score” related to the reasonableness
score has the linguistic labels {WeakRS, GoodRS and VeryGoodRS}. WeakRS has a
L-Function membership function which has as parameters A = 0, 2 and B = 0, 4.
GoodRS has a trapezoidal membership function which has as parameters A = 0,2,
B = 0,4, C = 0,6 and D = 0,8. VeryGoodRS has a R-Function membership function
which has as parameters A = 0,8 and B = 1. A fuzzy rules base is pre-established.

4 Experimentation

A Java-based prototype is implemented based on the DBE_ALZ approach. It uses
jFuzzyLogic [11] (for implementing industry standards related to fuzzy logic) and
JavaBayes [12] (for implementing Bayesian networks).

4.1 Application to the Captain Memo Memory Prosthesis

We integrate the DBE_ALZ prototype in Captain Memo to estimate the believability of
the data given by Alzheimer’s disease patients or their caregivers.

To facilitate the matching process between an input data and the corresponding
pattern, we provide choices to select from dropdown lists; as shown in Fig. 5.

Based on the believability degrees generated by the DBE_ALZ approach, a set of
corrective actions are proposed to guarantee the quality of the services offered by the
Captain Memo. (i) Only data having a believability degree greater than 0,8 are saved in
the knowledge base of the patient. (ii) Our approach is useful in case of contradictory
input data. We rely only on the data having the higher believability degree.

Fig. 5. Family links entry based on dropdown lists.

216 F. Ghorbel et al.

4.2 Evaluation

This evaluation is done in the context of Captain Memo. A total of 12 Alzheimer’s
disease patients P = {P1 … P12} and their associated caregivers C = {C1 … C12}
were recruited to participate in this evaluation study. All caregivers are first-degree
relatives. {P1 … P8} were early stage Alzheimer’s patients. The others were moderate
stage Alzheimer’s disease patients. They were aged between 65 years old 73 years old
(median = 68 years). Their MMSE scores ranged from 15 to 29 at the baseline. Most
Alzheimer’s patients were living in a nursing home in Sfax/Tunisia. We asked each
patient’s legal sponsor for the consent letter.

Two scenarios are proposed:

• “DBE_ALZ @ 2 weeks” scenario: We integrate the DBE_ALZ prototype in
Captain Memo. All data entered by the Alzheimer patient Pi and having a credibility
degree higher than 0,8 are saved in a KBi/s1 (knowledge base that corresponds to the
data entered by the patient Pi based on the first scenario). KBi/s1 are generated after
2 weeks of using Captain Memo. Each caregiver Ci is requested to identify only the
true facts given by the patient. The last ones formed the gold standard knowledge
base KBi/GS1.

• “DBE_ALZ @ 14 weeks” scenario: We integrate the DBE_ALZ prototype in
Captain Memo. All data entered by the Alzheimer patient Pi and having a credibility
degree higher than 0,8 are saved in a knowledge base KBi/s2. KBi/s2 are generated
after 14 weeks of using Captain Memo. Each caregiver Ci is requested to identify
only the true facts given by the patient. The last ones formed the gold standard
knowledge base KBi/GS2.

We compare the generated KBi/s1 and KBi/s2 knowledge bases against the golden
standard ones. We use the Precision evaluation metric. Pi@2 (|KBi/s1 \ KBi/GS1|/|
KBi/s1|) and Pi@14 (|KBi/s2 \ KBi/GS2|/|KBi/s2|) represent, respectively, the Precision
associated to the patient Pi according to the first and second scenarios. Table 2 shows
the results.

The overall means of the precision associated to “DBE_ALZ @ 14 weeks” scenario
is better than the overall means of the precision associated to “DBE_ALZ @ 2 weeks”
scenario. This value is ameliorated as the data reasonableness scores were improved.
Indeed, the knowledge bases of the patients store more data from one navigation
session to another. As a result, more fuzzy rules are activated to determinate these
scores.

Table 2. Evaluation’s results.

P1@2 P2@2 P3@2 P4@2 P5@2 P6@2 P7@2 P8@2 P9@2 P10@2 P11@2 P12@2 Mean

0,72 0,75 0,71 0,85 0,92 0,9 0,69 0,76 0,77 0,77 0,82 0,89 0,78
P1@14 P2@14 P3@14 P4@14 P5@14 P6@14 P7@14 P8@14 P9@14 P10@14 P11@14 P12@14 Mean
0,86 0,78 0,73 0,87 0,92 0,9 0,75 0,89 0,79 0,85 0,96 0,95 0,83

Estimating the Believability of Uncertain Data Inputs 217

5 Conclusion and Future Work

In this paper, we presented the DBE_ALZ approach that estimates quantitatively the
believability of uncertain and imprecise input data in applications for Alzheimer’s
disease patients. We used Bayesian networks and Mamdani fuzzy inference systems to
take into account, when we calculate the input believability degree, the uncertainty and
the imprecision introduced by Alzheimer’s disease patients or their caregivers.

At the beginning, we elaborated a state of the art focusing on data believability
estimation. This study showed that existing works do not consider, in the definition of
data believability dimensions and metrics, the context of use. To the best of our
knowledge, there is no approach that proposes dimensions or metrics to estimate the
believability of input data in applications for Alzheimer’s disease patients. In our
approach we proposed two dimensions to estimate the believability of such data. The
first one represents the reasonableness of the data. Compared to related work, this
dimension is measured not only based on common-sense standard, but also on a set of
personalized rules. The second dimension estimated the reliability of the Alzheimer’s
patients or their caregivers. Two metrics were used to estimate the reliability of the
patients (“stage of Alzheimer” and “state of the moment”) and two other metrics were
used to estimate the reliability of caregivers (“age” and “knowledge field”). Finally, we
proposed a prototype that implements our approach. This prototype was integrated in
Captain Memo prosthesis. The evaluation of our approach, carried out with 12 Alz-
heimer’s patients and their caregivers, showed promising results compared to the gold
standard, especially after several uses of the prosthesis.

Future work will be devoted to evaluate the efficiency of the DBE_ALZ approach
in estimating the believability of input data given by caregivers.

References

1. Métais, E., et al.: Memory prosthesis. In: Non-Pharmacological Therapies in Dementia
(2015)

2. Herradi, N., Hamdi, F., Métais, E., Ghorbel, F., Soukane, A.: PersonLink: an ontology
representing family relationships for the CAPTAIN MEMO memory prosthesis. In: Jeusfeld,
Manfred A., Karlapalem, K. (eds.) ER 2015. LNCS, vol. 9382, pp. 3–13. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25747-1_1

3. Wang, R., Strong, D.: Beyond accuracy: what data quality means to data consumers.
J. Manag. Inf. Syst. 12(4), 5–33 (1996)

4. Pipino, L., Lee, Y., Wang, R.: Data quality assessment. Commun. ACM 45, 211–218 (2002)
5. Hong, T.: Contributing factors to the use of health-related websites. J. Health Commun.

11(2), 149–165 (2006)
6. Lee, Y.W., Pipino, L.L., Fund, J.F., Wang, R.Y.: Journey to Data Quality. The MIT Press,

Cambridge (2006)
7. Prat, N., Madnick, S.: Measuring data believability: a provenance approach. In: Hawaii

International Conference on System Sciences, p. 393, Los Alamitos, CA, USA (2008)
8. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning.

Int. J. Inf. Sci. 9(1), 301–357 (1975)

218 F. Ghorbel et al.

http://dx.doi.org/10.1007/978-3-319-25747-1_1

9. Folstein, M.F., Folstein, S.E., McHugh, P.R.: Mini mental state: a practical method for
grading the cognitive state of patients for clinician. J. Psychiatry Res. 12, 189–198 (1975)

10. Ghorbel, F., Ellouze, N., Métais, E., Hamdi, F., Gargouri, F.: MEMO_Calendring: a smart
reminder for Alzheimer’s disease patients. In: International Conference on Smart, Monitored
and Controlled Cities, p. 6, Sfax, Tunisie (2017)

11. Cingolani, P., Alcala-Fdez, J.: jFuzzyLogic: a robust and flexible fuzzy-logic inference
system language implementation. In: International Conference on Fuzzy Systems, pp. 1–8
(2012)

12. Cozman, F.: The JavaBayes system. ISBA Bull. 7(4), 16–21 (2001)

Estimating the Believability of Uncertain Data Inputs 219

Deep Genetic Algorithm-Based Voice
Pathology Diagnostic System

Rania M. Ghoniem1,2(&)

1 Department of Computer, Mansoura University, Mansoura, Egypt
Prof_rania@mans.edu.eg

2 Department of Information Technology, College of Computer
and Information Sciences, Princess Nourah Bint Abdulrahman University,

Riyadh, Kingdom of Saudi Arabia
RMGhoniem@pnu.edu.sa

Abstract. Automatic voice pathology diagnosis is a widely investigated area
by the research community. Recently, in the literature, most of the proposed
solutions are based on robust feature descriptors, which are combined with
machine learning algorithms. Despite of their success, it is practically difficult to
design handcrafted features which are optimal for specific classification tasks.
Nowadays, deep learning approaches, particularly deep Convolutional Neural
Networks (CNNs), have significant breakthroughs in the recognition tasks. In
this study, the deep CNN, which was mainly explored in image recognition
purposes, is used for the purpose of speech recognition. An approach is pro-
posed for voice pathology recognition using both deep CNN and Genetic
Algorithm (GA). The CNN weights are initialized using the solutions produced
by GA, which minimizes the classification error and increases the ability to
discriminate the voice pathology. Moreover, three popular deep CNN archi-
tectures, which have been investigated in the literature for image recognition, are
adapted for voice pathology diagnosis, namely: AlexNet, VGG16, and
ResNet34. For comparison purposes, performance of the hybrid CNN-GA
algorithm is compared to the performance of the conventional CNN, and to
some other approaches based on hybridization of deep CNN and meta-heuristic
methods. Experimental results reveal that the improvement in voice pathology
classification accuracy for proposed method in comparison to the basic CNN
was 5.4% and when compared with other meta-heuristic based algorithms was
up to 4.27%. The proposed approach also outperforms the state of the art works
on the same dataset with overall accuracy of 99.37%.

Keywords: Voice pathology recognition � Deep learning �
Convolutional neural networks � Genetic algorithm � AlexNet �
VGG16 � ResNet34

1 Introduction

Due to its noninvasive nature, the automatic classification of vocal fold pathology is
being considered as an essential screening tool for supporting the clinicians. Several
contributions have been introduced to classify the voice pathology through voice

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 220–233, 2019.
https://doi.org/10.1007/978-3-030-23281-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_18

analysis [1–3]. The main objective was to develop robust feature descriptors which can
efficiently discriminate between normal and pathological voice. These features are
separated into two classes, one depends on speaker or speech recognition methods, and
the other utilizes voice quality measurements. Features of speaker or speech recogni-
tion methods involve Mel-frequency Cepstral Coefficients (MFCC), Relative Spectra
Perceptual Linear Prediction (RASTA-PLP), and Linear Prediction Cepstral Coeffi-
cients (LPCC) [4, 5]. While the features of voice quality measurements involve
Shimmer, Jitter, Harmonic-to-Noise ratio, Glottal to Noise Excitation rate, and Cepstral
Peak Prominence [6].

Furthermore, the previously published work on voice pathology diagnosis mainly
focuses on developing robust feature descriptors combined with machine learning
algorithms. However, the methods based upon feature extraction have several draw-
backs such as high-dimensionality of feature space. In order to overcome the limitations
and improve the performance of the voice pathology recognition systems, the repre-
sentation learning importance has to be emphasized instead of feature engineering.
Deep learning [7–11] is a kind of representation learning techniques which learns
hierarchical feature representation from a matrix of data. It has been proved to be
efficient in identification of patterns existing in datasets.

Among the deep learning models, CNNs are the most widely applied methods in
recognition tasks [12, 13] because of their high ability in accurately classifying pat-
terns. However, the deep learning approaches, in particular, the deep CNN has been
rarely conducted for automatic speech recognition in general [10, 14]. Moreover, too
little work has been done on using the deep learning in voice pathology recognition
[15]. In this study, the deep CNN, which has been used mainly for the image recog-
nition task, is used for speech recognition. In addition, the paper overcomes the CNN
drawbacks, such as stuck in the optima, by proposing a genetic algorithm for opti-
mization of the CNN weights.

2 Literature Review

In [16], new weighted spectrum features of speech based upon the Jacobi–Fourier
Moments were presented to recognize larynx pathologies. Disorders classification was
implemented using a multi-class Fuzzy Support Vector Machine (SVM) model, in
which the fuzzy memberships are calculated using Partition Index Maximization
algorithm, and the kernel function parameters were optimized using Particle Swarm
Optimization (PSO). In [17], the authors introduced a method for voice pathology
classification based on an Interlaced Derivative Pattern (IDP), in which the directional
information is used for detecting pathologies because of its encoding capability along
the axes of time, frequency, and time-frequency. Furthermore, the SVM was utilized as
a classification method.

The Long-Short-Term Memory was used in [18] as a classifier for voice pathology.
The parameters Shimmer, Relative Jitter, and autocorrelation was utilized as input of
the LSTM. Furthermore, a model based upon losses coupling was presented for voice
pathology detection in [19], where the regression losses of two audios are firstly
coupled by the model to learn jointly a transformation matrix of each audio. Secondly,

Deep Genetic Algorithm-Based Voice Pathology Diagnostic System 221

the model uses ε-dragging technique for relaxing the zero-one regression targets.
Thirdly, the correlation structure between classes is exploited by imposing low-rank
constraint.

From the literature, the majority of works concentrate on the handcrafted features
extracted from speech combined with the machine learning algorithms. This paper
advances the state of the art on voice pathology diagnosis by:

– Introducing an approach for voice pathology diagnosis using hybridization of deep
CNN and GA. This leads to initialization of the CNN weights using the solutions
produced by GA that minimizes the classification error and increases the ability to
discriminate the voice pathology,

– Adapting the three common deep CNN architectures, namely: AlexNet, ResNet34,
and VGG16, which have been used frequently in the literature for image recogni-
tion to serve the purpose of speech recognition, and

– Extensively evaluating, the results of the proposed CNN-GA algorithm by com-
paring it to those of the ordinary CNN, and to some other approaches based on
hybridization of deep CNN and meta-heuristic methods, i.e. the CNN-SA (CNN
with Simulated Annealing Algorithm), the CNN-PSO (CNN with Particle Swarm
Optimization), and CNN-BA approach (CNN and Bat Algorithm).

3 Proposed Methodology

The steps of the proposed voice pathology diagnostic system include: extraction of
spectrogram segments, configuration of CNN classifier, optimization of CNN using the
GA through the proposed hybrid CNN-GA.

3.1 Database

This study has been conducted using the database of Massachusetts Eye and Ear
Infirmary (MEEI) [20] that is used in literature for voice pathology diagnosis [15, 16].
It comprises continuous speech signals that having a significant duration of 12 s for
each of which. The database information is demonstrated in Table 1.

Table 1. MEEI Database information.

Classes Number of females Number of males Total

Healthy 22 14 36
Vocal fold edemas or nodules 49 10 59
Unilateral vocal fold paralysis 30 29 59

222 R. M. Ghoniem

3.2 Extraction of Spectrogram Segments

The spectrogram of speech signal is computed from the Fourier transform through
multiplication of signal sðzÞ by a sliding window wðzÞ. The sliding window location
adds a time dimension and accordingly obtaining a time-varying frequency analysis.

Sði; kÞ ¼
X

z

sðzÞwðz � iÞ e�j2pzk=Z ð1Þ

where Sðm; kÞ is the STFT of the speech signal sðzÞ, wðzÞ is a windowing of size z,
centered at time location i and Z is the discrete frequencies number. In this regard, the
speech signals are blocked into short frames of 224 samples, with a 50% predefined
overlapping value. Each speech frame of a signal s is windowed using a hamming
window. Then spectrogram matrix resulting from Eq. 1 is divided into segments of
224 � 224 samples in order to be manipulated by the CNN.

3.3 Configuration of CNN Classifier

CNN [7, 12, 13, 15] is a deep, feed-forward network that has been used efficiently in
image analysis applications. As depicted in Figs. 1, 2, and 3, CNN architecture
includes convolutional, pooling (sub-sampling), and fully connected layers. The out-
come of each convolution is a feature map that is subsequently down-sampled through
a pooling layer. Furthermore, the max-pooling is frequently used to retain the maxi-
mum neighborhood value in a feature map. This downscales the matrix of input sample
and reduces the number of weights in every layer. The final layer of a CNN is fully
connected that operates like those of a multilayer perceptrons with a preceding decision
layer to predict the class that the input matrix is belonging to. Training of CNN is
implemented using back-propagation and stochastic gradient. Typically, a desirable
CNN architecture is found by testing various common network structures. In this study,
three models of deep CNN architectures that were used in the literature for image
recognition purposes are adapted for automatic speech recognition. The models are
AlexNet, VGG16 and ResNet34 [7]. The AlexNet is an eight-layer CNN comprising
five convolutional layers as well as three fully connected layers. It can be used as a
feature extractor, through replacement of the output layer with a decision layer
appropriating the given classification problem. The ResNet34 was used to train the
CNNs by reformulation of the network layers as learning residual functions in refer-
ence to the layer input, rather than learning unreferenced functions. The VGG16
comprises 13 convolutional layers, 5 pooling layers, and three fully connected layers.

To adapt these models to current dataset, all of the fully connected layers of each
model have been replaced with a fully connected layer of 1024 neurons, and a softmax
layer, and then fine-tuned it using current pathological speech dataset. The final
decision layer of the three network architectures was altered to have three outputs, one
output for each voice pathology class. Figures 1, 2, and 3 demonstrate the adapted
AlexNet, ResNet34, and VGG16 convolutional neural network architecture for voice
pathology diagnosis, respectively.

Deep Genetic Algorithm-Based Voice Pathology Diagnostic System 223

3.4 The Proposed Hybrid CNN-GA Algorithm for Voice Pathology
Classification

Training the CNN using gradient descent algorithm may produce solutions that are
stuck in the local optima. Furthermore, the performance of any trained CNN relies on
its initial weights. Therefore, the GA is used in this work to search for the optimal
weight set in between different initial weight sets. The GAs [21] are a random search
algorithms that are inspired by natural genetic mechanism and biological natural
selection. In the proposed algorithm presented as Algorithm 1, the spectrogram

Fig. 1. Adapted AlexNet convolutional network architecture for voice pathology diagnosis

224 R. M. Ghoniem

Fig. 2. Adapted ResNet34 convolutional neural network architecture for speech recognition

Fig. 3. Adapted VGG16 convolutional neural network architecture for speech recognition

Deep Genetic Algorithm-Based Voice Pathology Diagnostic System 225

segments are firstly input to the CNN network, which go through the steps of forward-
propagation (convolution and pooling processes together with the forward-propagation
in a last fully connected layer), thereafter, the probabilities of outputs for every class are
computed. The genetic algorithm chromosomes are used to represent the weights of a
CNN classifier, in which filter weights in the deep CNN and its fully connected layer
are real coded. The GA selects only the weights that reduce the total error using Eq. 2,
by trying distinct sets of initial weights. These parameters represent the solutions for
the GA. The CNN classification error evaluates the classification quality and deter-
mines the solution fitness by the fitness function of the GA:

Fitness ¼ 1
1
S

P ½AkðtÞ � ÂKðtÞ�2
ð2Þ

where AkðtÞ is the expected output, ÂKðtÞ represents the predicted output, and S is the
population size. The fitness function determines the probability of the CNN weight
vector to be selected as a chromosome in the new population for the subsequent GA
generation as shown at Eqs. 3 and 4. Equation 3 is used to compute the probability of
selection POS for each initial weight vector w. While Eq. 4 computes an expected
count of selection, and an actual count of selection for each CNN’s chromosome.

POSðnÞ ¼ FxðwÞ
Pk

n¼ 0
FxðnÞ

ð3Þ

N ¼ FxðwÞ
Pk

n¼ 0
FxðnÞ=k

ð4Þ

Where k represents the chromosomes number within the population. A new generation
of the GA starts with reproduction. The mating pool for next generation is selected
through spinning a weighted roulette wheel, 6 times. Therefore, the best weight set
representation gets multiple copies, the average stays even while and the worst dies off
and are excluded. If the termination condition is reached (by achieving maximum
generation number or fitness value), the hybrid CNN-GA algorithm returns the optimal
CNN weights and the optimized predictive solutions for voice pathology diagnosis.
Otherwise, the CNN-GA algorithm will execute genetic search operations (selection,
crossover, and mutation).

226 R. M. Ghoniem

4 Experimental Results

4.1 Performance Measures and Cross Validation

The performance validation metrics used in this work are sensitivity, accuracy, and
specificity [22]. The sensitivity (SEN) defines number of true positives (pathological
voice samples classified correctly) divided by number of positive cases. The specificity
(SPE) defines number of true negatives (the signal carries disorder but is classified
correctly) divided by number of negative cases. The classification accuracy
(ACC) defines the proportion of correct results (true positives as well as true negatives)
in population. Where TP is true positive, FN is false negative, TN is true negative, and
FB is false positive.

SEN ¼ TP
TP þ FN

ð5Þ

SPE ¼ TN
TN þ FP

ð6Þ

ACC ¼ TP þ TN
TP þ FN þ FP þ FN

ð7Þ

The k-fold cross-validation was utilized for evaluating the classification quality of
the CNN-GA algorithm, where k is equal to 10. The database was randomly divided
into 10 sub-samples that are equal in size. Each single sub-sample is taken as a
validation data set for performance testing, while the k � 1 sub-samples are obtained
as a training data set. The k outcomes of the folds are then averaged to give a single
estimation.

Deep Genetic Algorithm-Based Voice Pathology Diagnostic System 227

228 R. M. Ghoniem

4.2 Results and Discussion

In this section, the performance of the proposed hybrid CNN-GA approach is evalu-
ated. The performance of the CNN-GA algorithm was tested using the three models of
CNN on the MEEI database. From Table 2, AlexNet and VGG16 perform similarly, in
terms of ACC, SEN, and SPE. The best CNN-GA results were obtained using the
ResNet34 architecture. This is due to the high representational ability of the residual
networks. These results were supported in [7], where the three models were used for
image recognition purposes. Furthermore, the solution results obtained from the
algorithm using ResNet34 architecture (Table 2) were also compared to those of
Table 3 obtained using the basic CNN, the CNN-SA approach (CNN with simulated
annealing algorithm [23]), the CNN-PSO (CNN with particle swarm optimization
[24]), and the CNN-BA approach (hybrid of CNN and bat algorithm [25]). The
Parameter setting of GA, SA, PSO, PA algorithms using the MEEI database is illus-
trated in Table 4.

From Tables 2 and 3, it is obvious the superiority of the proposed method in all
epochs. The ACC, SEN, and SPE results obtained from the hybrid CNN-GA algorithm
are higher in comparison to those from the basic CNN, the CNN-SA algorithm, the
CNN-PSO algorithm, and the CNN-BA algorithm, which refer that the optimal
quantitative evaluation outcomes have been obtained, through using the proposed
approach. The improvement of ACC of voice pathology classification in comparison to
the basic CNN was 5.4% and when compared with other meta-heuristic based algo-
rithms was up to 4.27%. Furthermore, it is obvious that the CNN-GA is more powerful
than the basic CNN, the CNN-SA algorithm, the CNN-PSO algorithm, and the CNN-
BA algorithm in term of classification accuracy, sensitivity, and specificity. Table 5
presents the comparison of the proposed voice pathology diagnosis approach to other

Table 2. Performance evaluation of CNN-GA using the AlexNet, ResNet34, and VGG16

Epoch AlexNet ResResNet34 VGG16
ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

1 97.52 96.44 97.77 99.74 99.14 99.75 98.21 96.64 98.35
2 97.42 96.71 97.57 99.8 99.19 99.78 98.05 96.69 98.25
3 96.43 97.66 97.22 98.72 98.34 98.76 97.55 97.58 97.77
4 97.81 96.24 97.95 99.52 98.78 99.59 97.82 97.11 97.97
5 97.05 97.24 97.35 98.65 97.91 98.73 96.83 98.06 97.62
6 97.65 96.29 97.85 99.25 98.1 99.33 97.92 96.84 98.17
7 97.15 97.18 97.37 98.78 98.4 98.83 97.55 97.48 97.83
8 96.92 97.32 97.24 99.68 99.14 99.72 97.45 97.64 97.75
9 97.23 97.01 97.48 99.82 99.01 99.88 97.32 97.72 97.64
10 97.15 97.08 97.43 99.7 99.15 99.8 97.63 97.41 97.88

Deep Genetic Algorithm-Based Voice Pathology Diagnostic System 229

previous work on voice pathology diagnosis. The database, feature extraction and
classification algorithms that are used for diagnosis, and accuracy of classification are
presented.

As seen in Table 5, the proposed deep genetic voice pathology diagnosis approach
acts better than other works on the same dataset with overall accuracy of 99.37%. This
result is due to the robustness of deep learning as a representation learning technique
that can learns hierarchical feature representation from speech data. Moreover, the GA
as a meta-heuristic method has optimized the performance of the deep CNN by
selecting the optimal weights that reduce the classification error.

Table 3. Performance evaluation using basic CNN algorithm, CNN-SA, CNN-PSO, CNN-BA

Epoch CNN CNN-SA CNN-PSO CNN-BA

ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

1 93.88 94.09 94.16 94.13 93.97 94.25 94.18 94.39 94.52 94.97 94.39 95.96
2 92.01 92.7 92.81 93.95 93.82 94.03 95.12 94.17 95.32 95.38 94.17 95.48

3 93.98 94.1 94.3 92.88 92.91 93.09 95.33 94.31 95.49 95.66 94.31 95.76
4 92.25 93.07 93.13 91.32 90.56 91.41 93.99 93.96 94.07 94.12 93.96 94.32
5 92.46 92.03 92.71 94.98 94.77 95.2 94.97 94.42 95.13 95.11 94.42 95.35

6 94.96 95.1 95.29 94.24 94.21 94.37 94.83 94.75 95.05 94.55 94.75 95.23
7 92.34 92.4 29.41 95.05 94.83 95.16 93.92 94.78 94.57 94.17 94.78 95.38

8 91.54 91.78 91.99 94.29 93.9 94.38 94.23 94.97 94.71 94.28 94.97 95.42
9 93.57 93,91 94.1 95.13 95.31 95.65 94.96 95.18 95.22 95.17 95.18 95.36
10 92.28 92.3 92.7 92.42 92.96 93.11 95.94 95.91 96.16 96.21 95.91 96.52

Table 4. Parameter setting of GA, SA, PSO, and PA algorithms using the MEEI database

GA SA PSO BA

Population size:
60

Number of
neighborhood: 10

Particles
number: 10

Number of bats: 10

Maximum
generations: 60

Number of
iterations: 10

Iterations
number: 60

Number of iterations: 10

Crossover
probability: 0.3

Acceleration
(c1): 2

Mutation rate:
0.15

Acceleration
(c2): 2

Reproduction
rate: 0.18

Maximal inertia
weight: 0.7

Constants fmin ¼ 0, fmax ¼ 2,
and a ¼ c ¼ 0:9

weighted
Roulette Wheel

Minimal inertia
weight: 0.1

230 R. M. Ghoniem

5 Conclusions

This paper proposes a classification approach for voice pathology recognition using
deep CNN and Genetic Algorithm. The proposed approach is used to determine the
optimal initial weights to train the CNN. A comparison between the hybrid CNN-GA
approach and other approaches, involving the basic CNN, the CNN-SA algorithm, as
well as the CNN-PSO algorithm, is shown in current experiments. Results were
implemented using the MEEI database so as to evaluate the performance of proposed
approach in voice pathology classification. The results taken from the proposed CNN-
GA approach reveal performance that outperforms other existing methods. The
improvement of voice pathology classification accuracy for proposed method in
comparison to the basic CNN was 5.4% and when compared with other meta-heuristic
based algorithms was up to 4.27%. Accordingly, the CNN-GA algorithm is powerful
than the basic CNN algorithm, the CNN-PSO algorithm, the CNN-SA algorithm, and
the CNN-BA algorithm in terms of average classification accuracy, sensitivity, and
specificity evaluation measures. The best CNN-GA results were obtained using the
ResNet34 architecture. The proposed approach also acts better than the state of the art
works on the same dataset with overall accuracy of 99.37%. In conclusion, the pro-
posed approach is highly efficient from the viewpoint of solution quality. It can serve as
a robust technique in voice pathology diagnosis.

Table 5. Comparison of proposed approach to previous work on voice pathology diagnosis

Reference Year Database Approach of voice pathology diagnosis Accuracy
(%)

[26] 2014 MEEI Wavelet packet transform, multi-class
linear discriminant analysis, and multi-layer
neural network

97.33%

[27] 2016 MEEI Features extracted from vocal tract area,
principal component analysis, and support
vector machine

99.22%

[16] 2017 MEEI Weighted spectrum features based upon
Jacobi–Fourier Moments, and a fuzzy
support vector machine classifier optimized
using PSO

97.6%

[28] 2017 MEEI Multi-dimensional Voice Program (MDVP)
parameters was investigated for detecting
and classifying voice pathologies

88.21%

[15] 2018 MEEI MFCC for feature extraction from 3-second
samples, Deep Neural Network, SVM, and
Gaussian Mixture Model for voice
pathology classification.

99.14%

Proposed MEEI Spectrogram segments and hybrid CNN-
GA method

99.37%

Deep Genetic Algorithm-Based Voice Pathology Diagnostic System 231

References

1. Al-Nasheri, A., Muhammad, G., Alsulaiman, M., Ali, Z.: Investigation of voice pathology
detection and classification on different frequency regions using correlation functions.
J. Voice 31, 3–15 (2017)

2. Kohler, M., Mendoza, L.A.F., Lazo, J.G., Vellasco, M., Cataldo, E.: Classification of Voice
Pathologies Using Glottal Signal Parameters. Anais do 10. Congresso Brasileiro de
Inteligência Computacional (2016)

3. Ali, Z., Elamvazuthi, I., Alsulaiman, M., Muhammad, G.: Automatic voice pathology
detection with running speech by using estimation of auditory spectrum and cepstral
coefficients based on the all-pole model. J. Voice 30, 757-e7 (2016)

4. Hossain, M.S., Muhammad, G.: Cloud-assisted speech and face recognition framework for
health monitoring. Mob. Networks Appl. 20, 391–399 (2015)

5. Cordeiro, H., Meneses, C., Fonseca, J.: Continuous speech classification systems for voice
pathologies identification. In: Camarinha-Matos, L.M., Baldissera, T.A., Di Orio, G.,
Marques, F. (eds.) DoCEIS 2015. IAICT, vol. 450, pp. 217–224. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16766-4_23

6. Kay Elemetrics, Multi-Dimensional Voice Program (MDVP) [Computer Program] (2012)
7. Fu, Y., Aldrich, C.: Flotation froth image recognition with convolutional neural networks.

Miner. Eng. 132, 183–190 (2019)
8. Traore, B.B., Kamsu-Foguem, B., Tangara, F.: Deep convolution neural network for image

recognition. Ecol. Inf. 48, 257–268 (2018)
9. Fang, L., Jin, Y., Huang, L., Guo, S., Zhao, G., Chen, X.: Iterative fusion convolutional

neural networks for classification of optical coherence tomography images. J. Vis. Commun.
Image Represent. 59, 327–333 (2019)

10. Fayek, H.M., Lech, M., Cavedon, L.: Evaluating deep learning architectures for speech
emotion recognition. Neural Networks 92, 60–68 (2017)

11. Tu, Y.-H., et al.: An iterative mask estimation approach to deep learning based multi-channel
speech recognition. Speech Commun. 106, 31–43 (2019)

12. Angrick, M., Herff, C., Johnson, G., Shih, J., Krusienski, D., Schultz, T.: Interpretation of
convolutional neural networks for speech spectrogram regression from intracranial
recordings. Neurocomputing 342, 145–151 (2019)

13. Hossain, M.S., Muhammad, G.: Emotion recognition using deep learning approach from
audio–visual emotional big data. Inf. Fusion. 49, 69–78 (2019)

14. Palaz, D., Magimai-Doss, M., Collobert, R.: End-to-end acoustic modeling using
convolutional neural networks for HMM-based automatic speech recognition. Speech
Commun. 108, 15–32 (2019)

15. Fang, S.-H., et al.: Detection of pathological voice using cepstrum vectors: a deep learning
approach. J. Voice (2018)

16. Ghoniem, R.M., Shaalan, K.: FCSR - fuzzy continuous speech recognition approach for
identifying laryngeal pathologies using new weighted spectrum features. In: Proceedings of
the International Conference on Advanced Intelligent Systems and Informatics 2017
Advances in Intelligent Systems and Computing, pp. 384–395 (2017)

17. Muhammad, G., et al.: Voice pathology detection using interlaced derivative pattern on
glottal source excitation. Biomed. Signal Process. Control 31, 156–164 (2017)

18. Guedes, V., Junior, A., Fernandes, J., Teixeira, F., Teixeira, J.P.: Long short term memory
on chronic laryngitis classification. Procedia Comput. Sci. 138, 250–257 (2018)

19. Wu, K., Zhang, D., Lu, G., Guo, Z.: Joint learning for voice based disease detection. Pattern
Recogn. 87, 130–139 (2019)

232 R. M. Ghoniem

http://dx.doi.org/10.1007/978-3-319-16766-4_23

20. Eye, M., Infirmary, E.: Voice Disorders Database, (Version 1.03 Cd-Rom). Vol (Kay
Elemetrics Corp., Lincoln Park N, ed.). Kay Elemetrics Corp., Lincoln Park (1994)

21. Song, R., Zhang, X., Zhou, C., Liu, J., He, J.: Predicting TEC in China based on the neural
networks optimized by genetic algorithm. Adv. Space Res. 62, 745–759 (2018)

22. Ghoniem, R., Refky, B., Soliman, A., Tawfik, A.: IPES: an image processing-enabled expert
system for the detection of breast malignant tumors. J. Biomed. Eng. Med. Imaging 3, 13–32
(2016)

23. Rere, L.R., Fanany, M.I., Arymurthy, A.M.: Simulated annealing algorithm for deep
learning. Procedia Comput. Sci. 72, 137–144 (2015)

24. Silva, G.L.F.D., Valente, T.L.A., Silva, A.C., Paiva, A.C.D., Gattass, M.: Convolutional
neural network-based PSO for lung nodule false positive reduction on CT images. Comput.
Meth. Programs Biomed. 162, 109–118 (2018)

25. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010) Studies in Computational Intelligence, pp. 65–74
(2010)

26. Akbari, A., Arjmandi, M.K.: An efficient voice pathology classification scheme based on
applying multi-layer linear discriminant analysis to wavelet packet-based features. Biomed.
Signal Process. Control 10, 209–223 (2014)

27. Muhammad, G., et al.: Automatic voice pathology detection and classification using vocal
tract area irregularity. Biocybernetics Biomed. Eng. 36, 309–317 (2016)

28. Al-Nasheri, A., et al.: An investigation of multidimensional voice program parameters in
three different databases for voice pathology detection and classification. J. Voice 31, 113-e9
(2017)

Deep Genetic Algorithm-Based Voice Pathology Diagnostic System 233

An Arabic-Multilingual Database
with a Lexicographic Search Engine

Mustafa Jarrar(&) and Hamzeh Amayreh

Birzeit University, Birzeit, Palestine
mjarrar@birzeit.edu, hamayreh@staff.birzeit.edu

Abstract. We present a lexicographic search engine built on top of the largest
Arabic multilingual database, allowing people to search and retrieve transla-
tions, synonyms, definitions, and more. The database currently contains about
150 Arabic multilingual lexicons that we have been digitizing, restructuring, and
normalizing over 9 years. It comprises most types of lexical resources, such as
modern and classical lexicons, thesauri, glossaries, lexicographic datasets, and
(bi/)tri-lingual dictionaries. This is in addition to the Arabic Ontology – an
Arabic WordNet with ontologically cleaned content, which is being used to
reference and interlink lexical concepts. The search engine was developed with
the state-of-the-art design features and according to the W3C’s recommendation
and best practices for publishing data on the web, as well as the W3C’s
Lemon RDF model. The search engine is publicly available at (https://ontology.
birzeit.edu).

Keywords: Arabic � Multilingual lexicons � Online dictionary �
Language resources � Lexical semantics � Lexicographic search �
W3C lemon � RDF � NLP

1 Introduction and Motivation

The increasing demands to use and reuse dictionaries (of all types) in modern appli-
cations have shifted the field of lexicography to be a multidisciplinary domain,
engaging ontology engineering [18, 19, 22], computational linguistics [1, 17, 25], and
knowledge management [12, 16, 23, 24]. Dictionaries are no more limited to hard
copies and are not only used by humans; they are becoming important for IT appli-
cations that require natural language processing [6–8, 20], in addition to the need to
access them electronically. In response to these demands, there have been several
efforts to digitize, represent, and publish them online. As will be discussed later, the
ISO37 has released more than 50 standards in the past 15 years related to terminology
and lexical resources, in addition to several W3C recommendations e.g., SKOS, Lemon
[22], and the Linguistic Linked Open Data Cloud [7].

Although there are many lexicons available on the internet for most languages,
especially English, few Arabic lexicons are available in digital forms [1, 5, 25]. This
lack of such digital resources has limited the progress in Arabic NLP research [21], and
has also led many people to use statistical machine translation tools (e.g., Google
Translate) in place of dictionaries [4].

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 234–246, 2019.
https://doi.org/10.1007/978-3-030-23281-8_19

http://orcid.org/0000-0003-4351-4207
http://orcid.org/0000-0001-8408-7972
https://ontology.birzeit.edu
https://ontology.birzeit.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_19

In this paper, we present the digitization of 150 Arabic multilingual lexicons and a
lexicographic search engine built on top of them, covering many domains such as,
natural sciences, technology, engineering, health, economy, art, humanities, philoso-
phy, and more. The digitization process was carried out over 9 years, as most lexicons
had to be manually typed, then restructured and normalized. The copyright owners of
all lexicons were contacted individually for a permission to digitize and use their
lexicons. To the best of our knowledge, our database is currently the largest Arabic
lexicographic database, compromising about 2.4 million multilingual lexical entries
and about 1.1 million lexical concepts. The search engine was designed according to
W3C’s recommendations, especially the Lemon model which is important for refer-
encing and linguistic data linking purposes. The ranking strategy used in the search
engine is a combination metric of lexicon-renown and concept-citation.

The rest of this paper proceeds as follows: In Sect. 2, we overview related work.
We elaborate on the construction of the lexicographic database in Sect. 3. Section 4
presents the search engine, its architecture, URLs design, ranking strategies, and
usability. Finally, we conclude and discuss future work in Sect. 5.

2 Related Work

We first present recent standards for representing and publishing linguistic data, then
we overview related digital lexicographic resources and repositories.

In response to the increasing demands to use and reuse linguistic resources in
modern applications, there have been many efforts to standardize the way linguistic
resources are structured, represented, and published on the web. The ISO37 produced
over 50 standards in the recent years in this direction. For example, the ISO24613 is a
lexical markup framework (LMF) to represent lexicons in a machine-readable format;
the ISO860 is concerned with the harmonization of concepts, concept systems, defi-
nitions and terms; the ISO16642 supports the development, use, and exchange of
terminological data between different IT applications. W3C has also developed several
recommendations related to linguistic data sources. For example, SKOS provides a way
to represent thesauri, classification schemes, subject headings, and taxonomies within
the framework of the Semantic Web. The W3C’s Lemon RDF model [22] aims at
enabling lexicons to be used by ontologies and NLP applications. It can be used to
describe the properties of lexical entries and their syntactic behavior, encouraging reuse
of existing linguistic data. The importance of Lemon is that, it was developed based on
the W3C recommendations for Open Linked Data [2]. The Linguistic Linked Open
Data Cloud (LLOD) [7] was initiated as a collaborative effort to interlink the lexical
entries of different linguistic resources using Lemon.

A new ambitious project, called PanLex, aims at building the world’s largest lexical
database [3], with 2500 dictionaries for 5700 languages. Its objective is to be a
bilingual translation-oriented database, offering about 1.3 billion translation pairs.
Compared with our work, PanLex offers only bilingual translations, rather than a
lexicographic database with definitions, synonyms, and other lexicographic features,
and it does not support a large number of Arabic lexicons.

An Arabic-Multilingual Database with a Lexicographic Search Engine 235

There have also been other related initiatives aiming to integrate wordnets with
other resources. BabelNet [24] is a multilingual encyclopedic dictionary covering 284
languages, as an integration of many wordnets, Wiktionary, Wikipedia, GeoNames,
and more. BabelNet is a semantic network connecting concepts and named entities.
Similarly, ConceptNet 5.5 [23] is an open multilingual knowledge graph connecting
words and phrases with labeled edges. It links the Open Mind Common Sense with
Multi Wordnet, Wiktionary, Wikipedia, and OpenCyc. Compared with our work, both,
BabelNet and ConceptNet, aim at building encyclopedic knowledge graphs, and their
linguistic information is limited to wordnets rather than targeting a large number of
dictionaries as we try to do. Additionally, their support of Arabic is limited to Arabic
Wikipedia and Arabic WordNet that is quite small (only 11 k synsets).

The number of available structured Arabic lexicons in digital format is indeed
limited [1, 21, 25]. Earlier attempts to represent Arabic morphological lexicons in
ISO LMF standard can be found in [25], and in [6] to represent Dutch bilingual
lexicons, including Arabic. A lexicon called Al-Madar [1] was developed and repre-
sented using the ISO LMF standard. Similarly, Al-Qamus Almuhit was digitized and
represented in the ISO LMF and later in the Lemon model [20]. A preliminary progress
in digitizing several Hadith lexicons is reported in [21]. Nevertheless, none of the
lexicons above is accessible online.

There are several online portals offering lexicographic search (e.g., almaany.com,
lisaan.net, almougem.com, albaheth.info, ejtaal.net, alburaq.net), each comprises only a
small number of lexicons. More importantly, most of the content in these portals is
partially structured (i.e. available in flat text), as they allow people to search for a word,
and the paragraphs that include this word as a headword will be retrieved.

It is worth noting that, modern Arabic lexicons are mostly the production of two
authoritative institutions, the ALECSO that produced about 50 lexicons, and the Arabic
Academy in Cairo that produced about 20 lexicons. The majority of these lexicons
were digitized and included in our database. Additionally, SAMA1 and Sarf2 are two
Arabic morphological databases that were designed for morphological analysis only.
Both are being used to map between, and enrich, the lexical entries in our database.

3 Constructing the Lexicographic Database

This section presents our database, which contains about 150 lexicons that we have
been digitizing from scratch. Although we were able to obtain some lexicons in digital
flat text format, we had to type most lexicons manually. First, we tried to use OCR
tools, but we failed due to their low quality. We also failed in crowdsourcing the
digitization process among 300 students as most of them were uncareful. Afterwards,
we contracted some careful students to type lexicons in MS Word format, and then
gave the output to two experts to manually compare with original copies. The output
was then converted into a preliminary ad hoc DB table. A lexicon that uses explicit and

1 Developed by LDC, accessible at: https://catalog.ldc.upenn.edu/LDC2010L01.
2 An open source project, accessible at: https://sourceforge.net/projects/sarf/.

236 M. Jarrar and H. Amayreh

https://catalog.ldc.upenn.edu/LDC2010L01
https://sourceforge.net/projects/sarf/

steady markers (e.g. tab, comma, semicolon) to separate between different features was
parsed and converted automatically; otherwise, such markers were manually added
before parsing.

Lexicon Restructuring: the content of each lexicon was restructured separately,
which was a semi-automated task (fully presented in [5]). Before overviewing this task,
we first present a classification of our lexicons, and describe their internal structure and
type of content:

• Glossary: a domain-specific lexicon, where each lexical entry is defined in a few
lines. Advanced glossaries provide also synonyms, multilingual translation(s), and
sometimes references to related lexical entries, e.g. similar, equivalent, or related.

• Thesaurus: sets of synonymous lexical entries. Each set might be lexicalized in one
or more languages. A set might be also labeled with a part-of-speech tag.

• Dictionary: a list of lexical entries, each with some bi/trilingual translations.
• Linguistic Lexicon: a set of lexical entries, each with its linguistic features and

sense(s). A lexical entry may have several meanings, which some lexicons desig-
nate into separate senses, while others combine them in one description. Lexicons
may also provide linguistic features for each entry, e.g. root, POS, and inflections.

• Semantic-variations lexicon: a set of pairs of semantically close lexical entries and
the differences between their meanings, (e.g. like * love, pain * ache).

To structure the content of such types of lexicons, we developed two general
templates (see Fig. 1), where each lexicon was parsed and mapped to them, as the
following:

1. Each lexical entry in every language, whether provided as a headword, a synonym,
or a translation, was extracted and given a unique ID. The features of the lexical
entry, (e.g. POS, lexical forms, inflections), were all extracted and stored in the
Lexical Entry template, in an RDF-like format. Deciding whether two Arabic
lexical entries of the same letters are the same is challenging, as they might be
partially or non-diacritized [11].

2. Each meaning of every headword in every lexicon is considered a lexical concept,
and is given an ID. This is straightforward in case of glossaries as each headword
typically has only one meaning. Each set of synonymous entries in a thesaurus, and
similarly each group of translations in a dictionary, is mapped into a lexical concept
and is given an ID. However, in case of linguistic lexicons, the different senses of a
lexical entry were each extracted, and mapped into a separate lexical concept. In
case of references to other lexical concepts, (e.g. indicating semantic relations like
related and similar), these relations were also extracted and stored in the Lexical
Concept template. In this way, the Lexical Concept template was filled in, providing
the concept ID, and if available its set of synonyms, definitions, examples, and
relations.

Cleaning and Normalization: The content of these general templates was then
cleaned and normalized before storing them in a relational database. As lexicons are
typically designed to be printed and used as hard copies, new challenges are faced

An Arabic-Multilingual Database with a Lexicographic Search Engine 237

when converting them into a machine processable format. In what follows, we sum-
marize some of these challenges – see [5] for more issues and details.

• Challenges induced by ordering: to maintain a proper alphabetical ordering in hard
copies, many lexicons tend to re-arrange words in the lexical entry, such as: “ac-
celerator (linear…)”, “affinity (chemical)”, “drawing (final)”, “earth (the)”, and
“crush (to)”. Detecting such cases and deciding whether to move the text between
parentheses to the beginning or to keep the order intact is difficult. This is because
parenthesis might be also used for other purposes, as in (e.g. “tube (pipe)”,
“academy (of art)”), which indicate synonymy and context, respectively. There are
no markers that would help detecting and normalizing such lexical entries.

• Subterm synonymy: most lexicons use commas or other symbols to separate
between synonyms (e.g. “benzene, benzol”, “tie, bind”). Though it is easy to split
them, we found many cases where the comma is used differently, e.g. to indicate a
more specific meaning, as in “calomel electrode, calomel”, “kelvin’s scale, kelvin’s
absolute scale”, and “liquid drier, drier”. That is, if a term is synonymous with
another term, and one is part of the other, it is likely to be a mistake or to indicate
another more specific meaning. Such cases need to be manually reviewed and
decided upon.

• Long multiword lexical entries: there are cases where a lexical entry is composed of
many words, such as “buildings or other structures recurrent taxes on land”. Such
cases of long and “poor” lexical entries need to be manually reviewed. i.e. by
considering it a definition, or excluding it.

• Special characters: The use of special characters in a lexical entry (e.g. quotations,
punctuation marks, and brackets) is allowed if they were used intentionally as part
of the lexical entry. Nevertheless, they are often introduced in lexicons as anno-
tations. Therefore, they have to be filtered out and individually reviewed.

• Character set: Same characters and symbols have different encodings across dif-
ferent languages (e.g., the dash, quotations, punctuations, and whitespaces), which
is not a problem in case of printed lexicons, but they are obstacles when digitizing
lexicons. This issue is trickier in Arabic as there are also different versions of
character sets and there are characters in Arabic which have the same orthography
but with different encodings that need to be changed to use the same encoding
version.

Fig. 1. Lexical concept and lexical entry templates.

238 M. Jarrar and H. Amayreh

Addressing such challenges in a fully automatic manner is difficult. Therefore, we
have developed a parsing framework, presented in [5], that first detect and filter out
each individual issue (e.g., whether a lexical entry includes parenthesis, commas,
subterm synonymy, long multiword entries, character set issue, etc.). The parsers then
assign a category to each of these issues to indicate its nature. The output of the parsers
includes also a suggested treatment, depending on the nature of the issue. Each cate-
gory was then given to a linguist to review and confirm the suggested treatments. After
normalizing lexical entries and features, the data was stored in a MySQL database and
indexed for searching purposes. Table 1 illustrates some statistics about our database.

Copyrights: We contacted all lexicons’ owners individually to get an official per-
mission to digitize and include their lexicons in the search engine, a process that took
several years, and although some refused, most of them accepted. Their main moti-
vation was that the search engine displays the copyright symbol and the lexicon’s name
below each retrieved result, keeping their rights reserved. Additionally, when the
lexicon’s name is clicked (see Fig. 3), it shows the author(s), publisher, and links to
their websites and to bookstores to purchase their lexicon.

Referencing lexical concepts in the Arabic Ontology
The Arabic Ontology is part of the database and is accessible in the search engine3. It
can be seen and used as a formal Arabic wordnet built on the basis of a carefully
designed ontology [9, 15]. It consists currently of about 1.3 K concepts that are also
mapped to WordNet, BFO, and DOLCE, in addition to 11 K concepts that are being
validated and mapped. The Arabic ontology is currently being used to reference lexical
concepts in all lexicons; such that, each lexical concept is mapped (e.g., equal, or
subtype) to a concept in the ontology. In this way, lexical concepts across all lexicons
would be semantically linked; and since the ontology is mapped with other resources, it
implies that lexical concepts would also be mapped to these resources. Presenting these
mappings is beyond the scope of this article.

Table 1. Statistics of the Lexicographic Database – being extended.

Category Lexical
Concepts

Lexical entries Synsets Translations
pairs

Glosses Semantic
relations

Total
(Milions)

1.1 M 2.4 M 1.8 M 1.5 M 0.7 M 0.5 M

Sub
Counts

1,100 K Arabic
1,100 K English
200 K French
3 K Others
1,300 K
Single-word
1,000 K
Multi-word

800 K Arabic
800 K English
200 K French
50 K Others

1,000 K English-
Arabic
300 K English-
French
200 K French-
Arabic

400 K Arabic
300 K English
1 K Others

170 K
Sub-super
links
29 K
Part-of links
260 K Has-
Domain links
30 K Other
links

3 http://ontology.birzeit.edu/concept/293198.

An Arabic-Multilingual Database with a Lexicographic Search Engine 239

http://ontology.birzeit.edu/concept/293198

Data Indexing: To prepare our database for efficient search, we built two indexes,
depicted in Fig. 2. The Lexical Concept Index aggregates relevant information for each
concept in one record. It includes the concept ID, Arabic and English synsets, gloss
(i.e. definition), semantic relations, and other features that need to be retrieved by the
search engine. The computed rank for each lexical concept (as we will discuss later) is
also pre-calculated and stored in this Index. The Term-Concepts Inverted Index is an
inverted index that links between lexical entries and their lexical concepts. This
inverted index was built by first collecting all lexical entries from all synsets, which can
be single or multiple words (we call it Term). Second, by linking each of these terms
with its posts (i.e. lexical concepts). This index was implemented using MySQL’s full-
text index, especially that it supports the generation of concordances. For search
effectiveness, each of the terms in the inverted index was normalized and stemmed.
Currently, Lexical Concept contains about 2.2 million records, whereas the inverted
index contains about 1.1 million records, each having 25 postings on average.

4 Building a Lexicographic Search Engine

Figure 3 illustrates a screenshot of the search engine. It allows people to search for
translations, synonyms and definitions from the 150 lexicons and the Arabic Ontology,
and filter the results. The engine is designed based on a set of RESTful web services
(Fig. 4), which query the database and return the results in JSON format that is then
rendered at our front-end, and can be also used by third-party applications.

4.1 URLs Design

The URLs in the search engine are designed according to the W3C’s Best Practices for
Publishing Linked Data [2], including the Cool URIs, simplicity, stability, and linking
best practices, as described in the following URL schemes. This allows one to also
explore the whole database like exploring a graph:

• Term: Each term (i.e., affix, word, or multiword expression) is given a URL:
http://{domain}/term/{term}, which retrieves the set of all lexical
concepts, in all lexicons, that are lexicalized using this term, i.e. that have this term as

Fig. 2. Main Indexes.

240 M. Jarrar and H. Amayreh

a separate lexical entry or among a synset. In order to keep the URLs Cool, simple
and stable, URL parameters (e.g., filters and page number) are passed internally
without treating them as part of the URL, e.g. http://ontology.birzeit.edu/term/virus

• Lexical Concept: Each lexical concept in all lexicons is given a URL based on
its unique LexicalConceptID: http://{domain}/lexicalconcept/
{lexicalConceptID}

Fig. 3. Screenshot of the search engine’s frontend.

Fig. 4. Search Engine Architecture.

An Arabic-Multilingual Database with a Lexicographic Search Engine 241

http://ontology.birzeit.edu/term/virus

• Ontology Concept: Each concept in the Arabic Ontology has a ConceptID and can
be accessed using: http://{domain}/concept/{ConceptID | Term}.
In case of a term, the set of concepts that this term lexicalizes are all retrieved. In
case of a ConceptID, the concept and its direct subtypes are retrieved, e.g. http://
ontology.birzeit.edu/concept/293198

• Semantic relations: Relationships between concepts can be accessed using these
schemes: (i) the URL: http://{domain}/concept/{RelationName}/
{ConceptID} allows retrieval of relationships among ontology concepts. (ii) the
URL: http://{domain}/lexicalconcept/{RelationName}/{lex-
icalConceptID} allows retrieval of relations between lexical concepts. For
example, http://ontology.birzeit.edu/concept/instances/293121 retrieves the instan-
ces of the concept 293121. The relations that are currently used in our database are:
{subtypes, type, instances, parts, related, similar,
equivalent}.

• Lemon Representation: The W3C Lemon representation of each lexical concept in
the database is given a URL: http://{domain}/lemon/lexical
concept/{lexicalConceptID}, e.g. http://ontology.birzeit.edu/lemon/
lexicalconcept/1520098340. That is, the RDF representation of any lexical con-
cept can be accessed directly (i.e., not necessarily through the search interface) by
adding /lemon after the domain in the concept’s URL. Additionally, and as
illustrated in Fig. 5, an RDF symbol is shown besides each retrieved lexical con-
cept, which links to the Lemon representation of the concept. This is important for
referencing and linked data purposes. Nevertheless, this support of Lemon is ten-
tative [10], because of the complexity of treating Arabic lemmas, as noted below.
After resolving this, we plan to also provide a Lemon representation of lemmas as
well as a SPARQL endpoint for querying data directly.

Remark on Lemma URLs: Each lemma is given a unique LemmaID and a URL:
http://{domain}/lemma/{LemmaID}, which retrieves the lemma, its mor-
phological features, inflections, and derivations. However, this is partially implemented
at this stage (see [10]), as lexical entries in Arabic lexicons are less often lemmas –

unlike the case in most English lexicons where a lexical entry is often a lemma (i.e.,
canonical form). Therefore, each Arabic lexical entry, within the same or across lex-
icons, needs to be carefully lemmatized first, which is a challenging ongoing task. At
this stage, we tentatively consider a lexical entry as a canonical form.

4.2 Presentation of Results

The search engine supports the retrieval of three types of results, each presented in a
separate tab, namely Ontology, Dictionaries, and Morphology:

• Ontology tab: results in this tab are ontology concepts retrieved only from the
Arabic ontology. The tab also allows expanding and exploring the ontology tree.

• Dictionaries tab: results in this tab are lexical concepts retrieved from the lexicons.
As discussed earlier, a lexical concept can be, for example, a row in a thesaurus (set
of synonymous terms), a term(s) and its definition as found in glossaries, or a set of
multilingual translations as found in bi/trilingual dictionaries. Figure 5 illustrates a

242 M. Jarrar and H. Amayreh

http://ontology.birzeit.edu/concept/293198
http://ontology.birzeit.edu/concept/293198
http://ontology.birzeit.edu/concept/instances/293121
http://ontology.birzeit.edu/lemon/lexicalconcept/1520098340
http://ontology.birzeit.edu/lemon/lexicalconcept/1520098340

lexical concept retrieved from the Hydrology Lexicon. The first line represents the
set of synonymous terms in Arabic and English, separated by the symbol “|”. The
gloss is presented in the second line. The RDF symbol in the third line refers to the
Lemon RDF representation of this concept.

• Morphology tab: results in this tab are linguistic features, lemma(s), inflections,
and derivations of the searched term. This tab is not fully functional yet because our
linguistic data is not fully integrated since most dictionaries are not lemmatized.

Additionally, we plan to introduce a forth Dialect tab to allow users to also view the
dialectal features [13, 14]. In this way, the four tabs would, to more or less, reflect the
different language levels (ontology, meaning, syntax, and dialect).

4.3 Ranking of Search Results

Ranking lexical concepts based on their relevancy was a challenging task. People use
lexicographic search for different purposes [4], e.g. searching for translations, defini-
tions, synonyms and/or others. In what follows, we present three ranking strategies:
citation, lexicon’s renown, and a hybrid approach which we have adopted.

The citation strategy (Rcit) ranks each lexical concept based on the frequency of its
terms –by counting how many times each of its terms appears as a lexical entry in all
lexicons, i.e. the concept’s rank is the summation of its terms’ frequencies.

R ¼
XAj j

n¼1

Xk

m¼1

Fanm

Rcit ¼ R� Rmin

Rmax � Rmin

Where, A: is the set of synonyms of a lexical concept, in all languages. k: is the
number of lexicons. Fanm : is the number of times an appears as a lexical entry in lexicon
m where an 2 A. Rcit: is the citation rank of the concept normalized to be between [0-1].

Our assumption is that the more the concept’s terms appear in lexicons, the more
this concept is likely to be important. However, its disadvantage is that it decreases the

Fig. 5. Example of a lexical concept and its Lemon representation.

An Arabic-Multilingual Database with a Lexicographic Search Engine 243

rank of uncommon concepts that are likely to be searched for. Additionally, it scatters
the results of the same lexicon across pages, which might confuse users.

The lexicon renown ranking strategy (Rren) does not assign a specific rank for
each lexical concept. Rather, it assigns each lexicon a rank based on its renown,
whether it is general or domain-specific and of high or low quality. Since these criteria
are subjective, each lexicon was manually ranked, with respect to other lexicons, by a
group of experts. The rank of a lexical concept, then, is given the rank of its lexicon.
This allows the renowned results to appear first, but the disadvantage is that linguistic-
oriented lexicons are always promoted first, while e.g. the user might be looking for
specialized translations. To overcome this, we implemented three types of filters that
can be used to show only translations, synonyms, and/or definitions.

The hybrid ranking strategy (Rhyb) is a combination metric of both strategies
above. It ranks the results based on the lexicon renown, and then uses the citation
strategy to rank each lexicon’s results, which can be obtained by the summation of both
ranks:

Rhyb ¼ Rren þRcit

4.4 Usability and Performance Evaluation

We summarize two experiments to evaluate the usability of the search engine, the full
details can be found in [4]. First: a subjective user satisfiability survey of 12 questions
was distributed and answered by 620 users. The answers to these 12 questions are
categorized as: efficient (75%), effective (80%), learnable (83%), and good design
(73%); and 90% responded that they will use the search engine again. Second: a more
objective controlled usability experiment was also conducted in a lab, involving 12
users that we arranged into four groups. Each group was given eight tasks to answer.
The tasks required users to find synonyms, translations, definitions, and semantic
variations between terms. Two groups were asked to use Google Translate, and the
other two to use ours. The accuracy of the groups’ answers was evaluated by an expert,
which was 73% using ours compared to 38% using Google Translate.

Performance: The search engine is currently deployed on a Linux virtual server with
average resources (8-core CPU and 16 GB RAM). To estimate its response time (i.e.
both backend and frontend processing and retrieval), an experiment was conducted on
three user machines. Each was installed in a different location and connected to a
different internet service provider. They were programmed to simultaneously send 1
million requests at the rate of 1000 requests/minute, and record the frontend-to-
frontend response time for each request. Although the response time is impacted by the
network traffic, the experiment showed that it ranged between (0.001 s) and (0.200 s)
for all requests.

244 M. Jarrar and H. Amayreh

5 Conclusion and Future Work

We presented a large Arabic multilingual linguistic database, which contains about 150
lexicons of different types, and discussed the different phases carried out to structure,
normalize and index this database. We introduced a lexicographic search engine with
state-of-the-art design, respecting the W3C’s recommendations and best practices.

We plan to continue digitizing more lexicons and adding more functionalities to the
search engine, specially the support for French and other languages. Our priority is to
lemmatize all lexical entries and then link them across all lexicons. This will enable the
interlinking of our lexicographic database with the Linguistic Data Cloud.

Acknowledgments. The authors are thankful to Mohannad Saidi, Mohammad Dwaikat, and
other students and former employees who helped us in the technical development and digitization
phases. We would like to also thank John P. McCrae for helping us in representing our lexical
data in the W3C lemon model. We are also thankful to all lexicon owners, especially the
ALECSO team who provided us with many lexicons and supported us in the digitization process.

References

1. Khemakhem, A., Gargouri, B., Hamadou, A.B., Francopoulo, G.: ISO standard modeling of
a large Arabic dictionary. Nat. Lang. Eng. 22(6), 849–879 (2016)

2. Hyland, B., Atemezing, G., Villazón-Terrazas, B.: Best practices for publishing linked data.
World Wide Web Consortium (2014)

3. Kamholz, D., Pool, J., Colowick, S.M.: PanLex: building a resource for panlingual lexical
translation. In: LREC 2014 (2014)

4. Al-Hafi, D., Amayreh, H., Jarrar, M.: Usability Evaluating of a Lexicographic Search
Engine. Technical Report. Birzeit University (2019)

5. Amayreh, H., Dwaikat, M., Jarrar, M.: Lexicons Digitization. Technical Report. Birzeit
University (2019)

6. Maks, I., Tiberius, C., Veenendaal, R.V.: Standardising bilingual lexical resources according
to the lexicon markup framework. In: LREC 2018 Proceedings (2008)

7. McCrae, J.P., Chiarcos, C., Bond, F., Cimiano, P., et al.: The Open Linguistics Working
Group: Developing the Linguistic Linked Open Data Cloud. LREC (2016)

8. Helou, M.A., Palmonari, M., Jarrar, M.: Effectiveness of automatic translations for cross-
lingual ontology mapping. J. Artif. Intell. Res. 55(1), 165–208 (2016). AI Access
Foundation

9. Jarrar, M.: The arabic ontology - an arabic wordnet with ontologically clean content. Appl.
Ontol. J. (2019, Forthcoming). IOS Press

10. Jarrar, M., Amayreh, H., McCrae, J.: Progress on representing Arabic Lexicons in Lemon.
In: The 2nd Conference on Language, Data and Knowledge (LDK 2019). Leipzig, Germany
(2019)

11. Jarrar, M., Zaraket, F., Asia, R., Amayreh, H.: Diacritic-based matching of Arabic Words.
ACM Trans. Asian Low-Resource Langu. Inf. Process. 18(2), 10 (2018)

12. Jarrar, M., Ceusters, W.: Classifying processes and basic formal ontology. In: The 8th
International Conference on Biomedical Ontology (ICBO), Newcastle, UK (2017)

13. Jarrar, M., Habash, N., Alrimawi, F., Akra, D., Zalmout, N.: Curras: an annotated corpus for
the Palestinian Arabic Dialect. J. Lang. Resources Eval. 51(3), 745–775 (2017)

An Arabic-Multilingual Database with a Lexicographic Search Engine 245

14. Jarrar, M., Habash, N., Akra, D., Zalmout, N.: Building a corpus for Palestinian Arabic:
a preliminary study. In: Workshop on Arabic Natural Language Processing (EMNLP 2014).
Association for Computational Linguistics (ACL), Qatar, pp. 18–27 (2014)

15. Jarrar, M.: Building a formal Arabic ontology (Invited Paper). In: Proceedings of the Experts
Meeting on Arabic Ontologies and Semantic Networks at ALECSO, Tunis (2011)

16. Jarrar, M., Meersman, R.: Ontology engineering – the DOGMA approach. In: Dillon, T.S.,
Chang, E., Meersman, R., Sycara, K. (eds.) Advances in Web Semantics I. LNCS, vol. 4891,
pp. 7–34. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89784-2_2

17. Jarrar, M., Keet, M., Dongilli, P.: Multilingual verbalization of ORM conceptual models and
axiomatized ontologies. Technical report. Vrije Universiteit Brussel (2006)

18. Jarrar, M.: Position paper: towards the notion of gloss, and the adoption of linguistic
resources in formal ontology engineering. In: The Web Conference (WWW 2006). ACM
(2006)

19. Jarrar, M.: Towards methodological principles for ontology engineering. Ph.D. Thesis. Vrije
Universiteit Brussel (2005)

20. Khalfi, M., Nahli, O., Zarghili, A.: Classical dictionary Al-Qamus in lemon. In: 4th IEEE
International Colloquium on Information Science and Technology. IEEE (2016)

21. Soudani, N., Bounhas, I., Elayeb, B., Slimani, Y.: An LMF-based normalization approach of
Arabic Islamic dictionaries for Arabic word sense disambiguation: application on hadith.
J. Islamic Appl. Comput. Sci. 3(2), 10–18 (2015)

22. Cimiano, P., McCrae, J.P., Buitelaar, P.: Lexicon Model for Ontologies. Final Community
Group Report. World Wide Web Consortium (2016)

23. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general
knowledge. In: The 31st AAAI Conference on Artificial Intelligence (2016)

24. Navigli, R., Ponzetto, S.P.: BabelNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. AI 193 (2012)

25. Salmon-Alt, S., Akrout, A., Romary, L.: Proposals for a normalized representation of
Standard Arabic full form lexica. In: The International Conference on Machine Intelligence
(2005)

246 M. Jarrar and H. Amayreh

http://dx.doi.org/10.1007/978-3-540-89784-2_2

Bug Severity Prediction Using
a Hierarchical One-vs.-Remainder

Approach

Nonso Nnamoko , Luis Adrián Cabrera-Diego , Daniel Campbell ,
and Yannis Korkontzelos(B)

Department of Computer Science, Edge Hill University, Ormskirk, UK
{nnamokon,diegol,campbeld,Yannis.Korkontzelos}@edgehill.ac.uk

Abstract. Assigning severity level to reported bugs is a critical part of
software maintenance to ensure an efficient resolution process. In many
bug trackers, e.g. Bugzilla, this is a time consuming process, because
bug reporters must manually assign one of seven severity levels to each
bug. In addition, some bug types may be reported more often than oth-
ers, leading to a disproportionate distribution of severity labels. Machine
learning techniques can be used to predict the label of a newly reported
bug automatically. However, learning from imbalanced data in a multi-
class task remains one of the major difficulties for machine learning clas-
sifiers. In this paper, we propose a hierarchical classification approach
that exploits class imbalance in the training data, to reduce classifica-
tion bias. Specifically, we designed a classification tree that consists of
multiple binary classifiers organised hierarchically, such that instances
from the most dominant class are trained against the remaining classes
but are not used for training the next level of the classification tree.
We used FastText classifier to test and compare between the hierarchical
and standard classification approaches. Based on 93,051 bug reports from
38 Eclipse open-source products, the hierarchical approach was shown to
perform relatively well with 65% Micro F-Score and 45% Macro F-Score.

Keywords: Bug severity · Imbalanced data · Text mining ·
Machine learning · Multi-class classification · FastText

1 Introduction

A critical part of software maintenance is debugging, i.e. the identification and
removal of concealed bugs. In a small software project involving a handful of
developers, the task is relatively straightforward because bug reporting is likely
to occur less frequently. However, debugging is a major concern in larger projects
where the number of reported bugs is usually quite high, prompting tool support
to aid the development team in tracking bugs, verifying their severity and man-
aging their resolution. Bugzilla1 has become a very popular tracking system for
1 www.bugzilla.org.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 247–260, 2019.
https://doi.org/10.1007/978-3-030-23281-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_20&domain=pdf
http://orcid.org/0000-0002-5064-2621
http://orcid.org/0000-0002-9881-9799
http://orcid.org/0000-0003-4244-9458
http://orcid.org/0000-0001-8052-2471
www.bugzilla.org
https://doi.org/10.1007/978-3-030-23281-8_20

248 N. Nnamoko et al.

this task, largely due to the spread of open source software development. Gener-
ally, a developer reports what they see as a defect in the software and manually
assigns one of seven severity level i.e., blocker, critical, major, normal, minor,
enhancement or trivial to indicate the degree to which the said bug impacts
the software quality. Based on the assigned severity, a moderator decides how
soon the bug needs to be fixed from a business perspective and in some cases,
re-assign severity to reflect its impact on the software.

Despite the benefits of Bugzilla, the process of reporting and tracking a bug
is still inefficient as it takes much time and human resources [16]. Since bugs typ-
ically contain textual descriptions, machine learning and text mining techniques
are likely to provide automated severity classification. These techniques have
been previously applied on such textual bug descriptions to automate severity
classification [1,5–7,12,15–17]. However, the standard learning algorithm typ-
ically assumes that classes within the training data are roughly balanced and
learning from imbalanced data often leads to bias in favour of the dominant
classes [2]. As such, previous studies that utilised bug reports from Bugzilla have
removed the often dominant normal and enhancement classes to conduct a 5-
class prediction task [15,17]; or a binary classification task involving blocker, crit-
ical, major as “severe bugs” and minor, trivial as “non-severe bugs” [5,6,12,16].

In this paper, we extend the granularity of the classification task to include
all seven categories available in Bugzilla. We tackle the imbalance issue through
a hierarchical classification approach that exploits class imbalance in the training
data, in order to reduce classification bias. Specifically, we designed a classifica-
tion tree that consists of multiple binary classifiers organised hierarchically, such
that instances from the most dominant class are trained against the remain-
ing classes but are not included in training the next level of the classification
tree. Detailed description of the approach is presented in Sect. 4. Using 93, 051
bug reports downloaded from 38 Eclipse products within the Bugzilla tracking
system, we tested the approach on FastText, a linear classifier based on a Neu-
ral Network [4]. We compared performance between our approach and standard
training of FastText. We also trained a random guess classifier which forms the
baseline on which our approach and indeed the standard approach was evaluated.

In Sect. 2 we provide details about related work and the necessary background
for the techniques and tools used in our experiment. The experimental data and
the proposed hierarchical approach are presented in Sects. 3 and 4. Section 5
presents our findings and discusses issues likely to threaten the validity of results.
Section 7 summarises the study and points out future work.

2 Background and Related Work

Studies, that attempted to automate bug severity prediction, can be grouped
into fine-grained (multi-class) and coarse-grained (binary class) ones.

As an early work, the SEVERity ISsue assessment algorithm, also known as
SEVERIS, was proposed to assist test engineers in assigning severity levels to
bug reports [7]. The approach is based on entropy and information gain, sup-
ported by a rule learner. To train the model, they used bug reports from six

A Hierarchical Approach for Bug Severity Prediction 249

NASA PITS projects in the PROMISE data repository2 were used. SEVERIS
used the Repeated Incremental Pruning to Produce Error Reduction (RIPPER)
algorithm to perform fine grained prediction involving 5 bug severity levels. An
average of 775 reports composed of 79,000 terms were examined with optimisa-
tion F-Scores ranging from 65% to 98% for individual severity levels.

In other related fine-grained bug severity prediction studies, Tian et al. [15]
proposed an algorithm called INSPect (acronym for Information Retrieval based
Nearest Neighbour Severity Prediction Algorithm). INSPect combines the k -
Nearest Neighbour (k -NN) algorithm with the BM25-based document similarity
algorithm [14], to predict bug severity. The authors used three different sets of
data to replicate and compare their approach to SEVERIS. The results show
that their approach produced better results than SEVERIS. Chaturvedi and
Singh [1] also utilised the NASA PITS data to provide a comparative analysis
with SEVERIS. They applied 6 different classification algorithms namely; Näıve
Bayes (NB), k -NN, Näıve Bayes Multinominal, Support Vector Machine, J48
Decision tree and RIPPER. The accuracy results ranges from 29% to 97% which
is lower than the top limit obtained by SEVERIS. Zhang et al. [17] extended
the INSPect algorithm by adding topic modelling; a statistical approach used to
discover abstract topics that occur in a collection of documents [11]. By using
this approach, the authors found the topic(s) that each bug report belongs to.
These topics were introduced to INSPect as additional features to produce better
prediction with F-Score ranging from 13.96% to 80.25%.

From a coarse-grained bug severity perspective, Lamkanfi et al. [5] used a
combination of text mining techniques and Näıve Bayes classifiers to classify
bug reports into ‘severe’ and ‘non-severe’ classes. Their main contribution is
that predictive performance is directly dependent on the training data size. By
gradually increasing the training set during experiments, they concluded that an
average of 500 reports per bug class is required to obtain a stable and reliable
prediction. Indeed, their experiments with larger datasets resulted to stable and
improved prediction of the severity levels with precision between 65%–83% and
recall between 62%–84%. In a successive study, Lamkanfi et al. [6] presented a
comparison of several classifiers using the same approach. This time, performance
was measured with Area Under Curve (AUC) and results range from 51% to 93%.
Gegick et al. [3] studied a binary bug severity prediction using SAS text miner
with the aid of Singular Value Decomposition. Overall, the approach allowed to
identify 77% ‘severe’ bugs that were labelled as ‘non-severe’ by bug reporters.
Yang et al. [16] compared three feature selection algorithms to determine the
best features for training a Näıve Bayes classifier. The results showed that the
application of feature selection can improve the results. Starting from a baseline
AUC of 74%, the authors were able to reach 77% on a given training dataset.
Roy and Rossi [12] applied feature selection on bi-grams to train a Näıve Bayes
classifier. The results showed that performance is data/project dependent as the
addition of bi-grams worsened performance in some cases.

2 promise.site.uottawa.ca/SERepository.

http://promise.site.uottawa.ca/SERepository

250 N. Nnamoko et al.

Fig. 1. Sample bug report from Bugzilla (anonymised for presentation purposes)

There are many commonalities among the studies presented so far. For exam-
ple, they mostly use text mining and machine learning techniques. In addition,
they all took a project specific approach in which experiments and results are
presented in single project context. Put simply, the authors took a naive app-
roach during experiment by considering bug reports from different projects to
be independent of each other. Therefore, results are analysed and presented on
a project-by-project bases. One of the few differences between the studies is the
level of granularity applied to the bug severity. While some applied fine-grained
categories involving 5 severity categories [1,7,13,15,17], others simply condensed
the 5 severity categories to binary classifcation [3,5,6,12,16]. It must be noted
that most of these studies utilised data from Bugzilla which had 7 severity cat-
egories originally. Unfortunately, none of them utilised all 7 bug severity cate-
gories in their experiments. The Enhancement category is always disregarded as
a non-bug because it is believed to refer to feature improvements. Additionally,
the Normal category is often removed as it is the default option for reporting
bug severity in Bugzilla and many researchers [1,5–7] suspect that bug reporters
do not bother to assess and set correct severity for the bug being reported.
Lamkanfi et al. [5,6] believes that the normal category represents a grey zone
and Singh et al. [13] suggests they may confuse the classifier because they are
often disproportionate in size compared to the other categories which creates a
huge class imbalance. Thus, two limitations we address in our work are: (1) to
extend the severity granularity by including all 7 categories in a cross-project
experiment; and (2) to mitigate the class imbalance issue presented by the nor-
mal and enhancement severity categories through a hierarchical classification
approach.

3 Dataset

Each Bugzilla bug report is assigned one of seven severity labels shown in Table 1.
We downloaded 93, 051 bug reports from Bugzilla3. The data was split into 80%
training and 20% testing, taking the distribution of the severity classes into
account, as shown in Table 1.

Figure 1 shows a sample bug report assigned the “normal” severity label. A
brief description of the bug can be seen in the summary element, with further
3 Bug reports were downloaded from 38 Eclipse related products.

A Hierarchical Approach for Bug Severity Prediction 251

Table 1. Size of the data downloaded from Bugzilla

Level Description Total Training Test

Normal Default/average bugs 61,421 49,136 12,285

Enhancement New feature or functionality change in
existing feature

15,156 12,125 3,031

Major Loss of function in an important area 7,594 6,075 1,519

Minor Loss of function that affect few people
or with easy workaround

3,504 2,803 701

Critical Crashes, loss of data in a widely used
and important component

2,655 2,124 531

Blocker Blocks further development or testing 1,371 1,097 274

Trivial Cosmetic problem e.g. misspelled words 1350 1,080 270

description about the bug in the comment elements. For the experiment pre-
sented in this paper, a concatenation of textual information from the summary
and comment elements is used as features. This is to ensure that our bug sever-
ity predictor is applicable to threads from other bug tracking systems such as
GitHub that does not support the wealth of elements available in Bugzilla.

4 Method

In this section, we present our classification approach that would, in theory
reduce classification bias to any class. Our aggregate consists of multiple one
vs. remainder classifiers (i.e. binary sub-classifiers) organised hierarchically, so
that instances from the dominant class4 are trained against all other classes, but
are not included in the next classification level. This is similar to the one vs. all
strategy which involves training a single classifier per class, with the instances
of that class as positive and all other instances as negatives. The slight difference
in our approach is that the binary classifiers are arranged in descending order
based on class size and positive instances from the preceding binary classifier are
disregarded in subsequent classification. For example, our data contains more
instances of the normal class than of any other class. Therefore, the first binary
classifier is trained on instances of the normal class against instances of the
other classes. In the second binary classifier, instances from the normal class are
eliminated from the training data, so that those from the next dominant class,
i.e., enhancement are trained against the remaining classes, i.e., major, minor,
critical, blocker and trivial grouped together. The process is repeated until the
binary classifier between the blocker and trivial classes. Figure 2 depicts the one
vs. remainder method.

4 Dominance refers to size. A dominant class contains more instances than another.

252 N. Nnamoko et al.

4.1 Experiment Setup

The hierarchical approach described in Sect. 4, was trained using FastText [4],
a simple neural network classifier that implements an improved version of
Word2Vec [8,9]. We chose FastText because it performs comparably better than
the more complex deep learning algorithms, in less training time and without
using a GPU [18].

Fig. 2. A hierarchical one vs. remainder multi-label classification approach

The training data was lemmatised and tokenised using NLP4J5 before being
fed to the classifiers. In the proposed hierarchical approach, each binary FastText
classifier has a set of parameters to be optimised. We used Bayesian Optimisation
[10], which explores how parameters, i.e. learning rate (lr), vector dimension
(dim), different numbers of word n-grams, where n ∈ [1, 3], minimum threshold
of occurrence (min) and epoch, affect the results. As objective function either
the median or the average was used, whichever achieves the lowest Macro F-
score on a 10-fold cross validation basis. This function considers all classes as
equally important, despite their disproportionate distribution in the data. The
binary models were then organised hierarchically in order of descending class size
for training and testing using the best parameters. Initially, we used all seven
severity categories in the data. To investigate if the normal category in Bugzilla
introduces noise, we subsequently performed an experiment without it.

For evaluation and comparison purposes, we performed a classification exper-
iment based on random guess on the test data. The results were used as baseline
to assess the hierarchical approach. 10 iterations were conducted and the average
Macro and Micro F-Score recorded. We also compared the hierarchical approach
against standard multi-class training using FastText i.e., non hierarchical app-
roach. Again, the experiments was conducted in two phases - first with all the
5 emorynlp.github.io/nlp4j.

http://emorynlp.github.io/nlp4j

A Hierarchical Approach for Bug Severity Prediction 253

7 severity categories and secondly without the normal category. We used the
Bayesian Optimisation method to obtain the parameters that lead to optimum
performance. Unlike the hierarchical approach that requires several binary mod-
els with different parameter sets, only one set of parameters is necessary for a
standard multi-class training using FastText. All optimisation experiments were
conducted in 35 optimisation iterations to obtain the best parameter sets shown
in Table 2. For simplicity, we use suffixes incl and excl to differentiate between
FastText trained with and without the normal instances respectively.

Table 2. Parameters used to train Hierarchical (H) and Standard (S) FastText models

Classifiers lr dim n-grams min epoch Macro F-Score(%)

H Normal vs. Other 0.20 100 3 10 5 66.87

Enhancement vs. Other 0.11 200 3 30 20 88.03

Major vs. Other 0.27 200 3 40 15 64.29

Minor vs. Other 0.19 135 2 30 25 70.72

Critical vs. Other 0.26 25 3 2 40 69.22

Blocker vs. Other 0.19 50 2 4 35 87.29

S FastText incl 0.43 150 3 40 30 33.75

FastTextexcl 0.33 75 3 20 25 47.42

5 Result Analysis

In this section, we present the results obtained from FastText trained with both
hierarchical and standard approaches. This includes results with and without
the normal severity category in the training and test data. Aggregate mea-
sures derived from confusion matrix, such as precision, recall, micro F-Score,
and macro F-Score were used for evaluation. For simplicity, the performance
with and without the normal classifier/instances are presented separately in
this section. We use the random guess classifier shown in Table 3 as a baseline.

Table 3. Results (%) of experimentation with the Random Guess classifier

Normal Enhancement Major Minor Critical Blocker Trivial

Precision 65.80 16.23 8.16 3.66 2.81 0.12 0.13

Recall 49.80 25.05 12.42 6.09 3.07 0.12 0.14

F-Score 56.69 19.69 9.84 4.57 2.93 0.00 1.31

Macro F-Score: 13.58 Micro F-Score: 38.32

254 N. Nnamoko et al.

5.1 Experiments Including normal

Table 4 shows a combined confusion matrix of predictions using FastText incl in
hierarchical and standard classification, marked in blue and black, respectively.

The hierarchical approach using FastText incl, performed considerably bet-
ter in classifying the normal and enhancement classes compared to the other
classes. For example, the first classifier model in the hierarchical structure, Nor-
mal vs. Other predicted 10, 398 out of 12, 285 normal bugs correctly, but misclas-
sified 3, 380 instances as normal. The misclassified instances represent 18.16%
of the total test set; thus, reducing the number of test data instances for the
subsequent classifier models. This dynamic continued at the next level of clas-
sification, i.e. Enhancement vs. Other in which a further 12.11% of the test set
was misclassified. This had a knock on effect at subsequent nodes as shown in
Table 5, where performance degrades massively further down the hierarchy.

Table 4. Combined confusion matrix of the FastText incl models showing both hierar-
chical (H) and standard (S) methods

Normal En/ment Major Minor Critical Blocker Trivial
H S H S H S H S H S H S H S

Normal 10398 9003 1003 1281 417 1234 161 240 132 299 71 102 103 126
Enhancement 847 789 2082 2121 47 65 26 29 16 11 5 4 8 12
Major 1239 929 61 76 157 397 12 18 33 75 12 19 5 5
Minor 517 461 63 73 34 57 56 80 5 10 10 2 16 18
Critical 404 301 13 16 51 128 3 2 46 70 14 14 0 0
Blocker 211 150 9 7 24 53 1 2 6 25 24 36 0 1
Trivial 162 139 27 30 9 11 24 27 4 3 3 2 41 58

Similar performance was obtained with the standard classification approach.
Although FastText is designed to handle multi-class tasks intrinsically, the clas-
sifier seems to also struggle with the data as evident from Table 4. For example,
FastText incl correctly predicted only 9, 003 out of 12, 285 normal instances using
the standard approach. This is 1, 395 short of its correct predictions of the nor-
mal class with the hierarchical approach. However, the misclassified instances
(2, 769) are lower than the hierarchical approach. That said, the misclassified
instances represent 14.88% of the total test set. A further 7.97% instances was
misclassified into the enhancement class.

In terms of F-Score, the standard FastText incl achieved a slightly better
Macro F-Score (32.79%) than hierarchical (30.48%); but Micro F-Score is higher
with the hierarchical approach (68.80%) compared to 63.26% obtained with the
standard approach. Nonetheless, both classification approaches using FastText
performed better than classification based on random guess which produced
Macro F-Score of 13.58% and Micro F-Score of 38.32% (see Table 3).

A closer look at Table 4 revealed some interesting pattern that is worth dis-
cussing. Both approaches misclassified large proportions of the actual normal

A Hierarchical Approach for Bug Severity Prediction 255

class as enhancement or major (see the “Normal” row in Table 4). Likewise,
large proportions of both enhancement or major class instances are classified as
normal (see the “Normal” columns in Table 4). This is probably an indication of
noise in the data, particularly the normal class. Perhaps, bug reporters found it
difficult to differentiate between normal vs. enhancement bug categories. This
may explain the high misclassification of normal as enhancement classes but a
deeper analysis is required to understand why instances of the major class was
misclassified as normal in such proportion. In theory, normal and major bugs
would have distinguishing terms within the dictionary which suggests that the
noise may be because Bugzilla has the normal severity category as its default
setting; and some bug reporters had not bothered to change it.

Table 5. Results (%) of FastText incl [H: Hierarchical, S: Standard]

Normal En/ment Major Minor Critical Blocker Trivial

H S H S H S H S H S H S H S

P 75.47 76.48 63.92 58.85 21.24 20.41 19.79 20.10 19.01 14.20 17.27 20.11 23.70 26.36

R 84.64 73.28 68.69 69.98 10.34 26.14 7.99 11.41 8.66 13.18 8.76 13.14 15.19 21.48

F1 79.79 74.85 66.22 63.93 13.91 22.92 11.38 14.56 11.90 13.67 11.62 15.89 18.51 23.67

H Macro F-Score: 30.48% Micro F-Score: 68.80%

S Macro F-Score: 32.79% Micro F-Score: 63.26%

We suspect that performance could be higher if the noisy data was excluded.
Particularly with the hierarchical approach, Table 5 may not reflect the individ-
ual predictive power of the classifiers at each node of the hierarchy during opti-
misation (see Table 2); where the Enhancement vs. Other classifier achieved the
highest Macro-F-Score of 88.03%, followed by 87.29% for the Blocker vs. Other
classifier. We expect similar performance at these nodes of the hierarchical clas-
sification approach during testing. To examine this, we performed a calculation
based on elimination in which the performance at each node in the hierarchy
was re-calculated by ignoring the test instances already seen/classified at pre-
ceding nodes. For example, to calculate the performance of the Enhancement
vs. Other classifier, we ignored instances already seen/classified by the Normal
vs. Other classifier i.e., the first row and column of the confusion matrix for
the hierarchical approach shown in Table 4. We present the modified results in
Table 6 which shows that both Blocker vs. Other and Enhancement vs. Other
still maintained high performance relative to the other classifiers. It is worth
noting that Enhancement vs. Other performed better than Normal vs. Other
in the hierarchical structure, which suggests that the poor performance of the
approach may be caused by the huge misclassification rate at the apex. Based
on this observation, we excluded the normal class instances from the data and
repeated the experiments with both hierarchical and standard approach.

256 N. Nnamoko et al.

Table 6. Modified results (%) of Hierarchical based experimentation with FastText incl

(excluding misclassified instances)

Normal Enhancement Major Minor Critical Blocker Trivial

Precision 75.47 92.37 57.09 66.67 82.14 88.89 100.00

Recall 84.64 95.33 71.69 64.37 76.67 100.00 93.18

F-Score 79.79 93.83 63.56 65.50 79.31 94.12 96.47

5.2 Experiments Excluding normal

Table 7 shows a combined confusion matrix of predictions using FastTextexcl in
hierarchical and standard classification. Again, the predictions with hierarchical
approach are marked with blue while the standard predictions are in black.

Table 7. Combined confusion matrix of FastTextexcl models showing both hierarchical
(H) and standard (S) methods

Enhancement Major Minor Critical Blocker Trivial
H S H S H S H S H S H S

Enhancement 2636 2652 143 213 126 90 29 43 20 11 45 22
Major 197 167 1001 1041 214 84 312 182 137 33 45 12
Minor 87 152 109 237 230 235 24 27 14 13 69 37
Critical 54 38 174 341 51 17 118 106 42 28 15 1
Blocker 28 24 68 139 33 9 42 44 59 57 9 1
Trivial 29 59 24 43 47 71 6 13 2 6 87 78

Table 8. Results (%) of FastTextexcl [H: Hierarchical, S: Standard]

En/ment Major Minor Critical Blocker Trivial

H S H S H S H S H S H S

Precision 87.90 85.77 52.52 51.69 43.15 46.44 25.99 25.54 24.69 38.51 44.62 51.66

Recall 86.96 87.50 65.90 68.53 32.81 33.52 22.22 19.96 21.53 20.80 32.22 28.89

F-Score 87.43 86.62 58.45 58.93 37.28 38.94 23.96 22.41 23.00 27.01 37.42 37.05

H Macro F-Score: 44.59% Micro F-Score: 65.30%

S Macro F-Score: 45.16% Micro F-Score: 65.90%

Both hierarchical and standard FastTextexcl performed considerably better
than FastText incl which was trained with the noisy normal class. For exam-
ple, the hierarchical FastText incl misclassified 18.16% of the total test set at
the apex but misclassification at the same node was reduced to 5.74% with
FastTextexcl. Similar performance was obtained with the standard classification
approach using FastTextexcl which misclassified 6.96% of the total test data at

A Hierarchical Approach for Bug Severity Prediction 257

the apex, compared to 14.88% misclassified by FastText incl at the same node.
The evidence of improvement without the normal class can be seen in Table 8.
Clearly, the Macro F-Score of both hierarchical and standard FastTextexcl are
better than those recorded for FastText incl (Table 5). The Micro F-Score is higher
with hierarchical FastText incl but this is likely because the test data is larger
with the normal class included.

That said, there is very little distinction between the performance of hierar-
chical and standard FastTextexcl. The standard FastTextexcl achieved a slightly
better Macro F-Score (45.16%) than hierarchical (44.59%). Likewise, the Micro
F-Score is slightly higher with the standard approach (65.90%) compared to
65.30% obtained with the hierarchical approach. Nonetheless, both classifica-
tion approaches using FastTextexcl performed better than classification based
on random guess which produced Macro F-Score of 13.58% and Micro F-Score
of 38.32% (see Table 3).

Again, we believe that the results in Table 8 does not reflect the individual
predictive power of FastTextexcl classifiers observed at each node of the hierar-
chical structure during optimisation (see Table 2). Although the Enhancement
vs. Other Macro-F-Score of 87.90% is very close to 88.03% obtained during opti-
misation; the same cannot be said about the Blocker vs. Other classifier, that
produced the second best Macro F-Score of 87.29% during optimisation but
reduced to 24.69% during testing. This suggests that we are still loosing test
instances due to misclassification at preceding nodes in the hierarchical struc-
ture.

To confirm this, we re-calculated performance for the hierarchical classifiers in
Table 8 using the elimination process applied earlier; in which instances already
seen/classified at preceding nodes are ignored. The modified results, in Table 9,
shows that both Blocker vs. Other and Enhancement vs. Other maintained high
performance relative to the other classifiers. Nonetheless, only 59 out of 274
blocker instances reached the Blocker vs. Other node of the hierarchy, which
suggests that a large number of misclassification still occurs at preceding nodes.

Table 9. Modified results (%) of hierarchical-based experimentation with FastTextexcl
(excluding misclassified instances)

Enhancement Major Minor Critical Blocker Trivial

Precision 87.90 58.57 68.25 67.43 86.76 97.52

Recall 86.97 72.75 63.71 71.08 96.72 90.63

F-Score 87.43 64.89 65.90 69.21 91.47 93.94

6 Discussion

In general, the proposed hierarchical approach performed similar to the standard
classification approach, even with extensive misclassification observed down the

258 N. Nnamoko et al.

hierarchy, which affects the less dominant classes heavily. For the misclassifica-
tion observed in both hierarchical and standard FastText incl, the default severity
setting when reporting a bug on Bugzilla i.e., normal category, may be culpable.

Another reason for misclassification may be the class distribution of the data,
especially given the level of granularity applied in our experiments. It is likely
that one or more of the severity classes share similar vocabulary, thus are linearly
inseperable. Perharps, performance would improve if the number of classes is
reduced such that those with similar vocabulary are grouped together.

A further possible reason may lie within the separability of the severity classes
available in the experimental data. Theoretically, classes such as trivial and
blocker are easier to differentiate as they most likely use different vocabulary.
However, instances from the normal and enhancement classes may share similar
characteristics which may pose difficulties for a classifier. The hierarchical app-
roach performed generally similar to the standard approach, even with the huge
loss of test instances at each node. We believe that a hierarchical approach based
on disparity rather than class size may improve our results. For instance, the
Blocker vs. Other classifier which performs binary classification between blocker
and trivial bugs, generally performed well. Therefore, arranging the classifiers
hierarchically based on class disparity may well improve our results.

The cross-product approach of our experiment may also influence perfor-
mance. All methods in the state-of-the-art were evaluated on individual products
[1,5,7]. Their project-specific approach is unlikely to have an adverse effect on
results because the presentation and annotation of the bug reports are likely to
be consistent. In our case, we combined bug reports from 38 different projects,
which may not follow similar bug presentation and/or annotation.

The hierarchical approach has been applied specifically to address the class
imbalance in our dataset. Perhaps, further experimentation with data of similar
characteristics from other domains is required to validate its generalisability.

7 Conclusion

We have investigated fine-grained bug severity classification using FastText. We
acknowledge that several research works have been reported in this area, but
none to our knowledge has gone to the level of granularity investigated in this
paper. As our task is a multi-class one involving highly imbalanced classes in
the experimental data, we explored a one vs. remainder approach based on hier-
archical arrangement of binary classifiers. We investigated this method using
FastText classifier, and compared the results to the same classifiers trained in
a standard manner. We also used the performance of a random guess classifier
as baseline. Our experiments show that the hierarchical method performed gen-
erally similar to the standard approach but better than a classifier based on
random guess. However, the results might just be a signal to the difficulty of
the task. For example, some severity categories such as major and critical might
be hard to differentiate. Furthermore, it might be the case, that the annotation
of the severity categories is not an easy task to do. There are indications from

A Hierarchical Approach for Bug Severity Prediction 259

the experiment that the normal category may contain samples from the other
severity categories. Thus, these aspects should be taken into consideration when
interpreting the results presented in this work. Deeper experiments and analysis
are required in order to draw a final conclusion on the results.

Acknowledgments. This research work is part of the CROSSMINER Project, which
has received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 732223.

References

1. Chaturvedi, K.K., Singh, V.B.: Determining Bug severity using machine learning
techniques. In: 2012 CSI 6th International Conference on Software Engineering.
CONSEG 2012, pp. 1–6. IEEE (2012). https://doi.org/10.1109/CONSEG.2012.
6349519

2. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002).
http://dl.acm.org/citation.cfm?id=1622407.1622416

3. Gegick, M., Rotella, P., Xie, T.: Identifying security bug reports via text mining:
an industrial case study. In: Proceedings - International Conference on Software
Engineering, pp. 11–20. IEEE (2010). https://doi.org/10.1109/MSR.2010.5463340

4. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics, Valencia, Spain, vol. 2, pp. 427–431
(2017)

5. Lamkanfi, A., Demeyer, S., Giger, E., Goethals, B.: Predicting the severity of a
reported bug. In: Proceedings - International Conference on Software Engineering,
pp. 1–10. IEEE (2010). https://doi.org/10.1109/MSR.2010.5463284

6. Lamkanfi, A., Demeyer, S., Soetens, Q.D., Verdonckz, T.: Comparing mining algo-
rithms for predicting the severity of a reported bug. In: Proceedings of the Euro-
pean Conference on Software Maintenance and Reengineering. CSMR, pp. 249–258.
IEEE (2011). https://doi.org/10.1109/CSMR.2011.31

7. Menzies, T., Marcus, A.: Automated severity assessment of software defect reports.
In: IEEE International Conference on Software Maintenance. ICSM, pp. 346–355
(2008). https://doi.org/10.1109/ICSM.2008.4658083

8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

10. Močkus, J., Tiešis, V., Žilinskas, A.: The application of Bayesian methods for seek-
ing the extremum. In: Szegö, G.P., Dixon, L.C.W. (eds.) Towards Global Optimi-
sation, vol. 2, pp. 117–128, North-Holland (1978)

11. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised
topic model for credit attribution in multi-labeled corpora. In: EMNLP 2009 Pro-
ceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 248–256 (2009). https://doi.org/10.3115/1699510.1699543

https://doi.org/10.1109/CONSEG.2012.6349519
https://doi.org/10.1109/CONSEG.2012.6349519
http://dl.acm.org/citation.cfm?id=1622407.1622416
https://doi.org/10.1109/MSR.2010.5463340
https://doi.org/10.1109/MSR.2010.5463284
https://doi.org/10.1109/CSMR.2011.31
https://doi.org/10.1109/ICSM.2008.4658083
http://arxiv.org/abs/1301.3781
https://doi.org/10.3115/1699510.1699543

260 N. Nnamoko et al.

12. Roy, N.K.S., Rossi, B.: Towards an improvement of bug severity classification.
Proceedings - 40th Euromicro Conference Series on Software Engineering and
Advanced Applications. SEAA 2014, pp. 269–276 (2014). https://doi.org/10.1109/
SEAA.2014.51

13. Singh, V.B., Misra, S., Sharma, M.: Bug severity assessment in cross project
context and identifying training candidates. J. Inf. Knowl. Manag. 16(01),
1750005 1–30 (2017). https://doi.org/10.1142/S0219649217500058, http://www.
worldscientific.com/doi/abs/10.1142/S0219649217500058

14. Sun, C., Lo, D., Khoo, S.C., Jiang, J.: Towards more accurate retrieval of duplicate
bug reports. In: Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering. ASE 2011, pp. 253–262 (2011). https://doi.
org/10.1109/ASE.2011.6100061

15. Tian, Y., Lo, D., Sun, C.: Information retrieval based nearest neighbor classifi-
cation for fine-grained bug severity prediction. In: Proceedings - Working Con-
ference on Reverse Engineering. WCRE, pp. 215–224 (2012). https://doi.org/10.
1109/WCRE.2012.31

16. Yang, C.Z., Hou, C.C., Kao, W.C., Chen, I.X.: An empirical study on improv-
ing severity prediction of defect reports using feature selection. In: Proceedings -
Asia-Pacific Software Engineering Conference, APSEC. vol. 1, pp. 240–249. IEEE
(2012). https://doi.org/10.1109/APSEC.2012.144

17. Zhang, T., Chen, J., Yang, G., Lee, B., Luo, X.: Towards more accurate severity
prediction and fixer recommendation of software bugs. J. Syst. Software 117, 166–
184 (2016). https://doi.org/10.1016/j.jss.2016.02.034

18. Zolotov, V., Kung, D.: Analysis and optimization of fast text linear text classifier.
arXiv preprint arXiv:1702.05531 (2017)

https://doi.org/10.1109/SEAA.2014.51
https://doi.org/10.1109/SEAA.2014.51
https://doi.org/10.1142/S0219649217500058
http://www.worldscientific.com/doi/abs/10.1142/S0219649217500058
http://www.worldscientific.com/doi/abs/10.1142/S0219649217500058
https://doi.org/10.1109/ASE.2011.6100061
https://doi.org/10.1109/ASE.2011.6100061
https://doi.org/10.1109/WCRE.2012.31
https://doi.org/10.1109/WCRE.2012.31
https://doi.org/10.1109/APSEC.2012.144
https://doi.org/10.1016/j.jss.2016.02.034
http://arxiv.org/abs/1702.05531

A Coherence Model for Sentence
Ordering

Houda Oufaida1(B), Philippe Blache2, and Omar Nouali3

1 Ecole Nationale Supérieure d’Informatique ESI, Oued Smar, Algiers, Algeria
h oufaida@esi.dz

2 Aix Marseille Université, CNRS, LPL UMR 7309, 13604 Aix en Provence, France
blache@lpl-aix.fr

3 Centre de Recherche sur l’Information Scientifique et Technique CERIST,
Ben Aknoun, Algiers, Algeria

onouali@cerist.dz

Abstract. Text generation applications such as machine translation and
automatic summarization require an additional post-processing step to
enhance readability and coherence of output texts. In this work, we iden-
tify a set of coherence features from different levels of discourse analysis.
Features have either positive or negative input to the output coherence.
We propose a new model that combines these features to produce more
coherent summaries for our target application: extractive summariza-
tion. The model use a genetic algorithm to search for a better ordering
of the extracted sentences to form output summaries. Experimentations
on two datasets using an automatic coherence assessment measure show
promising results.

Keywords: Coherence features · Coherence model ·
Sentence ordering · Automatic summarization · Genetic algorithm

1 Introduction

Coherence and cohesion are key elements for text comprehension [1]. Coherence
involves logical flow of ideas around an overall intent. It reports a conceptual
organization of discourse and can be observed at the semantic level of discourse
analysis. Coherence is essential to text comprehension. Indeed, with a lack of
coherence, the text loses quickly its informational value.

Dealing with text coherence remains a difficult issue for several NLP appli-
cations such as machine translation, text generation and automatic summariza-
tion. Most of automatic summarization systems rely on extractive techniques
which extract complete sentences from source texts to form summaries. This
ensures that the summary is grammaticality correct but in no case its coher-
ence. Considering coherence of extractive summaries involves dealing with sen-
tence informativness input against summary’s flow. Several elements contribute

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 261–273, 2019.
https://doi.org/10.1007/978-3-030-23281-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_21

262 H. Oufaida et al.

to text coherence such as discourse relations [2], sentences’ connection by mean
of common entities patterns [3] and thematic pregression [4].

In the automatic summarization task, it is fundamental to generate intelligi-
ble summaries. Extractive techniques succeed in selecting relevant information
but mostly fail to ensure their coherence. Only few of these techniques consid-
ered coherence as an additional feature in the summary’s extraction process. It
is a difficult task that tackles with multi level discourse analysis: syntactic level
in which connectors are used to improve text cohesion, semantic level in which
textual segments are regrouped around common concepts and finally, global level
in which sentences are presented in a logical flow of ideas.

In this paper we deal with coherence as an optimization problem. We identify
a set of coherence features that have positive or negative impact on summaries
coherence. The intuition is that positive input features such as original the-
matic ordering in the source text/texts and shared entities of adjacent sentences
contribute to local and global coherence. These features should be maximized
whereas negative input features such as redundancy should be minimized.

The rest of the paper is organized as follows: we first introduce a review of
the very few works in the field. Second, we describe how our coherence model
combines between coherence features to have better sentences ordering within
system summaries. Details and discussion of our experiments are presented in
which the coherence model is introduced as a post processing step. Finally, we
conclude our work with interesting perspectives.

2 Related Work

Early approaches of automatic summarization use sentence compression tech-
niques to improve summaries’ coherence. The main idea is to reproduce human
summarization process, namely: i-identify relevant sentences ii-compress and
reformulate these sentences iii-reorder compressed sentences iv-add discourse
elements to make a cohesive summary.

Probably the most referenced work is Rhetorical Structure Theory (RST)
discourse analysis [2]. A set of discourse relation markers from an annotated
corpus are used to define two elements for each relation: nucleus and satellite.
The analysis generate a tree in which the nucleus parts of the top levels are the
most relevant ones. [5] train an algorithm on collections of (texts, summaries)
to discover compression rules using a noisy-channel framework. The assumption
is that the compressed form is the source of a signal which was affected by some
noise i.e. optional text. The model learns how to restore the compressed form
and assesses the probability that it is grammaticality correct. More recently, [6]
define the concept of textual energy of elementary discourse units. It reflects the
degree of each segment’s informativeness: the more the segment shares words
with other segments the more it is informative. Less informative segments are
eliminated and the remaining segments grammaticality is estimated by mean of
a language model.

[4] study the thematic progression in the source texts and identify which
thematic ordering is better for the output summaries. The authors define three

A Coherence Model for Sentence Ordering 263

strategies for sentence ordering: (1) majority ordering which is a generalization
of ordering by sentence position and reflects, for each couple of themes, how
many sentences from the first theme precede sentences from the second one (2)
chronological ordering in which themes are ordered according to the publication
date and (3) Augmented ordering which add a cohesion element that regroups
themes whose sentences appear in the same text blocks. Sentences in the output
summary are assigned to themes and follow the thematic ordering. Augmented
ordering seems to be the best alternative for news articles.

[3] define local coherence as a set of sentence transitions required for tex-
tual coherence. An entity-based representation of the source text is used to
model coherent transitions. The intuition is that consecutive segments (sen-
tences) about same entities are more coherent. The model estimates transition
patterns probabilities from a collection of coherent texts.

More recently, [7] introduce a joint model that combines between coherence
and sentence salience in the sentence extraction process. A discourse graph is first
generated in which vertices correspond to sentences and positive edge weights
correspond to coherent transitions between each couple of sentences i.e. the sec-
ond sentence could be placed after the first sentence in a coherent text. It is
based on syntactic information such as deverbal noun reference, event/entity
continuation and RST discourse markers.

Defining deep learning architectures for various NLP tasks including coher-
ence models was recently investigated. [8] train a three level neural network to
model sentence composition to form coherent paragraphs. Here, positive exam-
ples are coherent sentence windows and negative examples are sentence windows
in which a sentence was randomly replaced. Sentence vectors are induced from
the sequence of its word embeddings using recurrent neural networks. The neu-
ral network is trained using pairs of original articles and articles with randomly
permuted sentences, window size is three consecutive sentences. [9] propose to
generalize the entity based coherence model initially proposed by [4] using a
neuronal architecture. The model maps grammatical roles within entity grid to
a continuous representation (a real valued vector learned by back propagation).
Entity transition representations of a given sentence sequence are used by convo-
lution, pooling and linear projection layers to finally compute a coherence score.
The model is trained on a set of ordered coherent/less coherent document pairs
and compared to several coherence models for two tasks: sentence ordering and
summary coherence rating.

In the previous work, various features are used to improve output coherence.
RST discourse analysis is certainly of value to define a global coherence model.
However, it requires deep text analysis which is not available for most languages.

In this work, we have defined a set of coherence features. Each feature is
supposed to help the model to give higher or lower coherence score according to
a particular sentence ordering. The model combines between features and selects
an ordering that maximises the coherence score. We assume that these features,
once applied together, complement each other and lead to better coherence.
We use genetic algorithm to select a coherent ordering. The advantage is that

264 H. Oufaida et al.

the model can be easily alimented by additional and language specific features.
Features can be added to the fitness function by specifying its contribution to the
output ordering. The next section describes, in detail, the proposed coherence
model.

3 Coherence Model

In our coherence model, we propose to combine state-of-the-art features using
a genetic algorithm. These features are domain independent and could be auto-
matically extracted for a large number of languages.

3.1 Coherence Features

Positive Input Features positive input features are features who should be
maximized in the output summary. They are assumed to help the model to
produce more coherent summaries.

Sentence Position: sentence position feature is based on the assumption that
sentence ordering in source text is coherent and a coherent summary should
follow the original ordering. In multi-document summarization, this ordering
is generalized using publication date in a way that the first sentence in the
first document is given the label “1” and the last sentence in the most recent
document is given the label “n”, “n” being the number of sentences in all source
documents.

Shared Entities: it is an important feature based on the assumption that sen-
tences discussing same entities should appear in the same textual segment. [10]
defines textual continuity as “a linear progression of elements with strict recur-
rence” which puts forward that coherent development of text should not intro-
duce a sudden break.

Shared entities feature was introduced by [3], it requires part of speech tag-
ging. In practice, noun phrases tag set depends on target language and the Part
of Speech tagger used (NN, NNP, NNS, NNPS, etc. for English Penn Treebank
tag set).

We use the number of shared noun phrases between each couple of adjacent
sentences (S1, S2) in the candidate summary R as a positive input feature (1)
and (2).

Shared Entities(S1, S2) =
2 × |Entities(S1) ∩ Entities(S2)|

|S1| + |S2| (1)

Entities Score(R) =
∑

i=1..|R|−1

Shared Entities(Si, Si+1) (2)

A Coherence Model for Sentence Ordering 265

Thematic Ordering: Thematic progression is a key feature in information order-
ing and text comprehension. Presenting information in a logical progression is
important especially in summaries with a limited size. Following [4], we want to
make the thematic progression of summaries similar to source texts. We define
a precedence matrix (PM) of topics. Each entry PM [Ci, Cj] corresponds to the
percentage of sentences from topic Ci that appear, in the source texts, before
sentences from the second topic Cj . Figure 1 presents a precedence matrix of a
document cluster extracted from the MultiLing 2015 dataset.

⎛
⎜⎜⎜⎜⎜⎜⎝

Topics (Clusters) C0 C1 C2 C3 C4 C5

C0 0.000 0.335 0.285 0.564 0.631 0.521
C1 0.665 0.000 0.438 0.764 0.787 0.782
C2 0.715 0.562 0.000 0.865 0.858 0.867
C3 0.436 0.236 0.135 0.000 0.594 0.486
C4 0.369 0.213 0.142 0.406 0.000 0.437
C5 0.479 0.218 0.133 0.514 0.563 0.000

Fig. 1. Precedence matrix example

Different possible strategies for thematic ordering extraction could be con-
sidered. A first strategy is to order topics according to their precedence value.
We define precedence value of a target topic as the sum of remaining topics
precedence value to the target topic (sum per column) (3). Topic with minimum
precedence will be the first topic to be mentioned in the summary.

Precedence Score(Cj) =
∑

i=1..|C|
Precedence(Ci, Cj) (3)

Another strategy is to build thematic ordering gradually. The algorithm starts
with couple of topics with a strong precedence score (C2 and C5 in the exam-
ple). Then the algorithm search for another couple of topics that maximizes
precedence scores for the just selected topics at the beginning/end of the previ-
ous ordering. Algorithm 1 repeats these steps until finding a complete ordering
which includes all topics. We compare system summary ordering against source
texts thematic ordering using the distance between the two ordering vectors (4).
Summary vector is likely to be not complete, we complete the shortest vector
by the value of the last item (last topic number). Formula (4) computes the
thematic ordering score which is inversely proportional to the distance between
summary ordering vector (Sum Ord) and the source texts vector (Source Ord).

Thematic Ordering Score =
1

Distance(Sum Ord, Source Ord)
(4)

266 H. Oufaida et al.

Negative Input Features

Redundacy: Bringing new information in each sentence is essential to the seman-
tic coherence of any text. In the context of automatic summarization, it is crit-
ical to present new relevant information in each single sentence. We use a sen-
tence relatedness measure proposed in [11] to compute information redundancy
between each couple of sentences (S1, S2). Formula (5) uses word embeddings to
find for each word in the first sentence (wi) its matching word in second sentence
(most related word using distance between embeddings vectors). It also do the
same for words from the second sentence (wj) and the final relatedness score
will be the mean between all matching scores.

Relatedness(S1, S2) =

∑
i Match(wi) +

∑
j Match(wj)

|S1| + |S2| (5)

1: Input:
Precedence[,] : precedence matrix

2: Initialise:
Ordering = {}

3: Ordering= (CMaxi , CMaxj) = Max{Precedence(Ci, Cj), ∀i, j < |C|}
4: do
5: Maxi=Max{Precedence(∗, Cj), ∀j < |C|}
6: Maxj=Max{Precedence(Ci, ∗), ∀i < |C|}
7: Ordering = Ordering ∪ {((CMaxi , Cj))}
8: Ordering = Ordering ∪ {((Ci, CMaxj))}
9: while |Ordering| < |C|

10: Return: Ordering R

Algorithm 1. Pseudo algorithm for thematic ordering extraction

We define a redundancy score for each system summary as the sum of all relat-
edness scores of included sentences (6). This feature is competing with the con-
tinuity defined by the shared entities feature. Indeed, if two sentences mention
the commun entities, they are similar to a certain degree.

Redundancy Score =
∑

i,j=1..|R||i�=j

Relatedness(Si, Sj) (6)

3.2 Coherence Model

Our problem is ordering relevant sentences in the most possible coherent way.
We have defined a set of positive/negative input features that improve/worsen
summary’s coherence. Obviously, evaluating a coherence score for each possible
ordering is not feasible. Indeed, a summary of 250 words in English contains
approximately 13 to 17 phrases (a sentence contains, in average, 15 to 20 words).

Each coherence feature defined in the previous section is an objective to
be attended (maximize or minimize) in the output summary ordering. Figure 2
presents an overview of the coherence model steps.

A Coherence Model for Sentence Ordering 267

Fig. 2. Coherence model

Model Parameters

Fitness Function: Each coherence feature is integrated to the fitness function
according to its sense of contribution. For example, (Shared entities, +), (The-
matic ordeing, +), (Sentence similarity, −1) is a fitness function. We define
several possible combinations and evaluate coherence for each target fitness
function.

Ordering Codification: Each candidate summary ordering is represented by a
vector of sentences IDs. Vector size is equal to the number of sentences included
in the system summary with respect to the summary’s size.

Initial Population: Searching the best coherent ordering begins with a ran-
dom ordering of selected sentences. Each solution is evaluated using the fitness
function.

Coherence Assessment: Feature values are calculated for each ordering (chro-
mosome) in the population. An ordering is better than another if it has higher
feature values.

Selection: It consists of selecting best coherent orderings from the population
to form the next generation. Each ordering which fits the best fitness function
(coherence features) is more likely to be selected in the next generation. We
use the tournament selection method since it tends to converge quickly towards

268 H. Oufaida et al.

satisfactory output [12]. Each selected ordering will be a parent of the next
generation orderings. Tournament selection is repeated n times until having the
complete set of parents.

Crossover: The parents are used to form new orderings using the crossover
operator. Two parents are randomly selected and a two-point crossover operator
is applied to merge parts of parents and form new orderings. We believe that two
points crossover is sufficient for summaries (less then 20 sentences for a summary
of 250 words).

Crossover operation may generate invalid orderings in the case of duplicate
sentences or surpassed size of desired summary. In this case, invalid children
are ignored and the crossover operation is repeated until the desired number of
orderings is reached.

Mutation: It consists of randomly switching couple of sentences in the target
ordering to create a new one. Besides the crossover operator, mutation assists in
genetic diversity. It does not generate invalid summaries since it keeps the same
sentences.

Final Output: The purpose of the development stage is to make sentence order-
ings more coherent across generations until reaching the maximum number of
generations to be explored. Here, the ordering which fits, the most, fitness func-
tion is selected from the last generation as the final output.

4 Experimentation

The main goal of the experimentation is to assess the input of each coherence
feature to enhance output coherence. We have implemented our solution under
DEAP Package [13] which implements a set of evolutionary algorithms for opti-
misation problems: genetic algorithms, particle swarm optimization and differ-
ential evolution. We have opted for a dynamic fitness function which allows users
to define couples of (feature, input sense) to be considered.

4.1 Coherence Assessment

It is a difficult task to assess text coherence from different levels; local and global
coherence and in all its aspects: rhetorical organization, cohesion and readability.
Using a coherence metric is a first quick option to assess coherence features input
within our coherence model.

We use Dicomer metric [14] which is based on a model that captures statisti-
cal distribution of intra and inter-discourse relations. The model uses a matrix of
discourse role transitions of terms from adjacent sentences. The nature of tran-
sition patterns and their probability are used to train an SVM classifier. The
classifier learns how to rank original texts and texts in which sentence ordering
is shuffled. Three collections of texts and summaries from TAC conferences are
used to train the classifier.

A Coherence Model for Sentence Ordering 269

4.2 Datasets

Since our target task is text summarization, we use two summarization datasets.
The MultiLing 2015 dataset [15] is a collection of 15 document sets of news
articles from the WikiNews website. Each document set contains 10 news texts
about the same event such as 2005 London bombings or the 2004 tsunami. The
task is to provide a single fluent summary of 250 words maximum.

The second dataset is DUC 2002 single document summarization dataset1.
In our experiment, we use randomly selected 100 news articles and produce
system summaries that not exceed 100 words. For each document, a human
made summary is provided as a reference.

4.3 Summarization System

We use a multilingual summarizer [11] to generate extractive summaries. The
summarizer first performs sentence clustering to identify main topics within
source texts. Second, terms are ranked according to their relevance to each
topic using minimum Redundancy and Maximum Relevance feature selection
method [16] (mRMR). Finally, a score is assigned to each sentence according
to the terms mRMR scores. The system summary keeps top relevant sentences
up to the summary maximum size.

Top relevant sentences could be extracted from different source documents
and paragraphs which necessarily affects summaries’ coherence. Finding a better
ordering of output sentences will improve summary’s coherence

4.4 Genetic Algorithm Parameters

In addition to fitness function, there is a set of parameters that should be fixed
such as crossover and mutation probabilities, population size and number of
generations. For our experimentations, and in order to allow reasonable com-
putation times, we have fixed population size at 300 individuals, the number
of generations at 300, mutation probability at 0.01 and crossover probability at
0.001.

We deliberately decrease the crossover probability since crossover operator
generated invalid individuals (summaries that contain duplicate sentences or
exceed size limit).

4.5 Evaluation Protocol

As described in Table 1, we define eight configurations for output summary gen-
eration: Baseline, thematic ordering and genetic ordering.

Baseline the first configuration represents our baseline: ordering sentences fol-
lowing the original source text ordering. We assume that baseline ordering intro-
duces gaps between sentences since sentences’ sequence is broken.
1 https://duc.nist.gov/duc2002/.

https://duc.nist.gov/duc2002/

270 H. Oufaida et al.

Topline we consider as a topline, Dicomer scores of reference summaries. Since
reference summaries are human made, we assume that it is an upper bound for
Dicomer coherence scores.

Rule this configuration combines between our baseline (original ordering) and
thematic ordering (see pseudo algorithm 1). Sentences follow first thematic order-
ing and within each topic, sentences are ordered following their original ordering.

Coherence model ordering we define several configurations according to
the number of positive/negative input features and the number of sentences
to be considered as an input. Here, shared entities feature is combined with
thematic ordering, sentence position in the fitness function. Sentence relevance
and redundancy penalty features are considered when the model take as an input
sentences that exceed the size limit (125% and 150% in our configurations). Then,
the model selects a subset of sentences that optimize fitness function score with
respect to summary size.

Table 1. Configurations of output summaries ordering

Baseline SUMBA [TopN, Position]

Topline SUMMA Model summary A MultiLing 2015

Topline SUMMB Model summary B MultiLing 2015

Topline SUMMC Model summary C MultiLing 2015

Topline SUMMD Model summary C DUC 2002

Rule SUMTP [Thematic, Position]

Genetic SUMG1 [+Entity,+Thematic,+Position]

Genetic SUMG2 [+Thematic]

Genetic SUMG3 [+Entity]

Genetic SUMG4 [+Entity,+Thematic]

Genetic SUMG5 [125%, +Entity,+Thematic,+Position,+Relevance,- Redundancy]

Genetic SUMG6 [150%, +Entity,+Thematic,+Position,+Relevance,- Redundancy]

4.6 Results and Discussion

Figures 3 and 4 report Dicomer coherence scores for each configuration. Topline
(Human reference summaries) coherence scores reach an upper bound of 1.9 for
MultiLing 2015 dataset and 1.87 for DUC 2002 dataset.

Baseline system summaries following original orderings (SUMBA) coherence
scores is 1.41 for Multiling dataset and 1.29 for DUC 2002 Dataset. Thematic
ordering combined with shared entities (SUMG2, SUMG4) present best coher-
ence scores for system summaries for both DUC 2002 dataset with a value of 1.34
and Multiling dataset with a value of 1.59. It is the maximum coherence value of

A Coherence Model for Sentence Ordering 271

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

SU
M

B
A

SU
M

T
P

SU
M

G
1

SU
M

G
2

SU
M

G
3

SU
M

G
4

SU
M

G
5

SU
M

G
6

SU
M

M
A

SU
M

M
B

SU
M

M
C

 D
ic

om
er

 s
co

re
s

Sentence ordering configurations

Fig. 3. MultiLing 2015 Dicomer coherence scores

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

SU
M

B
A

SU
M

T
P

SU
M

G
1

SU
M

G
2

SU
M

G
3

SU
M

G
4

SU
M

M
D

 D
ic

om
er

 s
co

re
s

 Sentence ordering configurations

Fig. 4. DUC 2002 Dicomer coherence scores

system summaries using our coherence model. However, coherence model scores
are average and range from 1.27 when five features are considered (SUMG5,
SUMG6) to a value of 1.38 when shared entities are considered along with the-
matic ordering and sentence position feature for the Multiling dataset (SUMG1).

Baseline coherence scores are particularly high compared to other configu-
ration results. When we examine output summaries of the TopN configuration,
we find that TopN sentences are similar (contain most relevant terms) leading
to some degree of topical coherence.

5 Conclusion

Dealing with text coherence is a challenging task in the NLP field. Taking into
account coherence is critical to design efficient tools for text generation which
is essential to a range of NLP tasks such as automatic summarization, dialog

272 H. Oufaida et al.

systems and machine translation. Modeling coherence involves syntactic and
semantic levels of discourse analysis: entity-transition patterns, thematic order-
ing and rhetorical discourse relations. The difficulty with is in defining coherence
features and operating all its aspects in a single model.

In this work, we have defined a first model of coherence which combines
features that, we assume, have positive/negative input and enhance/affect text
coherence. We have designed a genetic algorithm model that take into account
a set of coherence features: shared entities, thematic ordering, sentence posi-
tion, relevance and redundancy. The last three features are useful for the target
task: extractive summarization. The flexibility of the model and its ability to
easily include/exclude features allowed us to experiment with different feature
combinations. Results show that shared entities and thematic ordering features
significantly contribute to the output coherence.

Due to the nature of source texts (news texts which contains significant
amount of date phrases), the results are strongly affected by the dissolution of
temporal sequences. Temporal relations are also an important aspect of global
coherence and should be considered for future experimentations [17]. Another
possible interesting direction is to make the model task independent. Some fea-
tures that we have defined, such as sentence position and relevance, are task-
related and could not be considered for other NLP tasks.

References

1. Slakta, D.: L’ordre du texte (The Order of the Text). Etudes de Linguistique
Appliquee 19, 30–42 (1975)

2. Barzilay, R.: The rhetorical parsing of natural language texts. In: Proceedings of
the Eighth Conference on European Chapter of the Association for Computational
Linguistics. EACL 1997, pp. 96–103 (1997)

3. Barzilay, R., Lapata, M.: Modeling local coherence: an entity-based approach. In:
Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics. ACL 2005, pp. 25–30 (2005)

4. Barzilay, R., Elhadad, N., McKeown, K.R.: Inferring strategies for sentence order-
ing in multidocument news summarization. J. Artif. Intell. Res. 1(17), 35–55 (2002)

5. Knight, K., Marcu, D.: Summarization beyond sentence extraction: a probabilistic
approach to sentence compression. J. Artif. Intell. 139(1), 91–107 (2002)

6. Molina, A., Torres-Moreno, J.-M., SanJuan, E., da Cunha, I., Sierra Mart́ınez,
G.E.: Discursive sentence compression. In: Gelbukh, A. (ed.) CICLing 2013. LNCS,
vol. 7817, pp. 394–407. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37256-8 33

7. Christensen, J., Soderland, S., Etzioni, O.: Towards coherent multi-document sum-
marization. In: Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
HLT-NAACL 2013, pp. 1163–1173 (2013)

8. Li, J., Hovy, E.: A model of coherence based on distributed sentence representation.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing. EMNLP 2014, pp. 2039–2048 (2014)

https://doi.org/10.1007/978-3-642-37256-8_33
https://doi.org/10.1007/978-3-642-37256-8_33

A Coherence Model for Sentence Ordering 273

9. Nguyen, D. T., Joty, S.: A model of coherence based on distributed sentence rep-
resentation. In: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics. ACL 2017, pp. 1320–1330 (2017)

10. Charolles, M.: Introduction aux problèmes de la cohérence des textes: Approche
théorique et étude des pratiques pédagogiques. Langue française 1(38), 7–41 (1978)

11. Oufaida, H., Blache, P., Nouali, O.: Using distributed word representations and
mrmr discriminant analysis for multilingual text summarization. In: Biemann, C.,
Handschuh, S., Freitas, A., Meziane, F., Métais, E. (eds.) NLDB 2015. LNCS,
vol. 9103, pp. 51–63. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19581-0 4

12. Razali, N. M., Geraghty, J.: Genetic algorithm performance with different selection
strategies in solving TSP. In: Proceedings of the World Congress on Engineering,
pp. 1–6 (2011)

13. Fortin, F., Rainville, D., Gardner, M., Parizeau, M., Gagné, C.: DEAP: evolution-
ary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)

14. Lin, Z., Liu, C., Ng, H. T., Kan, M. Y.: Combining coherence models and machine
translation evaluation metrics for summarization evaluation. In: Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics: Long
Papers. ACL 2012, vol. 1, pp. 1006–1014 (2012)

15. Giannakopoulos, G., et al.: MultiLing 2015: multilingual summarization of single
and multi-documents, on-line fora, and call-center conversations. In: Proceedings of
the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue,
SIGDIAL 2015, pp. 270–274 (2015)

16. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: crite-
ria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern
Anal. Mach. Intell. (8), 1226–1238 (2005)

17. Muller, P., Tannier, X.: Annotating and measuring temporal relations in texts. In:
Proceedings of the 20th International Conference on Computational Linguistics.
COLING 2004, p. 50 (2004)

https://doi.org/10.1007/978-3-319-19581-0_4
https://doi.org/10.1007/978-3-319-19581-0_4

Short Papers

Unified Parallel Intent and Slot Prediction
with Cross Fusion and Slot Masking

Anmol Bhasin1(&), Bharatram Natarajan1(&), Gaurav Mathur1(&),
Joo Hyuk Jeon2(&), and Jun-Seong Kim2(&)

1 Samsung R&D Institute - Bangalore, Bengaluru, India
{anmol.bhasin,bharatram.n,gaurav.m4}@samsung.com

2 Samsung Electronics Co., Ltd., Suwon, South Korea
{joohyuk.jeon,js087.kim}@samsung.com

Abstract. In Automatic Speech Recognition applications, Natural Language
Processing (NLP) has sub-tasks of predicting the Intent and Slots for the utter-
ance spoken by the user. Researchers have done a lot of work in this field using
Recurrent-Neural-Networks (RNN), Convolution Neural Network (CNN) and
attentions based models. However, all of these use either separate independent
models for both intent and slot or sequence-to-sequence type networks. They
might not take full advantage of relation between intent and slot learning. We are
proposing a unified parallel architecture where a CNN Network is used for Intent
Prediction and Bidirectional LSTM is used for Slot Prediction. We used Cross
Fusion technique to establish relation between Intent and Slot learnings. We also
used masking for slot prediction along with cross fusion. Our models surpass
existing state-of-the-art results for both Intent as well as Slot prediction on two
open datasets.

Keywords: Unified intent and slot � Cross fusion � Intent and Slot Prediction

1 Introduction

Voice Assistants such as Samsung’s Bixby, Amazon’s Alexa, Apple’s Siri etc. are
becoming popular nowadays. Natural Language Understanding (NLU) system plays a
key role for such digital assistants where it processes input in the form of text coming
from Automatic Speech Recognition systems. NLU aims to assign predefined relevant
categories by predicting domain, intent and required slots for the spoken utterance. To
perform these subtasks different methods have been proposed [1–8].

Out of these sub-tasks, our research work focuses on Intent and Slot Predication.
Intent classification aims to understand the user’s intent while slot extraction identifies
the semantic information for executing user’s intended action. For example take the
utterance “I want to fly from baltimore to dallas round trip” from ATIS dataset
(Table 1). Here the user intention is to fly (intent) and he wants to fly from Baltimore
(source-slot) to Dallas (destination-slot). Intent identification is a classification problem
producing single output for the entire spoken utterance, whereas slot extraction is a
sequence-labelling problem that maps each word of input X to a label Ys. Figure 1 is

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 277–285, 2019.
https://doi.org/10.1007/978-3-030-23281-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_22

showing mapping of X ¼ Xw 1; � � �; Xw Tð Þ to the corresponding slot label Ys ¼
Ys 1; � � �; Ys Tð Þ in IOB format. A lot of work has been done in this area as
discussed in the following sections.

1.1 Independent Intent Classification

In Intent classification, all the intents belong to one single domain, for example, in
ATIS dataset all intents belong to ‘Flight Reservation’ domain. Schmidhuber et al. [9]
proposed BiLSTM, which is widely used for this type of problem as discussed in some
papers [10, 11]. Kim [6] used CNN network for classification problem and achieved
state-of-the-art results. Kim used parallel convolution layers, which learnt sematic
relations between the words and classified the text. We used similar parallel CNN
network for our intent classification.

1.2 Independent Slot Prediction

Slot prediction is a sequence labeling problem, which predicts one label for each word.
Since Slot label of a word depends on previous and next words, Bi-directional RNN
based models outperformed in this task [12, 13]. Kurata et al. [14] proposed an
encoder-labeler LSTM model that used encoder LSTM for slot filling. Shi et al. [15]
combined semantic representation of RNN with the sequence level discriminative
objective and proposed RSVM model.

1.3 Joint Intent Classification and Slot Prediction

In order to understand the relationship between intent prediction and slot filling, Zhang
et al. [2] used GRU for slot filling and max-pooling layer for intent classification in a
single model. Goo et al. [1] used slot gated modelling for learning the relationship
between the two. Recently, Wang et al. [4] proposed a Bi-Model using BiLSTM for
intent detection as well as for slot filling with two different cost functions considering
cross impacts i.e. relation between intent and slot by passing one layer information
between each other.

Inspired from the CNN work in text classification, we used CNN for intent
detection and BiLSTM with CRF [16] (conditional random fields) for slot filling. We
cross fused intent and slot to capture relationship between them. This aided in better
understanding of the relationship between the intent and slots. We used sum of the loss
from intent and slot models as the combined loss of cross-fused model during opti-
mization. Use of masking for slots resulted in boosting of the accuracy.

Fig. 1. Sample utterance from ATIS dataset representing semantic slots in IOB format

278 A. Bhasin et al.

2 Proposed Models

2.1 Model-1: Parallel Intent and Slot Prediction with Cross Fusion

For both Intent and Slot, we used same input sentence as shown in Fig. 2. We con-
verted input sentence to sequence of word embedding using GloVe Embedding [17].
GloVe gives vector of dimension 300 (L1) for each word. We randomly initialized
unseen words of size (L1). The max sentence length (L2) was chosen based on dataset
being used (Table 1). In this way word embedding matrix of dimension L2 * L1 for
input sentence was created.

For Intent classification word embedding matrix of a sentence was passed to 4
parallel CNN layers having different filter sizes f1 * L1, f2 * L1, f3 * L1 and f4 * L1.
The filter height was set to f1 = 1, f2 = 2, f3 = 3 and f4 = 5, where height represents
number of words to be convolved to capture unigram, bigram and higher n-grams. We
took 128 such filters. The extracted convolution features then were concatenated and
passed to dense layer.

For slot prediction on embedding matrix of dimension L2 * L1, we applied
BiLSTM followed by single CRF layer and the output of CRF was passed to dense
layer.

After the dense layer, we fused intent output with slot and slot information with
intent. We tried three experiments with different fusion methods: average, concatena-
tion and addition of the two inputs.

Cross Fusion Block
The learnings of the intent and slot were fused in this block. Due to dimensionality
difference between intent learning I [batch_size * features] and slot learning S
[batch_size * L2 * features], the fusion was done separately for intent classification and

Fig. 2. Model-1: Intent and Slot Prediction with fusion layer

Unified Parallel Intent and Slot Prediction with Cross Fusion and Slot Masking 279

slot prediction. In case of intent classification, we reshaped slot learning and applied
dense layer to maintain dimensional compatibility required for operation (op) as shown
in Fig. 3a. In case of slot prediction, we broadcasted intent learning to maximum
sentence length (L2) and fused with slot learning using operation (op) as shown in
Fig. 3b. In both Fig. 3a and 3b ‘op’ means fusion operation either addition, average or
concatenation, bs is the batch size and L2 is the word embedding size.

2.2 Model-2: Parallel Intent and Slot Prediction with Cross Fusion
and Masking Slot

Model-2 as shown in Fig. 3 is similar to Model-1 except in last layer of slot prediction,
we applied masking. We generated masking information from training data in a way
that for a particular intent, which all slots are valid. We represented this information in
the form of word level one hot vector. This was added as an extra bias to slots
prediction as shown in Eq. 1. This equation shows how we used masking for slot
prediction, here x is the output of cross fusion block, W is weight matrix to be learnt,
‘a’ is the masking information used and b is the bias. The size of masking matrix (‘a’ in
Eq. 1) was L2 * (distinct slot output). This technique aided in better understanding of
the relationship between intent and slot by penalizing unnecessary slots for an intent
during training. We applied masking on all three modes of fusions: addition, con-
catenation and average (Fig. 4).

Ys ¼ softmax W: x þ a þ bð Þ ð1Þ

Fig. 3. The above figure explains fusion block.

280 A. Bhasin et al.

3 Datasets and Experiment Detail

We evaluated our proposed architectures on two benchmarked datasets ‘ATIS’ and
‘Snips’ and all datasets are taken from the GitHub Source mentioned with Table 1.

ATIS Dataset: The ATIS (Airline Travel Information Systems) dataset consists of
user-spoken utterances for flight reservation. It consists of 4,978 train utterances, 893
utterances as test data and 500 as validation data. The total number of intents to be
predicted is 21 and total number of unique slots is 120. The maximum length of
sentence present is 50.

Snips Dataset: Snips dataset is collected using Snips personal voice assistant. In Snips
data, each intent is uniformly distributed. Train set consists of 13,084 utterances,
validation and test have 700 utterances each. Number of unique labels present are 7 and
72 unique slots and maximum length sentence present is 36.

Fig. 4. Model-2: Intent and Slot Prediction with fusion layer and slot masking

Table 1. ATIS and Snips datasets used in experiment.

Dataset Train
data

Test
data

Validation
data

Vocabulary
size

Slot Intents Max
sentence
length (L2)

ATISa 4,978 893 500 722 120 21 50
Snipsb 13,084 700 700 11,241 72 7 36
ahttps://github.com/yvchen/JointSLU/tree/master/data
bhttps://github.com/MiuLab/SlotGated-SLU/

Unified Parallel Intent and Slot Prediction with Cross Fusion and Slot Masking 281

https://github.com/yvchen/JointSLU/tree/master/data
https://github.com/MiuLab/SlotGated-SLU/

For experiment, same architecture as shown in Figs. 1 and 2 was developed using
Keras1. We ran all models for 100 epochs, although models converge before 100th
epoch. We kept batch size for all experiments as 64. We used ‘adam’ optimizers and
‘categorical cross entropy’ as loss function for the all models.

4 Evaluation and Discussion

We implemented proposed experiments using open source datasets and GloVe
embedding. First, we have discussed effect of cross fusion, followed by effect of
masking. Then we have shown results of our best performing model with latest
embedding Bert [18]. Finally, we have compared our model best result with current
state of art models.

4.1 Analyzing Effect of Cross Fusion with Model 1

To analyze effect of fusion, we are comparing results with and without cross fusion.
Row 1 of Table 2 shows results without cross fusion where we used model same as
Fig. 1 (Model 1) without cross fusion blocks. Table 2 also shows the accuracies
achieved on ATIS and Snips datasets using model 1, with different fusion operation
addition, average and concatenate. We found that cross fusion improves intent accuracy
by 1.57% in ATIS and 1.14% in Snips and slots prediction by almost 0.3% in both
datasets. Cross fusion helps to understand relationship between the slots and intent
learnings by effective error propagation as compared to sequential type intent and slot
models. Although we got similar results from all three fusion operations, ‘addition’
gave best results.

4.2 Analyzing Effect of Masking with Model 2

In this experiment, we used masking with slots to boost its accuracy after cross fusion.
As shown in Table 3, masking improved both Intent and Slot accuracies. Masking
penalizes irrelevant slot and because of combined learning, it helped in improving
intent accuracy.

Table 2. Accuracy of proposed architecture Model-1 on two benchmark datasets with different
cross fusion techniques and Model-1 without fusion.

Dataset model ATIS Snips
Intent Slot (f1 score) Intent Slot (f1 score)

Model 1 (without fusion) 95.30 99.03 97 98.05
Model 1 (concatenate) 96.42 99.31 97.86 98.35
Model 1 (average) 96.87 99.3 98 98.39
Model 1 (addition) 96.87 99.32 98.14 98.38

1 https://keras.io.

282 A. Bhasin et al.

https://keras.io

4.3 Analyzing Effect of Embedding with Model 1 and Model 2

In all the experiments we used GloVe embedding of size L1 = 300. For analyzing
embedding effect, we ran our best Model 1 and Model 2 using pre-trained Bert
embedding model [Bert-Base, Uncased], keeping other hyper parameters exactly same.
Bert gave word embedding considering contextual information of the sentence of size
L1 = 768. Table 4 shows comparison of accuracy using Bert and GloVe with Model 1
and Model 2, using cross fusion operation as addition. Both embedding gave similar
results but results with GloVe were marginally better.

4.4 Performance Comparison of State-of-the-Art Techniques

In this section, we compare our architecture best results (Model 1 and Model 2) with
recent state-of-the-art models. From Table 4 we can observe that for Intent detection
there is 0.25% improvement in ATIS and 1.14% in Snips datasets. In case of slots there
is 1.78% improvement for ATIS and extensive improvement of 10.14% in Snips
(Table 5).

Table 3. Accuracy of proposed architecture Model-2 on two benchmark datasets with different
cross fusion techniques.

Dataset model ATIS Snips

Intent Slot (f1 score) Intent Slot (f1 score)

Model 2 (concatenate) 96.3 99.5 98 98.5

Model 2 (average) 97.42 99.53 98 98.39
Model 2 (addition) 97.42 99.54 98.14 98.44

Table 4. Accuracy of proposed architecture Model-1 and Model-2 using GloVe and Bert.

Dataset model ATIS Snips

Intent Slot (f1 score) Intent Slot (f1 score)

Model 1 (Add and GloVe) 96.87 99.32 98.14 98.38
Model 1 (Add and Berta) 97.5 99.01 98 97.95

Model 2 (Add and GloVe) 97.42 99.54 98.14 98.44
Model 2 (Add and Berta) 97.38 99 98 97.88
ahttps://github.com/google-research/bert

Table 5. Comparison of Intent accuracy (%) and Slots (f1 score) with other state-of-art-models.

Dataset model ATIS Snips

Intent Slot (f1 score) Intent Slot (f1 score)

Attention-based RNN [3], 2016 91.1 94.2 97.0 87.8
Bi-Directional RNN-LSTM [13], 2016 92.6 94.3 96.9 87.3

Slot-Gated (Full Attention) [1], 2018 93.6 94.8 97.0 88.8
Slot-Gated (Intent Attention) [1], 2018 94.1 95.2 96.8 88.3

Attention-Based CNN-BLSTM [5], 2018 97.17 97.76 - -
Our Model 1 (best) 96.87 99.32 98.14 98.38
Our Model 2 (best) 97.42 99.54 98.14 98.44

Unified Parallel Intent and Slot Prediction with Cross Fusion and Slot Masking 283

https://github.com/google-research/bert

5 Conclusions

Unified parallel Intent and Slot Prediction using cross fusion and slot masking is
proposed. Both variants of model achieved state-of-the-art results. Cross fusion boosted
the intent accuracy and masking improved slot prediction f1 score. The proposed
architecture can be further extended to predict domain labels along with intent and slot.
For cross fusion addition, concatenation and average is being used which can be further
extended to more complex mathematical equations.

References

1. Goo, C.W., et al.: Slot-gated modeling for joint slot filling and intent prediction. In:
Proceedings of Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, vol. 2, pp. 753–757 (2018)

2. Zhang, X., Wang, H.: A joint model of intent determination and slot filling for spoken
language understanding. In: IJCAI, pp. 2993–2999 (2016)

3. Liu, B., Lane, I.: Attention-based recurrent neural network models for joint intent detection
and slot filling. arXiv:1609.01454 (2016)

4. Wang, Y., Shen, Y., Jin, H.: A Bi-model based RNN semantic frame parsing model for
intent detection and slot filling. In: Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
vol. 2, pp. 309–314 (2018)

5. Wang, Y., Tang, L., He, T.: Attention-based CNN-BLSTM networks for joint intent
detection and slot filling. In: Sun, M., Liu, T., Wang, X., Liu, Z., Liu, Y. (eds.) CCL/NLP-
NABD -2018. LNCS (LNAI), vol. 11221, pp. 250–261. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01716-3_21

6. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of
EMNLP 2014 Conference, pp. 1746–1751 (2014)

7. Kim, Y., Lee, S., Stratos, K.: OneNet: joint domain, intent, slot prediction for spoken
language understanding. In: Automatic Speech Recognition and Understanding Work-
shop IEEE, pp. 547–553. IEEE (2017)

8. Zhou., C., Sun, C., Liu, Z., Lau, F.C.M.: A C-LSTM neural network for text
classification. arXiv:1511.08630 (2015)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

10. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text
classification. In: AAAI, vol. 333, pp. 2267–2273 (2015)

11. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with multi-task
learning. arXiv:1605.05101 (2016)

12. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv:
1508.01991 (2015)

13. Hakkani-Tür, D., Tur, G., Celikyilmaz, A., Chen, Y.N., Deng, L., Wang, Y.-Y.: Multi-
domain joint semantic frame parsing using Bi-directional RNN-LSTM. In: Interspeech
(2016)

14. Kurata, G., Xiang, B., Zhou, B., Yu, M.: Leveraging sentence-level information with
encoder LSTM for semantic slot filling. arXiv:1601.01530 (2016)

284 A. Bhasin et al.

http://arxiv.org/abs/1609.01454
http://dx.doi.org/10.1007/978-3-030-01716-3_21
http://dx.doi.org/10.1007/978-3-030-01716-3_21
http://arxiv.org/abs/1511.08630
http://arxiv.org/abs/1605.05101
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1601.01530

15. Shi., Y., Yao, K., Chen, H., Yu, D., Pan, Y.-C., Hwang, M.-Y.: Recurrent support vector
machines for slot tagging in spoken language understanding. In: Proceedings of Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 393–399 (2016)

16. Raymond, C., Riccardi, G.: Generative and discriminative algorithms for spoken language
understanding. In: International Speech Communication Association (2007)

17. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In:
Proceedings of Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1532–1543 (2014)

18. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional
transformers for language understanding. arXiv:1810.04805 (2018)

Unified Parallel Intent and Slot Prediction with Cross Fusion and Slot Masking 285

http://arxiv.org/abs/1810.04805

Evaluating the Accuracy and Efficiency of
Sentiment Analysis Pipelines with UIMA

Nabeela Altrabsheh, Georgios Kontonatsios, and Yannis Korkontzelos(B)

Department of Computer Science, Edge Hill University, Ormskirk, UK
{altrabsn,Georgios.Kontonatsios,Yannis.Korkontzelos}@edgehill.ac.uk

Abstract. Sentiment analysis methods co-ordinate text mining com-
ponents, such as sentence splitters, tokenisers and classifiers, into
pipelined applications to automatically analyse the emotions or senti-
ment expressed in textual content. However, the performance of sen-
timent analysis pipelines is known to be substantially affected by
the constituent components. In this paper, we leverage the Unstruc-
tured Information Management Architecture (UIMA) to seamlessly co-
ordinate components into sentiment analysis pipelines. We then evaluate
a wide range of different combinations of text mining components to
identify optimal settings. More specifically, we evaluate different pre-
processing components, e.g. tokenisers and stemmers, feature weight-
ing schemes, e.g. TF and TFIDF, feature types, e.g. bigrams, trigrams
and bigrams+trigrams, and classification algorithms, e.g. Support Vector
Machines, Random Forest and Naive Bayes, against 6 publicly available
datasets. The results demonstrate that optimal configurations are consis-
tent across the 6 datasets while our UIMA-based pipeline yields a robust
performance when compared to baseline methods.

Keywords: Sentiment analysis · Text processing · Interoperability ·
UIMA

1 Introduction

The Unstructured Information Management Architecture (UIMA) [4] is a soft-
ware framework that facilitates the development of interoperable text mining
applications. UIMA-enabled components can be freely combined into larger
pipelined applications, e.g. machine translation [8] and information extraction,
using UIMA’s common communication mechanism and shared data type hier-
archy, i.e. Type System. Recent studies has demonstrated that UIMA-based
pipelines can efficiently address a wide range of different text mining tasks [2,8].

In this paper, we use the UIMA framework to develop efficient sentiment
analysis pipelines. We focus on sentiment analysis, considering that automatic
sentiment analysis systems are being increasingly used in a number of appli-
cations, such as business and government intelligence. The popularity of the
task can largely be associated with the vast amount of available data, especially
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 286–294, 2019.
https://doi.org/10.1007/978-3-030-23281-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_23

Sentiment Analysis Pipelines with UIMA 287

in social media. For example, sentiment analysis on Twitter has been used to
identify concerns in urban environments [19].

Despite the popularity of sentiment analysis and the wide applicability of
UIMA to many text processing tasks, UIMA has been used for sentiment analysis
by a few studies, only. Rodriguez et al. [13] developed UIMA-based pipelines for
capturing the sentiment expressed in customers’ reviews about hotels.

This study investigates sentiment analysis using the UIMA framework. Fur-
ther than Rodriguez et al. [13], (a) we investigate the effect of different pre-
processing components, features, and feature selection on the overall perfor-
mance of a sentiment analysis system, and (b) we compliment evaluation results
with the execution times of each combination of components and classifiers. Our
results show that execution times vary widely and that high execution times do
not always match high accuracies. To the best of our knowledge, this is the first
work that considers execution times while evaluating UIMA pipelines. The exe-
cution time of a sentiment analysis system is particularly important for real-time
applications, especially when monitoring social media.

2 Related Work

The Unstructured Information Management Architecture (UIMA) has been
employed widely for developing text processing applications in various domains.
Kontonatsios et al. [8] extended UIMA workflows to facilitate the creation of
multilingual and multimodal NLP applications. In the medical domain, UIMA
has been applied to detect the smoking status of patients [17]. UIMA has been
used to analyse hotel customer reviews [13], where sentiment analysis is mod-
elled as a classification task. UIMA was shown to be suitable for designing and
implementing sentiment analysis systems due to the reusability components.

Several studies have explored the time that classifiers take to identify polar-
ity. For instance, Greaves et al. [6], who researched sentiment analysis to analyse
patients’ experience, concluded that the Naive Bayes Multinomial classifier was
faster than other classifiers by a short margin of 0.2 s. Of course, data size can
affect the model’s running time. Running large datasets using limited computa-
tional resources can cause out-of-memory errors, and distributing the training
task across many machines was shown to decrease running time by 47% [7].
Apart from classifier training, other components the pipeline, parameters and
feature types can also affect execution times [5].

3 Experiments

As any other UIMA application, our sentiment analysis pipeline implements
three basic operations: read (Collection Reader), process (Analysis Engine) and
write (CAS Consumer). We have conducted 6 large-scale experiments to inves-
tigate the optimal pipeline configuration. More specifically, we evaluated all
combinations of the following components: (1) CoreNLP and Snowball Tar-
tarus stemmers, (2) TF and TF-IDF feature weighting schemes, (3) feature

288 N. Altrabsheh et al.

types: unigrams, bigrams, trigrams and combinations of them, (4) frequency
thresholds for feature filtering, i.e. feature removal, and (5) classification algo-
rithms: Support Vector Machines, Random Forest and Naive Bayes, as imple-
mented in the WEKA platform. It should be noted that different pipeline con-
figurations were created by simply changing the UIMA XML descriptor file.

Table 1. Data sources

Dataset typeAmazon [9] IMDB [9] SemEval [14] Senti-140 [10]UMICH [18]Yelp [9]

Training
(subset)

Training
(subset)

Development
set

Training
(subset)

Training set Training
(subset)

size 1,000 1,000 20,632 1,048,575 7,086 1,000

positive 500 500 7059 554,470 3,995 500

negative 500 500 3,231 494,105 3,091 500

neutral - - 10,342 - - -
∗SemEval refers to Task 4A of SemEval 2016.

All combinations of the components above are evaluated in terms of accuracy
(Acc), precision (P), recall (R) and F-score (F1) using 10-fold cross validation.
In addition, we measured the execution time of each pipeline configuration. We
used 6 publicly available datasets. Table 1 shows the source, name, size and
number of documents labelled as positive, negative or neutral in each dataset.
The neutral label is only available in the SemEval dataset and we did not include
it in our experiments. Amazon, IMDB, UMICH and Yelp experiments were run
on a HP laptop with Intel core i5-8250u, 1.80 GHz, on Windows. SemEval and
Senti-140 experiments were run on an HP ProLiant DL360 Gen9 server running
Linux.

The first experiment evaluates our sentiment analysis pipeline when using
different combinations of pre-processing components. We use UIMA to plug and
play pre-processing components into pipelines, while using the same type-system,
to identify the best configuration. Many studies explored the effect of preprocess-
ing on sentiment analysis. Preprocessing can improve performance up to 20%,
while analysing sentiment in students’ feedback [1]. We develop 4 pipelines by
combining 2 tokenisers and 2 stemmers, common in the literature: (1) Standard
tokeniser (T1): segments a document into its tokens using whitespace characters
as delimiter. This tokeniser was implemented in-house, (2) StringTokenizer (T2):
from the java.util package1, (3) englishStemmer (S1): from the tartarus.snowball
package2, and (4) PorterStemmer (S2): from the tartarus.snowball package3.
The first experiment evaluates 120 configurations: 2 tokenisers x 2 stemmers x
1 ngrams (unigrams+bigrams+trigrams combined) x 6 datasets x 5 classifiers.
The remaining experiments use the best performing combination.
1 docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.html.
2 snowball.tartarus.org/algorithms/english/stemmer.html.
3 snowball.tartarus.org/algorithms/porter/stemmer.html.

http://docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/porter/stemmer.html

Sentiment Analysis Pipelines with UIMA 289

The second experiment considers two feature weighting schemes: Term Fre-
quency (TF) and Term Frequency Inverse Document Frequency (TF-IDF). TF
and TF-IDF are different ways of assessing feature importance by assigning dif-
ferent weights.

Choosing features that represent data instances accurately for a particular
task can lead to more accurate predictions. The most common feature types used
for sentiment analysis are n-grams, i.e. sequences of n textual units, which can
be letters, syllables or words [1]. N-grams usually consider tokens and are of one,
two or three tokens long, i.e. unigrams, bigrams or trigram, respectively. Sarker
et al. [15] and Pal and Gosh [11] used n-gram features for developing sentiment
analysis methods and evaluated their methods against the same datasets that we
use in this work. Here, we explore the following n-gram combinations: unigrams
only, bigrams only, trigrams only, unigrams and bigrams, unigrams and trigrams,
bigrams and trigrams, and all n-grams combined.

Table 2. Best pipeline configurations in terms of both F-Score and execution time
across the 6 evaluation datasets. The table also reports the highest and lowest
F-Score and the slowest and fastest execution time obtained by the different pipeline
configurations.

Pipeline

configuration

F1 Time

(mm:ss)

Pipeline

configuration

F1 Time

(mm:ss)

Highest F-Score Amazon CNB-T1-S1 .831 00:01 IMDB CNB-T1-S1 .787 00:02

Lowest F-Score NB-T1-S1 .748 00:05 NB-T2-S1 .675 01:00

Slowest Time RF-T1-S2 .777 06:09 RF-T2-S1 .699 05:13

Fastest Time CNB-T2-S2 .829 00:01 CNB-T1-S2 .773 00:02

Best configuration CNB-T1-S1 .831 00:01 CNB-T1-S1 .787 00:02

Highest F-Score SemEval CNB-T1-S1 .832 00:02 Senti-140 LIB-T1-S1 .798 02:03:42

Lowest F-Score NB-T2-S2 .588 07:06 CNB-T2-S1 .768 27:04

Slowest Time RF-T1-S1 .753 01:22:05 LIB-T2-S2 .796 02:07:00

Fastest Time CNB-T1-S1 .808 00:01 CNB-T1-S2 .779 26:20

Best configuration CNB-T1-S1 .832 00:02 CNB-T1-S2 .779 00:25

Highest F-score UMICH RF-T2-S1 .998 17:46 Yelp CNB-T1-S2 .798 00:01

Lowest F-Score NB-T2-S1 .807 04:11 NB-T2-S1 .665 01:02

Slowest Time RF-T1-S2 .997 22:23 RF-T2-S2 .745 04:35

Fastest Time CNB-T2-S2 .979 00:01 RF-T2-S2 .745 04:35

Best configuration SVM-T2-S1 .991 00:05 CNB-T1-S2 .798 00:01

The fourth experiment evaluates our pipeline when filtering features using a
frequency threshold. Considering a research objective is to scale text processing
pipelines to big data collections, we are interested in reducing the computational
resources needed to execute them without reducing the accuracy of the under-
lying text mining models. Equal thresholds were set for all ngram features, and
we experimented with threshold values in the range of [1, 30]. We aim to remove
infrequent features to eliminate potential noise in the datasets. Running times
are expected to decrease as threshold values increase. If the performance of the

290 N. Altrabsheh et al.

models does not decrease significantly as threshold values increase, then high
values can safely be adopted, leading in models of smaller size that are easier to
transfer and work with, without loss in prediction accuracy.

The choice of a classifier substantially affects the performance of the senti-
ment analysis pipeline. We experiment with the following classifiers: SVM, NB,
RF, CNB and LibLinear. CNB and LibLinear have not been previously evaluated
on these datasets4.

4 Results and Discussion

Table 2 shows the lowest and highest F-score and the slowest and fastest exe-
cution time achieved by the pipeline configurations. We further report the best
configuration considering both the F-score performance and the execution time.
As an example, we observe that SVM-T2-S1 achieves an F-score of 0.991 on
the UMICH dataset, which is only marginally lower than the overall highest
F-score, 0.998, achieved by RF-T2-S1. However, SVM-T2-S1 is our preferred con-
figuration because it is substantially faster than RF-T2-S1. Overall, the CNB
classifier obtained both a high F-score performance and a fast execution time in
5 out of 6 datasets.

Preprocessing: We evaluate 4 combinations of pre-processing components.
Table 3 shows the average performance of the 4 pipeline configurations when

Table 3. Average performance of our sentiment analysis pipeline, on combinations of
pre-processing components. The results are averaged over 5 classifiers, as discussed in
Sect. 3.

Metric Pipeline configuration Pipeline configuration

T1- S1 T1-S2 T2-S1 T2-S2 T1- S1 T1-S2 T2-S1 T2-S2

Accuracy Amazon .802 .803 .802 .803 IMDB .736 .734 .719 .717

Precision .807 .807 .807 .807 .740 .738 .725 .723

Recall .802 .803 .802 .803 .740 .733 .719 .717

F-score .801 .802 .801 .802 .734 .732 .717 .715

Accuracy SemEval .791 .789 .774 .777 Senti-140 .786 .785 .783 .783

Precision .789 .785 .774 .779 .789 .789 .787 .787

Recall .760 .758 .746 .745 .788 .787 .785 .784

F-score .757 .756 .740 .741 .785 .785 .782 .782

Accuracy UMICH .964 .959 .954 .955 Yelp .765 .764 .745 .750

Precision .968 .967 .962 .962 .770 .769 .750 .755

Recall .967 .958 .957 .969 .770 .764 .745 .750

F-score .964 .958 .953 .955 .770 .764 .744 .749

4 Only CNB and LIB were evaluated on Senti-140, as the other classifiers failed to run
due to out-of-memory errors.

Sentiment Analysis Pipelines with UIMA 291

applied to the 6 datasets. The performance is computed in terms of accuracy,
precision, recall and F-score, while the reported results are average values across
the performance obtained by the 5 classifiers. It can be observed that the T1-S1
configuration performed best in most cases. The improvement over the remaining
configurations are insignificant.

TF & TF-IDF: TF weighting achieved slightly higher classification perfor-
mance than TF-IDF in 4 out of 6 datasets, as shown in Table 4. TF-IDF was
faster than TF in 5 out of 6 datasets. A larger time margin, 9 s, was observed
on the Senti-140 dataset.

Table 4. Scores and execution times of CNB-T1-S1 using TF and TF-IDF feature
weighting.

Amazon IMDB SemEval Senti-140 UMICH Yelp

TF TF-IDF TF TF-IDF TF TF-IDF TF TF-IDF TF TF-IDF TF TF-IDF

Time (sec) .022 .018 .067 .064 1.119 .278 34.277 25.061 .055 .577 .387 .020

Acc .835 .833 .782 .774 .839 .810 .772 .772 .982 .974 .787 .788

P .839 .835 .791 .778 .801 .780 .780 .780 .982 .973 .791 .790

R .835 .833 .782 .775 .815 .806 .777 .777 .981 .975 .787 .788

F1 .834 .833 .780 .774 .807 .789 .772 .772 .982 .974 .786 .788

Table 5. Features: Performance of the best configuration (T1, S1) on all datasets, pre-
processing techniques and classifiers for each of the features. U: Unigrams, B: Bigrams,
T: Trigrams

Metric U B T U+B U+T B+T All U B T U+B U+T B+T All

Accuracy Amazon .816 .704 .608 .702 .835 .831 .831 IMDB .816 .635 .575 .648 .718 .807 .788

Precision .819 .727 .676 .728 .837 .833 .833 .816 .637 .607 .650 .786 .810 .792

Recall .816 .704 .608 .702 .835 .831 .831 .816 .635 .575 .648 .781 .807 .788

F-score .816 .696 .567 .693 .835 .831 .831 .816 .634 .540 .647 .780 .807 .787

Accuracy SemEval .837 .773 .512 .681 .840 .821 .844 Senti-140 .738 .732 .696 .749 .768 .877 .772

Precision .827 .746 .664 .707 .819 .793 .832 .744 .740 .714 .750 .774 .774 .780

Recall .782 .775 .638 .736 .802 .815 .793 .743 .737 .703 .745 .772 .771 .777

F-score .798 .753 .518 .676 .809 .801 .808 .739 .732 .694 .740 .768 .766 .772

Accuracy UMICH .797 .680 .691 .681 .796 .800 .794 Yelp .930 .952 .968 .969 .975 .978 .980

Precision .819 .688 .663 .691 .798 .801 .796 .972 .950 .966 .967 .973 .977 .980

Recall .797 .680 .601 .681 .796 .800 .794 .973 .955 .970 .971 .975 .979 .979

F-score .797 .677 .560 .677 .796 .800 .794 .972 .952 .968 .969 .974 .978 .980

Features: Table 5 shows the performance of n-gram feature combinations, intro-
duced in Sect. 3. The performance is computed for the best configuration (T1
and S1). Trigram features yielded the lowest performance in most cases, while
the combination of all n-grams performed best in 3 out of the 6 datasets. Uni-
grams and trigrams together obtained the highest performance on Yelp. The
performance margin between the different feature types is substantial in several
occasions. For example, unigrams achieved an improved F-score of 27.6% over

292 N. Altrabsheh et al.

Fig. 1. F-score when using increasing frequency threshold values.

trigrams on the IMDB dataset. This suggests that careful feature selection can
improve the performance of sentiment analysis pipelines.

Feature Selection: We filtered out features, i.e. n-grams, that occur less fre-
quently than a pre-defined threshold. The results of applying threshold values in
[1, 30], in Fig. 1, show that for smaller datasets, the performance decreases as we
increase the threshold. For example, the F-score on Amazon, which consists of
1, 000 reviews only, drops from 0.832 for a threshold of 1 to 0.676 for a threshold
of 30. However, for larger datasets, e.g. Senti-140 that contains more than 1M
documents, F-scores vary insignificantly.

Classifiers: CNB was the fastest and best. RF was the slowest, but performed
best on UMICH. SVM and LIB performed competitively and quickly in all
datasets.

Comparison with previous studies: We compare our pipeline with published
results on the same datasets and classifiers, as shown in Tabl 6. Some published
experiments used different parts of the datasets than what we used, thus we con-
figured our experiments accordingly to compare fairly. For these comparisons,
we used our best combination of pre-processing, feature extraction and selec-
tion methods and feature weighting. For SemEval, we used LibLinear instead of
SVM and achieved marginally lower results than the published ones. Lastly, the
method in [12] used 22,660 Senti-140 positive and negative instances. Since it
is not mentioned which exaclty these instances were, we used the entire dataset
with a frequency threshold of 100. We used the Liblinear classifier and the results
were better by 2.6%.

Best performing model: CNB was the fastest classifier and often also per-
formed best. It is beneficial for large datasets. The slowest classifier was RF. A
combination of n-grams often performs best. The effect of frequency thresholding
largely depends on the size of the data. Preprocessing matters and affects classi-
fication results. The best configuration, which achieved F-scores above 70% for
all datasets, is the CNB model with tokeniser T1 and stemmer S1, all n-grams
features and a frequency threshold of 6.

Sentiment Analysis Pipelines with UIMA 293

Table 6. Comparison between our sentiment analysis pipelines and state-of-the-art
systems. Our scores have been computed using the same classifier, but different pre-
processing and features (Sect. 3). Abbreviations - TOK: tokenisation, Ngr: Ngrams,
BoW: Bag-of-Words, SL: stoplist, PR: punctuation removal, U: unigrams, ST: stem-
ming, LC: lowercasing, B: bigrams, SL: sentiment lexicon, LW: elongated words, NEG:
negation.

DataSet Ref Method Published scores (%) Our scores (%)

Classifier Preprocessing Features Acc P R F1 Acc P R F1

Amazon [11] NB TOK Tokens, Ngr 82.4 - - - 75.0 76.0 75.0 74.8

[16] NB - BoW - 78.9 - - 75.0 76.1 75.0 74.8

IMDB [11] NB TOK Tokens, Ngr 78.6 - - - 72.3 72.7 72.3 72.1

[16] NB - BoW - 78.9 - - 72.3 72.7 72.3 72.1

Yelp [11] NB TOK Tokens, Ngr 82.7 - - - 70.5 70.7 70.5 70.4

[16] NB - BoW - 60.3 - - 70.5 70.7 70.5 70.4

UMICH [3] SVM TOK, SL, PR U - - - 89 99.1 99.1 99 99.1

SemEval [15] SVM ST, LC Ngr 64.6 - 63.7 63.2 62.9 60.7 59.3 59.9

Senti-140 [12] SVM BoW, clustering U, B, SL, LW, NEG - - - 77.4 80.5 80.0 80.0 80.0

5 Conclusion

In this paper, we have investigated UIMA to optimise the accuracy and efficiency
of sentiment analysis. We have demonstrated that UIMA can simplify the devel-
opment of text-processing pipelines, wherein components can be freely combined
using shared data types. We experimented with a wide range of pipeline configu-
rations, considering various pre-processing components, classification algorithms,
feature extraction methods and feature weighting schemes, to identify the best
performing ones.

A potential limitation of our proposed sentiment analysis pipeline is that, like
any other UIMA application, it is written as a sequential program, which limits
its scalability. In the future we plan to leverage UIMA DUCC, i.e. the Distributed
UIMA Cluster Computing platform, for scaling our sentiment analysis pipeline
to big data collections. UIMA DUCC enables large-scale processing of big data
collections by distributing a UIMA pipeline over a computer cluster while the
constituent components of the pipeline can be executed in parallel across the
different nodes of the cluster.

Acknowledgment. This research work is part of the TYPHON Project, which has
received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 780251.

References

1. Altrabsheh, N., Cocea, M., Fallahkhair, S.: Sentiment analysis: towards a tool for
analysing real-time students feedback. In: ICTAI 2014, pp. 419–423. IEEE (2014)

2. Batista-Navarro, R., Carter, J., Ananiadou, S.: Argo: enabling the development of
bespoke workflows and services for disease annotation. Database 2016 (2016)

294 N. Altrabsheh et al.

3. Dridi, A., Recupero, D.R.: Leveraging semantics for sentiment polarity detection
in social media. Int. J. Mach. Learn. Cybern., 1–11 (2017)

4. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured informa-
tion processing in the corporate research environment. Nat. Lang. Eng. 10(3–4),
327–348 (2004)

5. Go, A., Huang, L., Bhayani, R.: Twitter sentiment analysis. CS224N Project
Report, Stanford (2009)

6. Greaves, F., Ramirez-Cano, D., Millett, C., et al.: Use of sentiment analysis for cap-
turing patient experience from free-text comments posted online. J. Med. Internet
Res. 15(11), e239 (2013)

7. Khuc, V.N., Shivade, C., Ramnath, R., et al.: Towards building large-scale dis-
tributed systems for Twitter sentiment analysis. In: Proceedings of SAC, pp. 459–
464. ACM (2012)

8. Kontonatsios, G., Thompson, P., Batista-Navarro, R.T., et al.: Extending an inter-
operable platform to facilitate the creation of multilingual and multimodal NLP
applications. In: Proceedings of ACL 2013: System Demonstrations, pp. 43–48
(2013)

9. Kotzias, D., Denil, M., De Freitas, N., et al.: From group to individual labels using
deep features. In: Proceedings of ACM SIGKDD 2015, pp. 597–606. ACM (2015)

10. Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: Building the state-of-
the-art in sentiment analysis of Tweets. arXiv preprint arXiv:1308.6242 (2013)

11. Pal, S., Ghosh, S.: Sentiment analysis using averaged histogram. Int. J. Comput.
Appl. 162(12) (2017)

12. Ren, Y., Wang, R., Ji, D.: A topic-enhanced word embedding for twitter sentiment
classification. Inf. Sci. 369, 188–198 (2016)

13. Rodrıguez-Penagos, C., Narbona, D.G., Sanabre, G.M., et al.: Sentiment analysis
and visualization using UIMA and Solr. Unstructured Information Management
Architecture (UIMA), p. 42 (2013)

14. Rosenthal, S., Farra, N., Nakov, P.: SemEval-2017 task 4: sentiment analysis in
Twitter. In: Proceedings of SemEval-2017, pp. 502–518 (2017)

15. Sarker, A., Gonzalez, G.: HLP@UPenn at SemEval-2017 task 4A: a simple, self-
optimizing text classification system combining dense and sparse vectors. In: Pro-
ceedings of SemEval-2017, pp. 640–643 (2017)

16. Sarma, P.K., Sethares, W.: Simple algorithms for sentiment analysis on sentiment
rich, data poor domains. In: Proceedings of ACL 2018, pp. 3424–3435 (2018)

17. Sohn, S., Savova, G.K.: Mayo clinic smoking status classification system: extensions
and improvements. In: AMIA Annual Symposium Proceedings, vol. 2009, p. 619.
American Medical Informatics Association (2009)

18. UMICH: Dataset SI650 - sentiment classification (2011). https://goo.gl/Xfr8lI
19. Zavattaro, S.M., French, P.E., Mohanty, S.D.: A sentiment analysis of US local

government Tweets: the connection between tone and citizen involvement. Gov.
Inf. Q. 32(3), 333–341 (2015)

http://arxiv.org/abs/1308.6242
https://goo.gl/Xfr8lI

Comparing Different Word Embeddings
for Multiword Expression Identification

Aishwarya Ashok1(B) , Ramez Elmasri1, and Ganapathy Natarajan2

1 University of Texas at Arlington, Arlington, TX 76019, USA
aishwarya.ashok@mavs.uta.edu, elmasri@cse.uta.edu

2 Oregon State University, Corvallis, OR 97331, USA
gana.natarajan@oregonstate.edu

Abstract. The identification of Multi-Word Expressions (MWEs) is
central to resolving ambiguity of phrases. Recent works show that deep
learning methods outperform statistical and lexical based approaches.
The deep learning approaches mostly use word2vec embedding; our paper
aims at comparing the use of word2vec, GloVe, and a combination of the
two word embeddings in identifying MWEs. GloVe, and the combination
of word2vec and GloVe were marginally better in terms of F-score, identi-
fying more unique words, and identifying words not seen in the train data.
GloVe was marginally better at identifying Verbal Multi-Word Expres-
sions (VMWEs) which tend to be the hardest group of MWEs because
they can be gappy, which is caused by interleaving of words that are part
of the MWE and words that are not part of the MWE. The major pur-
pose of the paper is to compare the use of different word embeddings in
identifying MWEs and not to suggest improvements to the state-of-the-
art. Future work using different dimensions of word embedding vectors
and use of fasttext are suggested.

Keywords: MWEs · Word2vec · GloVe

1 Introduction

Multi-Word expressions (MWEs) are combinations of words, which, when
treated as a unit, have a different meaning than the individual words of the
MWE. The part of speech (POS) tag composition alone can help identify cer-
tain MWEs like “Super Bowl” since the words are fixed in position and cannot
be separated. A subgroup of MWEs, Verbal Multi-word Expressions (VMWEs)
cannot be identified using only POS tag because the composition of POS tags
and the number of words in VMWEs vary. Words that are part of the VMWE
can be interleaved with words that are not part of the VMWE. This is often
referred to as gappy and the number of words in the gap is not limited. A
detailed explanation of different types of VMWEs may be found in [1].

MWEs have been referred to as “pain in the neck” by researchers [2]. The
identification of MWEs is crucial to understanding semantics of a language.
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 295–302, 2019.
https://doi.org/10.1007/978-3-030-23281-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_24&domain=pdf
http://orcid.org/0000-0001-9188-4048
http://orcid.org/0000-0002-7905-9966
https://doi.org/10.1007/978-3-030-23281-8_24

296 A. Ashok et al.

Previous work on identification of MWEs has been done using syntactic parsers
[3], statistical measures [4], and Conditional Random Fields (CRFs) [1]. There
have been approaches to combine semantic features and statistical methods [5].
Machine learning methods such as Naive Bayes classifier [6] and Bayesian Net-
work [7] have also been used.

Recent work has been done in representing words in d-dimensional vector
spaces known as word embeddings; d is much smaller than the size of the vocab-
ulary. The most commonly used word embeddings are word2vec [8] and GloVe
[9]. Since the advent of word embeddings, deep learning methods have been
widely used for various NLP tasks.

We model MWE identification as a supervised classification task with BIO
as the class labels. ‘B’ tag identifies the beginning of a MWE, ‘I’ tag means
inside the MWE and ‘O’ tag means outside the MWE or any word not part of
the MWE. We want to study how using different word embeddings, along with
Convolutional Neural Networks, affects the MWE identification. In particular,
we would like to analyze which word embedding works better for gappy MWEs
and VMWEs. We hypothesize that GloVe may work better than word2vec to
identify MWEs generally and gappy MWEs specifically since GloVe is able to
capture global information.

2 Description of Dataset

The dataset we used was the DiMSUM dataset [10] that was used in the 2016
Shared Task of SemEval 2016. The data is in CoNLL format consisting of the
word position in a sentence, the word, the lemma of the word, POS tag (17 tags),
BIO tag, offset of the MWE from the first word of the sentence, supersense label,
and sentence ID. We used all the features except the supersense label.

We one-hot encoded categorical variables and included eight binary features,
similar to [11] and [12], that give useful syntactic information such as includes
single or double quotes, all upper case letters, word starts with an upper case
letter, part of a URL, contains a number, contains a punctuation, made up of
punctuation only, contains # or @. The contains # is useful to identify if it is
a hashtag and the ‘@’ is used to identify Twitter handles. We did some basic
preprocessing to reduce the chance of unseen words in the word embeddings.

We built feature vectors using word2vec, GloVe, and by concatenating
(appending) word2vec and GloVe feature vectors. To refer to these easily, we
will use W2C, GloVe, and WG, for word2vec, GloVe, and word2vec+GloVe,
respectively in the remainder of the paper.

3 Network Structure

We built a Convolutional Neural Network (CNN) with two convolutional layers,
one fully connected (fc) layer, and the output layer. We varied the number of
filters [100, 125, 150, 200, 250] and window sizes [1, 2, 3]. We used Stochastic
Gradient Descent (SGD) optimizer with a learning rate of 0.01. We used tanh

Word Embeddings for MWE Identification 297

activation function at the convolutional layers and fc layer and softmax activation
function at the output layer. We used 0.5 dropout rate after each convolution
and 0.5 dropout after the fc layer; the dropout is to reduce overfitting.

For word2vec, we used the 2015 wikidump (˜15 GB) to train the vectors and
for GloVe, we used the pre-trained model from [9]. We used 100 dimension for
both since we are restricted by GPU computing power. We performed 5-fold
leave-one-out cross validation. We ran the setup for 600 epochs and only saved
the best model based on the lowest error rate. We have reported the average
F-score for the test set and generalization in percentage.

4 Related Work

Gharbieh et al. [12] made one of the first attempts to identify MWEs using deep
learning. They use SVM as the baseline and implemented a variety of neural
networks – Feed Forward, Recurrent, and Convolutional. They found that the
Convolutional Neural Network worked best among the neural network models
and they outperformed SVM and other methods used earlier. However, this work
only used word2vec.

Another recent approach using Neural Networks is by [13]. They used a
recurrent neural network and handled MWE detection as a supervised task.
They did not attempt to work on the English dataset.

A paper on sentence classification [14], that used neural networks, made us
consider a combination of word2vec and GloVe for the features. We adopted some
commonly used hyperparameters explained in the paper for our experiments.

5 Evaluation and Results

We use the F-score evaluation method from [11] which is calculated by grouping
the words together and using transitivity. The score penalizes errors that are
at the beginning of the MWE (‘B’ tag) which is the hardest tag to find. Due
to space constraints, a detailed explanation of the calculation is not provided.
Readers are encouraged to refer to Schneider et al. [15] p. 553, Figure 4 for a
detailed explanation.

We calculate generalization as the ratio of F-scores of the test data to the
validation data. Generalization is a measure of how well our model was able to
generalize on the test data based on the weights learned during training. Our
models were not able to differentiate between idiomatic and literal meanings of
certain expressions which lead to a decrease in the F-score.

5.1 Filters

We look at the test F-scores and compare the results across the number of filters
shown in Fig. 1. It can be seen that W2C never had the highest F-score. GloVe
performs better than the other two for all combinations of window sizes for a
filter size of 100. For all other filter sizes, either GloVe or WG performed better.
Generalization shown in Fig. 2 follows a trend similar to the F-score, with one
exception.

298 A. Ashok et al.

Fig. 1. Test F score for different filters and window sizes by embedding used

Fig. 2. Generalization for different filters and window sizes by embedding used

5.2 Window Size

In terms of window size we are only comparing GloVe and WG since the section
on Filters makes it clear that W2C never had the highest F-scores. With window
size 3, GloVe performs better than WG for all filter sizes. This is because GloVe
can easily capture co-occurrence probabilities and with window size 3, it has
access to more context. W2C uses a predictive model that performs well on
small window sizes.

5.3 All Tags

Table 1 shows the percentage of ‘B’, ‘I’, and ‘O’ tags correctly identified in the
test data at least 50% of the time. Table 2 looks at how many of the tags correctly
identified by at least 50% of the models were identified correctly by all models.
WG has higher percentage of tags correctly identified by all the models. On the
other hand, with GloVe certain combinations of filter and window size do not
consistently classify the tags, resulting in lower numbers. WG resolves some of
the inconsistencies from using just W2C or GloVe, making WG more consistent
and stable.

Table 1. Percentage of BIO tags classified correctly by at least 50% of the models

W2C GloVe WG

B 14.59 14.86 15.14

I 22.41 22.52 23.02

O 97.4 97.59 97.44

Word Embeddings for MWE Identification 299

Table 2. Percentage of BIO tags classified correctly by all models based on Table 1

W2C GloVe WG

B 19.44 15.45 22.32

I 28.96 23.42 30.4

O 92.59 92.31 93.41

5.4 B Tags

The ‘B’ tag can occur anywhere and the ‘I’ tag depends on the ‘B’ tag. First, we
filtered out only words that were correctly tagged ‘B’ by at least half the models.
In this subset, we further look to see if each of those words and their POS tags
were present in the train data to evaluate how well each of the three embeddings
perform in identifying words that were never encountered in the train data.

If a word was classified as ‘B’ tag and it had the same POS tag in train and
test data, we call it “‘B’ tag Best Words” due to the exact agreement. In the
train data, for words that had more than half the BIO tags as ‘B’ and within
‘B’, at least half the B-tagged words had the same POS tag as the one correctly
classified in the test data, we called it “‘B’ tag ≥50% Words”. For example the
word ‘keep’ had ‘B’ tag 7 times and ‘O’ tag 5 times in the train data; within
‘B’ tag the word ‘keep’ had VERB as POS tag 6 times and NOUN 1 time. Now
‘keep’ has at least half ‘B’ tag and VERB tag occurring 6 times which is the same
combination as the correctly classified word in test data. “‘B’ tag not matching”
is when the word was classified correctly as ‘B’ but the POS tags did not match
across train and test data.

Table 3 shows the resulting counts and POS tags for the different categories
explained above. In summary, WG is able to identify more words (better learn-
ing), and identify more unseen words (good generalization). GloVe is able to clas-
sify more verbs as the ‘B’ tag - something that will help in identifying VMWEs.

5.5 I Tags

The ‘I’ tagged words following ‘B’ tag were not identified properly and they were
mostly given ‘O’ tag. We looked at the train data and found that the words that
got misclassified had almost all BIO tags to be ‘O’. This was a common problem
with all three word embeddings. For example, the MWE “customer”, followed
by one or two words that were part of the MWE or not, occurred 14 times and
the models did well in tagging “customer” as ‘B’ but could never tag “service”
in “customer service” as ‘I’. This was because “service”, as a word by itself, was
tagged ‘O’ more than 80% of the time in the train data. We looked at the ‘I’ tags
associated with MWEs for which the models classified ‘B’ tag correctly shown
in Table 4.

300 A. Ashok et al.

Table 3. Counts of different ‘B’ tagged words using the different embeddings

Table 4. Counts of two-word MWEs and VMWEs.Gappy VMWE counts are indicated
in () next to the VMWE counts

W2C GloVe WG

MWEs <50% 15 17 15

≥50% 18 18 20

VMWEs <50% 21 (5) 22 (4) 21 (5)

≥50% 19 (5) 25 (6) 25 (4)

Both Words Same POS Tag. The MWE “San Antonio” occurred only thrice
in the train data but all combinations classified it correctly. “San Francisco” is
similar to “San Antonio” and does not occur in train data but “San Francisco”
was classified correctly by W2C and WG models but GloVe could do well only
more than half the time. GloVe had the problem of classifying “Francisco” as
‘B’ tag because the starting letter is upper case. GloVe did well with tagging
‘B’ for words whose starting letter was upper case irrespective of whether it was
seen or not during training. “Charlie Sheen” was not in the train data but more
than half the models classified it correctly because the train data has “Charlie
Rose”; GloVe had the same problem, as discussed above for “Francisco”.

VMWEs. The non-gappy VMWE “hung up” occurs only twice in the train
data but all the models except one in GloVe was able to correctly classify it.
For the MWE “picked up”, all the models were able to identify it correctly; it

Word Embeddings for MWE Identification 301

occurred thrice in the train data with one of them being gappy. In general, GloVe
was able to identify more forms of verbs as ‘B’ tag which led to the marginally
better performance than the other two.

We looked at the ‘I’ tags associated with VMWEs for which the ‘B’ tags
were classified correctly. GloVe and WG performed similarly in terms of accuracy
percentage but GloVe could tag more gappy VMWEs than WG. This is because
GloVe works with co-occurrence probabilities and hence can learn MWE patterns
that are spread out.

5.6 MWEs Which Were Not Seen During Training

Even though “Pick-up” did not occur in the train data, “Pick up” occurred in
the train data. Most of the models were able to tag ‘Pick’ as ‘B’ and ‘up’ as
‘I’. Although ‘-’, a punctuation usually tagged as ‘O’, was tagged ‘I’ in the Gold
Standard, the models tagged it appropriately as ‘O’. This would mean that given
enough number of gappy MWEs in the train data for different lengths of gaps,
the models would be able to identify the MWEs.

There were a few MWEs that did not occur in the train set and these were
incomplete in the test set. A few of them were “ve been” which did not have
the ’ before ve to indicate abbreviation. In the MWE “back & forth”, ‘&’ never
occurred in the train data as ‘I’ tag in the 50 times it was seen. The system was
not able to understand that ‘and’ and ‘&’ are equivalent to correctly classify ‘&’
with an ‘I’ tag. Internet slang such as “bruh bruh” and “Guhhh deeeh” were
a problem since they are out of vocabulary and the lemmas were same as the
words.

6 Conclusions and Future Work

WG models were consistent in tagging over all combination of filter and window
sizes. GloVe is marginally better at identifying VMWEs including those that
are gappy. In terms of generalization, GloVe provides marginally better gener-
alization from train to test data. The combination of GloVe and word2vec also
provides better performance than word2vec. Word2vec seems to identify fewer
MWEs; however, we would like to test the performance of word2vec and GloVe
on other datasets. We would also like to increase the word embedding dimension
size to 300 and run our experiments to study the effect. We are also interested in
applying this to our Question Answering system to study the impact of MWEs
in question understanding.

References

1. Maldonado, A., et al.: Detection of verbal multi-word expressions via conditional
random fields with syntactic dependency features and semantic re-ranking. In:
Markantonatou, S., Ramisch, C., Savary , Savary , A., Vincze, V. (eds.) Proceed-
ings of the 13th Workshop on Multiword Expressions (MWE 2017). pp. 114–120.
Association for Computational Linguistics, Valencia, Spain (Apr 2017)

302 A. Ashok et al.

2. Sag, I.A., Baldwin, T., Bond, F., Copestake, A., Flickinger, D.: Multiword expres-
sions: a pain in the neck for NLP. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol.
2276, pp. 1–15. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45715-
1 1

3. Nagy T., I., Vincze, V.: Vpctagger: detecting verb-particle constructions with
syntax-based methods. In: Proceedings of the 10th Workshop on Multiword
Expressions (MWE), pp. 17–25. Association for Computational Linguistics,
Gothenburg, Sweden, April 2014

4. Fazly, A., Cook, P., Stevenson, S.: Unsupervised type and token identification of
idiomatic expressions. Comput. Linguist. 35(1), 61–103 (2009). https://doi.org/
10.1162/coli.08-010-R1-07-048

5. Piao, S.S., Rayson, P., Archer, D., McEnery, T.: Comparing and combining a
semantic tagger and a statistical tool for MWE extraction. Comput. Speech Lang.
19(4), 378–397 (2005). https://doi.org/10.1016/j.csl.2004.11.002

6. Komai, M., Shindo, H., Matsumoto, Y.: An efficient annotation for phrasal verbs
using dependency information. In: Proceedings of the 29th Pacific Asia Conference
on Language, Information and Computation: Posters, pp. 125–131 (2015)

7. Tsvetkov, Y., Wintner, S.: Identification of multi-word expressions by combin-
ing multiple linguistic information sources. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing. EMNLP 2011, pp. 836–845.
Association for Computational Linguistics, Stroudsburg (2011)

8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

9. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014)

10. Johannsen, A., Schneider, N., Hovy, D., Carpuat, M.: Dimsum 2016 shared task
data (2015). Accessed 10 Aug 2018

11. Schneider, N., Danchik, E., Dyer, C., Smith, N.A.: Discriminative lexical semantic
segmentation with gaps: running the MWE gamut. Trans. Assoc. Comput. Lin-
guist. 2, 193–206 (2014)

12. Gharbieh, W., Bhavsar, V., Cook, P.: Deep learning models for multiword expres-
sion identification. In: Proceedings of the 6th Joint Conference on Lexical and
Computational Semantics (* SEM 2017), pp. 54–64 (2017)

13. Klyueva, N., Doucet, A., Straka, M.: Neural networks for multi-word expression
detection. In: Proceedings of the 13th Workshop on Multiword Expressions (MWE
2017), pp. 60–65 (2017)

14. Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide
to) convolutional neural networks for sentence classification. arXiv preprint
arXiv:1510.03820 (2015)

15. Schneider, N., Hovy, D., Johannses, A., Carpuat, M.: SemEval-2016 task 10: detect-
ing minimal semantic units and their meanings (DiMSUM). In: Proceedings of
SemEval-2016, pp. 546–559 (2016)

https://doi.org/10.1007/3-540-45715-1_1
https://doi.org/10.1007/3-540-45715-1_1
https://doi.org/10.1162/coli.08-010-R1-07-048
https://doi.org/10.1162/coli.08-010-R1-07-048
https://doi.org/10.1016/j.csl.2004.11.002
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1510.03820

Analysis and Prediction of Dyads
in Twitter

Isa Inuwa-Dutse, Mark Liptrott, and Yannis Korkontzelos(B)

Edge Hill University, Liverpool, UK
{dutsei,Mark.Liptrott,Yannis.Korkontzelos}@edgehill.ac.uk

Abstract. Social networks are useful for linking micro and macro levels
of sociological theory by enabling the analysis of various forms of relation-
ships. In social science, a taxonomy of social relationships is described as
a function of closeness among users. The closer the users are, the more
cohesive and trustworthy. Identifying dyadic ties, pairs of fully connected
users, on Twitter is challenging due to the flexible and eccentric under-
lying connection patterns. The ability to follow anyone results in many
unidirectional connections between socially disconnected users and ulti-
mately affects clustering users and, in turn, the veracity of online content.
Major challenges towards effective user clustering are the low number of
dyads and efficient methods to identify more. In this study, we query over
17M verified and unverified Twitter user accounts and retrieve dyadic
ties. In the collected data, 55% and 21% of unverified and verified pro-
files, respectively, participate in dyadic ties. We describe the importance
of dyads in the detection of cohesive user groups and how they may be
used to validate trustworthiness. We demonstrate how identifying and
using dyadic ties will improve Twitter analysis, in the future. Finally, we
develop a deep learning model for dyad prediction.

Keywords: Social networks · Twitter · Dyadic tie · Clustering

1 Introduction

Online socialisation, facilitated by platforms such as Twitter and Facebook,
attracts much research interest and poses many questions. For a long time, social
networks have been considered useful tools for linking micro and macro levels
of sociological theory [6]. Many forms of social relationships have been analysed
at various levels. Understanding social interactions today would be incomplete
without taking online social relationships into account. Sufficient understanding
of the structural properties of online platforms is important in designing a more
human-centric internet [2], in the future.

However, the growing complexity and heterogeneity of connections makes the
task of identifying communities and relationships at the micro levels challenging.
Twitter allows every user to follow anyone, resulting in many unidirectional
connections, which may not correspond to a social connection. This makes it
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 303–311, 2019.
https://doi.org/10.1007/978-3-030-23281-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_25

304 I. Inuwa-Dutse et al.

difficult to extract dyads. Thus, dyadic ties are usually overlooked in tasks such
as clustering and in the authentication of online content posted by trusted users.

The definition of network community detection as a task varies in the lit-
erature and ground-truth evaluation data are rare and difficult to collect [11].
According to the ego network model, which is based on Dunbar’s classification of
social relationships [4], a social support clique consists of a few fully connected
users with the strongest relationship in the network [2]. We opined that the level
of trust is stronger among users that share dyadic ties and it is highly unlikely
for a user in the group to misuse the network e.g. spread fake news or spam.
However, acquiring large amounts of tweets sufficient to identify such cohesive
groups is challenging and time consuming.

We analyse a large collection of dyadic and non-dyadic ties1 and explore
their potential contribution to online clustering and content authentication. In
the collected data, 55% and 21% of unverified and verified profiles, respectively,
are involved in dyadic ties. Despite this large proportion of dyads, a random
collection of tweets corresponds to far fewer users in dyadic ties. We analyse
the cohesiveness of cliques, i.e. fully connected groups, in terms of size. Finally,
we propose a deep learning method for dyadic tie prediction, to avoid the time-
consuming search for dyads on Twitter. The model achieves a promising per-
formance when trained on real data. Checking Twitter users for dyadic ties can
limit spurious content and allow content collection from legitimate users.

2 Related Work and Background

Networks and Online Social Networks: Relationships and structural prop-
erties of networks have been extensively studied at different levels of granular-
ity and sophistication, ranging from the structure of microscopic organisms to
complex networks, such as the internet [1,5,15,17]. While many properties are
common across various networks, social networks are different with respect to
the degree of correlation and tendency for clustering. The formation of clusters
is easier and the correlation degree between users is positive [13].

Homophily, the tendency for humans to connect with people of similar charac-
teristics, is central to human’s social interaction [12]. Users in reciprocal relation-
ship discuss similar topics [18]. Homophily has been investigated in the context
of geolocation and popularity [10]. In social networks, the concept of dyad, or
reciprocity, has been viewed from various perspectives and often with contra-
dicting results. With respect to how popular users follow other similarly popular
users, [10] reports low-level reciprocity and a high proportion of directed connec-
tions in Twitter. However, [18] reports high reciprocity by computing the ratio of
follower/following. The probability of a user reciprocating a relationship, i.e. by
following back, and how users of varying influence on Twitter reciprocate their
followers have been investigated in [3]. We extend this by proposing a method
to predict the likelihood of reciprocity between users. Dyadic ties in Twitter are
rare due to the prevalence of directed ties. Previous studies collected datasets
1 See github.com/ijdutse/dyads in Twitter for details about the data of the study.

Analysis and Prediction of Dyads in Twitter 305

Fig. 1. Connections on Twitter manifest by sharing a link, re-tweeting (RT), using the
same hashtags and user mentions (@) or by following. The concept allows multiple
connections among many diverse users and limits the chances of dyads.

from various social networks [11,19,20]. For example, the Twitter data collected
in [11] is freely available but contains mainly directed ties.

Connection in Twitter: Online social media platforms, such as Twitter and
Facebook, enable the empirical quantification and evaluation of social relation-
ships among users to an unprecedented scale. Theories and analytical methods
can be validated using real social data. We argue that the presence of random
connections among some users on Twitter (see Fig. 1) contributes to the lim-
ited overall cohesiveness and the growing proportion of fake and spam contents.
Users openly engaging with other users in a bidirectional manner will curtail the
circulation of spurious information. Users with dyadic ties are more likely to be
genuine, trustworthy and will probably result in a more cohesive clusters.

3 Method

Definition 1: dyadic tie2 – a relation R over a set D is dyadic iff aRb =
1,∀a, b ∈ D. In the context of this study, a follows b is a directed relationship.
If b follows a back, then it is undirected and is called dyad (see Fig. 2).

Fig. 2. Relations between two users A and B in Twitter: no relationship (null connec-
tion), directed relationship (A −→ B) and dyadic or pairwise relationship (A ←→ B).

2 Dyadic tie, pairwise or binary relations are used interchangeable in this work.

306 I. Inuwa-Dutse et al.

Table 1. Data statistics: Many unverified users had to be visited due to the large
number of 1 − edge or directed connections, occurring when followers are not being
followed back, i.e. ∃a, b ∈ D, a −→ b = 1 and b −→ a = 0.

Category Seed size Visited users Retrieved Remark

Unverified dyads 2,023 13,409,661 8,715 utilised for prediction

Verified dyads 1,999 3,893,075 – not used for prediction

1-edge and null tie 1,700 – 7,014 utilised for prediction

Dataset Collection and Training Features: We collect data using the Twit-
ter API and criteria that satisfy the definition of dyadic ties. We begin with 4022
seed users3 from verified and unverified accounts. The profile of each user’s net-
work G, i.e. their list of friends and followers) was searched by a crawler to
determine pairs of users that follow each other. Essentially, for each user net-
work, G = {u|∃u′ ∈ G} such that u ∩ u′ = 1, i.e. dyadic tie. Table 1 shows
basic statistics of users visited by the collection crawler. In particular, it shows
the counts of directed (1 − edge) connections and dyadic ties. Similarly, Fig. 4
summarises dyads in the verified and unverified user category.

We considered the following feature groups to train the prediction model:

– Network features fn: followers, friends, account category
– Text feature ft: account description

Features consist of a rich set of meta-data information describing users based on
their behaviour and the textual part of their account description.

We use a Convolutional Neural Network (CNN) to extract textual features.
This is essential because if the users comprising a potential dyad have conflicting
ideologies expressed in their profile descriptions, the likelihood of dyadic tie is
minimal. According to the collected data (Table 1) and insights from our empir-
ical analysis, we can estimate the likelihood of a dyadic tie between users. B is
likely to follow A back:

– if A and B are both in the unverified user’s category
– if both A and B have low or relatively large number of followers or network

size, i.e. based on the average of those metrics in the users’ categories
– if A has more followers than B or if A is a verified user.

The opposite of the above statements holds for verified users.

Prediction Pipeline: The set of network and text features F = {fn, ft} for
training our model was introduced in the previous subsection. Among other
intrinsic factors, these are the likely features a user can easily access in making
a decision to follow back a request or not. Each user Ui is represented by the
following vector of reciprocal relationships U i

r = [ui,j , ui,k,, ui,n] where users

3 These are genuine users devoid of spammers or social bots collected based on the
SPD filtering technique [8].

Analysis and Prediction of Dyads in Twitter 307

j, k..n have dyadic ties with user ui. Features from the account description text
are learned by applying a CNN on the n-dimensional embedding of tokens4 in
text. CNNs has been applied to various domains and many successful studies
in NLP have used them [9,16,21]. In this study, the CNN is used as a textual
feature extraction engine (Fig. 3), whose output is encoded using Long Short-
Term Memory (LSTM). The encoded vector is merged with the main features
for training the prediction model.

Fig. 3. The embedding layer accepts tokenised text and encodes each token in a dense
100-dimensional vector to be used by the ConvNet part. The LSTM layer transforms
the output to a lightweight vector that is merged with the network features for training.

4 Dyads: Results Analysis

Network Topology: Firstly, we analyse the data to measure the depth of
user relationships. The huge number of visited users for the number of dyads
in Table 1 and Fig. 4 reveal a high proportion of null connections and 1-edge
connections. Subsequent analysis will focus on ordinary unverified users (Fig. 5).

Proportion of Nodes and Reciprocity: Verified users have more network
neighbours than their unverified counterparts, but there is a higher proportion
of dyadic ties in the unverified category, as shown in Fig. 4.

Automatic Detection of Dyads: Noting the flexibility of connections on Twit-
ter and the lack of real connectivity (Fig. 1), large scale dyadic ties are rare and
difficult to locate due to the curse of dimensionality. We aim to predict the
likelihood that user A who follows user B will be followed back. The task can
be modelled as binary classification. Given two users A and B connected with
one edge connection, the goal is to predict whether a pairwise relationship will
be established. We build a deep learning classifier that predicts the probabil-
ity of a dyadic tie between two users on Twitter and then we compare the
results with actual dyads collected for evaluation. Figure 6 show some results
from the prediction model. Although the performance in sub-figures a and b is
good, it is unstable and seems to be prone to overfitting, noting the proportional

4 We utilise Glove word embeddings [14], pre-trained on tweet collections.

308 I. Inuwa-Dutse et al.

Fig. 4. Proportion of dyadic ties and network size in the data. The verified category
exhibit larger network sizes but fewer dyads in comparison to the unverified category.

Fig. 5. Dyads proportions in verified and unverified profiles

relationship between the training accuracy and the validation loss, i.e. both are
increasing. We increase the training epochs to 200 and add more layers to the
network for stability (sub-figure c). There is room for improvement when using
larger amounts of data and historical tweets from users.

Utility of Dyads in Clustering and Content Veracity: Phenomena in real
life are associated with numerous network structures and embedded communi-
ties. The social media ecosystem enables various forms of interactions among
diverse users at various levels. The high dominance of online content from influ-
ential users in Twitter makes it difficult to detect low level communities of
average users [7]. Low-level communities are a better reflection of true connec-
tivity with strong social cohesion. In this study, we show how the dyadic tie is
widespread among users in the unverified category; regarded as proxy for average
users on Twitter. The proposed approach can be extended to other social media

Analysis and Prediction of Dyads in Twitter 309

Fig. 6. Performance of the proposed model on the training and the validation set. The
performance remains stable after the first 100 epochs.

platforms that support automatic reciprocal tie once one party accepts the other
party as a friend, e.g. Facebook. In those platforms, users with dyadic ties sub-
scribe to various groups and identifying users with common subscription will
add additional layer of social cohesion.

A user with many dyadic ties can be a resourceful representation of a micro-
cosm. Such a user can be regarded as a differential entity for deriving a set of
related users. For instance, if U3 denotes a user with many dyads of order 3, 3U2

and 6U are directly related to the user. The constants and powers relate to the
user’s network size and closeness to the original user, respectively. The group
can be viewed as microcosm and can be exploited in tasks such as clustering.
In the context of content veracity, a microcosm can be useful for analysing user
groups with common online traits. Following the old adage, birds of a feather
flock together, users who spread rumours or spam are likely to be connected
together. In the future, we will explore these aspects from the perspective of
dyadic ties.

5 Conclusion

Many relevant theories on various networks and social networks have been pro-
posed and validated analytically or experimentally. Modern social media plat-
forms, such as Twitter and Facebook, enable the empirical quantification and
evaluation of social relationships among users on an unprecedented scale. Social
network theories and analytical solutions can now be tested using real social
data. We conducted an empirical analysis to understand dyads on Twitter, where
connections among users are porous, and the composition of communities is not

310 I. Inuwa-Dutse et al.

sufficiently cohesive. We began by collecting and analysing a large number of
datasets consisting of pairwise users. This deeper insight into the underlying
mechanisms in dyadic ties on Twitter will be beneficial to studies involving
tweets, as the recognition of dyads can improve clustering and content valida-
tion. We demonstrated how the recognition of dyads can improve clustering and
content validation tasks.

Due to the challenging and time-consuming task of collecting dyads on Twit-
ter, we proposed an effective deep learning prediction method that returns the
likelihood of two users engaging in a pairwise relationship. The fundamental
conclusion is that dyadic ties can be accurately predicted (if the pair of users are
socially active) enabling the identification of cohesive groups of users on Twitter.
This approach can also be applied to detect cohesive communities of users on
Twitter. Employing this strategy can limit the danger of spurious content and
allow the collection of content from legitimate users. In the future we will employ
the concept of transitivity to extend this research to include transitive users and
model how to predict those users’ behaviour.

Acknowledgements. This research work is part of the CROSSMINER Project, which
has received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 732223.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74(1), 47 (2002)

2. Arnaboldi, V., Guazzini, A., Passarella, A.: Egocentric online social networks: anal-
ysis of key features and prediction of tie strength in facebook. Comput. Commun.
36(10–11), 1130–1144 (2013)

3. Cha, M., Benevenuto, F., Haddadi, H., et al.: The world of connections and infor-
mation flow in twitter. IEEE Trans. Syst. Man Cybernet. Part A Syst. Hum. 42(4),
991–998 (2012)

4. Dunbar, R.I.: The social brain hypothesis. Evol. Anthropol. Issues News Rev.
Issues, News Rev. 6(5), 178–190 (1998)

5. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci 5(1), 17–60 (1960)

6. Granovetter, M.S.: The strength of weak ties. In: Social Networks, pp. 347–367.
Elsevier (1977)

7. Inuwa-Dutse, I.: Modelling formation of online temporal communities. In: Proceed-
ings of WWW, pp. 867–871. International WWW Conferences Committee (2018)

8. Inuwa-Dutse, I., Liptrott, M., Korkontzelos, I.: Detection of spam-posting accounts
on twitter. Neurocomputing 315, 496–511 (2018)

9. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

10. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: Proceedings of WWW, pp. 591–600. ACM (2010)

11. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In:
Proceedings of NIPS, pp. 539–547 (2012)

http://arxiv.org/abs/1408.5882

Analysis and Prediction of Dyads in Twitter 311

12. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in
social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

13. Newman, M.E., Park, J.: Why social networks are different from other types of
networks. Phys. Rev. E 68(3), 036122 (2003)

14. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)

15. Scott, J.: Social network analysis. Sociology 22(1), 109–127 (1988)
16. Wang, W.Y.: “liar, liar pants on fire”: a new benchmark dataset for fake news

detection. arXiv preprint arXiv:1705.00648 (2017)
17. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature

393(6684), 440 (1998)
18. Weng, J., Lim, E.P., Jiang, J., et al.: Twitterrank: finding topic-sensitive influential

twitterers. In: Proceedings of WSDM, pp. 261–270. ACM (2010)
19. Yang, J., Leskovec, J.: Defining and evaluating network communities based on

ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)
20. Yoshida, T.: Toward finding hidden communities based on user profile. J. Intell.

Inf. Syst. 40(2), 189–209 (2013)
21. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text

classification. In: Proceedings of NIPS, pp. 649–657 (2015)

http://arxiv.org/abs/1705.00648

Mathematical Expression Extraction
from Unstructured Plain Text

Kulakshi Fernando(B), Surangika Ranathunga, and Gihan Dias

Department of Computer Science and Engineering, University of Moratuwa,
Katubedda 10400, Sri Lanka

{kulakshif,surangika,gihan}@cse.mrt.ac.lk

Abstract. Mathematical expressions are often found embedded inline
with unstructured plain text in the web and documents. They can
vary from numbers and variable names to average-level mathematical
expressions. Traditional rule-based techniques for mathematical expres-
sion extraction do not scale well across a wide range of expression types,
and are less robust for expressions with slight typos and lexical ambigui-
ties. This research employs sequential, as well as deep learning classifiers
to identify mathematical expressions in a given unstructured text. We
compare CRF, LSTM, Bi-LSTM with word embeddings, and Bi-LSTM
with word and character embeddings. These were trained with a dataset
containing 102K tokens and 9K mathematical expressions. Given the
relatively small dataset, the CRF model out-performed RNN models.

Keywords: Mathematical expression extraction · Sequential tagging ·
Information extraction

1 Introduction

Simple mathematical expressions in questions and answers of types arithmetic,
linear algebra, etc can be typed inline with text. When such mathematical
expressions are added in structured format to documents, for example using
Tex or XML, extracting them out from the ordinary text is a trivial process.
However, sometimes text containing mathematical expressions in the web are
unstructured. For example, a math related content in an email, or a mathemat-
ical problem submitted into an educational forum may contain mathematical
expressions embedded in plain text. ‘If A and B are disjointed sets, how can you
find n (A union B)? ’ is such a problem submitted to the well-known educational
forum, Quora.com1. Therefore, any system (e.g. intelligent search engines) that
needs to understand the math in a document, answer generation systems for
mathematical problems expressed in natural language (math word problems), or
answer grading systems in mathematics should be able to recognize unstructured
mathematical expressions appearing inline with text.
1 https://www.quora.com/If-A-and-B-are-disjointed-sets-how-can%2Dyou-find-n-

A-union-B.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 312–320, 2019.
https://doi.org/10.1007/978-3-030-23281-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_26&domain=pdf
https://www.quora.com/If-A-and-B-are-disjointed-sets-how-can%2Dyou-find-n-A-union-B
https://www.quora.com/If-A-and-B-are-disjointed-sets-how-can%2Dyou-find-n-A-union-B
https://doi.org/10.1007/978-3-030-23281-8_26

Mathematical Expression Extraction from Unstructured Plain Text 313

There is much research conducted to answer and grade math word problems
in elementary and secondary level mathematical domains such as arithmetic,
algebra, and geometry. However, most of the time the input to these systems is
expected to be annotated for mathematical expressions [9,14]. When a lay person
such as a teacher or a high school student is preparing the content, this is an
overhead. If user interfaces are present, these systems [3] require all mathematical
expressions to be typed using tools based on Tex or XML. This is an extra effort
for simple mathematical expressions that can be typed inline as other text. Such
difficulties can be avoided by automatically identifying mathematical expressions
from other text in math problems.

Some systems read mathematical expressions as plain text and use regular
expressions (regexes) to extract them [4,15]. Fernando et al. [4] focus on auto-
matically solving math word problems related to set theory, and show that 75%
of the errors in their system occurs due to the incapability of capturing unex-
pected expression formats. Therefore, in the presence of unseen expression types,
typing errors, and lexical ambiguities, regexes can be less accurate and require
more rules to identify relevant text. Tian et al. [16] use a heuristics and vocab-
ulary based filtering mechanism to separate expressions from other text and an
Hidden Markov Model (HMM) to verify text as expressions prior to extraction.
They show that HMM perform well with large amounts of data, at the expense
of a long training time. Therefore, it is worth exploring alternative techniques;
especially techniques that do not require predefined rules or states, to extract
mathematical expressions.

This research presents a mechanism to extract simple mathematical expres-
sions that appear in-line with other non-mathematical (natural language) text2.
The task of extracting mathematical expressions is mapped into a sequence
tagging task, where space-separated tokens are tagged as expressions and other
text using IOB (Inside-Outside-Beginning) format. Experiments were conducted
using Conditional Random Fields (CRF), Long-Short Term Memory (LSTM)
networks with word embeddings (we refer to this setting as W-LSTM hereafter),
Bidirectional-LSTM (Bi-LSTM) with word embeddings (we refer this as W-Bi-
LSTM), and Bi-LSTM with both word and character embeddings (we refer to
this model as W-CH-Bi-LSTM). Experiments with CRF showed that character
level properties of the text contribute noticeably to increasing the accuracy of
expression extraction.

2 Challenges in Extracting Mathematical Expressions
in Plain Text

The main challenge in identifying mathematical expressions from other text is
semantic level ambiguities between expressions and non-expression text. One
of the main semantic level ambiguities is variable names used in mathematical
expressions. For example, the token ‘a’ in ‘Let a be a positive integer’ is both

2 The code and data is available here https://github.com/Kulakshi/math-expression-
extraction.

https://github.com/Kulakshi/math-expression-extraction
https://github.com/Kulakshi/math-expression-extraction

314 K. Fernando et al.

a mathematical expression and a stop word. Another ambiguity is the use of a
sequence of numbers in contrast to a list of some numbers. For example in the
text “In the sequence 7, 14, 28, x, 112.. what is the value of x?”, the mathemat-
ical expression is the sequence:‘ 7, 14, 28, x, 112..’ whereas in “Find arithmetic
mean of the numbers in the list 8 − a, 8, 8 + a”, mathematical expressions are
individual expressions separated by commas.

Text copied from examination papers or tutorials often include question num-
bers as digits, roman numbers or letters that can be misinterpreted as mathe-
matical expressions. Years, table or figure labels, and abbreviated names for
irrelevant entities are few other occasions that can be misinterpreted as mathe-
matical expressions.

When tokenizing text combined with mathematical expressions, they may
get split into different combinations when spaces are considered as the delimiter.
For example, if the expression is ‘x + 1’, we get three tokens. If the same is
written as ‘x + 1’ we get only two tokens. Another important fact is the start
and end of a mathematical expression. An expression that contains words such
as ‘A = total area of five circles of radius r’, or an expression with typos like
‘set A = {Students of grade five and set B = {Girls in grade five}’ do not have
a clear lexical separation from the usual text.

3 Related Work

Fernando et al. [4] extracted set theory related mathematical expressions from
the unstructured plain text using regexes. However, they claim that regexes
fail when unexpected expression formats are met and it is the main reason for
reducing the accuracy of the system. Seo et al. [15] also extracted geometry
related mathematical expressions using regexes.

Work of Tian et al. [16] is the most relevant research we could find that
focused on extracting mathematical expressions in general from unstructured
plain text. They eliminate other text in a document using heuristics and vocab-
ulary based filtering. An HMM with 8 hidden states denoting parts of mathe-
matical expressions is then used to verify filtered expressions before extraction.
They mapped mathematical symbols that are observable in the text into these
hidden states. They trained the model with 13,423 expressions and achieved over
89% accuracy and 77% recall. However, the dataset is not available to be used
to compare their results empirically.

HMMs, CRFs [10], Convolution networks and Recurrent Neural Networks
(RNNs) are well-known for sequence classification for decades. LSTM networks
[7] reduce the vanishing gradient problem present in standard RNNs and perform
well for long sequences of data. Bi-LSTM increases the accuracy of sequence
tagging by considering both past and future inputs as used in the work of Graves
et al. [6]. There is plenty of research [2,8] that successfully used LSTM networks
with different varieties and combinations for the sequential classification task.
Many research including the work of Ling et al. [12] shows that using character
level information with LSTM networks is effective in increasing the performance

Mathematical Expression Extraction from Unstructured Plain Text 315

of language modeling. In the presence of well defined features, Nikola [13] shows
that CRF can perform as well as Bi-LSTM models in a sequential classification
task.

4 Methodology

4.1 Dataset and Pre-processing

An adequately annotated dataset for mathematical expressions was not avail-
able to use in our research. Thus we adapted the dataset provided by Task 10
of SemEval-2019, “Math Question Answering”3 and the dataset of Fernando
et al. [4]. The former dataset includes mathematical problems that belong to
closed-vocabulary algebra, open-vocabulary algebra, geometry, probability, and
data representation. Some questions that belong to multiple domains are not
categorized. Most of the mathematical expressions in this dataset were given
using LaTEX. Such expressions were converted into inline mathematical expres-
sions. For example, ‘8\times(2 ∧ 4a) = \frac{2 ∧ 2b}{2 ∧ 3}’ was converted into
8 × (2 ∧ 4a) = 2 ∧ 2b/2 ∧ 3. For now, mathematical expressions that cannot
be written along the mean-line; text that includes special scripts such as super-
scripts and subscripts are not handled in this work. The dataset of Fernando
et al. [4] consists of elementary set theory problems that include both text and
expressions in set notation. Both the datasets were adapted for this research by
tokenizing text and annotating tokens as described next.

Text with inline expressions was then tokenized and tagged in IOB format
for expressions and other texts to prepare the dataset. For example, the problem
If a − 5 = 0, what is the value of a + 5? is tagged as O B-EXP I-EXP I-EXP
I-EXP I-EXP O O O O O B-EXP I-EXP I-EXP O.

Dataset statistics are shown in Table 1 (‘elementary set theory’ category con-
tains problems of the dataset of Fernando et al. [4]).

Table 1. Statistics of problems in the dataset

Category #problems #expressions #tokens #expression tokens

Closed-algebra 1088 3832 29541 10886

Open-algebra 360 1059 16332 1372

Geometry 702 2351 22677 4288

Other 86 124 3634 156

Uncatagorized 528 1717 22796 3219

Elementary set theory 487 2419 31380 16308

Cetintas et al. [1] show that traditional text pre-processing tasks such as
stemming and stop word removal affect negatively in mathematical text catego-
rization tasks since math related information are lost with such pre-processing
3 https://github.com/allenai/semeval-2019-task-10.

https://github.com/allenai/semeval-2019-task-10

316 K. Fernando et al.

approaches. For example, words such as ‘a’, ‘than’ and words with suffixes such
as ‘rd’, ‘th’ are important to identify math related text. This is relevant to
mathematical expression extraction as well, given the ambiguities (see Sect. 2).
Therefore we avoided such text pre-processing methods.

Some expressions in the dataset had typos. Specially equations converted
from LaTEX to plain text included syntactical errors. They were kept intact since
the purpose of this research includes identifying expressions that might contain
errors.

4.2 Experiment Setup

All models were trained using 10-fold cross validation. The CRF model was
trained by using unigrams as the baseline feature. Other features in Table 2
were added incrementally to evaluate the effectiveness of each feature set. Fea-
tures that contribute effectively to the model were selected using the validation
dataset. Some features (shown in non-italic letters in Table 2) were adapted
from the work of Finkel et al. [5] and Huang et al. [8]. These features were
originally used for normal NER tagging. A few more features were added that
seems relevant to mathematical expressions. These features are distinguished
from aforementioned features by the italic font in Table 2).

Table 2. Features used for CRF divided into categories. (The left most column contains
a label for each set of features)

Context features

A Uni-grams, bi-grams, tri-grams and their frequencies

Token level features

B Whether the token is a single character

C Case related features (all upper case, all lower case, starts with capital,
contains non-initial capital letters)

D Features related to character type (contains only digits, contains math
operators, contains bracket delimiters, contains only letters, is a mix of
digits and letters, contains punctuation marks, word shape, word shape
summarization [8])

E Last two and last three suffixes

Semantic level features

F POS tag of the token and surrounding tokens

This being the first research conducted for expression extraction using RNNs,
we used vanilla LSTM and Bi-LSTM model architectures for first two settings
(W-LSTM and W-Bi-LSTM), which comprised an word embedding layer where
the 50-length output is subjected to a 10% dropout to avoid overfitting, one
LSTM layer and an output layer with softmax normalization. The third setting

Mathematical Expression Extraction from Unstructured Plain Text 317

(W-CH-Bi-LSTM) comprises of an additional embedding layer with an encoder
for characters, concatenated with word embeddings [11]. The model architecture
is shown in Fig. 1. Prior to the training, we experimented with different opti-
mizers (standard SGD, Adam and RMSProp), dropout rates (10%, 20%, 50%),
different batch sizes (10, 32, 50 & 100) and epochs (10, 20, 50, 100, 500 and
1000), and selected batch size of 10, 10% dropout and RMSProp optimizer with
0.001 learning rate to train the models.

Fig. 1. High level architecture of W-CH-Bi-LSTM model. Source: [8,11]

5 Evaluation and Results

We need to calculate the accuracy of extracting complete mathematical expres-
sions. Given the set of expected expressions E, and the set of predicted expres-
sions P , true-positives (TP), false-positives (FP) and false-negatives (FN) were
calculated for each model as follows.

TP = {Expressions in both E and P }
FP = {Expressions in P but not in and E }
FN = {Expressions in E but not in P }

Figure 2 shows the results of the CRF model for cumulatively added features.
When considering the CRF model, case related features and character-based fea-
tures such as whether there are digits in the token, whether only letters contain
in the token, and the suffix of the token increased the performance of expression
extraction in a significant rate.

Table 3 shows the comparison of the best results of all the models. The
W-Bi-LSTM model performs better than other RNN models. Since the dataset
is small-sized, the CRF model performs better than RNN models.

When analysing errors, the words such as ‘Mickey-Mouse’ had been predicted
as expressions by RNN models due to non alphanumeric symbols. In addition,

318 K. Fernando et al.

Fig. 2. CRF performance against cumulatively added feature sets from the set A to
set G listed in Table 2

Table 3. Accuracy, Recall, Precision and F1-score of best performance of all models

Model Acc. Recall Prec. F1

CRF 0.875 0.937 0.929 0.933

W-LSTM 0.805 0.914 0.870 0.892

W-Bi-LSTM 0.824 0.917 0.890 0.903

W-CH-Bi-LSTM 0.811 0.916 0.875 0.895

the models exhibited poor performance in differentiating related numbers to
solve the problem and unrelated numbers such as years in the text. The errors
suggest that more semantic level features such as POS could help in increasing
the accuracy.

6 Conclusion

In this research, the problem of extracting mathematical expressions from the
unstructured plain text was modeled as a sequential text classification problem,
an empirical evaluation was carried out on the state-of-the-art classifiers and
a manually annotated dataset suitable to identify mathematical expressions in
the text is presented. Given the dataset is small-sized, the achieved results are
justifiable. While CRF performed the best, Bi-LSTM networks performed better
than LSTM network.

LSTM with a CRF in the output layer helps to increase the accuracy of a
sequential tagging task since it considers the possible transitions between out-
put labels [8]. We hope to experiment with this in the future. After extracting
mathematical expressions, it is useful to identify syntactically correct expres-
sions separately. We plan to develop a rule-based parser to recognize any errors

Mathematical Expression Extraction from Unstructured Plain Text 319

in filtered expressions, which can be used to give feedback to the user in end-user
applications such automatic math problem solvers and e-learning systems.

Acknowledgment. This research was funded by a Senate Research Committee (SRC)
Grant of the University of Moratuwa and LK Domain Registry.

References

1. Cetintas, S., Si, L., Xin, Y.P., Zhang, D., Park, J.Y.: Automatic text categorization
of mathematical word problems. In: FLAIRS Conference (2009)

2. Chen, T., Xu, R., He, Y., Wang, X.: Improving sentiment analysis via sentence
type classification using BiLSTM-CRF and CNN. Expert. Syst. Appl. 72, 221–230
(2017)

3. Erabadda, B., Ranathunga, S., Dias, G.: Automatic identification of errors in multi-
step answers to algebra questions. In: 2017 IEEE 17th International Conference on
Advanced Learning Technologies (ICALT), pp. 215–219. IEEE (2017)

4. Fernando, K., Ranathunga, S., Dias, G.: Answer generation for set type math word
problems. In: Proceedings of the 2018 International Conference of Advances in ICT
for Emerging Regions (2018)

5. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, pp. 363–370. Asso-
ciation for Computational Linguistics (2005)

6. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991 (2015)

9. Kadupitiya, J., Ranathunga, S., Dias, G.: Automated assessment of multi-step
answers for mathematical word problems. In: 2016 Sixteenth International Confer-
ence on Advances in ICT for Emerging Regions (ICTer), pp. 66–71. IEEE (2016)

10. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data (2001)

11. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

12. Ling, W., et al.: Finding function in form: compositional character models for open
vocabulary word representation. arXiv preprint arXiv:1508.02096 (2015)

13. Ljubešić, N.: Comparing CRF and LSTM performance on the task of morphosyn-
tactic tagging of non-standard varieties of South Slavic languages. In: Proceedings
of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (Var-
Dial 2018), pp. 156–163 (2018)

14. Matsuzaki, T., Ito, T., Iwane, H., Anai, H., Arai, N.H.: Semantic parsing of pre-
university math problems. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp.
2131–2141 (2017)

http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1603.01360
http://arxiv.org/abs/1508.02096

320 K. Fernando et al.

15. Seo, M., Hajishirzi, H., Farhadi, A., Etzioni, O., Malcolm, C.: Solving geometry
problems: Combining text and diagram interpretation. In: Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pp. 1466–1476
(2015)

16. Tian, X., Bai, R., Yang, F., Bai, J., Li, X.: Mathematical expression extraction in
text fields of documents based on HMM. J. Comput. Commun. 5(14), 1 (2017)

A Study on Self-attention Mechanism
for AMR-to-text Generation

Vu Trong Sinh(B) and Nguyen Le Minh(B)

Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
{sinhvtr,nguyenml}@jaist.ac.jp

Abstract. Introduced by Vaswani et al., transformer architecture, with
the effective use of self-attention mechanism, has shown outstanding per-
formance in translating sequence of text from one language to another.
In this paper, we conduct experiments using the self-attention in con-
verting an abstract meaning representation (AMR) graph, a semantic
representation, into a natural language sentence, also known as the task
of AMR-to-text generation. On the benchmark dataset for this task, we
obtain promising results comparing to existing deep learning methods in
the literature.

Keywords: Abstract meaning representation · Self attention ·
Text generation

1 Introduction

Abstract Meaning Representation (AMR) [5] is defined as a semantic representa-
tion language that encodes the core meaning of a sentence into a graph structure.
This graph is rooted, directed, edge-labeled and leaf-labeled. Every vertex and
edge of the graph are labeled according to the sense of the words in a sentence.
AMRs can be represented in several ways: graph structure for the computer to
store in its memory, or Penman notation for human to read and write with ease.
We give an example of AMR annotation for the sentence “From among them,
pick out 50 for submission to an assessment committee to assess”. As shown
in Table 1, the nodes (e.g. “thing”, “pick-out-03”, “access-01”) represent con-
cepts, and the edges (e.g. “:arg0”, “:quant”) represent relations between those
concepts.

AMR has been applied as an intermediate meaning representation for solving
various tasks in natural language processing (NLP) including machine transla-
tion [3], text summarization [6], event extraction [11], machine comprehension
[12]. To gain more success in those applications, the problem of AMR parsing
and AMR generation has to be solved effectively. While many approaches have
been proposed for the text-to-AMR parsing task, the number of published AMR-
to-text generation is comparably small. The generation task is non-trivial since
AMR graphs abstracted away tense, number as well as functional words such
as prepositions, articles. Recent methods for generating text from AMR based
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 321–328, 2019.
https://doi.org/10.1007/978-3-030-23281-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_27&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_27

322 V. T. Sinh and N. L. Minh

on the success of deep learning encoder-decoder architecture, in which the input
for the encoder side could be a sequence of AMR Penman notation or a graph
structure.

Table 1. Abstract meaning representation for the sentence “From among them, pick
out 50 for submission to an assessment committee to assess”

they

pick-out-03

50

thing

submit-01

committee assess-01

assess-01

:arg1 :arg2

:quant

:arg1

:arg1-of

:arg2 :arg3

:arg0

:arg0-of

(p / pick-out-03
 :ARG1 (t / thing :quant 50
 :ARG1-of (s / submit-01
 :ARG2 (c / committee
 :ARG0-of (a / assess-01))
 :ARG3 (a2 / assess-01
 :ARG0 c
 :ARG1 t)))
 :ARG2 (t2 / they))

Inspired by the transformer network introduced by Vaswani et al. [17] that
achieved outstanding performance on machine translation, we investigate the use
of its core component, the self-attention mechanism, applying as a incorporated
component to the encoder-decoder architecture in AMR generation problem.
Our experimental results show comparative BLEU score on the newest release
AMR dataset LDC2017T10.

2 Related Works

In this section, we give a short summary of previous methods in AMR genera-
tion using deep learning approaches. Pourdamghani et al. [10] was the first one
who apply machine translation approach in AMR generation. They converted
AMR graphs, which were written in Penman notation form, to a sequence of
text through a linearization process. With these pairs of linearized AMRs and
corresponding sentences, they considered AMR generation task as a machine
translation problem and implemented a phrase-based model to obtain the final
text.

Following this approach, Konstas et al. [4] proposed the first neural model
for both the AMR parsing and AMR generation problem (NeuralAMR). The
authors used an encoder-decoder model built upon a long short term mem-
ory (LSTM) neural network. As this architecture required a large set of train-
ing data to achieve good results, Konstas et al. (2017) used their own AMR
parser to automatically annotate millions of unlabeled sentences before training
their main system; the obtained AMR graphs are then used as additional train-
ing data. To deal with the problem of data sparsity addressing in Peng et al.

A Study on Self-attention Mechanism for AMR-to-text Generation 323

work [8], NeuralAMR adopt anonymization algorithm. In detail, they first
replaced the subgraphs that represent open-class tokens (such as “country :name
name :op1 United :op2 States”) with predefined placeholders (such as) before
decoding, and then recovered the corresponding surface tokens (such as “United
States”) after decoding.

Different from the rule-based anonymization algorithm above, Song et al.
[16] incorporated a char-level LSTM over character of input tokens and a copy
network [2] on top of the decoder side. This architecture also helps generate
the named entities, dates and numbers effectively. Song et al. also proposed a
novel graph to sequence model (Graph2Seq), in which the authors encoded the
AMR graph with a bidirectional LSTM encoder, performing through a graph-
state transition. This graph encoder helped prevent information loss through the
linearization process, especially when the graph become large. With the same
amount of training data as NeuralAMR, this graph to sequence model achieved
the state of the art result on a benchmark test set.

3 Incorporating the Self-attention Mechanism

3.1 The Baseline Model

We take both the sequence to sequence and graph to sequence model in Song
et al. work [16] as our baseline model. The input for these models could be either
an AMR graph or its linearized sequence from Penman notation. We keep using
the char-level LSTM over input tokens as well as the copy network to tackle the
data sparsity problem.

3.2 Self Attention Sequence to Sequence Model

Given an AMR graph in Penman notation, we use the linearization algorithm
of Konstas et al. [4] to obtain a sequence of tokens v1, ... , vn, where n is the
number of tokens. All variables and verb senses are removed from the annotation
so that all vertices in the original graph could be considered as a normal word.
For instance, the AMR notation shown in Table 1 can be linearized as follow:
“pick-out :arg1 (thing :quant 50 :arg1-of (submit :arg2 (committee :arg0-of
assess) :arg3 (assess :arg0 committee :arg1 thing))) :arg2 they”.

We follow the transformer architecture in Vaswani et al. work [17] to build
the lower layers for our sequence to sequence model. Specifically, after processing
the source tokens with two sub-layers: self-attention followed by a position-wise
feed forward layer; and the target tokens with three sub-layers: self-attention
followed by vanilla attention, followed by a position-wise feed forward layer. The
self-attention outputs are sent to a bidirectional LSTM similar to the model
designed in Song et al. work. The self-attention layers in the decoder side uses
masking to prevent a given output position from incorporating information about
future output positions during training.

324 V. T. Sinh and N. L. Minh

In both the encoder and decoder side, self-attention sub-layers employ h
attention heads. To form the sub-layer output, results from each head are con-
catenated and a parameterized linear transformation is applied. Each attention
head operates on an input sequence of tokens, v = (v1, ..., vn) of n elements
where vi ∈ Rdv , and computes a new sequence z = (z1, ..., zn) of the same length
where zi ∈ Rdz .

assess

vk-2 vk-1 vk vk+1

:arg0 committe :arg1

Position
Encoding

Self
Attention

Feed
Forward

+

wk-1 wk wk+1

an assessment committee

Position
Encoding

Masked
Self Attention

Self
Attention

+

Source AMR annotation Target sentence

Feed
Forward

Bidirectional
LSTM

Bidirectional
LSTM

Attention [c, s, p]

Softmax

Output word

N_blocks

Fig. 1. AMR Sequence to sequence model incorporated with self-attention mechanism

The whole model architecture is represented in Fig. 1. When generating the
t-th word, the decoder relies on the attention memory, the previous hidden state
from the LSTM layers, the probability distribution to decide copying the word
from source tokens or generating a new one (the value c, s and p in Fig. 1,
respectively).

3.3 Self Attention Graph to Sequence Model

Dealing with the graph structure from AMR, we adopt the graph encoder
in Song et al. [16]. For a graph G = {V,E}, We represent each node vi ∈ V
by a hidden state vector hi. The state of the graph can thus be represented
as g = {hi}. Information exchange between a current node vi and all nodes
connected to it are captured by a sequence of state transitions {g0, g1, ..., gk}. In
particular, the transition from gt−1 to gt consists of a hidden state transition for

A Study on Self-attention Mechanism for AMR-to-text Generation 325

h1
t-1

h2
t-1

h4
t-1

h3
t-1

h5
t-1

h6
t-1

h1
t

h2
t

h4
t

h3
t

h5
t

h6
t

Fig. 2. Transition from graph state gt−1 to gt, where information from the current
node h3

t−1, its incoming node h2
t−1 and outgoing nodes h4

t−1, h
5
t−1 are captured and

transferred to h3
t

each node hi
t−1 to hi

t. Figure 2 shows a demonstration of graph state transition,
detailed formulas can be found in the original paper. After k iterations, we obtain
the last hidden state of the graph, containing all the hidden vectors of nodes in
it, where k is the maximum graph diameter in the dataset. These node hidden
vectors are then passed through the self-attention encoder similar to Sect. 3.2.

4 Experiments and Results

4.1 Dataset and Hyper-parameter Settings

We use the latest release AMR corpus (LDC2017T10) as our experimental
dataset, which contains 36,521 instances for training, 1,368 for development and
1,371 for test. Each instance contains an English sentence and an AMR graph
in Penman notation. Because of lacking hardware resources, we do not conduct
our experiments on silver data sampled from external corpus (like NeuralAMR
and Graph2Seq using Gigaword corpus).

Table 2. Hyper-parameter settings

Word vocab size 27,876

Edge vocab size 119

Edge label dimension 100

dmodel 300

Nheads 6

Nblocks 6

Feed forward dimension 1200

In the experiments with sequence to
sequence model, the vocabulary is shared
between the encoder and the decoder. The
word embeddings are initialized from Glove
pretrained word embeddings [9] with embed-
ding size is set to 300. For the graph to
sequence experiments, we extract the edge
label vocabulary to be used in the graph
encoder. All the baseline hyper-paramenters
for graph to sequence and sequence to
sequence model are kept the same as in [16].
Other hyper-parameters for self-attention mechanism as well as dataset infor-
mation can be found in Table 2. Following existing work, we evaluate the results
with the BLEU metric [7].

326 V. T. Sinh and N. L. Minh

4.2 Experimental Results

We compare the performance of self-attention incorporated models with the
baseline model as well as other works in the literature. JAMR-generator
(alignment-based) [1] and PBMT (phrase-based) [10] were trained on the old
AMR corpus LDC2014T12 with a small number of training samples. TSP [15]
(graph-based), SNRG (graph-based) [14], NeuralAMR [4] and Graph2Seq [16]
use a newer version, LDC2015E86. In our experiments, we train our models with
the newest release AMR corpus, LDC2017T10, which keeps the same test set as
LDC2015E86, but a bit less than the splitted test set in LDC2014T12 (1,400
samples). Since Song et al. did not publish their results of sequence to sequence
model trained on gold data only, we use the default configuration to train a
new one on LDC2017T10 (Seq2Seq). Table 3 shows the BLEU scores of all the
models on the test set.

From the result table, it can be recognized that Selfatt+Seq2Seq outperforms
the baseline sequence to sequence model with nearly 3 BLEU score increased.
This helps prove the effectiveness of incorporating the self-attention mechanism
with the basic sequence to sequence model in the AMR generation task. How-
ever, combining the default transformer architecture with the graph to sequence
approach does not bring high quality performance when the Selfatt+Graph2Seq
obtains the slightly lower score than original Graph2Seq model. This result is
probably due to the position encoding used in our architecture, which is naturally
suitable for sequence of words rather than graph nodes.

Comparing to the full Graph2Seq model, NeuralAMR model as well as other
traditional methods, our BLEU scores are still lower by a large margin. An
experiment with hugh amount of training data and a fine tuning strategy must
be conducted to have a more significant improvement (e.g Graph2Seq obtains
more than 10 BLEU scores improvement after this process).

Table 3. BLEU scores on test set

Model Corpus Number of BLEU score

Training samples

Seq2Seq LDC2017T10 36,521 15.49

Selfatt + Seq2Seq (Ours) LDC2017T10 36,521 18.36

Graph2Seq LDC2017T10 36,521 20.761

Selfatt + Graph2Seq (Ours) LDC2017T10 36,521 19.45

Graph2Seq LDC2015E86 + Gigaword 16,833 + 2M 33.0

NeuralAMR LDC2015E86 + Gigaword 16,833 + 2M 32.3

TSP LDC2015E86 16,833 22.4

SNRG LDC2015E86 16,833 25.6

JAMR-generator LDC2014T12 10,000 22.0

PBMT LDC2014T12 10,000 26.9
1We train the Graph2Seq model with the same setting as the publish source code, but
the BLEU score is not as high as reported in the original paper (20.76 vs 22.7)

A Study on Self-attention Mechanism for AMR-to-text Generation 327

5 Conclusions and Future Works

In this paper, we investigated the use of self-attention mechanism in generating
natural language from AMR graphs. We incorporated this mechanism with both
sequence to sequence and graph to sequence baseline model. Our models obtained
promising results compared to other deep learning approaches, but still far from
the state of the art model due to the lack of training time.

For the future work, we would like to explore the use of pretrained model
such as BERT, ELMO to have a better embedding representation for the input
tokens. We also aim to build an graph to sequence transformer model for AMR
generation by applying the relative position encoding introduced by Shaw et al.
recently [13] as a replacement to the current positional encoding.

References

1. Flanigan, J., Dyer, C., Smith, N.A., Carbonell, J.: Generation from abstract mean-
ing representation using tree transducers. In: Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 731–739. Association for Computa-
tional Linguistics (2016). https://doi.org/10.18653/v1/N16-1087, http://aclweb.
org/anthology/N16-1087

2. Gu, J., Lu, Z., Li, H., Li, V.O.: Incorporating copying mechanism in sequence-to-
sequence learning. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, Long Papers, vol. 1, pp. 1631–1640. Association for
Computational Linguistics (2016). https://doi.org/10.18653/v1/P16-1154, http://
aclweb.org/anthology/P16-1154

3. Jones, B., Andreas, J., Bauer, D., Moritz Hermann, K., Knight, K.: Semantics-
based machine translation with hyperedge replacement grammars. In: 24th Inter-
national Conference on Computational Linguistics - Proceedings of COLING 2012:
Technical Papers, pp. 1359–1376, December 2012

4. Konstas, I., Iyer, S., Yatskar, M., Choi, Y., Zettlemoyer, L.: Neural AMR:
Sequence-to-sequence models for parsing and generation. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics, Long
Papers, vol. 1, pp. 146–157. Association for Computational Linguistics (2017).
https://doi.org/10.18653/v1/P17-1014, http://aclweb.org/anthology/P17-1014

5. Banarescu, L., et al.: Abstract meaning representation for sembanking. In: Pro-
ceedings of the 7th Linguistic Annotation Workshop and Interoperability with
Discourse, pp. 178–186 (2013)

6. Liu, F., Flanigan, J., Thomson, S., Sadeh, N., Smith, N.A.: Toward abstractive
summarization using semantic representations. In: NAACL, pp. 1077–1086 (2015)

7. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of 40th Annual Meeting of
the Association for Computational Linguistics, pp. 311–318. Association for Com-
putational Linguistics, Philadelphia, July 2002. https://doi.org/10.3115/1073083.
1073135, https://www.aclweb.org/anthology/P02-1040

https://doi.org/10.18653/v1/N16-1087
http://aclweb.org/anthology/N16-1087
http://aclweb.org/anthology/N16-1087
https://doi.org/10.18653/v1/P16-1154
http://aclweb.org/anthology/P16-1154
http://aclweb.org/anthology/P16-1154
https://doi.org/10.18653/v1/P17-1014
http://aclweb.org/anthology/P17-1014
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/P02-1040

328 V. T. Sinh and N. L. Minh

8. Peng, X., Wang, C., Gildea, D., Xue, N.: Addressing the data sparsity issue in
neural AMR parsing. In: Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics, Long Papers, vol. 1,
pp. 366–375. Association for Computational Linguistics (2017), http://aclweb.org/
anthology/E17-1035

9. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word rep-
resentation. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1532–1543. Association for Compu-
tational Linguistics (2014). https://doi.org/10.3115/v1/D14-1162, http://aclweb.
org/anthology/D14-1162

10. Pourdamghani, N., Knight, K., Hermjakob, U.: Generating English from abstract
meaning representations. In: Proceedings of the 9th International Natural
Language Generation Conference, pp. 21–25. Association for Computational
Linguistics (2016). https://doi.org/10.18653/v1/W16-6603, http://aclweb.org/
anthology/W16-6603

11. Rao, S., Marcu, D., Knight, K., Daumé III, H.: Biomedical event extraction using
abstract meaning representation. BioNLP 2017, 126–135 (2017)

12. Sachan, M., Xing, E.: Machine comprehension using rich semantic representations.
In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, Short Papers, vol. 2, pp. 486–492. Association for Computational Lin-
guistics (2016). https://doi.org/10.18653/v1/P16-2079, http://www.aclweb.org/
anthology/P16-2079

13. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position represen-
tations. In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technolo-
gies, (Short Papers), vol. 2 pp. 464–468. Association for Computational Linguis-
tics (2018). https://doi.org/10.18653/v1/N18-2074, http://aclweb.org/anthology/
N18-2074

14. Song, L., Peng, X., Zhang, Y., Wang, Z., Gildea, D.: AMR-to-text generation
with synchronous node replacement grammar. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, Short Papers, vol. 2, pp.
7–13. Association for Computational Linguistics (2017). https://doi.org/10.18653/
v1/P17-2002, http://aclweb.org/anthology/P17-2002

15. Song, L., Zhang, Y., Peng, X., Wang, Z., Gildea, D.: AMR-to-text generation as a
traveling salesman problem. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2084–2089. Association for Compu-
tational Linguistics (2016). https://doi.org/10.18653/v1/D16-1224, http://aclweb.
org/anthology/D16-1224

16. Song, L., Zhang, Y., Wang, Z., Gildea, D.: A graph-to-sequence model for AMR-
to-text generation. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, Long Papers, vol. 1, pp. 1616–1626. Association for
Computational Linguistics (2018). http://aclweb.org/anthology/P18-1150

17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

http://aclweb.org/anthology/E17-1035
http://aclweb.org/anthology/E17-1035
https://doi.org/10.3115/v1/D14-1162
http://aclweb.org/anthology/D14-1162
http://aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/W16-6603
http://aclweb.org/anthology/W16-6603
http://aclweb.org/anthology/W16-6603
https://doi.org/10.18653/v1/P16-2079
http://www.aclweb.org/anthology/P16-2079
http://www.aclweb.org/anthology/P16-2079
https://doi.org/10.18653/v1/N18-2074
http://aclweb.org/anthology/N18-2074
http://aclweb.org/anthology/N18-2074
https://doi.org/10.18653/v1/P17-2002
https://doi.org/10.18653/v1/P17-2002
http://aclweb.org/anthology/P17-2002
https://doi.org/10.18653/v1/D16-1224
http://aclweb.org/anthology/D16-1224
http://aclweb.org/anthology/D16-1224
http://aclweb.org/anthology/P18-1150

PreMedOnto: A Computer Assisted
Ontology for Precision Medicine

Noha S. Tawfik1,2(B) and Marco R. Spruit2

1 Computer Engineering Department, College of Engineering,
Arab Academy for Science, Technology, and Maritime Transport (AAST),

Alexandria 1029, Egypt
noha.abdelsalam@aast.edu

2 Department of Information and Computing Sciences, Utrecht University,
3584 CC Utrecht, The Netherlands
{n.s.tawfik,m.r.spruit}@uu.nl

Abstract. This paper proposes an ontology learning framework that
combines text mining, information extraction and retrieval. The pro-
posed model takes advantage of existing structured knowledge by reusing
terms and concepts from other ontologies. We further apply the method-
ology to create a detailed ontology for the emerging precision medicine
(PM) domain by collecting a corpus of relevant articles and mapping its
frequent terms to existing concepts. The resulting ontology consists of
543 annotated classes. The ontology was also tested for effectiveness by
applying two evaluation frameworks to validate its design and quality.
The results demonstrate that the ontology learning system is able to cap-
ture and represent the semantics of the PM domain with high precision
and significance. Moreover, the computer-assisted construction process
reduced dependency on expert knowledge. The developed PreMedOnto
ontology could be further used to enhance the potentials of other NLP
applications in the PM domain.

Keywords: Precision medicine · Data mining · Ontology reuse

1 Introduction

Ontologies are data models that transform domain’s data into machine-readable
representations to describe how a domain’s information is organized. We adopt
its original definition by Gruber as “An explicit specification of a conceptual-
ization” [13]. By definition, they capture a wide variety of rich semantics by
organizing knowledge into a hierarchy of concepts and relationships. It is con-
sidered one of the most reliable data representation models in today’s semantic
world, however, manual ontology development is an expensive task, both in terms
of time and money. Ontology learning is the process of creating new ontologies
from scratch whereas ontology population is concerned with augmenting exist-
ing ontologies with instances and properties. Both tasks require deploying effi-
cient techniques to automatically process enormous amounts of domain-specific,
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 329–336, 2019.
https://doi.org/10.1007/978-3-030-23281-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_28

330 N. S. Tawfik and M. R. Spruit

unstructured resources. While the latter task is hard, the former task is par-
ticularly challenging as computer models must closely mimic domain experts in
interpreting meanings for constructing the ontology [7] and are usually accom-
panied by efficiency and precision issues. An alternative to overcome such lim-
itations is to take advantage of existing knowledge bases, as not only it would
minimize the human factor, but it would potentially achieve better precision and
reduce redundancy [6]. Reusing contents would also guarantee a consistent rep-
resentation of domain knowledge given the quality of the source ontology. The
practice is quite established as part of the Web Ontology Language (OWL) spec-
ification and is also supported by the Open Biological and Biomedical Ontology
(OBO) Foundry [17]. This study focuses on building an ontology for the preci-
sion medicine (PM) domain. The PM approach seeks to identify the best and the
most effective practices for patients based on their genetic, environmental, and
lifestyle factors. Although the concept has been around for many years, recently
there has been an increase of public research funding and dedication to adopt
the concept into practice versus the ‘one-size-fits-all’ method. Accordingly, there
has been a substantial increase in the number of publications related to the PM
concept [22]. However, the PM domain lacks a clear and organized hierarchy of
its general, investigations, diagnostics and treatments’ terminologies. The main
contribution of this research is the compilation and development of the precision
medicine ontology (PreMedOnto). Such an ontology helps in defining and shap-
ing the precision medicine domain and its related vocabulary which improves
the understanding of the field.

2 Related Work

In the recent years, ontology has become a preferable way to represent biological
data [2]. There is a great amount of published research in the ontology engineer-
ing field, however, our survey is only limited to ontology engineering models built
for the medical domain. Casteleiro et al. was able to build an ontology for the
sepsis disease from an unannotated biomedical corpus. Their model used Latent
Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA), as well as the
neural language models Continuous Bag-of-Words (CBOW) and Skip-grams [5].
They also exploited the same model to enrich the cardiovascular diseases ontol-
ogy (CVDO) from PubMed articles. A reuse-based method was proposed by
Gedzelman et al. to construct another ontology for cardiovascular diseases [12]
using UMLS and MeSH thesaurus. Cahyani and Wasito investigated the use of
Ontology Design Patterns (ODP) to construct an Alzheimer’s Disease ontology.
Their model uses existing vocabulary and glossary to extract terms and rela-
tions from published articles and match them against the patterns [8]. Another
Alzheimer’s disease ontology was developed by Drame et al. [9], they cluster
bilingual terms from English and French corpora, according to the UMLS the-
saurus, and align them by integrating new concepts. In [16], the authors propose
a framework for updating existing medical ontologies. Their approach consists
of 4 steps: extract relevant terms, apply machine learning techniques to infer

PreMedOnto: A Computer Assisted Ontology for Precision Medicine 331

polysemy, detect the concepts related to the term using clustering algorithms
and finally, link terms to the exact positions in the ontology. Gao, Chen and
Wang also suggested a model for extending ontologies [11] and applied it to the
PHARE ontology. Their research took advantage of PMC repository to train a
word2Vec model and uses random indexing to enrich ontology labels. In [15],
Kang et al. attempted to tailor the general adverse event ontology to build spe-
cific diseases ontology (DSOAE). They used design patterns and addressed the
specifications needed for the chronic kidney disease by adding new classes, rela-
tions and properties. Another model was proposed in [14], where the authors
reused the existing GALEN ontology to build a specific ontology for the juvenile
rheumatoid arthritis disease. Their semi-automatic approach relies on extract-
ing relevant parts of the old ontology and refine them to ensure consistency
and safety so that the semantics of imported concepts are not changed. Amato
et al. [4] populated an ontology constructed by a domain expert with RDF tem-
plates extracted from medical records. Sanchez and Moreno [19] suggest a web
based approach for building medical ontologies from scratch. It uses a set of user
query words to collect web documents. Documents with the highest web search
hit counts are considered valid taxonomic specialization for the domain. Named
entities and verbs are then extracted to generate one-level taxonomy with gen-
eral terms. The next stage is non-taxonomic learning where the extracted verbs
are used as domain patterns and again used as web queries. Finally, the verb
phrase is used to link each pair of concept. In [3], Alobaidi et al. combined
UMLS thesaurus and Linked Open Data (LOD) classes to identify medical con-
cepts and associate them to their corresponding formal semantics. Shah et al.
constructed a framework based on MetaMap and SemRep to reuse terms from
SNOMED-CT ontology. They applied the framework to construct an ontology
that combines the dental and medical domain to allow better reasoning over
common knowledge [20].

3 Methods

3.1 Proposed Model

Our ontology learning methodology is based on the concept of ontology reuse,
where we adapt content from existing ontologies to model the PM domain. The
model also relies on the assumption that the concepts that must be included in
the ontology are mapped from the frequently mentioned terms present in the
domain-specific data. And their co-occurrences frequency depicts the relations
among them. To successfully achieve this goal, our proposed framework consists
of 5 phases, Fig. 1 illustrates the overall learning process overview.

Knowledge Acquisition. In our work, we used a publicly available list of PM
keywords and synonyms constructed by conducting a systematic search through
multiple web resources, including: academic, news and health websites. As this
list is manually compiled and verified, we refer to it as the PM vocab. The list is
divided into three categories: keywords and synonyms for personalized medicine,

332 N. S. Tawfik and M. R. Spruit

Fig. 1. Overview of the ontology learning framework.

keywords and synonyms for personal genomics and keywords and synonyms for
diagnostics, biomarkers and testing. More details on the creation of the vocab-
ulary could be found in [1]. In this paper we only use the last category since we
aim at modelling the PM domain from a clinical and scientific point of view. In
addition, we collected all titles and abstracts included in the PubMed repository
discussing the PM concept. All articles included in PubMed are associated with
Medical Subject Headings (MeSH) terms used for indexing articles. The search
query used was “precision medicine” [Majr], adding the [Majr] term next to the
original query restricts the search engine to return citations where the PM con-
cept is the major focus of the article. In scientific literature, medical terminology
is usually used interchangeably to describe the same concept. The MeSH entry
terms or cross-references ensure that closely related terms and synonyms are
all included when querying a certain term. In our case, the entry list has other
terms such as Personalized Medicine and Individualized Medicine. The collection
process was conducted through the Bio Python package that connects to NCBI
E-utilities to retrieve and download articles. The results are then filtered so that
all records with missing or incomplete abstract texts or in a foreign language
other than English are excluded. This resulted in a total of 5,206 articles that
serve as the PM corpus.

Knowledge Formulation. We preprocess all abstracts in the PM corpus to fil-
ter out stop words, symbols and punctuation. Due to the ambiguity of reporting
biological or clinical results, MetaMap1 was used for medical entity recognition.
The output at this stage is a set of 6,832 distinct terms and concepts from
the corpus. To guarantee precision, we do not map all terms extracted as this
could lead to ambiguity and inconsistency in representing the domain knowl-
edge. All terms mentioned more than once are ranked in descending order of
their occurrence frequencies. Extracted terms are included only if their mention
count exceeded a threshold. The threshold value is calculated as the weighted
average occurrences of terms in documents to ensure that less significant words
are removed.

Modular Reuse. In this stage, the PM vocab is used to create seed ontol-
ogy modules where terms are mapped to a set of disjoint clusters. We started
by analyzing the terms included in the PM vocab according to their relevance

1 https://metamap.nlm.nih.gov/.

https://metamap.nlm.nih.gov/

PreMedOnto: A Computer Assisted Ontology for Precision Medicine 333

and commonness. We built a symmetric matrix of cosine similarity scores for
every pair of word vectors that exist in the vocabulary. The word embeddings
model was pretrained over a set of over 10 million biomedical articles from
PubMed. The matrix was fed to a density-based spatial clustering of applica-
tions with noise (DBSCAN) clustering algorithm implemented through the Scikit
library. We opted for the DBSCAN clustering algorithm since it allows unsuper-
vised learning over data and does not require the number of clusters a priori.
This process created a total of 5 clusters. Following the creation of clusters, we
rank all terms included according to their centrality and create one module per
cluster. The top ranked concepts per cluster serve as the ontology super-classes.
The original PM vocab set contained 100 terms that refer to diagnostic and
testing procedures. Out of the 100 terms, only 73 were correctly clustered while
27 terms were regarded as noise by the clustering algorithm. Among the top
candidate terms for each cluster, 25 were mapped as parent and child classes.
Finally, we add all the non-used terms from the PM vocab to the list of concepts
extracted from the PM corpus.

Source Ontology Selection. It is critical to determine the correct ontology
that can serve as the base of the newly developed PreMedOnto. The criteria
of choosing the ontology include coverage, acceptance and semantic language
used. The NCBO ontology recommender is employed to suggest the best ontol-
ogy for each module over all 895 existing ontologies. To maximize the coverage
factor, we opted for the ontology set option which returns the best set of com-
bined ontologies. The weights configuration for the recommender scoring func-
tion was set to the default settings. The final ranking of ontologies to be reused
was: National Cancer Institute Thesaurus (NCIT)2 , Medical Subject Headings
(MeSH)3 and Interlinking Ontology for Biological Concepts (IOBC)4. From the
selected ontologies, we import all candidate classes with their ancestors, and
verify that all remaining concepts per cluster are included in the module as
child nodes. All redundant concepts in the PM vocab are removed by checking
synonyms of each imported class.

Ontology Enrichment. In the final stage, each module is enriched by assign-
ing relevant concepts extracted from the PM corpus in the knowledge formula-
tion phase. We first extract the Uniform Resource Identifier (URI) correspond-
ing to each concept. The ontofox [21] tool supports efficient ontology reuse by
extending the Minimum Information to Reference an External Ontology Term
MIREOT concept. The MIREOT approach favors selective class imports instead
of importing the ontology as a whole. The ontofox web tool takes as input the
base ontology, source terms URIs and parent classes URIs. It also allows users
to choose the appropriate settings of the import process such as importing or
omitting intermediate classes between input child and parent or deciding which
annotation properties to return.

2 https://bioportal.bioontology.org/ontologies/NCIT.
3 https://bioportal.bioontology.org/ontologies/MESH.
4 https://bioportal.bioontology.org/ontologies/IOBC.

https://bioportal.bioontology.org/ontologies/NCIT
https://bioportal.bioontology.org/ontologies/MESH
https://bioportal.bioontology.org/ontologies/IOBC

334 N. S. Tawfik and M. R. Spruit

3.2 Evaluation

Assessing the ontology output is a key factor in all ontology learning techniques.
Not only to ensure the ontology quality before referencing and adopting it in
other semantics-aware applications, but also to highlight errors and shortcom-
ings. There are two different evaluative perspectives: ontology quality and ontol-
ogy correctness. In this research, we carried out a two-fold evaluation process
to measure the effectiveness of the constructed ontology: the first experiment
assesses the ontology design whereas the second computes multiple quality fea-
tures. To detect any design error in PreMedOnto, we use OntOlogy Pitfall Scan-
ner (OOPS) online tool [18]. OOPS evaluates an OWL ontology against a cat-
alogue of common mistakes in ontology The tool produces a summary of all
pitfalls found within the ontology with extended information on each and a
label indicating its importance level. We also apply the ontology quality evalua-
tion framework (OQauRE) [10] to validate the quality of classes and axioms in
PreMedOnto. OQauRe is a quantitative method based on the original software
product quality requirements and evaluation concept. The framework computes
multiple quality characteristics including structure, quality in use, reliability,
compatibility, maintainability, operability, functional adequacy, transferability,
performance efficiency. The generated metrics are mapped to quantitative values
ranging from 1 to 5 with 3 is the minimum score and considered as accepted.

4 Results

The final output of the ontology learning process is the PreMedOnto in the
standard OWL format. A total of 543 classes imported from 3 medical ontolo-
gies. Table 1 provides a brief summary of some of its metrics. The ontology
can be accessed, viewed and downloaded from http://bioportal.bioontology.org/
ontologies/PREMEDONTO.

Table 1. Summary of the PreMedOnto metrics generated by the Protégé framework.

Metric Metric

Classes 543 Classes with a single child 111

Average number of children 3 Maximum number of children 90

Properties 10 Maximum depth 7

The obtained results of evaluating PreMedOnto against the 41 pitfalls
included in OOPS’s catalogue, show that the ontology is free from critical and
important pitfalls while there exist 3 cases of minor pitfalls. The former finding
ensures the consistency and sustainability of the ontology, while the later might
suggests corrections for better organization. The pitfalls detected are related
to missing annotations, lack of connectivity and inverse relationship declaration.
However, we find them irrelevant, as they do not threaten the functionality of the

http://bioportal.bioontology.org/ontologies/PREMEDONTO
http://bioportal.bioontology.org/ontologies/PREMEDONTO

PreMedOnto: A Computer Assisted Ontology for Precision Medicine 335

ontology. The second experiment provides quantitative indicators of the quality
of PreMedOnto. The computed scores for structure, compatibility and maintain-
ability metrics were 3.5, 4.2 and 4.5 respectively. The ontology has successfully
passed the minimal level required and is considered above average in most char-
acteristics. It is worthy to mention that each quality measure is also associated
to multiple sub-characteristics and hence indicates multiple quality aspects.

5 Conclusions

PreMedOnto is an application ontology built for the precision medicine domain
on top of gold standard biomedical ontologies. The ontology learning process
involves mining the PubMed repository to extract domain specific abstracts and
vocabulary as sources of data. The information gathered is clustered and outlined
to determine main modules. It reuses terms and concepts from NCIT, MeSH and
IOBC to construct the ontology hierarchy. The evaluations demonstrate that the
ontology content is reliable and consistent. We also plan to add a possible extra
experiment to validate the ontology utility and applicability in the PM domain.
The intended experiment involves human validation of the ontology by medical
experts through a survey of questions.

References

1. Ali-Khan, S., Kowal, S., Luth, W., Gold, R., Bubela, T.: Terminology for per-
sonalized medicine: a systematic collection terminology for personalized medicine.
Technical report (2016)

2. Alobaidi, M., Malik, K.M., Hussain, M.: Automated ontology generation frame-
work powered by linked biomedical ontologies for disease-drug domain. Comput.
Methods Programs Biomed. 165, 117–128 (2018). https://doi.org/10.1016/j.cmpb.
2018.08.010

3. Alobaidi, M., Malik, K.M., Sabra, S.: Linked open data-based framework for auto-
matic biomedical ontology generation. BMC Bioinform. 19(1), 319 (2018). https://
doi.org/10.1186/s12859-018-2339-3

4. Amato, F., Santo, A.D., Moscato, V., Picariello, A., Serpico, D., Sperli, G.: A
lexicon-grammar based methodology for ontology population for e-health applica-
tions. In: 2015 Ninth International Conference on Complex, Intelligent, and Soft-
ware Intensive Systems. pp. 521–526. IEEE, July 2015. https://doi.org/10.1109/
CISIS.2015.76

5. Arguello Casteleiro, M., et al.: Deep learning meets ontologies: experiments to
anchor the cardiovascular disease ontology in the biomedical literature. J. Biomed.
Semant. 9(1), 13 (2018). https://doi.org/10.1186/s13326-018-0181-1

6. Bontas, E.P., Mochol, M., Tolksdorf, R.: Case Studies on Ontology Reuse. Techni-
cal report

7. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: methods.
Eval. Appl. (2005). https://doi.org/10.1162/coli.2006.32.4.569

8. Cahyani, D.E., Wasito, I.: Automatic ontology construction using text corpora and
ontology design patterns (ODPs) in Alzheimer’s disease. Jurnal Ilmu Komputer
dan Informasi 10(2), 59 (2017). https://doi.org/10.21609/jiki.v10i2.374

https://doi.org/10.1016/j.cmpb.2018.08.010
https://doi.org/10.1016/j.cmpb.2018.08.010
https://doi.org/10.1186/s12859-018-2339-3
https://doi.org/10.1186/s12859-018-2339-3
https://doi.org/10.1109/CISIS.2015.76
https://doi.org/10.1109/CISIS.2015.76
https://doi.org/10.1186/s13326-018-0181-1
https://doi.org/10.1162/coli.2006.32.4.569
https://doi.org/10.21609/jiki.v10i2.374

336 N. S. Tawfik and M. R. Spruit

9. Dramé, K., et al.: Reuse of termino-ontological resources and text corpora for
building a multilingual domain ontology: an application to Alzheimer’s disease. J.
Biomed. Inform. 48, 171–182 (2014). https://doi.org/10.1016/J.JBI.2013.12.013

10. Duque-ramos, A., Duque-ramos, A., Fernández-breis, J.T., Stevens, R., Aussenac-
gilles, N.: OQuaRE: a SQuaRE-based approach for evaluating the quality of ontolo-
gies. J. Res. Pract. Inf. Technol. 43, 159 (2011)

11. Gao, M., Chen, F., Wang, R.: Improving Medical Ontology Based on Word Embed-
ding (2018). https://doi.org/10.1145/3194480.3194490

12. Gedzelman, S., Simonet, M., Bernhard, D., Diallo, G., Palmer, P.: Building an
ontology of cardio-vascular diseases for concept-based information retrieval. In:
Computers in Cardiology, 2005, pp. 255–258. IEEE (2005). https://doi.org/10.
1109/CIC.2005.1588085

13. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquisition 5(2), 199–220 (1993). https://doi.org/10.1006/KNAC.1993.1008

14. Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T., Berlanga, R.: Safe
and Economic Re-Use of Ontologies: A Logic-Based Methodology and Tool Sup-
port. Technical report

15. Kang, Y., Fink, J.C., Doerfler, R., Zhou, L.: Disease specific ontology of adverse
events: ontology extension and adaptation for chronic kidney disease. Comput.
Biol. Med. 101, 210–217 (2018). https://doi.org/10.1016/J.COMPBIOMED.2018.
08.024

16. Lossio-Ventura, J.A., Jonquet, C., Roche, M., Teisseire, M.: A Way to Automati-
cally Enrich Biomedical Ontologies. https://doi.org/10.5441/002/edbt.2016.82

17. Ochs, C., Perl, Y., Geller, J., Arabandi, S., Tudorache, T., Musen, M.A.: An empir-
ical analysis of ontology reuse in BioPortal. J. Biomed. Inform. 71, 165–177 (2017).
https://doi.org/10.1016/J.JBI.2017.05.021

18. Poveda-Villalón, M., Carmen Suárez-Figueroa, M., Ángel Garćıa-Delgado, M.,
Gómez-Pérez, A.: OOPS! (OntOlogy Pitfall Scanner!): supporting ontology evalu-
ation on-line. Technical report (2009)

19. Sánchez, D., Moreno, A.: Learning medical ontologies from the Web. Technical
report

20. Shah, T., Rabhi, F., Ray, P., Taylor, K.: A guiding framework for ontology reuse
in the biomedical domain. In: 2014 47th Hawaii International Conference on Sys-
tem Sciences, pp. 2878–2887. IEEE January 2014. https://doi.org/10.1109/HICSS.
2014.360

21. Xiang, Z., Courtot, M., Brinkman, R.R., Ruttenberg, A., He, Y.: OntoFox: web-
based support for ontology reuse. BMC Res. Notes 3(1), 175 (2010). https://doi.
org/10.1186/1756-0500-3-175

22. Yates, L.R., et al.: The european society for medical oncology (ESMO) preci-
sion medicine glossary. Ann. Oncol. 29(1), 30–35 (2018). https://doi.org/10.1093/
annonc/mdx707

https://doi.org/10.1016/J.JBI.2013.12.013
https://doi.org/10.1145/3194480.3194490
https://doi.org/10.1109/CIC.2005.1588085
https://doi.org/10.1109/CIC.2005.1588085
https://doi.org/10.1006/KNAC.1993.1008
https://doi.org/10.1016/J.COMPBIOMED.2018.08.024
https://doi.org/10.1016/J.COMPBIOMED.2018.08.024
https://doi.org/10.5441/002/edbt.2016.82
https://doi.org/10.1016/J.JBI.2017.05.021
https://doi.org/10.1109/HICSS.2014.360
https://doi.org/10.1109/HICSS.2014.360
https://doi.org/10.1186/1756-0500-3-175
https://doi.org/10.1186/1756-0500-3-175
https://doi.org/10.1093/annonc/mdx707
https://doi.org/10.1093/annonc/mdx707

An Approach for Arabic Diacritization

Ismail Hadjir1,2(&), Mohamed Abbache3(&),
and Fatma Zohra Belkredim4(&)

1 Mathematics and Computing Department, Faculty of Sciences,
Dr. Yahia Fares University of Medea, Medea, Medea Province, Algeria

hadjir.ismail@univ-medea.dz
2 Linguistics Department, Faculty of Literature,
Algiers2 University of Bouzareah, Algiers, Algeria

3 icrOKids CEO, Tianjin, China
m.abbache@yahoo.fr

4 Mathematics and Its Applications Laboratory,Faculty of Exact Sciences
and Computing, Hassiba Ben Bouali University of Chlef,

Ouled Fares, Chlef Province, Algeria
f.belkredim@univ-chlef.dz

Abstract. Modern Standard Arabic (MSA) contains optional diacritical marks
(diacritics, in Arabic harakat), which became less used in Arabic books,
newspapers and other written media. Diacritics are very important for readability
and understandability of texts. Their absence causes critical problems that add to
the lexical, morphological and semantic ambiguities. In this paper, we present an
automatic diacritization system of the Arabic language, using Hidden Markov
Models with the Viterbi’s algorithm, based on probabilities based on learning on
diacritized Arabic texts. The corpus used was mostly composed of religious
texts. Our results were satisfactory, achieving a precision of up to 80% at the
word level.

Keywords: Diacritization � Modern Standard Arabic �
Hidden Markov Models � Viterbi algorithm

1 Introduction

Arabic writing has appeared in the form of letters without diacritics, which is what the
Arab person currently reads in books, newspapers, advertisements and on the Internet.
The diacritic marks in Arabic calligraphy represent the tones in the Chinese language or
vowels in the French and English languages, that is to say, they make it possible to
specify the pronunciation and the meaning of a word (e.g., if we compare the two
words porte and portée, they have different pronunciations and meanings, but if we
exclude the vowels (e and ée), the two words will become (port), the result is another
word having a different pronunciation and meaning from the initial two words. This is
what happens in MSA. Diacritics denote “dhama◌ُ”, “fatha◌َ”, “kassra◌ِ"”, “souk-
oun ْ◌”, “chadda◌ّ” and “tanwin◌ٍ◌ٌ◌ً”. Changing a diacritics of the letters composing an

Arabic word, changes the meaning of the word, for example the word ”عَلمَِ“ means “to

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 337–344, 2019.
https://doi.org/10.1007/978-3-030-23281-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_29

know” if we put “kasra” for the last character and “soukoun” for the second one, it
becomes “ ” which mean “science”. The lexical, morphological and semantic
ambiguities caused by no-diacritized Arabic texts become a challenging problem in
Arabic NLP, since several companies and researchers have been involved in this field
and have proposed multiple solutions to solve it. They tried to develop an automatic
diacritization system of Arabic texts, which can be used in translation systems, speech
recognition, and so on.

The remaining of this paper is organized as follows: Sect. 2 describes the related
works done in the field of automatic diacritization systems; Sect. 3 presents the
modelization of our automatic system; Sect. 4 presents implementation of the system
and the results evaluation. Finally, we conclude with Sect. 5.

2 Related Works

Lots of efforts have been made on Arabic diacritization (diacritics restoration or
vowelization) by using rule-based, statistical, and hybrid approaches.

In 1998, Mustafa [16] used four algorithms to search for Arabic words diacritized
or not diacritized. In 2000, Chelba et al. [4] proposed a method for automatic analysis
of components in an English text, using sequence probability. In 2001, Goweder et al.
[8] performed statistical analysis on the words repetition on texts extracted from the
“Al-Hayat” Newspaper; they constructed an 18.5 million word corpus, with articles
tagged as belonging to one of 7 domains. they outlined the profile of the data and how
they assessed its representativeness. Furthermore, Kontrovich et al. [10] used dia-
critized texts of Hebrew texts; their system was based on an independent dictionary, the
function of the word and HMMModels. In 2002, Gal [6] used a Hidden Markov Model
(HMM) for analyzing the Arabic diacritized texts, after that he builds a model for
automatic Arabic text diacritization. Smrz et al. [15] developed a research in which the
topics discussed include linguistic data retrieval, morphology and morphotactics
modeling using n-gram models, and description of the language on the analytical level.
In 2012, Hamdi [1] used the morphosyntactic analyzer MAD for diacritization and
other works and Khorsheed [18] presented a system for Arabic language diacritization
using Hidden Markov Models (HMMs). The system employs the renowned HMM
Tool Kit (HTK). Each single diacritic was represented as a separate model. The con-
catenation of the output models was coupled with the input character sequence to form
the fully diacritized text; The data corpus used, includes more than 24000 sentences. In
2014, Bebah et al. [11] used a statistical approach based on two hidden Markov Models
(HMM) by Viterbi algorithm and Al Khalil Morphosys. In 2015, Abandah et al. [7]
presented a sequence transcription approach for the automatic diacritization of Arabic
text and Hadj Ameur et al. [20] presented a new approach to restore Arabic diacritics
using a statistical language model and dynamic programming. Their system was based
on two models: a bi-gram-based model which was first used for vocalization and a 4-
gram character-based model which was then used to handle the words that remain non
vocalized (OOV words). The optimal vocalized word sequence was selected using the
Viterbi algorithm from Dynamic Programming. In addition, Azmi et al. [3] produced a
survey of the recent algorithms developed to solve the diacritization problems. In 2017,

338 I. Hadjir et al.

Zerrouki et al. [17] created a corpus for Arabic diacritized texts, called “Tashkeela”.
Alnefaie et al. [13] created a system of diacritization that restores the diacritical
markings. Furthermore, Alansary [14] presented an approach to Arabic automatic
diacritisation called “Alserag” and Darwish et al. [5] presented a new and fast state-of
the-art Arabic diacritizer that guesses the diacritics of words and then their case end-
ings. In addition, Fashwan et al. [2] created an automatic diacritization system for
Standard Modern Arabic texts called “Shakkil”; it was based on a hybrid approach and
they obtained 1.88% as diacritic error rate (DER), and 9.36% as Word error rate
(WER) and finally Diab et al. [12] investigate the impact of Arabic diacritization on
statistical machine translation (SMT). In 2018, Darwish and al. [19] presented their
research and benchmark results on the automatic diacritization of two Maghrebi sub-
dialects, namely Tunisian and Moroccan, using Conditional Random Fields (CRF).
Aside from using character n-grams as features, they also employed character-level
Brown clusters. They achieved word-level diacritization errors of 2.9% and 3.8% for
Moroccan and Tunisian respectively. Also Jarrar et al. [21] proposed the Subsume
knowledge-based algorithm, the Imply rule-based algorithm, and the Alike machine-
learning-based algorithm. They evaluated the soundness, completeness, and accuracy
of the algorithms against a large dataset of 86,886 word pairs.

3 Diacritization Processing

The diacritization of texts need corpus. The Corpus used is Tashkeela [17]. The corpus
is freely available; it contains 75 million of fully vocalized words, mainly 97 books
from classical and modern Arabic language. The corpus is collected from manually
vocalized texts using a web crawling process, and is mostly composed of Islamic
classical books. From this corpus we took 26 Books for the learning operation.

3.1 System Overview

The proposed solution is based on the Hidden Markov models (HMM), on the auto-
matic learning and the algorithm of Viterbi. A Markov chain is useful when we need to
compute a probability for a sequence of observable events. Hidden Markov model (like
words that we see in the input) and hidden events (like part-of-speech tags) that we
think of as causal factors in our probabilistic model.

The most common decoding algorithms for HMMs is the Viterbi algorithm. It is a
kind of a dynamic programming algorithm that makes uses of a dynamic programming
trellis. The idea is to process the observation sequence left to right, filling out the trellis.
The result given is the most probable path by taking the maximum over all possible
previous state sequences [9].

The system described in this paper and summarized in Fig. 1, receives a no-
diacritized Arabic text as an input data and returns the same text diacritized as an output
result. We noticed that a sentence in Arabic language is a structure, that each word’s
diacritics represent a state, The passage from one state to another is a transition and each
word represents the observation which is generated by the state. After computing the
transitions and generation of probabilities, we can simulate the obtained structure to an
HMM, by applying the Viterbi’s Method to find the states sequences as shown in Fig. 2.

An Approach for Arabic Diacritization 339

We create an automatic learning system based on a rich corpus for generating the
HMM, which will be used in the next steps by our automatic diacritization system in
order to know the most probable diacritization for the input text.

3.2 Pre-processing

To make the system faster, we create a method for converting the string to a number. In
diacritics case we convert the mark to the mark position as shown in Table 1.

For Arabic words, we use Eq. (1), to get the word’s position by computing an index

to each Arabic character (e.g. كتب = 37952) (Table 2).

f xð Þ ¼
Xl xð Þ

i¼1
pos xið Þ � 36l xð Þ�i ð1Þ

Fig. 1. Diacritization system Fig. 2. Diacritized sentence modeling.

Table 1. Diacritics position

1 2 3 4 5 6 7 8 9
 َ◌ ِ◌ ◌ُ ◌ْ ً◌ ٍ◌ ◌ٌ ◌ّ

Table 2. Alphabetical character position

1 2 3 4 5 6 7 8 9 10 11 12
ء آ أ ؤ إ ئ ا ب ة ت ث ج
13 14 15 16 17 18 19 20 21 22 23 24
ح خ د ذ ر ز س ش ص ض ط ظ
25 26 27 28 29 30 31 32 33 34 35 36
ع غ ف ق ك ل م ن ه و ى ي

340 I. Hadjir et al.

x: is the word; i: is the count variable; l(x): is the character number of a word; pos:
is the character position; and xi: is character at the position i.

3.3 The Learning Step

This method consists of filling the sets of States, Observations, Transitions and Gen-
erations, which permit the system to learn. We have done a learning on the obtained
structure, using the Viterbi’s algorithm. The learning process is divided into 04 prin-
ciple steps:

1. Reading of documents from the given corpus.
2. Each line from the previous documents is segmented into sentences.
3. Each sentence is sent to the learning method.
4. All sets of states, observations, transitions and generations are saved in our

Database.

For the learning operation, we used 26 documents (see Table 3) from our corpus.
The learning operation lasted 169 s. The size of the corpus used was 292Mo; it con-
tained 18 667 588 words with repetitions. At the end of the learning operation we
obtained: 25 640 states, 469 532 generations, 272 681 words (without repetitions) and
1 546 404 transitions.

3.4 Diacritization Step

Segmentation and Conservation of Symbols: In this step, we browse the input texts,
character by character. At the end of the process we have an output board that guar-
anteed that each word is in a case and each symbol is in another case.

Global Treatment of Diacritisation.
It used the principle of Viterbi to calculate the most probable sequences. But we have
modified the Algorithm to be more compatible with our needs to resolve the problem.

Table 3. Learning corpus

An Approach for Arabic Diacritization 341

If the maximum probability is not zero, so the word is diacritized, otherwise we will use
a second method which diacritize the word according to the diacritization of another
word (e.g. كتب is considered as a nearest word (”عمل“ (see Fig. 3). In the case of an
Interruption to find a transition (S ----->S') we estimate two possibilities:

1. The transition do not exist, but it is possible that the term exists, so we diacritize it.
2. Usually Arabic terms take the same diacritization (e.g. the term ” كتب “ could take

the same diacritization as:).

Otherwise, the system cannot diacritize this term. The diacritization interface looks
the figure shown in Fig. 3.

4 System Evaluation

In order to evaluate our system, we create another program, which compare a random
Arabic diacritized text (not existing in the learning corpus) with the output of the
diacritization system and calculate the precision at the character level (2), and at the
word level (3), as following:

Precision Char ¼ 100 �
Plength phraseð Þ

i¼1 R ið Þ
Nb Characters

ð2Þ

PrecisionWord ¼ 100 � Nbcorrectwords
Nb Words

ð3Þ

4.1 Results

Our system diacritize three religious texts, we obtained a precision of up to 80% at the
word level word and 90% at the character level. We also compared our results with the
Mishkal1 system, which is a free online Arabic texts diacritizer, based on the Arabic
complex rules.

Fig. 3. Diacritization interface

1 https://tahadz.com/mishkal/.

342 I. Hadjir et al.

https://tahadz.com/mishkal/

4.2 Comparison of Our System with “Mishkal”

In order to compare our system with Mishkal (see Footnote 1), we took randomly three
(03) documents from the corpus used, that do not belong to the (26 documents chosen
in the learning step). The results of the comparison are summarised in Table 4.

5 Conclusion

In this paper we have presented two essential steps in the statistical model, which are
well known in the field of automatic processing of the Arabic language: learning and
diacritization that can significantly improve the quality of diacritisation. Our study
revealed that our system does not take into account syntactic, morphological and
semantic processing. The system designed and realized in this project is based on
Hidden Markov Model (HMM) by Viterbi’s method.

Our research project acknowledges these results and takes into account both a
Viterbi Learning and a treatment approach. This is the reason for which we have
chosen this approach, in order to make the diacritization of Arabic text more effective.
We note more the learning is higher in a domain more the diacritization is best in that
domain.

References

1. Hamdi, A.: Apport de la diacritisation dans l’analyse morphosyntaxique de l’Arabe. In: JEP-
TALN-RECITAL 2012, Volume 3: RECITAL (2012)

2. Fashwan, A., Alansary, S.: SHAKKIL: an automatic diacritization system for modern
standard Arabic texts. Phonetics and Linguistics Department, Faculty of Arts, Alexandria
University, Alexandria, Egypt (2017)

3. Azmi, Almajed: Survey much of the literature on MSA diacritization (2015)
4. Chelba, C., Jelinek, F.: Structured language modeling. Comput. Speech Lang. 14(4),

283–332 (2000)
5. Darwish, K., Mubarak, H., Abdelali, A.: Arabic diacritization: stats, rules, and hacks. In:

Proceedings of The Third Arabic Natural Language Processing Workshop (WANLP),
Valencia, Spain, pp. 9–17 (2017)

Table 4. Comparison between our system and Mishkal.

Book مبسوطال الانصاف رد المحتار
Text Index 28/134 4/193 16/368
Characters 578 chars 362 chars 928 chars
Words 144 words 77 words 222 words

Our system Char prec. 96% 94% 95%
Word prec. 86% 84% 87%

Mishkal Char prec. 92% 89% 93%
Word prec. 73% 67% 75%

An Approach for Arabic Diacritization 343

6. Gal, Y.: An HMM approach to vowel restoration in Arabic and Hebrew (2002)
7. Abandah, G., Graves, A., Al-Shagoor, B., Arabiyat, A., Jamour, F., Al-Taee, M.: Automatic

diacritization of Arabic text using recurrent neural networks. Int. J. Doc. Anal. Recognit. 18
(2), 183–197 (2015)

8. Goweder, A., de Roeck, A.: Assessment of a significant Arabic corpus. In: Arabic NLP
Workshop at ACL/EACL, Toulouse, France (2001)

9. Jurafsky, D., Martin, J.H.: Speech and language processing. In: Draft Chapters in Progress
(2018)

10. Kontrovich, L., Lee, D.D.: Learning semitic languages with Hidden Markov Models. In:
NIPS 2001 Workshop on Machine Learning Methods for Text and Images (2001)

11. Bebah, M., Amine, C., Azzeddine, M., Abdelhak, L.: Hybrid approaches for automatic
vowelization of Arabic texts. Int. J. Nat. Lang. Comput. (IJNLC) 3, 53–71 (2014). https://
doi.org/10.5121/ijnlc.2014.3404

12. Diab, M., Ghoneim, M., Habash, N.: Arabic diacritization in the context of statistical
machine translation (2007)

13. Alnefaie, R., Azmi, A.M.: Automatic minimal diacritization of Arabic texts. In: 3rd
International Conference on Arabic Computational Linguistics, Dubai, United Arab
Emirates, 5–6 November 2017

14. Alansary, S.: Alserag: an automatic diacritization system for Arabic. In: Hassanien, A.E.,
Shaalan, K., Gaber, T., Azar, A.T., Tolba, M.F. (eds.) AISI 2016. AISC, vol. 533, pp. 182–
192. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48308-5_18

15. Smrž, O., Zemánek, P.: Sherds from an Arabic treebanking mosaic. Bull. Math. Linguist. 78,
63–76 (2002)

16. Mustafa, S.H.: Arabic string searching in the context of character code standards and
orthographic variations. Comput. Stand. Interfaces 20(1), 31–51 (1998)

17. Zerrouki, T., Balla, A.: Tashkeela: novel corpus of Arabic vocalized texts, data for auto-
diacritization systems. Data Brief 11, 147–151 (2017)

18. Khorsheed, M.S.: A HMM-based system to diacritize arabic text. J. Softw. Eng. Appl., 124–
127 (2012). https://doi.org/10.4236/jsea.2012.512b024

19. Darwish, K., Abdelali, A., Mubarak, H., Samih, Y., Attia, M.: Diacritization of Moroccan
and Tunisian Arabic Dialects: A CRF Approach (2018)

20. Hadj Ameur, M.S., Moulahoum, Y., Guessoum, A.: Restoration of Arabic diacritics using a
multilevel statistical model. In: Amine, A., Bellatreche, L., Elberrichi, Z., Neuhold, Erich J.,
Wrembel, R. (eds.) CIIA 2015. IAICT, vol. 456, pp. 181–192. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19578-0_15

21. Jarrar, M., Zaraket, F., Asia, R., Amayreh, H.: Diacritic-based matching of Arabic words. In:
ACM Transactions on Asian and Low-Resource Language Information Processing, vol. 18,
no. 2, Article 10, December 2018

344 I. Hadjir et al.

http://dx.doi.org/10.5121/ijnlc.2014.3404
http://dx.doi.org/10.5121/ijnlc.2014.3404
http://dx.doi.org/10.1007/978-3-319-48308-5_18
http://dx.doi.org/10.4236/jsea.2012.512b024
http://dx.doi.org/10.1007/978-3-319-19578-0_15

A Novel Approach Towards Fake News
Detection: Deep Learning Augmented

with Textual Entailment Features

Tanik Saikh1(B), Amit Anand2, Asif Ekbal1, and Pushpak Bhattacharyya1

1 Indian Institute of Technology Patna, Bihta, India
{1821cs08,asif,pb}@iitp.ac.in

2 Indian Institute of Information Technology Kalyani, Kalyani, India
amitanand@iiitkalyani.ac.in

Abstract. The phenomenal growth in web information has nourished
research endeavours for automatic fact checking, or fake news and/or
misinformation detection. This is one of the very emerging and challeng-
ing problems in Natural Language Processing (NLP), Machine Learning
(ML) and Data Science. One such problem relates to estimating the
veracity of a news story, which is a complex and deep problem. The very
recently released Fake News Challenge Stage 1 (FNC-1) dataset intro-
duced the benchmark FNC stage-1: stance detection task. This task could
be an effective first step towards building a robust fact checking system.
In this paper, we correlate this stance detection problem with Textual
Entailment (TE). We present the systems which are based on statistical
machine learning (ML), Deep Learning (DL), and a combination of both.
Empirical evaluation shows encouraging performance, outperforming the
state-of-the-art system.

Keywords: Fake news · Stance detection · Deep learning ·
Machine learning · Textual entailment

1 Introduction

In recent years, people are very communicative with the advent of the Internet.
A lot of communications and conversations are happening through text, image,
audio and video etc. This generates a lot of data everyday. The proliferation
of these data/information in social media, online news feeds and tweets etc.
demand for checking the truthfulness of these data/information. It is a tedious
job even for the human being to do it manually. Hence, it is imperative to build
the automated system which should be able to perform the tasks of detecting
fake or misinformation, false claim detection, judging the veracity of a textual
content made by a person etc.

Detecting veracity of information is a very challenging and demanding prob-
lem in Artificial Intelligence (AI), difficult even for a human being to under-
stand the news contents all the time. Lately, [12] organized a shared task to
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 345–358, 2019.
https://doi.org/10.1007/978-3-030-23281-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_30

346 T. Saikh et al.

investigate how AI and Natural Language Processing (NLP) techniques could
be promoted to combat fake news, entitled as Fake News challenge stage-I
(FNC-I): Stance Detection. It could be a valuable first step towards helping
human fact checkers to identify the false claims. Basically, to check the veracity
of a claim/headline/report, it is important to see what other news agencies are
saying about that particular claim/headline/report. There are multiple report-
ings available for a particular claim/headline/report produced by the different
news agencies. Sometimes the document (body texts) agrees/supports the claim,
sometimes it contradicts, sometimes discusses, or sometimes it remains com-
pletely unrelated to the claim. This is called stance, i.e. the relation between the
headline and the body text. This is exactly what is defined in the dataset released
in the shared task, FNC-I. The dataset contains <Headline, Body Text, Stance>
triples. An example from the dataset is shown in Table 1. For this experiment,
we assume the titles as claim/fact and the documents related to a particular
title as body text. So if a particular title generally agrees with one and/or many
of the body texts, then that particular title/claim could be most probably legit-
imate, otherwise, if there is no supporting body text to that claim, then that
claim might be most probably fake. In this way, we can detect the truthful-
ness of a claim/report through stance detection. The shared task gained a lot
of responses, with 50 teams from both academia and industry submitted their
systems. Briefly, input to the system is a claim and the output corresponds to
determining whether it is fake or genuine. We pose the problem as a classification
problem, i.e. stance classification. The problem is conceptually very similar to a
very well-known problem in NLP, namely TE [9] or Natural Language Inference
(NLI) [3,15,16]. The definition of which is as follows: Given two pieces of texts,
one is the Premise(P) and the other one is Hypothesis(H), the system has to
decide whether H is the logical consequence of P or not and/or H is true in
every circumstance (possible world) in which P is true. For example, P: “John’s
assassin is in jail” entails H: “John is dead” and P: “Mary shifted to France
three years back.” entails H: “Mary lives in France”. Indeed, in both the above
examples H is the logical consequence of P. We correlate the problem of stance
detection to TE as follows: If a body text entails a claim, then it corresponds
to actually support or agree or discuss; if it contradicts, then it corresponds to
refute/disagree and if it does not provide any information related to the claim
then it is completely unrelated (to the claim). We propose two approaches which
are based on viz. i. Statistical/Traditional ML and ii. DL. The first approach
makes use of a conventional set of features which are typically used for the task
of TE. The second approach is an end-to-end deep learning approach and is
based on the prior work [20]. We consider their model as the baseline in our
experiments. The task described in [6] has shown how external knowledge could
be helpful for DL based NLI models. Motivated by this we incorporate the ML
features into our proposed DL architecture.

Contributions of our current work are two-fold, viz (i). We relate the problem
to TE and propose various ML based models. We exploit the TE-based features
and show the effect of TE for stance classification and further for fake news

A Novel Approach Towards Fake News Detection 347

Table 1. Headline and text snippets from documents and respective stances from the
FNC training dataset

Headline: Hong Kong protesters go Ferguson style: ‘Hands up, don’t shoot’

Stance Body text

Agree Hong Kong protesters have “emulated” the Ferguson gesture in
their recent protests

Disagree Photographs of Hong Kong protests have been discussed in the
context of Ferguson....

Discuss HONG KONG—Thousands of pro-democracy demonstrations in
Hong Kong have....

Unrelated A Russian fisherman says that Justin Bieber saved his life...

detection. (ii). We merge the ML feature values and the features extracted from
the DL network, and feed into a feed-forward neural network. In this way we
provide the external knowledge to neural network based model. This system
outperforms the state-of-the art reported in the literature for the problem on
this particular dataset. The paper is organized as follows. Section 2 describes
brief overview of the related works followed by proposed methodologies (Sect. 3),
dataset (Sect. 4), the experiments, results along with proper analysis (Sect. 5),
and conclude (Sect. 6).

2 Related Work

Automatic fake news detection has recently gained attention to the researchers
and developers. The papers [7,26] defined fact checking problem and they cor-
related this problem with the problem of TE. We also correlate, and make use
of different TE based features. The work defined in [27] first released a large
dataset for fake news detection and proposed a hybrid model to integrate the
statement and speaker’s meta data and performed classification. The task of [11]
also posited a novel dataset called Emergent, which was driven from the digital
Journalism project, namely Emergent [22]. They additionally proposed a logistic
regression model for the stance detection, where features are extracted from the
headline and news body pairs. The dataset that we employ in this experiment
is an extended version of this Emergent dataset.

The task defined in [1] made use of conditional encoding network with two
Bi-LSTMs to detect stance of tweets with some targets. They nurtured two
separate LSTM networks, one for the tweet and another one for the target. The
first hidden state of the LSTM for the target was initialized with the final hidden
state of the LSTM for the tweet. The work described in [19] also utilized the
stance detection dataset. They proposed four models which are based on Bag of
word (BoW), basic LSTM, LSTM with attention, and condition encoding LSTM
with attention and showed that the model with condition encoding LSTM with
attention mechanism yielded the highest result among the results produced by

348 T. Saikh et al.

all these models, which demonstrated the efficiency of attention technique in
extracting from a long sequence (news body) of information relevant to a small
query (article title). They reported the highest accuracy of 80.8%.

The task defined in [23] presented a novel hierarchical attention model for
stance detection. Especially they fostered a model to represent the document
and their linguistic features with attention technique. Additionally, on the top
of document representation, they made use of attention mechanism to estimate
the importance of different linguistic features and learnt overlapping attention
between the document and the linguistic information. The work described in
[12] performed deep analysis of the three best participating systems of FNC-1.
They showed that, the class wise and macro-averaged F1 score is the best way
for validating the model for stance detection, as the shared task’s standard eval-
uation metric is severely affected by the imbalanced class distribution of the
dataset. We also followed these two metrics in addition to the standard metric
provided by fake news challenge to evaluate our systems. Apart from these, the
tasks on stance detection for fake news detection which made use of Fake news
dataset could be found in [12,14,17,18]. It has been studied in other languages
too like Arabic which could be found in [10].

3 Proposed Method

As stated earlier, We use both traditional supervised Machine learning and the
deep learning approaches.

3.1 Feature Based Machine Learning Approach

We propose a supervised machine learning approach based on Support Vector
Machine (SVM) [5,24] and Multilayer Perceptron (MLP) [2,8] to detect the
stance between the headline and the body text. This model aims to develop a
machine learning based system where different TE-based features are employed.
The features include Synonyms, Antonyms, Hypernyms, Hyponyms, Overlapping
Tokens, Longest Common Overlap, Modal verbs, Polarity, Numerals, Named
Entities, and Cosine Similarity. The following points elaborate all these features.

Synonyms: Presence of synonymous words in two pieces of text snippets reveal
that they are semantically similar, like X bought Y implies X acquired Z% of the
Y’s shares, because acquire is the synonym of bought. For each word in title, we
search for the synonym of that particular word in the body text. If it is present
then the feature value of “1” is assigned otherwise “0”.

Antonyms: This is also a vital feature for detecting TE, which is a pervasive
form of entailment trigger, where a word is replaced by it’s antonym. Sentences
like T: “Oil price is surging” does not imply T: “Oil price is falling down.”. The
feature value is computed in the reverse direction to what was followed in the
synonym feature.

A Novel Approach Towards Fake News Detection 349

Hypernyms: Sometime certain concepts are generalized from one text to
another, which leads to entailment. Like T: “Beckham plays football.” entails
H: “Beckham plays game.”. So if there was football in headline and game in the
body then we assign “1” otherwise “0”.

Hyponyms: It is also observed that sometimes concepts are specialized, which,
in turn, lead to entailment. Like T: “Reptiles have scale.” entails H: “Snakes
have scale.”. So if Hyponyms of a word in title is present in body text, then the
value of “1” is assigned, otherwise “0”.

Overlapping Tokens: Overlapping tokens between two comparing text snip-
pets can help in deciding entailment. The number of overlapping tokens between
the headlines and body texts become the feature value of this feature.

Longest Common Overlap: Longest matching between two texts also matters
a lot in taking the decision of Entailment. The value of this feature is computed
as the maximum overlapping length between two pair of texts normalized by the
number of words present in the body text.

Modal Verbs: It represents the presence of modal auxiliary verbs (like: can,
should, must etc) which denote the possibility or necessity and sometimes lead to
wrong entailment. Like T: “The govt. may approve anti-corruption bill.” does not
entails H: “The govt. approved anti corruption bill.”. This feature is important
for predicting the classes (like agree and discuss) between title and body text
pairs. So, if it is present in any of the title or body text then the value of “0” is
assigned and if it is present or absent in both the headline and body text then
the value of “1” is assigned.

Polarity Features: These features determine whether the fact asserted or it’s
negation is going to occur, like (not, never, deny etc) are the polarity features.
If we fully rely on lexical matching, the presence of negation word might cause
problem in taking the decision for entailment. For example, T: “The watchman
denied that he was sleeping.” does not entail H: “The watchman was sleeping.”.
We compute this feature’s value following the procedure as described in [21] for
computing this polarity feature value.

Numerals: In some cases certain level of numeric calculation affect the entail-
ment decision. Like T: “3 men and 2 women were found dead in the apartment.”
entails H: “5 people were found dead in apartment.”. We assign the value of “1”,
if we found such matching, otherwise “0” is assigned.

Named Entity Information: Named Entities (NEs) (like, person, location,
organization) between two text snippets sometime affect in entailment decision.
We search for any matching pair of NEs between the headline and body text. A
value of “1” is assigned if NEs match, otherwise a value of “0” is assigned.

Cosine Similarity: This is very popular and a benchmark similarity metric,
widely used among the researchers over the years to find similarity between
two pieces of texts. It could be a feature for entailment also. We pass headline
and body separately to Universal Sentence Encoder (USE). USE produce vector

350 T. Saikh et al.

representation of headline and body. We compute the cosine similarity between
these two vectors and assign as the value of this feature.

We apply different classifiers like SVM and MLP. The results obtained using
these classifiers are shown in the results and discussion section (i.e in Sect. 5).

3.2 Deep Learning Based Approach

We propose two DL based approaches. One is based on the model defined in
[20]. The difference from our propose model is in the representation layer. We
apply the universal sentence encoder (USE) [4] to obtain the representations of
titles and body texts, whereas they utilized Term Frequency-Inverse Document
Frequency (tf-idf) for the same purpose. The another one is based on the first
one but incorporated with ML based features values. The USE comes into two
variants one exploiting the Transformer [25] architecture and the other one is
based on the Deep Average Network (DAN) [13]. We make use of the Transformer
based USE because it is observed that transfer learning from the transformer
based sentence encoder performs better than transfer learning from the DAN
encoder.

This model utilize the encoding sub-graph of the transformer architecture to
produce the sentence/document’s embedding. This kind of sub-graph provides
context aware representation of words in a sentence by utilizing attention without
hampering the ordering and the identity of other words. To obtain the fixed
length sentence encoding vector, element-wise sum of the representations of each
word is taken into account, which is further normalized by the square root of
the length of the sentence.

The headline and body pairs are given to USE, which produces the repre-
sentations for both headline and body, but separately. These representations are
concatenated and subjected as inputs to feed-forward neural networks (dense
layers) with ReLU activation function. Four such layers have been used, and
this decision was taken in an empirical manner. We perform the experiments by
taking the different number of layers. We obtain the highest performance with
four layers. The outputs obtain from the fourth layer are given to a final layer
with softmax activation function for final prediction. This layer predicts the
class having the highest probability score. Architecture of the proposed model
is shown in Fig. 1(a).

We modify our first approach to offer the second one. We incorporate the
features values used in ML approach in the representation layer, as shown in
the Fig. 1(b). We concatenate these values (computed for 11 features) with the
representations obtained for headline and body from USE.

A Novel Approach Towards Fake News Detection 351

(a) Architectural diagram of the propose first DL sys-
tem with Universal Sentence Encode

(b) Architectural diagram of the propose second DL system aug-
mented with different ML features

Fig. 1. The architecture of the proposed two systems

4 Data

We make use of the benchmark dataset released in the shared task FNC-I for
fake news detection through stance detection. The key statistics of the dataset
are shown in Table 2. The dataset is highly imbalanced. So the task organizers1

provide a standard metric to mitigate this problem. The metric is a weighted
based evaluation system which comprises of two levels. In the first level, 25%
weight is given for classifying headline and body text as related or unrelated and
in the second level, 75% weight is given for classifying related pairs as agrees,
disagrees, or discuss. The justification behind this is: classifying agrees, disagrees,
or discusses is more difficult and relevant to fake news detection rather than just
classifying headline–body pairs as related and unrelated.

Table 2. Number of instances, distribution of classes and average length of title and
body in training and test set of FNC-1 dataset

Dataset Example pairs Classes Avg. Length

Unrelated Discuss Agree Disagree Body Title

Training 49972 0.73131 0.17828 0.0736012 0.0168094 369 11

Testing 25413 0.722032 0.17466 0.074833 0.027427 347 11

1 http://www.fakenewschallenge.org/.

http://www.fakenewschallenge.org/

352 T. Saikh et al.

5 Experiments, Results and Discussions

In a nutshell, we perform three sets of experiments. The following subsections
show the experimental procedures and results obtained.

5.1 ML Approach

In this experiment, We make use of 11 different features. We extract features
values from headline and body text. We concatenate all these values, and given
to classifier for classification. We make use of different classifiers and perform
experiments. We obtain the remarkable results with Support Vector Machine
(SVM) and Multi-layer Perceptron (MLP). We compute the FNC score using
the evaluation metric provided in Fake News Challenge Competition. We obtain
the FNC score of 72.13 and 56.04 for MLP and SVM, respectively. SVMs are
well known good performer for two-class classification problem, even if it plays
with a multi-class problem, it assumes the problem as two class problem. As
our problem is a multi-class problem, this might be the reason for the poor
performance of SVM compared to MLP. Results are shown in Table 4. Due to
space constraints we are unable to show the confusion matrices for all of our
proposed models. However, we show the confusion matrix for the best performing
model.

Sensitivity Analysis of the Features: We perform feature ablation study
to understand the contribution of each feature. The F1 scores are obtained
by removing one feature after another. Results are shown in the Table 3.
It shows that cosine similarity followed and Named Entities (because news
titles/documents are full of different names) are the most contributing features
in our experiment.

Table 3. Feature sensitivity analysis and effect of each feature on F1

Features removed F1 Increment/decrement

None 0.4777 0

Synonyms 0.4757 −0.0020

Antonyms 0.4756 −0.0021

Longest common overlap 0.4679 −0.0098

Hypernym 0.4701 −0.0076

Hyponym 0.4724 −0.0053

NER 0.4653 −0.0124

Modality 0.4731 −0.0046

Overlapping tokens 0.4729 −0.0048

Numerals 0.4700 −0.0077

Polarity 0.4763 −0.0014

Cosine similarity 0.4364 −0.0413

A Novel Approach Towards Fake News Detection 353

5.2 Deep Learning

We propose two models which utilize the DL platform. The first one is based on
USE and another one is where we incorporate the ML features values into USE
based Model.

Universal Sentence Encoder Model : All the modern ML techniques fully
rely on the vector representation of words, phrases and sentences. We obtain
the embedding of title and body by utilizing transformer based USE. It takes
lowercased Pen Tree Bank (PTB) tokenized2 string of any length as input and
produces the representation of fixed (512) dimensional embedding vector as out-
put. We concatenate the representations of title and body text. The concatenated
vector further send to four feed forward neural network layers. The representa-
tion obtained from the fourth feed forward neural network is further fed into a
final layer for classification. The final layer predicts appropriate labels (Agree,
Disagree, Discuss and Unrelated) having the maximum probability score. The
architecture of this approach is shown in Fig. 1(a). We obtain the FNC score of
76.9 in this experiment.

Universal Sentence Encoder Model Incorporated with ML Features:
In this experiment we inject the ML based features in the previous model. We
concatenate the 11 features values with the vector representation for headline
and body text. So the representation become a vector of 1035 dimension. This
representation is further subjected as input to four feed forward neural network
layers, placed one after another. The output obtained from the fourth feed for-
ward neural network is given to a final layer with softmax activation function
for final prediction. The architecture of this model is shown in the Fig. 1(b). We
obtain the FNC score of 82.54 in this experiment.

Hyperparameters: We tune the hyperparameters in this experiment and mark
the results and freeze the model having the hyperparameters which produces the
best result. For example, the hidden layer size is tuned from 64 units to 256 units,
batch size input from 64 to 256, dropout from 0.2 to 0.3. For all the experiments
Rectified linear Unit (ReLU) activation function is used in all the feed-forward
neural networks. The loss function and optimizer are cross entropy and ADAM
respectively. The training iterations i.e. epoch was 50 for all the experiments and
also we used checkpoint, to check the model’s accuracy get increased or not, if it
get increased only then the weights get updated. The final layer for the output
prediction is with softmax activation function.

5.3 Comparison with the State of the Art and Other Prior Models

We perform an exhaustive comparison with previous three best participating
systems on this dataset. The comparison is shown in Table 4. Apart from the
FNC, we also compute the performance of our model using different modalities of
evaluation metrics like “overall F1”, “FNC”, “per class F1” (for Agree, Disagree,

2 https://nlp.stanford.edu/software/tokenizer.shtml.

https://nlp.stanford.edu/software/tokenizer.shtml

354 T. Saikh et al.

Discuss and Unrelated). The DL model augmented with TE based features i.e.
the third one has achieved the highest FNC score which outperforms the state-
of-the-art reported in the literature by the FNC score of 0.5 margin. This model
also beats the official baseline provided by the shared task organizers and also
the score of the system [20] which we assumed as the baseline in this experiments.
The result of this system is shown in the 3rd row (UCLMR system) in all formats.
We also obtain the overall F1 score of 63.6%, and also the F1 score of 61.1%
for agree class which is the highest among all the prior models. We also obtain
the highest F1 score of 59.54% in disagree class with SVM classifier which is
also the highest F1-score among all the previous system’s score. However, we
are not able to overcome the performance of human which is shown in row no
12 of the Table 4. This indicates there are lots of room that are available for
improvement. The first participating system obtained an FNC score of 0.8204.
The system is an ensemble of two 2D CNNs on word embedding of headline and
body respectively. The resulting output is then fed into an MLP of three hidden
layers and a decision tree based system composition of 5 features. Our two deep
learning systems are based on the UCLMR system [20] with some modifications
viz: i. at the representation layer and ii. at hidden layer (that model was one
feed-forward neural network, and we have four). In the third model, in addition
to these we inject TE based ML features.

Table 4. The prior six best results and the results obtained by our proposed models
on the dataset

SN System FNC-1 F1 Agree Disagree Discuss Unrelated

Previous Models

1

TALOSCOMB(TREE+CNN) 0.8204 0.582 0.539 0.035 0.760 0.994

2 ATHENE 0.8197 0.604 0.487 0.151 0.780 0.996

3 UCLMR 0.8172 0.583 0.479 0.114 0.747 0.989

4 featMLP 0.825 0.607 0.530 0.151 0.766 0.982

5 stackLSTM 0.821 0.609 0.501 0.180 0.757 0.995

6 MAJORITY VOTE 0.394 0.210 0.0 0.0 0.0 0.839

Proposed Models

7 SVM 0.5604 0.4150 0.0073 0.5954 0.1084 0.9489

8 MLP 0.7213 0.4777 0.3462 0.0 0.6328 0.9315

9 Univ Sen Enc 0.769 0.570 0.436 0.187 0.712 0.944

10 Univ Sen Enc Features 0.8254 0.636 0.611 0.214 0.746 0.972

11 Official Baseline 0.7520 X X X X X

12 HUMAN UPPER BOUND 0.859 0.754 0.588 0.667 0.765 0.997

5.4 Error Analysis

Every system has some pros and cons. Our system has some disadvantages too.
We perform error analysis of our best performing system. We take miss-classified

A Novel Approach Towards Fake News Detection 355

Table 5. Confusion matrix obtained by the best performing DL approach on the
test set

Agree Disagree Discuss Unrelated

Agree 1162 55 590 96

Disagree 233 149 258 57

Discuss 804 154 3323 180

Unrelated 92 33 395 17829

instances into account. We make a rigorous analysis of those instances and try
to analysis why our model fails. The Table 5 shows the confusion matrix.

Our observations could be as follows:
• The dataset is enriched with Named Entities, phrasal verbs, and Multi-

word expressions. The bodies are having multiple number of repetitive words,
and sentences too which we need to take care separately in future. • The length
variation between the title and the body is very high. • It is observed that the
model is performing badly where headlines and body texts are of question answer
type, i.e. Headline is question and the body text explaining it like answer. We
need to investigate this in future.

6 Conclusion and Future Work

Detection of misinformation/fake news and fact checking is a very challenging
and utmost task these days to mankind. In this paper, we try to mitigate this
problem. The dataset released in Fake News Challenge for detecting fake news
through stance detection serves this purpose. We relate this problem to TE as
they are conceptually similar. We offer the systems which are based on ML, DL
and combination of both. In ML, we foster the different TE-based features apply
to different classifiers (SVM and MLP), and obtain remarkable results. In DL, we
pose two models, one is USE based and the other one is the modified version of
the USE model but augmented with TE based features. We make use of different
performance measures i.e. FNC, overall F1, per class F1 score etc. Our proposed
model outperforms the state-of-the-art system in FNC and F1 score, and F1
score of Agree class by the third DL model i.e. the model augmented with TE
features. The system also outperforms the state-of-the-art F1 score of Disagree
class by our SVM based model. In future we would like to: • enrich the propose
models by incorporating many more lexical/syntactic/semantic based features
and address the issues raised by the proposed models. • do more in-depth and
rigorous error analysis of the previous three best participating systems to get
more insights. • incorporate the external knowledge (i.e. world knowledge) into
the existing system.

356 T. Saikh et al.

Acknowledgments. Asif Ekbal acknowledges Young Faculty Research Fellowship
(YFRF), supported by Visvesvaraya PhD scheme for Electronics and IT, Ministry of
Electronics and Information Technology (MeitY), Government of India, being imple-
mented by Digital India Corporation (formerly Media Lab Asia).

References

1. Augenstein, I., Rocktäschel, T., Vlachos, A., Bontcheva, K.: Stance detection with
bidirectional conditional encoding. In: Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, Austin, Texas, pp. 876–885.
Association for Computational Linguistics (2016)

2. Becerra, R., Joya, G., Garćıa Bermúdez, R.V., Velázquez, L., Rodŕıguez, R., Pino,
C.: Saccadic points classification using multilayer perceptron and random forest
classifiers in EOG recordings of patients with ataxia SCA2. In: Rojas, I., Joya,
G., Cabestany, J. (eds.) IWANN 2013. LNCS, vol. 7903, pp. 115–123. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38682-4 14

3. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus
for learning natural language inference. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, Lisbon, Portugal, pp. 632–
642. Association for Computational Linguistics (2015)

4. Cer, D., et al.: Universal sentence encoder for English. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, Brussels, Belgium, pp. 169–174. Association for Computational
Linguistics (2018)

5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

6. Chen, Q., Zhu, X., Ling, Z.H., Inkpen, D., Wei, S.: Neural natural language infer-
ence models enhanced with external knowledge. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2406–2417. Association for Computational Linguistics (2018)

7. Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.:
Computational fact checking from knowledge networks. PLoS One 10(6), e0128193
(2015)

8. Costa, W., Fonseca, L., Körting, T.: Classifying grasslands and cultivated pastures
in the brazilian cerrado using support vector machines, multilayer perceptrons and
autoencoders. In: Perner, P. (ed.) MLDM 2015. LNCS (LNAI), vol. 9166, pp. 187–
198. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21024-7 13

9. Dagan, I., Glickman, O., Magnini, B.: The PASCAL recognising textual entailment
challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.)
MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006).
https://doi.org/10.1007/11736790 9

10. Darwish, K., Magdy, W., Zanouda, T.: Improved stance prediction in a user similar-
ity feature space. In: Proceedings of the 2017 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining 2017, Sydney, Australia, 31
July–03 August 2017, pp. 145–148 (2017)

11. Ferreira, W., Vlachos, A.: Emergent: a novel data-set for stance classification.
In: Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, San
Diego, California, pp. 1163–1168. Association for Computational Linguistics (2016)

https://doi.org/10.1007/978-3-642-38682-4_14
https://doi.org/10.1007/978-3-319-21024-7_13
https://doi.org/10.1007/11736790_9

A Novel Approach Towards Fake News Detection 357

12. Hanselowski, A., et al.: A retrospective analysis of the fake news challenge stance-
detection task. In: Proceedings of the 27th International Conference on Compu-
tational Linguistics, Santa Fe, New Mexico, USA, pp. 1859–1874. Association for
Computational Linguistics (2018)

13. Iyyer, M., Manjunatha, V., Boyd-Graber, J., Daumé III, H.: Deep unordered com-
position rivals syntactic methods for text classification. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), Beijing, China, pp. 1681–1691. Association for Computational Linguistics
(2015)

14. Thorne, J., Chen, M., Myrianthous, G., Pu, J., Wang, X., Vlachos., A.: Fake
news stance detection using stacked ensemble of classifiers. In: Proceedings of the
EMNLP Workshop on Natural Language Processing meets Journalism, Copen-
hagen, Denmark, pp. 80–83 (2017)

15. MacCartney, B., Grenager, T., de Marneffe, M.C., Cer, D., Manning, C.D.: Learn-
ing to recognize features of valid textual entailments. In: Proceedings of the Human
Language Technology Conference of the NAACL, Main Conference (2006)

16. MacCartney, B., Manning, C.D.: Natural logic for textual inference. In: Proceed-
ings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing,
RTE 2007, Stroudsburg, PA, USA, pp. 193–200. Association for Computational
Linguistics (2007)

17. Mohtarami, M., Baly, R., Glass, J., Nakov, P., Màrquez, L., Moschitti, A.: Auto-
matic stance detection using end-to-end memory networks. In: Proceedings of the
2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), New
Orleans, Louisiana, pp. 767–776. Association for Computational Linguistics (2018)

18. Pérez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of
fake news. In: Proceedings of the 27th International Conference on Computational
Linguistics, Santa Fe, New Mexico, USA, pp. 3391–3401. Association for Compu-
tational Linguistics (2018)

19. Pfohl, S., Triebe, O., Legros, F.: Stance detection for the fake news challenge with
attention and conditional encoding (2017)

20. Riedel, B., Augenstein, I., Spithourakis, G.P., Riedel, S.: A simple but tough-
to-beat baseline for the fake news challenge stance detection task. CoRR
abs/1707.03264 (2017)

21. Saikh, T., Ghosal, T., Ekbal, A., Bhattacharyya, P.: Document level novelty detec-
tion: textual entailment lends a helping hand. In: Proceedings of the 14th Interna-
tional Conference on Natural Language Processing (ICON-2017), Kolkata, India,
pp. 131–140. NLP Association of India, December 2017

22. Silverman, C.: Lies, damn lies and viral content (2015)
23. Sun, Q., Wang, Z., Zhu, Q., Zhou, G.: Stance detection with hierarchical attention

network. In: Proceedings of the 27th International Conference on Computational
Linguistics, Santa Fe, New Mexico, USA, pp. 2399–2409. Association for Compu-
tational Linguistics (2018)

24. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York
(1995). https://doi.org/10.1007/978-1-4757-2440-0

25. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances
in Neural Information Processing Systems 30, pp. 5998–6008 (2017)

https://doi.org/10.1007/978-1-4757-2440-0

358 T. Saikh et al.

26. Vlachos, A., Riedel, S.: Fact checking: task definition and dataset construction. In:
Proceedings of the ACL 2014 Workshop on Language Technologies and Computa-
tional Social Science, Baltimore, MD, USA, pp. 18–22. Association for Computa-
tional Linguistics (2014)

27. Wang, W.Y.: “Liar, liar pants on fire”: a new benchmark dataset for fake news
detection. In: Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pp. 422–426. Association for Com-
putational Linguistics (2017)

Contextualized Word Embeddings in a Neural
Open Information Extraction Model

Injy Sarhan1,2(&) and Marco R. Spruit2

1 Computer Engineering Department, College of Engineering,
Arab Academy for Science, Technology and Maritime Transport (AAST),

Abukir, Alexandria 1029, Egypt
2 Department of Information and Computing Sciences, Utrecht University,

Princetonplein 5, 3584 CC Utrecht, The Netherlands
{i.a.a.sarhan,m.r.spruit}@uu.nl

Abstract. Open Information Extraction (OIE) is a challenging task of
extracting relation tuples from an unstructured corpus. While several OIE
algorithms have been developed in the past decade, only few employ deep
learning techniques. In this paper, a novel OIE neural model that leverages
Recurrent Neural Networks (RNN) using Gated Recurrent Units (GRUs) is
presented. Moreover, we integrate the innovative contextual word embeddings
into our OIE model, which further enhances the performance. The results
demonstrate that our proposed neural OIE model outperforms the existing state-
of-art on two datasets.

Keywords: Open Information Extraction �Word embeddings � RNN � GRU �
LSTM

1 Introduction

Natural Language Processing (NLP) techniques that facilitates the process of fetching
important information from large data are highly demanded. With the ongoing
development in the field of NLP, OIE gained a massive amount of attention in the past
years. It is the process of extracting a relation tuple from a text corpus in the form
of <Entity1> <Relation> <Entity 2> as seen in Table 1.

OIE plays a fundamental role in turning massive, unstructured text corpora into
factual information, it can be used as a foundation to many NLP tasks, including,
Information Extraction, Question Answering and Summarization.

Previously, OIE paradigms either utilized automatically assembled training data or
hand-crafted heuristics. Nonetheless, after deep learning techniques paved their way in
various NLP tasks researchers aimed their focus towards neural networks.

RNN is a robust class of artificial neural networks, contrary to Feed-Forward
networks, RRNs can loop among nodes, thus it’s capable of apprehending temporal
behavior. This results in permitting information to persist in them, by selecting which
information to keep and which to forget by taking into consideration the current input
and the previous data it received.

© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 359–367, 2019.
https://doi.org/10.1007/978-3-030-23281-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_31&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_31

In this paper we present an OIE model that employs RNNs to extract relation
triples. Recently, RNNs proved their importance by achieving notable performance in
various NLP tasks such as translation [1] and speech recognition [2], they are heavily
applied in Google Home [3] and Amazon’s Alexa [4]. The features that make RNNs a
good fit for NLP applications are notable [5]. For instance, they take into consideration
the order of the words, in addition, GPU can be utilized to carry out RNN computation
therefore they perform well on large datasets. Also, RNNs can handle arbitrary input
and output lengths. Furthermore, we demonstrate that contextual embedding enhances
the overall performance of OIE task compared to non-contextual word embedding
techniques.

The remainder of this paper is structured as follows; Sect. 2 reviews the existing
OIE state-of-art models, while Sect. 3 presents the proposed OIE model, followed by
the results and evaluation in Sect. 4. Finally, Sect. 5 concludes the paper and discusses
future work.

2 Related Work

In this section we review existing OIE state-of-art architectures, a complete picture can
be found in [6]. OIE can be categorized into two broad categories, approaches that
requires automatically machine learning classifiers and approaches that utilizes hand-
crafted rules [7]. Newly, deep learning techniques started paving their way towards
OIE systems.

2.1 Machine Learning Classifiers

In 2007, Banko et al. [8] introduced TextRunner, the first OIE system is a fully
implemented, highly adaptable, self-supervised system that relies on shallow syntactic
analysis. It makes use of a domain-independent technique on a text corpus in order to
extract relation tuples. TextRunner extracts all possible relation tuples by making a
single pass over the corpus using Conditional Random Field classifier, tuples that are
classified as trustworthy are reserved by the extractor.

Wikipedia-based Open Extractor (WOE) system [9], introduced by Wu and Weld,
that operate in two modes: WOEPos and WOEParse. The WOEPos system employs a
CRF extractor trained with shallow syntactic features, in contrast to WOEParse that
makes use of a rich dictionary of dependency path patterns. Heuristically matching

Table 1. Open information extraction example

Sentence Barack Obama born August 4, 1961 in Hawaii served as the 44th President
of the USA

Extracted
tuples

<Barack Obama – Born - August 4>
<Barack Obama – Born - Hawaii>
<Barack Obama – Served as- President of the USA>

360 I. Sarhan and M. R. Spruit

Wikipedia info box values with corresponding text for automatic assembly of
training examples is the primary idea behind WOE herby enhancing TextRunner’s
performance.

2.2 Hand-Crafted Rules

REVERB proposed by Fader et al. [10]. REVERB relies on the process of relation
phrases that meet syntactic and lexical constraints, afterwards it extracts noun phrase
argument pairs for each relation phrase. Logistic regression classifier is latter used to
assign a confidence score for each extracted tuple. Subsequently, Etzioni et al. [11]
presented the second generation of OIE, R2A2 by combing REVERB with an argu-
ment identifier - ARGLEARNER - to enrich argument extraction for the relation
phrases.

Del Corro and Gemulla proposed ClausIE [12], a clause-based OIE system that
expoilts the linguistic knowledge of the grammar of the English language to locate
clauses in an input corpus. It determines the dependency parse of the input sentence to
realize its syntactical structure. Then, the algorithm acquires a set of coherent derived
clauses based on the dependency parse and small domain-independent lexica and
generate one or more propositions for each clause. ClausIE fundamentally vary from
the aforementioned OIE systems in the way that it doesn’t utilize any training data in
contrast to REVERB [10] and TextRunner [8].

2.3 Neural Approaches

A neural OIE paradigm was proposed by Cui et al. [13] that employs a Recurrent
Neural Network (RNN) encoder-decoder framework. The encoder-decoder infrastruc-
ture is a method for text generation and has already been utilized in other NLP tasks
successfully as illustrated in [13] The encoder inputs a variable length sequence and
outputs a compressed representation vector, which is then passed to the decoder,
resulting in the output sequence produced by the decoder. Both the encoder and
decoder use a 3-layer Long Short-Term Memory (LSTM) [14]. Training data is
obtained from high confidence binary extractions from state-of-the-art OIE system.
Thus, the extraction of high-quality tuples.

In addition to the work of Cui et al., Stanovsky et al. [15] developed a Bidirec-
tional LSTM transducer to extract OIE tuples, proving that supervised learning can
have a strong impact on OIE performance. By extending the work made on deep
semantic role labeling to extract OIE tuples authors of [15] were able to achieve notable
results. Moreover, their work emphasis that research on Question Answering-Semantic
Role Labeling paradigms can greatly benefit future OIE models.

3 Proposed Model

Our proposed model is built on the work of Stanovsky et al. [15] by treating OIE task
as a sequencing labeling problem resulting in the extraction of multiple, overlapping
tuples for each sentence.

Contextualized Word Embeddings 361

The proposed neural network framework takes a fixed length vector of an
embedded sentence as an input. In addition, predicates are the building blocks of any
language, they denote strong actions which are considered extremely effective in
extracting relations of interest. Thus, following the work of [15], we assume that the
predicate in each sentence represents the relation that’s associated with the tuple,
therefore the predicate is sent to the network as a feature vector along with the Part of
Speech (POS) tag of the sentence using NLTK [16].

3.1 Contextual Embedding

ELMo (Embedding from Language Models) [17] is a deep contextualized word rep-
resentation that models both: complex syntactic and semantic features of a word and
the way in which these words’ uses differ throughout linguistic. The key idea behind
ELMo is contextual embedding, thus the representation of each word differs according
to its neighboring words. The generated word vectors are acquired from the functions
of the internal states of a deep bidirectional language model, which is pre-trained on a
large dataset. We integrated ELMo embedding in our OIE model, results proved that
contextual embedding yield to a better performance. The aforementioned neural OIE
methods utilized either GloVe [18] or Word2Vec [19], both are non-contextual word
embeddings. Comparative results are demonstrated in the subsequent section.

3.2 GRU Model Architecture

RNNs are hard to train due the vanishing and the exploding gradient descent problems
during the back-propagating process [20]. Efforts were made to overcome this com-
plication, hence LSTMs and GRUs were developed. They both successfully dealt with
the difficultly of training RNNs. Indeed, LSTM and GRU are considered very effective
models for learning very long contexts. The way they are used in [21] allows to train on
long word-contexts.

GRUs are comparatively new and employs fewer number of parameters than
LSTMs which eventually entails that GRUs are both lighter and faster to train than
LSTM. GRU merges LSTM’s Input and Forget gate in the Update gate. In Addition, it
merges the cell state and the hidden state which lowers the complexity of the model.

Contrary to LSTM, GRU has 2 gates instead of 3:

• Reset Gate: that decides how to integrate the previous memory with the current
input.

• Update Gate: that determines the amount that it should keep from the prior memory.

For GRU, the hidden state Ht is computed as [22]:

Zt ¼ rðXtUzþHt � 1WzÞ ð1Þ

Rt ¼ rðXtUr þHt � 1WrÞ ð2Þ

ht ¼ tanhðXtUh þðRt � Ht � 1ÞWhÞ ð3Þ

362 I. Sarhan and M. R. Spruit

Ht ¼ ð1� ZtÞ � ht � 1þZt � ht ð4Þ

Where Z and R denotes the update gate and the reset gate respectively. X represents
the input vector, while U and W represent parameter vectors.

Our proposed OIE architecture is shown in Fig. 1. In our OIE model we imple-
mented a 2-Layer Bidirectional GRUs. The default application of RNNs is to assess
information in a single direction. However, it has been shown that modelling infor-
mation in a bidirectional technique results in better performance [21, 23]. A Bidirec-
tional GRU was employed to encapsulate forward and backward lexical semantics of
each word in a given sentence. A bidirectional network can be generated in 2 different
approaches; either by having 2 RNN operating in opposing directions or within the
internal architecture of the RNN itself, in our model we employed the latter approach.

After encoding the 3 inputs using ELMo -the word, the POS tag of each word and
the predicate as shown in Eq. (5)- they are all concatenated and passed as single feature
vector to the Bidirectional GRU. Subsequently, the Bidirectional GRU outputs a tensor
that’s passed to 3-layer Time Distributed Dense layer which is later passed to the
SoftMax layer for label prediction.

FeatureVector ¼ ELMo Wordð Þ � ELMo POSð Þ � ELMo Predicateð Þ ð5Þ

Eventually, SoftMax layer assigns a probability of each word belonging to a certain
label. We used BIO tags (Begin – Intermediate – Outside) [24] that’s demonstrates the
location of each word in the sentence, and each label is later assigned accordingly as
shown in the last layer in Fig. 1. A sentence might include more than one entity, each
sentence may output more than one tuple as the example in Table 1; however, our

Fig. 1. Our OIE model architecture.

Contextualized Word Embeddings 363

model captures binary relations. If a sentence contains no relation between the words
only the predicate is assigned as “P-B” and label “O” is allocated to the remaining the
words in the sentence.

3.3 Hyperparameters Settings

Our neural OIE architecture was implemented using Keras framework [25] with
TensorFlow backend [26]. Our model was trained on 10 epochs with the dropout rate
set to 0.1 for regularization to avoid over-fitting. The data is divided into 100 batches.
Moreover, we use early stopping to terminate training when the performance stops
improving. Each Bidirectional GRU has 128 units, which is the same number of the
hidden units in the subsequent 3 Time Distributed Dense layers. The activation
function used in the 3 Time Distributed Dense layers is Rectified Linear Unit (ReLU)
[27]. Adam optimizer [28] was employed to train our model.

4 Results and Evaluation

The performance of the proposed OIE model was tested on two different datasets.
Three experiments were carried out to measure and compare the performance of the
proposed Bidirectional GRU-based OIE approach using contextual embedding.

4.1 Dataset

The dataset we obtained for our model is further divided into two sets: Newswire
corpus and Wikipedia News Corpus (WikiNews) [29]. Our dataset is split into a
training set to train the model, development set to validate the model and a test set that
is used to calculate the performance of our OIE proposed architecture. The number of
sentences and number of tuples in each dataset can be found in Table 2. We tried to test
our model using the dataset introduced by [15] that is automatically generated from a
Question Answering dataset, but we couldn’t obtain it.

4.2 Experimental Results and Analysis

Three evaluation metrics were used to measure the performance of our model: Recall
(R), Precision (P) and F-measure (F). All the aforementioned measures were expressed
as percentages throughout the experiments. With the F-measure being the breakthrough
performance measure. Detailed results of the experiments can be found in Table 3.

Table 2. Information on the datasets used.

Dataset Train set # Sent/# Tuples Dev set # Sent/# Tuples Test set # Sent/# Tuples

Newswire 744/2173 249/727 248/737
WikiNews 1174/2906 392/946 393/993

364 I. Sarhan and M. R. Spruit

Experiment 1
In the first experiment we compare the results of employing ELMo embeddings against
GloVe embeddings. As demonstrated in Table 3, when a Bidirectional GRU network is
employed using ELMo instead of GloVe it yields to an increase in the F-Measure from
56.1% to 58.7% on WikiNews dataset and from 50.4% to 52.1% on Newswire dataset.
An increase in the F-Measure by 3% can also be observed when a Bidirectional LSTM
model that uses contextual embeddings is employed in contrast to non-contextual
embedding. Hence, contextual embeddings have a notable effect on the performance of
OIE task.

Experiment 2
Subsequently, in the second experiment We compare our OIE model (BiGRU (ELMo))
against the model proposed by Stanovsky et al. [15] (BiLSTM (GloVe)). Table 3
shows the effect of utilizing contextual word embedding in a Bidirectional GRU net-
work on extracting relation triples. The proposed model achieved an F-Measure of
52.1% compared to 43.0% achieved by [15] on Newswire dataset. Results on Wiki-
News dataset followed the same trend, our model increased the F-measure by 11.6%. It
is observed that the proposed OIE system outperforms the model proposed by [15].

Experiment 3
In the final experiment, we illustrate the effect of implementing a Bidirectional GRU
instead of single direction GRU network. As we previously mentioned in Sect. 3.2,
unidirectional networks can only have access to past information, thus output is based
on what the network have previously learned, unlike bidirectional networks that can
capture both, past and future information. This elaborates the massive decrease in the
F-Measure by of the GRU network by 8.6% and by 13.3% on Newswire and Wiki-
News respectively, compared to our proposed Bidirectional GRU model.

It is note-worthy that we tested the effect of building a Hierarchical Attention
Network (HAN) [30] over a RNN. HAN employs stacked RNN on word-level to
capture the informative words in a sentence, it then combines the representation of
those vital words to produce a sentence vector [30]. However, the OIE model under-
performed using HAN.

Table 3. Summary of the results on both datasets.

Network architecture Newswire WikiNews
P R F P R F

BiLSTM (GloVe) 41.1 45.1 43.0 47.3 46.9 47.1
BiLSTM (ELMo) 43.0 46.7 44.8 49.6 50.7 50.1
GRU (GloVe) 41.0 42.6 41.8 40.8 45.1 42.8
HAN (ELMo) 32.2 43.3 36.9 37.5 45.9 41.3
BiGRU (GloVe) 51.7 49.1 50.4 58.4 54.0 56.1
BiGRU (ELMo) 53.0 51.4 52.1 60.1 57.2 58.7

Contextualized Word Embeddings 365

5 Conclusion and Future Work

The Bidirectional GRU-based OIE model with contextual word embeddings presented
here delivers higher performance than existing state-of-the-art algorithm. The impact
that contextual embedding had over our OIE architecture is notable in our experiments.
In addition, Bidirectional GRU enhanced the performance with less complexity when
compared to Bidirectional LSTM.

We believe that there is still a room for development in the field OIE. OIE can’t be
regarded as a solved NLP task. For instance, little work has been done in extracting N-
ary relations, the main focus has been directed towards the extraction of binary rela-
tions, omitting the importance of higher order relations. The presented work can be
further extended to extract N-ary relation. In the future, we would like to test our model
on a larger dataset and would like to test the adaptability of the model on other
languages. Finally, this approach can be employed in other NLP tasks such as question
answering and summarization.

References

1. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078 (2014)

2. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural
networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE (2013)

3. Li, B., et al.: Acoustic modeling for Google Home. In: Interspeech (2017)
4. Chung, H., et al.: Alexa, can I trust you? Computer 50(9), 100–104 (2017)
5. Yin, W., et al.: Comparative study of CNN and RNN for natural language processing. arXiv

preprint arXiv:1702.01923 (2017)
6. Sarhan, I., Spruit, M.: Uncovering algorithmic approaches in open information extraction: a

literature review. In: 30th Benelux Conference on Artificial Intelligence. Springer
CSAI/JADS (2018)

7. Gamallo, P.: An over view of open information extraction (invited talk). In: OASIcs-Open
Access Series in Informatics, vol. 38. Schloss Dagstuhl Leibniz Zentrum fuer Informatik
(2014)

8. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information
extraction from the web. In: IJCAI, vol. 7, pp. 2670–2676 (2007)

9. Wu, F., Weld, D.S.: Open information extraction using Wikipedia. In: Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics (2010)

10. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction.
In: Proceedings of the Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics (2011)

11. Etzioni, O., Fader, A., Christensen, J., Soderland, S., Mausam, M.: Open information
extraction: the second generation. In: IJCAI, vol. 11, pp. 3–10 (2011)

12. Del Corro, L., Gemulla, R.: ClausIE: clause-based open information extraction. In:
Proceedings of the 22nd International Conference on WWW, pp. 355–366. ACM (2013)

13. Cui, L., Wei, F., Zhou, M.: Neural open information extraction. arXiv:1805.04270 (2018)

366 I. Sarhan and M. R. Spruit

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1805.04270

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997). https://doi.org/10.1162/neco.1997.9.8.1735

15. Stanovsky, G., et al.: Supervised open information extraction. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), vol. 1 (2018)

16. Loper, E., Bird, S.: NLTK: the natural language toolkit. arXiv preprint cs/0205028 (2002)
17. Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint arXiv:1802.

05365 (2018)
18. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In:

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014)
19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of

words and phrases and their compositionality. In: Advances in Neural Information
Processing Systems, pp. 3111–3119 (2013)

20. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks.
In: International Conference on Machine Learning (2013)

21. Vukotic, V., Raymond, C., Gravier, G.: A step beyond local observations with a dialog
aware bidirectional GRU network for Spoken Language Understanding. In: Interspeech
(2016)

22. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using RNN encoder-decoder for statistical machine
translation. In: EMNLP (2014)

23. Bansal, T., Belanger, D., McCallum, A.: Ask the GRU: multi-task learning for deep text
recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems.
ACM (2016)

24. Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning. In:
Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky, D. (eds.)
Natural Language Processing Using Very Large Corpora. Text, Speech and Language
Technology, vol. 11, pp. 157–176. Springer, Dordrecht (1999). https://doi.org/10.1007/978-
94-017-2390-9_10

25. Chollet, F.: Keras 2015. https://github.com/fchollet/keras. Accessed 20 Mar 2019
26. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th

Symposium on Operating Systems Design and Implementation (OSDI 2016) (2016)
27. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In:

Proceedings of the 27th International Conference on Machine Learning (ICML-10) (2010)
28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:

1412.6980 (2014)
29. Stanovsky, G., Dagan, I.: Creating a large benchmark for open information extraction. In:

Proceedings of the 2016 Conference on EMNLP (2016)
30. Yang, Z., et al.: Hierarchical attention networks for document classification. In: Proceedings

of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (2016)

Contextualized Word Embeddings 367

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
http://dx.doi.org/10.1007/978-94-017-2390-9_10
http://dx.doi.org/10.1007/978-94-017-2390-9_10
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Towards Recognition of Textual
Entailment in the Biomedical Domain

Noha S. Tawfik1,2(B) and Marco R. Spruit2

1 Computer Engineering Department, College of Engineering, Arab Academy
for Science, Technology, and Maritime Transport (AAST), Alexandria 1029, Egypt

noha.abdelsalam@aast.edu
2 Department of Information and Computing Sciences, Utrecht University,

3584 CC Utrecht, The Netherlands
{n.s.tawfik,m.r.spruit}@uu.nl

https://www.uu.nl/en/organisation/department-of-information-and-

computing-sciences

Abstract. The medical literature suffers from disagreements among
authors discussing the same topic or treatment. With thousands of arti-
cles published daily, there is a need to detect inconsistent and often
contradictory findings. Natural language inference (NLI) gained a lot
of interest in the past years, however, domain-specific NLI systems are
yet to be examined in depth. In this paper, we conduct several exper-
iments on sentence pairs extracted from PubMed abstracts, to infer
whether they express entailment, contradiction or neutral meanings.
The main focus of this research is to recognize textual entailment in
published evidence-based medicine findings. We explore popular NLI
models and sentence embeddings, adapted to the biomedical domain.
We further investigate improving the inference detection abilities of the
models by incorporating traditional machine learning (ML) features with
deep learning (DL) architecture. The proposed model serves in capturing
biomedical language’s representations by combining lexical, contextual
and compositional semantics.

Keywords: Transfer learning · Textual entailment ·
Sentence embeddings

1 Introduction

In the last decade, the rate of conducting clinical and medical research has
changed dramatically, in terms of both quantity and quality. Subsequently, the
number of published results in forms of research papers, clinical trials and text-
books has witnessed a growth spurt. Catillon’s synthesis [2] estimates that the
number of clinical trials has increased from 10 per day in 1975 to 55 and 95 in
1995 and 2015 respectively. In 2017, the PubMed repository contained around
27 million articles, 2 million medical reviews, 500,000 clinical trials and 70,000
systematic reviews. Contribution of medical research is evaluated according to
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 368–375, 2019.
https://doi.org/10.1007/978-3-030-23281-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_32&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_32

Towards Recognition of Textual Entailment in the Biomedical Domain 369

its applicability in the clinical practice and its ability to aid future research in
the same field. It is then critical to assess and resonate with published find-
ings specifically when there is more and more evidence on disagreements and
contradiction between outcomes [8,10].

Our work aims to improve the process of evaluating scientific contributions by
detecting textual inference between results reported in biomedical abstracts. This
paper proposes a model for labeling sentence pairs as entailed, contradictory or
neutral. The model relies on linguistic and domain-specific hand-crafted features
and recent state-of-the-art sentence encoders. The novelty of our approach is the
integration of conventional machine learning features with an encoder-based deep
neural network.

2 Related Work

Textual entailment has been widely studied in recent years, with the availability
of SNLI, MultiNLI corpora. However, most models fail to generalize across differ-
ent NLI benchmarks [15], moreover they do not perform accurately on domain-
specific datasets. In this section we review textual inference models built specifi-
cally for the medical domain. Preclude [11] focuses on extracting conflicts found
in health discussions posted in online forums on various health-related topics.
The system follows a linguistic rule-based approach to detect inter-advice con-
flicts. It utilizes MetaMap for semantic clause extraction and tokenization, and
then assigns polarity to extracted pairs. More recently, Zadrozny et al. suggested
a conceptual framework based on the mathematical sheaf model to highlight con-
flicting and contradictory criteria in guidelines published by accredited medical
institutes. It transforms natural language sentences to formulas with parameters,
creates partial order based on common predicates and builds sheaves on these
partial orders [17].

There were few scattered attempts on extracting contradictions from sci-
entific articles available online. Sarafraz et al. [12], extracted negated molecular
events from biomedical literature using a hybrid of machine learning features and
semantic rules. Similarly, De Silve et al. [14], extracted inconsistencies found in
miRNA research articles. The system extracts relevant triples and scores them
according to an appositeness metric suggested by the authors. Alamri et al.
[1], detected contradictory findings through n-grams, negation, sentiment and
directionality. Our previous work combined a ranking model to find the most
relevant finding per abstract and detected biomedical contradictions through
semantic features and biomedical word embeddings [16].

3 Methods

3.1 Dataset

In 2016, Alamri et al. published a dataset of contradictory research claims for
medical sentence classification and question answering. It is constructed out of

370 N. S. Tawfik and M. R. Spruit

24 systematic reviews on 4 popular cardiovascular disease topics. Medical experts
manually mapped each systematic review to a question and extracted corre-
sponding answers from abstracts of articles referenced in the reviews. Only the
most relevant sentence is chosen as answer, it is given a YES label if it positively
answers the question or NO label otherwise. More details on the annotation cri-
teria, process and the corpus statistics can be found in [1]. While the dataset
is annotated by experts, its structure is not aligned with the language inference
task. For that reason, we reconstruct the corpus by combining claims to build a
pairwise-sentence corpus to match conventional NLI datasets. We first fetch the
PubMed article ids of all 259 abstracts included in the dataset, and extract the
first sentence of each abstract. The first sentence in an abstract often describe
the research objective. We enrich the corpus by adding extracted sentences and
assigning them with the label NEUTRAL. Our choice of objective sentence to
fill as neutral is based on the general observation of neutral sentences across
different NLI benchmarks where they are usually constructed by adding a pur-
pose clause [7]. Given the unique set of medical questions denoted Q where each
question is related to only one systematic review and multiple abstracts. For
each qi that belongs to Q, we assumed the following hypotheses while labeling
the sentence pairs as entailed, contradictory or neutral:

– claim2 entails claim1 if asr2=YES AND asr1=YES
– claim2 contradicts claim1 if asr2=YES AND asr1=NO
– claim2 contradicts claim1 if asr2=NO AND asr1=YES
– claim2 is neutral to claim1 if asr2=YES AND asr1=NEUTRAL
– claim2 is neutral to claim1 if asr2=NEUTRAL AND asr1=YES

Where asr denotes the assertion value of each sentence with three possible val-
ues YES, NO, NEUTRAL. Claims refer to the question answer extracted from
abstracts. It is important to note that for formulating the above guidelines, a
definition of ‘entailment’ and ‘contradiction’ is needed. Therefore, we follow the
original corpus interpretation of contradiction as “Two texts, T1 and T2, are
said to contradict when, for a given fact F, information inferred about F from
T1 is unlikely to be true at the same time as information about F inferred from
T2”. The final dataset consisted of 2135 sentence pairs with 1080, 608 and 447
entailment, contradiction and neutral class instances respectively.

3.2 Machine Learning

Human Engineered Features. The model has a total of 20 traditional NLP
features divided into 3 main categories. The main selection criteria of features
was to capture context, lexical and semantic representations of text with a lim-
ited and optimized feature set.

String-Based Features. This sub category includes editDist, LevSim, CosSim,
JacSim to represent shortest/longest edit distance, Levenshtein similarity,
Cosine similarity and jaccard similarity respectively. In addition, we calculate

Towards Recognition of Textual Entailment in the Biomedical Domain 371

4 variations of length measures between the two sentences: LenMax, LenMin,
LenAbs, LenAvg

Contradiction-Based Features. Negation is still a robust measure of appositeness,
we define 4 features to detect negation in sentences. NegationBin as a binary
feature, NegOverlap as the jaccard similarity of negated words only, AntScore as
a score between the count of antonyms found between sentences. To expand the
antonyms coverage we use both WordNet and VerbOcean lexicons, and also Mod-
Overlap as the similarity between modal words found in both input. In addition
to the above set we also try to detect the outcome polarity through Subjectiv-
ity and sentiment (SubjScore, SentLabel) using the NLTK sentiment analyzer.
Moreover, the results sentence of scientific articles are often accompanied by a
“change clause” that affects the final output [9]. The key is to detect whether
changes occurring in both sentences are bad, good or neutral. To measure the
final pairwise polarity, we include more features such as PolarityBin as a binary
feature set to 1 when both sentences share the same polarity and 0 otherwise,
and ChangePolarity that scores each sentence according to a predefined list of
change keywords labelled good (+ve score values) or bad (-ve score values).

Context-Based Features. To include domain knowledge we add EntityOverlap
that computes the similarity between medical UMLS concepts identified by
MetaMap1. We also rely on word embeddings to capture context. Our hypoth-
esis is that models trained on domain knowledge would generate vector repre-
sentation capable of learning conceptual meaning of the domain. We compute
EmbedSim as the cosine similarity between the two embedding vectors and the
EmbedAvg as the similarity between embedding average for each sentence pool-
ing of all word embeddings. The word embeddings are extracted using FastText
model pre-trained on the PubMed Central open access subset2. We add the Word
Mover’s Distance WMDSim as measure of similarity between both sentences.

Classification. We experiment with different classification algorithms available
in the Scikit-learn toolkit. The experiments include Support Vector machine,
Linear regression model, Random Tree, Gradient boost and Naive Bayes.

3.3 Deep Learning

Sentence Embeddings. Text embedding are considered a key element in vari-
ous NLP tasks. Popular word embeddings such as Word2Vec and GloVe outper-
form existing models that rely on co-occurrence counts because of their ability
to better represent distributional semantics. To encode sentences with one of the
prior models, a simple average of their corresponding word embeddings would
yield strong results. Nonetheless, during the last two years we witnessed a rise
of different supervised and unsupervised approaches towards learning represen-
tations of sequences of words, such as sentences or paragraphs. They are able
1 https://metamap.nlm.nih.gov/.
2 https://github.com/lucylw/pubmed central fasttext pretrained.

https://metamap.nlm.nih.gov/
https://github.com/lucylw/pubmed_central_fasttext_pretrained

372 N. S. Tawfik and M. R. Spruit

to identify the order of words within a sentence and hence capture more con-
text. The developed sentence representations extend the success of earlier word
vectors with interesting results and increasing potential in different tasks. We
focus our research on the two of the most popular sentence encoding schemes
InferSent and Universal Sentence Encoder. We argue that fine tuning these mod-
els and leveraging transfer learning could possibly lead to a good performance in
a domain-specific settings. Both chosen encoders were trained partially or fully
on textual inference data which fits perfectly with our task.

InferSent is a sentence encoder proposed by Facebook [6]. Its main advantage
over other models is its supervised training over SNLI, a large text inference
dataset manually annotated. The original model3 is trained on 570k human-
generated English sentence-pairs with a bi-directional Long Short Term Memory
(BiLSTM) encoder.

Universal Sentence Encoder (USE) was developed by Google [3]. It has two
variations, the first is a transformer-based encoder which yields high-accuracy at
the cost of high complexity and extra computational resources. The second model
uses a deep averaging network that averages word embeddings and serve as input
to a deep neural network. In our model, we deploy the transformer architecture as
it was proven to yield better results in several NLP tasks. The universal sentence
encoder4 training data contains supervised and unsupervised sources such as
Wikipedia articles, news, discussion forms, dialogues and question/answers pairs.
It is also partially augmented with instances from the SNLI corpus.

Deep Learning Network. Our DL model follows a siamese-like architecture
where the first set of layers are parallel duplicates and share same weights. For
merging the two inputs, we concatenate the element-wise difference and then
multiply both vectors. Following that, there are multiple intermediate dense
layers. The nodes are directly connected to the nodes in the next layer and
use rectified linear activation (ReLU) function. Given the small dataset size, we
introduce a dropout layer with a dropout rate of 0.3. Finally, the prediction
layer with 3 nodes predicts the probability of each of the inference classes, and a
softmax activation function. We adopt an exponentially decaying learning rate,
and an l2 regularization weight of 0.01.

3.4 A Feature-Assisted Neural Network Architecture Model

With the small size of the dataset, traditional features demonstrate good per-
formance in comparison with the neural network models. This, along with more
evidence on the usefulness of combining traditional features in deep learning
architecture [5,13], encouraged us to build a hybrid model. An essential dilemma
for building the feature-assisted model is how to incorporate engineered features
3 Pre-trained model for InferSent available at https://github.com/facebookresearch/

InferSent.
4 Pre-trained model for USE available at https://tfhub.dev/google/universal-

sentence-encoder-large/3.

https://github.com/facebookresearch/InferSent
https://github.com/facebookresearch/InferSent
https://tfhub.dev/google/universal-sentence-encoder-large/3
https://tfhub.dev/google/universal-sentence-encoder-large/3

Towards Recognition of Textual Entailment in the Biomedical Domain 373

to sentence embeddings inputs. Directly appending the traditional ML features
to the encoded representations generated from InferSent or USE would not influ-
ence the performance. In that scenario, the features’ effect on the classification
decision would almost be nonexistent given the large size of sentence encoding
vector versus the feature vector size of 21 values. Figure 1 gives an overview of
the final feature-assisted framework we propose.

Fig. 1. The feature-assisted neural network architecture.

4 Results and Evaluation

All the following results are calculated as the average results of standard cross-
validation with 10 folds. The results reported for the machine learning approach
are the output of the best two classifiers: Random Forest (RF) and extreme
gradient boosting (XGBoost). It is generally observed that XGBoost almost
always achieves higher accuracy than RF. Table 1 shows the results details of
the model, The baseline performance is 50.56% based on the majority classifier
output. We note, that the ML experiments were not meant for direct comparison
with the DL model. The conducted evaluations serve at choosing the best feature
combination that could further boost the DL network.

Table 1. Machine learning features with Random Forest and XGBoost classifiers based
on 10-fold cross validation. Reported numbers correspond to average accuracy and
standard deviation

Feature set Random Forest XGBoost

context-based 53.26% (+/- 1.80%) 49.16 % (+/- 2.67%)

contradiction-based 67.81% (+/- 1.28%) 69.49% (+/- 1.77%)

context + string 61.01% (+/- 1.97%) 64.91% (+/- 2.98%)

all features 72.30% (+/- 2.32%) 76.94% (+/- 1.24%)

374 N. S. Tawfik and M. R. Spruit

As for the deep learning algorithms, we ran multiple experiments while vary-
ing the number of hidden layers and the corresponding number of nodes. Adding
more layers test our model capacity, in other terms, with small number of lay-
ers the model may struggle to fit the data. On the other hand, over-scaling
the network size leads to great results on training data and performs poorly on
the test data. Our experiments show that there was a minimal overfitting effect
with increasing the number of layers, however, there was no added accuracy.
Deep Learning experiments’ results are shown in Table 2. In all cases, InferSent
encoder outperforms USE encoder with approximately 8%. This finding is con-
sistent with previous published findings [4]. Both encoders are considered uni-
versal and should represent sentences efficiently given the amount of data they
are trained on. The performance difference between the two encoders could be
attributed to the difference in the embedding vector dimension (512 vs 4096)
and the nature of inference data InferSent is trained on. We added the tradi-
tional features to the best performing model with 3 layers and a number of nodes
decreasing by 50% with each hidden layer that is deeper in the neural network.
No remarkable achievement were noticed in the USE encoder case(only 0.6%
difference). However, the hybrid model achieves the best result with an average
accuracy of 96.21% and a minimum of 94.32% when combined with the InferSent
encoder. Even with a limited dataset, the results suggest that the machine learn-
ing features and deep learning models are complementary. Their combination in
an end-to-end model can enhance the learning process and improve the predic-
tions on unseen data.

Table 2. Deep Learning performance results on 10-fold cross validation with respect to
the number of hidden layers in the DNN architecture. Reported numbers corresponds
to average accuracy and standard deviation

Hidden layers Hidden units USE (Dim.:512) InferSent (Dim:4096)

1 layers 512 72.56% (+/- 1.14%) 89.88% (+/- 3.91%)

3 layers 512,256,128 82.27% (+/- 1.63%) 93.95% (+/- 1.39%)

3 layers 512,256,64 83.17% (+/- 2.20%) 93.86% (+/- 1.48%)

5 layers 512,256,256,128,128 83.68% (+/- 1.50%) 92.24% (+/- 0.79%)

3 layers 512,256,128,64,64 83.68% (+/- 1.50%) 93.18% (+/- 1.73%)

5 Conclusion

We attempt to detect medical text inference from published scientific articles.
Various experiments have been applied in different scenarios including ML fea-
tures and DL network built on top of sentence encoders. Our proposed hybrid
architecture is the optimal configuration in terms of size and number of hidden
layers. The final results are promising, however, the model must be re-evaluated
on a larger corpus to generalize its effect. We could enhance the sentence encoder

Towards Recognition of Textual Entailment in the Biomedical Domain 375

power by re-training them on domain-specific sources such as research articles
and clinical notes. We also believe that a feature ablation analysis over a bigger
range of features could potentially select a better boosting vector for assisting
the neural network.

References

1. Alamri, A.: The detection of contradictory claims in biomedical abstracts. Ph.D.
thesis, University of Sheffield (2016)

2. Catillon, M.: Medical Knowledge Synthesis: A Brief Overview (2017). https://
www.hbs.edu/faculty/Pages/item.aspx?num=54337

3. Cer, D., et al.: Universal Sentence Encoder. arXiv preprint, March 2018
4. Chen, Q., Kim, S., Wilbur, W.J., Du, J., Lu, Z.: Combining rich features and deep

learning for finding similar sentences in electronic medical records. In: Proceedings
of the BioCreative/OHNLP Challenge 2018 (2018)

5. Chen, R.C., Yulianti, E., Sanderson, M., Bruce Croo, W.: On the benefit of incor-
porating external features in a neural architecture for answer sentence selection.
ACM Ref. Format (2017). https://doi.org/10.1145/3077136.3080705

6. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised Learn-
ing of Universal Sentence Representations from Natural Language Inference Data.
arXiv e-prints, May 2017. http://arxiv.org/abs/1705.02364

7. Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S.R., Smith,
N.A.: Annotation artifacts in natural language inference data. In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (2018)

8. Ioannidis, J.P.A.: Why most published research findings are false. PLoS Med. 2(8),
e124 (2005). https://doi.org/10.1371/journal.pmed.0020124

9. Niu, Y., Zhu, X., Li, J., Hirst, G.: Analysis of polarity information in medical
text. In: AMIA ... Annual Symposium proceedings. AMIA Symposium 2005, pp.
570–574 (2005)

10. Prasad, V., Cifu, A., Ioannidis, J.P.A.: Reversals of established medical practices:
evidence to abandon ship. Jama 307(1), 37–38 (2012)

11. Preum, S.M., Mondol, A.S., Ma, M., Wang, H., Stankovic, J.A.: Preclude2: per-
sonalized conflict detection in heterogeneous health applications. Pervasive Mob.
Comput. 42, 226–247 (2017). https://doi.org/10.1016/J.PMCJ.2017.09.008

12. Sarafraz, F.: Finding conflicting statements in the biomedical literature. Ph.D.
thesis, University of Manchester (2012)

13. Sequiera, R., et al.: Exploring the Effectiveness of Convolutional Neural Networks
for Answer Selection in End-to-End destion Answering. arXiv e-prints (2017)

14. de Silva, N., Dou, D., Huang, J.: Discovering inconsistencies in PubMed abstracts
through ontology-based information extraction. In: ACM Conference on Bioinfor-
matics, Computational Biology, and Health Informatics (ACM BCB) (2017)

15. Talman, A., Chatzikyriakidis, S.: Testing the generalization power of neural net-
work models across NLI benchmarks. Technical report (2018)

16. Tawfik, N.S., Spruit, M.R.: Automated contradiction detection in biomedical lit-
erature. In: Perner, P. (ed.) MLDM 2018. LNCS (LNAI), vol. 10934, pp. 138–148.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96136-1 12

17. Zadrozny, W., Garbayo, L.: A sheaf model of contradictions and disagreements.
Preliminary report and discussion. In: International Symposium on Artificial Intel-
ligence and Mathematics, Florida

https://www.hbs.edu/faculty/Pages/item.aspx?num=54337
https://www.hbs.edu/faculty/Pages/item.aspx?num=54337
https://doi.org/10.1145/3077136.3080705
http://arxiv.org/abs/1705.02364
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1016/J.PMCJ.2017.09.008
https://doi.org/10.1007/978-3-319-96136-1_12

Development of a Song Lyric Corpus
for the English Language

Matheus Augusto Gonzaga Rodrigues , Alcione de Paiva Oliveira(B) ,
and Alexandra Moreira

Universidade Federal de Vicosa, Vicosa, MG 36570900, Brazil
ppgcc@ufv.br

Abstract. Web Scraping Tools are simplifying the task of creating large
databases for various applications such as the construction of corpus
aimed at the development of applications for natural language processing.
Many of these applications require a large amount of data, and in that
sense, the Web presents itself as an important data source. Among the
various tasks in the NLP scope, one of the most challenging is automatic
text generation. In this task the objective is to generate syntactically
and semantically correct texts after a training process on a particular
corpus. This article presents the elaboration of an English song lyrics
Corpus, extracted from the Web, that can be used to train applications
for automatic generation of lyrics, poems, or other NPL related tasks.
After its normalization, an analysis of the Corpus is presented, as well as
analyzes performed after the corpus vectorization (embedding) generated
with the use of two current techniques.

Keywords: Text generation · Corpus linguistic · Song lyrics

1 Introduction

Corpora are linguistic resources that are difficult to create and time-consuming.
Nevertheless, they are very useful resources for language studies and training
of natural language processing tools. In general, these resources are constructed
from texts and digitized documents, in the case of corpora based on written
natural language. In the case of corpora based on spoken natural language, con-
versations or interviews are used. More recently, the Web has presented itself
as an important source of raw material for building corpora. There is a vast
amount of textual and oral material in digital form and available in several lan-
guages. There is also a growing demand for large corpora due to the emergence
of modern machine learning tools. As a result, Web-based corpora propositions
are emerging. Habernal et al. [3] presented a Multilingual Web-size Corpus con-
taining over 10 billion tokens, licensed under Creative Commons license family

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001, and also by the funding agencies
FAPEMIG and CNPq.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 376–383, 2019.
https://doi.org/10.1007/978-3-030-23281-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_33&domain=pdf
http://orcid.org/0000-0002-9628-7389
http://orcid.org/0000-0001-9129-8620
http://orcid.org/0000-0001-7459-1657
https://doi.org/10.1007/978-3-030-23281-8_33

Development of a Song Lyric Corpus for the English Language 377

in more than 50 languages. According to the authors, the texts that compose
the corpus were extracted from CommonCrawl (commoncrawl.org), the largest
publicly available general Web crawl to date with about 2 billion crawled URLs.
The size and diversity of the Web also allows the construction of large special-
ized corpora. Seitner et al. [11] presented a publicly available database containing
more than 400 million hypernymy relations extracted from the CommonCrawl
web corpus. However, there are few corpora geared towards studies of poems
and song lyrics.

In the present work we try to contribute to minimize this problem, presenting
a song lyrics Corpus of music of random musical genres in English constructed
with the use web scraping technique. The objective is to use the corpus as input
for machine learning tools and automatic song lyrics generation. The article
describes the process of extracting the song lyrics, the normalization phase and
the final analysis of the created Corpus. Next section presents Corpus devel-
opment work that covers issues related to what is presented in this article. In
Sect. 3 is explained the web scraping method used to collect the music lyrics and
how the data was processed after the collection, as well as the “cleanup” pro-
cess adopted. In Sect. 4, the Corpus analysis is presented, where N-grams, noisy
words and other features are presented. In Sect. 5, two different forms of embed-
ding applied in Corpus are compared, and finally we present a brief conclusion
along with the indication of future work in Sect. 6.

2 Related Works

Here we present which bear a certain resemblance to the current work. As men-
tioned earlier, there are not many works related to creating lyrics corpus, but it
is possible to find some related datasets.

Nishina [9] investigated various features identified in the lyrics of contempo-
rary popular songs ranked in the Billboard top 100 songs covering the 2002–2011
period. The author gathered from the site a total of 1,000 songs and, after that
excluded noise characters such as leading whitespace. The resulted corpus pre-
sented an average of 502 tokens, and an average of 149 types for the 10-year
period. Subsequently, the author performs a linguistic analysis on the corpus,
analyzing the genre of the songs and the expressions used according to the sex of
the author of the lyrics. The main difference of this work for the current work is
the size of the corpus. Being such a small corpus is not suitable for quantitative
analyzes and to feed machine learning tools, lending itself more for qualitative
analysis.

Miethaner [6] developed BLUR (Blues Lyrics) corpus, containing blues lyrics
from the early twentieth century, focusing on the study of syntactic phenomena
in earlier African-American English. The corpus is composed of a computerized
collection of more than 8,000 transcripts of pre-World War II blues recordings.
Like the previous article, the corpus developed is too small to be handled by
machine learning tools. Machine learning algorithms tend to work better on
larger datasets, due to the bigger quantity of examples.

http://commoncrawl.org

378 M. A. G. Rodrigues et al.

Ellis et al. [2] presented the LyricFind Corpus (www.smcnus.org), developed
at the Sound & Music Computing laboratory at the National University of Singa-
pore. The corpus consists of 275,905 distinct lyrics in bag-of-words format (67.6
million tokens). This is a corpus that is worth mentioning due to its volume,
though, because it is presented in the form of bag-of-words, it is not suitable for
use in training for text generation.

Kuznetsov [5] has collected 57650 songs acquired from LyricsFreak (www.
lyricsfreak.com) through scraping. According to the author, he did some
basic cleaning on the lyrics, removing non-English lyrics, extremely short and
extremely long lyrics, and lyrics with non-ASCII symbols. Compared with cur-
rent work, the number of song lyrics is less than half, although volume provided
is enough to employ machine learning techniques.

3 Extraction of Lyrics and Corpus Cleaning

Following the same web scraping flow described by Milev et al. [8], the cre-
ation of the corpus began in the selection of a source where it was possible to
extract a sufficiently large number of song lyrics. Initially, the site chosen was
Genius.com (genius.com), due to the fact that it is one of the most used websites
in the field, and contains explanatory notes in some stanze of the songs, which
could later be used to enrich Corpus content. The site provides an Application
Programming Interface (API) for extracting data from songs (lyrics, artists and
other metadata). However, its use is limited so that a maximum daily amount
of extractions of the lyrics is imposed. For this reason, it was decided not to use
it. Thus, it was decided that an open site would be used, where the number of
requests was unlimited. The website musica.com (www.musica.com) contained,
up to October 2018, an amount of 979,972 registered song lyrics. The format of
the URL and the website page layout enabled a pretty simple extraction of its
information, and by applying a small script written Python it was possible to
extract 120,946 lyrics of songs from the site.

The goal was to extract only lyrics in English, however, some lyrics in other
languages were also downloaded. Some songs written in Spanish, German, French
and Italian were detected. For this reason, the cleaning of the corpus began in
the extraction process itself. The langdetect native language library of Python
was used to identify the natural language in which the lyrics of the song were
written. After extracting the song lyrics from the site, two files were generated:
one with the Corpus itself, where each song was represented by a single index
followed by the lyrics, and another file containing the song metadata: the artist
and the title of the song.

As was said, the first phase of the cleaning process was the elimination of
song lyrics in languages other than English. Still, some lyrics in English have
expressions in other languages, mostly in Spanish, since many Latin artists who
produce music for the American market mix the two languages. Several tracks of
music were found that blended two languages, mostly Spanish and English. The
song “Bailamos” by Enrique Iglesias has excerpts such as “... te quiero amor

www.smcnus.org
www.lyricsfreak.com
www.lyricsfreak.com
http://genius.com
www.musica.com

Development of a Song Lyric Corpus for the English Language 379

mio, bailamos, gonna live this night forever”. The decision was to keep these
lyrics with this characteristic due to the fact that this is a specific characteristic
of certain artists, and often, of specific genres such as pop music.

The second processing phase of cleaning the Corpus involved the structure of
the song lyrics. Many of the extracted song lyrics contained markers indicating
repetitions of the lyrics elements and types of elements such as chorus and verses.
So markers such as [Verse], [Chorus], [Repeat 2x], [Repeat 3x], among others
have been removed. In this second phase, once again, a Python script was used
to remove these markers. Markers with names of artists that was intended to
clarify which artist was responsible for singing a certain part of the song have
been removed as well. For example, in the song “Home Alone” by R. Kelly, the
singer has the collaboration of another artist, Keith Murray. The piece of music
in which Keith sings is demarcated by [Keith].

After finishing the cleaning, two new versions of the corpus were generated:
in addition to the original corpus, a tokenized and lemmatized corpus was gen-
erated, in order to reduce the vocabulary size. The spaCy library tokenizer [4]
was used and for the lemmatization, it was used the Python NLTK library [7],
which has a built-in implemented lemmatizer (WordNetLemmatizer). Thus, for
instance, in the song “If I Die 2Nite” by Tupac Shakur, the sentence “A coward
dies a thousand deaths. A soldier dies but once” would become “A coward die a
thousand death. A soldier die but once”.

The second version of the corpus was generated when the stopwords were
removed. Among the words present in the stopword list are “me”, “I”, “myself”,
“you”, “you’re”, for example. Note that these are words present in almost every
song, and that often contribute to the expression of some feeling in the context.
For example, in the song “Forever Man” by Eric Clapton, the phrase “How many
times I say I love you” after processing would look like this “many times must
say love”, which completely removes the sense of it. For this reason, the corpus
version without stopwords was used only for N-grams analysis, described in the
next section. Some other considerations were taken into account when analyz-
ing the initial corpus. For example, the presence of onomatopoeia as “whoa”,
“ooooh” in its most diverse forms, as well as the emphasis on certain syllables
of some words to generate musicality, as in the case of “girl”, that several times
was used like “Girrlll”. It was decided that such structures would be maintained
because they were used to promote more musicality to the song and, in a way,
highlight the given word in context. In addition, by maintaining such constructs,
we avoid reducing the number of Corpus types. The last consideration regarding
the cleaning of Corpus was the removal of punctuation from both versions.

4 Corpus Analysis

Corpus analysis was done separately for the two versions described in the pre-
vious section. Firstly, an analysis of the frequency distribution was made in the
two corpora, with the purpose of identifying the number of tokens and types
in each one of them and to establish their size. In addition, an analysis of the

380 M. A. G. Rodrigues et al.

occurrence of the unigrams in both was performed. For the lemmatized Corpus,
12,355,270 tokens and 175,412 types were counted. It is only natural that there
is a much greater number of tokens than types, especially when it comes to song
lyrics since there are many repetitions like what happens in choruses.

Afterwards, an analysis of the unigrams in the Corpus was carried out. In the
Fig. 1, the thirty most frequent words in the corpus are presented. As expected,
the most common words in Corpus were words like “the”, “you”, “I”, “and”,
among others.

Fig. 1. The thirty most frequent unigrams in the lemmatized corpus.

In the case of the corpus without stopwords, 11,300,686 tokens and 237,786
types were counted. The Fig. 2 shows the thirty most frequent bigrams in the cor-
pus. Notably, the pronouns “you” and “I” participate in several bigrams among
the most frequent.

5 Embeddings

Two vectorization techniques were applied in the corpus and, following, an anal-
ysis was performed. First, the Word2Vec technique [7] was used through the
Python Gensim package [10]. A similarity analysis was performed between words
present in both versions of the corpus (lemmatized corpus and the corpus with-
out stopwords).

Based on some of the results displayed in the Table 1, it can be stated that
Word2Vec was capable of capture the context of slangs. In America, people
usually refer to the word money as cheese informally, and mainly in music. On
the lemmatized lyrics corpus, the word cheese can refer to the noun cheese that
represents food. As an example, the song “Summer Girls” composed by the
artist LFO has the following use of the word cheese: “Think about that summer

Development of a Song Lyric Corpus for the English Language 381

Fig. 2. The thirty most frequent bigrams in the corpus

Table 1. Words similar to “man”, “car”, “love”, “money”, “drugs” and “life”, with a
window of words of size 5 in the lemmatized corpus using Word2Vec.

man woman
0.8154

guy

0.7377

boy

0.6926

girl

0.6897

person

0.6531

brother
0.6331

car truck
0.7921

limousine
0.7346

jeep

0.7241

cadillac
0.7208

benz
0.7080

automobile
0.6747

love loving

0.6947

promise

0.6529

life
0.6418

dream
0.6385

trust
0.6335

hope

0.6326

money cash
0.8595

dollar
0.8561

dough

0.8359

loot
0.7413

cheese
0.6123

respect

0.6118

drugs dope

0.7383

monopoly

0.6012

cocaine
0.5849

auto
0.5822

junky

0.5806

liquor

0.5722

life world
0.7143

existence
0.6875

destiny

0.6805

lifestyle

0.6620

dream
0.6604

fate
0.6598

and I bug cuz I miss it. Like the color purple macaroni and cheese”. In the other
hand, the group Cypress Hill use cheese as money on the song “Superstar”: “...
come with me, show the sacrifice it takes to make the cheese”. The same analysis
can be done to the word dope. During informal conversations it can be used as
“cool” or “nice”. In this case, Word2Vec showed that the word dope was 0.7383
similar to drugs, which is true, due to the fact that it is used on song lyrics
to refer to illegal drugs taken for recreational purposes. For the corpus without
English stopwords, we have the following percentages of similarity (Table 2).

382 M. A. G. Rodrigues et al.

Table 2. Words similar to “man”, “car”, “love”, “money”, “drugs” and “life”, with a
window of words of size 5 in the corpus without stopwords using Word2Vec.

man woman
0.7175

guy

0.67.06

boy

0.65.43

girl

0.62.07

dude
0.57.16

kid
0.56.70

car truck
0.7261

cars
0.6689

benz
0.6254

bike
0.6232

van
0.6152

bus
0.5961

love loving

0.6668

know
0.6131

oh
0.6058

babe
0.6004

baby

0.5986

loves
0.5851

money cash
0.7958

dough

0.7630

loot
0.6359

moneys

0.5756

funds
0.5674

chips

0.5529

drugs dealers
0.6477

Drug

0.6209

dope

0.6141

dealer
0.5957

cocaine
0.5790

fiend
0.5640

life world
0.6632

lifes
0.6170

lives
0.6127

lifetime
0.5852

love
0.5551

time
0.5326

In order to perform a comparison, analyzes were also performed using another
word-vectoring technique. The second vectorization technique used was fastText
[1]. The great differential of fastText in relation to the representation made
by Wor2Vec is that each word is represented as a bag of character n-grams in
addition to the word itself. For example, be the word “money”, then using the
n = 4 parameter in the fastText configuration, it will generate representations
for the character n-grams “<mon”, “mone”, “oney”, and “ney>”, using the
characters “<” and “>” as boundary symbols. Because fastText constructs the
vector for a word from n-gram vectors that constitute a word, it is able to
output a vector for a word that is not in the pre-trained model. This can be
quite interesting for lyrics generation since it works with phonetic similarity.

Table 3. Words similar to “man”, “car”, “love”, “money”, “drugs” and “life”, with
n = 3 in the corpus without stopwords using FastText.

man moman
0.7790

catwoman
0.7782

Woman
0.7734

fellowman
0.7551

mr.man
0.7520

lawman
0.7509

car truck
0.7957

limousine
0.76.86

cadillac
0.7617

houseboat
0.7603

driveway

0.7481

carib
0.7441

love mylove

0.8217

trust
0.7080

loving

0.6974

promise

0.5912

babe
0.5717

dream
0.5779

money moneys

0.8847

cash
0.8783

dough

0.8103

loot
0.7777

respect

0.6352

cheese
0.6320

drugs drug

0.8595

drugstore

0.8075

psychiatrics

0.7593

drugdealer

0.7526

buggery

0.7525

crackheads
0.7494

life lifeall
0.8181

lifestlye

0.7981

livelihood
0.7616

lifes
0.7585

prolife

0.7581

lifesaver
0.7388

Development of a Song Lyric Corpus for the English Language 383

Table 3 shows the words that are similar to the previous selected words. It is
possible to see, specially in the similarity results of the words “man” and “live”,
that fastText is more phonetic than word2vec.

6 Conclusions

In the present article the development of a corpus containing song lyrics was
presented. The corpus underwent a normalization process and two versions were
created, one where the words were placed in their lemma form and the other
where the stopwords were taken. No syntactic or semantic annotation process
has been done, leaving these stages as future work. The corpus is, so far as it
has been found in current literature, the largest, except those that are in the
form of bag-of-words, but which are not suitable for text generation tools. It is
expected that the availability of the corpus allows the development, testing and
evaluation of tools that seek the generation of text focused on poetry and song
lyrics.

References

1. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

2. Ellis, R.J., Xing, Z., Fang, J., Wang, Y.: Quantifying lexical novelty in song lyrics.
In: ISMIR, pp. 694–700 (2015)

3. Habernal, I., Zayed, O., Gurevych, I.: C4corpus: multilingual web-size corpus with
free license. In: LREC, pp. 914–922 (2016)

4. Honnibal, M., Montani, I.: spacy 2: natural language understanding with bloom
embeddings, convolutional neural networks and incremental parsing (2017)

5. Kuznetsov, S.: 55000+ song lyrics. https://www.kaggle.com/mousehead/
songlyrics. Accessed March 2019

6. Miethaner, U.: The blur (blues lyrics collected at the University of Regensburg)
corpus: blues lyricism and the African American literary tradition. Curr. Objectives
Postgrad. Am. Stud. 2 (2001). https://doi.org/10.5283/copas.64

7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

8. Milev, P.: Conceptual approach for development of web scraping application for
tracking information. Econ. Altern. (3), 475–485 (2017)

9. Nishina, Y.: A study of pop songs based on the billboard corpus. Int. J. Lang.
Linguist. 4(2), 125–134 (2017)

10. Řeh̊uřek, R., Sojka, P.: Software framework for topic modelling with large cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pp. 45–50. ELRA, Valletta, Malta, May 2010. http://is.muni.cz/
publication/884893/en

11. Seitner, J., et al.: A large database of hypernymy relations extracted from the web.
In: LREC, pp. 360–367 (2016)

https://www.kaggle.com/mousehead/songlyrics
https://www.kaggle.com/mousehead/songlyrics
https://doi.org/10.5283/copas.64
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

A Natural Language Interface Supporting
Complex Logic Questions for Relational

Databases

Ngoc Phuoc An Vo(B), Octavian Popescu, Vadim Sheinin, Elahe Khorasani,
and Hangu Yeo

IBM Research, Yorktown Heights, USA
ngoc.phuoc.an.vo@ibm.com,

{o.popescu,vadims,elkh,hangu}@us.ibm.com

Abstract. Natural Language Interface to Databases (NLIDB) systems
accept questions in any supported natural language (i.e English) and
allow users to interrogate a database. Users can access and derive infor-
mation from a relational database without requirement for knowledge of
database language. In this paper we introduced an NLIDB system which
not only supports simple logic questions but also attempts to under-
stand and resolve complex logic ones. The system is also equipped with
a Natural Language Generation module to generate human-like descrip-
tion for given queries to help users to understand how a query processed
and assess the correctness of the result returned. Experiment results
show that our system can handle some types of complex logic questions
effectively.

Keywords: Natural language interface ·
Natural Language Generation · Relational databases ·
Complex logic questions

1 Introduction

Natural language interfaces to database (NLIDB) are systems that process nat-
ural language queries into SQL queries for any specific database. The translation
from natural language to a logical language is often difficult and specialized algo-
rithms must be developed to decompose the meaning into a sequence of logical
commands.

We have developed a system that is able to identify two types of queries, con-
veniently called, simple and complex, respectively. Simple queries are processed
as described in [11]. Complex queries are decomposed into a sequence of simple
queries with the information on how to interconnect them.

In this paper we report on a significant progress made in dealing with complex
queries. We implemented a unified approach over what apparently are different
types of complex questions. This approach, which improved the previous results

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 384–392, 2019.
https://doi.org/10.1007/978-3-030-23281-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_34&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_34

A Natural Language Interface Supporting Complex Logic Questions 385

by 20%, implements a strategy of decomposing a complex query into a sequence
of simple subqueries which are linked through the usage of variables.

In Sect. 2 we give a brief description of the architecture of the system, followed
by Sect. 3, in which we focus on complex questions and what their automatic
decomposition looks like, while the next section describes evaluation experi-
ments. The paper ends with Related Work and Conclusion sections.

2 A Brief System Description

A deep natural language understanding module is employed to decompose the
complex questions into an ordered sequence of simple questions. At the heart
of the processing of simple questions resides a mechanism of transforming the
query into a sequence of data items, i.e. terms that have a direct and specific
connection to the database and SQL query. The data items are piped further
to an SQL generating engine that returns an answer. However, the system does
not stop here. The SQL queries and the results are interpreted and transformed
into controlled English sentences by a dialog component using Natural Language
Generation (NLG) module. These sentences are displayed so that users can see
effectively how the initial question was processed and users have a direct way to
assess whether the result returned is correct or not.

Fig. 1. System architecture

Our system is modular (see Fig. 1) and consists of the following modules:

1. Decomposition module using natural language understanding for decompos-
ing a complex question into a set of ordered simple sub-questions,

2. Data Item Generation module to generate data items from simple sentences,
where data item is a tuple (consists of table name, column name, aggregation
function, and filter) which makes the connection between parts of the question
and the specific database in use,

3. SQL Generation Engine that is able to produce full-fledged SQL queries and
return an answer, and

4. Natural Language Generation module (NLG) which is in charge of automati-
cally producing English sentences for each SQL query, such that the user can
have a direct way to verify the correctness of the whole process.

386 N. P. A. Vo et al.

Schema Annotation File (SAF) stores the English sentences generated by the
syntactic patterns according to the database description. In our development
and experiment, we used three database schemas corresponding to three SAF as
below:

– Warehouse (Sales) schema stores information about sales history of products
and attributes of customers, products, shops and manufacturers. Figure 2
shows the visualized SAF for Sales database schema.

– Human Resources (HR) schema contains synthetic data records and it repre-
sents a human resources data model.

– (TPOX) schema contains synthetic records of history of security transactions
and holdings of customer accounts in three stock exchange markets.

Fig. 2. Visualized SAF for sales database schema

The modules (1) and (4), Decomposition and NLG respectively, have an
off-line component, where the deep natural language understanding models
are created from the Schema Annotation File (SAF). The on-line component
applies the learned model to a specific question. Data Items extraction lies at
the core of module (2), Data Item Generation. Data items are created from
parts of the question’s dependency parses by matching these parts against a
set of phrases that describe the relationship between tables and columns in
that particular database. The SQL Generation Engine built on the IBM Cognos
Analytics1 automatically generates SQL query from the data items constructed
in the previous step, submits the query to the database to get the final answer
and returns it to users.

1 https://www.ibm.com/products/cognos-analytics.

https://www.ibm.com/products/cognos-analytics

A Natural Language Interface Supporting Complex Logic Questions 387

Table 1. Examples of complex logic questions by types and database schemas.

Complex logic questions Type Schema

1 what Apple product is more expensive than the average price of

Microsoft products?

Q Sales

2 What shop stocked more Iphones than iPhones in BESTBUY? Q Sales

3 What product was sold in shops in NY more in 2017 than in 2018 Q Sales

4 What department has more employees than Sales? Q HR

5 How many managers manage more employees than Peter Gild? Q HR

6 What client placed more buy order in 2013 than Kozi Camps in 2012? Q TPOX

7 Who bought more AVEO in 2012 than they sold in 2011? Q TPOX

8 Which product types were sold after Willie bought Iphone? T Sales

9 what vendor sold Iphone to Willie before Donald bought Galaxy? T Sales

10 How many employees left Marketing department after Jack Smith was

hired?

T HR

11 Show me the names of employees who joined Sales after Jack London? T HR

12 How many clients started accounts before Kozi Camps? T TPOX

13 What client bought IBM shares before Kozi Camps on July 11? T TPOX

14 What are the types of products that were sold in Bestbuy between May

and June 2014?

I Sales

15 What product did Willie buy after Alonzo bought Iphone? I Sales

16 What are the employees who have birthday in July 1984? I HR

17 What are the departments that are managed by Jack Smith? I HR

18 How many agents trade IBM on accounts that are held by Kozi Camps? I TPOX

19 How many companies are listed on the market that lists IBM? I TPOX

20 What vendor sold more products in 2016 than it stocked in same year? Q+T Sales

21 How many shops in NY sold more Iphone than Galaxy after Donald

bought Galaxy?

Q+T Sales

22 Which departments hired more employees than Sales before Jack London

was hired?

Q+T HR

23 What managers manage more employees than Peter Guild after Jack

London left Sales?

Q+T HR

24 What client bought more ABC than IBM after ABC was listed? Q+T TPOX

25 What client placed more IBM buy orders than Kozi Camps after he sold

ABC?

Q+T TPOX

26 what are products that have prices greater than GALAXY? Q+I Sales

27 What is a name of a manufacturer that manufactured more products

than Samsung?

Q+I Sales

28 What are the departments that have salary higher than Sales? Q+I HR

29 what are the departments that employees joined more than Marketing? Q+I HR

30 When clients bought securities at a price higher than the price that ABC

was sold on June 15?

Q+I TPOX

31 Which agents manage accounts that have more IBM shares than Kozi

Camps’ account?

Q+I TPOX

32 What is the addresses of shops that sold Iphones after Willie bought

Galaxy?

T+I Sales

33 Who was hired after the year in which Jack Smith was hired? T+I HR

34 What employee was hired after the employee in Marketing department

who has the highest salary

Q+T+I HR

388 N. P. A. Vo et al.

3 On Query Decomposition

A complex question does not allow a direct translation to data items, because
the true relationship between data items may be masked by a linguistic complex
construct. In order to generate the correct SQL query, a deep language under-
standing model is created off-line, which inputs the SAF and creates a type base
matching model. When this model is matched against a query, each predicate
occurring in the query has its logical arguments overtly expressed according to
the subcategorization frame (SCF) of each verb as specified in SAF. The model
is able to infer when and how to create a sub-query that results in a value of the
expected type as they are specified in SAF [8].

For example, in the question “What company manufactured more products
than Samsung”, Samsung is not the logical argument of the operator more than,
which requires a QUANTITY as an argument, as required by the operator more
than. This is a quantitative complex question; we call this type, type Q. The algo-
rithm detects the type inconsistency between Samsung and quantity argument
requested by the operator, more than. The strategy to resolve this, is to create
new predicate that connects the two types, that is, this predicate is expressed
via an English sentence with a SCF matching one of the patterns in SAF.

Same decomposition algorithm is employed for temporal queries, type T
queries, like “which shop sold Iphone before BestBuy”. The fact that the operator
before requires a DATE type is just a parameter that is passed to the decomposi-
tion algorithm. The matching startegy follows the same steps as above.

For indirect references, type I queries, such as relative clauses like “who was
hired after the year in which Jack Smith was hired”, the same algorithm first
determines in a simple query which exact year is mentioned and then uses that
value in a subsequent simple query.

The connection between different sub-queries is maintained through the use
of variables. Each query has access to the variables defined by the previous sub-
queries. The decomposition of the aforementioned relative-clause example is:

– query1 = year in which Jack Smith was hired; assignment year as Q1XA1.
– query2 = On what date employee was hired; assignment date as Q2XA1;

assignment employee as Q2XA2; assignment each employee as Q2XA3.
– query3 = connection QX1 and QX2; computation Q1XA1 and Q2XA1 with

operator GreaterThan; selection Q2XA3.

The variable “Q1XA1” retains a specific date, determined after this sub-query
is executed, which later is used to have a meaningful comparison in the third
sub-query.

The number of sub-queries might be variable, depending on the type of oper-
ations required to be performed in order to get to the right answer.

The system is able to cope with queries involving missing information in
quantitative, temporal queries or with queries involving indirectly reference or
combinations of these. In table we give examples of such queries, indicating the
type of complexity by type Q (quantitative type), T (temporal type), I (relative
clause type), or combination of those, like Q+T or Q+T+I, see Table 1.

A Natural Language Interface Supporting Complex Logic Questions 389

Fig. 3. Example of a complex question for sales schema.

Figure 3 shows example how complex question is handled in Sales schema.
The question is entered, the database schema is selected, by default the question
will be decomposed into sub-questions and displayed in Decomposition window,
then these sub-questions are processed to generate data items as a means to
produce the final SQL. The NLG text is also generated for the question as shown
in the NLG window.

Natural Language Generation. The NLG model takes the decomposed SQL
query as input which is a nested SQL query, and then generates the interpreta-
tion for each single query using template-based rules. Finally, our NLG model
combines these interpretations by solving the cross reference and producing a
human-like response to the users.

4 Experiments and Analysis

Datasets. For evaluating the whole system with embedded decomposition, we
created two testing datasets: Mixed-1 (81 questions) and Mixed-2 (65 questions)
in which all question types and schemas are mixed together.
Evaluation and Error Analysis. For the evaluation of performance on the
training data, Table 2 shows how well the stand-alone decomposition can deci-
pher complex questions into sets of simple logic questions. For testing the system
as a whole, we implemented the system described in the literature [11] as the

390 N. P. A. Vo et al.

baseline. Table 3 shows that at the data item level (final system output), our
system outperforms the baseline by a large margin for both testing datasets.

Comparing to the baseline, which was based on sub-pattern tree matching,
we saw a big improvement. However, there are still wrong answers. The reason
is three-folded: (i) the decomposition is wrong and/or (ii) the assignment of
variable is wrong/inconsistent, and/or (iii) the data items are extracted wrongly
from the simple sub-queries.

The error types (i) && (ii) are the majority, around 65%. The type (i) is
inherent to the algorithm itself. Some of the matching SCFs for the inferred
predicates that resolve the type inconsistencies are wrongly produced. The type
(ii) is mostly resolvable in the further versions of the system, as the main problem
here seems to be a wrong interpretation of the API between the decomposition
module and the data item extraction module. See the Conclusion and Further
work Section.

5 Related Works

NLIDB has been a hot research topic in NLP for long time and there is a
huge literature on NLIDB. We point out some general trends due to the space
limit of this paper. Initial systems developed based on hand written rules, were

Table 2. Training evaluation for decomposition module.

Dataset Total Correct Incorrect Accuracy(%)

Type Q

Sales 60 45 15 75%

HR N/A N/A N/A N/A

TPOX 79 69 10 94.5%

Type T, Type Q+T

Sales 73 51 22 69.9%

HR 26 17 9 65.4%

TPOX 50 32 18 64%

Type I, Type Q+I

Sales 42 25 17 60%

HR 22 14 8 64%

TPOX 40 25 15 62.5%

Table 3. End-to-end testing accuracy.

Systems Mixed-1 (81 questions) Mixed-2 (65 questions)

Our system 70.4% 76.7%

Baseline 29.6% 51.7%

A Natural Language Interface Supporting Complex Logic Questions 391

very accurate and able to resolve complicated sentences, but lacked coverage.
Basically these systems can respond to a very limited (type) of natural language
questions. The problem relating to the complexity of logical quantifiers and their
scope was very well studied and interesting solutions, not generalizable though,
were found. The literature [3] provides an excellent overview of the state of the
art before the 1990’s.

The focus of research in the nineties was on less NLIDB type of problems.
But important steps were made towards systems that may be extremely effective
tools for database access and may use some form of English (or other natural lan-
guages); however, it does not mean that the problem of completely unrestricted
use of natural language queries has been solved, see [1] for a relevant survey.

The study [7] adopts a pragmatic thinking, by pointing out that the existence
of very complex natural language queries does not preclude building automatic
systems that are able to process simple queries. The recent developments in
deep learning algorithms seem to bring back into the foreground the NLIDBs.
Nevertheless, there are a lot of achievements in between. Working on related
topics, such as learning inferences over constrained outputs, global inference in
natural languages [9,10], open domain relation extraction [4], or more recently,
resolving algebraic problems expressed in natural language [5], semantic parser
[12] provide a strong ground for approaching the NLIDB by taking advantage of
the power of semi-supervised and unsupervised techniques. Some papers, among
which [2,6] have directly approached the NLIDB problem. However, there is
no explicit reference to complex logic questions, because the evaluations were
carried out in an undifferentiated manner.

6 Conclusion and Further Work

The current system implements an algorithm of decomposing of complex queries
on the basis of type incompatibility as resulting from SAF files. This algorithm
performs significantly better that the baseline of directly inferring the data items
from dependency trees. For the next version of the system we focus on reducing
firstly the type (ii) errors - that is, the API errors between decomposition and
data item modules. Secondly. We focus on type (i) error - the errors due to
misinterpreting the queries, and we plan to use an enhanced natural language
deep understanding model that takes into account a larger class of linguistics
phenomena.

References

1. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to
databases - an introduction. Nat. Lang. Eng. 1(1), 29–81 (1995)

2. Condoravdi, C., Richardson, K., Sikka, V., Suenbuel, A., Waldinger, R.: Natural
language access to data: it takes common sense! In: 2015 AAAI Spring Symposium
Series (2015)

392 N. P. A. Vo et al.

3. Copestake, A., Spärck Jones, K.: Inference in a natural language front end
for databases. Technical report, University of Cambridge, Computer Laboratory
(1989)

4. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information
extraction. In: EMNLP (2011)

5. Koncel-Kedziorski, R., Hajishirzi, H., Sabharwal, A., Etzioni, O., Ang, S.D.: Pars-
ing algebraic word problems into equations. TACL 3, 585–597 (2015)

6. Li, F., Jagadish, H.: Constructing an interactive natural language interface for
relational databases. Proc. VLDB Endowment 8(1), 73–84 (2014)

7. Popescu, O.: Learning corpus patterns using finite state automata. In: Proceedings
of the 10th International Conference on Computational Semantics, pp. 191–203
(2013)

8. Popescu, O., Vo, N.P.A., Sheinin, V., Khorashani, E., Yeo, H.: Tackling complex
queries to relational databases. In: Proceedings of the 11th Asian Conference on
Intelligent Information and Database Systems, ACIIDS 2019 (2019)

9. Punyakanok, V., Roth, D., Yih, W.t., Zimak, D.: Learning and inference over
constrained output. In: IJCAI, vol. 5, pp. 1124–1129 (2005)

10. Roth, D., Yih, W.: A linear programming formulation for global inference in natural
language tasks. In: HLT-NAACL, pp. 1–8 (2004)

11. Sheinin, V., Khorasani, E., Yeo, H., Xu, K., Vo, N.P.A., Popescu, O.: Quest: a natu-
ral language interface to relational databases. In: Proceedings of the Eleventh Inter-
national Conference on Language Resources and Evaluation, LREC 2018 (2018)

12. Wang, Y., Berant, J., Liang, P.: Building a semantic parser overnight. In: ACL
(2015)

Waste Not: Meta-Embedding of Word
and Context Vectors

Selin Değirmenci(B) , Aydın Gerek , and Murat Can Ganiz

Marmara University, 34730 Istanbul, Turkey
selindegirmenci@marun.edu.tr, {aydin.gerek,murat.ganiz}@marmara.edu.tr

Abstract. The word2vec and fastText models train two vectors per
word: a word and a context vector. Typically the context vectors are
discarded after training, even though they may contain useful informa-
tion for different NLP tasks. Therefore we combine word and context
vectors in the framework of meta-embeddings. Our experiments show
performance increases at several NLP tasks such as text classification,
semantic similarity, and analogy. In conclusion, this approach can be
used to increase performance at downstream tasks while requiring mini-
mal additional computational resources.

Keywords: Meta-embedding · Word embeddings · Word2vec ·
FastText · Text classification · Semantic similarity · Analogy

1 Introduction and Motivation

The choice of word embedding model is an important hyperparameter for many
NLP tasks, since it has been observed that different embedding models tend to
provide stronger representations for different types of downstream tasks [4]. It
is also known that ensembles of machine learning models tend to perform better
than their individual constituents. It makes sense, then, to combine different
embedding models in order to improve the performance of downstream NLP
tasks.

While using ensembles of downstream models seeded with different types of
word embeddings had been tried before [1], the idea of combining word embed-
dings directly to form meta-embeddings starts with the work of [21]. In that
work the authors form meta-embeddings by concatenation, by factorization of
the concatenated vectors (SVD), and a method called 1toN that learns a meta-
embedding from which (also learned) projections exist to the source embeddings,
with said projections minimizing the mean square error between the projected
meta-embedding and source embedding of the same word for all words. A sim-
pler but overlooked idea of averaging source embeddings is explored in [5]. In
[3] autoencoders are employed to dimension reduce the concatenated (CAEME)
and averaged (AAEME) meta-embeddings as well as dimension reducing source
embeddings and concatenating them (DAEME).

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 393–401, 2019.
https://doi.org/10.1007/978-3-030-23281-8_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_35&domain=pdf
http://orcid.org/0000-0002-4612-096X
http://orcid.org/0000-0001-9875-7041
http://orcid.org/0000-0001-8338-991X
https://doi.org/10.1007/978-3-030-23281-8_35

394 S. Değirmenci et al.

One of the best known word embedding models is word2vec [13,14], which
during its learning procedure not only learns a word vector for each word in
the training corpus, but also a context vector for it. However context vectors
are typically discarded after training. In [16] it is briefly mentioned that adding
word and context vectors may result in a small performance boost. However
it is not thoroughly investigated. In this study we investigate it in detail by
forming meta-embeddings of word and context vectors in several different ways
and conducting detailed experiments. We observe that combining the word and
context embeddings to form a meta-embedding in several different settings yields
a higher performance at the text classification, semantic similarity and analogy
tasks.

In Sect. 2, we describe our novel approach and meta-embedding types. In
Sect. 3, we describe our experimental setup, our implementation and NLP tasks
that we perform. In Sect. 4, we present results of our meta-embedding methods
on text classification, semantic similarity and word analogy tasks. In Sect. 5, we
draw our conclusions based on our results and discuss possible extensions as
future work.

2 Approach

Our novel approach focuses on exploiting otherwise ignored information encoded
in context vectors. We formulate and experiment with seven different types of
meta-embeddings. A total of nine results are given in our tables for comparison
where the first two are traditional word and context embeddings which constitute
the baselines.

In order to see if including context vectors help improving performance
in several NLP tasks, first, we create a meta-embedding by concatenating
word and context embeddings which is simply denoted by concat. This will
result in doubling the dimensionality. Our second approach is to average
word and context embeddings which is denoted by average. Third approach
is to apply a max pooling filter to word and context embeddings to cre-
ate a meta-embedding. This is donated by maxpool. Fourth one is a more
complicated meta-embedding which is obtained by concatenation, averaging
and maxpooling of word and context embeddings. This is indicated as CAM
in our result tables. Following this, we have three additional auto-encoder
based meta-embeddings [3] of word and context embeddings, namely Aver-
aged Autoencoded Meta-Embedding (AAEME), Concatenated Autoencoded
Meta-Embedding (CAEME), and Decoupled Autoencoded Meta-Embedding
(DAEME). Please note that different meta-embedding approaches we have taken
result in different dimensional vectors. This can be seen in Table 1.

In order to obtain word and context embeddings we use two of the most
popular word embedding models; the word2vec and fastText [2,8]. For both
models we use the skip-gram negative sampling architecture as it is more popular.
In the case of fastText models while character n-grams are trained alongside
word and context embeddings, we’ve choose not to include those in our meta-
embeddings for comparability reasons.

Waste Not: Meta-Embedding of Word and Context Vectors 395

Table 1. Embedding and dimension

Embedding word context concat average maxpool CAM AAEME CAEME DAEME

Dimension 200 200 400 200 200 400 300 400 400

3 Experiments

3.1 Datasets

We trained our embeddings on Text8 [11], which is a corpus based on the first 109

bytes of the Wikipedia dump of March 3, 2006. For comparison we also trained
our embeddings on a large Wikipedia dump. This corpus contains 19,251,790
articles and occupies approximately 16 GB of disk space.

For the text classification task we use the following datasets: AG’s News
Corpus [22] consisting of 120,000 documents in 4 classes, WEBKB which is a
highly imbalanced dataset of 8,282 documents in 7 classes [12,17], Yelp Reviews
Polarity [20,22] consisting of 560,000 documents in 2 classes, and DBPedia [9,22]
also consisting of 560,000 documents but in 14 classes.

For the semantic similarity test we use the following datasets: WS [6] (353
word pairs), RG [19] (65 word pairs), RW [10] (2034 word pairs), SL [7] (999
word pairs).

For the analogy test we use the GL [14] dataset (19,557 analogy questions).

3.2 Experimental Setup

We use the gensim library [18] implementations of word2vec and fastText. For
both we train vectors dimension of 200, and use default hyperparameters oth-
erwise. We also use the word similarity and analogy tests implemented in the
gensim library. We report the Spearman Correlation between the cosine similar-
ity of word vectors and human assigned similarity scores.

For the text classification experiments we use Support Vector Machines
(SVM) algorithm, more specifically Linear Support Vector Classifier (Lin-
earSVC) which is commonly used in this domain. We use the one implemented
in the scikit-learn library [15] with the default hyper parameters. Documents to
be classified are represented as averages of their words’ vectors.

The text classification experiments were run with 10-fold cross validation.
We report the average accuracy and the standard deviations for the classification
experiments.

In text classification experiments, in order to see if the performance improve-
ment of meta-embeddings such as concat is due to the increased (actually dou-
bled) number of dimensions or not, we conduct two sets of experiments. First,
we compare meta-embeddings of size 200 (100 word + 100 context) with a base-
line word embedding vectors of 200. In the second set of similar experiments we
double the vector sizes.

396 S. Değirmenci et al.

4 Results and Discussion

4.1 Text Classification

According to our results, as seen in Tables 2 and 3, we see that for text clas-
sification the concatenation approach has a distinct advantage over all other
approaches. The auto-encoder meta-embeddings appear to perform better than
the average and the baseline meta-embeddings. However for the WEBKB
dataset, which is a highly class imbalanced one, we observe a different pattern.
In this dataset autoencoder based meta-embeddings perform poorly compared
to others.

The concatenation meta-embeddings of both word2vec and fastText mod-
els exceed the classification performance of the other meta-embeddings in all
datasets.

Table 2. Performance of word2vec meta-embeddings trained on text8 for text classi-
fication task

AG News WEBKB Yelp Polarity DBpedia

word 85.41 +/- 1.11 67.61 +/- 2.07 79.51 +/- 0.78 94.78 +/- 1.49

context 86.26 +/- 1.12 67.11 +/-2.45 81.29 +/- 0.79 94.75 +/- 1.52

concat 87.42 +/- 1.07 69.56 +/- 2.27 83.31 +/- 0.80 96.02 +/- 1.21

average 85.68 +/- 1.14 67.40 +/- 2.14 79.79 +/- 0.74 94.87 +/- 1.47

maxpool 85.51 +/- 1.07 66.97 +/- 2.17 79.33 +/- 1.00 94.63 +/- 1.49

CAM 86.79 +/- 1.06 69.79 +/- 1.88 82.44 +/- 0.89 96.05 +/- 1.20

AAEME 86.71 +/- 1.21 58.53 +/- 2.72 82.21 +/- 0.73 94.75 +/- 1.58

CAEME 86.90 +/- 1.15 59.14 +/- 2.72 82.96 +/- 0.75 94.99 +/- 1.54

DAEME 86.33 +/- 1.12 56.79 +/- 2.92 82.19 +/- 0.77 94.56 +/- 1.59

The improvement is most obvious in the Yelp Reviews Polarity dataset with
an increase of 3.8% points over word embeddings for word2vec, and 4.27% points
for fastText.

As the second step of experiments we run the same text classification
tasks using our meta-embedding models trained using Wikipedia. According
to results, as seen in Tables 4 and 5, again concatenation meta-embeddings of
both word2vec and fastText models exceed the classification performance of the
other meta-embeddings in all datasets.

For text classification, as seen in Table 6, we also compare the performance
of same size meta-embedding and baseline embedding vectors. We observe that
concatenation of word and context vectors still shows higher accuracy than word
vectors by themselves, even though their dimensionalities are equal.

Waste Not: Meta-Embedding of Word and Context Vectors 397

Table 3. Performance of fastText meta-embeddings trained on text8 for text classifi-
cation task

AG News WEBKB Yelp Polarity DBpedia

word 85.32 +/- 1.16 68.08 +/- 2.37 79.78 +/- 0.74 94.29 +/- 1.75

context 86.61 +/- 1.23 67.51 +/-2.32 81.26 +/- 0.84 94.79 +/- 1.54

concat 87.49 +/- 1.17 70.13 +/- 2.30 84.05 +/- 0.88 95.98 +/- 1.25

average 85.77 +/- 1.16 68.23 +/- 2.23 80.16 +/- 0.79 94.51 +/- 1.66

maxpool 85.21 +/-1.28 67.21 +/- 2.69 79.43 +/- 0.67 94.79 +/- 1.86

CAM 86.86 +/- 1.08 70.85 +/-2.60 83.05+/- 0.80 95.72 +/- 1.31

AAEME 86.75 +/- 1.17 59.72 +/- 2.70 83.05 +/- 0.88 94.75 +/- 1.72

CAEME 87.07 +/- 1.20 60.31 +/- 2.74 83.86 +/- 0.83 95.15 +/- 1.59

DAEME 86.61 +/- 1.26 58.25 +/- 2.49 83.08 +/- 0.86 94.63 +/- 1.73

Table 4. Performance of word2vec meta-embeddings trained on Wikipedia for text
classification task

AG News WEBKB Yelp Polarity DBpedia

word 88.82 +/- 1.11 68.31 +/- 3.02 84.06 +/- 0.73 96.53 +/- 1.20

context 88.98 +/- 1.21 67.96 +/- 3.30 84.71 +/-0.70 96.56 +/- 1.20

concat 89.42 +/- 1.10 69.89 +/- 3.36 86.07 +/- 0.67 96.90 +/- 1.11

average 88.98 +/- 1.16 68.13 +/- 3.19 84.50 +/- 0.69 96.53 +/-1.18

maxpool 88.87 +/- 1.21 68.23 +/- 3.10 84.09 +/- 0.73 96.40 +/- 1.22

CAM 89.38 +/- 1.14 69.04 +/-3.64 86.23 +/- 0.68 96.97 +/- 1.11

Table 5. Performance of fastText meta-embeddings trained on Wikipedia for text
classification task

AG News WEBKB Yelp Polarity DBpedia

word 88.04 +/-1.35 67.30 +/- 1.97 82.12 +/- 1.47 96.32 +/-1.18

context 88.56 +/-1.13 66.48+/ -2.18 84.77 +/ -0.74 96.35 +/- 1.26

concat 88.76 +/-1.10 67.97 +/- 2.11 85.34 +/- 1.01 96.83 +/- 1.07

average 88.23 +/- 1.29 68.17 +/- 1.84 83.37+/- 0.78 96.38 +/- 1.19

maxpool 87.61 +/- 1.54 67.05 +/-4.01 81.79 +/-1.11 95.98 +/- 1.39

CAM 88.33 +/-1.21 69.47 +/- 2.24 83.17 +/- 2.79 96.69 +/- 1.20

398 S. Değirmenci et al.

Table 6. Performance comparison of word2vec and fastText meta-embedding concat
with word embeddings of the same dimensionality on the text classification task

Model Type Dim AG News WEBKB Yelp Polarity DBpedia

word2vec concat 400 87.42 +/- 1.07 69.56 +/- 2.27 83.31 +/- 0.80 96.02 +/- 1.21

word2vec word 400 86.26 +/- 1.03 68.46 +/- 1.82 81.32 +/- 0.73 95.67 +/-1.24

word2vec concat 200 86.07 +/- 1.24 67.50 +/- 2.55 81.17 +/- 0.71 94.79 +/- 1.51

word2vec word 200 85.41 +/- 1.11 67.61 +/- 2.07 79.51 +/- 0.78 94.78 +/- 1.49

fastText concat 400 87.49 +/- 1.17 70.13 +/- 2.30 84.05 +/- 0.88 95.98 +/- 1.25

fastText word 400 86.30 +/- 1.07 69.59 +/-2.66 82.42 +/- 0.87 95.46 +/- 1.39

fastText concat 200 86.54 +/- 1.22 68.25 +/- 2.29 80.64 +/- 0.73 94.49 +/- 1.72

fastText word 200 85.32 +/- 1.16 68.08 +/- 2.37 79.78 +/- 0.74 94.29 +/- 1.75

4.2 Semantic Similarity and Word Analogy

Word2vec meta-embedding semantic similarity and analogy results that can be
seen in Table 7, for three of the five datasets the average meta-embedding per-
forms better. For the RW dataset auto-encoder based meta-embedding DAEME
slightly outperforms the average meta-embedding. Interestingly other auto-
encoder based meta-embeddings under perform the average meta-embedding in
the same dataset. One outlier in the semantic similarity task is the SL dataset.
In this one concatenation outperforms all other methods by a large margin.

In the fastText meta-embedding semantic similarity and analogy results
which can be seen in Table 7, we observe a pattern differing from its word2vec
counterparts. We see a much better picture for auto-encoder based meta-
embedding methods. For four of the five datasets the auto-encoder base meta-
embeddings outperform all others visibly. The only dataset where they do not
is the RG dataset which is the smallest dataset used in the semantic similarity
task. In this dataset the average meta-embeddings perform better.

Of note is the fact that for every dataset except the SL dataset, the average
meta-embeddings outperform the concatenation meta-embeddings at the seman-
tic similarity task, and at the analogy task as well.

We also see a difference in the performance of fastText word and context
embeddings. For instance in the analogy task the context embeddings only solve
13.8% of the analogy questions, whereas the word vectors manage 40.6%. In
the SL dataset for the semantic similarity task the context vectors significantly
outperform word vectors (Spearman correlation of 0.3 versus 0.242). This should
be due to the difference in the training of fastText and word2vec vectors. Namely
in the word2vec model the similarity score is calculated as a function of the dot
product between word and context vectors, whereas in the fastText model word
and character n-gram embeddings are summed before computing a dot product
with the context vectors.

Thus while word and context vectors are symmetric in the word2vec model,
they are not in the fastText model. We suspect the differences in performance
are due to this fundamental asymmetry.

Waste Not: Meta-Embedding of Word and Context Vectors 399

Table 7. Performance of word2vec/fastText meta-embeddings trained on text8 for
semantic similarity and analogy tasks

WS RG RW SL GL

word2vec

word 0.622 0.504 0.328 0.261 24.4

context 0.445 0.320 0.336 0.258 18.0

concat 0.625 0.487 0.347 0.336 24.4

average 0.642 0.525 0.367 0.269 27.1

maxpool 0.608 0.441 0.373 0.262 20.5

CAM 0.629 0.480 0.378 0.264 24.2

AAEME 0.593 0.441 0.348 0.285 25.4

CAEME 0.576 0.409 0.353 0.279 25.8

DAEME 0.598 0.444 0.375 0.270 24.9

WS RG RW SL GL

fastText

word 0.435 0.377 0.305 0.242 40.6

context 0.393 0.352 0.304 0.300 13.8

concat 0.437 0.365 0.309 0.251 41.1

average 0.473 0.414 0.328 0.254 42.1

maxpool 0.425 0.418 0.320 0.220 36.1

CAM 0.451 0.430 0.328 0.239 39.7

AAEME 0.475 0.398 0.345 0.316 44.5

CAEME 0.471 0.389 0.345 0.320 44.1

DAEME 0.427 0.397 0.349 0.317 39.2

5 Conclusions and Future Work

By combining word and context vectors of word2vec and fastText models using
several different meta-embedding approaches we evaluate how much improve-
ment context vectors can provide to word vectors’ performances in downstream
NLP tasks such as text classification, semantic similarity, and analogy. Further-
more we investigate which meta-embedding approaches are better at these tasks.

We show that even when we use a much larger training corpus for embedding
models, resulting meta-embeddings show similar behavior, the concatenation of
word and context embeddings usually leads to higher accuracy in text classifi-
cation task.

It is interesting to note that just as the performances of word embedding
models differ according to task, so do those of meta-embeddings of word and
context vectors. In particular concatenation meta-embeddings perform better at
text classification tasks, and average meta-embeddings tend to perform better
at semantic similarity and analogy tasks.

400 S. Değirmenci et al.

We plan to combine word and context embeddings using a greater variety
of meta-embedding methods. Namely, we think that the averaging method will
perform better if the word and context embeddings are aligned via an orthogonal
transformation first. We would also like to evaluate the 1toN [21] in this context.
Another interesting approach will be inclusion of character n-gram embeddings
of fastText in the various combinations.

In the future we would like to shed some light onto performance differences
of auto-encoder based meta-embeddings by throughout analysis.

Acknowledgements. This work is supported in part by The Scientific and Techno-
logical Research Council of Turkey (TÜBİTAK) grant number 116E047. Points of view
in this document are those of the authors and do not necessarily represent the official
position or policies of the TÜBİTAK.

References

1. Bansal, M., Gimpel, K., Livescu, K.: Tailoring continuous word representations for
dependency parsing. In: Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 809–815 (2014)

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors
with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017).
http://aclweb.org/anthology/Q17-1010

3. Bollegala, D., Bao, C.: Learning word meta-embeddings by autoencoding. In: Pro-
ceedings of the 27th International Conference on Computational Linguistics, pp.
1650–1661 (2018)

4. Chen, Y., Perozzi, B., Al-Rfou, R., Skiena, S.: The expressive power of word embed-
dings. In: ICML 2013 Workshop on Deep Learning for Audio, Speech, and Lan-
guage Processing, Atlanta, GA, USA, July 2013. https://sites.google.com/site/
deeplearningicml2013/TheExpressive-PowerOfWordEmbeddings.pdf

5. Coates, J., Bollegala, D.: Frustratingly easy meta-embedding-computing meta-
embeddings by averaging source word embeddings. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), vol. 2, pp.
194–198 (2018)

6. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E.: Placing search in context: the concept revisited. ACM Trans. Inf.
Syst. 20(1), 116–131 (2002)

7. Hill, F., Reichart, R., Korhonen, A.: SimLex-999: evaluating semantic models with
(genuine) similarity estimation. Comput. Linguist. 41(4), 665–695 (2015)

8. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers, pp.
427–431. Association for Computational Linguistics (2017). http://aclweb.org/
anthology/E17-2068

9. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al.: Dbpedia–a large-scale,
multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195
(2015)

http://aclweb.org/anthology/Q17-1010
https://sites.google.com/site/deeplearningicml2013/TheExpressive-PowerOfWordEmbeddings.pdf
https://sites.google.com/site/deeplearningicml2013/TheExpressive-PowerOfWordEmbeddings.pdf
http://aclweb.org/anthology/E17-2068
http://aclweb.org/anthology/E17-2068

Waste Not: Meta-Embedding of Word and Context Vectors 401

10. Luong, T., Socher, R., Manning, C.: Better word representations with recursive
neural networks for morphology. In: Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pp. 104–113 (2013)

11. Mahoney, M.: About the test data (2011). http://mattmahoney.net/dc/textdata
12. McCallum, A., Nigam, K., et al.: A comparison of event models for Naive Bayes

text classification. In: AAAI-98 Workshop on Learning for Text Categorization,
vol. 752, pp. 41–48. Citeseer (1998)

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781 (2013). arxiv:1301.3781

14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representa-
tions of words and phrases and their compositionality. In: Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2,
NIPS 2013, pp. 3111–3119. Curran Associates Inc., USA (2013). http://dl.acm.
org/citation.cfm?id=2999792.2999959

15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

16. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on empirical methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

17. Poyraz, M., Kilimci, Z.H., Ganiz, M.C.: Higher-order smoothing: a novel semantic
smoothing method for text classification. J. Comput. Sci. Technol. 29(3), 376–391
(2014)

18. Řeh̊uřek, R., Sojka, P.: Software framework for topic modelling with large cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, Valletta, Malta, pp. 45–50. ELRA, May 2010. http://is.muni.cz/
publication/884893/en

19. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun.
ACM 8(10), 627–633 (1965)

20. Yelp: Yelp reviews dataset challenge (2015). https://www.yelp.com/dataset/
challenge

21. Yin, W., Schütze, H.: Learning word meta-embeddings. In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), vol. 1, pp. 1351–1360 (2016)

22. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in Neural Information Processing Systems, pp. 649–657
(2015)

http://mattmahoney.net/dc/textdata
http://arxiv.org/abs/1301.3781
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge

Extracting Statistical Mentions
from Textual Claims to Provide

Trusted Content

Tien Duc Cao1,2(B), Ioana Manolescu1,2(B), and Xavier Tannier3(B)

1 Inria Saclay Île-de-France, Palaiseau, France
{tien-duc.cao,ioana.manolescu}@inria.fr

2 LIX (UMR 7161, CNRS and École Polytechnique), Palaiseau, France
3 Sorbonne Université, Inserm, LIMICS (UMRS 1142), Paris, France

xavier.tannier@sorbonne-universite.fr

Abstract. Claims on statistic (numerical) data, e.g., immigrant popu-
lations, are often fact-checked. We present a novel approach to extract
from text documents, e.g., online media articles, mentions of statistic
entities from a reference source. A claim states that an entity has cer-
tain value, at a certain time. This completes a fact-checking pipeline
from text, to the reference data closest to the claim. We evaluated our
method on the INSEE dataset and show that it is efficient and effective.

1 Introduction

With the increase of disinformation in online media, social networks and the Web
in general, we witness a strong interest in computational fact-checking, defined
as a set of computer-assisted techniques capable of assessing the truthfulness of
a given statement [4]. In this context, computational fact-checking is a many-
stage pipeline, whereas (i) claims are extracted from text, (ii) possible sources of
reference are identified, (iii) a check is made combining automated and manual
means; (iv) an interpretation is produced.

In this paper, we focus on steps (i) and (ii). We use data from French national
institute for statistics and economic studies (INSEE) as an example as high-
quality, trustful reference database. In previous work, we have extracted tens
of thousands of RDF graphs out of INSEE statistic tables [2]1. We also
developed a novel keyword search algorithm which, given a set of search
terms, e.g. “unemployment”, “Île-de-France”, “2018” locates the RDF nodes
corresponding to the most relevant table cells [3]2.

In this work, we describe the last missing step of our system: the extraction
of claims referring to statistical mentions from text sources. This step
allows to automatically formulate the search queries which our system [3] can
solve against the RDF corpus we gathered [2]. Our whole system can help fact-
checking journalists to find checkable claims in massive text sources, as well as
1 https://gitlab.inria.fr/tcao/insee-search/blob/master/insee-rdf.ttl.gz.
2 The search algorithm is deployed online at http://statsearch.inria.fr.

c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 402–408, 2019.
https://doi.org/10.1007/978-3-030-23281-8_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_36&domain=pdf
https://gitlab.inria.fr/tcao/insee-search/blob/master/insee-rdf.ttl.gz
http://statsearch.inria.fr
https://doi.org/10.1007/978-3-030-23281-8_36

Extracting Statistical Mentions from Textual Claims 403

Fig. 1. Main processing steps of our statistical claim extraction method.

the closest reference datasource value for the given claim. Based on these, the
journalists can choose the truth label which seems most appropriate.

The architecture of the system is presented by Fig. 1. From the publication
context of statistic data (the text in header of statistics tables) we extract a set
of statistical entities (step (1) in the figure), those whose reference values are
known in the statistic dataset for some time periods and/or geographical area,
such as “unemployment”, “youth unemployment”, “unemployment in Aquitaine
in 2015”, “gross domestic product”. From 111,145 tables published by INSEE,
we have obtained a total of 1,397 statistic entities, as we detail in Sect. 2.1.

We have built a text corpus which we selected with an interest in topics that
INSEE studies. We focused on news articles from three French newspapers, and
because most INSEE metrics refer to the economy domain, we looked only for
articles on such topics, by using URL keywords or an LDA [1] topic selection3.
From these articles, we have extracted (step (2)) 322,873 sentences containing
at least one numerical value. From now on, we will refer to these sentences as S.
From S, we extract (step (3)) all the verbs which state a numerical value, e.g.,
“amounts to”, “is worth”, “decreases” etc., as well as all the measurement units,
e.g., “people”, “euros”, “percentage” etc.

Next, we identify among S sentences the candidate sentences which could
claim a relationship between a statistical entity and a value. This is done
(step (4)) by selecting those S sentences which mention statistic entities. From
each candidate sentence, e.g., “France’s public debt fell slightly, by 11.4 billion
euros, between the second and third quarters of 2013”, we extract: (1) a mention
of statistical entity M , e.g., public debt ; (2) optionally, a location L, e.g., France,

3 All topics and their keywords are available at https://gitlab.inria.fr/tcao/news-
scraper/blob/master/lesechos topics all.txt. In this work, we use topics 1, 2, 3, 7.

https://gitlab.inria.fr/tcao/news-scraper/blob/master/lesechos_topics_all.txt
https://gitlab.inria.fr/tcao/news-scraper/blob/master/lesechos_topics_all.txt

404 T. D. Cao et al.

by extracting geographical places using the spaCy Named Entity Recognition
tool4; (3) optionally, a time period T , e.g., 2013, extracted using HeidelTime
[9]; (4) a relation R, e.g., fell, connecting M to V in the sentence. R may also
be missing, e.g., in a phrase such as “France’s 60 million inhabitants...”; (5) a
statistical value V , e.g., “11.4 billion euros”.

For each (M,L, T,R, V) tuple extracted as above, the (M,L, T) query is
generated (step (7)) and sent to our keyword search algorithm [3]. We omit R
in the query since the purpose of extracting R is to confirm the relationship
between M and V .

2 Entity, Relation and Value Extraction

We present our approach to extract the components M , R and V .

2.1 Statistical Entities

We made a hypothesis of the existence of statistical entities in the headers of
statistic tables. For example, one header of table5 is “Taux de chômage au T1
2015” (“Unemployment rate in the first quarter of 2015”). We keep only headers
that contain a measurement unit such as euro, %, etc. These headers are usually
noun phrases in format Entity + (Unit) such as “Unemployment rate in 2015 (in
%)”. We prefer to rely on table headers and not on table titles and comments,
since the latter are longer sentences that could (or could not) contain the entities,
and customarily do contain much more irrelevant information. We also filter out
possible date time values and their associated prepositions. In the above example,

Table 1. Sample extracted statistical entities

Extracted statistical entities Frequency

intensité de la pauvreté (intensity of poverty) 190
nombre d’entreprises (number of companies) 176
taux de pauvreté au seuil de 60% (poverty rate at 60% median wages) 130

sruemôhc (unemployed people) 104
excédent brut d’exploitation 68

(Earnings before Interest, Taxes and Amortization)
PIB (gross domestic product, GDP) 54
taux de population en sous-emploi 54

(share of people working less than they would like)
solde migratoire (net migration) 44
taux de marge (margin rate) 28
taux de pauvreté (poverty rate) 21

4 https://spacy.io/models/fr#fr core news md.
5 https://www.insee.fr/fr/statistiques/1288156#tableau-Figure 2.

https://spacy.io/models/fr#fr_core_news_md
https://www.insee.fr/fr/statistiques/1288156#tableau-Figure_2

Extracting Statistical Mentions from Textual Claims 405

this leads to the snippet “Unemployment rate”. A final manual filtering allowed
us to weed out some text snippets which do not in fact comprise relevant entities.

We thus obtained 1,397 statistical entities, some of which are presented, with
their frequencies from the statistics publication context, in Table 1.

2.2 Relevant Verbs and Measurement Units

We use the annotation SI to refer to the candidate sentences that contain the
word “insee”. These sentences are likely to feature a relationship between a
mention of statistical entity M as a noun phrase (e.g. “unemployment rate”) and
a statistical value V as a numerical value, optionally followed by a measurement
unit (e.g. “5%”).

We used spaCy [7] to collect the syntactic dependency paths connecting M ,
R and V . For each NOUN node, we located the paths that connect it to a NUM
node. Many paths start with (NOUN, nsubj, VERB) (a noun is subject of a
verb); we refer to them as PathsI . As the relation R of M and V is generally
introduced by specific verbs, we collected all the verbs associated with VERB
nodes from PathsI . To make sure of the quality of the collected verbs, we filtered
manually from the original list to retain 129 relevant ones; in the sequel, we
denote them by I verbs. Based on PathsI , we also gathered a set of measurement
units by collecting all the NOUN nodes connected to a NUM node via a nmod
edge (nominal modifiers of nouns or noun phrases). We call this list I units.

2.3 Extraction Rules

Given the input sentence i and a statistical entity e, we extract the mention of
statistical entity M , the statistical value V and their relation R. If there is no
relationship between e and the statistical value, or there is no statistical value
in i, we return the value M = None. We identify from the dependency tree the
statistical entity e and the numerical value(s), as follows.

1. We filter out the year values (e.g. 2018) since we only want to search for the
relationship of statistical entity and statistical value.

2. We define the distance d(n1, n2) of two nodes n1 and n2 in t(i) as the absolute
value of n1’s position - n2’s position. For instance, d(inflation, établie) = 3.

3. The distance D(e, v) from e to a numerical value v is the minimum value of
d(e’s first word, v) and d(e’s last word, v). In case there are more than one
numerical values, we select the one that has the smallest D(e, v) as the sta-
tistical value of e.

4. We identify the dependency path p(i) that connects the first word of e
(let’s call it s) and e’s statistical value (if available), let’s call it n. With
our sample dependency tree, p(i) = (NOUN, nsubj:pass, VERB, obl, NOUN,
nummod, NUM)

406 T. D. Cao et al.

5. We look for the node u directly connected to n (the last one before n) in p(i).
If u is a noun and there is a nmod edge (nominal modifiers of nouns or noun
phrases) between u and n, we return M = None in the following cases:

– u does not appear in I units.
– u appears in I units and in the input sentence, there is an article or an

adposition between s and u.
On the contrary, we extract the relevant nodes from:
(a) the first NOUN node s: we identify the nodes that connect to s via nmod

and amod (adjectival modifier) edges, and we collect their subtrees.
(b) the VERB node verb: the subtree of nodes that connect to verb via obl

edge (a nominal dependent of a verb), the leftmost node of subtree must
be a preposition among en, à, dans and verb has to appear in I verbs.

If the nodes from these subtrees appear in p(i), we do not include them.

All the extracted nodes form the mention of statistical entity M . The sta-
tistical value V is composed of n and u. The relation R is composed the nodes
from p(i) which do not belong to M and V .

3 Evaluation

Evaluation of the Extraction Rules. We select some statistical entities6 from
the list of statistical entities in Sect. 2.1. For each entity e we pick randomly 50
sentences that contain e then we split randomly 25 sentences for development set
and 25 sentences for test set. Finally there are 200 sentences for each set. If there
is no relationship between e and the statistical value, or there is no statistical
value in the given sentence, we assign a label NoStats. Otherwise we annotate
each sentence with e and the relevant phrases (we call these phrases contexts of
e) to form a mention of statistical entity7. For a given sentence, if the extraction
rules return M = None and we have the NoStats label from the annotated
sentence then the extraction is an accurate one. On the contrary, we verify if
the extracted M contains e and one of its contexts. In that case, the extraction
is also accurate. The accuracy of our extraction rules in the development, resp.
test set and obtain is 71.35%, respectively and 69.63%.
Evaluation of the End-to-End System. We selected randomly 38 sentences
for the test set (from which 26 were considered as extracted correctly at previous
step – Sect. 3). We gave the corresponding generated queries q = M + L + T
as input to the INSEE-Search system [3]. We evaluated the accuracy of the
system using a modified version of the mean average precision metric, (MAP)
widely used for evaluating ranked lists of results. MAP is traditionally defined
based on a binary relevance judgment (relevant or irrelevant in our case). We
experimented with the two possibilities:

6 “taux de chômage”, “nombre de demandeurs d’emploi”, “niveau de vie”, “consom-
mation des ménages”, “PIB”, “inflation”, “SMIC”, “taux d’emploi”.

7 The annotated data is available at https://gitlab.inria.fr/tcao/text2insee/.

https://gitlab.inria.fr/tcao/text2insee/

Extracting Statistical Mentions from Textual Claims 407

– MAPh is the mean average precision where only highly relevant datasets are
considered as relevant (MAPh(10) is computed on the top 10 search results).

– MAPp is the mean average precision where both partially and highly relevant
datasets are considered relevant.

Note that there is no guarantee that any “highly relevant” element at all
exists in the dataset for each query.

The results (Table 2) show that, given an arbitrary claim (related to statis-
tic entities), fine-grained and relevant information can be returned in the vast
majority of the cases. They also show that, as in all keyword-based search sys-
tems, building a perfect query is neither necessary or sufficient for obtaining
good results. Even if a good entity extraction improves the results, we can still
find highly or partially relevant information even if the entity extraction is not
perfectly achieved. Our findings should be confirmed by an evaluation on more
claims, more databases and in a real-user study. We also showed in [3] that the
performance of our query system was similar to a document-level search engine
such as Google, but with a much better granularity (data cell instead of page).

Table 2. Evaluation of INSEE-Search

MAPh(10) MAPp(10)

Overall performance (38 sentences) 0.672 0.789

among which M extracted correctly (26) 0.725 0.829

M extracted incorrectly (12) 0.559 0.703

4 Related Work and Perspectives

BONIE [8] claims to be the first open numerical relation extractor. The system
is based on high precision patterns to extract seed facts from input sentences
and on bootstrapping to increase the number of seed facts and to learn patterns.
We tried their approach, but found that the learnedt patterns were either too
generic or too specific and failed to capture the correct dependency path in the
new texts. ClausIE [5] is an open information extraction system. It first detects
clauses in a sentence and then apply specific rules for each type of clause in
order to extract the entity of interest. ClausIE also makes use of a hand-crafted
dictionary of verbs to identify the existence of relation in sentence. Compare to
their approach, we have a “semi-automated” solution to identify the list of verbs.
ClaimBuster [6] was the first work on check-worthiness. They used annotated
sentences from US election debates to train a SVM classifier in order to determine
whether or not a sentence is a check-worthy claim. This is the common approach
when having a large amount of training data, which is not the case in French.

In this article we have presented an end-to-end system for identifying statistic
claims and finding in a statistic database the relevant statistic data for checking

408 T. D. Cao et al.

this claim. A classic defect of these pipeline approaches in NLP systems is that
errors accumulate at each step. Nevertheless, our results show that we often
manage to find useful information for the user, which will make the human
work of fact-checking easier and faster. To make the RDF graph up-to-date, our
crawler works on a daily basis to collect the latest statistic tables. We also leave
journalists state whether the claim is “true”, “mostly true”, “mostly false” etc.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res.
3, 993–1022 (2003)

2. Cao, T., Manolescu, I., Tannier, X.: Extracting linked data from statistic spread-
sheets. In: International Workshop on Semantic Big Data (2017)

3. Cao, T.D., Manolescu, I., Tannier, X.: Searching for truth in a database of statistics.
In: WebDB (2018)

4. Cazalens, S., Lamarre, P., Leblay, J., Manolescu, I., Tannier, X.: A content man-
agement perspective on fact-checking. In: WWW (2018)

5. Corro, L.D., Gemulla, R.: ClausIE : Clause-based open information extraction. In:
WWW (2013)

6. Hassan, N., et al.: Claimbuster: the first-ever end-to-end fact-checking system. In:
PVLDB (2017)

7. Honnibal, M., Johnson, M.: An improved non-monotonic transition system for
dependency parsing. In: EMNLP (2015)

8. Saha, S., Pal, H.: Mausam: bootstrapping for numerical open IE. In: ACL (2017)
9. Strötgen, J., Gertz, M.: HeidelTime: High quality rule-based extraction and normal-

ization of temporal expressions. In: International Workshop on Semantic Evaluation
(2010)

Aspect Extraction from Reviews Using
Convolutional Neural Networks

and Embeddings

Peiman Barnaghi, Georgios Kontonatsios, Nik Bessis,
and Yannis Korkontzelos(B)

Edge Hill University, Liverpool, UK
{barnaghp,Georgios.Kontonatsios,Nik.Bessis,

Yannis.Korkontzelos}@edgehill.ac.uk

Abstract. Aspect-based sentiment analysis is an important natural lan-
guage processing task that allows to extract the sentiment expressed in a
review for parts or aspects of a product or service. Extracting all aspects
for a domain without manual rules or annotations is a major challenge. In
this paper, we propose a method for this task based on a Convolutional
Neural Network (CNN) and two embedding layers. We address shortcom-
ings of state-of-the-art methods by combining a CNN with an embedding
layer trained on the general domain and one trained the specific domain
of the reviews to be analysed. We evaluated our system on two SemEval
datasets and compared against state-of-the-art methods that have been
evaluated on the same data. The results indicate that our system per-
forms comparably well or better than more complex systems that may
take longer to train.

Keywords: Aspect-based sentiment analysis · Aspect extraction ·
Convolutional Neural Networks · Deep learning · NLP

1 Introduction

Currently immense volumes of text-based reviews are available, in a great vari-
ety of diverse domains. Consumers can share their experience on services and
products. Natural Language Processing (NLP) methods can be used to extract
meaningful information from this data. Quantifying sentiment expressed for vari-
ous aspects of a product or service can help producers and consumers to monitor,
assess and make decisions. Significant volume of research has focused on Exten-
sive research has focussed on analysing online reviews for a variety of topics or
products, e.g. movies, restaurants, mobile applications and software projects.

Aspect-based sentiment analysis is a variation of sentiment analysis that
considers different aspects of the object of a text-based review and classifies
the comments for each aspect as positive, negative or neutral. For example,
in the comment “the food is great but expensive and service is slow” three
aspects are mentioned, i.e. quality, price and service. Lately, neural networks
c© Springer Nature Switzerland AG 2019
E. Métais et al. (Eds.): NLDB 2019, LNCS 11608, pp. 409–415, 2019.
https://doi.org/10.1007/978-3-030-23281-8_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23281-8_37&domain=pdf
https://doi.org/10.1007/978-3-030-23281-8_37

410 P. Barnaghi et al.

have been shown to perform very well in sentiment analysis when combined
with word embeddings. Word embeddings are vector representations of textual
vocabularies, useful for finding similar words. Each word is mapped to a vector
that captures its context in different sentences. Embeddings retain syntactic and
semantic similarities and relations among words. Most neural network based
systems for text analysis have employed Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN).

Given the success of CNN [7] on aspect extraction, we propose a CNN-based
system for extracting aspects from reviews and we combine it with different
embedding layers. CNN models are less complex than RNN models. Experi-
ments in the literature show that CNN models train faster than RNN models
and tuning their hyper-parameters is simpler. State-of-the-art aspect extraction
systems combine neural networks with word embeddings. The contribution or
this paper is the combination of a CNN with two word embeddings concur-
rently: one trained on the general domain and one trained on the domain of the
reviews. The model performs comparably or better than methods that integrate
more complex architectures, such as RNNs. It outperforms a CNN-based model
that uses either general domain embeddings or domain-specific ones, only.

2 Related Work

Aspect based sentiment analysis identifies sentiment expressed for each aspect
of a product or service. It was introduced for summarising customer reviews
and was addressed by a rule-based model [5]. Since then, a variety of systems
have been proposed and several competition tasks have been organised in the
SemEval (Semantic Evaluation) series. Task 4 A in SemEval 2014 focussed on
the extraction of aspects in reviews. Liu [9] discussed four approaches for aspect
identification: frequent terms, opinion and target relations, supervised classifi-
cation and topic modelling algorithms. Conditional Random Fields (CRF) have
been employed to consider long term dependencies when extracting aspects [6],
and performed better than other supervised models for feature extraction [23].
Toh and Wang [22] used a tagging model with linguistic features that consider
resources, such as WordNet, for aspect extraction and polarity classification.
Brun et al. [1] combined word features, parsing and a sentiment lexicon to train
a Support Vector Machine (SVM) for aspect-based sentiment classification.

In SemEval 2016, the best performing system used CRFs for sequential
labelling, i.e. aspect extraction, and a single-layer feed-forward neural network
for classification [18]. A CNN-based aspect extraction method tagged each word
in subjective text [16]. The CNN tags each word as aspect or not, in different
layers. The model performed better than state-of-the-art approaches. CNNs, as
non-linear models, fit the data better that linear models, such CRFs.

In summary, latest research uses deep learning to improve aspect extraction
and aspect-based sentiment classification performance, as it has been very suc-
cessful in supervised and unsupervised settings. Shortcomings of these models

Aspect Extraction Using CNN and Embeddings 411

Fig. 1. Proposed CNN model with domain and general word embedding.

for extracting hidden aspects concern long distance dependencies and domain-
specific expressions. In this paper, we address the latter shortcoming, by com-
bining general and domain-specific embeddings.

3 Method

To extract aspects of reviews, we use a CNN [7] with fully connected layers com-
bined with two independent embedding layers, as shown in Fig. 1. The input is
a sentence of any size that mentions zero or more aspects. Each word of the sen-
tence is looked up in both embeddings and the two resulting vectors are concate-
nated together. The general embedding is a pre-trained Global Vectors for word
representation (GloVe) model [13], trained on 840 billion tokens. The vocabulary
size is 2.2 million vectors of dimension 300. We selected this model due to the
size of the data it was trained on and its popularity for aspect extraction. The
domain-specific embeddings are trained either on Yelp [11], a restaurant review
dataset, or on Amazon reviews for laptops [4]. Reviews in both datasets come
labeled with aspect terms.

The joined vector is the input of the multi-layer CNN. Each layer uses a
convolutional filter of fixed window width and kernel size. For example, with
kernel size k = 5, two words on the left and right of the current one are kept.
Each filter represents each word and its nearby words. An activation function
is used to choose the maximum value of each features node, and a dropout is
applied to prevent overfitting during training. Finally, a Softmax layer is applied
to a fully connected layer to select the sequence with the highest position weight
and assign a label to each word, accordingly.

4 Experiments

Datasets: For evaluation, we use two benchmark SemEval datasets: the laptop
review dataset in SemEval-2014 Task 4 and the restaurant review dataset in
SemEval-2016 Task 5. Table 1 shows statistics of the two datasets.

412 P. Barnaghi et al.

Table 1. Dataset statistics

Dataset Training instances Aspect terms Test instances Aspect terms

Restaurant 2000 1743 676 622

Laptop 3,045 2358 800 654

Tuning Network Hyper-Parameters: 100 randomly-selected data instances
were excluded from the training data, to be used as validation data for tuning. A
popular technique for avoiding underfitting, is to evaluate the model for various
layer sizes, parameters and learning rates. If validation accuracy is higher than
training accuracy then the model is underfitting, or otherwise it is overfitting.
Each CNN layer consists of 256 filters of kernel size 3. Processing continues to the
end of the vector and feature weights are computed. We used common parameter
values for the dropout and learning rates: 0.5 and 10−4, respectively.
Evaluation: Following common practice, we use F-score (F1), the geometric
mean of precision and recall. For evaluation, we used the SemEval script. We
compare our proposed model with all methods, for which results on the SemEval
2014 and 2016 datasets have been made available [8].
IHS RD [2] was the best system on laptop reviews in task 4 of SemEval 2014.
It used conditional random fields for cross-domain feature extraction [15].
NLANGP [18] was the best system in aspect extraction on restaurant reviews
in task 5 of SemEval 2016. It is also based on neural networks [14].
AUEB [20] a CRF-based method for sequence labeling that uses hand-crafted
features and embeddings. It was ranked among the top systems in SemEval 2016.
CRF [12] a CRF-based method using general embeddings and basic features.
Semi-Markov CRF (Semi-CRF) [17] uses features in Cuong et al. [3].
DLIREC [22] a CRF-based classifier that uses semantic features and clustering
on unlabeled data. It was ranked second in both SemEval tasks.
WDEmb [21] a CRF that uses linear and dependency context information.
RNCRF [19] a CRF and RNN combination for aspect extraction.
LSTM [10] uses an RNN and general pre-trained word embeddings.
MIN [8] uses two LSTM models for aspect extraction and one for sentiment
classification.

We used two baselines: (1) the proposed multilayer CNN model with gen-
eral word embeddings, only; and (2) the proposed model with in-domain word
embeddings, only. The performance gap between the baselines and the proposed
system shall highlight the impact of combining the two word embeddings.

5 Discussion

The experimental results in Table 2 show that the proposed method, (PM-G&D),
performs better than state-of-the-art systems for aspect extraction. It outper-
forms the two baselines that use the same model with either general (PM-G) or

Aspect Extraction Using CNN and Embeddings 413

in-domain embeddings (PM-D), only. This result stresses the contribution of the
combination of the two embeddings, since all other settings are kept the same.

The performance difference between the two datasets indicates that the in-
domain embedding is more effective in laptop reviews. This is probably because
this domain has more keywords than restaurant reviews, which mainly contains
general words possibly available in general embeddings. Our model performs
better than CRF-based models that specialise on label dependencies, since both
datasets mostly contain single-word aspects.

Table 2. F-score results on the restaurant (R) and laptop (L) review dataset. PM, G
and D stand for our proposed model, general and in-domain embedding, respectively.

Data IHS RDNLANGPAUEBCRF Semi-CRFDLIRECWDEmbRNCRFLSTMMIN PM-GPM-DPM-G&D

R - 72.34 70.44 69.5666.35 - - 69.74 71.26 73.4469.80 68.23 73.81

L 74.55 - - 74.0168.75 73.78 75.16 77.26 75.25 77.5873.19 73.37 78.26

As all systems in Table 2 are using general embeddings, the results show that
combining large general and small in-domain word embeddings can improve
aspect extraction performance. Figure 2 shows the effect of increasing the train-
ing data size on performance. Results improve mildly as the size of the training
data for the in-domain embeddings increases.

Embeddings can be combined to improve the aspect extraction performance
in other domains and probably other languages. Although recent work shows that
RNN models are state-of-the-art, we have achieved comparable results using a
much simpler model, which is faster to train, by adding an extra learning layer.

Fig. 2. Performance for increasing size of the domain-specific embedding layer for
restaurants (blue line) and laptops (red line) (color figure online)

6 Conclusion and Future Work

We proposed a new model for aspect extraction from text-based reviews. It uses
a convolutional neural network and two word embedding layers: a general and a
domain-specific one, trained on data of the specific domain of the reviews. Eval-
uation on two benchmark SemEval datasets, containing restaurant and laptop
reviews, shows that the model performs comparably or better than more com-
plex neural network architectures, that take longer to train. In the future, we
plan to comparatively evaluate more aspect extraction methods, deep learning
architectures and embedding types on diverse domains.

414 P. Barnaghi et al.

Acknowledgment. This research work is part of the TYPHON Project, which has
received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 780251.

References

1. Brun, C., Popa, D.N., Roux, C.: XRCE: hybrid classification for aspect-based sen-
timent analysis. In: Proceedings of SemEval, pp. 838–842 (2014)

2. Chernyshevich, M.: IHS R&D belarus: cross-domain extraction of product features
using CRF. In: Proceedings of SemEval, pp. 309–313 (2014)

3. Cuong, N.V., Ye, N., Lee, W.S., et al.: Conditional random field with high-order
dependencies for sequence labeling and segmentation. J. Mach. Learn. Res. 15(1),
981–1009 (2014)

4. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion
trends with one-class collaborative filtering. In: Proceedings of WWW, pp. 507–
517 (2016)

5. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of
SIGKDD, pp. 168–177. ACM (2004)

6. Jakob, N., Gurevych, I.: Extracting opinion targets in a single-and cross-domain
setting with conditional random fields. In: Proceedings of EMLNP, pp. 1035–1045
(2010)

7. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

8. Li, X., Lam, W.: Deep multi-task learning for aspect term extraction with memory
interaction. In: Proceedings of EMNLP, pp. 2886–2892 (2017)

9. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol.
5(1), 1–167 (2012)

10. Liu, P., Joty, S., Meng, H.: Fine-grained opinion mining with recurrent neural
networks and word embeddings. In: Proceedings of EMNLP, pp. 1433–1443 (2015)

11. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word represen-
tations in vector space. arXiv preprint: arXiv:1301.3781 (2013)

12. Okazaki, N.: CRFsuite: a fast implementation of conditional random fields (CRFs)
(2007). www.chokkan.org/software/crfsuite

13. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)

14. Pontiki, M., Galanis, D., Papageorgiou, H., et al.: SemEval-2016 task 5: aspect
based sentiment analysis. In: Proceedings of SemEval, pp. 19–30 (2016)

15. Pontiki, M., Galanis, D., Pavlopoulos, J., et al.: SemEval-2014 task 4: aspect based
sentiment analysis. In: Proceedings of SemEval, pp. 27–35 (2014)

16. Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion mining with a
deep convolutional neural network. Knowl. Based Syst. 108, 42–49 (2016)

17. Sarawagi, S., Cohen, W.: Semi-markov conditional random fields for information
extraction. In: Proceedings of NIPS, pp. 1185–1192 (2005)

18. Toh, Z., Su, J.: Nlangp at SemEval-2016 task 5: Improving aspect based sentiment
analysis using neural network features. In: Proceedings of SemEval, pp. 282–288
(2016)

19. Wang, W., Pan, S.J., Dahlmeier, D., et al.: Recursive neural conditional random
fields for aspect-based sentiment analysis. arXiv preprint: arXiv:1603.06679 (2016)

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1301.3781
www.chokkan.org/software/crfsuite
http://arxiv.org/abs/1603.06679

Aspect Extraction Using CNN and Embeddings 415

20. Xenos, D., Theodorakakos, P., Pavlopoulos, J., et al.: Aueb-absa at SemEval-2016
task 5: ensembles of classifiers and embeddings for aspect based sentiment analysis.
In: Proceedings of SemEval, pp. 312–317 (2016)

21. Yin, Y., Wei, F., Dong, L., et al.: Unsupervised word and dependency path embed-
dings for aspect term extraction. arXiv preprint: arXiv:1605.07843 (2016)

22. Zhiqiang, T., Wenting, W.: DLIREC: aspect term extraction and term polarity
classification system. In: Proceedings of the 8th International Workshop on Seman-
tic Evaluation (SemEval 2014), pp. 235–240 (2014)

23. Zhuang, L., Jing, F., Zhu, X.Y.: Movie review mining and summarization. In:
Proceedings of CIKM, pp. 43–50. ACM (2006)

http://arxiv.org/abs/1605.07843

Author Index

Abbache, Mohamed 337
Accuosto, Pablo 182
Ahmed, Abdullah Fathi 66
Altrabsheh, Nabeela 286
Amayreh, Hamzeh 234
Ampomah, Isaac K. E. 92
Anand, Amit 345
Ashok, Aishwarya 295

Bajaj, Ahsaas 29
Barnaghi, Peiman 409
Belkredim, Fatma Zohra 337
Bessis, Nik 409
Bhasin, Anmol 277
Bhattacharyya, Pushpak 345
Blache, Philippe 261

Cabrera-Diego, Luis Adrián 247
Campbell, Daniel 247
Cao, Tien Duc 402

de Paiva Oliveira, Alcione 376
Deepika, S. S. 170
Değirmenci, Selin 393
Dias, Gihan 312

Ekbal, Asif 345
Elmasri, Ramez 295

Fernando, Kulakshi 312

Gangavarapu, Tushaar 195
Ganiz, Murat Can 393
Geetha, T. V. 170
Gerek, Aydın 393
Ghoniem, Rania M. 220
Ghorbel, Fatma 208
Gök, Abdullah 157

Hadjir, Ismail 337
Hamdi, Fayçal 208
Hawe, Glenn 92, 105

Inuwa-Dutse, Isa 303

Jain, Nishant 54, 79
Jarrar, Mustafa 234
Jayasimha, Aditya 195
Jeon, Joo Hyuk 277

Kedad, Zoubida 131
Khorasani, Elahe 384
Kim, Jun-Seong 277
Kontonatsios, Georgios 286, 409
Korkontzelos, Yannis 247, 286, 303, 409
Krishna, Shubham 29
Krishnan, Gokul S. 195
Kumar, Abhay 54, 79
Kumar, Sachin 41

Lin, Zhiwei 92, 105
Liptrott, Mark 303
Lopes, Stéphane 131

Madasu, Avinash 118
Mahmoud, Adnen 3
Manolescu, Ioana 402
Marinov, Dimitar 157
Mathur, Gaurav 277
McClean, Sally 92
Métais, Elisabeth 208
Milošević, Nikola 157
Minh, Nguyen Le 321
Moreira, Alexandra 376

Natarajan, Bharatram 277
Natarajan, Ganapathy 295
Nenadić, Goran 157
Ngomo, Axel-Cyrille Ngonga 66
Nnamoko, Nonso 247
Nouali, Omar 261

Oufaida, Houda 261

Pandey, Chandan 54
Patankar, Anish 144

Politi, Regina 41
Popescu, Octavian 384

Rajpirathap, Sakthithasan 17
Ranathunga, Surangika 17, 312
Rao, Vijjini Anvesh 118
Rihany, Mohamad 131
Rodrigues, Matheus Augusto Gonzaga 376

S., Sowmya Kamath 195
Saggion, Horacio 182
Saikh, Tanik 345
Saranya, M. 170
Sarhan, Injy 359
Sathish, Sailesh Kumar 144
Shanavas, Niloofer 105
Sheinin, Vadim 384
Sherif, Mohamed Ahmed 66

Singh, Chirag 54, 79
Singh, Shekhar 79
Sinh, Vu Trong 321
Spruit, Marco R. 329, 359, 368

Tannier, Xavier 402
Tawfik, Noha S. 329, 368
Tiwari, Hemant 29
Tripathi, Suraj 54, 79

Vala, Vanraj 29
Vo, Ngoc Phuoc An 384

Wang, Hui 105

Yeo, Hangu 384

Zrigui, Mounir 3

418 Author Index

	Preface
	Organization
	Contents
	Full Papers
	Deep Neural Network Models for Paraphrased Text Classification in the Arabic Language
	Abstract
	1 Introduction
	2 Literature Review
	3 Proposed Model
	3.1 Pre-processing
	3.2 Global Word Embedding
	3.3 Similarity Computation
	3.3.1 Convolutional Neural Network
	3.3.2 Long Short-Term Memory

	4 Experiments
	4.1 Datasets
	4.2 Word Embedding
	4.3 Paraphrased Corpus Analysis
	4.4 Results and Discussion

	5 Conclusion and Future Work
	References

	Model Answer Generation for Word-Type Questions in Elementary Mathematics
	1 Introduction
	2 Question Types
	3 Related Work
	4 Data Preparation
	5 Our Approach
	5.1 Pre-processing
	5.2 Feature Extraction
	5.3 Training and Classification
	5.4 Generation of the Answer

	6 Evaluation
	6.1 Ensemble Classifier Evaluation

	7 Conclusion and Future Work
	References

	Learning Mobile App Embeddings Using Multi-task Neural Network
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Architecture
	3.2 Training Process

	4 Experimental Details
	4.1 Dataset
	4.2 Analysis with Multi-task Learning
	4.3 Analysis with Learned App Embeddings

	5 Conclusions and Future Work
	References

	Understanding User Query Intent and Target Terms in Legal Domain
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Data
	3.2 Tagging Scheme
	3.3 Named Entity Recognition with CRFs
	3.4 Bidirectional LSTM CRF Model
	3.5 Rule-Based Model
	3.6 Evaluation Metrics

	4 Results
	5 Conclusion and Future Work
	References

	Bidirectional Transformer Based Multi-Task Learning for Natural Language Understanding
	Abstract
	1 Introduction
	2 Related Work
	3 Bidirectional Transformer Network
	3.1 Motivation
	3.2 Word Embedding Layer
	3.3 Encoder Stack
	3.4 Combining the Multi-headed Attention
	3.5 Feed-Forward Layer

	4 Multi-Task Learning Approach
	4.1 Auxiliary Task Definition
	4.2 Single-Task Model
	4.3 Multi-task Model

	5 Datasets
	6 Discussion
	7 Conclusion
	References

	LSVS: Link Specification Verbalization and Summarization
	1 Introduction
	2 Preliminary
	2.1 Link Specification
	2.2 Link Specification Verbalization

	3 Approach
	3.1 Document-Planner
	3.2 Micro-planer
	3.3 Summarization

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Related Work
	6 Conclusions and Future Work
	References

	Deceptive Reviews Detection Using Deep Learning Techniques
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Deceptive Opinion Spam Corpus v1.4 (DOSC)
	3.2 Four-City Dataset
	3.3 YelpZip Dataset
	3.4 Large Movie Review Dataset
	3.5 Drug Review Dataset
	3.6 Dataset Statistics and Visualization

	4 Neural Network Models
	4.1 Word Embedding
	4.2 Convolutional Neural Network
	4.3 Recurrent Neural Network

	5 Proposed Methods for Handling Variable Length Reviews
	5.1 Hierarchical Model Architecture
	5.2 Multi-Instance Learning (MIL)

	6 Evaluations and Discussions
	6.1 Evaluation of Various DNN Based Models for Deceptive Review Detection
	6.2 Evaluation of Proposed Models for Handling Variable Length Reviews
	6.3 Evaluation on Proposed Models for Handling Variable Length Reviews on Another Task (Review Sentiment Detection)
	6.4 Discussions

	7 Conclusions
	References

	JASs: Joint Attention Strategies for Paraphrase Generation
	1 Introduction
	2 Background
	3 JASs: Joint Attention Strategies
	3.1 Naive Joint Attention Mechanism
	3.2 Multi-Attention Mechanism

	4 Experimental Setup
	4.1 Dataset and Preprocessing
	4.2 Model Setup and Hyperparameters
	4.3 Evaluation Metric

	5 Results
	5.1 Attention Strategies
	5.2 Impact of Encoder Depth

	6 Conclusion
	References

	Structure-Based Supervised Term Weighting and Regularization for Text Classification
	1 Introduction
	2 Structure-Based Approach for Text Classification
	2.1 Structure-Based Supervised Term Weighting
	2.2 Structured Regularization
	2.3 Structure-Based Text Classification Pipeline

	3 Experiments
	4 Results and Discussion
	5 Conclusion
	References

	Gated Convolutional Neural Networks for Domain Adaptation
	1 Introduction
	2 Related Work
	3 Gated Convolutional Neural Networks
	3.1 Problem Definition
	3.2 Model Architecture
	3.3 Gating Mechanisms

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Implementation Details

	5 Results and Discussion
	5.1 Results
	5.2 Discussion

	6 Conclusion
	References

	A Keyword Search Approach for Semantic Web Data
	1 Introduction
	2 Approach Overview
	3 Matching Keywords with the Dataset
	4 Aggregating Matching Elements
	5 Ranking the Results
	6 Experimental Evaluation
	7 Related Words
	8 Conclusion and Future Works
	References

	Intent Based Association Modeling for E-commerce
	Abstract
	1 Introduction
	2 Prior Art
	3 Intent Capture and Analysis Framework
	3.1 Intent States
	3.2 Modeling Intent
	3.3 Topic Modeling
	3.4 Product Name Extraction
	3.5 User Intent Structure
	3.6 Observations on User Intent

	4 Association Mining
	4.1 Unsupervised Association Rule Mining
	4.2 Identifying Frequent Sets
	4.3 Determining Association Strength

	5 Evaluating Intent Behavior
	6 Conclusion
	References

	From Web Crawled Text to Project Descriptions: Automatic Summarizing of Social Innovation Projects
	1 Introduction
	2 Background
	2.1 Summarization Approaches
	2.2 Evaluation Measures for Summarization

	3 Method
	3.1 Method Overview
	3.2 Data Collection and Data Set Generation
	3.3 Data Cleaning
	3.4 SVM Based Summarizer
	3.5 Social Innovation Criteria Classifier
	3.6 Summarunner
	3.7 Stacked SVM-Based Summarizer and Summarunner

	4 Evaluation Methodology
	5 Evaluation and Results
	6 Conclusion
	References

	Cross-Corpus Training with CNN to Classify Imbalanced Biomedical Relation Data
	Abstract
	1 Introduction
	2 Related Work
	3 Biomedical Relation Extraction
	3.1 Pre-processing
	3.2 Representation Learning
	3.3 SMOTE
	3.4 Convolutional Neural Network

	4 Results and Discussion
	4.1 Dataset
	4.2 Convolutional Neural Network
	4.3 Contribution of Different Features
	4.4 SMOTE
	4.5 Cross-Training

	5 Conclusion
	References

	Discourse-Driven Argument Mining in Scientific Abstracts
	1 Introduction
	2 Related Work
	3 SciDTB Corpus
	4 Argumentation Annotations
	4.1 Relations
	4.2 Argumentative Units
	4.3 Argumentation Corpus Statistics

	5 Argument Mining Experiments
	5.1 Tasks
	5.2 Experimental Setups

	6 Results and Analysis
	6.1 Error Analysis

	7 Conclusions
	References

	TAGS: Towards Automated Classification of Unstructured Clinical Nursing Notes
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 Dataset and Cohort Selection
	3.2 Data Cleaning and Aggregation
	3.3 Data Preprocessing
	3.4 Feature Modeling of Clinical Concepts

	4 ICD-9 Code Group Prediction
	4.1 Deep Neural Architectures

	5 Experimental Results and Discussion
	6 Concluding Remarks
	References

	Estimating the Believability of Uncertain Data Inputs in Applications for Alzheimer’s Disease Patients
	Abstract
	1 Introduction and Motivation
	2 Data Believability: Definition and Estimation
	3 DBE_ALZ Approach: Estimating the Believability of Uncertain Data Inputs in Applications for Alzheimer’s Disease Patients
	3.1 Data Reasonableness Estimation
	3.2 Author Reliability Estimation
	3.3 Data Believability Estimation

	4 Experimentation
	4.1 Application to the Captain Memo Memory Prosthesis
	4.2 Evaluation

	5 Conclusion and Future Work
	References

	Deep Genetic Algorithm-Based Voice Pathology Diagnostic System
	Abstract
	1 Introduction
	2 Literature Review
	3 Proposed Methodology
	3.1 Database
	3.2 Extraction of Spectrogram Segments
	3.3 Configuration of CNN Classifier
	3.4 The Proposed Hybrid CNN-GA Algorithm for Voice Pathology Classification

	4 Experimental Results
	4.1 Performance Measures and Cross Validation
	4.2 Results and Discussion

	5 Conclusions
	References

	An Arabic-Multilingual Database with a Lexicographic Search Engine
	Abstract
	1 Introduction and Motivation
	2 Related Work
	3 Constructing the Lexicographic Database
	4 Building a Lexicographic Search Engine
	4.1 URLs Design
	4.2 Presentation of Results
	4.3 Ranking of Search Results
	4.4 Usability and Performance Evaluation

	5 Conclusion and Future Work
	Acknowledgments
	References

	Bug Severity Prediction Using a Hierarchical One-vs.-Remainder Approach
	1 Introduction
	2 Background and Related Work
	3 Dataset
	4 Method
	4.1 Experiment Setup

	5 Result Analysis
	5.1 Experiments Including normal
	5.2 Experiments Excluding normal

	6 Discussion
	7 Conclusion
	References

	A Coherence Model for Sentence Ordering
	1 Introduction
	2 Related Work
	3 Coherence Model
	3.1 Coherence Features
	3.2 Coherence Model

	4 Experimentation
	4.1 Coherence Assessment
	4.2 Datasets
	4.3 Summarization System
	4.4 Genetic Algorithm Parameters
	4.5 Evaluation Protocol
	4.6 Results and Discussion

	5 Conclusion
	References

	Short Papers
	Unified Parallel Intent and Slot Prediction with Cross Fusion and Slot Masking
	Abstract
	1 Introduction
	1.1 Independent Intent Classification
	1.2 Independent Slot Prediction
	1.3 Joint Intent Classification and Slot Prediction

	2 Proposed Models
	2.1 Model-1: Parallel Intent and Slot Prediction with Cross Fusion
	2.2 Model-2: Parallel Intent and Slot Prediction with Cross Fusion and Masking Slot

	3 Datasets and Experiment Detail
	4 Evaluation and Discussion
	4.1 Analyzing Effect of Cross Fusion with Model 1
	4.2 Analyzing Effect of Masking with Model 2
	4.3 Analyzing Effect of Embedding with Model 1 and Model 2
	4.4 Performance Comparison of State-of-the-Art Techniques

	5 Conclusions
	References

	Evaluating the Accuracy and Efficiency of Sentiment Analysis Pipelines with UIMA
	1 Introduction
	2 Related Work
	3 Experiments
	4 Results and Discussion
	5 Conclusion
	References

	Comparing Different Word Embeddings for Multiword Expression Identification
	1 Introduction
	2 Description of Dataset
	3 Network Structure
	4 Related Work
	5 Evaluation and Results
	5.1 Filters
	5.2 Window Size
	5.3 All Tags
	5.4 B Tags
	5.5 I Tags
	5.6 MWEs Which Were Not Seen During Training

	6 Conclusions and Future Work
	References

	Analysis and Prediction of Dyads in Twitter
	1 Introduction
	2 Related Work and Background
	3 Method
	4 Dyads: Results Analysis
	5 Conclusion
	References

	Mathematical Expression Extraction from Unstructured Plain Text
	1 Introduction
	2 Challenges in Extracting Mathematical Expressions in Plain Text
	3 Related Work
	4 Methodology
	4.1 Dataset and Pre-processing
	4.2 Experiment Setup

	5 Evaluation and Results
	6 Conclusion
	References

	A Study on Self-attention Mechanism for AMR-to-text Generation
	1 Introduction
	2 Related Works
	3 Incorporating the Self-attention Mechanism
	3.1 The Baseline Model
	3.2 Self Attention Sequence to Sequence Model
	3.3 Self Attention Graph to Sequence Model

	4 Experiments and Results
	4.1 Dataset and Hyper-parameter Settings
	4.2 Experimental Results

	5 Conclusions and Future Works
	References

	PreMedOnto: A Computer Assisted Ontology for Precision Medicine
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Proposed Model
	3.2 Evaluation

	4 Results
	5 Conclusions
	References

	An Approach for Arabic Diacritization
	Abstract
	1 Introduction
	2 Related Works
	3 Diacritization Processing
	3.1 System Overview
	3.2 Pre-processing
	3.3 The Learning Step
	3.4 Diacritization Step

	4 System Evaluation
	4.1 Results
	4.2 Comparison of Our System with “Mishkal”

	5 Conclusion
	References

	A Novel Approach Towards Fake News Detection: Deep Learning Augmented with Textual Entailment Features
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Feature Based Machine Learning Approach
	3.2 Deep Learning Based Approach

	4 Data
	5 Experiments, Results and Discussions
	5.1 ML Approach
	5.2 Deep Learning
	5.3 Comparison with the State of the Art and Other Prior Models
	5.4 Error Analysis

	6 Conclusion and Future Work
	References

	Contextualized Word Embeddings in a Neural Open Information Extraction Model
	Abstract
	1 Introduction
	2 Related Work
	2.1 Machine Learning Classifiers
	2.2 Hand-Crafted Rules
	2.3 Neural Approaches

	3 Proposed Model
	3.1 Contextual Embedding
	3.2 GRU Model Architecture
	3.3 Hyperparameters Settings

	4 Results and Evaluation
	4.1 Dataset
	4.2 Experimental Results and Analysis

	5 Conclusion and Future Work
	References

	Towards Recognition of Textual Entailment in the Biomedical Domain
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Dataset
	3.2 Machine Learning
	3.3 Deep Learning
	3.4 A Feature-Assisted Neural Network Architecture Model

	4 Results and Evaluation
	5 Conclusion
	References

	Development of a Song Lyric Corpus for the English Language
	1 Introduction
	2 Related Works
	3 Extraction of Lyrics and Corpus Cleaning
	4 Corpus Analysis
	5 Embeddings
	6 Conclusions
	References

	A Natural Language Interface Supporting Complex Logic Questions for Relational Databases
	1 Introduction
	2 A Brief System Description
	3 On Query Decomposition
	4 Experiments and Analysis
	5 Related Works
	6 Conclusion and Further Work
	References

	Waste Not: Meta-Embedding of Word and Context Vectors
	1 Introduction and Motivation
	2 Approach
	3 Experiments
	3.1 Datasets
	3.2 Experimental Setup

	4 Results and Discussion
	4.1 Text Classification
	4.2 Semantic Similarity and Word Analogy

	5 Conclusions and Future Work
	References

	Extracting Statistical Mentions from Textual Claims to Provide Trusted Content
	1 Introduction
	2 Entity, Relation and Value Extraction
	2.1 Statistical Entities
	2.2 Relevant Verbs and Measurement Units
	2.3 Extraction Rules

	3 Evaluation
	4 Related Work and Perspectives
	References

	Aspect Extraction from Reviews Using Convolutional Neural Networks and Embeddings
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	5 Discussion
	6 Conclusion and Future Work
	References

	Author Index

