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Abstract. The regular intersection emptiness problem for a decision
problem P (intreg(P)) is to decide whether a potentially infinite regular
set of encoded P-instances contains a positive one. Since intreg(P) is
decidable for some NP-complete problems and undecidable for others,
its investigation provides insights in the nature of NP-complete prob-
lems. Moreover, the decidability of the intreg-problem is usually achieved
by exploiting the regularity of the set of instances; thus, it also estab-
lishes a connection to formal language and automata theory. We consider
the intreg-problem for the well-known NP-complete problem INTEGER
LINEAR PROGRAMMING (ILP). It is shown that any DFA that describes
a set of ILP-instances (in a natural encoding) can be reduced to a finite
core of instances that contains a positive one if and only if the original
set of instances did. This result yields the decidability of intregs (ILP).
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1 Introduction

The problem INTEGER LINEAR PROGRAMMING (ILP for short) asks whether
a given set of inequalities with integer coefficients has an integer solution.
ILP is among the first problems for which NP-hardness was shown (it is on
Karp’s original list of 21 NP-complete problems) and it is of great practical rel-
evance in mathematical optimisation. There is a large number of academic pro-
totypes as well as commercial implementations of ILP-solvers that are applied
in various contexts; therefore ILP is arguably of similar importance as the well-
known Boolean satisfiability problem. For recent theoretical papers on ILP see,
e.g., [5,7].

Linear and Integer Linear Programs are often used to model observations of
the real world under the assumption that some properties are present. Impor-
tant fields of applications are for example image segmentation [12] and motion
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segmentation [13]. These models often face uncertainties due to lack of infor-
mation or measurement errors [10]. One possibility to handle this problem is to
take every possible instance into account, in which the uncertainty is replaced
by an actual value and ask whether one of them is solvable. In doing so, we get
a potentially infinite set of instances under which we seek a solvable one. For
example, suppose we have a system of two inequalities aj121 + a1222 < by and
a21%1022%2 < by with two integer variables 1 and x5 and only partial knowledge
of the coefficients a1, a12,b1, a1, ass, ba. Due to measurement inaccuracies all
we know is that a1 is a power of 2; ays is even and negative; by is positive and
less than 100; as; is congruent to 3 modulo 29; ags is 1 less than an odd power
of 2; and by is negative. The described inequalities form an infinite family of
inequalities and the described system represents an infinite family S of instances
of ILP. Since each coefficient fits a regular pattern, a DFA can describe the
encodings of exactly the instances in S.

Compact representations of finite sets of instances have already been consid-
ered for other problems. In graph modification,! the task is to transform a given
graph using a given set of edit operations into a graph of a certain graph-family
using as few operations as possible [2,14]. The possible edit operations give rise
to an edit distance [8] with respect to the set of graphs; thus, the above described
task can be seen as checking whether the set of all graphs within a certain dis-
tance from the given graph contains a member of the specified graph-family. The
same can be done for string-problems where a given string is to be transformed
(by using certain operations) into a target string [4].

Searching for a positive instance among infinitely many instances of a prob-
lem P seems to be a natural generalization of this setting. If we consider regular
sets of instances, this task can be formalised as checking whether a given regular
language of P-instances (represented by a deterministic finite automaton) and
the fixed language of positive P-instances have a non-empty intersection. This
was the original viewpoint of the line of research introduced by Giiler et al. [9,23],
where this problem is called the intgeg-problem of P (or intgeg(P) for short).?

The intree-problem has independently been studied under the name regu-
lar realizability problem RR(L), where the filter language L plays the role of
problem P as defined above, i.e., RR(L) = intreg (L) (see [1,15-17,19-21]). The
RR problem appeared when considering models of generalized nondeterminism
(GNA) where an auxiliary memory is used as a source of nondeterminism [18].
For each GNA class there are complete RR(L) problems where the filter lan-
guage L consists of prefixes of GNA-certificates (or guess words) [19]. That fact
already gives RR-problems which are complete under log space reductions for
LOG, NLOG, P, NP, PSPACE, EXP, and Y. This observation motivated the
attempt to present with the RR-problem ‘a specific class of algorithmic problems
that represents complexities of all known complexity classes |...] in a unified way’
[20]. It turned out that RR-problems are universal in the sense that for any prob-

! A Dagstuhl seminar on ‘Graph Modification Problems’ was held in 2014 [2].
2 Note that this problem is only well-defined if it is clear how P is represented as a
language, i. e., we have to define how P-instances are encoded as strings.
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lem P, there exists an RR-problem RR(L) with the same complexity (note that
P and L are different languages). In [21], instead of focusing on which complexity
classes can be covered by an RR-problem, the authors concentrate on context-
free filter languages and present examples for which RR(L) is either P-complete,
NLOG-complete or has an intermediate complexity. In [17] the decidability of
the RR-problem with languages of permutations of binary words as filters have
been considered. In this line of research, the filter languages are closely related
to computations of specific machine models. As a consequence the regularity of
the input language is not exploited at all and the hard part of a problem is coded
into regular languages consisting of single words only. In [20] the author notes
that the presented reductions ‘cut off almost all properties of regular languages’.

In [1], intreg(L) has been studied for L with low computational complexity,
but which describe structural properties of words that have high relevance for
combinatorics on words and formal language theory (e.g., set of primitive words,
palindromes, etc.). In this regards, (efficient) decision procedures are obtained.

In contrast to these research questions, the line of work initiated in [9,23]
focuses on classical (hard) computational problems as filter languages and
respective decision procedures heavily take advantage of the regularity of the
set of input instances. Investigating the intgee-problem for NP-complete prob-
lems shows that the decidability of their intgreg-problem is not trivial, e.g.,
intreg(SAT) is decidable [9], whereas intgeg(BOUNDED TILING) is not [23].3
This is particularly interesting because the original hardness proofs of SAT and
BOUNDED TILING are both given by directly encoding Turing-machine com-
putations into a problem instance [3,6]. Finding a generic characterization of
NP-complete problems with a decidable intreg-problem is still an open problem.
This work continues this line of research and we will focus on the NP-complete
integer linear programming problem as the filter language, i.e., we investigate
the problem intgeq (ILP).

Our main result is that intreg(ILP) is decidable. The idea is to transform
the given DFA that represents the regular set of instances into a condensed one
that accepts a finite set of instances, such that the condensed set contains a
positive instance if and only if this is the case for the original set.* This is done
by first identifying for all pairs of states the set of coefficients that can be read
between these two states, and then choosing a finite number of representatives
for each such set of coefficients (in a sense, these are the coefficients that are
‘most promising’ regarding possible solutions). Then, again for all pairs of states,
we identify a set of whole inequalities that can be read between these two states
and that only have coefficients from the set of ‘promising’ coefficients constructed
before. Finally, we will again choose suitable representatives for those sets of
inequalities, from which we will construct the desired condensed automaton.
We will also give bounds on the number and length of words accepted by the

3 LOGSPACE and P also contain problems with undecidable intreg-problem [23].
* Our construction uses similar ideas as given in [11].
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condensed automaton and, in the conclusions, discuss the chosen encoding and
present an alternative encoding. The presented arguments can easily be adapted
to proof the decidability of the intgeg-problem for Linear Programming (with
integer coefficients). Due to space restrictions some proofs are omitted.

2 Preliminaries

We assume the reader to be familiar with the basics of formal language the-
ory and the complexity class NP. For a language descriptor A (e.g., regular
expressions or automata), L(A) denotes the language described by A. With [n],
n € N we denote the set {1,...,n}. A deterministic finite automaton (DFA) A
is a tuple (Q, X, 6, qo, F') where Q is a finite set of states, X a finite alphabet,
0: @x X — @ the (partial) transition function, go the start state, and F' is the set
of final states. The transition function § extends to the function §*: @ x X* — @
in the usual way. We will only consider partial automata where every state is
coaccessible, i.e., from every state, some final state is reachable.

We first give a formal definition of the problem INTEGER LINEAR PROGRAM-
MING. While the standard-form of ILP varies in different areas, we refer to the
definition in [22] where this problem is called LIQ. We will refer to the described
problem as ILP. The problem is NP-complete if we ask for solutions in Z [22].

Definition 1 (ILP).
Given: Finite set A of pairs (a, 3) where a € Z™ and 8 € Z.
Question: Is there an m-tuple € € Z™ such that a -« < (3 for dll (a, ) € A?

The problem will be encoded in the following way. The whole set A will be
encoded in one word. For each pair (e, 3) the elements of & and the 8-value are
encoded in binary over {0,1}. Each positive integer will be preceded with a +
while each negative integer will be preceded with a —. The integers of o will be
separated from (0 by a < symbol. The inequalities themselves are terminated by
$-symbols. Since we want to talk about regular languages of ILP-instances, we
aim to have an encoding which is verifiable by a finite automaton. Therefore, we
allow the inequalities of an ILP-instance to have different numbers of variables.
The assignment of the coefficients to the variables is implicitly made by the order
in which the coefficients occur. So, the i-th encoded coefficient in an inequality
refers to variable z; and is referenced as the coefficient with index 7. As the
inequalities of an ILP-instance may have different numbers of coefficients, they
are interpreted as filled up with coefficients zero until all inequalities have the
same number of coefficients and hence the same number of variables. Alternative
encodings are discussed in Sect. 5. More formally,

Lene 1= L (#1010 )* < +=J011(011)°]8)°)

is the set of all encoded ILP-instances and with ILP.,. we denote the set of all
solvable encoded ILP-instances. As an example, consider the following integer
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linear program and its encoding:

{((57130377)715)a((07787130)774)3((1707070)371)} ’
+101+14+0—-111 < +1111$ —-0—-1000+1 < —-100% +1 < —18%.

Note that coefficients zero can either occur with a + or a — sign.

The question we want to investigate is whether the set of solvable ILP-
instances, encoded in the above described way, and a regular language, given
by an automaton, have a non-empty intersection.

Definition 2 (intgeg (ILP)).
Given: Deterministic finite automaton A.
Question: Is L(A) NILP g # 07

3 Construction of the Condensed Automaton

We will follow the ideas presented in [9] of investigating what kinds of loops
can occur in the automaton without violating the encoding format, namely
loops inside a coefficient, loops over whole coeflicients, and loops over whole
inequalities.

Definition 3. Let A = (Q, X, 6,q0, F) be a DFA. We define for all q,¢' € Q
and s € {+, —} the coefficient transition set A7 , and F-transition sets B; , as

A5 o ={si|i€{0,1}* Ado e D\{0,1,8} : 6*(q,50) = ¢ A 8(¢,0) # 0}
By o ={si|i€{0,1}* A6*(q,51) = ¢ AS(q,8) # 0}.

Intuitively speaking, these transition sets contain all coefficients and 3-values
which can be completely read between g and ¢’. Note that automata recognizing
the transition sets are easily obtained from the original automata. When ¢, ¢’
and s is clear from the context, then we will simply write A and B.

We now want to find a set of representatives reps(A) for each coefficient
transition set A. The set reps(A) will contain only the smallest and largest coef-
ficient, which in the following we will denote extreme coefficients, from the set A.
Since all inequalities are of the form a1z +- - -+ ay,z, < 0, increasing the abso-
lute value of a positive summand «;x; makes the inequality system harder to be
solved, while decreasing it may only enlarge the set of solutions (correspondingly
for negative summands). So, we only have to consider the largest and smallest
coefficient «; contained in the coefficient transition set. The largest and smallest
coefficient will correspond, in combination with a negative and positive z; value,
respectively, to the smallest negative and positive summand, respectively. If a
coefficient transition set is infinite, it contains coefficients with an arbitrarily
large magnitude, which we will represent by the meta-characters 400 and —oo
in order to indicate that we can replace them with large enough values. Similarly,
if a O-transition set B;fq, is infinite, we will use +oo-symbol as a representative
(indicating that we can find arbitrary large 8-values and therefore such inequal-
ities can be ignored), and for S-transition sets B; g We choose the element with
the smallest magnitude as representative.
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Definition 4. For transition sets A, , and B .., we define:

reps(AF ) o= 4 T0In(Ag), +oo}, if 1A% | = 003
a.q {min(A} ), max(A] )}, otherwise,
reps(A, /) = {00, max(4, )}, if [Ag | = o0
e {min(4, /), max(A, )}, otherwise,
(o [0 I =
o {max(B;q,)}, otherwise,

reps(B, /) = {max(B_ )}

Since the transition sets are given by finite automata, it can be checked
whether they are finite or infinite. The next step is to identify all inequali-
ties which can be completely read in between two states and that only contain
extreme coefficients, i. e., members from reps(A) and reps(B) as coefficients and
(-values.

Definition 5. Let A = (Q, X, 9, qo, F) be a DFA with L(A) C Lepc. For every
pair of states q,q' € Q we define the inequality transition set =, , as:

k

Eyq = {s1i18202 ... spix < spj8 | k € N,3po, ..., pkt2 - /\ seip € reps(Ayt )
(=1

/\po =dq A\ 5(pk, S) = Pk+1 A Sbj € I‘epS(B;ZJrhpMﬂ) A 5(pk+2, $) = q’}.

Now we want to pick finitely many representatives for every inequality tran-
sition set =, ;. Some sets = contain for every partial solution x an inequality
which can be satisfied by an extension of 2.° For those inequality transition sets,
we simply choose $ as the representative to indicate that this transition set does
not participate in the problem as we can always find a satisfiable inequality in
it. Two types of inequality transition sets have this property. If =, ,» contains an
inequality with an 4+oo-symbol as $-value, then an inequality with an arbitrary
high actual $-value can be read in between ¢ and ¢’. So, for every value of the
left side of the inequality we can read an even larger right side. The other type
of = sets are those which contain inequalities with an unbounded number of
non-zero coefficients. Recall that the = sets only contain coefficients which are
representatives of A sets and hence the number of different coefficients in all =
sets is finite. Hence, the only reason an = set is infinite is because the num-
ber of coefficients in the inequalities can be arbitrarily large. Therefore, those
inequality transition sets are exactly the sets which are infinite after we removed
all inequalities ending with more than |Q] = n consecutive coefficients zero. By
removing more than n consecutive coefficients zero from the end of the sum, we
ensure that there is a non-zero coefficient under the last n coefficient. If the set is
still infinite we can find inequalities with non-zero coefficients with an arbitrary

5 An extension v’ € Z" of v € Z™ with n > m coincides with v in all positions i < m.
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high index. If the modified inequality transition sets are finite, we simply pick
the whole set as the set of representatives. Inequalities with more than n con-
secutive coefficients zero after the last non-zero coefficient can also be ignored,
because there is an equivalent inequality with less than n coefficients zero in
the inequality transition set. With this considerations in mind, we define for all
states ¢,¢’ € @ a set of representatives reps(=, 4 ) for the inequality transition
set Sy qr-

Definition 6. Let Ly, := L ([4|—] ([0|1(0]1)*]|c0)) and let Lrrash := L((Lva)*
([+]-]0)>™ < Lyy$). For every inequality transition set =4, we define

{8}, if 3w € Zq,4 which ends with +00$;
reps(=gq) 1= or | Zq.q' \L Trasn| = 00;

Z4.¢\LTrash, otherwise.

Note that there are only finitely many sets reps(=,,4) which are by construc-
tion all of a finite size.

We will now construct a condensed automaton which will have the finitely
many inequalities, chosen as a representative, as its alphabet.

Definition 7. Let A= (Q, X,0,q0, F) be a deterministic finite automaton with
L(A) C Lepe. We define cond(A) = (Q, X', ¢,qo, F) with the alphabet X' =
U(Lq’EQ reps(Zq,q) and 6" = {(¢,€,q') | € € reps(Zy,¢) }-

Lemma 12 will show that we only have to consider simple paths in cond(A).

4 Correctness of the Condensed Automaton

We will now present several lemmas which in the end will prove that L(A) N
ILPgne # O if and only if L'(cond(A)) N ILPepe # 0. With L’'(cond(A)) we
refer to the language L(cond(A)) where the wild-cards oo are replaced by actual
coefficients. First, we will show that it is sufficient to consider only the largest
and smallest coefficient which can be read in between two states.

Lemma 8. Let A = (Q,X,8,q0, F) be a DFA, let w € L(A) NILP .. with
solution x and let oy; be the j-th coefficient of the i-th inequality of w. Let
w = w’aijw”. If Q5 = aijbijcij, bij 7é g, and 5*((]0,’(1}/@1‘]‘) = 5*(q0,w’aijbij),
then the following holds:

1. Assume x; > 0 and a;; has a + sign. Let w’ result from w by replacing o
with a;jc;j. Then w' € L(A) NILP cpe and @ is a solution for w'.

2. Assume x; > 0 and o;; has a — sign. Let w' result from w by replacing o
with a;j(bi;)?cij. Then w' € L(A) NILP e and x is a solution for w'.

3. Assume x; < 0 and a;; has a + sign. Let w' result from w by replacing o
with a;;(bij)?cij. Then w' € L(A) NILP . and x is a solution for w'.

4. Assume x; <0 and a;; has a — sign. Let w' result from w by replacing o
with a;jc;j. Then w' € L(A) NILP . and  is a solution for w'.
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Next, we will focus on whole inequalities and show that restricting the inequal-
ities in words from L(A) to the above defined representatives does not affect
the existence of a solvable ILP-instance in L(A). We already explained before
Definition 6 that for every solution vector & we can replace the inequalities
with an 4oo-symbol as -value by inequalities with actual (-values, which are
satisfied by @. With respect to inequality transition sets containing inequalities
with arbitrarily large non-zero coeflicients, we will show next how to simultane-
ously replace such inequalities in a way that the replacements are satisfied by an
extension of x. So, if the ILP-instance is solvable without inequalities from sets
Z which are represented by $-symbols, then we can enlarge the instance and the
solution to include those inequalities.

For the next lemma, we want to distinguish the infinite inequality transition
sets without an unbounded [3-value from the finite ones.

Definition 9.

Infz :={E,.q4 | reps(E4.9) = {$} AN Zg¢ N (L (Lvy™ < 4+00$) =0)}
Fing :={Z, ¢ | reps(Z4,4) # {$}}

We will now find alternative representatives for the sets in Inf=z such that if an
ILP-instance consisting only of inequalities from the sets in Finz has a solution
x, then we can extend the ILP-instance with any combination of alternative
representatives of the sets in Inf=, such that  can be extended to a solution of
the extended ILP-instance (we shall prove this in Lemma 11). This shows that we
can ignore inequalities from the sets in Inf=, i. e., the ones with representative $.

Definition 10. Let o: [|Infg]] — Infz be an arbitrary but fized ordering of
the sets in Infs. Let n := |Q| and #4(w) denote the number of signs in an

inequality w. The function I?in returns the lexicographical minimal element of a
ex

setS. For every 1 < i < |Infz| we define for the inequality transition set o(i) in
Inf= a set ofalternative representatives arep as

arep(o(i)) < Iﬁ;n({w co(@)|(i+1) - n<#iL(w) <(i+2)-n}).

For each fixed ¢ the assignment of arep(o(i)) in the above definition can be
determined by computing the intersection of two regular sets given by DFAs,
yielding a finite language. This finite language can be enumerated in order to
find the lexicographical minimal element. The idea is to pick inequalities as
alternative representatives which together form a matrix in row echelon form.
For every inequality we assign the variable xj with the highest indexed non-zero
coefficient «j, with a value of which magnitude is large enough, such that the
summand oz dominates the inequality. An inequality in the sets of Finz can
only consist of up to n = |@Q| different coefficients. The definition of arep(Z)

5 The function min is used to make the definition clear. Any other element of the set

lex
could be used as well.
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ensures that the representatives of = € Infz contain more coefficients than
any representative of the finite inequality transition sets. It also ensures that
the number of coefficients contained in the representing inequality is strictly
monotonously rising with the order o. Especially, the index of the highest non-
zero coefficient of arep(o(i+ 1)) is higher than the index of the highest non-zero
coefficient of arep(o(7)).

Lemma 11. Let w be a solvable ILP-instance consisting only of inequalities
from sets in Fings. Let © be a valid solution of w. Then, for every ILP-instance
w’ consisting of w and additional inequalities from {arep(Z) | £ € Infs} the
vector x can be extended to a solution ' of w'.

Proof. Let * = (x1,22,...,2;), let m be the number of variables in w’, and
let var-set(§) be a function returning the variables appearing in the inequality
& with a non-zero coefficient. Let coeff (€, y;) denote the coefficient of variable
y; in the inequality &, let value(y;) denote the assigned value x; of the vari-
able y;, and let §(§) refer to the right side § of the inequality £. Algorithm 1
assigns values to the new variables v;41,¥i12,.-.,Ym appearing in w’ such that
' = (x1,...,% Tit1,...,Tmy) is a solution of the instance w’ and works as fol-

lows. We go through the inequalities appearing in w’ which have been chosen

Algorithm 1. Extending solution x of ILP-instance w to solution =’ of w’.

AssignedVars «— {y1,...,¥yi}
for j < 1 to |Inf=| do
CurIneq < arep(o(j)), ToAssign « 0
if CurIneq appears in w’ then
ToAssign < var-set(CurIneq)\AssignedVars
MaxVar « yj € ToAssign with highest index k
for all y € ToAssign\{MaxVar} do
value(y) — 0
end for

SumOthCoeff « > coeff (Curlneq, yi) - value(y;)
y; €{var-set(CurIneq)\{MaxVar}}
CoeffMaxVar < coeff (CurIneq,MaxVar), b« ((Curlneq)

value(MaxVar) « |b — SumOthCoeff| - (_1)%

AssignedVars «— AssignedVars U ToAssign
end if

end for

as alternative representatives for the sets in Infz in the same order as when
we assigned the representatives. Thus, the number of appearing variables per
inequality is rising. In every considered inequality, there is at least one variable
which has not appeared in the previously considered inequalities. We assign the
new variables with a zero value, except for the variable with the highest index.
This variable (MaxVar) gets a value which compensates all the other summands
in the inequality. The sign of MaxVar is converse to the sign of its coefficient
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resulting in a negative summand. We can choose the value of MaxVar freely,
since the variable has not appeared in any other inequality we considered ear-
lier. If it appears in any later considered inequality, there will always be at least
one new variable in the inequality which has not appeared earlier, and which
can again compensate every other summand. It is easy to see that the consid-
ered inequality CurIneq is satisfied by the chosen variable assignment. Hence,
x' = (x1,..., 2 value(Yit1), . - ., value(yy,)) is a solution of the ILP-instance w'.

O

Only simple paths in cond(A) have to be considered in order to find a solvable
ILP-instance in L'(cond(A)).

Lemma 12. Let w,w’ € Leye and w' be w without an arbitrary inequality &
from w. (So, w' is w with one inequality less.) If w € ILP o then w' € ILP cpe.

We will now show that if there is a solvable ILP-instance in L'(cond(A)),
then we can replace any $-symbols in this instance by actual inequalities, result-
ing in a solvable ILP-instance in L(A). On the other hand, if there is a solv-
able ILP-instance in L(A) the modifications we made on A while constructing
cond(A) preserve the existence of a solvable ILP-instance in the obtained lan-
guage L'(cond(A)).

Theorem 13. Let A =(Q,X,0,q0, F) be a deterministic finite automaton with
L(A) C Lepe. Then, L(A)NILP e # 0 if and only if L'(cond(A)) NILP o # 0.

Proof Sketch. Let w € L(A)NILPey.. We only keep those inequalities in w which
are read between some states ¢ and ¢’ on the path labeled with w in A and for
which =, ; € Finz. All other inequalities in w are replaced by $-symbols. Then,
wherever possible we pump the coefficients in w up or down, corresponding to
the sign of the associated variable in x until we obtain an ILP-instance w’ in
L’(cond(A)). It holds that w’ is also solvable.

Let w € L'(cond(A))NILPep.. The corresponding ILP-instance in L(cond(A))
only consists of inequalities from = sets in Fingz or $-symbols. We first replace
all $-symbols which are representatives of = sets in Inf= by alternative represen-
tatives from Definition 10. According to Lemma 11 the obtained ILP-instance
is still solvable. Then, we replace the leftover $-symbols which are representa-
tives of = sets which contain inequalities with an unbounded (-value. Since we
know a solution for the considered ILP-instance, we can pick inequalities with
large enough (-value such that the obtained ILP-instance w’ is satisfied by an
extension of the considered solution. In w’ all $-symbols are replaced by actual
inequalities and hence w’ € L(A). As w' is also solvable L(A) N ILPey. # 0
follows. a

Now, we are ready to put the pieces together and present our main result.
In the following, we give a decision procedure for the intreg-problem of ILP.

Theorem 14. The problem intges(ILP) is decidable.
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Proof. Since Lep. is regular, we can restrict L(A) to the regular language
L(A) N Lepe- Let A = (Q, X, 4, qo, F') be a deterministic finite automaton with
L(A") = L(A) N Leyc. For the automaton A’, the Definitions 3 and 4 describe
the construction of coefficient transition sets and assigning their representatives.
In Definition 5 inequality transition sets are constructed based on those rep-
resentatives. These inequality transition sets get representatives themselves in
Definition 6. In Definition 7 a new automaton cond(A’) is defined, based on
the representatives for the inequality transition sets. All those constructions can
be computed by an algorithm. Theorem 13 states that L(A’) N ILPqy. # 0 <
L'(cond(A")) NILPcpc # 0. Finally, Lemma 12 tells us that if there is a solvable
ILP-instance in L'(cond(A’)) at all, then there is a solvable ILP-instance w’ in
L'(cond(A")) with a corresponding ILP-instance w € L(cond(A’)) which can be
read on a simple path in cond(A’). The instance w is obtained from w’ by replac-

ing coefficients with an absolute value above 3|Q] - (|Q|2|Q|)2‘Q‘+4(1 + 2@l by
oo-symbols. Since there are only finitely many simple paths in an automaton,
and testing a given ILP-instance for solvability can be done in finite time, we
can test all words in L'(cond(A’)) which correspond to labels of simple paths in
cond(A’) for membership in ILPgy in finite time. Hence, L(A) N ILPey # 0 is
decidable. O

5 Conclusion

The number of considered words in L’(cond(A)) is bounded by 20(1QI* log(lQD)
The length of considered words in L(cond(A)) regarding the alphabet X’ of
cond(A) is bounded by O(|Q)]). Finally, the length of considered words regarding
the alphabet X' of A, meaning that we replace $- and co-symbols by actual sub-
strings over X, is bounded by O(|Q|"). Therefore, we can guess some word in
L’(cond(A)) and check its membership in ILPe,. by solving the represented
ILP-instance. Since ILP is NP-complete intges(ILP) € NP follows. For a given
ILP-instance, we can construct a DFA accepting only this instance in polynomial
time. Hence intreq (ILP) is NP-complete.

According to [19], the presented results are stable under applying a length-
preserving morphism to the encoding scheme. The results are also stable under
changing the binary encoding to any base-k encoding. Recall that in order to talk
about regular sets of problem-instances, we want to have a problem encoding
which can be verified by a deterministic finite automaton. In particular, we
can not verify with a DFA that all variables appear in a certain inequality or
that the inequalities have the same length. Therefore, we have implicitly filled
the inequalities with coefficients zero to ensure the same number of variables
per inequality. Note that this forbids an explicit matrix representation of an
ILP-instance. Instead of referencing the variables of an inequality implicitly by
the number and order of the coefficients we could also use another encoding,
where we explicitly name the variable and the coefficient. In this setting multiple
occurrences of the same variable would be possible and would be interpreted as
a summation of terms. Here, we would define transition sets for coefficients and
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for variables. We would not pump the number of variables in an inequality but
instead pump the label of a variable to make it independent of other variables and
inequalities. We would still treat the coefficients in the same way and we would
also consider only simple paths. In terms of the ‘intreg-techniques’ of [23] we
would switch from the replacing technique to the separating technique and the
intreg-problem of ILP in this variable-explicit encoding would still be decidable.

Although we considered partial DFAs, the construction also works for partial
NFAs. It might be worthwhile to investigate further extensions of intreq(ILP)
such as Boolean combinations of inequalities or quadratic programming.
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