
Michal Hospodár
Galina Jirásková
Stavros Konstantinidis (Eds.)

LN
CS

 1
16

12

21st IFIP WG 1.02 International Conference, DCFS 2019
Košice, Slovakia, July 17–19, 2019
Proceedings

Descriptional Complexity
of Formal Systems

Lecture Notes in Computer Science 11612

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Michal Hospodár • Galina Jirásková •

Stavros Konstantinidis (Eds.)

Descriptional Complexity
of Formal Systems
21st IFIP WG 1.02 International Conference, DCFS 2019
Košice, Slovakia, July 17–19, 2019
Proceedings

123

Editors
Michal Hospodár
Slovak Academy of Sciences
Košice, Slovakia

Galina Jirásková
Slovak Academy of Sciences
Košice, Slovakia

Stavros Konstantinidis
Saint Mary’s University
Halifax, NS, Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-23246-7 ISBN 978-3-030-23247-4 (eBook)
https://doi.org/10.1007/978-3-030-23247-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© IFIP International Federation for Information Processing 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-23247-4

Preface

This volume contains the papers presented at the 21st International Conference on
Descriptional Complexity of Formal Systems (DCFS 2019) held in Košice, Slovakia,
during July 17–19, 2019. It was jointly organized by the Working Group 1.02 on
Descriptional Complexity of the International Federation for Information Processing
(IFIP), by the Košice branch of the Mathematical Institute of the Slovak Academy of
Sciences, and by the Slovak Artificial Intelligence Society.

The DCFS conference series is an international venue for the dissemination of new
results related to all aspects of descriptional complexity, which is a field in computer
science that deals with the costs of description of objects in various computational
models, such as Turing machines, pushdown automata, finite automata, grammars, and
others.

DCFS became an IFIP working conference in 2016, continuing the former Work-
shop on Descriptional Complexity of Formal Systems, which was a result of merging
together two workshop series: Descriptional Complexity of Automata, Grammars and
Related Structures (DCAGRS) and Formal Descriptions and Software Reliability
(FDSR). DCAGRS was previously held in Magdeburg, Germany (1999), London,
Ontario, Canada (2000), and Vienna, Austria (2001). FDSR was previously held in
Paderborn, Germany (1998), Boca Raton, Florida, USA (1999), and San Jose,
California, USA (2000). These workshops were merged in DCFS 2002 in London,
Ontario, Canada, which is regarded as the 4th DCFS. Since 2003, DCFS has been
successively held in Budapest, Hungary (2003), London, Ontario, Canada (2004),
Como, Italy (2005), Las Cruces, New Mexico, USA (2006), Nový Smokovec, High
Tatras, Slovakia (2007), Charlottetown, Prince Edward Island, Canada (2008),
Magdeburg, Germany (2009), Saskatoon, Canada (2010), Giessen, Germany (2011),
Braga, Portugal (2012), London, Ontario, Canada (2013), Turku, Finland (2014),
Waterloo, Ontario, Canada (2015), Bucharest, Romania (2016), Milan, Italy (2017),
and Halifax, Nova Scotia, Canada (2018).

The topics of this volume include: finite state transducers, quantum automata theory,
state complexity, syntactic complexity, subword complexity, quasi-Polish spaces, tree
automata, jumping automata, pushdown automata with constant height, input-driven
pushdown automata, simple semi-conditional grammars, and monotone WQOs.

There were 25 submissions from 15 different countries: Algeria, Canada, Chile,
Czech Republic, France, Germany, Hungary, India, Italy, Japan, Latvia, Russia,
Slovakia, South Korea, and the USA. The submission, single-blind refereeing process,
and the collating of the proceedings were supported by the EasyChair conference
system. Each submission was reviewed by at least three, and on average 3.1, Program
Committee members.

The committee selected 18 papers for presentation at the conference, and publication
in this volume. The program also included four invited talks by Rudolf Freund, Jarkko
Kari, Benedek Nagy, and Giovanni Pighizzini.

We would like to thank the Program Committee members and the external reviewers
for their help in selecting the papers. We are also very grateful to all invited speakers,
contributing authors, session chairs, and all the participants for their valuable contri-
butions that helped DCFS 2019 to be a scientifically successful event in a collaborative
and friendly atmosphere.

We are also grateful to the editorial staff at Springer, in particular Alfred Hofmann
and Anna Kramer, for their guidance and help during the process of publishing this
volume, and for supporting the event through publication in the LNCS series.

Last but not least, we would like to thank the conference sponsors for their financial
support, and the local Organizing Committee: Peter Mlynárčik and Matúš Palmovský
(social program), Ivana Krajňáková and Peter Gurský (financial issues), Viktor Olejár
(IT support), Juraj Šebej (conference materials). Everything was always carefully
checked and slightly criticized by Jozef Jirásek to whom our sincere gratitude goes as
well.

We all are looking forward to the next DCFS in Vienna, Austria.

July 2019 Michal Hospodár
Galina Jirásková

Stavros Konstantinidis

vi Preface

Organization

Steering Committee

Cezar Câmpeanu University of Prince Edward Island, Charlottetown,
Canada

Erzsébet Csuhaj-Varjú Eötvös Loránd University, Budapest, Hungary
Helmut Jürgensen Western University, London, Canada
Stavros Konstantinidis Saint Mary’s University, Halifax, Canada
Martin Kutrib (Chair) Justus Liebig University, Giessen, Germany
Giovanni Pighizzini University of Milan, Italy
Rogério Reis University of Porto, Portugal

Program Committee

Suna Bensch University of Umeå, Sweden
Erszébet Csuhaj-Varjú Eötvös Loránd University, Budapest, Hungary
Szilárd Zsolt Fazekas Akita University, Japan
Viliam Geffert P.J. Šafárik University, Košice, Slovakia
Yo-Sub Han Yonsei University, Seoul, South Korea
Kazuo Iwama Kyoto University, Japan
Galina Jirásková Slovak Academy of Sciences, Košice, Slovakia
Christos Kapoutsis Carnegie Mellon University in Qatar, Doha, Qatar
Ondřej Klíma Masaryk University, Brno, Czech Republic
Stavros Konstantinidis Saint Mary’s University, Halifax, Canada
Martin Kutrib Justus Liebig University, Giessen, Germany
Hing Leung New Mexico State University, Las Cruces, USA
Christof Löding RWTH Aachen University, Germany
Tomáš Masopust Czech Academy of Sciences, Brno, Czech Republic
Ian McQuillan University of Saskatchewan, Saskatoon, Canada
Carlo Merghetti University of Milan, Italy
Nelma Moreira University of Porto, Portugal
Alexander Okhotin St. Petersburg State University, Russia
Luca Prigioniero University of Milan, Italy
Narad Rampersad University of Winnipeg, Canada
Kai Salomaa Queen’s University, Kingston, Canada
Juraj Šebej P.J. Šafárik University, Košice, Slovakia
Jeffrey Shallit University of Waterloo, Canada
Marek Szykuła University of Wrocław, Poland
Matthias Wendlandt Justus Liebig University, Giessen, Germany
Lynette van Zijl Stellenbosch University, South Africa

Additional Reviewers

Bednárová, Zuzana
Beier, Simon
Berglund, Martin
Björklund, Johanna
Brecht de, Matthew
Davies, Sylvie
Gazdag, Zsolt
Guillon, Bruno
Holzer, Markus
Keeler, Chris
Khadiev, Kamil
Křivka, Zbyněk
Loff, Bruno

Malcher, Andreas
Mika, Maksymilian
Pauly, Arno
Pighizzini, Giovanni
Sin’Ya, Ryoma
Szabari, Alexander
Villagra, Marcos
Vyalyi, Mikhail N.
Weihrauch, Klaus
Winter, Sarah
Yamakami, Tomoyuki
Young, Joshua

Invited Speakers

Rudolf Freund TU Wien, Austria
Jarkko Kari University of Turku, Finland
Benedek Nagy Eastern Mediterranean University, Famagusta, Cyprus
Giovanni Pighizzini University of Milan, Italy

Sponsors

City of Košice
Slovak Society for Computer Science

viii Organization

Contents

A General Framework for Sequential Grammars
with Control Mechanisms. 1

Rudolf Freund

Low-Complexity Tilings of the Plane . 35
Jarkko Kari

Union-Freeness, Deterministic Union-Freeness and Union-Complexity 46
Benedek Nagy

Limited Automata: Properties, Complexity and Variants. 57
Giovanni Pighizzini

Nondeterministic Right One-Way Jumping Finite
Automata (Extended Abstract) . 74

Simon Beier and Markus Holzer

State Complexity of Single-Word Pattern Matching in Regular Languages . . . 86
Janusz A. Brzozowski, Sylvie Davies, and Abhishek Madan

Square, Power, Positive Closure, and Complementation
on Star-Free Languages . 98

Sylvie Davies and Michal Hospodár

Descriptional Complexity of Matrix Simple Semi-conditional Grammars 111
Henning Fernau, Lakshmanan Kuppusamy, and Indhumathi Raman

Regulated Tree Automata . 124
Henning Fernau and Martin Vu

Generalized de Bruijn Words and the State Complexity of Conjugate Sets . . . 137
Daniel Gabric, Štěpán Holub, and Jeffrey Shallit

The Syntactic Complexity of Semi-flower Languages 147
Kitti Gelle and Szabolcs Iván

Limited Nondeterminism of Input-Driven Pushdown Automata:
Decidability and Complexity . 158

Yo-Sub Han, Sang-Ki Ko, and Kai Salomaa

Computability on Quasi-Polish Spaces . 171
Mathieu Hoyrup, Cristóbal Rojas, Victor Selivanov, and Donald M. Stull

NFA-to-DFA Trade-Off for Regular Operations . 184
Galina Jirásková and Ivana Krajňáková

State Complexity of Simple Splicing . 197
Lila Kari and Timothy Ng

Nondeterminism Growth and State Complexity . 210
Chris Keeler and Kai Salomaa

Descriptional Complexity of Iterated Uniform Finite-State Transducers 223
Martin Kutrib, Andreas Malcher, Carlo Mereghetti,
and Beatrice Palano

On Classes of Regular Languages Related to Monotone WQOs 235
Mizuhito Ogawa and Victor Selivanov

State Complexity of GF(2)-Concatenation and GF(2)-Inverse
on Unary Languages . 248

Alexander Okhotin and Elizaveta Sazhneva

Pushdown Automata and Constant Height: Decidability and Bounds 260
Giovanni Pighizzini and Luca Prigioniero

On the Decidability of Finding a Positive ILP-Instance in a Regular Set
of ILP-Instances . 272

Petra Wolf

How Does Adiabatic Quantum Computation Fit into Quantum
Automata Theory?. 285

Tomoyuki Yamakami

Author Index . 299

x Contents

A General Framework for Sequential
Grammars with Control Mechanisms

Rudolf Freund(B)

Faculty of Informatics, TU Wien, Favoritenstraße 9-11, 1040 Vienna, Austria
rudi@emcc.at

Abstract. Since more than five decades, many control mechanisms have
been introduced for sequential string grammars, including control graphs,
matrices, permitting and forbidden contexts, and order relations. These
control mechanisms then have been extended to sequential grammars
working on objects different from strings, for example, to array, graph,
and multiset grammars. Many relations between the languages generated
by sequential grammars working on these objects with different control
mechanisms were shown to be similar to the relations already proved
for the string case. Within a general framework for regulated rewriting
based on the applicability of rules in sequential grammars, many rela-
tions between various control mechanisms can be established in a very
general setting without any reference to the underlying objects the rules
are working on. Besides the well-known control mechanisms as control
graphs, matrices, permitting and forbidden rules, partial order on rules,
and priority relations on rules, the new variants of activation of rules as
well as activation and blocking of rules are considered. Special results for
strings and multisets as well as for arrays in the general variant defined
on Cayley grids of finitely presented groups are exhibited based on the
general results. Finally, some general results for cooperating distributed
grammar systems are established.

Keywords: General framework · Regulating rewriting ·
Sequential grammars

1 Introduction

Already thirty years ago, a first comprehensive overview on many concepts of reg-
ulated rewriting, especially for the string case, was given the monograph on reg-
ulated rewriting by Dassow and Păun [7]. Yet as it turned out later, many of the
mechanisms considered there for guiding the application of productions/rules can
also be applied to other objects than strings, e.g., to n-dimensional arrays [10].
Even in the field of P systems [22] where mostly multisets are considered, such
regulating mechanisms were used [4]. Using a general model for graph-controlled,
programmed, random-context, and ordered grammars of arbitrary type based on

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 1–34, 2019.
https://doi.org/10.1007/978-3-030-23247-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_1

2 R. Freund

the applicability of rules, many relations between various regulating mechanisms
for sequential grammars can be established in a very general setting without any
reference to the underlying objects the rules are working on, as first exhibited in
[13] in a comprehensive way. In this overview paper, the results elaborated in [13]
are combined with the results obtained in the general framework for sequential
grammars using activation and blocking of rules as introduced in [2,3,11]. We
recall special results for strings and multisets from [3] as well as results obtained
in [11] for array grammars defined on Cayley grids of finitely presented groups.
Finally, we establish some even new general results for cooperating distributed
grammar systems.

In the following section, we recall some notions from formal language and
group theory, especially for Cayley grids of finitely presented groups. In Sect. 3
we recall the main definitions of the general framework for sequential gram-
mars of arbitrary type and the control mechanisms based on the applicability of
rules as initiated in [13] and then continued in [3,11], i.e., for graph-controlled,
programmed, random-context, and ordered grammars, for grammars with a pri-
ority relation on the rules, as well as for sequential grammars with activation
and blocking of rules.

In Sect. 5 we summarize all the general results obtained within the framework
for sequential grammars using the control mechanisms considered in this paper.

Specific results on computational completeness as well as some interesting
complexity results for strings and multisets as underlying objects then are shown
in Sect. 6.

In Sect. 7 we first define arrays and array grammars on Cayley grids of finitely
presented groups. By proving that ordered array grammars using #-context-free
array productions can generate the same language class as array grammars using
arbitrary array productions, we then show that such a result not only holds for
ordered array grammars but also for array grammars on Cayley grids of finitely
presented groups equipped with many other control mechanisms, these results
directly following from the general results summarized in Sect. 5 without needing
any further proofs.

Finally, some general even new results for cooperating distributed grammar
systems are elaborated in Sect. 8.

A summary of the results described in this paper and some future research
topics conclude this overview paper.

2 Preliminaries

The set of integers is denoted by Z, the set of positive integers by N, the set
of non-negative integers by N0. An alphabet V is a non-empty set of abstract
symbols. Given V , the free monoid generated by V under the operation of con-
catenation is denoted by V ∗; the elements of V ∗ are called strings, and the empty
string is denoted by λ; V ∗ \ {λ} is denoted by V +. The cardinality of a set M
is denoted by |M |.

Let {a1, ..., an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in x is denoted by |x|ai

; the Parikh vector associated with x with

A General Framework for Sequential Grammars with Control Mechanisms 3

respect to a1, ..., an is
(|x|a1

, ..., |x|an

)
. The Parikh image of a language L over

{a1, ..., an} is the set of all Parikh vectors of strings in L, and we denote it by
Ps (L). For a family of languages FL, the family of Parikh images of languages
in FL is denoted by PsFL.

A finite multiset over the finite alphabet V , V = {a1, ..., an}, is a mapping
f : V −→ N0 and represented by 〈f (a1) , a1〉 ... 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, ..., an is (f (a1) , ..., f (an)). In
the following we will not distinguish between a vector (m1, ...,mn) , its repre-
sentation by a multiset 〈m1, a1〉 ... 〈mn, an〉 or its representation by a string x
having the Parikh vector

(|x|a1
, ..., |x|an

)
= (m1, ...,mn). Fixing the sequence of

symbols a1, ..., an in the alphabet V in advance, the representation of the mul-
tiset 〈m1, a1〉 ... 〈mn, an〉 by the string am1

1 ...amn
n is unique. The set of all finite

multisets over an alphabet V is denoted by V ◦.
For the basic notions and results of formal language theory the reader is

referred to the monographs and handbooks in this area as [7,25,26], and for
the basics of group theory and group presentations to [16]. The definitions and
examples given in the following subsection are the basis for developing the theory
of array grammars defined on Cayley grids of finitely presented groups in Sect. 7
(see [11]).

2.1 Groups and Group Presentations

Let G = (G′, ◦) be a group with group operation ◦. As is well-known, the group
axioms are

– closure: for any a, b ∈ G′, a ◦ b ∈ G′,
– associativity : for any a, b, c ∈ G′, (a ◦ b) ◦ c = a ◦ (b ◦ c),
– identity : there exists a (unique) element e ∈ G′, called the identity, such that

e ◦ a = a ◦ e for all a ∈ G′, and
– invertibility: for any a ∈ G′, there exists a (unique) element a−1, called the

inverse of a, such that a ◦ a−1 = a−1 ◦ a = e.

In the following, we will not distinguish between G′ and G if the group operation
is obvious from the context. A group is called commutative (Abelian), if for any
a, b ∈ G′, a ◦ b = b ◦ a. For any element b ∈ G′, the order of b is the smallest
number n ∈ N such that bn = e provided such an n exists, and then we write
ord (b) = n; if no such n exists, {bn | n ≥ 1} is an infinite subset of G′ and we
write ord (b) = ∞.

For any set B, B−1 is defined as the set of symbols representing the inverses
of the elements of B, i.e., B−1 =

{
b−1 | b ∈ B

}
. We now consider the strings

in
(
B ∪ B−1

)∗ and two strings as different unless their equality follows from
the group axioms, i.e., for any a, b, c ∈ (

B ∪ B−1
)∗, abb−1c = ac; using these

reductions, we obtain a set of irreducible strings from those in
(
B ∪ B−1

)∗,
the set of which we denote by I (B). Then the free group generated by B is
F (B) = (I (B) , ◦) with the elements being the irreducible strings over B ∪ B−1

and the group operation to be interpreted as the usual string concatenation,

4 R. Freund

yet, obviously, if we concatenate two elements from I (B), the resulting string
eventually has to be reduced again. The identity in F (B) is the empty string.

In general, B (not containing the identity) is called a generator of the group
G if every element a from G can be written as a finite product/sum of elements
from B and its inverses from B−1, i.e., a = b1 ◦ · · · ◦bm for b1, . . . , bm ∈ B ∪B−1.
In this paper, we restrict ourselves to finitely presented groups, i.e., having a
finite presentation 〈B | R〉 with B being a finite generator set and moreover,
R being a finite set of relations among the elements of B ∪ B−1. In a similar
way as in the definition of the free group generated by B, we here consider the
strings in (B ∪ B−1)∗ reduced according to the group axioms and the relations
given in R. Informally, the group G = 〈B | R〉 is the largest one generated by B
subject only to the group axioms and the relations in R. Formally, we will restrict
ourselves to relations of the form b1 ◦· · ·◦bm = c−1 with b1, . . . , bm, c ∈ B∪B−1,
which equivalently may be written as b1 ◦ · · · ◦ bm ◦ c = e; hence, instead of such
relations we may specify R by strings over B ∪ B−1 yielding the group identity,
i.e., instead of b1 ◦ · · · ◦ bm = c−1 we take b1 ◦ · · · ◦ bm ◦ c (these strings then are
called relators).

Example 1. The free group F (B) = (I (B) , ◦) can be written as 〈B | ∅〉 (or even
simpler as 〈B〉) because it has no restricting relations.

Example 2. The cyclic group of order n has the presentation 〈{a} | {an}〉 (or,
omitting the set brackets, written as 〈a | an〉); it is also known as Zn or as the
quotient group Z/nZ.

Example 3. Z is a special case of an Abelian group generated by (1) and its
inverse (−1), i.e., Z is the free group generated by (1). Z

d is an Abelian group
generated by the unit vectors (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0).
It is well known that every finitely generated Abelian group is a direct sum of a
torsion group and a free Abelian group where the torsion group may be written
as a direct sum of finitely many groups of the form Z/pk

Z for p being a prime,
and the free Abelian group is a direct sum of finitely many copies of Z.

Remark 4. Given a finite presentation of a group 〈B | R〉, in general it is not
even decidable whether the group presented in that way is finite or infinite.
If we consider (infinite) groups where the word equivalence problem u = v is
decidable, or equivalently, there is a decision procedure telling us whether, given
two strings u and v, uv−1 = e, then we call 〈B | R〉 a recursive or computable
finite group presentation.

2.2 Cayley Graphs

Let G = 〈B | R〉 be a finitely presented group with G′ denoting the set of group
elements. Then we define the corresponding Cayley graph (Cayley grid) of G
with respect to the generating set B as the directed graph C (G,B) = (G′, E)
with the set of nodes G′ and the set E of directed edges labeled by elements of
B by E = {(x, a, y) | x, y ∈ G′, a ∈ B, xa = y}, i.e., from an element x an edge
labeled by the generator a leads to y if and only if xa = y.

A General Framework for Sequential Grammars with Control Mechanisms 5

Example 5. The hexagonal grid is the Cayley graph assigned to the presentation
of the group

〈
a, b, c | a2, b2, c2, (abc)2

〉
. As all three generators a, b, c are self-

inverse and the direction of these elements indicates which generator is meant,

we obtain a simpler picture for the hexagonal grid by replacing a ↗↙ a,
b

�
b

,

and c ↘↖ c by �, −, and �, respectively. Both representations are depicted in
the following:

c ↘↖ c a ↗↙ a � �

a
b

�
b

ab a − ab

c ↘↖ c a ↗↙ a c ↘↖ c � � �

b
b

�
b

e abc b − e abc

a ↙↗ a c ↘↖ c a ↙↗ a � � �

c
b

�
b

cb c − cb

a ↙↗ a c ↘↖ � �

2.3 Register Machines

As a computationally complete model able to generate/accept all sets in PsRE =
Ps (L (ARB)) we use register machines/deterministic register machines:

A register machine is a construct M = (n,LM , RM , p0, h) where n, n ≥ 1, is
the number of registers, LM is the set of instruction labels, p0 is the start label,
h is the halting label (only used for the HALT instruction), and RM is a set of
(labeled) instructions being of one of the following forms:

– p : (ADD (r) , q, s) increments the value in register r and continues with the
instruction labeled by q or s,

– p : (SUB (r) , q, s) decrements the value in register r and continues the com-
putation with the instruction labeled by q if the register was non-empty,
otherwise it continues with the instruction labeled by s;

– h : HALT halts the machine.

M is called deterministic if in all ADD-instructions p : (ADD (r) , q, s) q = s;
in this case we write p : (ADD (r) , q). Deterministic register machines can accept
all recursively enumerable sets of vectors of natural numbers with k components
using exactly k + 2 registers, for instance, see [18].

3 A General Model for Sequential Grammars
and Regulated Rewriting Based on the Applicability
of Rules

In this section we recall the notions for the general model of sequential grammars
equipped with specific control mechanisms based on the applicability of rules as
elaborated in [13] and in [3].

We first recall the main definitions of the general model for sequential gram-
mars as established in [13], grammars generating a set of terminal objects by

6 R. Freund

derivations where in each derivation step exactly one rule is applied to exactly
one object.

A (sequential) grammar Gs is a construct (O,OT , w, P,=⇒Gs
) where

– O is a set of objects;
– OT ⊆ O is a set of terminal objects;
– w ∈ O is the axiom (start object);
– P is a finite set of rules;
– =⇒Gs

⊆ O × O is the derivation relation of Gs.
Each of the rules p ∈ P induces a relation =⇒p⊆ O × O with respect to
=⇒Gs

. A rule p ∈ P is called applicable to an object x ∈ O if and only if
there exists at least one object y ∈ O such that (x, y) ∈ =⇒p; we also
write x =⇒p y. The derivation relation =⇒Gs

is the union of all =⇒p, i.e.,
=⇒Gs

= ∪p∈P =⇒p. The reflexive and transitive closure of =⇒Gs
is denoted

by ∗=⇒Gs
.

Specific conditions on the rules in P define a special type X of grammars
which then will be called grammars of type X.

The language generated by G is the set of all terminal objects that can be
derived from the axiom, i.e.,

L (Gs) =
{

v ∈ OT | w
∗=⇒Gs

v
}

.

The family of languages generated by grammars of type X is denoted by L (X).
Let Gs = (O,OT , w, P,=⇒Gs

) be a (sequential) grammar of type X. If for
every Gs of type X we have OT = O, then X is called a pure type, otherwise it
is called extended ; X is called strictly extended if for any grammar Gs of type
X, w /∈ OT and for all x ∈ OT , no rule from P can be applied to x.

In many cases, the type X of the grammar allows for one or even both of the
following features:

A type X of grammars is called a type with unit rules if for every gram-
mar Gs = (O,OT , w, P,=⇒G) of type X there exists a grammar G′

s =(
O,OT , w, P ∪ P (+),=⇒G′

s

)
of type X such that =⇒Gs

⊆ =⇒G′
s

and

– P (+) =
{
p(+) | p ∈ P

}
,

– for all x ∈ O, p(+) is applicable to x if and only if p is applicable to x, and
– for all x ∈ O, if p(+) is applicable to x, the application of p(+) to x yields x

back again.

A type X of grammars is called a type with trap rules if for every gram-
mar Gs = (O,OT , w, P,=⇒G) of type X there exists a grammar G′

s =(
O,OT , w, P ∪ P (−),=⇒G′

s

)
of type X such that =⇒Gs

⊆ =⇒G′
s

and

– P (−) =
{
p(−) | p ∈ P

}
, P (−) ∩ P = ∅;

– for all x ∈ O, p(−) is applicable to x if and only if p is applicable to x, and
– for all x ∈ O, if p(−) is applicable to x, the application of p(−) to x yields an

object y from which no terminal object can be derived anymore.

A General Framework for Sequential Grammars with Control Mechanisms 7

3.1 Graph-Controlled and Programmed Grammars

A graph-controlled grammar (with applicability checking) of type X is a con-
struct

GGC = (Gs, g,Hi,Hf ,=⇒GC)

where Gs = (O,OT , w, P,=⇒G) is a grammar of type X; g = (H,E,K) is a
labeled graph where H is the set of node labels identifying the nodes of the
graph in a one-to-one manner, E ⊆ H × {Y,N} × H is the set of edges labeled
by Y or N , K : H → 2P is a function assigning a subset of P to each node of
g; Hi ⊆ H is the set of initial labels, and Hf ⊆ H is the set of final labels. The
derivation relation =⇒GC is defined based on =⇒Gs

and the control graph g as
follows: For any i, j ∈ H and any u, v ∈ O, (u, i) =⇒GC (v, j) if and only if

– u =⇒p v by some rule p ∈ K (i) and (i, Y, j) ∈ E (success case), or
– u = v, no p ∈ K (i) is applicable to u, and (i,N, j) ∈ E (failure case).

The language generated by GGC is defined by

L(GGC) =
{
v ∈ OT | (w, i) =⇒∗

GGC
(v, j) , i ∈ Hi, j ∈ Hf

}
.

If Hi = Hf = H, then GGC is called a programmed grammar. The families of
languages generated by graph-controlled and programmed grammars of type X
are denoted by L (X-GCac) and L (X-Pac), respectively. If the set E contains
no edges of the form (i,N, j), then the graph-controlled grammar is said to
be without applicability checking ; the corresponding families of languages are
denoted by L (X-GC) and L (X-P), respectively.

As a special variant of graph-controlled grammars we consider those where
all labels are final; the corresponding family of languages generated by graph-
controlled grammars of type X is abbreviated by L (

X-GCallfinal
ac

)
. By defini-

tion, programmed grammars are just a subvariant where in addition all labels
are also initial.

The notions with/without applicability checking in the original definition for
string grammars were introduced as with/without appearance checking because
the appearance of the non-terminal symbol on the left-hand side of a context-
free rule was checked, which coincides with checking for the applicability of this
rule in our general model; in both cases – applicability checking and appearance
checking – we can use the abbreviation ac.

3.2 Matrix Grammars

A matrix grammar (with applicability checking) of type X is a construct GM =
(Gs,M, F,=⇒GM

) where Gs = (O,OT , w, P,=⇒G) is a grammar of type X, M
is a finite set of sequences of the form (p1, . . . , pn), n ≥ 1, of rules in P , and
F ⊆ P . For w, z ∈ O we write w =⇒GM

z if there are a matrix (p1, . . . , pn) in
M and objects wi ∈ O, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for all
1 ≤ i ≤ n, either

8 R. Freund

– wi =⇒pi
wi+1 or

– wi = wi+1, pi is not applicable to wi, and pi ∈ F .

L(GM) =
{
v ∈ OT | w =⇒∗

GM
v
}

is the language generated by GM . The fam-
ily of languages generated by matrix grammars of type X is denoted by
L (X-MATac). If the set F is empty, then the grammar is said to be without
applicability checking (without ac for short); the corresponding family of lan-
guages is denoted by L (X-MAT). We mention that in this paper we choose the
definition where the sequential application of the rules in the final matrix may
stop at any moment.

3.3 Random-Context Grammars

A random-context grammar GRC of type X is a construct (Gs, P
′,=⇒GRC

)
where

– Gs = (O,OT , w, P,=⇒G) is a grammar of type X;
– P ′ is a set of rules of the form (p,R,Q) where p ∈ P , R ∪ Q ⊆ P ;
– =⇒GRC

is the derivation relation assigned to GRC such that for any x, y ∈ O,
x =⇒GRC

y if and only if for some rule (p,R,Q) ∈ P ′, x =⇒p y and, moreover,
all rules from R are applicable to x as well as no rule from Q is applicable to x.

A random-context grammar GRC = (Gs, P
′,=⇒GRC

) of type X is called a
grammar with permitting contexts of type X if for all rules (p,R,Q) in P ′ we
have Q = ∅, i.e., we only check for the applicability of the rules in R.

A random-context grammar GRC = (Gs, P
′,=⇒GRC

) of type X is called a
grammar with forbidden contexts of type X if for all rules (p,R,Q) in P ′ we have
R = ∅, i.e., we only check for the non-applicability of the rules in Q. We write
X-fC1 if for every p ∈ P there is only one rule of the form (p, ∅, Q) in P ′.

L(GRC) =
{
v ∈ OT | w =⇒∗

GRC
v
}

is the language generated by GRC . The
families of languages generated by random context grammars, grammars with
permitting contexts, and grammars with forbidden contexts of type X are
denoted by L (X-RC), L (X-pC), and L (X-fC) or L (X-fC1), respectively.

3.4 Grammars with Priority Relations on the Rules

A grammar with a priority relation on the rules GPri of type X is a construct
(Gs,≺,=⇒GPri

) where

– Gs = (O,OT , w, P,=⇒G) is a grammar of type X;
– ≺ is a priority relation on the rules in P ;
– =⇒GPri

is the derivation relation assigned to GPri such that for any x, y ∈ O,
x =⇒GPri

y if and only if for some rule q ∈ P x =⇒q y and, moreover, no
rule p from P with q ≺ p is applicable to x.

L(GPri) =
{
v ∈ OT | w =⇒∗

GPri
v
}

is the language generated by GPri. The
family of languages generated by grammars with priority relations on the rules
of type X is denoted by L (X-Pri).

A General Framework for Sequential Grammars with Control Mechanisms 9

3.5 Ordered Grammars

An ordered grammar GO of type X is a grammar (Gs,≺,=⇒GO
) with the pri-

ority relation ≺ on the rules which is a partial order, i.e., ≺ fulfills the condition
that for any p, q, r ∈ P , p ≺ q and q ≺ r implies p ≺ q.

The family of languages generated by ordered grammars of type X is denoted
by L (X-O).

3.6 Grammars with Activation and Blocking of Rules

We now recall the definition of sequential grammars with activation and blocking
of rules in a similar way as introduced in [2,3,11].

A grammar with activation and blocking of rules (an AB-grammar) of type
X is a construct

GAB = (Gs, L, fL, A,B,L0,=⇒GAB
)

where Gs = (O,OT , w, P,=⇒G) is a grammar of type X, L is a finite set of labels
with each label having assigned one rule from P by the function fL, A,B are
finite subsets of L × L × N, and L0 is a finite set of tuples of the form

(
q,Q, Q̄

)
,

q ∈ L, with the elements of Q, Q̄ being of the form (l, t), where l ∈ L and t ∈ N,
t > 1.

A derivation in GAB starts with one element
(
q,Q, Q̄

)
from L0 which means

that the rule labeled by q has to be applied to the initial object w in the first step
and for the following derivation steps the conditions given by Q as activations
of rules and Q̄ as blockings of rules have to be taken into account in addition
to the activations and blockings coming along with the application of the rule
labeled by q. The role of L0 is to get a derivation started by activating some rule
for the first step(s) although no rule has been applied so far, but probably also
providing additional activations and blockings for further derivation steps.

A configuration of GAB in general can be described by the object derived so
far and the activations Q and blockings Q̄ for the next steps. In that sense, the
starting tuple

(
q,Q, Q̄

)
can be interpreted as

({(q, 1)} ∪ Q, Q̄
)
, and we may also

simply write
(
Q′, Q̄

)
with Q′ = {(q, 1)} ∪ Q. We mostly will assume Q and Q̄ to

be non-conflicting, i.e., Q∩Q̄ = ∅; otherwise, we interpret
(
Q′, Q̄

)
as

(
Q′ \ Q̄, Q̄

)
.

Given a configuration
(
u,Q, Q̄

)
, in one step we can derive

(
v,R, R̄

)
– we also

write
(
u,Q, Q̄

)
=⇒GAB

(
v,R, R̄

)
– if and only if

– u =⇒G v using the rule r such that (q, 1) ∈ Q and (q, r) ∈ fL, i.e., we apply
the rule labeled by q activated for this next derivation step to u; the new sets
of activations and blockings are defined by

R̄ =
{
(x, i) | (x, i + 1) ∈ Q̄, i > 0

} ∪ {(x, i) | (q, x, i) ∈ B} ,
R = ({(x, i) | (x, i + 1) ∈ Q, i > 0} ∪ {(x, i) | (q, x, i) ∈ A})

\ {
(x, i) | (x, i) ∈ R̄

}

(observe that R and R̄ are made non-conflicting by eliminating rule labels
which are activated and blocked at the same time);
or

10 R. Freund

– no rule r is activated to be applied in the next derivation step; in this case
we take v = u and continue with

(
v,R, R̄

)
constructed as before provided R

is not empty, i.e., there are rules activated in some further derivation steps;
otherwise the derivation stops with yielding object u.

The language generated by GAB is defined by

L(GAB) =
{
v ∈ OT | (

w,Q, Q̄
)

=⇒∗
GAB

(
v,R, R̄

)
for some

(
Q, Q̄

) ∈ L0

}
.

The family of languages generated by AB-grammars of type X is denoted by
L (X-AB). If the set B of blocking relations is empty, then the grammar is said
to be a grammar with activation of rules (an A-grammar for short) of type X;
the corresponding family of languages is denoted by L (X-A).

4 General Results

We now recall the main results and proofs already established in [13] as well
as recently exhibited in [11] and [3] for the control mechanisms defined in the
preceding section.

Theorem 6. For any arbitrary type X,

L (X-MATac) ⊆ L (
X-GCallfinal

ac

) ⊆ L (X-GCac) and

L (X-MAT) ⊆ L (
X-GCallfinal

) ⊆ L (X-GC) .

Proof. Let GM = (Gs,M, F,=⇒GM
) be a matrix grammar where

– Gs = (O,OT , w, P,=⇒Gs
) is a grammar of type X and

– M = {(pi,1, . . . , pi,ni
) | 1 ≤ i ≤ n} with pi,j ∈ P , 1 ≤ j ≤ ni, 1 ≤ i ≤ n.

Then we construct the graph-controlled grammar GGC = (Gs, g,Hi,Hf ,=⇒GC)
with g = (H,E,K), H = {(i, j) | 1 ≤ j ≤ ni, 1 ≤ i ≤ n}, K ((i, j)) = {pi,j},
1 ≤ j ≤ ni, 1 ≤ i ≤ n,

E = {((i, j) , Y, (i, j + 1)) | 1 ≤ j < ni, 1 ≤ i ≤ n}
∪ {((i, j) , N, (i, j + 1)) | 1 ≤ j < ni, 1 ≤ i ≤ n, pi,j ∈ F}
∪ {((i, ni) , Y, (j, 1)) | 1 ≤ j ≤ n, 1 ≤ i ≤ n}
∪ {((i, ni) , N, (j, 1)) | 1 ≤ j ≤ n, 1 ≤ i ≤ n, pi,j ∈ F}

and Hi = {(i, 1) | 1 ≤ i ≤ n}. As we have assumed that the sequential applica-
tion of the rules of the chosen matrix may stop at any moment, we have to take
Hf = H. By this construction it is guaranteed that GGC simulates a derivation
in GM correctly by choosing a matrix to be simulated in a non-deterministic
way and then applying the rules from this matrix in the desired sequence; the
application of a rule pi,j may be skipped if and only if pi,j ∈ F . GGC is without
applicability checking if and only if GM is without applicability checking, which
observation completes the proof. ��

A General Framework for Sequential Grammars with Control Mechanisms 11

By definition, we have:

Lemma 7. L (X-O) ⊆ L (X-Pri).

The following theorem shows that forbidden contexts with only one set of
forbidden rules for each rule can simulate any priority relation on the rules:

Theorem 8. For any arbitrary type X, L (X-Pri) ⊆ L (X-fC1).

Proof. Let Gs = (O,OT , w, P,=⇒G) be a grammar of type X. Consider the
grammar with a priority relation on the rules GPri = (Gs,≺,=⇒GPri

) of
type X and the corresponding grammar with forbidden contexts GfC1 =(
Gs, PfC1 ,=⇒GfC1

)
of type X where

PfC1 = {(p, ∅, Q (p)) | p ∈ P} with Q (p) = {q | q ∈ P, p ≺ q} .

As a rule p ∈ P can be applied in GfC1 if and only if no rule from Q (p) is
applicable which is the same condition as for the applicability of p in GPri, we
infer L (GfC1) = L (GPri). ��

Yet also the reverse inclusion holds, even for partial order relations, provided
the type X allows for trap rules:

Theorem 9. For any type X with trap rules, L (X-fC1) ⊆ L (X-O).

Proof. Let Gs = (O,OT , w, P,=⇒G) be a grammar of type X and consider
the grammar with forbidden contexts GfC1 =

(
Gs, PfC1 ,=⇒GfC1

)
of type X

with PfC1 = {(p, ∅, Q (p)) | p ∈ P}. We now extend the underlying grammar
Gs by the trap rules p− for all rules p in P , thus obtaining the grammar G′

s =(
O,OT , w, P ∪ P (−),=⇒G′

s

)
where, according to the definition of grammars with

trap rules,

– P (−) =
{
p(−) | p ∈ P

}
, P (−) ∩ P = ∅,

– for all x ∈ O, p(−) is applicable to x if and only if p is applicable to x, and
– for all x ∈ O, if p(−) is applicable to x, the application of p(−) to x yields an

object y from which no terminal object can be derived anymore.

As X is a type with trap rules, G′
s again is of type X. We now define the ordered

grammar GO = (G′
s,≺,=⇒GO

) which by definition again is of type X, with the
partial order ≺ on the rules in P ∪ P (−) as follows:

for any p ∈ P, p ≺ q− for all q ∈ Q (p) .

This guarantees that L (GfC1) = L (GO), as a rule p ∈ P can be applied in GO

if and only if no rule from Q (p) is applicable which is the same condition as for
the applicability of p in GfC1 . On the other hand, the application of a rule in
P (−) can never lead to a terminal result. Moreover, it is obvious to see that ≺
is a partial order, because ≺ ⊆ P × P (−) and, by definition, P (−) ∩ P = ∅. ��

As an immediate consequence of Lemma 7 and Theorems 8 and 9 we infer:

12 R. Freund

Corollary 10. For any type X with trap rules,

L (X-O) = L (X-Pri) = L (X-fC1) ⊆ L (X-fC) .

Matrix grammars (with applicability checking) can simulate random context
grammars for any arbitrary type X with unit rules and trap rules:

Theorem 11. For any arbitrary type X with unit rules and trap rules,

L (X-RC) ⊆ L (X-MATac) .

Proof. Consider a random-context grammar GRC = (Gs, PRC ,=⇒GRC
) where

Gs = (O,OT , w, P,=⇒G) is a grammar of a type X with unit rules and
trap rules; then we define the matrix grammar with appearance checking
GM = (G′

s,M, F,=⇒M) of type X as follows: for each rule (p,R,Q) ∈ PRC ,
R = {ri | 1 ≤ i ≤ m}, Q = {qj | 1 ≤ j ≤ n}, m,n ≥ 0, we take the matrix(
r
(+)
1 , . . . , r

(+)
m , q

(−)
1 , . . . , q

(−)
n , p

)
into M .

In that way we obtain G′
s =

(
O,OT , w, P ′,=⇒G′

s

)
where

P ′ = P ∪
{

r(+), q(−) | r ∈ R, q ∈ Q for some (p,R,Q) ∈ PRC

}

and F =
{
q(−) | q ∈ Q for some (p,R,Q) ∈ PRC

}
. As X is a type with unit

rules and trap rules, all the elements of GM are well defined. Obviously, for all
x, y ∈ O we have x =⇒(p,R,Q) y if and only if x =⇒(

r
(+)
i ,...,r

(+)
m ,q

(−)
1 ,...,q

(−)
n ,p

) y

without trapping y, which implies L (GM) = L (GRC).
As a technical detail we mention that when the application of rules in

the sequence of the matrix
(
r
(+)
i , . . . , r

(+)
m , q

(−)
1 , . . . , q

(−)
n , p

)
stops before hav-

ing reached the end with applying p, either the underlying object has not yet
changed as long as only the unit rules have been applied or else has already been
trapped by the application of one of the trap rules, hence, no additional terminal
results can arise from such situations. ��

Omitting the forbidden rules and applicability checking, respectively, from
the (proof of the) preceding theorem we immediately obtain the following result:

Corollary 12. For any arbitrary type X with unit rules,

L (X-pC) ⊆ L (X-MAT) .

Already in [13] graph-controlled grammars have been shown to be the most
powerful control mechanism, and they can also simulate AB-grammars with the
underlying grammar being of any arbitrary type X, see [3].

Theorem 13. For any type X, L (X-AB) ⊆ L (X-GCac) .

A General Framework for Sequential Grammars with Control Mechanisms 13

Proof. Let GAB = (G,L, fL, A,B,L0,=⇒GA
) be an AB-grammar with the

underlying grammar G = (O,OT , w, P,=⇒G) being of any type X. Then we
construct a graph-controlled grammar GGC = (G, g,Hi,Hf ,=⇒GC) with the
same underlying grammar G. The simulation power is captured by the struc-
ture of the control graph g = (H,E,K). The node labels in H, identifying the
nodes of the graph in a one-to-one manner, are obtained from GAB as all pos-
sible triples of the forms

(
q,Q, Q̄

)
or

(
q̄, Q, Q̄

)
with q ∈ L and the elements of

Q, Q̄ being of the form (r, t), r ∈ L and t ∈ N such that t does not exceed the
maximum time occurring in the relations in A and B, hence, this in total is a
bounded number. We also need a special node labeled ∅, where a computation
in GGC ends in any case when this node is reached. All nodes can be chosen to
be final, i.e., Hf = H. Hi = L0 is the set of initial labels, i.e., we start with one
of the initial conditions as in the AB-grammar.

The idea behind the node
(
q,Q, Q̄

)
is to describe the situation of a configu-

ration derived in the AB-grammar where q is the label of the rule to be applied
and Q, Q̄ describe the activated and blocked rules for the further derivation steps
in the AB-grammar. Hence, as already in the definition of an AB-grammar, we
therefore assume Q ∩ Q̄ = ∅.

Now let g(l) denote the rule r assigned to label l, i.e., (l, r) ∈ fL. Then, the
set of rules assigned to

(
q,Q, Q̄

)
is taken to be {g(q)}. The set of rules assigned

to ∅ is taken to be ∅.
As it will become clear later in the proof why, the nodes

(
q̄, Q, Q̄

)
are assigned

the set of rules {g(l) | (l, 1) ∈ Q, l �= q}; we only take those nodes where this set
is not empty.

When being in node
(
q,Q, Q̄

)
, we have to distinguish between two

possibilities:

– If g(q) is applicable to the object derived so far, a Y-edge has to go to every
node which describes a situation corresponding to what would have been the
next configuration in the AB-grammar. We then compute

R̄ =
{
(x, i) | (x, i + 1) ∈ Q̄, i > 0

} ∪ {(x, i) | (q, x, i) ∈ B} ,
R = ({(x, i) | (x, i + 1) ∈ Q, i > 0} ∪ {(x, i) | (q, x, i) ∈ A})

\ {
(x, i) | (x, i) ∈ R̄

}

(observe that R and R̄ are made non-conflicting) as well as – if it exists –
t0 := min{t | (x, t) ∈ R}, i.e., the next time step when the derivation in the
AB-grammar could continue. Hence, we take a Y-edge to every node

(
p, P, P̄

)

where p ∈ {x | (x, t0) ∈ R} and

P̄ =
{
(x, i) | (x, i + t0 − 1) ∈ R̄, i > 0

}
,

P = {(x, i) | (x, i + t0 − 1) ∈ R} .

If t0 := min{t | (x, t) ∈ R} does not exist, this means that R is empty and
we have to make a Y-edge to the node ∅.

– If g(q) is not applicable to the object derived so far, we first have to check
that none of the other rules activated at this step could have been applied,

14 R. Freund

i.e., we check for the applicability of the rules in the set of rules

Ū := {g(l) | (l, 1) ∈ Q, l �= q}
by going to the node

(
q̄, Q, Q̄

)
with a N-edge; from there no Y-edge leaves, as

this would indicate the unwanted case of the applicability of one of the rules
in Ū , but with a N-edge we continue the computation in any node

(
p, P, P̄

)

with p, P , P̄ computed as above in the first case. We observe that in case R̄
is empty, we can omit the path through the node

(
q̄, Q, Q̄

)
and directly go

to the nodes
(
p, P, P̄

)
which are obtained as follows: we first check whether

t0 := min{t | (x, t) ∈ Q, t > 1} exists or not; if not, then the computation
has to end with a N-edge to node ∅. Otherwise, a N-edge goes to every node(
p, P, P̄

)
with p ∈ {x | (x, t0) ∈ Q} and

P̄ =
{
(x, i) | (x, i + t0 − 1) ∈ Q̄, i > 0

}
,

P = {(x, i) | (x, i + t0 − 1) ∈ Q} .

where the simulation may continue.

In this way, every computation in the AB-grammar can be simulated by the
graph-controlled grammar with taking a correct path through the control graph
and finally ending in node ∅; due to this fact, we could also choose the node ∅
to be the only final node, i.e., Hf = {∅}. On the other hand, if we have made
a wrong choice and wanted to apply a rule which is not applicable, although
another rule activated at the same moment would have been applicable, we
get stuck, but the derivation simulated in this way still is a valid one in the
AB-grammar, although in most standard types X, which usually are strictly
extended ones, such a derivation does not yield a terminal object. Having taken
Hf = {∅}, such paths would not even lead to successful computations in GGC .

In any case, we conclude that the graph-controlled grammar GGC generates
the same language as the AB-grammar GAB , which observation concludes the
proof. ��

We remark that in the construction of the graph-controlled grammar given
in the preceding proof, all labels could be chosen to be final.

In the case of graph-controlled grammars with all labels being final, for any
strictly extended type X with trap rules we can show that the power of rule
activation is already sufficient and that the additional power of blocking is not
needed.

Theorem 14. For any strictly extended type X with trap rules,

L (
X-GCallfinal

ac

) ⊆ L (X-A) .

Proof. Let GGC = (Gs, g,Hi,Hf ,=⇒GC) be a graph-controlled grammar where
Gs = (O,OT , w, P,=⇒G) is a strictly extended grammar of type X with trap
rules; g = (H,E,K), E ⊆ H × {Y,N} × H is the set of edges labeled by Y or
N , K : H → 2P is a function assigning a subset of P to each node of g; Hi ⊆ H

A General Framework for Sequential Grammars with Control Mechanisms 15

is the set of initial labels, and Hf is the set of final labels coinciding with the
whole set H, i.e., Hf = H.

Then we construct an equivalent A-grammar GA = (G′
s, L, fL, A, L0,=⇒GA

)
as follows: the underlying grammar G′

s is obtained from Gs by adding all trap
rules, i.e., G′

s =
(
O,OT , w, P ′,=⇒G′

s

)
with P ′ = P ∪P (−), P (−) = {p− | p ∈ P},

P (−) ∩P = ∅. G′
s again is strictly extended and w /∈ OT , hence, also in GA rules

have to be applied before terminal objects are obtained. For any node in g
labeled by l with the assigned set of rules Pl we assume it to be described by
Pl = {pl,i | 1 ≤ i ≤ nl}. For all q ∈ P we take the labels lq− into L as well as
(lq− , q−) into fL.

We now sketch how the transitions from a node in g labeled by l with the
assigned set of rules Pl can be simulated. The assumption that all nodes are
final is crucial for this construction. Arriving in some node, one of the following
situations is given:

1. the underlying object is terminal and therefore no rule from P is applicable
any more, as X is a strictly extended type; hence, we may stop in this node
and extract the underlying object as a terminal result of the derivation, as
all nodes are final;

2. the underlying object is not terminal, but no rule from
⋃

i∈H Pi is applica-
ble any more; hence, even when continuing the derivation following a path
through the control graph only using N-edges, the derivation cannot yield a
terminal object any more; therefore, in such a case, we need not continue the
derivation;

3. the underlying object is not terminal, no rule pl,i in Pl, 1 ≤ i ≤ nl, is appli-
cable, but there is still some node k reachable from node l following a path
through the control graph only using N-edges that contains an applicable
rule;

4. the underlying object is not terminal, but there is some rule pl,i in Pl, 1 ≤
i ≤ nl, which is applicable.

For the simulation of these situations by the A-grammar, we therefore can
restrict ourselves to the cases where when applying a rule we follow a path
starting with a Y-edge and continuing with only N-edges until we reach a node
containing a probably applicable rule; observe that such a path can only consist
of the Y-edge, too.

In order to simulate a rule pl,i in Pl, 1 ≤ i ≤ nl, we take all activations into
A which allow us to simulate the application of pl,i and to guess with which pk,j

probably to continue afterwards. Hence, we consider all paths without loops
h0 = l − h1 − · · · − hn = k in the control graph g which start with a Y-
edge and continue with only N-edges. For any such path we introduce labels
((l, i), h1, . . . , (k, j)) in L and ((l, i), h1, . . . , (k, j)) : pl,i in fL; the set of all labels
describing such paths from node l to any node k is denoted by Ll,i. Moreover,
we use the following activations in A:

– ((l, i), h1, . . . , (k, j)), {lq− | q ∈ ⋃
1≤i≤n−1 Phi

}, 1) is used to check in the next
step that no rule along the path from node l to node k is applicable; observe

16 R. Freund

that for n = 1 the set
⋃

1≤i≤n−1 Phi
is empty and the whole activation can

be omitted;
– in the second next step only the designated rule pk,j can be applied, i.e., we

take ((l, i), h1, . . . , (k, j)), Lk,j , 2) into A; as with every label in Lk,j the rule
pk,j is assigned, the intended continuation is prepared.

How can a derivation in the A-grammar be started? As w /∈ OT , at least one
rule must be applied to obtain a terminal object; hence, we check all possibilities
that a rule in an initial node in Hi or along a path in g following only N-edges
from such an initial node can be applied (observe that there are only finitely
many paths without loops of that kind through the control graph); for each such
rule pl,i in node l we take all labels from Ll,i into L0. As by construction pl,i is
applicable it is guaranteed that any continuation of the computation will follow
a Y-edge in g and thus the simulation in GA will follow the simulation of an
applicable rule as described above.

In total, the construction given above guarantees that the simulation of a
computation in GGC by a computation in GA starts correctly and continues
until no rule can be applied any more. As we have assumed all nodes in g to
be final and X to be a strictly extended type, i.e., no rules can be applied to
a terminal object any more, the only condition to get a result is to obtain a
terminal object at the end of a computation. This observation completes our
proof. ��

As programmed grammars are just a special case of graph-controlled gram-
mars with all labels being final, we immediately infer the following result:

Corollary 15. For any strictly extended type X with trap rules,

L (X-Pac) ⊆ L (X-A) .

Combining (the proofs of) Theorems 13 and 14, we infer the following
equality:

Corollary 16. For any strictly extended type X with trap rules,

L (
X-GCallfinal

ac

)
= L (X-A) .

5 Summary of General Results

The main results elaborated for the relations between the specific regulating
mechanisms in [13] and in [3] are depicted in the following diagram.

Theorem 17. The inclusions indicated by vectors as depicted in Fig. 1 hold.
Most of the relations indicated by vectors even hold for arbitrary types X; addi-
tionally needed features of being a strictly extended type or being a type with unit
and/or trap rules are indicated by se, u, and t, respectively, aside the vector:

A General Framework for Sequential Grammars with Control Mechanisms 17

L(X-GCac)

L(X-AB)

L(X-A)

se, t
L X-GCallfinal

ac

)

L(X-Pac) L(X-MATac)

L(X-GCallfinal)

L(X-P)
L(X-MAT)

L(X-RC)

u, t

L(X-fC)

L(X-fC1)

L(X-Pri)

L(X-O)

t

L(X-pC)

u

L(X)

Fig. 1. Hierarchy of control mechanisms for grammars of type X.

6 Results for Strings and Multisets

As specific types of objects for the general model of a sequential grammar as
introduced in Sect. 3 we now consider strings and multisets. We refer to [13] where
some examples for string and multiset grammars of specific types illustrating the
expressive power of this general framework are given.

18 R. Freund

6.1 String Grammars

In the general model, GS =
(
(N ∪ T)∗

, T ∗, w, P,=⇒P

)
is called a string gram-

mar ; N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N ∩ T = ∅, w ∈ (N ∪ T)+, P is a finite set of rules of the form
u → v with u ∈ V + and v ∈ V ∗, where V := N ∪ T ; the derivation relation for
u → v ∈ P is defined by xuy =⇒u→v xvy for all x, y ∈ V ∗, thus yielding the
well-known derivation relation =⇒GS

for the string grammar GS . We mention
that the common notation for a string grammar is GS = (N,T,w, P), and usu-
ally the axiom w is supposed to be a non-terminal symbol, i.e., w ∈ V \T , which
then is called the start symbol.

As special types of string grammars we consider string grammars with arbi-
trary rules and context-free rules of the form A → v with A ∈ N and v ∈ V ∗.
The corresponding types of grammars are denoted by ARB and CF , thus yield-
ing the families of languages L (ARB), i.e., the family of recursively enumerable
languages (also denoted by RE), as well as L (CF), i.e., the family of context-
free languages, respectively. Observe that the types ARB and CF are types with
unit rules and trap rules (for p = w → v ∈ P , we can take p(+) = w → w and
p(−) = w → F where F /∈ T is a new symbol – the trap symbol).

6.2 Multiset Grammars

Gm =
(
(N ∪ T)◦

, T ◦, w, P,=⇒Gm

)
is called a multiset grammar ; N is the alpha-

bet of non-terminal symbols, T is the alphabet of terminal symbols, N ∩ T = ∅,
w is a non-empty multiset over V , V := N ∪ T , and P is a finite set of multiset
rules yielding a derivation relation =⇒Gm

on the multisets over V ; the applica-
tion of the rule u → v to a multiset x has the effect of replacing the multiset u
contained in x by the multiset v. For the multiset grammar Gm, the common
notation is (N,T,w, P,=⇒Gm

).
As special types of multiset grammars we consider multiset grammars with

arbitrary rules as well as context-free (non-cooperative) rules of the form A → v
with A ∈ N and v ∈ V ◦; the corresponding types X of multiset grammars are
denoted by mARB and mCF , thus yielding the families of multiset languages
L (X). Observe that mARB and mCF are types with unit rules and trap rules
(for p = w → v ∈ P , we can take p(+) = w → w and p(−) = w → F where F is
a new symbol – the trap symbol). Even with arbitrary multiset rules, it is not
possible to get Ps (L (ARB)) [17]:

L (mCF) = Ps (L (CF)) � L (mARB) � Ps (L (ARB)) .

6.3 Results for String and Multiset Grammars

It is well-known, for example see [7], that

L (CF -RC) = L (CF -Pac) = L (ARB) = RE.

A General Framework for Sequential Grammars with Control Mechanisms 19

Based on Theorem 17, we immediately infer the following results:

Theorem 18. For any Y ∈ {
RC,MATac, GCallfinal

ac , GCac, Pac, A,AB
}
,

L (CF -Y) = L (ARB) = RE.

As in the case of multisets the structural information contained in the
sequence of symbols cannot be used, arbitrary multiset rules are not sufficient
for obtaining all sets in Ps (L (ARB)). Yet we can easily show the following:

Theorem 19. For any Y ∈ {
O,Pri, fC1, fC,RC,MATac, GCallfinal

ac , GCac,

A,AB
}
,

PsRE = Ps (L (ARB)) = L (mARB-Y) .

Proof. PsRE = Ps (L (ARB)) = L (mARB-O) was shown in [13], hence, the
statement immediately follows from Theorem 17. ��

But also non-cooperative multiset rules are sufficient with many control
mechanisms:

Theorem 20. For any Y ∈ {
MATac, GCallfinal

ac , GCac, A,AB
}
,

PsRE = Ps (L (ARB)) = L (mCF -Y) .

Proof. PsRE = Ps (L (ARB)) = L (mCF -MATac) was shown in [17], hence,
the statement immediately follows from Theorem 17. ��

6.4 Computational Completeness for Context-Free AB-Grammars
with Two Non-terminal Symbols

In this subsection, we recall complexity results for context-free string and mul-
tiset grammars as shown in [3], showing that computational completeness can
already be obtained with two non-terminal symbols, which result is optimal with
respect to the number of non-terminal symbols.

Theorem 21. Any recursively enumerable set of strings can be generated by a
context-free AB-grammar using only two non-terminal symbols.

Proof (Sketch). The main technical details of how to use only two non-terminal
symbols A and B for generating a given recursively enumerable language follow
the construction given in [13] for graph-controlled grammars. The most impor-
tant to be shown here is how to simulate the ADD- and SUB-instructions of
a deterministic register machine with the contents of the two working registers
being given by the number of symbols A and B; only at the end, both numbers
are zero, whereas in between, during the whole computation, at least one symbol
A or B is present. The initial string is A, and one A is also the last symbol to
be erased at the end in order to obtain a terminal string.

In the following, we use X to specify one of the two non-terminal symbols
A and B, and Y then stands for the other one. For any label p of the register
machine we use two labels p and p′. To simplify notations, we write (p, q, t)U

instead of (p, q, t) ∈ U for U ∈ {A,B}.
The simulations in the AB-grammar then work as follows:

20 R. Freund

– p : (ADD(X), q) is simulated by p : X → XX and p′ : Y → Y X with
(p, p′, 1)B as well as (p, q, 2)A, (p, q′, 3)A, and (p′, q, 1)A, (p′, q′, 2)A;

– p : (SUB(X), q, s) is simulated by p : X → λ and p′ : Y → Y with
(p, p′, 1)B as well as (p, q, 2)A, (p, q′, 3)A, and (p′, s, 1)A, (p′, s′, 2)A;

in both cases, the application of the rule labeled by p blocks the rule labeled
by p′; in any case, for the next rule labeled r to be simulated, both r and r′ are
activated, again r′ following r one step later.

For the halting label h, only the labeled rule h : A → λ is to be activated. ��
This result is optimal with respect to the number of non-terminal symbols:

as it has been shown in [9], even for graph-controlled context-free grammars one
non-terminal symbol is not enough, hence, the statement immediately follows
from Theorem 13. A similar optimal result holds for multiset grammars.

Theorem 22. Any recursively enumerable set of multisets can be generated by
an AB-grammar using context-free multiset rules and only two non-terminal
symbols.

Proof. Given a recursively enumerable set of multisets L over the terminal alpha-
bet T = {a1, . . . , ak}, we can construct a register machine ML generating L in
the following way: instead of speaking of a number n in register r we use the nota-
tion ar

n, i.e., a configuration of ML is represented as a string over the alphabet
V = T ∪ {ak+1, ak+2} with the two non-terminal symbols ak+1, ak+2.

We start with one ak+1 and first generate an arbitrary multiset over T step
by step adding one element am from T and at the same time multiply the number
of symbols ak+1 by pm, where pm is the m-th prime number. At the end of this
procedure, for the multiset a1

n1 . . . ak
nk we have obtained am

nm in each register
m, 1 ≤ m ≤ k, and ak+1

p1
n1 ...pk

nk in register k+1. As for example, already shown
in [18], only using registers k +1 and k +2, a deterministic register machine M ′

L

simulating any number of registers by this prime number encoding can compute
starting with ak+1

p1
n1 ...pk

nk and halt if and only if a1
n1 . . . ak

nk ∈ L. Only with
halting, all registers of M ′

L are cleared to zero, i.e., we end up with only one ak+1

in ML when this deterministic register machine M ′
L has reached its halting label

h. So the last step of ML before halting is just to eliminate this last ak+1. During
the whole computation of ML, the sum of symbols ak+1 and ak+2 is greater than
zero. Hence, it only remains to show how to simulate the instructions of a register
machine, which is done in a similar way as in the preceding proof; we use X to
specify one of the two non-terminal symbols ak+1 and ak+2, and Y then stands
for the other one, i.e., X,Y ∈ {ak+1, ak+2}. For any label p of the register
machine we use two labels p and p′. The simulations in the AB-grammar work
as follows:

– a non-deterministic ADD-instruction p : (ADD(X), q, s) is simulated by
branching into two deterministic ADD-instructions even twice:
p : X → X and p′ : Y → Y with (p, p′, 1)B as well as (p, (p,X, q), 2)A,
(p, (p,X, s), 2)A, and (p′, (p, Y, q), 1)A, (p′, (p, Y, s), 1)A; in the third step of

A General Framework for Sequential Grammars with Control Mechanisms 21

the simulation, we already know whether X is present or else we have to use
Y ; this now allows us to simulate the four deterministic ADD-instructions
(p, α, β) : (ADD(X), β), α ∈ {X,Y }, β ∈ {q, s}, in a simpler way by using
the rules
(p, α, β) : α → αX
and the activations
((p, α, β), β, 1)A, ((p, α, β), β′, 2)A;

– p : (ADD(X), q) is simulated by p : X → XX and p′ : Y → Y X with
(p, p′, 1)B as well as (p, q, 2)A, (p, q′, 3)A, and (p′, q, 1)A, (p′, q′, 2)A;

– p : (SUB(X), q, s) is simulated by p : X → λ and p′ : Y → Y with (p, p′, 1)B

as well as (p, q, 2)A, (p, q′, 3)A, and (p′, s, 1)A, (p′, s′, 2)A; in both cases, the
application of the rule labeled by p blocks the rule labeled by p′; in any case,
for the next rule labeled r to be simulated, both r and r′ are activated, again
r′ following r one step later;

– for the halting label h, only the labeled rule h : ar+1 → λ is to be activated.

When the final rule h : ar+1 → λ is applied, no further rule is activated, thus
the derivation ends yielding the multiset a1

n1 . . . ak
nk ∈ L as terminal result. ��

7 Arrays and Array Grammars on Cayley Grids

As a natural extension of string languages (e.g., see [25,26]), arrays on the d-
dimensional grid Z

d have been introduced and investigated since more than
four decades, for example, see [5]. Applications of array grammars and array
automata especially can be found in the area of pattern and picture recognition,
for instance, see [23,24,27].

Following some ideas of Erzsébet Csuhaj-Varjú and Victor Mitrana, the inves-
tigation of array grammars and array automata on Cayley grids of finitely pre-
sented groups was started in [14] and then continued in more detail in [15]. As a
first example of arrays on a Cayley grid of a non-Abelian group we refer to [1],
where arrays on the hexagonal grid were considered.

In this section, first the notions and definitions for arrays defined on Cayley
grids of finitely presented groups as well as for array grammars generating sets
of such arrays are recalled from [15]. Following the general results collected in
Sect. 5, we immediately obtain many results for array grammars defined on Cay-
ley grids of finitely presented groups equipped with these control mechanisms.
When using #-context-free array productions in the underlying array gram-
mars, together with most of these control mechanisms considered previously in
this paper, the same computational power as with arbitrary array productions
can be obtained, see [11].

7.1 Arrays on Cayley Grids

In this subsection we generalize the concept of d-dimensional arrays to arrays
defined on Cayley grids. Let G = 〈B | R〉 be a finitely presented group with

22 R. Freund

B = {e1, . . . , em} and G′ denoting the set of group elements; moreover, let C (G)
be the Cayley graph of G with respect to B. Throughout the rest of the paper
we will assume that B−1 ⊆ B, i.e., B contains all inverses of its elements. For
paths in the Cayley graph this means that for each path v = w1 → ... → wn = w
in C (G) from v to w also its inverse w = wn → ... → w1 = v is a path in C (G).

A finite array A over an alphabet V on G′ is a function A : G′ → V ∪ {#},
where shape(A) = { v ∈ G′ | A(v) �= # } is finite and # /∈ V is called the
background or blank symbol, i.e., the nodes of C (G) get assigned elements of
V ∪ {#}. We usually will write A = {(v,A(v)) | v ∈ shape(A)}.

By V G we denote the set of arrays over V on G′; any subset of V G is called
an array language over V on G. With respect to the finite presentation of G by
C (G), instead of V G we also write V C(G) to emphasize that.

The empty array in V G has empty shape and is denoted by ΛG. Ordering
the generators in B in a specific way as e1 < · · · < em, for each array A =
{(v,A(v)) | v ∈ shape(A)} in V G \ {ΛG} we get a canonical representation as
a list 〈(v1,A (v1)) , . . . , (vn,A (vn))〉 such that {vi | 1 ≤ i ≤ n} = shape (A) and
vi < vi+1, 1 ≤ i < n, with respect to the length-plus-lexicographic ordering
of strings with the elements of G written as sums of the elements in B (the
length-plus-lexicographic ordering ≺ is a well-ordering, where for two strings u
and v, u ≺ v if either |u| < |v| or |u| = |v|, u = xay, v = xby, and a < b).
In terms of C (G) this means that the elements of the array are listed in the
length-plus-lexicographic ordering of the paths in C (G) seen from the origin
(the identity).

Example 23. Consider the hexagonal grid from Example 5. Then the “position”
abc can also be reached by taking the path cba from the “origin” (the identity
e). Hence, with taking the ordering a < b < c, the canonical representation of

the array A = {(ab,X), (abc, Y) | v ∈ shape(A)} ∈ {X,Y }C(〈a,b,c|a2,b2,c2,(abc)2〉)
is 〈(ab,X), (abc, Y)〉.
Example 24. A d-dimensional array is an array over the free group Z

d. If we
take the unit vectors ek = (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0), the
resulting Cayley graph is the well-known d-dimensional grid.

For any v ∈ G′, the translation τv : G′ → G′ is defined by τv(w) = w ◦ v
for all w ∈ G′, and for any array A ∈ V C(G) we define τv(A), the corresponding
array translated by v, by (τv (A)) (w) = A (

w ◦ v−1
)

for all w ∈ G′.
An array A ∈V C(G) is called k-connected if for any two elements v and w in

shape (A) there is a path v = w1 → · · · → wn = w in C (G) with {w1, ..., wn} ⊆
shape (A) such that for the distance in C (G) between wi and wi−1, d (wi, wi−1),
we have d (wi, wi−1) ≤ k for all 1 < i ≤ n; the distance d (x, y) between two
nodes x and y in C (G) is defined as the length of the shortest path between x
and y in C (G). The subset of k-connected arrays in V C(G) is denoted by V C(G)k .

Example 25. Consider the set of one-dimensional arrays over the alphabet {a},
i.e., {a}C(〈(1),(−1)〉), which in a simpler way we will also write as {a}Z1

. Then the

A General Framework for Sequential Grammars with Control Mechanisms 23

1-dimensional array {((0) , a) , ((k) , a)} ∈ {a}Z1

is m-connected, i.e., in {a}Z1
m ,

if and only if m ≥ k.

7.2 Array Grammars on Cayley Grids

For a finitely presented group G = 〈B | R〉 with the set of elements G′, we define
an array production p over V and G as a triple (W,A1,A2), where W ⊆ G′

is a finite set and A1 and A2 are mappings from W to V ∪ {#} such that
shape (A1) �= ∅, where again the shape is defined to exactly contain the non-
blank positions, i.e., shape(A1) = { v ∈ W | A(v) �= # }. We say that the
array C2 ∈ V C(G) is directly derivable from the array C1 ∈ V C(G) by the array
production (W,A1,A2) if and only if there exists a v ∈ G′ such that, for all
w ∈ G′ \ τv (W), C1 (w) = C2 (w), as well as, for all w ∈ τv (W), C1 (w) =
A1 (τ−v (w)) and C2 (w) = A2 (τ−v (w)), i.e., the sub-array of C1 corresponding
to A1 is replaced by A2, thus yielding C2; we also write C1 =⇒p C2.

As we already see from the definitions of an array production, the condi-
tions for an application to an array B and the result of an application to B, an
array production (W,A1,A2) is a representative for the infinite set of equiv-
alent array productions of the form (τv (W) , τv (A1) , τv (A2)) with v ∈ G′.
Hence, without loss of generality, we can assume e ∈ W (e is the identity in
G) as well as A1 (e) �= #. Moreover, we often will omit the set W , because it
is uniquely reconstructible from the description of the two mappings A1 and
A2 by Ai = { (v,Ai (v)) | v ∈ W }, for 1 ≤ i ≤ 2. Thus, in the following,
we represent the array production (W,A1,A2) also by writing A1 → A2, i.e.,
{(v,A1 (v)) | v ∈ W} → {(v,A2 (v)) | v ∈ W}. If |W | = 2, i.e., W = {e, v} for
some v ∈ G′, then, for {(e,A1 (e)) , (v,A1 (v))} → {(e,A2 (e)) , (v,A2 (v))} we
will only write A1 (e) vA1 (v) → A2 (e) A2 (v). If |W | = 1, i.e., W = {e}, we
simply write A1 (e) → A2 (e).

GA =
(
(N ∪ T)C(G)

, TC(G),A0, P,=⇒GA

)
is called an array grammar over

C (G), where N is the alphabet of non-terminal symbols, T is the alphabet of
terminal symbols, N ∩ T = ∅; P is a finite non-empty set of array productions
over V , where V = N ∪ T ; A0 ∈ V C(G) is the initial array (axiom), and =⇒GA

denotes the derivation relation induced by the array productions in P . In the
following, we may omit =⇒GA

in the description of the array grammars.
In a more common notation, we also write an array grammar (over C (G))

as a septuple
GA = (C (G) , N, T,#, P,A0,=⇒GA

) ,

also specifying the background symbol # /∈ N ∪ T , and, as usually done in the
literature, we shall assume A0 = {(v0, S)}, where v0 ∈ G′ is the start node,
and S ∈ N is the start symbol.

We say that the array B2 ∈ V C(G) is directly derivable from the array
B1 ∈ V C(G) in GA, denoted B1 =⇒GA

B2, if and only if there exists an array pro-
duction p = (W,A1,A2) in P such that B1 =⇒p B2. Let =⇒∗

GA
be the reflexive

transitive closure of =⇒GA
. The array language generated by the array grammar

GA, L (GA), is defined by L (GA) =
{ A | A ∈ TC(G), A0 =⇒∗

GA
A }

.

24 R. Freund

An array production p = (W,A1,A2) in P is called #-context-free (of type
#-CFA), if |shape (A1)| = 1, i.e., shape (A1) = {e}, and A1 (e) ∈ N .

For X ∈ {ARBA,#-CFA}, an array grammar G is called to be of type X, if
every array production in P is of the corresponding type, where ARBA means
that there are no restrictions on the form of the array productions. The family of
k-connected array languages generated by array grammars on C (G) of type X
is denoted by Lk (C (G) -X); the family of arbitrary array languages generated
by array grammars on C (G) of type X is denoted by L (C (G) -X).

For arbitrary and #-context-free array grammars the condition to only con-
sider languages of k-connected arrays corresponds to intersecting the generated
array language with V C(G)k , which can be carried out by arbitrary array gram-
mars by themselves (as, for example, proved in [11]), but is a condition imposed
from “outside” when dealing with #-context-free array grammars. Yet as later we
are going to show that some #-context-free array grammars equipped with spe-
cific control mechanisms can simulate any arbitrary array grammar this makes
no difference any more in these cases.

Example 26. Let G = 〈B | R〉 be a finitely presented group and x ∈ G with
ord (x) = ∞. Let b1 ◦ . . . ◦ bk be the canonical representation of x in 〈B | R〉;
then ({xn | n ∈ Z} , ◦) is an infinite subgroup of G, and xn �= xm for n �= m.
Hence, along this “infinite line” we can argue many results obtained for Z

1, e.g.,
how to embed simulations of Turing machine computations.

Remark 27. The possibility to compute along such infinite lines is also impor-
tant if we want to (describe how to) simulate computations of a Turing machine
– or similar computationally complete mechanisms (for strings) – using spe-
cific variants of (controlled) array grammars on Cayley graphs. For instance, for
any computable finite group presentation of a group 〈B | R〉, we can effectively
construct an encoding of any array language in L (C (G) -ARBA) given by an
(arbitrary) array grammar and vice versa. The finite group presentation of the
group 〈B | R〉 being computable is crucial for this result.

For simulating array grammars of type C (G) -ARBA, a special normal form
we call marked normal form is very helpful; it has already been described for 1-
dimensional array grammars in [12] as a special variant of the Chomsky normal
form for array grammars, shown, for example, in [10], and exhibited for the
general case of array grammars on Cayley grids in [11].

Lemma 28 (marked normal form). For every array grammar of type C (G) -
ARBA

GA = (C (G) , N, T,#, P, {(v0, S)} ,=⇒GA
) ,

we can effectively construct an equivalent array grammar of type C (G) -ARBA

ḠA =
(
C (G) , N ′, T,#, P ′,

{(
v0, S̄

)}
,=⇒ḠA

)
,

where N ⊆ N ′ and all array productions in P ′ are of one of the following forms:

1. ĀB → CD̄, where A,B,C,D ∈ N ′ ∪ T , or

A General Framework for Sequential Grammars with Control Mechanisms 25

2. #̄ → #.

Before the final array production #̄ → # is applied, any intermediate array
derived from the initial array

{(
v0, S̄

)}
contains exactly one barred symbol.

For applying the general results on the relations between different control
mechanisms as elaborated in the rest of this section to array grammars of the
types C (G) -ARBA and C (G) -#-CFA, the following feature of these types is
essential in some cases:

Lemma 29. The types C (G) -ARBA and C (G) -#-CFA – for a Cayley grid
C (G) – are strictly extended types with unit rules and trap rules.

Proof. We first remark that, without loss of generality (e.g., see [11]), we
may always assume that any array production contains at least one non-
terminal symbol in the array on its left-hand side, i.e., in any array production
{(v,A1 (v)) | v ∈ W} → {(v,A2 (v)) | v ∈ W} we find at least one v1 ∈ W such
that A1 (v1) ∈ N ; hence, C (G) -ARBA can be assumed to be a strictly extended
type for the succeeding proofs; C (G) -#-CFA is a strictly extended type already
by definition. Now let

GA = (C (G) , N, T,#, P, {(v0, S)} ,=⇒GA
)

be an array grammar of type C (G) -ARBA or C (G) -#-CFA.
Then for every array production p = (W,A1,A2) the corresponding unit rule

is p+ = (W,A1,A1), which, when being applied, obviously does not change the
underlying array.

Moreover, for the trap rules, take a new non-terminal symbol F , the trap
symbol, which never can be erased any more, and for every array production
p = (W,A1,A2) we then define the corresponding trap rule p− = (W,A1,FW)
with FW (v) = F for all v ∈ W , which, when being applied, prohibits the derived
array to become terminal no matter how the derivation proceeds.

In sum, we conclude that both C (G) -ARBA and C (G) -#-CFA are strictly
extended types with unit rules and trap rules. ��

7.3 Results for Array Grammars on Cayley Grids

In many papers on control mechanisms for string grammars, the proof for show-
ing that when using arbitrary productions any new control mechanism can be
simulated is omitted, often simply citing the Church-Turing thesis, which usu-
ally is a legitimate claim as any formal proof would be tedious although bringing
no new insights. In case of array grammars on Cayley graphs the situation is
more delicate: as long as the underlying group presentation is computable, one
might still easily argue with the Church-Turing thesis as long as – for infinite
groups – there is also an infinite path in the Cayley graph, which is obvious if
there is a group element of infinite order – see Example 26 as well as Remark 27.
Yet even if there is no such element (for examples of such group presentations

26 R. Freund

we refer to [15]), in a nondeterministic way, we can find lines of arbitrary length
for the necessary computations, as by definition the out-degree of every node is
bounded, hence, by König’s infinity lemma such a path must exist; it is impor-
tant to observe that these paths need not always be computable. Therefore, in
the general case of Cayley grids we need an algorithm that works directly with
the power inherent to arbitrary array productions. As, according to Theorem17,
GCac is the “strongest” control mechanism, only the following result is needed
(for a proof, we refer to [11]):

Lemma 30. L (C (G) -ARBA-GCac) ⊆ L (C (G) -ARBA) .

In connection with the results depicted in Theorem 17, from Lemma 30 we
immediately infer the following:

Theorem 31. L (C (G) -ARBA-Y) = L (C (G) -ARBA) for any control mech-
anism Y in {O,Pri, fC1, fC,RC,MATac, GCallfinal

ac , GCac, GCallfinal, GC,A,
AB, pC,MAT,P, Pac}.

Already an order relation on the rules is sufficient as a control mechanism to
obtain L (C (G) -ARBA) with #-free array productions (see [11]):

Theorem 32. L (C (G) -ARBA) ⊆ L (C (G) -#-CFA-O) .

Proof. Let G = 〈B | R〉 be a finitely presented group and L be an array lan-
guage on C (G) given by an array grammar GA in marked normal form, see
Lemma 28. Moreover, let G′

A =
(
C (G) , N, T ′,#, P, {(v0, S′)} ,=⇒G′

A

)
be the

array grammar on C (G) with T ′ = {Xa | a ∈ T}, i.e., we replace every terminal
symbol a ∈ T from GA by a corresponding non-terminal symbol Xa in all the
array productions of GA. We now construct an equivalent ordered array gram-
mar GO = (Gs,≺,=⇒GO

) first simulating the derivations in G′
A corresponding

to derivations in GA with the only difference that instead of the terminal sym-
bols a ∈ T we have the corresponding non-terminal symbols Xa, and at the end
these symbols Xa are transformed into the terminal symbols a ∈ T .

The main idea is to first generate a workspace of non-terminal symbols X#

representing the blank symbol surrounded with a border of symbols X̃# also
representing #; symbols X#, X̃# still occurring in the derived array at the end of
a simulation of a derivation in G′

A finally will be erased as to be described later in
the proof. Moreover, at the very beginning, we generate a control symbol at some
place, chosen in a non-deterministic way, not interfering with the workspace, but
needed for the simulations of the application of rules in G′

A. The main task then
is to show how a marked array production ĀvB → CD̄, where A,B,C,D ∈ N ,
can be simulated by using a suitable order relation on the rules in GO.

We first sketch how to obtain the control symbol and the workspace: Instead
of starting with {(v0, S)} in GA we start with the initial array {(v0, S′)} in G′

A.
Using any of the rules S′v# → S′′HA for any v ∈ B and then rules of the
form HAu# → #HA for any u ∈ B, the initial control symbol HA can move
to any position (node) in the Cayley graph. Using the rule HA → H0 ends this
procedure and then allows the rule S′′ → S̃ to be applied, which is “dominated”

A General Framework for Sequential Grammars with Control Mechanisms 27

by the rules in H− \ {H0 → F}, i.e., S′′ → S̃ ≺ p for all p ∈ H− \ {H0 → F},
where H− = {X → F | X ∈ VH} and VH denotes the set of all variants of the
control variable H like HA at the beginning.

Notation: In the following, the set of all trap rules “dominating” a rule p will be
written as P (p ≺), i.e., P (p ≺) = {q | p ≺ q}.

In general, the idea with the variants of the control variable H is to guide
the application of another rule p by, instead of checking for the presence of the
specific variant Hα of H, ensuring the absence of all other variants of H, using
the rule relations p ≺ q for all q ∈ {X → F | X ∈ VH \ {Hα}}; hence, we also
write P (p ≺) = {X → F | X ∈ VH \ {Hα}}.

The next task is to generate sufficient workspace of symbols X# surrounded
by a layer of symbols X̃# on the border to the remaining environment of blank
symbols: We start with

p0 = {(e, S̃} ∪ {(v,# | v ∈ B} → {(e, S̄} ∪ {(v, X̃# | v ∈ B},
P (p0 ≺) = {X → F | X ∈ VH \ {H0}}.

Iteratively, now a new “layer” of symbols X# is added by first generating symbols
X̂# from the symbols X̃#, then renaming the symbols X̃# to X# and finally
renaming the symbols X̂# to X̃#, which is accomplished by the following rules
p and the corresponding “dominating” set of rules P (p ≺):

1. H0 → H1, P (H0 → H1 ≺) = {S̃ → F};
2. for all v ∈ B,

p1v = {(e, X̃#), (v,#)} → {(e, X̃#), (v, X̂#)}, P (p1v ≺) = {X → F | X ∈ VH \
{H1}}, H1 → H2, P (H1 → H2 ≺) = {p1v

− | v ∈ B}, where p1v
− is the trap rule

corresponding to the rule p1v, i.e., p1v
− = {(e, X̃#), (v,#)} → {(e, F), (v, F)};

3. for all v ∈ B,
p2v = X̃# → X#, P (p2v ≺) = {X → F | X ∈ VH \ {H2}}, H2 → H3,
P (H2 → H3 ≺) = {p2v

− | v ∈ B};
4. for all v ∈ B,

p3v = X̂# → X̃#, P (p3v ≺) = {X → F | X ∈ VH \ {H3}}, H3 → H1,
P (H3 → H1 ≺) = {p3v

− | v ∈ B}; the iteration can start again with 2.
5. In order to stop the iteration, instead of H3 → H1 we use the rule

H3 → H, P (H3 → H ≺) = {p3v
− | v ∈ B}.

For the simulation in GO we assume the marked array productions in GA to
be labeled, i.e., we write p : ĀpvpBp → CpD̄p.

1. We start the simulation of the application of p : ĀpvpBp → CpD̄p with
indicating the intention to do that by the rule H → H1

p for the control
symbol;

2. we continue with marking exactly one symbol Bp as B′
p by

p1 = Bp → B′
p, P (p1 ≺) = {X → F | X ∈ (VH \ {H1

p}) ∪ {B′
p}},

H1
p → H2

p , P (H1
p → H2

p ≺) = PF , PF = {Xv# → FF | X ∈ N ∪ {X#}, v ∈
B},
i.e., no blank symbol inside the workspace is allowed yet;

28 R. Freund

3. we now make a “#-hole” inside the workspace in such a way that the only
non-terminal symbol having “access” to this blank position should be Āp by
p2 = B′

p → #, P (p2 ≺) = {X → F | X ∈ (VH \ {H2
p})},

H2
p → H3

p , P (H2
p → H3

p ≺) = PF \ {Āpvp# → FF};
4. the “#-hole” made in the previous step now is filled correctly by

p3 = Āpvp# → CpD̄p, P (p3 ≺) = {X → F | X ∈ (VH \ {H3
p})},

H3
p → H, P (H3

p → H ≺) = PF .

Using the sequence of rules as described above, we finally have simulated
the application of the rule p : ĀpvpBp → CpD̄p and reached the control symbol
H again, which allows us to continue with simulating the next rule. At some
moment we have to check whether we can switch to the terminal procedure
eliminating all non-terminal symbols from X#, X̃#, X̄# and transforming every
non-terminal symbol Xa, a ∈ T , into the corresponding terminal symbol a:

1. We start with H → Ht,
P (H → Ht ≺) = {X → F | X ∈ (V \ ({Xa | a ∈ T} ∪ {X#, X̃#, X̄#}))};

2. for all X ∈ {X#, X̃#, X̄#}, we take
pX = X → #, P (pX ≺) = {X → F | X ∈ (VH \ {Ht})};

3. for all a ∈ T , we take
pa = Xa → a, P (pX ≺) = {X → F | X ∈ (VH \ {Ht})};

4. finally the control symbol Ht can be erased with
Ht → #, P (Ht → # ≺) = {X → F | X ∈ (V \ {Ht})}.

Based on the construction of GO and the explanations given above we con-
clude L(GO) = L. ��

Looking at the general results collected in Theorem 17 we immediately infer
the following results:

Corollary 33. For any Y ∈ {
O,Pri, fC1, fC,RC,MATac, GCallfinal

ac , GCac,
A,AB},

L (C (G) -ARBA) ⊆ L (C (G) -#-CFA-Y) .

A similar result can be shown for programmed array grammars by proving
the following equality (for a proof, see [11]):

Lemma 34. L (C (G) -#-CFA-PCac) = L (
C (G) -#-CFA-GCallfinal

ac

)
.

Combining all the general results depicted in this section, we obtain the main
theorem for sequential array grammars on Cayley graphs of finitely presented
groups with control mechanisms:

Theorem 35. For any Y ∈ {
O,Pri, fC1, fC,RC,MATac, GCallfinal

ac , GCac, A,

AB,Pac

}
,

L (C (G) -#-CFA-Y) = L (C (G) -ARBA) .

Similar results hold for languages of k-connected arrays:

Theorem 36. For any Y ∈ {
O,Pri, fC1, fC,RC,MATac, GCallfinal

ac , GCac, A,

AB,Pac

}
,

Lk (C (G) -#-CFA-Y) = Lk (C (G) -ARBA) .

A General Framework for Sequential Grammars with Control Mechanisms 29

8 Cooperating Distributed Grammar Systems

Basic results on the generating power of hybrid cooperating distributed grammar
systems were established by Mitrana [19] and by Păun [21]; a general overview
on this area of formal language theory is given in the monograph by Csuhj-Varjú,
Dassow, Kelemen, and Păun [6].

Let G = (O,OT , w, P,=⇒G) be a grammar of type X; for the basic derivation
modes from

B = {∗, t} ∪ {≤ k,= k,≥ k | k ≥ 1}
and any objects u, v ∈ O we define

– u =⇒∗
G v to denote the usual reflexive and transitive closure of =⇒G;

– u =⇒t
G v if and only if u =⇒∗

G v and no rule from P is applicable to v;
– u =⇒≤k

G v, u =⇒=k
G v, u =⇒≥k

G v if and only if u =⇒∗
G v in at most k, exactly

k, at least k derivation steps.

A hybrid cooperating distributed grammar system (HCDG system for short)
GHCDG of degree n and type X working in the derivation modes from B′ ⊆ B
is a construct

GHCDG = (G,P1, . . . , Pn, f1, . . . , fn,=⇒GHCDG
)

where Pi ⊆ P and fi ∈ B′ for 1 ≤ i ≤ n, ∪n
i=1Pi = P , and the grammars G and

Gi = (O,OT , w, Pi,=⇒Gi
), 1 ≤ i ≤ n, are grammars of type X, the derivation

relations =⇒Gi
being the restrictions of =⇒G only induced by the corresponding

rule sets Pi. For any u, v ∈ O, we define u =⇒GHCDG
v if and only if u =⇒fi

Gi
v

for some i, 1 ≤ i ≤ n. We remark that the component Pi, i.e., the grammar Gi,
in each step of the derivation in GHCDG is chosen in a non-deterministic way,
which also means that even the same component may be taken several times in
a row.

A cooperating distributed grammar system (CDG system for short) GCDG of
degree n and type X working in the derivation mode f with f ∈ B is a spe-
cial case of a hybrid cooperating distributed grammar system where all deriva-
tion modes fi equal f , i.e., a construct GCDG = (G,P1, . . . , Pn, f,=⇒GCDG

)
where Pi ⊆ P for 1 ≤ i ≤ n, ∪n

i=1Pi = P , and the grammars G and
Gi = (O,OT , w, Pi,=⇒Gi

), 1 ≤ i ≤ n, are grammars of type X. For any u, v ∈ O,
we define u =⇒GCDG

v if and only if u =⇒f
Gi

v for some i, 1 ≤ i ≤ n.
The language generated by the HCDG system GHCDG is defined by

L(GHCDG) =
{
v ∈ OT | w =⇒∗

GHCDG
v
}
. The family of languages generated by

hybrid grammar systems of degree n and of type X working in derivation modes
from B′ is denoted by L (X-HCDGn (B′)), the family of languages generated
by grammar systems of degree n and of type X working in the derivation mode
f is denoted by L (X-CDGn (f)); in both cases we replace n by ∗ if we consider
arbitrary degrees.

As a special subset of derivation modes, we consider B0 = {∗,= 1,≥ 1} ∪
{≤ k | k ≥ 1}, for which the following result holds:

30 R. Freund

Theorem 37. For any type X, any B′ ⊆ B0, and any n ≥ 1,

L (X) = L (X-HCDGn (B′)) .

Proof. Consider any HCDG system

GHCDG = (G,P1, . . . , Pn, f1, . . . , fn,=⇒GHCDG
)

where the underlying grammar is G = (O,OT , w, P,=⇒G) , Pi ⊆ P and fi ∈ B′

for 1 ≤ i ≤ n, ∪n
i=1Pi = P , and the grammars G and Gi = (O,OT , w, Pi,=⇒Gi

),
1 ≤ i ≤ n, are grammars of type X. Now any derivation u =⇒fi

Gi
v for some i,

1 ≤ i ≤ n, using n steps can also be obtained by using n times the derivation
mode = 1 with grammar Gi, which holds for every derivation mode fi from B0.
On the other hand, every derivation mode fi from B0 allows for making only
one derivation step before changing to any grammar Gj , 1 ≤ j ≤ n.

As ∪n
i=1Pi = P , we obtain L(G) = L(GHCDG) for any such hybrid cooper-

ating distributed grammar system GHCDG over the set of derivation modes B0,
which observation concludes the proof. ��
Theorem 38. For any strictly extended type X, L (X) = L (X-CDG1 (t)).

Proof. Consider a CDG system GCDG = (G,P, t,=⇒GCDG
) with G =

(O,OT , w, P,=⇒G) being the underlying grammar of type X. As X is a strictly
extended type, any derivation in G leading to a terminal object w is maximal,
i.e., w ∈ L (GCDG), hence, L (G) ⊆ L (GCDG). On the other hand, as in GCDG

we only have one component using exactly the same rules as in G, we also
have L (GCDG) ⊆ L (G), hence, we conclude L (G) = L (GCDG), and therefore
L (X) = L (X-CDG1 (t)). ��

The equality relation established in the preceding theorem between L (X)
and L (X-CDG1 (t)) need not be true for pure types, as the following simple
example shows:

Example 39. Consider the grammar G =
(
{a}+ , {a}+ , a, P,=⇒G

)
with the set

of rules P =
{
a → a2, a → λ

}
to constitute the simple pure type X1.

Obviously, L (G) = {a}∗, hence, we get L (X1) =
{{a}∗}.

The only CDG1 (t) system of type X1 is GCDG = (G,P, t,=⇒GCDG
), but

L (GCDG) = {λ}, because every terminating derivation in GCDG must end in λ.
Hence, L (X1-CDG1 (t)) = {{λ}}.

Thus, we obtain L (X1) =
{{a}∗} �= {{λ}} = L (X1-CDG1 (t)).

Again, the computational power of HCDG systems can be captured by GCac

as control mechanism, which according to Theorem 17 is the “strongest” one.

Lemma 40. Let X be any strictly extended type X, B′ ⊆ B, n ≥ 1, and

GHCDG = (G,P1, . . . , Pn, f1, . . . , fn,=⇒GHCDG
)

A General Framework for Sequential Grammars with Control Mechanisms 31

be an arbitrary HCDG system, where G = (O,OT , w, P,=⇒G) is the underlying
grammar of type X, Pi ⊆ P , fi ∈ B′ for 1 ≤ i ≤ n, ∪n

i=1Pi = P , and the gram-
mars Gi = (O,OT , w, Pi,=⇒Gi

), 1 ≤ i ≤ n, are grammars of type X. Then we
can construct an equivalent graph-controlled grammar (with applicability check-
ing) of type X GGC = (G, g,Hi,Hf ,=⇒GC) such that L(GHCDG) = L(GGC).
Moreover, if t /∈ B′, then applicability checking is not needed in GGC .

Proof. Given the HCDG system GHCDG and its underlying grammar G, which
is the underlying grammar of the graph-controlled grammar GGC , too, for GGC

we only have to specify the control graph g = (H,E,K) as well as the sets
Hi ⊆ H and Hf ⊆ H of initial and final labels, respectively. This can be achieved
by defining subgraphs of g, which are constructed using different graphs for
each derivation mode f ∈ B; for every 1 ≤ i ≤ n, the nodes in the subgraphs
described in the following then have assigned the set of rules Pi by K, whatever
the corresponding fi ∈ B may be. The nodes in the graphs are of one of the
following types:

normal node node label n ∈ H: n

initial node node label n ∈ Hi: n

In the whole control graph, there is only one final node which has no rules
assigned to, and its label is the only one in Hf . The simulation of derivation
modes in B now can be described as follows (for the derivation modes ∗ and ≤ 1
we assume that at least one derivation step is made):

derivation mode = 1 or ≤ 1: Y E

derivation mode ∗ or ≥ 1: Y EY

derivation mode ≤ k, k ≥ 2:

Y

E

Y . . .

Y

E

1 k

derivation mode = k, k ≥ 2: Y . . . Y E
1 k

derivation mode ≥ k, k ≥ 2: Y . . . Y E
1 k

Y

derivation mode t: N EY

Putting together the subgraphs for the components

Gi = (O,OT , w, Pi,=⇒Gi
) , 1 ≤ i ≤ n,

we obtain the complete control graph g = (H,E,K) by letting every edge point-
ing to E leading to the initial nodes of all the subgraphs as well as to the final
node.

32 R. Freund

We finally observe that only in the construction of the subgraph for the
derivation mode t an edge labeled by N is needed, i.e., only in this case appli-
cability checking is needed, which observation completes the proof. ��

As an immediate consequence of the preceding result, we obtain the following:

Theorem 41. For any strictly extended type X, any B′ ⊆ B, and any n ≥ 1,

L (X-HCDGn (B′)) ⊆ L (X-GCac) .

If t /∈ B′, then we even have L (X-HCDGn (B′)) ⊆ L (X-GC) .

9 Summary and Future Research

The formal framework for sequential grammars with regulated rewriting based
on the applicability of rules has first been presented in a comprehensive way
in [13] and recently extended in several papers, especially with the new concept
of activation and blocking of rules, see [3,11].

Based on the general results obtained within this framework, many com-
putational completeness results for sequential grammars working on strings or
multisets, but also for sequential array grammars on Cayley grids can be shown.

There are still many other control mechanisms which might perfectly fit
to be considered within this framework, for example, regular control or other
derivation modes known from the area of grammar systems. Investigations how
to include further control mechanisms as well as to prove relations between
them and the control mechanisms considered so far thus remain as a challenge
for future research.

Acknowledgements. I am very grateful to my colleagues and co-authors for many
fruitful discussions as well as for their contributions to the topics described in this
overview paper: First parts for the concept of the general framework were already dis-
cussed and elaborated during my stay in Magdeburg with Jürgen Dassow nearly thirty
years ago. Afterwards, partial results were used in several papers, for example, with
Henning Fernau, Markus Holzer, and Gheorghe Păun. The first comprehensive collec-
tion of results in [13] then was elaborated with my colleagues in Vienna, Marion Oswald
and Marian Kogler. Recent results, especially for sequential grammars with activation
and blocking of rules (see [2,3]), were elaborated together with Artiom Alhazov and
Sergiu Ivanov.

References

1. Aizawa, K., Nakamura, A.: Grammars on the hexagonal array. In: Wang, P.S.P.
(ed.) Array Grammars, Patterns and Recognizers, Series in Computer Science,
vol. 18, pp. 144–152. World Scientific, Singapore (1989). https://doi.org/10.1142/
S0218001489000358

2. Alhazov, A., Freund, R., Ivanov, S.: P systems with activation and blocking of
rules. In: Stepney, S., Verlan, S. (eds.) UCNC 2018. LNCS, vol. 10867, pp. 1–15.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92435-9 1

https://doi.org/10.1142/S0218001489000358
https://doi.org/10.1142/S0218001489000358
https://doi.org/10.1007/978-3-319-92435-9_1

A General Framework for Sequential Grammars with Control Mechanisms 33

3. Alhazov, A., Freund, R., Ivanov, S.: Sequential grammars with activation and
blocking of rules. In: Durand-Lose and Verlan [8], pp. 51–68. https://doi.org/10.
1007/978-3-319-92402-1 3

4. Cavaliere, M., Freund, R., Oswald, M., Sburlan, D.: Multiset random context gram-
mars, checkers, and transducers. Theor. Comput. Sci. 372(2–3), 136–151 (2007).
https://doi.org/10.1016/j.tcs.2006.11.022

5. Cook, C.R., Wang, P.S.P.: A Chomsky hierarchy of isotonic array grammars and
languages. Comput. Graphics Image Process. 8, 144–152 (1978). https://doi.org/
10.1016/S0146-664X(78)80022-7

6. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, Gh,: Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach Science
Publishers (1994)

7. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. EATCS
Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)

8. Durand-Lose, J., Verlan, S. (eds.): MCU 2018. LNCS, vol. 10881. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92402-1

9. Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal com-
plexity of graph-controlled, programmed, and matrix grammars. J. Autom. Lang.
Comb. 12(1–2), 117–138 (2007). https://doi.org/10.25596/jalc-2007-117

10. Freund, R.: Control mechanisms on #-context-free array grammars. In: Păun, Gh.
(ed.) Mathematical Aspects of Natural and Formal Languages, pp. 97–137. World
Scientific, Singapore (1994). https://doi.org/10.1142/9789814447133 0006

11. Freund, R.: Control mechanisms for array grammars on Cayley grids. In: Durand-
Lose and Verlan [8], pp. 1–33. https://doi.org/10.1007/978-3-319-92402-1 1

12. Freund, R., Ivanov, S., Oswald, M., Subramanian, K.G.: One-dimensional array
grammars and P systems with array insertion and deletion rules. In: Neary and
Cook [20], pp. 62–75. https://doi.org/10.4204/EPTCS.128

13. Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting
based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Com-
putation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20000-7 5

14. Freund, R., Oswald, M.: Array automata on Cayley grids. In: Neary and Cook [20],
pp. 27–28. https://doi.org/10.4204/EPTCS.128

15. Freund, R., Oswald, M.: Array grammars and automata on Cayley grids. J. Autom.
Lang. Comb. 19(1–4), 67–80 (2014). https://doi.org/10.25596/jalc-2014-067

16. Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of Computational Group Theory.
CRC Press, Boca Raton (2005)

17. Kudlek, M., Mart́ın-Vide, C., Păun, Gh.: Toward a formal macroset theory. In:
Calude, C.S., PĂun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2000. LNCS,
vol. 2235, pp. 123–133. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45523-X 7

18. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs (1967)

19. Mitrana, V.: On the generative capacity of hybrid CD grammar systems. Comput.
Artif. Intell. 12(1), 231–244 (1993)

20. Neary, T., Cook, M. (eds.): MCU 2018. LNCS, vol. 128. Springer, Cham (2013).
https://doi.org/10.4204/EPTCS.128

21. Păun, Gh.: Hybrid cooperating/distributed grammar systems. J. Inform. Process.
Cybernet. EIK 30(4), 231–244 (1994)

22. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, New York (2010)

https://doi.org/10.1007/978-3-319-92402-1_3
https://doi.org/10.1007/978-3-319-92402-1_3
https://doi.org/10.1016/j.tcs.2006.11.022
https://doi.org/10.1016/S0146-664X(78)80022-7
https://doi.org/10.1016/S0146-664X(78)80022-7
https://doi.org/10.1007/978-3-319-92402-1
https://doi.org/10.25596/jalc-2007-117
https://doi.org/10.1142/9789814447133_0006
https://doi.org/10.1007/978-3-319-92402-1_1
https://doi.org/10.4204/EPTCS.128
https://doi.org/10.1007/978-3-642-20000-7_5
https://doi.org/10.4204/EPTCS.128
https://doi.org/10.25596/jalc-2014-067
https://doi.org/10.1007/3-540-45523-X_7
https://doi.org/10.1007/3-540-45523-X_7
https://doi.org/10.4204/EPTCS.128

34 R. Freund

23. Rosenfeld, A.: Picture Languages. Academic Press, Reading (1979)
24. Rosenfeld, A., Siromoney, R.: Picture languages - a survey. Lang. Des. 1(3), 229–

245 (1993). http://dl.acm.org/citation.cfm?id=198440.198442
25. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 volumes.

Springer, Heidelberg (1997)
26. Salomaa, A.: Formal Languages. Academic Press, New York (1973)
27. Wang, P.S.P.: An application of array grammars to clustering analysis for syntac-

tic patterns. Pattern Recogn. 17, 441–451 (1984). https://doi.org/10.1016/0031-
3203(84)90073-6

http://dl.acm.org/citation.cfm?id=198440.198442
https://doi.org/10.1016/0031-3203(84)90073-6
https://doi.org/10.1016/0031-3203(84)90073-6

Low-Complexity Tilings of the Plane

Jarkko Kari(B)

Department of Mathematics and Statistics, University of Turku, Turku, Finland
jkari@utu.fi

Abstract. A two-dimensional configuration is a coloring of the infi-
nite grid Z

2 with finitely many colors. For a finite subset D of Z2, the
D-patterns of a configuration are the colored patterns of shape D that
appear in the configuration. The number of distinct D-patterns of a
configuration is a natural measure of its complexity. A configuration is
considered having low complexity with respect to shape D if the number
of distinct D-patterns is at most |D|, the size of the shape. This extended
abstract is a short review of an algebraic method to study periodicity of
such low complexity configurations.

Keywords: Pattern complexity · Periodicity · Nivat’s conjecture ·
Low complexity configurations · Low complexity subshifts ·
Commutative algebra · Algebraic subshifts · Domino problem

1 Introduction

Commutative algebra provides powerful tools to analyze low complexity config-
urations, that is, colorings of the two-dimensional grid that have sufficiently low
number of different local patterns. If the colors are represented as numbers, the
low complexity assumption implies that the configuration is a linear combina-
tion of its translated copies. This condition can be expressed as an annihilation
property under the multiplication of a power series representation of the config-
uration by a non-zero two-variate polynomial, leading to the study of the ideal of
all annihilating polynomials. It turns out that the ideal of annihilators is essen-
tially a principal ideal generated by a product of so-called line polynomials, i.e.,
univariate polynomials of two-variate monomials. This opens up the possibility
to obtain results on global structures of the configuration, such as its periodicity.
We first proposed this approach in [9,10] to study Nivat’s conjecture. It led to a
number of subsequent results [6–8,14]. In this presentation we review the main
results without proofs – the given references can be consulted for more details.
We start by briefly recalling the notations and basic concepts.

J. Kari—Research supported by the Academy of Finland grant 296018.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 35–45, 2019.
https://doi.org/10.1007/978-3-030-23247-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_2

36 J. Kari

1.1 Configurations and Periodicity

A d-dimensional configuration over a finite alphabet A is an assignment of
symbols of A on the infinite grid Z

d. For any configuration c ∈ AZ
d

and any
cell u ∈ Z

d, we denote by cu the symbol that c has in cell u. For any vector
t ∈ Z

d, the translation τ t by t shifts a configuration c so that τ t(c)u = cu−t for
all u ∈ Z

d. We say that c is periodic if τ t(c) = c for some non-zero t ∈ Z
d. In

this case t is a vector of periodicity and c is also termed t-periodic. We mostly
consider the two-dimensional setting d = 2. In this case, if there are two linearly
independent vectors of periodicity then c is called two-periodic. A two-periodic
c ∈ AZ

2
has automatically horizontal and vertical vectors of periodicity (k, 0)

and (0, k) for some k > 0, and consequently a vector of periodicity in every ratio-
nal direction. A two-dimensional periodic configuration that is not two-periodic
is called one-periodic.

1.2 Pattern Complexity

Let D ⊆ Z
d be a finite set of cells, a shape. A D-pattern is an assignment p ∈ AD

of symbols in shape D. A (finite) pattern is a D-pattern for some finite D. Let us
denote by A∗ the set of all finite patterns over alphabet A, where the dimension
d is assumed to be known from the context. We say that a finite pattern p of
shape D appears in configuration c if for some t ∈ Z

d we have τ t(c)|D = p. We
also say that c contains pattern p. For a fixed D, the set of D-patterns that
appear in a configuration c is denoted by LD(c). We denote by L(c) the set of all
finite patterns that appear in c, i.e., the union of LD(c) over all finite D ⊆ Z

d.
The pattern complexity of a configuration c with respect to a shape D is

the number of D-patterns that c contains. A sufficiently low pattern complexity
forces global regularities in a configuration. A relevant threshold happens when
the pattern complexity is at most |D|, the number of cells in shape D. Hence we
say that c has low complexity with respect to shape D if

|LD(c)| ≤ |D|.
We call c a low complexity configuration if it has low complexity with respect to
some finite shape D.

1.3 Nivat’s Conjecture

The original motivation to this work is the famous conjecture presented by
Maurice Nivat in his keynote address for the 25th anniversary of the Euro-
pean Association for Theoretical Computer Science at ICALP 1997. It concerns
two-dimensional configurations that have low complexity with respect to a rect-
angular shape.

Conjecture 1 ([12]). Let c ∈ AZ
2

be a two-dimensional configuration. If c has low
complexity with respect to some rectangle D = {1, . . . , n} × {1, . . . , m} then c
is periodic.

Low-Complexity Tilings of the Plane 37

The conjecture is still open but several partial and related results have been
established. The best general bound was proved in [5] where it was shown that
for any rectangle D the condition |LD(c)| ≤ |D|/2 is enough to guarantee that c
is periodic. This fact can also be proved using the algebraic approach [14].

The analogous conjecture in dimensions higher than two fails, as does a
similar claim in two dimensions for many other shapes than rectangles [4]. We
return to Nivat’s conjecture and our results on this problem in Sect. 2.

1.4 Basic Concepts of Symbolic Dynamics

Let p ∈ AD be a finite pattern of shape D. The set [p] = {c ∈ AZ
d | c|D = p}

of configurations that have p in domain D is called the cylinder determined
by p. The collection of cylinders [p] is a base of a compact topology on AZ

d

, the
prodiscrete topology. The topology is equivalently defined by a metric on AZ

d

where two configurations are close to each other if they agree with each other on
a large region around cell 0 – the larger the region the closer they are. Cylinders
are clopen in the topology: they are both open and closed.

A subset X of AZ
2

is called a subshift if it is closed in the topology and
closed under translations. By a compactness argument, every configuration c
that is not in X contains a finite pattern p that prevents it from being in X: no
configuration that contains p is in X. We can then as well define subshifts using
forbidden patterns: given a set P ⊆ A∗ of finite patterns we define

XP = {c ∈ AZ
d | L(c) ∩ P = ∅},

the set of configurations that do not contain any of the patterns in P . Set XP

is a subshift, and every subshift is XP for some P . If X = XP for some finite P
then X is a subshift of finite type (SFT).

In this work we are interested in subshifts that have low pattern complexity.
For a subshift X ⊆ AZ

d

(or actually for any set X of configurations) we define
its language L(X) ⊆ A∗ to be the set of all finite patterns that appear in some
element of X, that is, the union of sets L(c) over all c ∈ X. For a fixed shape D,
we analogously define LD(X) = L(X) ∩ AD, the union of all LD(c) over c ∈ X.
We say that X has low complexity with respect to shape D if |LD(X)| ≤ |D|.
For example, in Theorem 8 we fix shape D and a small set P ⊆ AD of at most
|D| allowed patterns of shape D. Then X = XAD\P = {c ∈ AZ

d | LD(c) ⊆ P}
is a low complexity SFT since LD(X) ⊆ P and |P | ≤ |D|.

The orbit of a configuration c is the set O(c) = {τ t(c) | t ∈ Z
2} of all its

translates, and the orbit closure O(c) of c is the topological closure of its orbit.
The orbit closure is a subshift, and in fact it is the intersection of all subshifts
that contain c. In terms of finite patters, c′ ∈ O(c) if and only if every finite
pattern that appears in c′ appears also in c. Of course, the orbit closure of a low
complexity configuration is a low complexity subshift.

A configuration c is called uniformly recurrent if for every c′ ∈ O(c) we have
O(c′) = O(c). This is equivalent to O(c) being a minimal subshift in the sense

38 J. Kari

that it has no proper non-empty subshifts inside it. A classical result by Birkhoff
on dynamical systems implies that every non-empty subshift contains a minimal
subshift, so there is a uniformly recurrent configuration in every non-empty
subshift [3].

1.5 Algebraic Concepts

To use commutative algebra we assume that A ⊆ Z, i.e., the symbols in the
configurations are integers. We also maintain the assumption that A is finite.
We express a d-dimensional configuration c ∈ AZ

d

as a formal power series over
d variables x1, . . . xd where the monomials address cells in a natural manner
xu1
1 · · · xud

d ←→ (u1, . . . , ud) ∈ Z
d, and the coefficients of the monomials in the

power series are the symbols at the corresponding cells. Using the convenient
vector notation x = (x1, . . . xd) we write xu = xu1

1 · · · xud

d for the monomial that
represents cell u = (u1, . . . ud) ∈ Z

d. Note that all our power series and polyno-
mials are Laurent as we allow negative as well as positive powers of variables.
Now the configuration c ∈ AZ

d

can be coded as the formal power series

c(x) =
∑

u∈Zd

cuxu.

Because A ⊆ Z is finite, the power series c(x) is integral (the coefficients are inte-
gers) and finitary (there are only finitely many different coefficients). Henceforth
we treat configurations as integral, finitary power series.

Note that the power series are indeed formal: the role of the variables is only
to provide the position information on the grid. We may sum up two power
series, or multiply a power series with a polynomial, but we never plug in any
values in the variables. Multiplying a power series c(x) by a monomial xt simply
adds t to the exponents of all monomials, thus producing the power series of
the translated configuration τ t(c). Hence the configuration c(x) is t-periodic if
and only if xtc(x) = c(x), that is, if and only if (xt − 1)c(x) = 0, the zero
power series. Thus we can express the periodicity of a configuration in terms of
its annihilation under the multiplication with a difference binomial xt − 1. Very
naturally then we introduce the annihilator ideal

Ann(c) = {f(x) ∈ C[x±1] | f(x)c(x) = 0}

containing all the polynomials that annihilate c. Here we use the notation C[x±1]
for the set of Laurent polynomials with complex coefficients. Note that Ann(c)
is indeed an ideal of the Laurent polynomial ring C[x±1].

Our first observation relates the low complexity assumption to annihilators.
Namely, it is easy to see using elementary linear algebra that any low complexity
configuration has at least some non-trivial annihilators:

Lemma 2 ([9]). Let c be a low complexity configuration. Then Ann(c) contains
a non-zero polynomial.

Low-Complexity Tilings of the Plane 39

One of the main results of [9] states that if a configuration c is annihilated
by a non-zero polynomial (e.g., due to low complexity) then it is automatically
annihilated by a product of difference binomials.

Theorem 3 ([9]). Let c be a configuration annihilated by some non-zero poly-
nomial. Then there exist pairwise linearly independent t1, . . . , tm ∈ Z

d such that

(xt1 − 1) · · · (xtm − 1) ∈ Ann(c).

Note that if m = 1 then the configuration is t1-periodic. Otherwise, for m ≥ 2,
annihilation by (xt1 − 1) · · · (xtm − 1) can be considered a form of generalized
periodicity.

In the two-dimensional setting d = 2 we find it sometimes more convenient
to work with the periodizer ideal

Per(c) = {f(x) ∈ C[x±1] | f(x)c(x) is two-periodic}
that contains those two-variate Laurent polynomials whose product with config-
uration c is two-periodic. Clearly also Per(c) is an ideal of the Laurent polynomial
ring C[x±1], and we have Ann(c) ⊆ Per(c). In the two-dimensional case we have
a very good understanding of the structure of the ideals Ann(c) and Per(c), see
Theorems 9 and 10 in Sect. 3.

2 Contributions to Nivat’s Conjecture

In [9] we reported an asymptotic result on Nivat’s conjecture. The complete
proof appeared in [10]. Recall that the Nivat’s conjecture claims – taking the
contrapositive of the original statement – that every non-periodic configuration
has high complexity with respect to every rectangle. Our result states that this
indeed holds for all sufficiently large rectangles:

Theorem 4 ([9,10]). Let c be a two-dimensional configuration that is not peri-
odic. Then LD(c) > |D| holds for all but finitely many rectangles D.

Recall that Theorem 3 gives for a low complexity configuration an annihilator
of the form (xt1 − 1) · · · (xtm − 1). If m = 1 then c is periodic, so it is interesting
to consider the cases of m ≥ 2. Szabados proved in [14] that Nivat’s conjecture
holds in the case m = 2. Note that this case is equivalent to c being the sum of
two periodic configurations [9].

Theorem 5 ([14]). Let c be a two-dimensional configuration that has low com-
plexity with respect to some rectangle. If c is the sum of two periodic configura-
tions then c itself is periodic.

We have also considered other types of configurations. Particularly interesting
are uniformly recurrent configurations since they occur in all non-empty sub-
shifts. Recently we proved that they satisfy Nivat’s conjecture, even when rect-
angles are generalized to other discrete convex shapes. We call shape D ⊆ Z

2

convex if D = S ∩Z
2 for some convex set S ⊆ R

2. In particular, every rectangle
is convex.

40 J. Kari

Theorem 6 ([6]). Two-dimensional uniformly recurrent configuration that has
low complexity with respect to a finite discrete convex shape D is periodic.

The presence of uniformly recurrent configurations in subshifts then directly
yields the following corollary.

Theorem 7 ([6]). Let X be a non-empty two-dimensional subshift that has low
complexity with respect to a finite discrete convex shape D. Then X contains a
periodic configuration. In particular, the orbit closure of a configuration that has
low complexity with respect to D contains a periodic configuration.

Note that the periodic element in the orbit closure of c means that c contains
arbitrarily large periodic regions.

The existence of periodic elements provides us with an algorithm to determine
if a given low complexity SFT is empty. This is a classical argument by Hao
Wang [16]: There is a semi-algorithm for non-emptyness of arbitrary SFTs, and
there is a semi-algorithm for the existence of a periodic configuration in a two-
dimensional SFT. The latter semi-algorithm is based on the fact that if a two-
dimensional SFT contains a periodic configuration then it also contains a two-
periodic configuration, and these can be effectively enumerated and tested. Now,
since we know that a two-dimensional SFT that has low complexity with respect
to a convex shape is either empty or contains a periodic configuration, the two
semi-algorithms together yield an algorithm to test emptyness.

Theorem 8 ([6]). There is an algorithm that – given a set of at most |D|
patterns P ⊆ AD over a two-dimensional convex shape D – determines whether
there exists a configuration c ∈ AZ

2
such that LD(c) ⊆ P .

3 Line Polynomials and the Structure of the Annihilator
Ideal

For a polynomial f(x) =
∑

fuxu, we call Supp(f) = {u ∈ Z
d | fu
= 0} its

support. A line polynomial is a polynomial with all its terms aligned on the
same line: f is a line polynomial in direction u ∈ Z

d if and only if supp(f)
contains at least two elements and supp(f) ⊆ Zu. (Note that this definition
differs slightly from the one in [9,10] where the line containing the non-zero terms
was not required to go through the origin. The definitions are the same up to
multiplication by a monomial, i.e. a translation.) Multiplying a configuration by
a line polynomial is a one-dimensional process: different discrete lines v + Zu
in the direction u of the line polynomial get multiplied independently of each
other.

Difference binomials xt − 1 are line polynomials so the special annihilator
provided by Theorem 3 is a product of line polynomials. Annihilation by a
difference binomial means periodicity – and this fact generalizes to any line
polynomial: a configuration that is annihilated by a line polynomial in direction u
is nu-periodic for some n ∈ Z. This is due to the fact that the line polynomial
annihilator specifies a linear recurrence along the discrete lines in direction u.

Low-Complexity Tilings of the Plane 41

The annihilator and the periodizer ideals of a configuration have particularly
nice forms in the two-dimensional setting. Recall that 〈f〉 = {gf | g ∈ C[x±1]}
is the principal ideal generated by Laurent polynomial f . It turns out that a
two-dimensional periodizer ideal is a principal ideal generated by a product of
line polynomials.

Theorem 9 (adapted from [10]). Let c be a two-dimensional configuration
with a non-trivial annihilator. Then Per(c) = 〈f〉 for a product f = f1 · · · fm of
some line polynomials f1, . . . , fm.

By merging line polynomials in the same directions we can choose fi in
the theorem above so that they are in pairwise linearly independent directions.
In this case m, the number of line polynomial factors, only depends on c. We
denote m = Ord(c) and call it the order of c. If Ord(c) = 1 then c is periodic,
and Theorem 5 states that the Nivat’s conjecture is true among configurations
of order two.

Theorem 9 directly implies a simple structure on the annihilator ideal: any
annihilation of c factors through the two-periodic configuration f1 · · · fmc.

Theorem 10 ([10]). Let c be a two-dimensional configuration with a non-trivial
annihilator. Then Ann(c) = f1 · · · fmH where f1, . . . , fm are line polynomials
and H is the annihilator ideal of the two-periodic configuration f1 · · · fmc.

As pointed out above, if c is annihilated by a line polynomial then c is peri-
odic. The structure of Per(c) and Ann(c) allows us to generalize this to other
annihilators. If a two-dimensional configuration c is annihilated (or even peri-
odized) by a polynomial without any line polynomial factors then it follows from
Theorem 9 that Per(c) is generated by polynomial 1, that is, c itself is already
two-periodic. Similarly, if Per(c) contains a polynomial whose line polynomial
factors are all in a common direction then Per(c) = 〈f〉 is generated by a line
polynomial f in this direction, implying that c has a line polynomial annihilator
and is therefore periodic. Such situations have come up in the literature under
the theme of covering codes on the grid [1].

Example 11. Consider the problem of placing identical broadcasting antennas
on the grid Z

2 in such a way that each cell that does not contain an antenna
receives broadcast from exactly a antennas and every cell containing an antenna
receives exactly b broadcasts. Assume that D ⊆ Z

2 is the shape of coverage by
an antenna at the origin. Let us represent this broadcast range as the Laurent
polynomial f(x) =

∑
u∈D xu. Let c be a configuration over A = {0, 1} where we

interpret cu = 1 as the presence of an antenna in cell u. Now, c is a solution to the
antenna placement problem if and only if f(x)c(x) is the power series (b−a)c(x)+
a1(x) where 1(x) is the constant one power series 1(x) =

∑
u∈Z2 xu. Indeed,

(b − a)c(x) + a1(x) has values b and a in cells containing and not containing
an antenna, respectively. In other words, c is a valid placement of antennas if
and only if multiplying c(x) with polynomial f(x) − (b − a) results in the two-
periodic configuration a1(x). If f(x) − (b − a) has no line polynomial factors

42 J. Kari

then we know that this condition forces c to be two-periodic. For example, if
D = {(x, y) | |x| + |y| ≤ 1} so that each antenna only broadcasts to its own
cell and the four neighboring cells, then b − a
= 1 implies two-periodicity of any
solution. �

4 Low Complexity Configurations in Algebraic Subshifts

In [7] we considered low complexity configurations in algebraic subshifts where
the alphabet A is a finite field Fp. As Lemma 2 works as well in this setup,
we have that every low complexity configuration c is annihilated by a non-zero
polynomial f ∈ Fp[x±1]. We then have that c is an element of the algeraic
subshift Sf = {c ∈ AZ

d | fc = 0} of all configurations over A = Fp that are
annihilated by f . So, to prove Nivat’s conjecture it is enough to prove it for
elements of algebraic subshifts. Clearly Sf is of finite type, defined by forbidden
patterns of shape D = −Supp(f). We remark that the theory of this type of
algebraically defined subshifts is well developed, see for example [13].

Example 12. Let A = F2. The Ledrappier subshift (also known as the 3-dot
system) is Sf for f = 1 + x1 + x2. Elements of Sf are the space-time diagrams
of the binary state XOR cellular automaton that adds to the state of each cell
modulo 2 the state of its left neighbor. �

While Lemma 2 works just fine over finite fields Fp, Theorem 3 does not: it is
not true that every element of every algebraic subshift would be annihilated by
a product of difference polynomials. However, configurations over Fp can be also
considered as configurations over Z, without making calculations modulo p. If a
configuration c over Fp has low complexity then it also has low complexity as a
configuration over Z, and thus in Z it has a special annihilator (xt1 −1) · · · (xtm −
1) provided by Theorem 3. Now, considering all calculations modulo p we see
that this special annihilator is also an annihilator over Fp. We conclude that
even over Fp, every low complexity configuration has an annihilator that is a
product of difference binomials.

Example 13. Let c be a low complexity configuration in the Ledrappier subshift
of Example 12. It is then annihilated by f = 1 + x1 + x2 and by some g =
(xt1−1) · · · (xtm−1) that is a product of difference binomials. Because f does not
have line polynomial factors while all irreducible factors of g are line polynomials,
we have that f and g do not have any common factors. Replacing x2 by f −1−x1

in g, we can entirely eliminate variable x2 from g, obtaining a new annihilator
g′ = g − f ′f of c having no occurrence of variable x2. This annihilator g′(x1) is
non-zero because f and g do not have common factors, which implies that c is
horizontally periodic. We can repeat the same reasoning in the vertical direction,
obtaining that c is two periodic. �

The reasoning in the example above can be generalized to other algebraic
subshifts.

Low-Complexity Tilings of the Plane 43

Theorem 14. ([7]). Let c be a low complexity configuration of an algebraic
subshift Sf .

– If f has no line polynomial factors then c is two-periodic.
– If all line polynomial factors of f are in a common direction then c is periodic.

Note that in the theorem there is no assumption about the low complexity
shape D, so the applicability of the theorem is not restricted to rectangles or
convex shapes.

5 Conclusions and Perspectives

There remains many open questions for future study. Obviously, the full version
of Nivat’s conjecture is still unsolved. Our Theorem 6 suggests that perhaps
periodicity is forced by the low complexity condition not only on rectangles but
on other convex shapes as well, as conjectured by Julien Cassaigne in [4]. In
his examples of non-periodic low complexity configurations, the low complexity
shape D is always non-convex. Moreover, all two-dimensional low complexity
configurations that we know consist of periodic sublattices [4,7]. For example,
even lattice cells may form a configuration that is horizontally but not vertically
periodic while the odd cells may have a vertical but no horizontal period. The
interleaved non-periodic configuration may have low complexity with respect to
a scatted shape D that only sees cells of equal parity. We wonder if there exist
any low complexity configurations without a periodic sublattice structure.

Theorem 5 proves Nivat’s conjecture for configurations of order two. How-
ever, Ord(c) = 2 case is special in the sense that c is then a sum of periodic
configurations, that is, finitary power series. In general, any configuration with
a non-trivial annihilator is a sum of periodic power series [9], but already when
Ord(c) = 3 these power series may be necessarily non-finitary [8]. It seems then
that proving Nivat’s conjecture for configurations of order three would reflect the
general case better than the order two case. We also remark that proving Nivat’s
conjecture (for all convex shapes) would render the results of Sect. 2 obsolete.

There are also very interesting questions concerning general low complexity
SFTs. By Theorem 7, a two-dimensional SFT that is low complexity with respect
to a convex shape contains periodic configurations. Might this be true for non-
convex shapes as well? If so, analogously to Theorem 8, this would yield and
algorithm to decide emptyness of general low complexity SFTs. What about
higher dimensions? We do not know of any aperiodic low complexity SFT in any
dimension d of the space. The following example recalls a family of particularly
interesting low complexity SFTs.

Example 15. A d-dimensional cluster tile is a finite subset D ⊆ Z
d, and a co-tiler

is a subset C ⊆ Z
d such that C ⊕ D = Z

d. Visually, C gives positions where
copies of tiles D can be placed so that every cell gets covered by exactly one
tile. Looking at the situation from an arbitrary covered cell u, we see that C is
a co-tiler of D if and only if the set u − D contains precisely one element of C,

44 J. Kari

for every u ∈ Z
d. Representing a co-tiler C as the indicator configuration cu = 1

if u ∈ C and cu = 0 if u
∈ C, we have that the set of valid co-tilers for tile D
is a low complexity SFT: The only allowed patterns of shape −D are those that
contain single 1, and there are |D| such patterns.

The periodic cluster tiling problem asks whether every tile that has a co-tiler
also has a periodic co-tiler [11,15]. This is a special case of the more general
question on arbitrary low complexity SFTs discussed above. The periodic clus-
ter tiling problem was recently answered affirmatively in the two-dimensional
case [2]. In [9] we gave a simple algebraic proof in any number of dimensions for
the case – originally handled in [15] – where |D| is a prime number. �

Finally, the structure of the annihilator ideal is not known in dimension higher
than two. We wonder how Theorem 10 might generalize to the three-dimensional
setting.

References

1. Axenovich, M.A.: On multiple coverings of the infinite rectangular grid with balls
of constant radius. Discrete Math. 268(1), 31–48 (2003). https://doi.org/10.1016/
S0012-365X(02)00744-6

2. Bhattacharya, S.: Periodicity and decidability of tilings of Z
2. CoRR abs/1602.

05738 (2016). https://arxiv.org/abs/1602.05738
3. Birkhoff, G.D.: Quelques théorèmes sur le mouvement des systèmes dynamiques.

Bull. Soc. Math. France 40, 305–323 (1912). https://doi.org/10.24033/bsmf.909
4. Cassaigne, J.: Subword complexity and periodicity in two or more dimensions. In:

Rozenberg, G., Thomas, W. (eds.) Developments in Language Theory. Founda-
tions, Applications, and Perspectives, pp. 14–21. World Scientific (1999)

5. Cyr, V., Kra, B.: Nonexpansive Z
2-subdynamics and Nivat’s Conjecture. Trans.

Amer. Math. Soc. 367(9), 6487–6537 (2015). https://doi.org/10.1090/S0002-9947-
2015-06391-0

6. Kari, J., Moutot, E.: Decidability and periodicity of low complexity tilings. CoRR
abs/1904.01267 (2019). http://arxiv.org/abs/1904.01267

7. Kari, J., Moutot, E.: Nivat’s conjecture and pattern complexity in algebraic sub-
shifts. Theoret. Comput. Sci. (2019, to appear). https://doi.org/10.1016/j.tcs.2018.
12.029

8. Kari, J., Szabados, M.: An algebraic geometric approach to multidimensional
words. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 29–42. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23021-4 3

9. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 273–285. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6 22

10. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture.
CoRR abs/1605.05929 (2016). http://arxiv.org/abs/1605.05929

11. Lagarias, J.C., Wang, Y.: Tiling the line with translates of one tile. Invent. Math.
124, 341–365 (1996). https://doi.org/10.1007/s002220050056

12. Nivat, M.: Keynote address at the 25th anniversary of EATCS, during ICALP
(1997)

https://doi.org/10.1016/S0012-365X(02)00744-6
https://doi.org/10.1016/S0012-365X(02)00744-6
https://arxiv.org/abs/1602.05738
https://doi.org/10.24033/bsmf.909
https://doi.org/10.1090/S0002-9947-2015-06391-0
https://doi.org/10.1090/S0002-9947-2015-06391-0
http://arxiv.org/abs/1904.01267
https://doi.org/10.1016/j.tcs.2018.12.029
https://doi.org/10.1016/j.tcs.2018.12.029
https://doi.org/10.1007/978-3-319-23021-4_3
https://doi.org/10.1007/978-3-662-47666-6_22
https://doi.org/10.1007/978-3-662-47666-6_22
http://arxiv.org/abs/1605.05929
https://doi.org/10.1007/s002220050056

Low-Complexity Tilings of the Plane 45

13. Schmidt, K.: Dynamical systems of algebraic origin. Progress in mathematics.
Birkhäuser, Basel (1995). https://doi.org/10.1007/978-3-0348-0277-2

14. Szabados, M.: Nivat’s conjecture holds for sums of two periodic configurations.
In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.)
SOFSEM 2018. LNCS, vol. 10706, pp. 539–551. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-73117-9 38

15. Szegedy, M.: Algorithms to tile the infinite grid with finite clusters. In: Proceed-
ings 39th Annual Symposium on Foundations of Computer Science, FOCS 1998,
pp. 137–147. IEEE Computer Society (1998). https://doi.org/10.1109/SFCS.1998.
743437

16. Wang, H.: Proving theorems by pattern recognition - II. Bell Syst. Tech. J. 40(1),
1–41 (1961). https://doi.org/10.1002/j.1538-7305.1961.tb03975.x

https://doi.org/10.1007/978-3-0348-0277-2
https://doi.org/10.1007/978-3-319-73117-9_38
https://doi.org/10.1007/978-3-319-73117-9_38
https://doi.org/10.1109/SFCS.1998.743437
https://doi.org/10.1109/SFCS.1998.743437
https://doi.org/10.1002/j.1538-7305.1961.tb03975.x

Union-Freeness, Deterministic
Union-Freeness and Union-Complexity

Benedek Nagy(B)

Department of Mathematics, Faculty of Arts and Sciences,
Eastern Mediterranean University, Famagusta, North Cyprus, Mersin-10, Turkey

nbenedek.inf@gmail.com

Abstract. Union-free expressions are regular expressions without using
the union operation. Consequently, union-free languages are described
by regular expressions using only concatenation and Kleene star. The
language class is also characterised by a special class of finite automata:
1CFPAs have exactly one cycle-free accepting path from each of their
states. Obviously such an automaton has exactly one accepting state. The
deterministic counterpart of such class of automata defines the determin-
istic union-free languages. A regular expression is in union (disjunctive)
normal form if it is a finite union of union-free expressions. By manip-
ulating regular expressions, each of them has equivalent expression in
union normal form. By the minimum number of union-free expressions
needed to describe a regular language, its union-complexity is defined.
For any natural number n there are languages such that their union
complexity is n. However, there is not known any simple algorithm to
determine the union-complexity of any language. Regarding the deter-
ministic union-free languages, there are regular languages such that they
cannot be written as a union of finitely many deterministic union-free
languages.

1 Introduction

The family of regular languages is one of the most known, most common and
most applied class of languages. It is the smallest, the simplest class of the Chom-
sky hierarchy. The descriptions of the regular languages by regular expressions
are widely used. They are generated by regular, by left-linear and by right-linear
grammars. They are accepted by finite state automata: both nondeterministic
and deterministic variants characterize this class of languages. Recently various
classes of subregular languages play also importance [5,9].

In this paper we will consider special subclasses of the regular languages.
The main topic is the class of union-free languages, they are defined by regular
expressions without the union. They were first mentioned as star-dot regular lan-
guages in [2]. Later on, in [4], their description by equations were examined, and
it was shown that this class cannot be axiomatized by a finite set of equations.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 46–56, 2019.
https://doi.org/10.1007/978-3-030-23247-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_3

Union-Freeness, Deterministic Union-Freeness and Union-Complexity 47

Automata theoretical characterisation was given in [11] allowing to define the
deterministic counterpart of the class, the family of deterministic union-free lan-
guages [3,7,8].

It is also known [2,10] that every regular language is a finite union of union-
free languages. The union-complexity of the regular languages is defined subse-
quently based on minimal decompositions [1,10,12]. However, there are regular
languages that cannot be obtained as a finite union of deterministic union-free
languages [8]. On the other hand allowing infinite unions one is able to describe
every recursively enumerable language. Therefore infinite unions are usually not
allowed when languages are described.

The structure of the paper is as follows. In the next section we define the
union-free languages based on regular expressions, we show their characterisation
by 1-cycle-free path automata, and we define deterministic union-free regular
languages and a new class between the union-free and deterministic union-free
class. In Sect. 3 some properties of the mentioned three language classes, e.g.,
closure properties are summarised. Section 4 is about the union decomposition
of regular languages and the union-complexity.

2 The Union-Free Language Classes and Their
Corresponding Automata Classes

In this section first we define the union-free languages and then we recall the
corresponding class of finite automata. We assume that the reader is familiar
with the basic concepts of formal languages and automata, thus for each unex-
plained concepts she/he is referred to any standard textbook on the topic, e.g.,
to [6] or the Handbook chapter [13]. Here we show only specific notions closely
related to the topic of this paper. The empty word is denoted by λ, V is a finite
alphabet, while +, ·, ∗ are the regular operations on languages, i.e., the union,
the concatenation and the Kleene star.

Definition 1 (Union-free expression, union-free language). A regular
expression is union-free expression if only the operators concatenation and
Kleene star are used in its description. A language is union-free if there is a
union-free description that defines it.

A kind of related idea is to define and use star-free expressions, where only
union and concatenation are allowed in regular expressions. They define exactly
the class of finite languages. Since the class of finite languages has already their
well-known name, in the literature, the terms of star-free expressions and lan-
guages usually refer to expressions which are defined by operations union, con-
catenation and complement, and the corresponding language family [13]. Simi-
larly, in the literature sometimes a wider class of languages are called union-free,
those which have a description by operations concatenation, Kleene star and
complement [9]. However, in this paper, the above stricter concept is used.

The empty language is described as regular expression ∅. Each other regular
expression can be written in a tree form, in which the leaves are representing

48 B. Nagy

elements of V ∪{λ} and the other nodes are representing the regular operations.
The language ∅ is very special, in the rest of the paper we assume that the
language we consider is not the empty one.

Definition 2. A 5-tuple A = (Q,S, V, δ, F) is a non-deterministic finite
automaton, with the finite set of states Q. Further, S ∈ Q is the initial state, V
is the (input) alphabet and F ⊂ Q is the set of final (or accepting) states. The
function δ : Q×(V ∪{λ}) → 2Q is the transition function. A path is called accept-
ing path of the word w if it is written as (S = Q0)a1Q1a2Q2...an−1Qn−1anQn

where Qi+1 ∈ δ(Qi, ai+1) for every 0 ≤ i < n with Qn ∈ F and w = a1a2...an

(ai ∈ V ∪ {λ}). A word is accepted by the finite automata if it has an accepting
path.

A path Q0a1Q1a2Q2 . . . an−1Qn−1anQn is called a cycle if Q0 = Qn (where
n > 0). A path without any repeated state is called cycle-free path. Two cycle-
free paths Q0a1 . . . anQn and P0b1 . . . bmPm are called alternative paths, if they
are not identical, but Q0 = P0 and Qn = Pm.

In this paper we use only automata with the following property: for each
state Qi of the automaton there is an accepting path that contains Qi. Conse-
quently, there is no useless and sink states and the automaton may not be fully
determined, i.e., it may happen that for a state Qi and an input letter a the
transition function assigns the empty set.

Definition 3 (1CFPA, d-1CFPA and n-1CFPA). A nondeterministic
finite automaton A is a 1 cycle-free path automaton, a 1CFPA, for short,
if there is a unique cycle-free accepting path from each of its states. Moreover,
if the automaton A has no λ-transition, then it is an n-1CFPA, and if it is a
deterministic, then it d-1CFPA.

Figure 1 shows an example. As a consequence of the definition above, a
1CFPA has exactly one final state. From now on F will refer not only for the set
of final states, but for its unique element as well. The following result is proven
in [11].

Theorem 4. The family of languages which are described by union-free expres-
sions and the family of languages recognized by 1CFPAs are exactly the same.

Proposition 5. Since from every state R there is exactly one transition is going
to the direction of F (without cycle), the word which transfers the state R to F
in cycle-free path is unique for each state.

Definition 6. (backbone). The backbone of the automaton is the cycle-free
path from the initial state (S) to the final state (F). The other parts of the
automaton are the loops, sub-loops etc. The word accepted by the backbone is
called the backbone word.

In a directed graph there are two different concepts that are somewhat anal-
ogous to cycles in the undirected graphs. Cycles in undirected graph allow to

Union-Freeness, Deterministic Union-Freeness and Union-Complexity 49

Fig. 1. An example for a 1-cycle-free-path-automaton.

visit a node more than once in a path, while they also allow to connect nodes
in alternative paths. The directed cycles allow to return to an already visited
node in a path (in a directed graph). Two alternative paths (as two halves of
an undirected cycle) give the chance to reach the same target node from a start
node in two different cycle-free way. Based on that we can compare the graphs
of the classes of automata accepting the union-free and the finite languages.

Proposition 7. Every union-free language is accepted by automata with graphs
having no alternative paths. Every automaton with one final state and without
alternative paths is accepting a union-free language. Every finite language is
accepted by automata with no cycles. Cycle-free automata accept finite languages.

As we have already mentioned the class of finite languages is an important
subclass of the class of regular languages. Both the classes of nondeterministic
and deterministic variants of cycle-free finite state automata correspond to the
class of finite languages. The classes of the union-free languages form a hierarchy
as we describe here. The result of Theorem 4 allows us to call the language classes
accepted by n-1CFPAs and d-1CFPAs as λ-free nondeterministic union-free and
deterministic union-free, respectively. We also use the abbreviated names n-
union-free and d-union-free for these classes of languages.

3 Properties of Union-Free Language Classes

Now we detail some properties of the languages defined above.

Lemma 8. There are infinitely many non-comparable x-union-free languages
with x ∈ {λ, n, d}.
Lemma 9. A union-free language is infinite if and only if every regular expres-
sion contain Kleene star that describes it.

50 B. Nagy

Corollary 10. A union-free language is either infinite or contains at most one
word.

Lemma 11. Let L be an infinite x-union-free language (x ∈ {λ, n, d}). There
are infinitely many sequences of union-free languages starting with L, in which
each language is a proper subset of the previous one.

The next proposition gives a necessary condition for a language to be union-
free.

Proposition 12. The shortest word of a union-free language L is unique and it
is the backbone word. In a union-free language each word contains the backbone
word in scattered way.

It is well-known that the Parikh images of regular languages coincide with the
semi-linear sets. The Parikh images of the union-free languages form a special
subset of the semi-linear sets, and at the same time, they form a special superset
of the linear sets.

Definition 13 (Conditional-linear sets). A set of vectors W is conditional-
linear if the following condition holds. Every vector α is in W if and only if it
can be written in the form

α = α0 + δ1n1α1 + δ2n2αi + · · · + δmnmαm,

where nj are non-negative integers and αj are fixed vectors of non-negative inte-
gers, and δi are conditional coefficients defined in the following way: δ1 = 1, and
if i > 1, then δi is either without any condition and equals to 1, or depends on
the coefficient of some αj with j < i, and in such a case it equals to 1 if δjnj > 0
and to 0 if δjnj = 0:

δi = 1, if there is no condition for αi;

δi =
{

1, if δjnj > 0;
0, if δjnj = 0; if αi depends on the coefficient of αj .

Having δi = 1 for all i without any conditions, the linear sets can be obtained.
Thus conditional-linear sets are a kind of generalisations of linear sets. Moreover,
all conditional linear sets are semilinear, i.e., they are finite unions of linear sets.
However, there are semilinear sets that are not conditional linear.

Theorem 14. Conditional-linear sets coincide with the Parikh images of union-
free languages.

Let L be a union-free language. Note that λ ∈ L if and only if the backbone
word is the empty word. This implies that every terminal is under a Kleene star
in the tree of the regular expression. Under these circumstances the language
can be accepted by a 1CFPA with backbone word λ. If L is n-union-free and
λ ∈ L, then S = F in the corresponding n-1CFPA. Since every 1CFPA (and thus

Union-Freeness, Deterministic Union-Freeness and Union-Complexity 51

d-1CFPA) has exactly one accepting state, languages which cannot be accepted
by deterministic finite automata with only one final state are not d-union-free
languages.

Now, we are in the position to claim the theorem about the closure properties
of union-free languages.

Theorem 15 (Closure properties of union-free languages). The family
of union-free languages is closed under the operations concatenation and Kleene
star. Further, it is closed under the following operations: reversal, homeomor-
phism, substitution by union-free expression, Kleene plus, and for any fixed
natural number n it is closed under the n-th power.

The family of union-free languages is not closed under the following
operations: union (of course), intersection, intersection with regular languages,
complement, difference, symmetric difference, cyclic permutation, permutation,
shuffle, inverse morphism and substitution by regular expression.

Corollary 16. The family of union-free languages is not a cone, not an AFL
and not an anti-AFL.

On the other hand we have only anti-closure properties for the deterministic
counterpart:

Theorem 17 (Closure properties of d-union-free languages). The class
of deterministic union-free languages is not closed under union, complement, dif-
ference, intersection, intersection by regular languages, concatenation, square,
Kleene star, reversal, cyclic shift, permutation, homomorphism, and inverse
morphism.

We are turning to hierarchy results. On one hand it is clear by definition
that all d-union-free languages are n-union-free languages and all n-union-free
languages are union-free. The language a∗b∗ is union-free. However, it is not
n-union-free. The language (aa+ ab+ ba+ bb)∗ is n-union-free, but not d-union-
free. Thus, we can state the following:

Corollary 18. There is a proper hierarchy among the union-free classes:

d-union free � n-union-free � union-free.

4 Union-Complexity of Regular Languages

We start this section by a decomposition result [2,10].

Definition 19. A regular expression is in union normal form if it is a finite
union of union-free expressions.

Theorem 20. For each regular language there is a regular expression in union
normal form that describes it.

52 B. Nagy

Moreover, based on the following equivalences among regular expressions,

1. (x + y)∗ can be written in the form (x∗y∗)∗,
2. (x + y)z can be written in the form (xz + yz),
3. x(z + v) can be written in the form (xz + xv),
4. (x + y)(z + v) can be written in the form (xz + xv) + (yz + yv),

where x, y, z and v are arbitrary regular expressions, one can efficiently find an
equivalent expression in union normal form for any regular expression.

And now we have some notes about the regular expressions containing the
union operation, but describing union-free regular languages.

Let r be a regular expression. For the sake of simplicity assume that its tree
is a binary tree, which means that all unions and concatenations have exactly
two components, while the Kleene stars have exactly one.

Theorem 21. Let r be a regular expression. If every union operation is under a
Kleene star operation in the tree form of r, then r defines a union-free regular
language.

The class of union-free languages is an interesting class including several
languages since we have:

Corollary 22. For each regular language L the language L∗ is union-free
regular.

Now, based on [10,12] we are going to define the union-complexity of lan-
guages by specific decompositions.

A decomposition L =
n⋃

i=1

Li is called proper, if there is no language Lj such

that Lj ⊆
j−1⋃
i=1

Li ∪
n⋃

i=j+1

Li. (One needs all the languages Li to describe L, i.e.,

there is no useless member of the union.) A normal form is called proper normal
form if it gives a proper decomposition.

Definition 23 (Union-complexity). L =
n⋃

i=1

Li is a minimal decomposition

of the language L if each Li is a union-free language and there is no m < n

such that L =
m⋃
i=1

Li, where each Li is union-free. Then, n is called the union-

complexity of language L.

Every minimal decomposition is a proper decomposition, but the converse
does not hold, there are proper decompositions which are not minimal.

Now we are showing special minimal decompositions: a minimal decomposi-
tion of L is given by maximal union-free languages, if there is no L′

i such that
L′
i ⊃ Li and replacing Li with L′

i in the union, the resulted language L is the
same as before.

Proposition 24. The minimal decomposition by maximal union-free languages
of a regular language may not be unique.

Union-Freeness, Deterministic Union-Freeness and Union-Complexity 53

Consider the language over V = {a, b} containing all words that do not
contain bb as a consecutive substring. Its union-complexity is 2, but there are
two minimal decompositions using maximal union-free languages:

((ba)∗a∗)∗ + ((ba)∗a∗)∗b((ab)∗a∗)∗,

and
((ab)∗a∗)∗ + ((ba)∗a∗)∗b((ab)∗a∗)∗.

Let Ln be the family of languages which can be written as union of n union-
free languages.

Theorem 25. The families Ln and Lm are in the following relation:

Ln � Lm iff n > m.

The previous theorem presents an infinite hierarchy of regular languages, in
which the union-free ones are the simplest ones. The planet of regular languages
is shown in Fig. 2, where the “west pole” is the empty language, the west region
contains the union-free languages, the south region contains the finite languages.
The intersection of the classes of union-free and finite languages includes the
empty language and all the singleton languages. A singleton contains exactly
one word. The union-complexity grows to the east direction.

Regular languages

Finite languages

 Union-
free

languages

Union-
complex.

2

2-words

3 . . . n . . .

n-words

The empty language

Fig. 2. The “planet” of regular languages.

54 B. Nagy

We can summarise the known results about the union-complexity in the
following theorem.

Theorem 26. The union-complexity of union-free languages is at most 1: it is
0 for the empty language and 1 for every nonempty union-free language.

For every finite language, its union-complexity is exactly the cardinality of
the language.

A language is regular if and only if its union-complexity is finite.
For each regular language L the union-complexity of L∗ is 1.

In [1] it has been proven that the union-complexity of regular languages
is computable. However, the method is very complex and cannot be used in
practical applications. Some lower and upper bound may be computed much
faster, e.g., a union normal form of a regular language defines an upper bound
for its union-complexity. On the other hand one can also obtain lower bounds
by analysing the short words of the language:

Proposition 27. Let L be a regular language. Fix a natural number n and let
Zn = {w ∈ L | |w| ≤ n}. Consider any subset Z of Zn with maximal cardinality
such that any of the elements of Z does not contain any other elements of Z in
a scattered way. Then |Z| is a lower bound for the union-complexity of L.

While every regular language can be expressed as a union of a finite number
of union-free languages, this is not true if we replace union-free languages by
d-union-free languages.

Theorem 28. The language described by the regular expression ((a+b)(a+b))∗

cannot be expressed as a union of a finite number of deterministic union-free
languages.

As new subregular classes of languages, we may consider the finite unions of
deterministic union-free languages [8].

Definition 29. For every positive integer m, we define dLm as the family of
languages that can be expressed as a union of m d-union-free languages. Fur-
thermore, let

dL∗ =
∞⋃
i=1

dLi.

The following result shows that the classes dLn define a proper infinite hier-
archy similarly to the classes shown in Theorem 25.

Theorem 30. Let n and m be positive integers. The families dLn and dLm are
in the following relation:

dLn � dLmiff n > m.

Moreover,
dL∗ � dLm.

Union-Freeness, Deterministic Union-Freeness and Union-Complexity 55

5 Conclusions

We examined in detail the classes of union-free and deterministic union-free
languages, moreover we have defined a new class between them, namely the
class of n-union-free languages. Various properties of these classes were shown.
Since every regular language is a finite union of union-free languages, the union-
complexity as a complexity measure of the regular languages was considered.
Although it is known that the union-complexity of the regular languages can
be computed, there is not known any efficient algorithm to do it. It was also
recalled that there is a union-free language which cannot be written as a finite
union of d-union-free languages.

References

1. Afonin, S., Golomazov, D.: Minimal union-free decompositions of regular lan-
guages. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS,
vol. 5457, pp. 83–92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00982-2 7

2. Brzozowski, J.A.: Regular expression techniques for sequential circuits. Ph.D. Dis-
sertation, Department of Electrical Engineering, Princeton University, Princeton,
June 1962

3. Brzozowski, J.A., Davies, S.: Most complex deterministic union-free regular lan-
guages. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952,
pp. 37–48. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3 4

4. Crvenković, S., Dolinka, I., Ésik, Z.: On equations for union-free regular languages.
Inf. Comput. 164(1), 152–172 (2001). https://doi.org/10.1006/inco.2000.2889

5. Holzer, M., Kutrib, M.: Structure and complexity of some subregular language
families. In: Konstantinidis, S., Moreira, N., Reis, R., Shallit, J. (eds.) The Role of
Theory in Computer Science - Essays Dedicated to Janusz Brzozowski, pp. 59–82.
World Scientific (2017). https://doi.org/10.1142/9789813148208 0003

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

7. Jirásková, G., Masopust, T.: Complexity in union-free regular languages.
Int. J. Found. Comput. Sci. 22, 1639–1653 (2011). https://doi.org/10.1142/
S0129054111008933

8. Jirásková, G., Nagy, B.: On union-free and deterministic union-free languages.
In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604,
pp. 179–192. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33475-7 13

9. Kutrib, M., Wendlandt, M.: Expressive capacity of subregular expressions. RAIRO
ITA Theor. Inform. Appl. 52(2–3–4), 201–218 (2018). https://doi.org/10.1051/ita/
2018014

10. Nagy, B.: A normal form for regular expressions. In: Calude, C., Calude, E., Dinnen,
M.J. (eds.) Supplemental Papers for DLT 2004, pp. 51–60. CDMTCS Report 252,
Auckland (2004)

11. Nagy, B.: Union-free regular languages and 1-cycle-free-path-automata. Publ.
Math. Debrecen 68, 183–197 (2006)

https://doi.org/10.1007/978-3-642-00982-2_7
https://doi.org/10.1007/978-3-642-00982-2_7
https://doi.org/10.1007/978-3-319-94631-3_4
https://doi.org/10.1006/inco.2000.2889
https://doi.org/10.1142/9789813148208_0003
https://doi.org/10.1142/S0129054111008933
https://doi.org/10.1142/S0129054111008933
https://doi.org/10.1007/978-3-642-33475-7_13
https://doi.org/10.1007/978-3-642-33475-7_13
https://doi.org/10.1051/ita/2018014
https://doi.org/10.1051/ita/2018014

56 B. Nagy

12. Nagy, B.: On union-complexity of regular languages. In: Proceedings of the 11th
IEEE International Symposium on Computational Intelligence and Informatics,
pp. 177–182 (2010)

13. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, pp. 41–100. Springer, Heidelberg (1997). https://doi.org/10.
1007/978-3-642-59136-5 2

https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2

Limited Automata: Properties,
Complexity and Variants

Giovanni Pighizzini(B)

Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
pighizzini@di.unimi.it

Abstract. Limited automata are single-tape Turing machines with
severe rewriting restrictions. They have been introduced in 1967 by
Thomas Hibbard, who proved that they have the same computational
power as pushdown automata. Hence, they provide an alternative char-
acterization of the class of context-free languages in terms of recogniz-
ing devices. After that paper, these models have been almost forgotten
for many years. Only recently limited automata were reconsidered in a
series of papers, where several properties of them and of their variants
have been investigated. In this work we present an overview of the most
important results obtained in these researches. We also discuss some
related models and possible lines for future investigations.

1 A Short Introduction with a Classical Example

This paper is devoted to limited automata. These devices have been introduced,
with the aim of generalizing the notion of determinism in context-free lan-
guages, by Thomas N. Hibbard in 1967, who originally called them scan lim-
ited automata. We present an overview of the most important results on limited
automata: we discuss their computational power, their descriptional complexity,
the relationships between deterministic and nondeterministic versions. Finally,
we shortly discuss some variants of these devices and some related models. In
the paper we will also address some problems related to these devices which, in
our opinion, deserve investigation.

In order illustrate the model, we start by presenting a classical example which
will turn out to be useful in the paper.

Suppose we need to verify that a sequence of brackets is correctly balanced.
A quite natural way to proceed is to start from the first opening bracket and
search for the corresponding closing bracket. To locate it, a counter which is
incremented for each opening bracket and decremented for each closing bracket
can be helpful. When during this process the counter reaches the initial value,
the closing bracket is reached. These operations can be iterated for each opening
bracket in order to verify the matching of all the pairs of brackets and the correct
nesting in the sequence.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 57–73, 2019.
https://doi.org/10.1007/978-3-030-23247-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_4

58 G. Pighizzini

We could use a different and perhaps more simple strategy. Instead of locating
the first opening bracket, we start by locating the first closing one: the corre-
sponding opening bracket is necessarily the last bracket before it, that must be
of the same type. If these two brackets are removed or rewritten by a different
symbol, the same procedure can be repeated on the sequence so modified: locate
the first closing bracket, check if the last bracket before it is of the same type,
and overwrite these two brackets. When no more closing brackets are left in
the sequence, even none opening bracket can be left. In this case the original
sequence was balanced. Otherwise, in the following cases the sequence is not
balanced:

– At the end, the sequence left on the tape contains some opening bracket.
– After locating a closing bracket, no opening bracket before it is found.
– After locating a closing bracket, the last opening bracket found before it is of

a different type.

Suppose now that the sequence of brackets is written on a Turing machine tape,
one bracket per cell, and suppose that the computation of the machine starts,
as usual, with the head scanning the cell containing the first input symbol. In
this way, each input cell is reached for the first time while moving the head from
left to right. We can observe that, applying the above described strategy, the
following facts hold:

– A cell containing a closing bracket is overwritten only when the head visits
it for the first time. After that operation the head is moved back to the left
to search an opening bracket.

– A cell containing an opening bracket is overwritten only when the head visits
it for the second time. In this case the cell is entered by the head from the
right.

– After one of these two active visits, a cell can be visited further many times,
but it cannot be overwritten, so it is “frozen”.

As we will discuss in the paper, each context-free language can be recognized by
a strategy similar to the one we just described. In particular, each context-free
language can be recognized by a single-tape machine which is able to overwrite
the contents of each tape cell only in the first two visits. This is the basic idea
under the computational model of limited automata that we discuss in this work.
The device we have outlined for this specific case is called 2-limited automaton,
since each cell can be overwritten only in the first two visits and, after that, it
is never modified.

2 Limited Automata

Given an integer d ≥ 0, a d-limited automaton is a Turing machine with a single
tape, which initially contains the input, one symbol for each tape cell. At the left
and at the right of the input there are cells containing the two special symbols �

Limited Automata: Properties, Complexity and Variants 59

and � called, respectively, the left and the right end-markers. The machine head
cannot leave the tape segment delimited by the two end-markers, i.e., it cannot
move to the left of the cell containing � and to the right of cell containing �.

In d-limited automata, each tape cell can be overwritten only in the first d
visits. After that the cell is “frozen”, so it cannot be further modified. The cells
containing the two end-markers cannot be never overwritten.

Acceptance is defined in a standard way, as for Turing machines. More tech-
nical details can be found in [28,29].1

We will now discuss the computational power of these models, in the nonde-
terministic and deterministic cases. Then, we will present descriptional complex-
ity aspects and several open problems. We will conclude the section by shortly
discussing time complexity.

2.1 Computational Power, Determinism and Nondeterminism

In Sect. 1 we described how a 2-limited automaton can accept the language of
balanced sequences of brackets. We remind the reader that such a language is
called Dyck language. More precisely, given an alphabet Ωk containing k types
of brackets (hence 2k symbols) we denote by Dk the Dyck language over it.

Dyck languages are important in the investigation of context-free languages,
because they capture the recursive structure of any context-free language. This
fact is formalized in the following famous result:

Theorem 1 (Chomsky-Schützenberger Theorem [2]). Each context-free
language L over an alphabet Σ can be represented as a homomorphic image
L = h(Dk ∩ R), for some integer k > 0, where R ⊆ Ω∗

k is a regular language
and h : Ωk → Σ∗ is a homomorphism.

Theorem 1 suggests a way to build, for any context-free language L, a rec-
ognizer which is the combination of the following devices, as depicted in Fig. 1:

– A one-way nondeterministic machine T that on each input w ∈ Σ∗ produces
a string z ∈ h−1(w).

– A machine AD recognizing the Dyck language Dk.
– A one-way finite automaton AR accepting the regular language R.

As machine AD we can use the 2-limited automaton for the recognition of Dk

outlined in Sect. 1. Using the fact that the homomorphism h can be supposed
to be non-erasing [20], it is possible to combine these machines in such a way
that also the resulting machine accepting the given context-free language L is a
2-limited automaton. (Details can be found in [26,28]). This allows to conclude
that each context-free language is accepted by a 2-limited automaton.

The converse also holds. Furthermore, by allowing a larger, but still constant
number of initial visits in which rewritings are possibles, the computational
power does not increase. By summarizing:
1 Actually, the original definition of d-limited automata was given by Hibbard by

considering some kinds of rewriting systems [9]. It is not difficult to reformulate it,
as we did, in terms of Turing machines.

60 G. Pighizzini

T

AR

AD

�w z ∈ h−1(w)
�

z ∈ R?

�
�

z ∈ Dk?

�w ∈ L?∧

Fig. 1. A machine accepting L = h(Dk ∩ R).

Theorem 2 ([9]). For each d ≥ 2, the class of languages accepted by d-limited
automata coincides with the class of context-free languages.

The just outlined conversion from context-free languages to 2-limited
automata is intrinsically nondeterministic. Actually, the conversion presented
by Hibbard is different and preserves the determinism. Hence, each determin-
istic context-free language is accepted by a deterministic 2-limited automaton.
However, determinism is not preserved by the converse transformation in the
form presented in [9]. Indeed, the problem of the equivalence between the class
of deterministic context-free language and the class of languages accepted by
deterministic 2-limited automata was left open in that paper. This problem was
recently solved in [29], by giving a transformation from 2-limited automata to
pushdown automata which preserves the determinism. The transformation is
based on an extension of transition tables, originally introduced by Shepherd-
son [32] to obtain a simulation of two-way finite automata by equivalent one-way
ones.

Theorem 3 ([29]). The class of languages accepted by deterministic 2-limited
automata coincides with the class of deterministic context-free languages.

It is an easy observation that Theorem 3 cannot be extended to d > 2. For
instance, the following language, which is not deterministic, can be accepted by
a deterministic 3-limited automaton A:

L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0} .

To recognize L, A can scan the tape from left to right, to locate the right end-
marker and, moving back, it can read the last input symbol. If the symbol is a c,
then A has to verify whether or not the number of the a’s in the input coincides
with the number of the b’s. To this aim, A continues to move to the left, to find
a cell containing an a, which is rewritten by the symbol X. Then it moves to the
right to search a cell containing a b, which is also rewritten by the symbol X.
This process is repeated up to reach the left end-marker while searching an a.
When the last symbol of the input is a d, the only difference in the procedure is
that for each a the automaton A has to overwrite two occurrences of the letter b.

We point out that the main motivation of the original work of Hibbard was
to extend the notion of determinism for context-free languages (indeed, the title

Limited Automata: Properties, Complexity and Variants 61

of [9] is “A Generalization of Context-Free Determinism”). With respect to the
number d of initial visits in which rewriting are allowed, by extending the last
example he proved the existence of an infinite hierarchy of deterministic lan-
guages:

Theorem 4 ([9]). For each d > 2 there exists a language which is recognized
by a deterministic d-limited automaton, but which cannot be accepted by any
deterministic (d − 1)-limited automaton.

In [9] it is claimed (without proof) that the set of palindromes cannot be accepted
by deterministic d-limited automata, for any integer d. As a consequence, the
above hierarchy of deterministic languages does not cover all the class of context-
free languages. It would be interesting to have a formal proof of this fact.

Results comparing the degrees of nondeterminism that can be defined accord-
ing to the above hierarchy and measures of nondeterminism for pushdown
automata are presented in [18].

By allowing to overwrite tape cells only in the first visit, the computational
power of limited automata reduces to the class of regular languages.

Theorem 5 ([34, Thm. 12.1]). The class of languages accepted by 1-limited
automata coincides with the class of regular languages.

Concerning the computational power of limited automata, we finally mention the
case where the number of initial visits to each cell in which rewritings are possible
is not constant, but it is bounded by a function f(n) of the input length n. This
case was studied by Wechsung and Brandstädt which gave a characterization
in terms of languages accepted by space bounded one-way auxiliary pushdown
automata, namely pushdown automata with a one-way input tape, extended
with a two-way work tape. The space is measured by taking into account only
the work tape.

Theorem 6 ([36]). For any recursive function f(n), the class of languages
accepted by f(n)-limited automata coincides with the class of languages accepted
by auxiliary pushdown automata in space O(f(n)).

2.2 Descriptional Complexity

To study the descriptional complexity of a formal system, we have to consider
the size of its description, namely the number of symbols which are used to
write down its description. In the case of limited automata over a given input
alphabet Σ, the size is a polynomial in the cardinalities of the state set and of
the working alphabet. For pushdown automata we also have to take into account
how many symbols can be written on the pushdown store in one single move.
However, if each move is allowed to increase the height of the pushdown by
adding at most one symbol, then the size is polynomial in the number of states
and in the cardinality of the pushdown alphabet. In a similar way, to define the
size of context-free grammars, we have to take into account the maximal length

62 G. Pighizzini

of the right-hand sides of productions. For grammars in Chomsky normal form
or, more in general, grammars in which the production right-hand sides have
length at most 2, the size is polynomial in the number of variables. Finally, for
finite automata, the size is polynomial with respect to the number of states.

We introduce a family of languages which will be useful to discuss descrip-
tional complexity results.

For each integer n > 0, let Kn be the set of all strings over the alphabet {a, b}
consisting of the concatenation of blocks of length n, where the last block is equal
to one of the previous blocks. Formally:

Kn = {x1 · · · xkx | k > 0, x1, . . . , xk, x ∈ {a, b}n,∃j, 1 ≤ j ≤ k, xj = x} .

A deterministic 2-limited automaton for Kn

To accept Kn, a deterministic 2-limited automaton Mn can first make a scan
from left to right of the input to locate the right end-marker (this “consumes”
the first visit to each tape cell). Then Mn inspects each block xj of length n
starting from j = k up to j = 1, and compares it, symbol by symbol, with
the last block x. This can be done by moving the head back and forth between
the block under consideration and the last block, using a counter modulo n to
identify the corresponding positions that need to be compared in the two blocks,
while marking the symbols of xj . In this phase or in the first scan, Mn also checks
if the length of the input is a multiple of n. The implementation of Mn can be
done by using O(n) states and a working alphabet of O(1) symbols.

A nondeterministic 1-limited automaton for Kn

In a first complete scan of the tape, the automaton nondeterministically marks
two cells. No more rewriting operations are possible after this phase. The first
marked cell is guessed to be the leftmost position of the required block xj , while
the other one is guessed to be the leftmost position of the last block x. In a second
phase, using a counter modulo n, the machine can verify that the input length is
a multiple of n, the last marked position corresponds to the leftmost symbol of
the last block of length n, and the other marked position is the leftmost symbol
of another block of length n. Finally, the automaton makes n scans of the part
of the tape which contains the two selected blocks: in the ith scan it checks if
the ith symbols in the marked blocks are equal. The implementation produces
a nondeterministic 1-limited automaton with O(n) states.

Lower bounds for Kn

The following lower bounds for the recognition of Kn by pushdown and finite
automata can be proved:

– To accept and to generate Kn, pushdown automata and context-free gram-
mars require exponential size in n.
The proof can be done by using the interchange lemma for context-free lan-
guages [19]. The argument is similar to that used in [29] for a slightly different
language.

– Any one-way deterministic automaton accepting Kn requires a number of
states double exponential in n.

Limited Automata: Properties, Complexity and Variants 63

The proof uses distinguishability arguments. Let x1, x2, . . . , x2n be a list of
all strings in {a, b}n, in some fixed order, and F be the set of all functions
from {1, 2, . . . , 2n} to {0, 1}. For each f ∈ F , consider the string wf =
x
f(1)
1 x

f(2)
2 · · · xf(2n)

2n . Given f, g ∈ F , with f
= g, it can be verified that any
string xi with f(i)
= g(i) distinguishes wf and wg. Since #F = 22

n

, the lower
bound follows.

The size cost of the simulation of 2-limited automata by pushdown automata has
been investigated in [29] by proving an exponential upper bound. The result has
been recently improved, by showing that the upper bound remains exponential if
we simulate a d-limited automaton, with d > 2, by a pushdown automaton [14].
Considering the lower bound given for the size of pushdown automata accept-
ing Kn, we obtain:

Theorem 7 ([14,29]). For each d > 1, the size cost of the transformation
of d-limited automata into equivalent pushdown automata is exponential.

Concerning the transformation of deterministic 2-limited automata into
equivalent deterministic pushdown automata, it has been proved a double expo-
nential upper bound, which reduces to a simple exponential if the input is given
to the pushdown automaton with an extra special symbol marking the right
end. The optimality of the exponential bounds can be proved using Kn. We
conjecture that the double exponential upper bound cannot be reduced.

For the converse transformations, we have the following result:

Theorem 8 ([29]). The size cost of the transformation of pushdown automata
into 2-limited automata is polynomial. Furthermore, the polynomial transforma-
tion preserves determinism.

By Theorem 5, 1-limited automata have the same power of finite state
automata. The proof of this result was obtained by Wagner and Wechung by
adapting the Shepherdson’s technique for the transformation of two-way finite
automata into equivalent one-way ones [32]: given a 1-limited automaton, a non-
deterministic one-way automaton is created which keeps in its state a transition
table corresponding to the portion of the tape at the left of the head. The table is
used to replace parts of computations that from the current head position finally
reach for the first time the position to the right of it, by making a sequence of
moves which visit some of the already scanned tape cells.

By analyzing the cost of such a simulation and by considering the family of
languages Kn, the following costs can be obtained:

Theorem 9 ([28]). The size costs of the transformation of 1-limited automata
into equivalent one-way nondeterministic and deterministic finite automata are
exponential and double exponential, respectively.

We point out that the double exponential cost in Theorem 9 is related to a
double role of the nondeterminism in 1-limited automata. When the head of a 1-
limited automaton reaches for the first time a tape cell, it overwrites the contents

64 G. Pighizzini

according to a nondeterministic choice.2 Furthermore, the set of nondeterministic
choices that are allowed during the next visits to the same cell depends on the
symbol that has been chosen to rewrite it in the first visit and that cannot be
further changed, namely it depends on the nondeterministic choice which was
made during the first visit.

When the given 1-limited automaton is deterministic, the same simulation
produces a one-way deterministic finite automaton of exponential size. The opti-
mality can be easily proved by considering the reversal of the language Kn.

We briefly discuss the unary case, namely, the case of languages defined over
a one-letter alphabet. It is well known that, under this restriction, the classes
of context-free and of regular languages coincide [4]. Hence, for each d ≥ 0,
unary d-limited automata recognize only regular languages. Since the family Kn

of witness languages used in Theorem 9 is defined over a binary alphabet, it is
quite natural to ask if there is any difference in the unary case.

A first result comparing the sizes of unary 1-limited automata and those
of equivalent two-way nondeterministic finite automata was presented in [28].
Kutrib and Wendlandt proved state lower bounds for the simulation of unary d-
limited automata by different variants of finite automata [14,15]. More recently,
the following result has been proved:

Theorem 10 ([30]). For each integer n > 0, the singleton language {a2n} is
accepted by a deterministic 1-limited automaton of size O(n), while each one-way
nondeterministic finite automaton accepting it needs 2n + 1 states.

The upper bound in Theorem 10 was obtained by making use of the construction
and of the properties of the binary carry sequence, an infinite sequence of integers
related base 2 representation [33].

With a small modification, it can be shown that for each n > 0 even the
language {a2n}∗ can be accepted by a deterministic 1-limited automaton of
size O(n), while each two-way nondeterministic finite automaton accepting it
requires 2n states [30].

The results comparing the sizes of finite automata and 1-limited automata
are summarized in Fig. 2. The upper bounds in the diagram follow from the
simulations of 1-limited automata by finite automata (see Theorem 9 and the
discussion after it). All the lower bounds, with the exception of those from 1-
limited automata to one-way deterministic finite automata (arrow (a) in Fig. 2)
and to deterministic 1-limited automata (b), are witnessed by the unary lan-
guage {a2n}∗. For the double exponential lower bound from 1-limited automata
to one-way deterministic automata (a), the binary witness Kn can be used. It is
an open problem if the same gap can be achieved in the unary case. From our
experience on unary languages we conjecture a negative answer. The exponential
lower bound from 1-limited automata to deterministic 1-limited automata (b)

2 We could have moves that do not change the contents of a cell even in the first visit,
as we seen in the above example of 1-limited automaton accepting Kn. For a such a
move, we can imagine that the cell is rewritten by the same symbol which is already
in it.

Limited Automata: Properties, Complexity and Variants 65

d1-la

1nfa/2nfa 2dfa 1dfa

1-la

exp

�

≥ exp
(b)

�
�

�
�

�
�

≥ exp
(c)

������������

double exp
(a)

�
�

�
�

�
�

exp exp

������������

exp
(d)

Fig. 2. State costs of conversions of 1-limited automata (1-la) and deterministic 1-
limited automata (d1-la) into equivalent one-way and two-way deterministic and non-
deterministic finite automata (1dfa, 1nfa, 2dfa, 2nfa).

is a consequence of the double exponential lower bound to one-way determin-
istic automata (a) and of the cost of the simulation of deterministic 1-limited
automata by one-way deterministic automata (d).

At the moment we do not know direct simulations of 1-limited automata
by deterministic 1-limited automata (b) and by two-way deterministic
automata (c). For instance, it should be interesting to know if simulating 1-
limited automata by two-way (instead of one-way) deterministic automata the
cost reduces from a double exponential to a simple exponential.

By summarizing, we can propose the following problems:

Problem 1. Study the size cost of the simulation of unary 1-limited automata
by one-way deterministic finite automata (unary version of (a)).

Problem 2. Study the size cost of the simulation of 1-limited automata by deter-
ministic 1-limited automata, in the general and in the unary case (b).

Problem 3. Study the size cost of the simulation of 1-limited automata by two-
way deterministic finite automata, in the general and in the unary case (c).

We point out that the last two problems are variants of the question of the
cost of the elimination of nondeterminism from two-way automata, proposed by
Sakoda and Sipser in 1978 [31], which is still open (for a recent survey, see [25]).
In particular, concerning Problem 2, we observe that for the elimination of the
nondeterminism from 1-limited automata an exponential lower bound is known,
while for the corresponding problem in two-way finite automata the best known
lower bound is polynomial [3].

It could be also interesting to study a “relaxed” version of the problem of
Sakoda and Sipser, in which the simulating machine could overwrite the contents
of tape cells during the first visit:

66 G. Pighizzini

Problem 4. Study the size costs of the simulations of one-way and two-way non-
deterministic finite automata by deterministic 1-limited automata.

A relaxed version of the Sakoda and Sipser problem has been recently con-
sidered in [5], by proving a polynomial blowup from two-way nondeterministic
automata to single-tape deterministic machines working in linear time. Since
each 1-limited automaton can be converted into an equivalent one working in
linear time also preserving determinism (see Theorem 11 below), proving that the
simulation proposed in Problem 4 costs polynomial would improve that result.

Problem 4 can be further relaxed by considering simulations by determinis-
tic d-limited automata, for d > 1.

2.3 Time Complexity

While one-way and two-way finite automata can always accept in linear time,
with respect to the input length, there are 1-limited automata that use quadratic
time [6].

The Shepherdson’s technique, used by Wagner and Wechsung to prove The-
orem 5, has been recently refined to prove that, with only a polynomial increase
in the size, 1-limited automata can be forced to work in linear time. Roughly,
the main idea is that the running time of 1-limited automata can be reduced
by avoiding computation paths which move back to the left and visit too many
tape cells before reaching again the current position. This is done with a tricky
simulation which stores transition tables on a tape track.

Theorem 11 ([6]). With a polynomial size increase, each 1-limited automaton
can be transformed into an equivalent 1-limited automaton which works in linear
time. Furthermore, determinism can be preserved in such a conversion.

We point out that the machine obtained in Theorem 11 is also a Hennie
machines, namely, a single-tape Turing machine working in linear time. It is
known that these devices can recognize only regular languages.3

In our knowledge, at the moment there are no other results concerning the
time complexity of limited automata.

3 Strongly Limited Automata

In Sect. 2, using the Chomsky-Schützenberger representation theorem (Theo-
rem 1), we discussed how to construct for any context-free language a 2-limited
automaton accepting it. We remind the reader that such a 2-limited automa-
ton is obtained by combining three machines T , AR and AD, as summarized in
Fig. 1. While T and AR are finite state machines, AD is the only “context-free
component” in the construction. In fact, its purpose is that of recognizing a Dyck

3 The proof of this result has been given by Hennie, for the deterministic case [8].
Several improvements have been presented in the literature. See [24] for a survey.

Limited Automata: Properties, Complexity and Variants 67

language Dk. AD can be implemented as the 2-limited automaton described in
Sect. 1. However, we can notice that in order to recognize Dk, AD does not use
all the capabilities of 2-limited automata. For instance, it moves from left to
right only to search closing brackets: in this phase, AD does not need neither to
change the state nor to make any rewriting, except when it finally reaches the
cell containing a closing bracket, where it starts to move to the left to search a
symbol not yet overwritten, which is expected to be the corresponding opening
bracket. While moving to the left, AD ignores the contents of cells that have
been already overwritten.

Since, as we wrote, AD is the only “context-free component” in the construc-
tion and it can be implemented without using all the capabilities of 2-limited
automata, we can ask if it is possible to restrict the moves of 2-limited automata,
without reducing the computational power.

In [27] we gave a positive answer to this question, by introducing strongly
limited automata, a restriction of 2-limited automata which closely imitates the
moves that are used by limited automata to accept Dyck languages. In particular,
strongly limited automata satisfy the following restrictions:

– While moving to the right, a strongly limited automaton always uses the
initial state q0 until a cell (which has not been yet overwritten) is modified.
Then, it enters a different state and starts to move to the left.

– While moving to the left, the automaton ignores the cells that have been
already overwritten and, without changing its internal state, overwrites the
other ones it meets, up to some position where it enters q0 and starts again
to move to the right.

– In the final phase of the computation, which starts when the right end-marker
is reached, the automaton inspects all tape cells, to check whether or not the
string which is finally on the tape belongs to a given 2-strictly locally testable
language. Roughly, this means that all the factors of two letters of this string
(including the end-markers) belong to a given set.

We shortly discuss some examples (for more examples see [26,27]).

Example 1. The language L = {anbn | n ≥ 0} can be accepted by a strongly
limited automaton which in the initial state q0 moves the head to the right to
search the first cell containing a b. When it finds such a cell, it rewrites the
contents by the symbol X and moves the head to the left, until it finds the
first not overwritten symbol, which is expected to be an a. If so, the symbol is
overwritten, the automaton re-enters the state q0 to search another b. When no
more b’s are left on the tape, the head reaches the right end-marker. At this
point the automaton verifies if the string on the tape is of the form �X∗�.

Example 2. A more interesting example is the recognition of the deterministic
context-free language {anb2n | n ≥ 0}, which can be done by a strongly lim-
ited automaton that guesses the position of each second b, using the following
strategy:

68 G. Pighizzini

– Moving the head from left to right, when the automaton reads an a it continues
to move to the right, while when it reads a b it makes a nondeterministic choice
between further moving to the right (so leaving the b in the cell) or rewriting
the cell by X and turning the head to the left.

– Moving the head from right to left, when the automaton reads a b it rewrites it
by Y and continues to move to the left (notice that such a b was left unchanged
in the previous visit, when moving from left to right), while when it reads
an a, it replaces the contents by Z, turning the head to the right.

– In the final scan, which starts when the right end-marker is reached, the
machine accepts if and only if the string on the tape belongs to �Z∗(YX)∗�.

We can modify the above algorithm in order to recognize the language {anbn |
n ≥ 0}∪{anb2n | n ≥ 0}. While moving from left to right, when the head reaches
a cell containing b three actions are possible: either the automaton continues to
move to the right, without any rewriting, or it rewrites the cell by X, turning
to the left, or it rewrites the cell by W, also turning the head to the left. While
moving from right to left, the automaton behaves as the one above described
for {anb2n | n ≥ 0}. The input is accepted if and only if the string which is
finally on the tape belongs to �Z∗W∗� + �Z∗(YX)∗�. ��

In spite of the restrictions on moves, strongly limited automata have the same
computational power as limited automata, namely they characterize context-
free languages. Furthermore they are polynomially related in size to pushdown
automata:

Theorem 12 ([27]).

(i) Each context-free language L is accepted by a strongly limited automaton
whose description has a size which is polynomial with respect to the size of a
given context-free grammar generating L or of a given pushdown automaton
accepting L.

(ii) Each strongly limited automaton M can be simulated by a pushdown
automaton of size polynomial with respect the size of M.

The proof of (i) was obtained using a variant of the representation theorem
of Chomsky-Schützenberger, proved by Okhotin [20], where Dyck languages
extended with neutral symbols and letter-to-letter homomorphisms are used.
(ii) was proven by providing a direct simulation.

In Example 2 we described a strongly limited automaton accepting the deter-
ministic context-free language {anb2n | n ≥ 0}. The automaton makes use of
nondeterministic choices. It is not difficult to prove that this cannot be avoided
(see [27]). Hence:

Theorem 13 ([27]). The class of languages accepted by deterministic strongly
limited automata is properly included in the class of deterministic context-free
languages.

Limited Automata: Properties, Complexity and Variants 69

Strongly limited automata are allowed to change state only when they reverse
the head direction. If we remove this restriction, the language {anb2n | n ≥ 0}
(and other deterministic context-free languages which are not accepted by deter-
ministic strongly limited automata) can be easily recognized in a determinis-
tic way. In order to have a model polynomially related in size to pushdown
automata and whose deterministic version is equivalent to deterministic push-
down automata, in [27] almost strongly limited automata have been proposed.
They are obtained from strongly limited automata by relaxing some of the
restrictions on state changes. In almost strongly limited automata there is a
set of states QR, including the initial state q0, which can be used while moving
to the right, and a set of states QL which can be used while moving to the left.
State changes are possible while moving to the left or to the right (which is not
possible in strongly limited automata), except on the cells that have been already
overwritten. Furthermore, almost strongly limited automata have to satisfy all
the other restrictions given for strongly limited automata.

By adapting the arguments used to prove Theorem 12, it can be shown that
almost strongly limited automata characterize context-free languages and are
polynomially related in size to pushdown automata. Since almost strongly lim-
ited automata are restrictions of 2-limited automata, from Theorem 3 it follows
that each deterministic almost strongly limited automaton recognizes a deter-
ministic context-free language. At the moment, we do not know if the converse
holds.

Problem 5. Does the class of languages accepted by deterministic almost
strongly limited automata coincide with the class of deterministic context-free
languages?

4 Some Related Models

In this section we shortly discuss some restricted variants of Turing machines,
presented in the literature, which recognize context-free languages.

4.1 Wechsung’s Model

We have seen that limited automata are single-tape Turing machines defined by
limiting the active visits to each tape cell from the beginning of the computation:
in a d-limited automaton only the first d visits to each cell can modify the
contents.

We can consider a similar restriction, where for a fixed integer d, only the
last d visits to each cell can be active.

Such a model was implicitly introduced by Wechsung, by considering a com-
plexity measure for one-tape Turing machines called return complexity [35,36].
Indeed, this measure counts the maximum number of visits to a tape cell, start-
ing from the first visit which modifies the cell contents. Machines with return
complexity 1 characterize regular languages (each cell, after the first rewriting,

70 G. Pighizzini

will be never visited again, hence rewritings are useless). Furthermore, it has
been shown that for each d ≥ 2, return complexity d characterizes context-free
languages.4 Even with respect to return complexity, there exists a hierarchy of
deterministic languages (cf. Theorem 4 in the case of limited automata). How-
ever, this hierarchy is not comparable with the class of deterministic context-free
languages. For instance, it can be easily seen that the set of palindromes, which
is not a deterministic context-free language, can be recognized by a deterministic
machine with return complexity 2. However, there are deterministic context-free
languages that cannot be recognized by any deterministic machine with return
complexity d, for any integer d [22,23].

It seems interesting to investigate the possibility of finding a class of machines
containing both limited automata and Wechsung’s machines and still character-
izing context-free languages. One natural attempt can be that of considering
machines such that for each tape cell the number of visits counted starting from
the first active visit up to the last one is bounded by a given constant.

4.2 Forgetting, Deleting and Restarting Automata

With motivations deriving mainly from linguistics, in a series of papers Jancar,
Mráz, and Plátek introduced and studied forgetting automata [10–12]. These
devices are single-tape machines that can erase tape cells by rewriting their con-
tents with a unique special symbol, that cannot be further overwritten. However,
overwritten cells are kept on the tape and are still considered during the com-
putation. For instance, the state can be changed while visiting an erased cell.
Different variants, depending on the allowed operations, have been investigated.

In a variant of forgetting automata that characterizes context-free languages,
when a cell which contains an input symbol is visited while moving to the left,
it is rewritten by the unique special symbol, while it can remain unchanged
while moving to the right. This way of operating has some similarities with
that of strongly limited automata, which, however, can use nonunary rewrit-
ing alphabets.5 Furthermore, in strongly limited automata overwritten cells are
completely ignored (namely, the head direction and the state cannot be changed
while visiting them) except in the final scan of the tape from the right to the
left end-marker.

If erased cells are completely ignored in forgetting automata, the resulting
computational model, called deleting automata, is less powerful. In fact it is not
able to recognize all context-free languages [12].

A modification of forgetting automata, called restarting automata, was intro-
duced in [13] and widely considered in the literature. Variants of restarting
automata characterizing context-free languages have been obtained. For more
details see [21].
4 The maximum number of visits to a cell up to the last rewriting, namely the measure

corresponding to limited automata, is sometimes called dual return complexity [34].
5 A nonunary rewriting alphabet is necessary for strongly limited automata to recog-

nize all context-free languages. For instance, to recognize the set of palindromes, a
working alphabet of at least 3 symbols is required [27].

Limited Automata: Properties, Complexity and Variants 71

4.3 No Space Overhead Machines

With the aim of investigating computations with very restricted resources,
Hemaspaandra, Mukherji, and Tantau studied single-tape Turing machine with
absolutely no space overhead [7]. The model is very close to “realistic computa-
tions”, where the space is measured without any hidden constants. To this aim,
these machines use the binary alphabet Σ = {0, 1} (plus two end-marker sym-
bols) and only the portion of the tape which at the beginning of the computation
contains the input. Furthermore, no other symbols are available, namely only
symbols from Σ can be used to rewrite the tape. Despite these strong restric-
tions, these machines are able to recognize in polynomial time all context-free
languages over Σ.

5 Further Remarks

In this work we presented limited automata, discussed some of their main prop-
erties, in particular concerning computational power, descriptional complexity,
determinism versus nondeterminism. We shortly discussed some related models.

This overview is only partial. Much more space would be necessary to make
an exhaustive and more detailed work.

We conclude by adding a couple of further remarks.
First we point out that reversibility in limited automata has been investi-

gated in [16]. Probabilistic extensions of limited automata have been recently
introduced and studied in [37].

We do not know any result relating limited automata, or their variants, with
input-driven pushdown automata, also known as nested word automata [1,17]. It
is known that these devices recognize a proper subclass of deterministic context-
free languages, which properly contains the class of regular languages. It should
be interesting to know if this class can be characterized by some restricted ver-
sions of limited automata.

Acknowledgment. I am very grateful to Luca Prigioniero for his valuable and helpful
comments.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009). https://doi.org/10.1145/1516512.1516518

2. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems,
Studies in Logic and the Foundations of Mathematics, vol. 35, pp. 118–161. Elsevier
(1963). https://doi.org/10.1016/S0049-237X(08)72023-8

3. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(3),
149–158 (1986). https://doi.org/10.1016/0304-3975(86)90142-8. Errata: 302(1–3),
497–498 (2003)

https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1016/0304-3975(86)90142-8

72 G. Pighizzini

4. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM
9(3), 350–371 (1962). https://doi.org/10.1145/321127.321132

5. Guillon, B., Pighizzini, G., Prigioniero, L., Pr̊uša, D.: Two-way automata and one-
tape machines. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp.
366–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 30

6. Guillon, B., Prigioniero, L.: Linear-time limited automata. Theoret. Comput. Sci.
(2019, in press). https://doi.org/10.1016/j.tcs.2019.03.037

7. Hemaspaandra, L.A., Mukherji, P., Tantau, T.: Context-free languages can be
accepted with absolutely no space overhead. Inform. Comput. 203(2), 163–180
(2005). https://doi.org/10.1016/j.ic.2005.05.005

8. Hennie, F.C.: One-tape, off-line Turing machine computations. Inf. Control 8(6),
553–578 (1965)

9. Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11(1/2),
196–238 (1967)

10. Jančar, P., Mráz, F., Plátek, M.: Characterization of context-free languages by
erasing automata. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629,
pp. 307–314. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55808-
X 29

11. Jancar, P., Mráz, F., Plátek, M.: A taxonomy of forgetting automata. In:
Borzyszkowski, A.M., Soko�lowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 527–
536. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57182-5 44

12. Jančar, P., Mráz, F., Plátek, M.: Forgetting automata and context-free languages.
Acta Inform. 33(5), 409–420 (1996). https://doi.org/10.1007/s002360050050

13. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60249-6 60

14. Kutrib, M., Pighizzini, G., Wendlandt, M.: Descriptional complexity of limited
automata. Inform. Comput. 259(2), 259–276 (2018). https://doi.org/10.1016/j.ic.
2017.09.005

15. Kutrib, M., Wendlandt, M.: On simulation cost of unary limited automata. In:
Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 153–164. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19225-3 13

16. Kutrib, M., Wendlandt, M.: Reversible limited automata. Fund. Inform. 155(1–2),
31–58 (2017). https://doi.org/10.3233/FI-2017-1575

17. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

18. Nasyrov, I.R.: Deterministic realization of nondeterministic computations with a
low measure of nondeterminism. Cybernetics 27(2), 170–179 (1991). https://doi.
org/10.1007/BF01068368

19. Ogden, W.F., Ross, R.J., Winklmann, K.: An “interchange lemma” for context-
free languages. SIAM J. Comput. 14(2), 410–415 (1985). https://doi.org/10.1137/
0214031

20. Okhotin, A.: Non-erasing variants of the Chomsky–Schützenberger theorem. In:
Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31653-1 12

21. Otto, F.: Restarting automata and their relations to the Chomsky hierarchy. In:
Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 55–74. Springer, Heidel-
berg (2003). https://doi.org/10.1007/3-540-45007-6 5

https://doi.org/10.1145/321127.321132
https://doi.org/10.1007/978-3-319-98654-8_30
https://doi.org/10.1016/j.tcs.2019.03.037
https://doi.org/10.1016/j.ic.2005.05.005
https://doi.org/10.1007/3-540-55808-X_29
https://doi.org/10.1007/3-540-55808-X_29
https://doi.org/10.1007/3-540-57182-5_44
https://doi.org/10.1007/s002360050050
https://doi.org/10.1007/3-540-60249-6_60
https://doi.org/10.1007/3-540-60249-6_60
https://doi.org/10.1016/j.ic.2017.09.005
https://doi.org/10.1016/j.ic.2017.09.005
https://doi.org/10.1007/978-3-319-19225-3_13
https://doi.org/10.3233/FI-2017-1575
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1007/BF01068368
https://doi.org/10.1007/BF01068368
https://doi.org/10.1137/0214031
https://doi.org/10.1137/0214031
https://doi.org/10.1007/978-3-642-31653-1_12
https://doi.org/10.1007/3-540-45007-6_5

Limited Automata: Properties, Complexity and Variants 73

22. Peckel, J.: On a deterministic subclass of context-free languages. In: Gruska, J. (ed.)
MFCS 1977. LNCS, vol. 53, pp. 430–434. Springer, Heidelberg (1977). https://doi.
org/10.1007/3-540-08353-7 164

23. Peckel, J.: A deterministic subclass of context-free languages. Časopis pro pěstováńı
matematiky 103(1), 43–52 (1978). http://eudml.org/doc/21335

24. Pighizzini, G.: Nondeterministic one-tape off-line Turing machines. J. Autom.
Lang. Comb. 14(1), 107–124 (2009). https://doi.org/10.25596/jalc-2009-107.
http://arXiv.org/abs/0905.1271

25. Pighizzini, G.: Two-way finite automata: old and recent results. Fund. Inform.
126(2–3), 225–246 (2013). https://doi.org/10.3233/FI-2013-879

26. Pighizzini, G.: Guest column: one-tape Turing machine variants and language
recognition. SIGACT News 46(3), 37–55 (2015). https://doi.org/10.1145/2818936.
2818947

27. Pighizzini, G.: Strongly limited automata. Fund. Inform. 148(3–4), 369–392 (2016).
https://doi.org/10.3233/FI-2016-1439

28. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Inter-
nat. J. Found. Comput. Sci. 25(7), 897–916 (2014). https://doi.org/10.1142/
S0129054114400140

29. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fund.
Inform. 136(1–2), 157–176 (2015). https://doi.org/10.3233/FI-2015-1148

30. Pighizzini, G., Prigioniero, L.: Limited automata and unary languages. Inform.
Comput. 266, 60–74 (2019). https://doi.org/10.1016/j.ic.2019.01.002

31. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.)
Proceedings 10th Annual ACM Symposium on Theory of Computing (STOC 1978),
pp. 275–286. ACM (1978). https://doi.org/10.1145/800133.804357

32. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959). https://doi.org/10.1147/rd.32.0198

33. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. http://oeis.org/
A007814

34. Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing
Company, Dordrecht (1986)

35. Wechsung, G.: Characterization of some classes of context-free languages in terms
of complexity classes. In: Bečvář, J. (ed.) MFCS 1975. LNCS, vol. 32, pp. 457–461.
Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07389-2 233

36. Wechsung, G., Brandstädt, A.: A relation between space, return and dual return
complexities. Theoret. Comput. Sci. 9, 127–140 (1979). https://doi.org/10.1016/
0304-3975(79)90010-0

37. Yamakami, T.: Behavioral strengths and weaknesses of various models of limited
automata. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOF-
SEM 2019. LNCS, vol. 11376, pp. 519–530. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-10801-4 40

https://doi.org/10.1007/3-540-08353-7_164
https://doi.org/10.1007/3-540-08353-7_164
http://eudml.org/doc/21335
https://doi.org/10.25596/jalc-2009-107
http://arXiv.org/abs/0905.1271
https://doi.org/10.3233/FI-2013-879
https://doi.org/10.1145/2818936.2818947
https://doi.org/10.1145/2818936.2818947
https://doi.org/10.3233/FI-2016-1439
https://doi.org/10.1142/S0129054114400140
https://doi.org/10.1142/S0129054114400140
https://doi.org/10.3233/FI-2015-1148
https://doi.org/10.1016/j.ic.2019.01.002
https://doi.org/10.1145/800133.804357
https://doi.org/10.1147/rd.32.0198
http://oeis.org/A007814
http://oeis.org/A007814
https://doi.org/10.1007/3-540-07389-2_233
https://doi.org/10.1016/0304-3975(79)90010-0
https://doi.org/10.1016/0304-3975(79)90010-0
https://doi.org/10.1007/978-3-030-10801-4_40
https://doi.org/10.1007/978-3-030-10801-4_40

Nondeterministic Right One-Way
Jumping Finite Automata

(Extended Abstract)

Simon Beier and Markus Holzer(B)

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{simon.beier,holzer}@informatik.uni-giessen.de

Abstract. Right one-way jumping finite automata are deterministic
devices that process their input in a discontinuous fashion. We gener-
alise these devices to nondeterministic machines. More precisely we study
the impact on the computational power of these machines when allow-
ing multiple initial states and/or a nondeterministic transition function
including spontaneous or λ-transitions. We show inclusion relations and
incomparability results of the induced language families. Since for right-
one way jumping devices the use of spontaneous transitions is subject
to different natural interpretations, we also study this subject in detail,
showing that most interpretations are equivalent to each other and lead
to the same language families. Finally we also study inclusion and incom-
parability results to classical language families and to the families of
languages accepted by finite automata with translucent letters.

1 Introduction

Right one-way jumping finite automata (ROWJFAs) were introduced in [4] as a
deterministic variant of jumping finite automata [9], a machine model for discon-
tinuous information processing, that is allowed to read letters from anywhere in
the input string, not necessarily only from left of the remaining input. In a right
one-way jumping finite automaton the device moves the input head determinis-
tically from left-to-right starting from the leftmost letter in the input and when
it reaches the end of the input word, it returns to the beginning and continues
the computation. The language families induced by these two automata models
are quite interesting since they have relations to semi-linear sets, see, e.g., [1–
3,5,6,11]. While languages that are accepted by jumping finite automata are
permutation closed and semi-linear [9], the permutation closed languages that
are accepted by ROWJFAs are exactly those languages with a finite number
of positive Myhill-Nerode equivalence classes [1], that is, the permutation closed
language under consideration can be written as the finite union of Myhill-Nerode
classes. This is a nice transfer of a classical result on finite automata that states
that a language is regular or accepted by a deterministic finite automaton if
and only if the number of Myhill-Nerode equivalence classes is finite, to the case
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 74–85, 2019.
https://doi.org/10.1007/978-3-030-23247-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_5

Nondeterministic Right One-Way Jumping Finite Automata 75

where the index (number of equivalence classes) of the Myhill-Nerode relation
is not finite any more. Since many generalizations of finite automata such as,
e.g., nondeterminism, multiple initial states, etc. do note change their accepting
power, the question arises whether a similar result is valid for ROWJFAs, too?
We answer this question for two types of generalizations, namely nondetermin-
istic transitions and/or multiple initial states, for jumping finite automata and
ROWJFAs.

For jumping finite automata the generalizations to nondeterministic transi-
tions functions and/or multiple initial states do not change the computational
power of these devices and leads to the language family JFA. This is in sharp
contrast to ROWJFAs, where these generalizations increase the computational
power of these devices and thus induce a mesh of language families and their
permutation closed variants that are strictly included within each other (due to
the trivial inclusion relations), subject to one exception. For the case of non-
deterministic ROWJFAs and nondeterministic ROWJFAs with multiple initial
states, we find that the induced languages families NROWJ and MNROWJ
coincide in case we consider permutation closed languages. Then this language
family is nothing other than JFA, the family of all languages accepted by jump-
ing finite automata. The corresponding deterministic language families ROWJ
and MROWJ of all languages accepted by ROWJFAs and those with multiple
initial states satisfy ROWJ ⊂ MROWJ and pROWJ ⊂ pMROWJ, resp.,
where the prefix p refers to the permutation closed language family in ques-
tion. By results in [2], it was shown that the permutation closed languages over
binary alphabets accepted by ROWJFAs with multiple initial states are those
languages that are a finite union of permutation closed languages, where each
language has a finite number of positive Myhill-Nerode equivalence classes. For
arbitrary alphabets we have a characterization which is a bit more sophisticated
and uses the quotient of a language by a word. Although the generalization
of ROWJFAs to nondeterministic ROWJFAs with and without multiple initial
states is straightforward, it is not clear how to describe the semantics of these
machines in case of spontaneous or λ-transitions. This issue is discussed in detail
and we give three different semantics, where it turns out that two of them are
equivalent. The introduced generalizations nicely fit into the known landscape of
the language families that were considered earlier. We further prove inclusion and
incomparability results to classical language families such as the deterministic
context-free languages, context-free languages, and context-sensitive languages.
In some of our proofs a nice and tight relation between languages accepted by
ROWJFAs and variants thereof to semi-linear sets and languages with finite
positive Myhill-Nerode equivalence classes [1,2] is exploited.

Because ROWJFAs share some features of finite automata with translucent
letters [10] since their input letter reading mechanism looks similar, it is natural
to consider the relation of the language families given by these automata to
ROWJFAs and generalizations thereof. In passing we solve an open problem
on deterministic finite automata with translucent letters stated in [10]. Due to
space constraints all proofs are omitted and will be given in a journal version of
this paper.

76 S. Beier and M. Holzer

2 Preliminaries

We assume the reader to be familiar with the basics in automata and formal
language theory as contained, for example, in [7]. Let N = {0, 1, 2, . . .} be the
set of non-negative integers. We use ⊆ for inclusion and ⊂ for proper inclusion
of sets. We denote the powerset of a set S by 2S . For a binary relation ∼ let ∼+

and ∼∗ denote the transitive closure of ∼ and the transitive-reflexive closure
of ∼, respectively. In the standard manner, ∼ is extended to ∼n, where n ≥ 0.
Let Σ be an alphabet. Then Σ∗ is the set of all words over Σ, including the
empty word λ. For a language L ⊆ Σ∗ define the set perm(L) = ∪w∈L perm(w),
where perm(w) = { v ∈ Σ∗ | v is a permutation of w }. A language L is called
permutation closed if L = perm(L). The length of a word w ∈ Σ∗ is denoted
by |w|. For the number of occurrences of a symbol a in w we use the notation |w|a.
If Σ is the ordered alphabet Σ = {a1, a2, . . . , ak}, the function ψ : Σ∗ → N

k

with w 	→ (|w|a1 , |w|a2 , . . . , |w|ak
) is called the Parikh-mapping. The set ψ(L) is

called the Parikh-image of L. Two languages over the same ordered alphabet
are said to be Parikh-equivalent if and only if they have the same Parikh-image.
The language L is called letter-bounded if and only if L ⊆ a∗

1a
∗
2 · · · a∗

k.
For a vector c ∈ N

k and a finite set P ⊂ N
k let L(c, P) denote the sub-

set L(c, P) = { c +
∑

xi ∈P λi · xi | λi ∈ N } of N
k. Sets of the form L(c, P),

for a c ∈ N
k and a finite P ⊂ N

k, are called linear subsets of N
k. A subset

of N
k is said to be semi-linear if it is a finite union of linear subsets. Moreover,

a language L ⊆ Σ∗ is called semi-linear if its Parikh-image ψ(L) is semi-linear.
For an alphabet Σ and a language L ⊆ Σ∗, let ∼L be the Myhill-Nerode

equivalence relation on Σ∗. So, for v, w ∈ Σ∗, we have v ∼L w if and only if, for
all u ∈ Σ∗, the equivalence vu ∈ L ⇔ wu ∈ L holds. For w ∈ Σ∗, we call the
equivalence class [w]∼L

positive if and only if w ∈ L.
We define a nondeterministic finite automaton with multiple start states

and spontaneous or λ - transitions, a λ-MNFA for short, as a tuple A =
(Q,Σ,R, S, F), where Q is the finite set of states, Σ is the finite input alphabet,
R is a function from Q × (Σ ∪ {λ}) to 2Q, S ⊆ Q is the set of start states,
and F ⊆ Q is the set of final states. The elements of R are referred to as rules
of A and we simply write pa → q ∈ R instead of q ∈ R(p, a), for p, q ∈ Q and
a ∈ Σ ∪ {λ}.

A configuration of A is a string in QΣ∗. The automaton A makes a transition
from configuration paw to configuration qw if pa → q ∈ R, where p, q ∈ Q,
a ∈ Σ ∪ {λ}, and w ∈ Σ∗. We denote this by paw �A qw or just paw � qw if it
is clear which automaton we are referring to. The language accepted by A is

L(A) = { w ∈ Σ∗ | ∃s ∈ S, f ∈ F : sw �∗ f } .

We say that A accepts w ∈ Σ∗ if w ∈ L(A) and that A rejects w otherwise.
The automaton A is called a nondeterministic finite automaton with multiple

start states, an MNFA, if R(p, λ) = ∅ for all p ∈ Q. We call A a nondeterministic
finite automaton with λ-transitions, a λ-NFA, if |S| = 1. If A is an MNFA
and a λ-NFA, we say that A is a nondeterministic finite automaton, an NFA.

Nondeterministic Right One-Way Jumping Finite Automata 77

The automaton A is said to be a deterministic finite automaton with multiple
start states, an MDFA, if A is an MNFA and |R(p, a)| ≤ 1 for all p ∈ Q and
a ∈ Σ. Finally, we call A a deterministic finite automaton, a DFA, if it is an
MDFA and an NFA. It is well known that for all the aforementioned types of
automata are computational equivalent and the family of languages accepted
by any of these devices is referred to as the family of regular languages REG.
Observe that these automata read the input in a symbol by symbol manner from
left to right.

Besides the family of regular languages REG, we also use the following lan-
guage families: let DCF, CF, and CS be the families of deterministic context-
free, context-free, and context-sensitive languages. Moreover, we are interested
in families of permutation closed languages. These language families are referred
to by a prefix p. For instance, pREG denotes the language family of all permu-
tation closed regular languages.

3 Variants of Nondeterministic Jumping Finite Automata

We start our investigation with the generalization of jumping automata to vari-
ants of jumping automata with multiple initial states. Originally, jumping finite
automata were introduced in [9] as deterministic or nondeterministic devices
with a sole initial state. The idea behind a jumping finite automaton is that the
device no longer reads the input from left to right, but is allowed to read let-
ters from anywhere in the input string. For a λ-MNFA A = (Q,Σ,R, S, F) this
behaviour can be modelled by a binary relation, the jumping relation, which is
symbolically denoted by �A, over configurations from QΣ∗ and is defined as fol-
lows: consider an a ∈ Σ ∪{λ}, words x, y ∈ Σ∗, states p, q ∈ Q, and pa → q ∈ R.
Then, we write pxay �A qxy or just pxay � qxy if it is clear which automaton
we are referring to. The language accepted by A interpreted as a jumping finite
automaton is

LJ (A) = { w ∈ Σ∗ | ∃s ∈ S, f ∈ F : sw �
∗ f } .

We say that A interpreted as a jumping finite automaton accepts w ∈ Σ∗

if w ∈ LJ(A), otherwise A interpreted as a jumping finite automaton rejects
the word w.

Example 1. Let A be the DFAA = ({q0, q1, q2, q3}, {a, b}, R, q0, {q3}), where R
consists of the rules q0b → q1, q0a → q2, q2b → q3, and q3a → q2. The automa-
ton A is depicted in Fig. 1. It holds

L(A) = (ab)+ and LJ(A) = perm
(
(ab)+

)
=

{
w ∈ {a, b}+ ∣

∣ |w|a = |w|b
}

.

Observe, that LJ(A) is a permutation closed language that is non-regular but
context-free. ��

It can easily be seen that LJ(A) = perm(L(A)) holds in general. That is why,
for X,Y ∈ {DFA,MDFA,NFA,MNFA, λ-NFA, λ-MNFA}, the family of lan-
guages accepted by automata of type X interpreted as jumping finite automata

78 S. Beier and M. Holzer

q0 q1 q2 q3
b

a

b

a

Fig. 1. The DFA A with L(A) = (ab)+ interpreted as a jumping finite automaton
accepts the language LJ(A) = { w ∈ {a, b}+ | |w|a = |w|b }.

equals the family of languages accepted by automata of type Y interpreted as
jumping finite automata. This language family is referred to as JFA. Clearly,
we have JFA = pJFA and it obeys a nice characterization.

Theorem 2. A language L is in JFA if and only if L is permutation closed and
semi-linear. ��

Moreover pCF ⊂ JFA ⊂ pCS and JFA strictly contains pROWJ; here
ROWJ refers to the family of languages that are accepted by right one-way finite
jumping automata, an automaton model introduced in the next subsection—in
addition JFA is incomparable to the families REG, DCF, CF, ROWJ; for
these results see, e.g., [1,4,5,9].

Let us take a look at the descriptional complexity of these devices. It is
obvious that the standard automata construction from the theory of finite state
devices also applies to our setting whenever the underlying machine is inter-
preted as a jumping finite automaton. Hence, the conversion of a type X automa-
ton, for X ∈ {MDFA,MNFA, λ-NFA, λ-MNFA}, to an equivalent NFA device
(both machines interpreted as jumping automata) results in state complexity
increase of at most one state, which is used to simulate the union of languages
for automata of types from {MDFA,MNFA, λ-MNFA}. Removing spontaneous
transitions does not increase the number of states at all. The remaining conver-
sion from an NFA to a DFA is at most 2n, where n is the number of states of
the NFA, due to the powerset construction that can be successfully applied in
our setting, too. Since the equivalence needs to be w.r.t. the Parikh image of the
languages one can prove a better conversion bound. Namely, in [8] it was shown
that for each NFA with n states a Parikh equivalent DFA with eO(

√
n log n) states

can be constructed and that this bound is asymptotically tight. Thus, in our
setting this result reads as follows:

Theorem 3. Let A be an n-state NFA. Then eO(
√

n log n) states are sufficient
and necessary in the worst for a DFA B to accept the language LJ (A) if B is
interpreted as a jumping finite automaton, that is, LJ (B) = LJ (A). ��

3.1 Right One-Way Jumping Finite Automata

We deal with a variant of jumping finite automata, namely so called right one-
way jumping finite automata, which were introduced in [4] in the determinis-
tic case. We now generalize the definition of these devices to nondeterministic

Nondeterministic Right One-Way Jumping Finite Automata 79

machines without λ-transitions. Their behaviour can be described as follows.
The read head starts the computation at the leftmost symbol of the input and
moves to the right. If R(p, a) �= ∅ for the current state p and the next input
symbol a, one of the possible transitions is executed, the symbol a is consumed,
and the read head moves on to the next symbol. If, however, R(p, a) = ∅, the
read head jumps over a, does not consume it, and moves on to the next symbol.
When the head reaches the end of the input, it jumps back to the beginning and
continues the computation, which goes on until no input symbol is left.

A formal definition is given in the following: let A = (Q,Σ,R, S, F) be
an MNFA. The right one-way jumping relation, symbolically denoted by �A,
over QΣ∗ is defined as follows. Let p, q ∈ Q, a ∈ Σ, w ∈ Σ∗, and q ∈ R(p, a).
Then, we have paw �A qw. Now, let p ∈ Q, a ∈ Σ, and w ∈ Σ∗ with R(p, a) = ∅.
In this case we get paw �A pwa. We also write � instead of �A if it is clear
which automaton we are referring to. The language accepted by A interpreted as
a right one-way jumping finite automaton is

LR(A) = { w ∈ Σ∗ | ∃s ∈ S, f ∈ F : sw �∗ f } .

In order to keep the presentation simple, we speak of a ROWJFA
MROWJFA, NROWJFA, and MNROWJFA, respectively, if we interpret a
DFA,MDFA,NFA, and a MNFA as a right one-way device, respectively. The cor-
responding language families are referred to as ROWJ,MROWJ,NROWJ,
and MNROWJ, resp. Clearly, for unary alphabets all these families correspond
with REG.

Example 4. We continue our previous example. To show how ROWJFAs work,
we give an example computation of A, interpreted as an ROWJFA on the input
word aabbba:

q0aabbba � q2abbba �2 q3bbaa �3 q2abb �2 q3ba �2 q2b � q3

That shows aabbba ∈ LR(A). Analogously, one can see that every word that
contains the same number of a’s and b’s and that begins with an a is in LR(A).
On the other hand, no other word can be accepted by A, interpreted as an
ROWJFA So, we get LR(A) = {w ∈ a{a, b}∗ | |w|a = |w|b }. Notice that this
language is non-regular and not closed under permutation. ��

Now the question arises how the right one-way jumping relation can be gen-
eralized to work on automata with λ-transitions? Sometimes we call these tran-
sitions also spontaneous transitions. To cope with spontaneous transitions we
have three different interpretation possibilities for the right one-way jumping
relation—as above we speak of λ-NROWJFAs (λ-MNROWJFAs, respectively),
if λ-NFAs (λ-MNFAs, respectively) are interpreted as right one-way jumping
devices:

Type 1. The first type of right one-way jumping finite automata is only allowed
to jump over an input symbol, if A cannot perform a λ-transition in the
current state. So, the right one-way jumping relation of type 1, symbolically

80 S. Beier and M. Holzer

denoted by �A,1, over QΣ∗ is defined as follows. Let p, q ∈ Q, a ∈ Σ ∪ {λ},
w ∈ Σ∗, and q ∈ R(p, a). Then, we have paw �A,1 qw. Now, let p ∈ Q, a ∈ Σ,
and w ∈ Σ∗ with R(p, a) = ∅ = R(p, λ). In this case it holds paw �A,1 pwa.

Type 2. If the second type of right one-way jumping finite automata has no
transition for the current state and the next input symbol, but can perform
a λ-transition in the current state, the automaton is allowed to choose if it
performs a jump or if it uses a λ-transition. However, if the automaton decides
to jump, it has to jump over all the following input symbols that cannot be
read in the current state and must read the next input symbol that can be
read in the current state. Not until now, the automaton is allowed to perform
a λ-transition again. So, we set

ΣR,p = { a ∈ Σ | R(p, a) �= ∅ }
for p ∈ Q. Therefore the right one-way jumping relation of type 2, symbolically
denoted by �A,2, over QΣ∗ is defined as follows. For p, q ∈ Q, w ∈ Σ∗, and
q ∈ R(p, λ) it holds pw �A,2 qw. Now, let p, q ∈ Q, a ∈ Σ, v ∈ (Σ \ ΣR,p)∗,
and w ∈ Σ∗ with q ∈ R(p, a). Then, we get pvaw �A,2 qwv.

Type 3. If the third type of right one-way jumping finite automata has no
transition for the current state and the next input symbol, but can perform
a λ-transition in the current state, the automaton is allowed to choose if it
jumps over the next input symbol or if it uses a λ-transition. Thus, the right
one-way jumping relation of type 3, symbolically denoted by �A,3, over QΣ∗

is defined as follows. Let p, q ∈ Q, a ∈ Σ ∪ {λ}, w ∈ Σ∗, and q ∈ R(p, a).
In this case we have paw �A,3 qw. For p ∈ Q, a ∈ Σ, and w ∈ Σ∗ with
R(p, a) = ∅ it holds paw �A,3 pwa.

Let i ∈ {1, 2, 3}. We also write �i instead of �A,i if it is clear which automaton
we are referring to. The language accepted by A interpreted as a right one-way
jumping finite automaton of type i is defined to be

LRi(A) = { w ∈ Σ∗ | ∃s ∈ S, f ∈ F : sw �∗
i f } .

This give rise to the language families λiNROWJ (λiMNROWJ, respectively)
of all languages accepted by λ-NROWJFAs (λ-MNROWJFAs, respectively) of
type i, for 1 ≤ i ≤ 3. Again, all these families correspond with REG for unary
alphabets.

Example 5. Let A = ({q0, q1, . . . , q5}, {a, b, c}, R, {q0}, {q5}) be the λ-NROW
JFA with

R = {q0λ → q1, q0a → q4, q1a → q2, q1b → q2,

q1c → q3, q3a → q4, q4b → q5, q5a → q4}.

The automaton A is depicted in Fig. 2.
It is easy to see that that L(A) = {λ, c}(ab)+. Let L refer to the language

{w ∈ {a, b}+ | |w|a = |w|b }. For the three interpretations on how to cope with
spontaneous transitions we get the following languages—let letter x ∈ {a, b},
words u, v ∈ {b, c}∗, and w ∈ {a, b, c}∗:

Nondeterministic Right One-Way Jumping Finite Automata 81

q0 q1 q2 q3 q4 q5
λ a, b

c

a

a

b

a

Fig. 2. The λ-NROWJFA A with L(A) ⊂ LR1(A) ⊂ LR2(A) ⊂ LR3(A) ⊂ LJ(A).

– In type 1 we have the computations q0aw �1 q4w, q0xw �2
1 q2w, and

q0cvaw �2
1 q3vaw �|v|+1

1 q4wv. This implies

LR1(A) = { w ∈ a{a, b}∗ | |w|a = |w|b } ∪ cL.

– For type 2 we get the behaviour q0vaw �2 q4wv, q0xw �2
2 q2w, and finally

q0cvaw �2
2 q3vaw �2 q4wv. That gives us

LR2(A) = {λ, c}L.

– In type 3 it holds q0vaw �|v|+1
3 q4wv, q0vxw �|v|+2

3 q2wv, and moreover
q0vcuaw �|v|+2

3 q3uawv �|u|+1
3 q4wvu. Hence, we have

LR3(A) = L ∪ {
bncw

∣
∣ n ≥ 0, w ∈ {a, b}+, |bncw|a = |bncw|b

}
.

Furthermore, we get

LJ(A) = perm(L(A)) = { w ∈ {a, b, c}∗ | |w|a = |w|b > 0, |w|c ∈ {0, 1} } .

It follows
L(A) ⊆ LR1(A) ⊆ LR2(A) ⊆ LR3(A) ⊆ LJ (A)

where the inclusions are strict. This inclusion chain is not a coincidence, as we
will see next. ��

From our definitions, we can deduce:

Lemma 6. Let A = (Q,Σ,R, S, F) be a λ-MNROWJFA. Then, the following
holds:

1. We have L(A) ⊆ LR1(A) ⊆ LR2(A) ⊆ LR3(A) ⊆ LJ (A) and these languages
are semi-linear.

2. If A is an MNROWJFA, then LR(A) = LRi(A), for 1 ≤ i ≤ 3. Hence the
inclusion chain L(A) ⊆ LR(A) ⊆ LJ(A) applies.

3. If R(p, a) �= ∅, for every state p ∈ Q and letter a ∈ Σ, then L(A) = LRi(A),
for 1 ≤ i ≤ 3. ��
Lemma 6 implies that every regular language is accepted by a ROWJFA,

because every regular language is accepted by a DFA with total transition func-
tion. On the other hand, we have seen in our example that ROWJFAs can accept
non-regular languages. Indeed, it was already shown in [4] that REG ⊂ ROWJ.

82 S. Beier and M. Holzer

3.2 Variants of Right One-Way Jumping Finite Automata Without
Spontaneous Transitions

From the language families ROWJ,MROWJ,NROWJ, and MNROWJ
and their permutation closed variants the former two were already investi-
gated in the literature. For inclusion relations and incomparability results see,
e.g., [1,2]. Clearly, MROWJ consists exactly of the finite unions of languages
from ROWJ. However, it is not clear that every language from pMROWJ is
a finite union of languages from pROWJ. Nice characterizations for both lan-
guage families were obtained. More precisely, a permutation closed language L
is in ROWJ if and only if the Myhill-Nerode relation ∼L has only a finite
number of positive equivalence classes [1]. In [2], concerning the language family
MROWJ it was shown that for a permutation closed language L the follow-
ing statements are equivalent: (1) For all w ∈ Σ∗, the language L/dw is in
pMROWJ, where

L/dw = { v ∈ Σ∗ | vw ∈ L and (|v|a = 0 ∨ |w|a = 0), for every a ∈ Σ }
is the disjoint quotient of a language L ⊆ Σ∗ by a word w ∈ Σ∗, and (2) there
is an n ≥ 0 and permutation closed languages L1, L2, . . . , Ln ⊆ Σ∗ such that
L =

⋃n
i=1 Li and for all i ∈ {1, 2, . . . , n} the language Li has only a finite number

of positive Myhill-Nerode equivalence classes. Both characterization results are
based on a relation between languages accepted by ROWJFAs and MROWJFAs
and semi-linear sets. For our language families we find the following situation.

Theorem 7. The following strict inclusions of language families hold:

1. ROWJ ⊂ MROWJ and ROWJ ⊂ NROWJ.
2. MROWJ ⊂ MNROWJ and NROWJ ⊂ MNROWJ. ��

The languages used in the proof of the previous theorem show that the lan-
guage families MROWJ and NROWJ are incomparable.

Corollary 8. The language families MROWJ and NROWJ are
incomparable. ��

Before we investigate the hierarchy of permutation closed language fami-
lies we first state a result that shows that whenever the underlying device is
nondeterministic and accepts a permutation closed language it does not matter
whether the automaton has multiple initial states or not. Moreover, we show
that the induced language family coincides with JFA, the family of languages
accepted by jumping finite automata.

Theorem 9. We have pNROWJ = pMNROWJ = JFA. ��
From [2], we know pROWJ ⊂ pMROWJ. Furthermore, the permutation

closed language {w ∈ {a, b}∗ | |w|a �= |w|b } is clearly in JFA, but was shown to
be not in pMROWJ in [2]. Hence, together with the previous theorem we get:

Theorem 10. It holds pROWJ ⊂ pMROWJ ⊂ pNROWJ =
pMNROWJ. ��

Nondeterministic Right One-Way Jumping Finite Automata 83

3.3 Variants of Right One-Way Jumping Finite Automata
with Spontaneous Transitions

In this subsection we study λ-NROWJFAs and λ-MNROWJFAs under the three
semantics introduced earlier. Observe that by definition we have the inclusions
MNROWJ ⊆ λiMNROWJ and NROWJ ⊆ λiNROWJ ⊆ λiMNROWJ,
for every i ∈ {1, 2, 3}. First we show that λ-NROWJFAs and λ-MNROWJFAs
have the same computational power, if we fix the semantics.

Lemma 11. For i ∈ {1, 2, 3}, we have λiNROWJ = λiMNROWJ. ��
Next we consider the case when the semantics on λ-MNROWJFAs varies. We

show that λ-MNROWJFAs of type 1 are at most as powerful as those of type 2
and those of type 3:

Lemma 12. We have λ1MNROWJ ⊆ λ2MNROWJ and λ1MNROWJ ⊆
λ3MNROWJ. ��

Our next result shows that MNROWJFAs have indeed the same power as
λ-MNROWJFAs of type 2.

Lemma 13. We have MNROWJ = λ2MNROWJ. ��
By definition, it holds MNROWJ ⊆ λ1MNROWJ. Thus, the previous

three Lemmas 11, 12 and 13 give us the following equalities of language families.

Corollary 14. We have MNROWJ = λiNROWJ = λiMNROWJ, for i
with i ∈ {1, 2}. ��

In contrast to the last result, λ-NROWJFAs of type 3 are more powerful than
MNROWJFAs.

Theorem 15. It holds MNROWJ ⊂ λ3NROWJ. ��
Our language families are all included in the complexity classes NTIME(n2)

and in NSPACE(n):

Theorem 16. For i ∈ {1, 2, 3}, the family λiMNROWJ is properly included
in NTIME(n2) and in NSPACE(n). ��

For a λ-MNROWJFA A and i ∈ {1, 2, 3} the language LRi(A) contains a
Parikh-equivalent regular sublanguage, because of Lemma 6. The only Parikh-
equivalent sublanguage of a letter-bounded language is the language itself, so we
get the following.

Corollary 17. The letter-bounded languages contained in λ3MNROWJ are
exactly the regular letter-bounded languages. ��

As a consequence, the language { anbn | n ≥ 0 } is not in λ3MNROWJ.
On the other hand, it was shown in [4] that ROWJ contains non-context-free
languages. It follows:

Corollary 18. Let F ∈ {ROWJ, λ3MNROWJ} and G ∈ {DCF,CF}.
Then, the language families F and G are incomparable. ��

84 S. Beier and M. Holzer

4 Relations to Finite-State Acceptors with Translucent
Letters

Finite-state acceptors with translucent letters were defined in [10]. For these
devices, depending on the current internal state, some letters of the input alpha-
bet are translucent, which means that the automaton does not see them and
reads the first letter which is not translucent. So, their behaviour is similar to
ROWJFAs, which jump over some letters of the input alphabet, also depending
on the current state of the automaton. We will investigate the inclusion relations
between the language families induced by finite-state acceptors with translucent
letters and those families which come from ROWJFAs and their nondeterministic
variants.

A finite-state acceptor with translucent letters, a NFAwtl for short, is a
tuple A = (Q,Σ, τ, S, F, δ), where Q is the finite set of states, Σ is the finite
input alphabet, τ : Q → 2Σ is the translucency mapping, S ⊆ Q is the set of start
states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition
function. For each state q ∈ Q the letters from τ(q) are translucent in state q.
The automaton A is called deterministic, a DFAwtl for short, if |S| = 1 and
|δ(q, a)| ≤ 1, for all (q, a) ∈ Q × Σ.

A configuration of A is a string in QΣ∗. The automaton A makes a transition
from configuration pvaw to configuration qvw if q ∈ δ(p, a), where p, q ∈ Q,
v ∈ (τ(p))∗, a ∈ Σ \ τ(p), and w ∈ Σ∗. We denote this by pvaw �A qvw or
just pvaw � qvw if it is clear which automaton we are referring to. Then, the
language accepted by A is

L(A) = { w ∈ Σ∗ | ∃s ∈ S, f ∈ F, v ∈ (τ(f))∗ : sw �∗ fv } .

We say that A accepts w ∈ Σ∗ if w ∈ L(A) and that A rejects w otherwise. The
family of all languages accepted by a NFAwtl (DFAwtl, respectively) will be
denoted by NTRANS (DTRANS, respectively). These families are incompa-
rable to the language families induced by ROWJFAs and their nondeterministic
variants:
Theorem 19. Consider language families F ∈ {DTRANS,NTRANS} and
G ∈ {ROWJ, λ3NROWJ}. Then, the families F and G are incomparable. ��

From [10] it is known that pNTRANS = JFA. The family pDTRANS
has the following inclusion relations to pROWJ and pMROWJ.

Theorem 20. We have pROWJ ⊂ pDTRANS. The families pDTRANS
and pMROWJ are incomparable. ��

In [10] it was shown that for each NFAwtl A there is an NFAwtl B =
(Q,Σ, τ, S, F, δ) with L(A) = L(B) and for all w ∈ Σ∗, s ∈ S, f ∈ F , and
v ∈ (τ(f))∗ with sw �∗

B fv it holds v = λ. It was stated as an open problem if
this property also holds for DFAswtl. We can solve this open problem:

Corollary 21. There is a DFAwtl A such that there does not exist a DFAwtl
B = (Q,Σ, τ, {s}, F, δ) with L(A) = L(B) and for all w ∈ Σ∗, f ∈ F , and
v ∈ (τ(f))∗ with sw �∗

B fv it holds v = λ. ��

Nondeterministic Right One-Way Jumping Finite Automata 85

5 Conclusions

We have investigated nondeterministic variants of ROWJFAs and showed inclu-
sion and incomparability results of the induced language families. In order to
complete the picture of these new language families, it remains to study closure
properties and decision problems for these devices. Since languages accepted by
variants of jumping automata are all semi-linear, it is worth to consider their
relation to Petri Nets, since a wide variety of them enjoy semi-linear reachability
sets—see, e.g., [12].

References

1. Beier, S., Holzer, M.: Properties of right one-way jumping finite automata. In:
Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 11–23.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3 2

2. Beier, S., Holzer, M.: Semi-linear lattices and right one-way jumping finite
automata (extended abstract). In: Hospodár, M., Jirásková, G. (eds.) CIAA 2019.
LNCS, vol. 11601. Springer, Cham (2019, to appear)

3. Beier, S., Holzer, M., Kutrib, M.: Operational state complexity and decidability
of jumping finite automata. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017.
LNCS, vol. 10396, pp. 96–108. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-62809-7 6

4. Chigahara, H., Fazekas, S., Yamamura, A.: One-way jumping finite automata.
Int. J. Found. Comput. Sci. 27(3), 391–405 (2016). https://doi.org/10.1142/
S0129054116400165

5. Fernau, H., Paramasivan, M., Schmid, M.L.: Jumping finite automata: character-
izations and complexity. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp.
89–101. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22360-5 8

6. Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and com-
plexity results on jumping finite automata. Theoret. Comput. Sci. 679, 31–52
(2017). https://doi.org/10.1016/j.tcs.2016.07.006

7. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston
(1978)

8. Lavado, G.J., Pighizzini, G., Seki, S.: Operational state complexity under parikh
equivalence. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014.
LNCS, vol. 8614, pp. 294–305. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-09704-6 26

9. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci.
23(7), 1555–1578 (2012). https://doi.org/10.1142/S0129054112500244

10. Nagy, B., Otto, F.: Finite-state acceptors with translucent letters. In: Bel-Enguix,
G., Dahl, V., De La Puente, A.O. (eds.) Proceedings 1st Workshop on AI Methods
for Interdisciplinary Research in Language and Biology (BILC 2011), pp. 3–13.
SciTePress, Setúbal (2011). https://doi.org/10.5220/0003272500030013

11. Vorel, V.: On basic properties of jumping finite automata. Int. J. Found. Comput.
Sci. 29(1), 1–16 (2018). https://doi.org/10.1142/S0129054118500016

12. Yen, H.-C.: Petri nets and semilinear sets (extended abstract). In: Sampaio, A.,
Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 25–29. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46750-4 2

https://doi.org/10.1007/978-3-319-94631-3_2
https://doi.org/10.1007/978-3-319-62809-7_6
https://doi.org/10.1007/978-3-319-62809-7_6
https://doi.org/10.1142/S0129054116400165
https://doi.org/10.1142/S0129054116400165
https://doi.org/10.1007/978-3-319-22360-5_8
https://doi.org/10.1016/j.tcs.2016.07.006
https://doi.org/10.1007/978-3-319-09704-6_26
https://doi.org/10.1007/978-3-319-09704-6_26
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.5220/0003272500030013
https://doi.org/10.1142/S0129054118500016
https://doi.org/10.1007/978-3-319-46750-4_2

State Complexity of Single-Word Pattern
Matching in Regular Languages

Janusz A. Brzozowski1, Sylvie Davies2(B), and Abhishek Madan1

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

brzozo@uwaterloo.ca, a7madan@edu.uwaterloo.ca
2 Department of Pure Mathematics, University of Waterloo,

Waterloo, ON N2L 3G1, Canada
sldavies@uwaterloo.ca

Abstract. The state complexity κ(L) of a regular language L is the
number of states in the minimal deterministic finite automaton recog-
nizing L. In a general pattern-matching problem one has a set T of texts
and a set P of patterns; both T and P are sets of words over a finite
alphabet Σ. The matching problem is to determine whether any of the
patterns appear in any of the texts, as prefixes, or suffixes, or factors,
or subsequences. In previous work we examined the state complexity of
these problems when both T and P are regular languages, that is, we
computed the state complexity of the languages (PΣ∗)∩ T , (Σ∗P)∩ T ,
(Σ∗PΣ∗) ∩ T , and (Σ∗ P) ∩ T , where is the shuffle operation. It
turns out that the state complexities of these languages match the naïve
upper bounds derived by composing the state complexities of the basic
operations used in each expression. However, when P is a single word w,
and Σ has two or more letters, the bounds are drastically reduced to the
following: κ((wΣ∗)∩T) � m+n−1; κ((Σ∗w)∩T) � (m−1)n−(m−2);
κ((Σ∗wΣ∗) ∩ T) � (m − 1)n; and κ((Σ∗ w) ∩ T) � (m − 1)n. The
bounds for factor and subsequence matching are the same as the naïve
bounds, but this is not the case for prefix and suffix matching. For unary
languages, we have a tight upper bound of m + n − 2 in all four cases.

Keywords: All-sided ideal · Combined operation · Factor ·
Finite automaton · Left ideal · Pattern matching · Prefix ·
Regular language · Right ideal · State complexity · Subsequence ·
Suffix · Two-sided ideal

1 Introduction

The state complexity of a regular language L, denoted κ(L), is the number of
states in the minimal deterministic finite automaton (DFA) recognizing L. The

This work was supported by the Natural Sciences and Engineering Research Council
of Canada grant No. OGP0000871.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 86–97, 2019.
https://doi.org/10.1007/978-3-030-23247-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_6

State Complexity of Pattern Matching 87

state complexity of an operation on regular languages is the worst-case state
complexity of the resulting language, expressed in terms of the input languages’
state complexities. A language attaining this worst-case state complexity is called
a witness for the operation.

The state complexities of “basic” regular operations such as intersection and
concatenation have been thoroughly studied [7–9]. There has also been some
attention devoted towards “combined” operations such as concatenation with
Σ∗ to form languages called ideals [3]. A practical application of ideals is in pat-
tern matching, or finding occurrences of a pattern in a text, commonly as either
prefixes, suffixes, factors, or subsequences. (For a detailed treatment of pat-
tern matching, see [4].) Brzozowski et al. [1] formulated several pattern match-
ing problems as the construction of a regular language, using the intersection
between a text language T and an ideal of a pattern language P . In the gen-
eral case, given that κ(T) � n and κ(P) � m, and denoting as the shuffle
operation, the following state complexity bounds were shown to be tight:

1. Prefix: κ((PΣ∗) ∩ T) � mn.
2. Suffix: κ((Σ∗P) ∩ T) � 2m−1n.
3. Factor: κ((Σ∗PΣ∗) ∩ T) � (2m−2 + 1)n.
4. Subsequence: κ((P Σ∗) ∩ T) � (2m−2 + 1)n.

These bounds are in fact the naïve bounds derived from composing the state
complexity of the intersection between the Σ∗-concatenated pattern language
and the text language. However, these bounds are exponential in m, which leads
to the following question: to what degree would restricting P lower the bounds?
In this paper, we focus on restricting P to be a single word; that is, P = {w}.

Single-word pattern matching has many practical applications. For example,
a common use of the grep utility in Unix is to search for the files in a directory
in which a search word appears. In bioinformatics, a DNA sequence t is often
searched to locate a sequence of nucleotides w [5]. There has also been work in
distributed systems to “learn” common execution patterns from log files and use
them to identify anomalous executions in new logs [6].

In this paper, we show that for languages T and {w} such that κ(T) � n
and κ({w}) � m, the following upper bounds hold:

1. Prefix: κ((wΣ∗) ∩ T) � m + n − 1.
2. Suffix: κ((Σ∗w) ∩ T) � (m − 1)n − (m − 2).
3. Factor: κ((Σ∗wΣ∗) ∩ T) � (m − 1)n.
4. Subsequence: κ((Σ∗ w) ∩ T) � (m − 1)n.

Furthermore, in each case there exist languages Tn and {w}m that meet the
upper bounds. All of these bounds can be achieved using a binary alphabet, but
not using a unary alphabet.

2 Terminology and Notation

A deterministic finite automaton (DFA) is a 5-tuple D = (Q,Σ, δ, q0, F), where
Q is a finite non-empty set of states, Σ is a finite non-empty alphabet, δ : Q×Σ →

88 J. A. Brzozowski et al.

Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
final states. We extend δ to functions δ : Q × Σ∗ → Q and δ : 2Q × Σ∗ → 2Q as
usual.

A language L(D) is accepted by D if, for all w ∈ L(D), δ(q0, w) ∈ F . If q
is a state of D, then the language Lq(D) of q is the language accepted by the
DFA (Q,Σ, δ, q, F). Let L be a language over Σ. The quotient of L by a word
x ∈ Σ∗ is the set x−1L = {y ∈ Σ∗ | xy ∈ L}. In a DFA D = (Q,Σ, δ, q0, F), if
δ(q0, w) = q, then Lq(D) = w−1L(D).

Two states p and q of D are indistinguishable if Lp(D) = Lq(D). A state q is
reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA D is minimal if
it has the smallest number of states and the smallest alphabet among all DFAs
accepting L(D). It is well known that a DFA is minimal if it uses the smallest
alphabet, all of its states are reachable, and no two states are indistinguishable.

We sometimes define transition functions as transformations induced by let-
ters, written as a : t where t : Q → Q, for all a ∈ Σ. In particular, we use
1 to denote the identity transformation (i.e., δ(q, a) = q for all q ∈ Q), and
(q0, q1, . . . , qk−1) to denote a k-cycle, where δ(qi, a) = qi+1 for 0 � i � k − 2
and δ(qk−1, a) = q0. For states not in {q0, q1, . . . , qk−1}, the k-cycle acts as the
identity transformation.

Throughout the paper, we fix w = a1 · · · am−2, where ai ∈ Σ for 1 � i �
m − 2. Let w0 = ε (where ε denotes the empty word) and for 1 � i � m − 2, let
wi = a1 · · · ai. We write W = {w0, w1, . . . , wm−2} for the set of all prefixes of w.
Note that if the state complexity of {w} is m, then w is of length m − 2.

3 Matching a Single Prefix

Theorem 1. Suppose m � 3 and n � 2. If w is a non-empty word, κ({w}) � m
and κ(T) � n then we have

κ((wΣ∗) ∩ T) �
{

m + n − 1, if |Σ| � 2;
m + n − 2, if |Σ| = 1.

Furthermore, these upper bounds are tight.

Remark 1. When |Σ| = 1 (that is, P and T are languages over a unary alphabet),
the tight upper bound m + n − 2 actually holds in all four cases we consider
in this paper. This is because if L is a language over a unary alphabet Σ, then
the ideals LΣ∗, Σ∗L, Σ∗LΣ∗ and Σ∗ L coincide; thus the prefix, suffix, factor
and subsequence matching cases coincide.

Proof. We first derive upper bounds for the two cases of |Σ|.
Upper Bounds: Let DT = (Q,Σ, δ, q0, FT), where Q = {q0, . . . , qn−1}, be
a DFA accepting T . Let P = {w} and let the minimal DFA of P be DP =

State Complexity of Pattern Matching 89

(W ∪ {∅}, Σ, α,w0, {wm−2}). Here wm−2 is the only final state, and ∅ is the
empty state. Define α as follows: for 0 � i � m − 2, we set

α(wi, a) =

{
wi+1, if a = ai;
∅, otherwise.

Also define α(∅, a) = ∅ for all a ∈ Σ. Let the state reached by w in DT be
qr = δ(q0, w); we construct a DFA DL that accepts L = (wΣ∗) ∩ T . As shown
in Fig. 1, let DL = (Q ∪ (W \ {wm−2}) ∪ {∅}, Σ, β, w0, FT), where β is defined
as follows: for q ∈ Q ∪ (W \ {wm−2}) ∪ {∅} and a ∈ Σ,

β(q, a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ(q, a), if q ∈ Q;
α(q, a), if q ∈ W \ {wm−2, wm−3};
qr, if q = wm−3, and a = am−2;
∅, otherwise.

Arbitrary DFA DT ; the qij are not necessarily distinct.

w0 w1 . . . wm−4 wm−3

∅

q0 qi1 qi2 qr. . .

a1 a2 am−4 am−3

am−2

Σ \ {a1} Σ \ {am−2}

Σ \ {a2} Σ \ {am−3}

a2a1 am−2a3

Σ

Fig. 1. DFA DL for matching a single prefix. The final state set FT is a subset of the
states from the arbitrary DFA DT ; final states are not marked on the diagram.

Recall that in a DFA D, if state q is reached from the initial state by a word u,
then the language of q is equal to the quotient of L(D) by u. Thus the language
of state qr is the quotient of T by w, that is, the set w−1T = {y ∈ Σ∗ | wy ∈ T}.
The DFA DL accepts a word x if and only if it has the form wy for y ∈ w−1T ;
we need the prefix w to reach the arbitrary DFA DT , and w must be followed
by a word that sends qr to an accepting state, that is, a word y in the language
w−1T of qr. So L = {wy | y ∈ w−1T} = {wy | y ∈ Σ∗, wy ∈ T} = (wΣ∗) ∩ T .
That is, L is the set of all words of T that begin with w, as required. It follows
that the state complexity of L is less than or equal to m + n − 1. If |Σ| = 1, all
the Σ \ {ai} are empty and state ∅ is not needed. Hence the state complexity of
L is less than or equal to m + n − 2 in this case.

90 J. A. Brzozowski et al.

0 1 . . . (m − 4) (m − 3)

0 1 . . . r − 1 r . . . n − 1

a a a a

a

a a a a a a

a

Fig. 2. Minimal DFA of L for the case |Σ| = 1.

∅

0 1 . . . (m − 4) (m − 3)

0 1 . . . r − 1 r . . . n − 1

a

b

a

b

a
b

a

a

b

a a a a a a

a

b b b b

b

b

Fig. 3. Minimal DFA of L for the prefix case with |Σ| > 1.

Lower Bound, |Σ| = 1: For m � 3, let P = {am−2} where κ(P) = m. For
n � 2, let T be the language of the DFA Dn = (Qn, {a}, δ1, 0, {r − 1}), where
κ(T) = n, δ1 is defined by a : (0, 1, . . . , n − 1), and r = δ1(0, am−2). Let DL be
the DFA shown in Fig. 2 for the language L = (PΣ∗) ∩ T . Obviously DL has
m + n − 2 states and they are all reachable. Since the shortest word accepted
from any state is distinct from that of any other state, all the states are pairwise
distinguishable. Hence P and T constitute witnesses that meet the required
bound.

Lower Bound, |Σ| � 2: For m � 3, let P = {am−2} where κ(P) = m. For
n � 2, let T be the language of the DFA Dn = (Qn, {a, b}, δ2, 0, {r − 1}) where
κ(T) = n, δ2 is defined by a : (0, 1, . . . , n − 1) and b : 1, and r = δ2(0, am−2).
Construct the DFA DL for the language L = (PΣ∗)∩T as is shown in Fig. 3. It is
clear that all states are reachable and distinguishable by their shortest accepted
words. �	

State Complexity of Pattern Matching 91

4 Matching a Single Suffix

Let w, x, y, z ∈ Σ∗. We introduce some notation:

– x
p y means x is a prefix of y, and x �s y means x has y as a suffix.
– If x �s y and y
p z, we say y is a bridge from x to z or that y connects x

to z. We also denote this by x → y → z.
– x � y � z means that y is the longest bridge from x to z. That is, x → y → z,

and whenever x → w → z we have |w| � |y|. Equivalently, y is the longest
suffix of x that is also a prefix of z.

Proposition 1. If the state complexity of {w} is m, then the state complexity
of Σ∗w is m − 1.

Proof. Let A = (W,Σ, δA, w0, {wm−2}) be the DFA with transitions defined as
follows: for all a ∈ Σ and wi ∈ W , we have wia � δA(wi, a) � w. That is,
δA(wi, a) is defined to be the maximal-length bridge from wia to w, or equiva-
lently, the longest suffix of wia that is also a prefix of w. Note that if a = ai+1,
then δA(wi, a) = wi+1.

We observe that every state wi ∈ W is reachable from w0 by the word wi,
and that each state wi is distinguished from all other states by ai+1 · · · am−2. It
remains to be shown that Σ∗w = L(A). In the following, for convenience, we
simply write δ rather than δA.

We claim that for x ∈ Σ∗, we have wix � δ(wi, x) � w. That is, the
defining property of the transition function extends nicely to words. Recall that
the extension of δ to words is defined inductively in terms of the behavior of δ
on letters, so it is not immediately clear that this property carries over to words.

We prove this claim by induction on |x|. If x = ε, this is clear. Now suppose
x = ya for some y ∈ Σ∗ and a ∈ Σ, and that wiy � δ(wi, y) � w. Let δ(wi, y) =
wj and let δ(wi, x) = δ(wj , a) = wk. We want to show that wix � wk � w.

First we show that wix → wk → w. We know wk
p w, so it remains to
show that wix �s wk. Since wk = δ(wi, x) = δ(wj , a), by definition we have
wja � wk � w. Since δ(wi, y) = wj , we have wiy � wj � w. In particular,
wiy �s wj and thus wix = wiya �s wja. Thus wix �s wja �s wk as required.

Next, we show that whenever wix → w� → w, we have |w�| � |wk|. If w� = ε,
this is immediate, so suppose w� �= ε. Since wix = wiya �s w�, and w� is non-
empty, it follow that w� ends with a. Thus w� = w�−1a. Since wiya �s w�−1a,
we have wiy �s w�−1. Additionally, w�−1
p w, so wiy → w�−1 → w. Since
wiy � wj � w, we have |w�−1| � |wj |. Since wiy �s wj and wiy �s w�−1 and
|wj | � |w�−1|, we have wj �s w�−1. Thus wja �s w�−1a = w�. It follows that
wja → w� → w. But recall that δ(wi, x) = δ(wj , a) = wk, so wja � wk � w,
and |w�| � |wk| as required.

Now, we show that A accepts the language Σ∗w. Suppose x ∈ Σ∗w and write
x = yw. The initial state of A is w0 = ε. We have yw � δ(ε, yw) � w, that is,
δ(ε, yw) is the longest suffix of yw that is also a prefix of w. But this longest
suffix is simply w itself, which is the final state. So x is accepted. Conversely,
suppose x ∈ Σ∗ is accepted by A. Then δ(ε, x) = w, and thus x � w � w by
definition. In particular, this means x �s w, and so x ∈ Σ∗w. �	

92 J. A. Brzozowski et al.

Next we establish an upper bound on the state complexity of (Σ∗w) ∩ T .
The upper bound in this case is quite complicated to derive. Suppose w has
state complexity m and T has state complexity at most n, for m � 3 and n � 2.
Let A be the (m − 1)-state DFA for Σ∗w defined in Proposition 1, and let D be
an n-state DFA for T with state set Qn, transition function α, and final state set
F . The direct product A×D with final state set {w}×F recognizes (Σ∗w)∩T .
We claim that this direct product has at most (m− 1)n− (m− 2) reachable and
pairwise distinguishable states, and thus the state complexity of (Σ∗w)∩T is at
most (m − 1)n − (m − 2).

Since A has m − 1 states and D has n states, there are at most (m − 1)n
reachable states. It will suffice to show that for each word wi with 1 � i � m−2,
there exists a word wf(i) �= wi and a state pi ∈ Qn such that (wi, pi) is indistin-
guishable from (wf(i), pi). This gives m−2 states that are each indistinguishable
from another state, establishing the upper bound.

We choose f(i) so that wi � wf(i) � wi−1. In other words, wf(i) is the
longest suffix of wi that is also a proper prefix of wi. To find pi, first observe that
there exists a non-final state q ∈ Qn and a state r ∈ Qn such that α(r, w) = q.
Indeed, if no such states existed, then for all states r, the state α(r, w) would be
final. Thus we would have Σ∗w ⊆ T , and the state complexity of (Σ∗w) ∩ T =
Σ∗w would be m − 1, which is lower than our upper bound since n � 2. Now,
set pi = α(r, wi), and note that α(pi, ai+1) = pi+1, and α(pi, ai+1 · · · am−2) = q.

To establish the upper bound, we will need two technical lemmas. Their
proofs can be found in [2].

Lemma 1. If i < m − 2 and a �= ai+1, or if i = m − 2, then δA(wi, a) =
δA(wf(i), a).

Lemma 2. If i < m − 2, then δA(wf(i), ai+1) = wf(i+1).

Proposition 2. Suppose m � 3 and n � 2. If w is non-empty, κ({w}) � m,
and κ(T) � n, then we have κ((Σ∗w) ∩ T) � (m − 1)n − (m − 2).

Proof. It suffices to prove that states (wi, pi) and (wf(i), pi) are indistinguishable
for 1 � i � m − 2. We proceed by induction on the value m − 2 − i.

The base case is m−2−i = 0, that is, i = m−2. Our states are (wm−2, pm−2)
and (wf(m−2), pm−2). By Lemma 1, we have δA(wm−2, a) = δA(wf(m−2), a) for
all a ∈ Σ. Thus non-empty words cannot distinguish the states. But recall that
pm−2 = q is a non-final state, so the states we are trying to distinguish are both
non-final, and thus the empty word does not distinguish the states either. So
these states are indistinguishable.

Now, suppose m−2−i > 0, that is, i < m−2. Assume that states (wi+1, pi+1)
and (wf(i+1), pi+1) are indistinguishable. We want to show that (wi, pi) and
(wf(i), pi) are indistinguishable. Since f(i) < i < m−2, both states are non-final,
and thus the empty word cannot distinguish them. By Lemma 1, if a �= ai+1.
then δA(wi, a) = δA(wf(i), a) for all a ∈ Σ. So only words that start with ai+1

can possibly distinguish the states. But by Lemma 2, letter ai+1 sends the states
to (wi+1, pi+1) and (wf(i+1), pi+1), which are indistinguishable by the induction
hypothesis. Thus the states cannot be distinguished. �	

State Complexity of Pattern Matching 93

Next we show that the upper bound of Proposition 2 is tight.

Definition 1. Let T be the language accepted by the DFA D with state set Qn,
alphabet Σ, initial state 0, final state set {0, . . . , n − 2}, and transformations
a : (0, . . . , n − 1) and b : 1. See Fig. 4.

0 1 2 · · · n − 2 n − 1
a a a a a

a

b b b bb

Fig. 4. Witness language T of Definition 1.

ε, 0 ε, 1 ε, 2 ε, 3 ε, 4 ε, 0

b, 0 b, 1 b, 2 b, 3 b, 4 b, 0

b2, 0 b2, 1 b2, 2 b2, 3 b2, 4 b2, 0

b3, 0 b3, 1 b3, 2 b3, 3 b3, 4 b3, 0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a a a a a a

a a a a a

a

a a a a a

a

a a a a a

a

Fig. 5. DFA A × D for matching a single suffix, with m = 5 and n = 5. Column 0 is
duplicated for a cleaner diagram; the DFA contains only one copy of this column.

Theorem 2. Suppose m � 3 and n � 2. There exists a word w and a language
T , with κ({w}) = m and κ(T) = n, such that κ((Σ∗w)∩T) = (m−1)n−(m−2).

Proof. Let Σ = {a, b} and let w = bm−2. Let A be the DFA for Σ∗w. Let T be
the language of Definition 1. The DFA A × D is illustrated in Fig. 5.

We show that A × D has (m − 1)n − (m − 2) reachable and pairwise distin-
guishable states. For reachability, for 0 � i � m − 2 and 0 � q � n − 1, we can
reach (bi, q) from the initial state (ε, 0) by the word aqbi. For distinguishability,
note that all m−1 states in column n−1 are indistinguishable, and so collapse to

94 J. A. Brzozowski et al.

one state under the indistinguishability relation. Indeed, given states (bi, n − 1)
and (bj , n − 1), if we apply a both states are sent to (ε, 0), and if we apply b
we simply reach another pair of non-final states in column n − 1. Hence at most
(m − 1)n − (m − 2) of the reachable states are pairwise distinguishable. Next
consider (bi, q) and (bj , q) with i < j and q �= n − 1. We can distinguish these
states by bm−2−j . So pairs of states in the same column are distinguishable, with
the exception of states in column n − 1. For pairs of states in different columns,
consider (bi, p) and (bj , q) with p < q. If q �= n − 1, then by an−1−q we reach
(ε, n−1+p−q) and (ε, n−1). These latter states are distinguished by w = bm−2.
If q = n−1, then (bi, p) and (bj , n−1) are distinguished by bm−2−i. Hence there
are (m − 1)n − (m − 2) reachable and pairwise distinguishable states. �	

5 Matching a Single Factor

Proposition 3. If the state complexity of {w} is m, then the state complexity
of Σ∗wΣ∗ is m − 1.

Proof. Let A = (W,Σ, δA, w0, {wm−2}) be the DFA with transitions defined as
follows: for all a ∈ Σ and wi ∈ W , we have wia � δA(wi, a) � w. Recall from
Proposition 1 that A recognizes Σ∗w. We modify A to obtain a DFA A′ that
accepts Σ∗wΣ∗ as follows.

Let A′ = (W,Σ, δA′ , w0, {wm−2}), where δA′ is defined as follows for each
a ∈ Σ: δA′(wi, a) = δA(wi, a) for i < m − 2, and δA′(wm−2, a) = wm−2. Note
that A′ is minimal: state wi can be reached by the word wi, and states wi and
wj with i < j are distinguished by aj+1 · · · am−2. It remains to show that A′

accepts Σ∗wΣ∗.
To simplify the notation, we write δ′ instead of δA′ and δ instead of δA.

Suppose x is accepted by A′. Write x = yz, where y is the shortest prefix of x
such that δ′(ε, y) = wm−2. Since y is minimal in length, for every proper prefix y′

of y, we have δ′(ε, y′) = wi for some i < m − 2. It follows that δ′(ε, y) = δ(ε, y)
by the definition of δ′. So δ(ε, y) = wm−2, and hence y is accepted by A. It
follows that y ∈ Σ∗w. This implies x = yz ∈ Σ∗wΣ∗.

Conversely, suppose x ∈ Σ∗wΣ∗. Write x = ywz with y minimal. Since
yw ∈ Σ∗w, we have δ(ε, yw) = wm−2. Furthermore, yw is the shortest prefix of
x such that δ(ε, yw) = wm−2, since if there was a shorter prefix then y would
not be minimal. This means that δ(ε, yw) = δ′(ε, yw) by the definition of δ′. So
δ′(ε, ywz) = wm−2 and hence x = ywz is accepted by A′. �	

Fix w with state complexity m, and let A and A′ be the DFAs for Σ∗w and
Σ∗wΣ∗, respectively, as described in the proof of Proposition 3. Fix T with state
complexity at most n, and let D be an n-state DFA for T with state set Qn and
final state set F . The direct product DFA A′ × D with final state set {w} × F
recognizes (Σ∗wΣ∗) ∩ T . Since A′ × D has (m − 1)n states, this gives an upper
bound of (m − 1)n on the state complexity of (Σ∗wΣ∗) ∩ T .

Theorem 3. Suppose m � 3 and n � 2. There exists a word w and a language
T , with κ({w}) = m and κ(T) = n, such that κ((Σ∗wΣ∗) ∩ T) = (m − 1)n.

State Complexity of Pattern Matching 95

Proof. Let Σ = {a, b} and let w = bm−2. Let A′ be the DFA for Σ∗wΣ∗. Let T
be the language of Definition 1. The DFA A′ × D is illustrated in Fig. 6.

We show that A′ × D has (m − 1)n reachable and pairwise distinguishable
states. For reachability, for 0 � i � m−2 and 0 � q � n−1, we can reach (bi, q)
from the initial state (ε, 0) by the word aqbi. For distinguishability, suppose we
have states (bi, q) and (bj , q) in the same column q, with i < j. By bm−2−j we
reach (bm−2+i−j , q) and (w, q), with bm−2+i−j �= w. Then by a we reach (ε, qa)
and (w, qa), which are distinguishable by a word in a∗. For states in different
columns, suppose we have (bi, p) and (bj , q) with p < q. By a sufficiently long
word in b∗, we reach (w, p) and (w, q). These states are distinguishable by an−1−q.
So all reachable states are pairwise distinguishable. �	

ε, 0 ε, 1 ε, 2 ε, 3 ε, 4 ε, 0

b, 0 b, 1 b, 2 b, 3 b, 4 b, 0

b2, 0 b2, 1 b2, 2 b2, 3 b2, 4 b2, 0

b3, 0 b3, 1 b3, 2 b3, 3 b3, 4 b3, 0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a a a a a a

a a a a a

a

a a a a a

a

a a a a a a

Fig. 6. DFA A′ × D for matching a single factor, with m = 5 and n = 5. Column 0 is
duplicated for a cleaner diagram; the DFA contains only one copy of this column.

6 Matching a Single Subsequence

Proposition 4. If the state complexity of {w} is m, then the state complexity
of Σ∗ w is m − 1.

Proof. Define a DFA A = (W,Σ, δA, ε, {w}) where δA(wi, ai+1) = wi+1, and
δA(wi, a) = wi for a �= ai+1. Note that A is minimal: state wi is reached by word
wi and states wi, wj with i < j are distinguished by aj+1 · · · am−2. We claim
that A recognizes Σ∗ w.

Write δ rather than δA to simplify the notation. Suppose x ∈ Σ∗ w. Then
we can write x = x0a1x1a2x2 · · · am−2xm−2, where x0, . . . , xm−2 ∈ Σ∗. We claim
that δ(ε, x0a1x1 · · · aixi) = wj for some j � i. We proceed by induction on i.
The base case i = 0 is trivial.

96 J. A. Brzozowski et al.

Now, suppose that i > 0 and δ(ε, x0a1x1 · · · ai−1xi−1) = wj for some j � i−1.
Then δ(ε, x0a1x1 · · · aixi) = δ(wj , aixi). We consider two cases:

– If j = i − 1, we have δ(wi−1, aixi) = δ(wi, xi) = wk for some k with k � i, as
required.

– If j > i − 1, we have δ(wj , aixi) = wk for some k with k � i, as required.

This completes the inductive proof. It follows then that δ(ε, x) = wm−2 = w,
and so x is accepted by A. Conversely, if x is accepted by A, then it is clear from
the definition of the transition function that the letters a1, a2, . . . , am−2 must
occur within x in order, and so x ∈ Σ∗ w. �	

Fix w with state complexity m, and let A be the DFA for Σ∗ w described
in the proof of Proposition 4. Fix T with state complexity at most n, and let
D be an n-state DFA for T with state set Qn and final state set F . The direct
product DFA A × D with final state set {w} × F recognizes (Σ∗ w)∩ T . Since
A × D has (m − 1)n states, this gives an upper bound of (m − 1)n on the state
complexity of (Σ∗ w) ∩ T .

Theorem 4. Suppose m � 3 and n � 2. There exists a word w and a language
T , with κ({w}) = m and κ(T) = n, such that κ((Σ∗ w) ∩ T) = (m − 1)n.

Proof. Let Σ = {a, b} and let w = bm−2. Let A be the DFA for Σ∗ w. Let T
be the language of Definition 1. The DFA A × D is illustrated in Fig. 7.

We show that A × D has (m − 1)n reachable and pairwise distinguishable
states. For reachability, for 0 � i � m−2 and 0 � q � n−1, we can reach (bi, q)

ε, 0 ε, 1 ε, 2 ε, 3 ε, 4 ε, 0

b, 0 b, 1 b, 2 b, 3 b, 4 b, 0

b2, 0 b2, 1 b2, 2 b2, 3 b2, 4 b2, 0

b3, 0 b3, 1 b3, 2 b3, 3 b3, 4 b3, 0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a a a a a a

a a a a a

a

a a a a a

a

a a a a a a

Fig. 7. DFA A×D for matching a single subsequence, with m = 5 and n = 5. Column
0 is duplicated for a cleaner diagram; the DFA contains only one copy of this column.

State Complexity of Pattern Matching 97

from the initial state (ε, 0) by the word aqbi. For distinguishability, suppose we
have states (bi, q) and (bj , q) in the same column q, with i < j. By bm−2−j we
reach (bm−2+i−j , q) and (w, q), with bm−2+i−j �= w. These states are distinguish-
able by a word in a∗. For states in different columns, suppose we have (bi, p) and
(bj , q) with p < q. By a sufficiently long word in b∗, we reach (w, p) and (w, q).
These states are distinguishable by an−1−q. So all reachable states are pairwise
distinguishable. �	

7 Conclusions

Building on previous work, we investigated the state complexity of “pattern
matching” operations on regular languages, based on finding all words in a text
language T which contain the single word w as either a prefix, suffix, factor, or
subsequence. In all cases, the bounds were significantly lower than the general
case, where w is replaced by a regular language P . Prefix matching is now linear
in the input languages’ state complexities, and the remaining cases are polyno-
mial in the input state complexities. The general bounds were polynomial for
prefix matching and exponential in the other cases. It is also worth noting that
a binary alphabet is sufficient to reach all these bounds, including subsequence
matching, whose bound was defined in terms of a growing alphabet in the gen-
eral case. For languages with a unary alphabet, the state complexity was linear
in all four cases.

References

1. Brzozowski, J.A., Davies, S., Madan, A.: State complexity of pattern matching
in regular languages. Theoret. Comput. Sci. (2018). https://doi.org/10.1016/j.tcs.
2018.12.014

2. Brzozowski, J.A., Davies, S., Madan, A.: State complexity of pattern matching in
regular languages. CoRR abs/1806.04645 (2018). http://arxiv.org/abs/1806.04645

3. Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
Theoret. Comput. Sci. 470, 36–52 (2013). https://doi.org/10.1016/j.tcs.2012.10.055

4. Crochemore, M., Hancart, C.: Automata for matching patterns. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, pp. 399–462. Springer, Heidel-
berg (1997). https://doi.org/10.1007/978-3-662-07675-0_9

5. Elloumi, M., Iliopoulos, C., Wang, J.T., Zomaya, A.Y.: Pattern Recognition in Com-
putational Molecular Biology: Techniques and Approaches. Wiley, Hoboken (2015)

6. Fu, Q., Lou, J.G., Wang, Y., Li, J.: Execution anomaly detection in distributed
systems through unstructured log analysis. In: Wang, W., Kargupta, H., Ranka, S.,
Yu, P.S., Wu, X. (eds.) Proceedings 9th IEEE International Conference on Data
Mining, ICDM 2009, pp. 149–158. IEEE Computer Society (2009). https://doi.org/
10.1109/ICDM.2009.60

7. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J.
Autom. Lang. Comb. 21(4), 251–310 (2016)

8. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Doklady 11, 1373–1375 (1970)

9. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994). https://doi.org/
10.1016/0304-3975(92)00011-F

https://doi.org/10.1016/j.tcs.2018.12.014
https://doi.org/10.1016/j.tcs.2018.12.014
http://arxiv.org/abs/1806.04645
https://doi.org/10.1016/j.tcs.2012.10.055
https://doi.org/10.1007/978-3-662-07675-0_9
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

Square, Power, Positive Closure,
and Complementation on Star-Free

Languages

Sylvie Davies1 and Michal Hospodár2(B)

1 David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON N2L 3G1, Canada

sylvie.davies@uwaterloo.ca
2 Mathematical Institute, Slovak Academy of Sciences,

Grešákova 6, 040 01 Košice, Slovakia
hosmich@gmail.com

Abstract. We examine the deterministic and nondeterministic state
complexity of square, power, positive closure, and complementation on
star-free languages. For the state complexity of square, we get a non-
trivial upper bound (n−1)2n−2(n−2) and a lower bound of order Θ(2n).
For the state complexity of the k-th power in the unary case, we get
the tight upper bound k(n − 1) + 1. Next, we show that the upper
bound kn on the nondeterministic state complexity of the k-th power
is met by a binary star-free language, while in the unary case, we have
a lower bound k(n − 1) + 1. For the positive closure, we show that the
deterministic upper bound 2n−1 + 2n−2 − 1, as well as the nondeter-
ministic upper bound n, can be met by star-free languages. We also
show that in the unary case, the state complexity of positive closure
is n2 − 7n + 13, and the nondeterministic state complexity of comple-
mentation is between (n − 1)2 + 1 and n2 − 2.

1 Introduction

The state complexity of a regular language L, sc(L), is the smallest number of
states in any deterministic finite automaton (DFA) recognizing the language L.
The state complexity of a unary regular operation ◦ is the function from N to N

given by n �→ max{sc(L◦) | sc(L) ≤ n}. The nondeterministic state complexity
of a regular language or a unary regular operation is defined analogously using
the representation of languages by nondeterministic finite automata (NFAs).

The (nondeterministic) state complexity of star, reversal, square, power, and
complementation was examined in [4,6,10–12,14,18]. Researchers also investi-
gated the complexity of operations on some subregular classes. For example,

S. Davies—Research supported by the Natural Sciences and Engineering Research
Council of Canada under grant No. OGP0000871.
M. Hospodár—Research supported by VEGA grant 2/0132/19 and grant APVV-15-
0091.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 98–110, 2019.
https://doi.org/10.1007/978-3-030-23247-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_7

Square, Power, Plus, and Complementation on Star-Free Languages 99

Câmpeanu et al. [3] considered finite languages, and Pighizzini and Shallit [13]
studied operational state complexity on unary regular languages.

The class of star-free languages is the smallest class containing finite lan-
guages and closed under complementation, union, and concatenation. In 1965,
Marcel-Paul Schützenberger [15] proved that a language is star-free if and only if
its syntactic monoid is group-free, that is, it has only trivial subgroups. An equiv-
alent condition is that the minimal DFA of a star-free language is permutation-
free, that is, there is no string that induces a non-trivial permutation on any
subset of the set of states.

The operational state complexity of basic regular operations on star-free
languages represented by DFAs was examined by Brzozowski and Liu [1], while
Holzer, Kutrib, and Meckel [7] considered basic operations on star-free languages
represented by NFAs. Except for reversal on DFAs, all regular upper bounds have
been shown to be met by star-free languages.

In this paper, we continue this research and study the state complexity and
nondeterministic state complexity of square, power, positive closure, and com-
plementation on star-free languages. As the main result of this paper, we get
nontrivial upper and lower bounds for square on DFAs in Sect. 3. In Sect. 4, we
obtain tight upper bounds for positive closure on DFAs and NFAs, and for power
on unary DFAs and binary NFAs. Moreover, we present lower and upper bounds
for complementation on unary NFAs that are better than in [7].

2 Preliminaries

Let Σ be a finite non-empty alphabet of symbols. Then Σ∗ denotes the set of
strings over Σ including the empty string ε. A language is any subset of Σ∗.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, ·, s, F)
where Q is a finite set of states, Σ is a finite alphabet, · : Q × Σ → 2Q is the
transition function which is naturally extended to the domain 2Q × Σ∗, s ∈ Q
is the initial state, and F ⊆ Q is the set of final states. We say that (p, a, q) is
a transition in NFA A if q ∈ p · a. The language accepted by the NFA A is the
set L(A) = {w ∈ Σ∗ | s · w ∩ F 	= ∅}.

An NFA A is a deterministic finite automaton (DFA) if |q · a| = 1 for each q
in Q and each a in Σ. In a DFA, each symbol a in Σ induces a transformation
on the set Q, given by q �→ q · a. We frequently describe the transitions of DFAs
by just describing their induced transformations.

The state complexity of L, sc(L), is the smallest number of states in any DFA
for L. The nondeterministic state complexity of L, nsc(L), is defined analogously.
It is well known that if a language L is finite with the longest string of length �,
then sc(L) ≤ � + 2 and nsc(L) ≤ � + 1.

The reader may refer to [2,8,16,17] for details and all unexplained notions.

100 S. Davies and M. Hospodár

3 Square

In this section, we investigate the square operation on the class of star-free
languages represented by DFAs. Let A = (Q,Σ, ·, s, F) be an arbitrary DFA. As
is well known, we may construct a DFA B recognizing L(A)2 as follows:

– The state set of B is Q × 2Q, where 2Q is the set of all subsets of Q.
– The initial state of B is (s, ∅) if s 	∈ F , or (s, {s}) if s ∈ F .
– The final state set is FB = {(q, S) | S ∩ F 	= ∅}.
– The transition function � is defined as follows for each a ∈ Σ:

(q, S) � a =

{
(q · a, S · a), if q · a 	∈ F ;
(q · a, S · a ∪ {s}), if q · a ∈ F.

To simplify the notation, we write (q, S)a instead of (q, S) � a, and we write qa
and Sa instead of q · a and S · a for each q in Q and each subset S of Q.

We will use the following lemma.

Lemma 1. Let q ∈ F and T ⊆ Q. Suppose (q, T) is reachable via w in B. For
each p ∈ T , there is a suffix x of w such that sx = p and fx = q for some f ∈ F .

Proof. Write w = w1 · · · wky where w1 · · · wi is the i-th shortest prefix of
w contained in L(A). Let zi = wi+1 · · · wk and zk = ε. Then (s, ∅)w =
(q, T) = (q, {sz1y, sz2y, sz3y, . . . , szky}). Let x be ziy with sziy = p and let
f = sw1 · · · wi. �

Upper Bound. For each q in Q, define the following set of states:

SCC(q) = {p ∈ Q | ∃x, y ∈ Σ∗ such that qx = p and py = q}.

The set SCC(q) is called the strongly connected component (SCC) of A contain-
ing q; it is the maximal set of states containing q such that for each state p in the
set, there are directed paths leading from q to p and from p to q. Of particular
importance is the component SCC(s) containing the initial state s.

Proposition 2. Let A be a DFA of a star-free language in which all states are
reachable. Consider the number of reachable states in the DFA B for L(A)2.

1. If s is the unique final state of A, then L(A) = L(A)2 and at most n states
are reachable.

2. Otherwise, if SCC(s) = {s}, then at most (n − 2)2n + 2n−1 + 1 states are
reachable.

3. Otherwise, let i = |SCC(s)| and j = |SCC(s) \F |. Then the number of reach-
able states is at most (n − 1)2n − 2(n − 2 − j) − j2n−i+1.

The maximum value of these bounds is (n − 1)2n − 2(n − 2), corresponding to
case (3) with either j = 0 or i = n.

Square, Power, Plus, and Complementation on Star-Free Languages 101

Proof. Statement (1) holds true since only states of the form (q, {q}) are
reachable. For (2), suppose SCC(s) = {s}. The initial state of B in this
case is either (s, ∅) or (s, {s}). Let a be a letter and let sa = q. If q = s
then (s, ∅)a = (s, ∅) and (s, {s})a = (s, {s}), so no new states are reached.
If q 	= s, we reach (q, ∅) or (q, {q}) if q is non-final, and we reach (q, {s})
or (q, {q, s}) if q is final. If q 	= s, then q 	∈ SCC(s), so we can never return
to a state with s in the first component. Thus all non-initial states with s in the
first component are unreachable.

Now consider states (q, S) with q 	= s. If q is non-final, there are at most 2n

reachable states of the form (q, S). If q is final, there are at most 2n−1 reachable
states of the form (q, S), since S must contain s. Let |F | = k, and note:

– If s ∈ F , there are at most (n − k)2n + (k − 1)2n−1 + 1 reachable states.
– If s /∈ F , there are at most (n − k − 1)2n + k2n−1 + 1 reachable states.

Both values are maximized by taking k as small as possible:

– If s ∈ F , we cannot take k = 1 or else we are in case (1) (since then s is
the unique final state of automaton A), so taking k = 2 we get the upper
bound (n − 2)2n + 2n−1 + 1.

– If s /∈ F , taking k = 1 gives (n − 2)2n + 2n−1 + 1 again.

Now, we consider (3). Let q be a non-final state in SCC(s). Let T be a set
that contains SCC(s) \ {q}. We claim that (q, T) is unreachable.

Suppose for a contradiction that (q, T) is reachable. Then there is a
state (p, U) and letter a such that (p, U)a = (q, T). Since q is non-final, we
have pa = q and Ua = T . Notice that Ua contains SCC(s) \ {q} since T
contains SCC(s) \ {q}. Construct a subset V of U as follows: for each ele-
ment u ∈ SCC(s) \ {q}, choose one element v ∈ U such that va = u.
Then |V | = |SCC(s) \ {q}|.

If v ∈ V , we have va ∈ SCC(s) \ {q}, so there is a path from v to the
initial state s. Since all states of A are reachable, there is also a path from s
to v. Therefore v belongs to SCC(s). It follows that V ⊆ SCC(s). Since |V | =
|SCC(s) \ {q}|, we must have V = SCC(s) \ {r} for some state r ∈ SCC(s).
Then (SCC(s) \ {r})a = (SCC(s) \ {q}).

We claim that r = p. To see this, first note that p must be in SCC(s). Indeed,
there is a path from s to p since all states of A are reachable, and there is a
path from p to s since pa = q and q ∈ SCC(s). Now, if r 	= p, then p ∈ V =
SCC(s) \ {r}. But then q ∈ V a, which is impossible since V a = SCC(s) \ {q}. It
follows that r = p and thus V = SCC(s) \ {p}.

Thus we have pa = q and (SCC(s) \ {p})a = SCC(s) \ {q}. But this means
that a acts as a permutation on SCC(s). Since L(A) is star-free, a must act as
the identity on SCC(s). Therefore p = q and V = SCC(s) \ {q}.

This means that if T contains SCC(s) \ {q}, then the state (q, T) only has
immediate predecessors (that is, states from which (q, T) can be reached in one
transition) of the form (q, U), where U contains a subset V = SCC(s) \ {q}.
We claim that either SCC(s) = {s}, or all states (q, T) with SCC(s) ⊆ T are

102 S. Davies and M. Hospodár

unreachable. Indeed, consider a path leading from the initial state to (q, T).
If q 	= s, then (q, T) is unreachable since every state in the path must have q
as the first component. If q = s, then the second component of the initial state
which is either (s, ∅) or (s, {s}) must contain SCC(s) \ {s}, and this occurs only
if SCC(s) = {s}. If SCC(s) = {s}, we are in case (2), which has been dealt with.
Thus if SCC(s) ⊆ T , then (q, T) is unreachable, as required.

We can also show that if q 	∈ SCC(s) is non-final, then the states (q,Q)
and (q,Q\{q}) are not reachable. Indeed, suppose we have (p, S)a = (q,Q\{q}).
Since q is non-final, we have pa = q and Sa = Q \ {q}. Note that S cannot
contain p, since otherwise Sa would contain q. Also, we must have |S| ≥ |Q\{q}|.
It follows that S = Q \ {p}. But then pa = q and (Q \ {p})a = Q \ {q}, so a is a
permutation of Q and thus the identity. Then p = q and S = Q \ {q}, meaning
(p, S) = (q,Q \ {q}). Thus our target state (q,Q \ {q}) can only be reached from
itself, so it is unreachable. A similar argument shows that (q,Q) is unreachable.

Now we count the number of potentially reachable states in this case. Con-
sider a state (q, S). If q is final, then S must contain s, and so for each final
state q we get 2n−1 potentially reachable states. For each non-final state q,
we have an upper bound of 2n reachable states (q, S). If |F | = k, this gives
a total upper bound of (n − k)2n + k2n−1. But we can get a better bound,
since we know that if q ∈ SCC(s) is non-final and S contains SCC(s) \ {q},
then (q, S) is not reachable. For each of the j non-final states q ∈ SCC(s),
there are 2n−i+1 unreachable states (q, S) such that S contains SCC(s) \ {q}.
For each of the n − k − j non-final states q 	∈ SCC(s), there are 2 unreachable
states (q,Q) and (q,Q \ {q}). Subtracting these states gives an upper bound
of (n − k)2n + k2n−1 − 2(n − k − j) − j2n−i+1.

If we plug in k = 2 here, we get the stated upper bound. If we plug in k ≥ 3
we get something smaller than the stated upper bound. However, for k = 1 we
get something larger than the stated bound, so we need to do some extra work.

Suppose |F | = k = 1, and set F = {q}. We can assume q 	= s since otherwise
we are in case (1). Since s 	∈ F , the initial state of the square DFA is (s, ∅). We
claim states (s, S) with q ∈ S are not reachable.

To see this, suppose for a contradiction that a state (s, S) with q ∈ S is
reachable. To reach (s, S) we must first pass through some reachable state of the
form (q, T). So there exists a string y such that qy = s and Ty = S. Choose p ∈ T
such that py = q. Let w be a string leading from the initial state to (q, T).
Then by Lemma 1, there exists a suffix x of w such that sx = p and qx = q.
Now sxy = py = q and qxy = qy = s, so the string xy swaps s and q. This is a
contradiction, since L(A) is star-free.

So let us take our previous bound of (n−k)2n+k2n−1−2(n−k−j)−j2n−i+1,
set k = 1, and subtract these new states we have proved to be unreachable.
There are 2n−1 states (s, S) with q ∈ S. However, we have already counted the
states (s,Q) and (s,Q \ {s}) as not reachable, so instead of subtracting 2n−1 we
subtract 2n−1−2. Thus we get (n−1)2n+2n−1−2(n−1−j)−j2n−i+1−2n−1+2 =
(n − 1)2n − 2(n − 2 − j) − j2n−i+1, as required. �

Square, Power, Plus, and Complementation on Star-Free Languages 103

Lower Bound. For n ≥ 4, we define a function f(n) as follows. Let k = �n/2�.
For 0 ≤ i ≤ n−1, define d(i) = min{|k−1−i|, |k+1−i|}. Define a function g(n, i)
as follows:

g(n, i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2n − 2, if i = k;
2n−1, if i ∈ {k − 1, k + 1};
2n − 2k−d(i)

∑d(i)
j=1

(
k+1+d(i)
k+1+j

)
, if n is odd, i /∈ {k − 1, k, k + 1};

2n − 2k−d(i)
∑d(i)

j=1

(
k+d(i)
k+j

)
, if n is even, i < k − 1;

2n − 2k−1−d(i)
∑d(i)

j=1

(
k+1+d(i)
k+1+j

)
, if n is even, i > k + 1.

(1)

Now set f(n) =
∑n−1

i=0 g(n, i). We claim that f(n) is a lower bound on the state
complexity of the square of a star-free language with state complexity n. Based
on the results of computational random searches, we conjecture that this lower
bound is tight, but we were unable to prove a matching upper bound.

Our witness for this lower bound is the DFA A defined as follows. Fix n ≥ 4
and let Q = {0, 1, . . . , n − 1}. A transformation t of Q is monotonic if p ≤ q
implies pt ≤ qt for all p, q ∈ Q. Let Σ be the set of all monotonic transformations
of Q. By [9, Theorem 2.1], we have |Σ| =

(
2n−1
n−1

)
. Let k = �n/2� as before. Finally,

let A = (Q,Σ, ·, k, {k − 1, k + 1}) be the DFA where q · t = qt for all t ∈ Σ.

Theorem 3. Let n ≥ 4, define A as above, and let B be the DFA for the
square L(A)2. The number of reachable and pairwise distinguishable states of B
is precisely f(n).

Proof. We claim that the function g(n, i) counts the number of reachable states
of B with the form (i, S), for i ∈ Q and S ⊆ Q. Thus the total number of
reachable states is given by f(n), which takes the sum of the g(n, i) terms for
each i ∈ Q. We must prove that the counting function g(n, i) is correct, and also
that all of the reachable states we count are pairwise distinguishable.

The initial state of B is (k, ∅). First we show that the states (k, {k − j})
and (k, {k+j}) are reachable for each j ≥ 2 such that the state in question is in Q.
From the initial state, apply the transformation (k → k−1) to reach (k−1, {k}).
Now apply the transformation which sends k−1 to k, fixes everything below k−1,
and sends everything above k −1 to k + j. We reach (k, {k + j}). Symmetrically,
from the initial state, apply (k → k + 1) to reach (k + 1, {k}). Then apply the
transformation that sends k + 1 to k, fixes everything above k + 1, and sends
everything below k + 1 to k − j. We reach (k, {k − j}).

Next, we show that (k, {k−2, k−3, . . . , 0}) and (k, {k+2, k+3, . . . , n−1}) are
reachable. Assume we have reached (k, {k − 2, k − 3, . . . , k − j}) for some j ≥ 2.
Apply (k → k + 1) to reach (k + 1, {k, k − 2, k − 3, . . . , k − j}). Then apply the
transformation that fixes 0 and every q ≥ k+2, sends k+1 to k, sends k to k−2,
and sends q to q−1 if 1 ≤ q ≤ k−1. We reach (k, {k−2, k−3, . . . , k−j−1}) and by
applying these two transformations repeatedly we reach (k, {k−2, k−3, . . . , 0}).
A symmetric argument works for (k, {k + 2, k + 3, . . . , n − 1}).

104 S. Davies and M. Hospodár

Next, we show the following states are reachable: (k−1, Q), (k−1, Q\{k−1}),
(k +1, Q), (k +1, Q \ {k +1}). From (k, {k − 2, k − 3, . . . , 0}), apply (k → k − 1)
to reach (k − 1, {k, k − 2, k − 3, . . . , 0}). Repeatedly apply (k → k + 1 → · · · →
n − 2 → n − 1) to reach (k − 1, Q \ {k − 1}). Then apply (k → k − 1) to
reach (k−1, Q). Symmetrically, we can reach (k+1, Q\{k+1}) and then (k+1, Q).

Next, we describe how to reach states of the form (q, S) where S satisfies
certain properties. For each q, we define:

S<q = {p ∈ S | p < q}, S>q = {p ∈ S | p > q}, Sq = S ∩ {q}.

Then S is the disjoint union S<q ∪ Sq ∪ S>q. We claim that (q, S) is reachable if
one of the following conditions holds:

1. n is odd, |S<q| ≤ min{q, k + 1}, and |S>q| ≤ min{n − q − 1, k − 1}.
2. n is odd, |S<q| ≤ min{q, k − 1}, and |S>q| ≤ min{n − q − 1, k + 1}.
3. n is even, |S<q| ≤ min{q, k + 1}, and |S>q| ≤ min{n − q − 1, k − 2}.
4. n is even, |S<q| ≤ min{q, k − 1}, and |S>q| ≤ min{n − q − 1, k}.

Additionally, if q is a final state (k − 1 or k + 1), then S must contain the initial
state k.

To see this, first observe that S<q always has size at most q and S>q always
has size at most n − q − 1; no sets exist which do not satisfy these bounds. Now
suppose condition (1) holds; then n is odd and n = 2k + 1. Observe that Q<k+1

has size k + 1 and Q>k+1 has size n − (k + 1) − 1 = 2k + 1 − k − 1 − 1 = k − 1.
Since |S<q| ≤ k + 1 and |S>q| ≤ k − 1, there is a monotonic transformation
that sends Q<k+1 to S<q and Q>k+1 to S>q; we can define the transformation
as follows: For i in Q<k+1, map i to the (i + 1)-th smallest element of S<q,
or to the largest element of S<q if i + 1 > |S<q|. For i ∈ Q>k+1, map i to
the (i − (k + 1))-th smallest element of S>q, or to the largest element of S>q

if i−(k+1) > |S>q|. Finally, k+1 is mapped to q. If S contains q, reach (k+1, Q)
and apply this transformation to reach (q, S). Otherwise, reach (k+1, Q\{k+1})
and apply this transformation to reach (q, S).

If condition (2), (3) or (4) holds, we use symmetric arguments. For condi-
tion (2), observe that Q<k−1 has size k − 1 and Q>k−1 has size k + 1. Since the
condition implies |S<q| ≤ k −1 and |S>q| ≤ k +1, there is a monotonic transfor-
mation that sends Q<k−1 to S<q and Q>k−1 to S>q, defined analogously to the
transformation before. For condition (3), Q<k+1 has size k +1, but since n = 2k
is even, the set Q>k+1 has size n − (k + 1) − 1 = 2k − k − 1 − 1 = k − 2. For
condition (4), Q<k−1 has size k − 1 and Q>k−1 has size k.

This argument shows that all states (q, S) which satisfy the four conditions
described above (and satisfy k ∈ S if q is final) are reachable. Now we count the
number of states satisfying these conditions.

Case 1: States of the form (k−1, S). Note that S<k−1 has size at most k−1.
If n is odd, then S>k−1 has size at most k + 1. If n is even, then S>k−1 has size
at most k. So for all S, either condition (2) or condition (4) is satisfied. Also,
since k −1 is final, S must contain the initial state k. Thus every state (k −1, S)
with k ∈ S is reachable; there are 2n−1 such states.

Square, Power, Plus, and Complementation on Star-Free Languages 105

Case 2: States of the form (k + 1, S). One may verify that for all S, either
condition (1) or condition (3) is satisfied. Since k + 1 is final, S must contain k.
Thus every state (k + 1, S) with k ∈ S is reachable; there are 2n−1 such states.

Case 3: States of the form (k, S). Note that S<k has size at most k. If n is
odd then S>k has size at most k. If n is even then S>k has size at most k − 1.
If |S<k| ≤ k−1, then condition (2) or condition (4) is satisfied. If |S<k| = k, then
condition (1) or condition (3) is satisfied unless S>k is too large. The only way it
can be too large is if n is odd and |S>k| = k, or n is even and |S>k| = k −1. But
in both these cases, we have |S<k|+ |S>k| = n−1 and thus S<k ∪S>k = Q\{k}.
So there are only two choices for S that do not meet a reachability condition: Q
and Q \ {k}. Thus there are 2n − 2 reachable states of the form (k, S).

Case 4: States of the form (q, S), q < k − 1. Write q = k − 1 − d with d ≥ 1.
Then S<q has size at most k−1−d. If n is odd, then S>q has size at most k+1+d.
If n is even, then S>q has size at most k + d. We always have |S<q| ≤ k + 1.
If n is odd, then condition (2) is met as long as |S>q| ≤ k + 1. If n is even, then
condition (4) is met as long as |S>q| ≤ k. Let us count the number of sets S
which fail these conditions.

Write S as the disjoint union S<q∪Sq∪S>q. There are 2k−1−d choices for S<q

and 2 choices for Sq. If n is odd, to fail condition (2), we need |S>q| = k + 1 + j

for some j with 1 ≤ j ≤ d. For each j, there are
(
k+1+d
k+1+j

)
choices for S>q; to

get the total we sum over j. So when n is odd, there are 2k−d(
∑d

j=1

(
k+1+d
k+1+j

)
)

choices for S.
If n is even, to fail condition (4), we need |S>q| = k + j for some j such

that 1 ≤ j ≤ d. For each j, there are
(
k+d
k+j

)
choices for S>q. Summing over j,

when n is even, there are 2k−d(
∑d

j=1

(
k+d
k+j

)
) choices for S.

Case 5: States of the form (q, S), q > k + 1. Write q = k + 1 + d with d ≥ 1.
Then S<q has size at most k+1+d. If n is odd, then S>q has size at most k−1−d.
If n is even, then S>q has size at most k − 2 − d. We always have |S>q| ≤ k − 2.
Thus condition (1) (if n is odd) or (3) (if n is even) is met as long as |S<q| ≤ k+1.
We count the number of sets that fail these conditions.

Write S as the disjoint union S<q ∪ Sq ∪ S>q. If n is odd, there are 2k−1−d

choices for S>q. If n is even, there are 2k−2−d choices for S>q. There are two
choices for Sq. To fail condition (1) or (3), whichever is relevant, we need |S<q| =
k + j + 1 for some j with 1 ≤ j ≤ d. For each j, there are

(
k+1+d
k+1+j

)
choices. So

if n is odd, there are 2k−d(
∑d

j=1

(
k+1+d
k+1+j

)
) choices for S. If n is even, there

are 2k−1−d(
∑d

j=1

(
k+1+d
k+1+j

)
) choices for S.

This covers all cases, and taking the sum of all the above counts for each q ∈ Q
gives the lower bound f(n) stated earlier.

Finally, we prove distinguishability of all the reached states. We assume
that n ≥ 5 here; the case n = 4 can be verified computationally. Distinguishabil-
ity can be proved using just four monotonic transformations {a, b, c, d}, defined
as follows for q ∈ Q:

106 S. Davies and M. Hospodár

– qa = q + 1 if 0 ≤ q ≤ n − 2 and (n − 1)a = (n − 1),
– qb = q − 1 if 1 ≤ q ≤ n − 1 and 0b = 0,
– qc = 0 if 0 ≤ q ≤ k and qc = q otherwise,
– qd = n − 1 if k ≤ q ≤ n − 1 and qd = q otherwise.

We claim that it suffices to prove the following statements:

– For each q ∈ Q, there is a string xq that is accepted by q in A, not accepted
by any other state of A, and not accepted by any state of B of the form (p, ∅)
for p ∈ Q.

– For each q ∈ Q, there is a string yq that is accepted by (q, ∅) in B, not
accepted by (p, ∅) for p 	= q, and not accepted by any state of A.

Indeed, let (p, S) and (q, T) be two distinct states of B. If S 	= T , then there
exists a state r which belongs to the symmetric difference of S and T ; then xr

distinguishes the states. If S = T , then p 	= q, and yp distinguishes the states.
We define xq as follows: If 0 ≤ q ≤ k − 1, then xq = ak−1−qd. If q = k,

then xq = ac. If k + 1 ≤ q ≤ n − 1, then xq = bq−(k+1)c. We define yq as follows:
If 0 ≤ q ≤ k, then yq = ak+1−qcac. If k + 1 ≤ q ≤ n − 1, then yq = bq−(k+1)cac.

Now we verify these strings have the desired properties. Since n ≥ 5, we
have n − 1 	= k + 1, and thus d sends every state of A to a non-final state except
for k − 1, which it fixes. Similarly, c sends every state of A to a non-final state
except for k + 1, which it fixes. It follows easily that xq is accepted by q in A,
but rejected in each other state of A.

Now consider (p, ∅) in B; observe that for all i ≥ 0, the state (p, ∅)ai does
not contain k − 1 in its second component. Therefore if q ≤ k − 1, then (p, ∅)
does not accept xq. A similar argument works if q ≥ k+1. For q = k, the second
component of (p, ∅)a cannot contain k + 1, and it follows xq is not accepted.

Next consider whether (p, ∅) in B accepts yq. Observe that (p, ∅)ak+1−qc
contains k in the second component if and only if p = q. Thus (p, ∅)ak+1−qca
contains k + 1 in the second component if and only if p = q. It follows then
when q ≤ k + 1, the state (p, ∅) accepts yq if and only if p = q. If q ≥ k + 1,
a similar argument applies. Finally, no state of A accepts yq because k is not in
the image of ak+1−qc or bq−(k+1)c, but on the other hand, k is the only state
of A which accepts ac. This completes the proof. �

4 Power, Positive Closure, and Complementation

Here we consider the k-th power, positive closure, and complementation on star-
free and unary star-free languages.

By definition, every finite and every co-finite language is star-free. In the
unary case, the minimal DFA for a star-free language must have the cycle of
length one, because otherwise the string w = a performs a non-trivial permu-
tation on the states of this cycle. It follows that every unary star-free language
is either finite or co-finite. Notice that the binary language {a, b}∗a is star-free
since its minimal DFA is permutation-free, but it is neither finite nor co-finite.

In the following four theorems, we consider the k-th power and the positive
closure on star-free languages represented by DFAs and NFAs.

Square, Power, Plus, and Complementation on Star-Free Languages 107

Theorem 4 (Power on Unary DFAs). Let L be a unary star-free language
with sc(L) ≤ n. Then sc(Lk) ≤ k(n − 1) + 1 and this bound is tight.

Proof. The upper bound is the same as in the case of unary regular languages
[14, Theorem 3]. For tightness, consider the co-finite language L = an−1a∗. We
have Lk = ak(n−1)a∗, which is a co-finite language with desired complexity. �
Theorem 5 (Power on NFAs). Let n, k ≥ 2. Let L be a star-free language
over an alphabet Σ with nsc(L) ≤ n. Then nsc(Lk) ≤ kn, and this bound is tight
if |Σ| ≥ 2. In the unary case, a lower bound is k(n − 1) + 1. �
Theorem 6 (Positive Closure on DFAs). Let n ≥ 6. Let L be a star-free
language over an alphabet Σ with sc(L) ≤ n. Then

• sc(L+) ≤ 2n−1 + 2n−2 − 1, and this bound is tight if |Σ| ≥ 4;
• if |Σ| = 1, then sc(L+) ≤ n2 − 7n + 13, and this bound is tight. �

Theorem 7 (Positive closure on NFAs). Let L be a star-free language with
nsc(L) ≤ n. Then nsc(L+) ≤ n, and the bound is tight already in the unary case.

Proof. The upper bound is the same as for regular languages. For tightness,
consider the co-finite language L = an−1a∗. Then L+ = L, so nsc(L+) = n. �

Next we consider complementation. In [7, Theorem 11], an upper
bound O(n2) and a lower bound (n − 1)(n − 2) were obtained. We provide a
more precise upper bound and a better lower bound in the following theorem.

Theorem 8 (Complementation on Unary NFAs). Let n ≥ 3. Let L be
a unary star-free language with nsc(L) ≤ n. Then nsc(Lc) ≤ n2 −2. There exists
a unary star-free language L with nsc(Lc) ≥ (n − 1)2 + 1.

Proof. First, let L be finite. Then the longest string in L is of length at most n−1.
Thus L, as well as Lc, is accepted by a DFA with n+1 states, so nsc(Lc) ≤ n+1.
Next, let L be co-finite. Recall that if we transform a unary n-state NFA for L to
the Chrobak normal form, we get a tail with at most n2 − 2 states and disjoint
cycles of length x1, x2, . . . , xk [5, Theorem 3.5]. The DFA equivalent to this NFA
has a tail with at most n2−2 states and a single cycle of length lcm(x1, x2, . . . , xk).
Since L is co-finite, all states in this cycle must be final, so they can be merged into
one state. Thus, in the minimal DFA for L, so also for Lc, the total number of states
is at most n2 − 1. Since the minimal DFA for Lc includes a state from which no
string is accepted, we can omit it, and we get the desired upper bound. For the

0 1 2 . . . n−2 n−1
a a a a a

aa

Fig. 1. A lower bound example for complementation on unary star-free languages.

108 S. Davies and M. Hospodár

Table 1. Descriptional complexity of operations on star-free and regular languages.
For the state complexity of square on star-free languages, we have

∑n−1
i=0 g(n, i) ≤ ◦ ≤

(n − 1)2n − 2(n − 2) where g(n, i) is defined by (1).

Star-free |Σ| Source Regular |Σ| Source

sc(K ∪ L) mn 2 [1, Theorem 1] mn 2 [12, (1)]

sc(K ∩ L) mn 2 [1, T1] mn 2 [18, T4.3]

sc(KL) m2n − 2n−1 4 [1, T2] m2n − 2n−1 2 [12, (2)]

sc(L∗) (3/4)2n 4 [1, T4] (3/4)2n 2 [12, (3)]

sc(LR) 2n − 1 n − 1 [1, T5] 2n 2 [11, Prop.1]

sc(L2) ◦ (
2n−1
n−1

)
here, Sect. 3 n2n − 2n−1 2 [14, T1]

sc(L+) (3/4)2n − 1 4 here, T6 (3/4)2n − 1 2 [12, (3)]

nsc(K ∪ L) m + n + 1 2 [7, T2] m + n + 1 2 [6, T1]

nsc(K ∩ L) mn 2 [7, T3] mn 2 [6, T3]

nsc(KL) m + n 2 [7, T6] m + n 2 [6, T7]

nsc(L∗) n + 1 1 [7, T13] n + 1 1 [6, T9]

nsc(LR) n + 1 2 [7, T8] n + 1 2 [10, T2]

nsc(Lc) 2n 2 [7, T5] 2n 2 [10, T5]

nsc(Lk) kn 2 here, T5 kn 2 [4, T3]

nsc(L+) n 1 here, T7 n 1 [6, T9]

Table 2. Descriptional complexity of operations on unary star-free and unary regular
languages.

Unary star-free Source Unary regular Source

sc(K ∪ L) max{m,n} [1, T6(1)] mn; gcd(m,n) = 1 [13, T4]

sc(K ∩ L) max{m,n} [1, T6(1)] mn; gcd(m,n) = 1 [13, T4]

sc(KL) m + n − 1 [1, T6(2)] mn; gcd(m,n) = 1 [18, T5.4]

sc(L∗) n2 − 7n + 13 [1, T6(3)] (n − 1)2 + 1 [18, T5.3]

sc(Lk) k(n − 1) + 1 here, T4 k(n − 1) + 1 [14, T4]

sc(L+) n2 − 7n + 13 here, T6 (n − 1)2 [18, T5.3]

nsc(K ∪ L) m + n ≤ · ≤ m + n + 1 [7, T9] m + n + 1; m �= kn [6, T2]

nsc(K ∩ L) Θ(m2); n = m + 1 [7, T10] mn; gcd(m,n) = 1 [6, T4]

nsc(KL) m + n − 1 ≤ · ≤ m + n [7, T12] m + n − 1 ≤ · ≤ m + n [6, T8]

nsc(L∗) n + 1 [7, T13] n + 1 [6, T9]

nsc(Lk) k(n − 1) + 1 ≤ · ≤ kn here, T5 k(n−1) + 1 ≤ · ≤ kn [6, T8]

nsc(L+) n here, T7 n [6, T9]

nsc(Lc) (n−1)2 + 1 ≤ · ≤ n2 − 2 here, T8 2Θ(
√
n logn) [6, T6]

Square, Power, Plus, and Complementation on Star-Free Languages 109

lower bound, consider the language L accepted by the NFA shown in Fig. 1. The
language L consists of strings of length cn+d(n−1) with c ≥ 1 and d ≥ 0 and the
empty string. By [18, Lemma 5.1(ii)], the longest string in Lc is of length (n−1)2.
It follows that nsc(Lc) = (n − 1)2 + 1. �

5 Conclusion

We examined the deterministic and nondeterministic state complexity of square,
power, positive closure, and complementation on star-free languages. Our results
are summarized in Tables 1 and 2 where also the size of alphabet used to describe
witnesses is displayed. The tables also show all known results concerning descrip-
tional complexity of basic regular operations on star-free and regular languages.
Notice that the deterministic state complexity of square on star-free languages
and the nondeterministic state complexity of union, intersection, concatenation,
power, and complementation on unary star-free languages remain open.

References

1. Brzozowski, J.A., Liu, B.: Quotient complexity of star-free languages. Inter-
nat. J. Found. Comput. Sci. 23(6), 1261–1276 (2012). https://doi.org/10.1142/
S0129054112400515

2. Brzozowski, J.A., Szykula, M.: Large aperiodic semigroups. Internat. J. Found.
Comput. Sci. 26(7), 913–932 (2015). https://doi.org/10.1142/S0129054115400067

3. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations
on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214,
pp. 60–70. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45526-4 6

4. Domaratzki, M., Okhotin, A.: State complexity of power. Theoret. Comput. Sci.
410(24–25), 2377–2392 (2009). https://doi.org/10.1016/j.tcs.2009.02.025

5. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Com-
put. 205(11), 1652–1670 (2007). https://doi.org/10.1016/j.ic.2007.07.001

6. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Internat. J. Found. Comput. Sci. 14(6), 1087–1102 (2003). https://doi.
org/10.1142/S0129054103002199

7. Holzer, M., Kutrib, M., Meckel, K.: Nondeterministic state complexity of star-free
languages. Theoret. Comput. Sci. 450, 68–80 (2012). https://doi.org/10.1016/j.
tcs.2012.04.028

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

9. Howie, J.M.: Products of idempotents in certain semigroups of transformations.
Proc. Edinburgh Math. Soc. 17(3), 223–236 (1971). https://doi.org/10.1017/
S0013091500026936

10. Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330(2), 287–298 (2005). https://doi.org/10.1016/j.tcs.2004.
04.011

11. Leiss, E.L.: Succint representation of regular languages by boolean automata.
Theoret. Comput. Sci. 13, 323–330 (1981). https://doi.org/10.1016/S0304-
3975(81)80005-9

https://doi.org/10.1142/S0129054112400515
https://doi.org/10.1142/S0129054112400515
https://doi.org/10.1142/S0129054115400067
https://doi.org/10.1007/3-540-45526-4_6
https://doi.org/10.1016/j.tcs.2009.02.025
https://doi.org/10.1016/j.ic.2007.07.001
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1016/j.tcs.2012.04.028
https://doi.org/10.1016/j.tcs.2012.04.028
https://doi.org/10.1017/S0013091500026936
https://doi.org/10.1017/S0013091500026936
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1016/S0304-3975(81)80005-9
https://doi.org/10.1016/S0304-3975(81)80005-9

110 S. Davies and M. Hospodár

12. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Doklady 11, 1373–1375 (1970)

13. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Internat. J. Found. Comput. Sci. 13(1), 145–159 (2002). https://
doi.org/10.1142/S012905410200100X

14. Rampersad, N.: The state complexity of L2 and Lk. Inform. Process. Lett. 98(6),
231–234 (2006). https://doi.org/10.1016/j.ipl.2005.06.011

15. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965). https://doi.org/10.1016/S0019-9958(65)90108-7

16. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2012)
17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of

Formal Languages, pp. 41–110. Springer, Heidelberg (1997). https://doi.org/10.
1007/978-3-642-59136-5 2

18. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994). https://doi.
org/10.1016/0304-3975(92)00011-F

https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1016/j.ipl.2005.06.011
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

Descriptional Complexity of Matrix
Simple Semi-conditional Grammars

Henning Fernau1(B) , Lakshmanan Kuppusamy2 ,
and Indhumathi Raman3

1 Fachbereich 4 – Abteilung Informatikwissenschaften, CIRT,
Universität Trier, 54286 Trier, Germany

fernau@uni-trier.de
2 School of Computer Science and Engineering, VIT, Vellore 632 014, India

klakshma@vit.ac.in
3 Department of Applied Mathematics and Computational Sciences,

PSG College of Technology, Coimbatore 641 004, India
ind.amcs@psgtech.ac.in

Abstract. Matrix grammars are one of the first approaches ever pro-
posed in regulated rewriting, prescribing that rules have to be applied in
a certain order. Typical descriptional complexity measures incorporate
the number of nonterminals or the length, i.e., the number of rules per
matrix. In simple semi-conditional (SSC) grammars, the derivations are
controlled by a permitting string or by a forbidden string associated to
each rule. The maximum length i of permitting strings and the maximum
length j of forbidden strings are called the degree of such grammars.
Matrix SSC grammars (MSSC) put matrix grammar control on SSC
rules. We consider the computational completeness of MSSC grammars
with degrees (2, 1), (2, 0) and (3, 0). The results are important in the fol-
lowing aspects. (i) With permitting strings alone, it is unknown if SSC
grammars are computational complete, while MSSC grammars describe
RE even with severe further restrictions on their descriptional complexity.
(ii) Matrix grammars with appearance checking with three nonterminals
are computationally complete; however, the length is unbounded. With
our constructions for MSSC grammars, we can even bound the length.

Keywords: Simple semi-conditional grammars · Matrix grammars ·
Computational completeness · Geffert normal forms ·
Descriptional complexity

1 Introduction

Matrix grammars (introduced by Ábrahám [1]) are regulated grammars in which
rules are grouped into finite sequences called matrices. When a matrix is chosen
to be applied, all rules in the sequence are applied in the given order. In semi-
conditional (SC) grammars (introduced by Păun [14]), each rule is associated

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 111–123, 2019.
https://doi.org/10.1007/978-3-030-23247-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_8&domain=pdf
http://orcid.org/0000-0002-4444-3220
http://orcid.org/0000-0003-2358-905X
http://orcid.org/0000-0002-0981-9165
https://doi.org/10.1007/978-3-030-23247-4_8

112 H. Fernau et al.

with two strings called the permitting string and the forbidden string. A rule
can be applied to a sentential form w only if w contains the permitting string
and does not contain the forbidden string as a subword. If both these control
strings (permitting and forbidden) are absent in a rule, then the rule is called
unconditional ; otherwise, the rule is termed conditional. The most interesting
case is when the involved rewriting rules are context-free; we will focus on this
case in the following. Clearly, these are the rules which are responsible for a SC
grammar to characterize the class of recursively enumerable languages, hence-
forth denoted RE [10,12,15]. With semi-conditional grammars, two variants are
of special interest: (i) simple semi-conditional grammars (denoted as SSCG) in
which at most either the permitting string or the forbidden string is present
for each rule, see [10]; (ii) permitting grammars in which the forbidden string is
absent for every rule, see [6]. Key observations in these domains include:

– Matrix grammars with appearance checking, having three nonterminals, are
computationally complete, i.e., they characterize RE [3]. However, the lengths
of the matrices are unbounded. It is not clear how to restrict the length while
still bounding the number of nonterminals. It is known that matrix grammars
without appearance checking are not computationally complete; see [8].

– The generative power of permitting grammars with no erasing rules is strictly
included in the class of context-sensitive languages; refer to [6]. It is open if
permitting grammars with erasing context-free rules describe RE.

– Results on the computational completeness of simple semi-conditional gram-
mars are tabulated in Fig. 1(a). It is unknown, for example, if five nontermi-
nals or five conditional rules suffice to describe RE.

– Matrix simple semi-conditional (MSSC) grammars, matrix controlled gram-
mars with SSC rules (introduced in [11]) have been known to characterize RE
while limiting several descriptional complexity measures at the same time.
These devices are in the focus of our paper.

The results of the paper are tabulated in Fig. 1(b), including results from [11].
Our results clearly improve on the previously published ones. The many results
we obtained can be viewed as trade-off results between different measures of
descriptional complexity. We highlight the record-holders of single measures by
putting them in bold-face in the table.

2 Preliminaries and Definitions

In this paper, it is assumed that the reader is familiar with the fundamentals
of language theory and mathematics in general. Let Σ∗ denote the free monoid
generated by a finite set Σ called the alphabet under an operation termed con-
catenation. Any element of Σ∗ is called a word or string (over Σ), while the
empty word λ is the unit of Σ∗. Any subset of Σ∗ is called a language. A word v
is a subword (or substring) of x ∈ Σ∗ if there are words u,w such that x = uvw.
Let sub(x) ⊆ Σ∗ denote the set of all subwords of x ∈ Σ∗. Clearly, sub(x) is a
finite language. Given a word w ∈ Σ∗, |w| represents the length of w. Recall that

Matrix Regulated Rewriting Grammars 113

Degree #NT #CR Ref.

(2, 1) 13 12 [12]
(2, 1) 12 10 [15]
(2, 1) 10 9 [9]
(2, 1) 9 8 [4]
(3, 1) 11 8 [15]
(3, 1) 9 8 [13]
(3, 1) 7 7 [4]
(4, 1) 7 6 [4]
(4, 1) 6 8 [4]

(a) Descriptional complex-
ity measures of SSC gram-
mars describing RE

Degree #NT #CR #MAT LEN Ref.

(2, 1) 6 6 2 4 [11]
(3, 1) 7 4 1 6 [11]
(2, 1) 6 4 2 2 Thm. 6
(2, 1) 6 3 2 3 Thm. 7
(2, 1) 6 3 1 4 Thm. 8
(2, 1) 5 4 1 4 Thm. 10
(2, 1) 5 3 3 2 Thm. 12
(2, 0) 6 2 1 5 Thm. 9
(2, 0) 5 3 1 5 Thm. 11
(2, 0) 5 5 3 2 Thm. 13
(2, 0) 5 2 2 4 Thm. 14
(2, 0) 4 6 2 7 Thm. 18
(3, 0) 4 5 3 3 Thm. 15
(3, 0) 4 7 4 2 Thm. 16
(3, 0) 4 3 2 5 Thm. 17

(b) Descriptional complexity measures of
MSSC grammars describing RE

Fig. 1. Summary of computational completeness results for SSC and MSSC grammars;
#NT, #CR and #MAT denote the number of nonterminals, the number of conditional
rules, and the number of conditional matrices, respectively. LEN gives an upper bound
on the lengths of matrices.

a type-0 grammar can be specified by a quadruple G = (N,T, S, P), where N is
the nonterminal alphabet, T is the terminal alphabet, S ∈ N is the start symbol
and P is a finite set of re-write rules of the form x → y, with x, y ∈ (N ∪ T)∗.
Type-0 grammars characterize the class RE of recursively enumerable languages.
Rule x → y is context-free if x ∈ N .

2.1 Matrix (and) Semi-conditional Grammars

Matrix and Semi-conditional grammars have been introduced within the area of
regulated rewriting [2,14], mostly to enhance the power of context-free grammars
beyond context-free languages. Matrix control allows to express that some rules
have to be applied in a certain order, while semi-conditional control attaches
permitting and forbidden strings to rules that confine the applicability of these
rules. In the special case of simple semi-conditional grammars [10], only either
permitting or forbidden strings may be present.

A matrix simple semi-conditional grammar (MSSC grammar for short) com-
bines simple semi-conditional grammars and matrix grammars [11].

Definition 1. An MSSC grammar is a quadruple G = (N,T, S,M), where N,T
and S have the same meaning as in a type-0 grammar and M is a finite set of
sequences (called matrices) of the form

m = [(A1 → x1, P1, F1), . . . , (A� → x�, P�, F�)] , (1)

114 H. Fernau et al.

where � ≥ 1, Ak ∈ N , xk ∈ (N ∪ T)∗, Pk, Fk ∈ (N ∪ T)+ ∪ {0} such that
Pk = 0 or Fk = 0 for each 1 ≤ k ≤ �. The strings Pk and Fk above are called
the permitting and forbidding conditions, respectively; 0 is a special symbol,
0 �∈ N ∪ T . If Pk = Fk = 0, then rule (A → xk, Pk, Fk) is called unconditional;
otherwise, it is called conditional. Let cm denote the number of conditional rules
in matrix m from (1). We call matrix m conditional if cm ≥ 1 and unconditional
if cm = 0. Moreover, m is called a multi-production matrix if � ≥ 2 and is called
a single-production matrix if � = 1. Number �m := � is termed the length of m.

Reconsider m from (1). Let α0, α� ∈ (N ∪T)∗. Then, α0 ⇒m α� holds if there
are strings α1, . . . , α�−1 ∈ (N ∪ T)∗ such that, for all k = 1, . . . , �, if Pk �= 0,
then Pk ∈ sub(αk−1), and if Fk �= 0, then Fk /∈ sub(αk−1), and furthermore,
αk−1 = α′

k−1Akα′′
k−1 and αk = α′

k−1xkα′′
k−1. Define ⇒G=

⋃
m∈M ⇒m. Now,

L(G) = {w | S ⇒∗
G w ∧ w ∈ T ∗} is the language described by G.

Observe that all conditions have to be met to successfully apply a matrix
to a string; otherwise, the derivation does not succeed. More classical matrix
grammars (without appearance checking) can be viewed as MSSC grammars
where all matrices are unconditional. Likewise, simple semi-conditional gram-
mars (abbreviated as SSC(G)) correspond to MSSC grammars where all matri-
ces have length one. We now define six measures on the descriptional complexity
of MSCC grammars that are crucial for our further studies.

Definition 2. An MSSC grammar G = (N,T, S,M) is of size (i, j;n; c, p, l), if
in every rule (A → x, α, β) of a matrix m ∈ M , we have

– |α| ≤ i and |β| ≤ j, (the pair (i, j) is also called the degree of G);1

– |N | ≤ n (an upper bound on the number of nonterminals);
–

∑

m∈M

cm ≤ c (bounding the total number of conditional rules in G);

– |{m ∈ M | �m > 1}| ≤ p (upper-bounding the number of multi-production
matrices in G);

– max{�m | m ∈ M} ≤ l (bounding the matrix lengths in G).

We denote by MSSC(i, j;n; c, p, l) the family of languages generated by MSSC
grammars of size (i, j;n; c, p, l). If the forbidding conditions are absent in every
rule of M , then the degree of the system is (i, 0) and is denoted as matrix permit-
ting grammar (or MP grammar for short). For brevity, we simplify the notation
(A → x, α, 0) to (A → x, α) and (A → x, 0, 0) to (A → x). For MP gram-
mars, we abbreviate for the corresponding classes of languages MP(i;n; c, p, l) =
MSSC(i, 0;n; c, p, l). If l = 1, then p = 0, and (as noticed above), we rather face
SSC grammars, so that we could write MSSC(i, j;n; c, 0, 1) = SSC(i, j;n, c).

2.2 Geffert Normal Forms

In [7], quite a number of normal forms for type-0 grammars have been derived.
They all differ by the number of nonterminals that are used and also by the
1 Here, the convention |0| = 0 applies.

Matrix Regulated Rewriting Grammars 115

number of non-context-free rules. We will hence speak of (n, r)-GNF to refer to a
Geffert normal form with n nonterminals and r non-context-free rules. However,
all these normal forms characterize the class of recursively enumerable languages,
or RE languages for short. The best known normal form is the (5, 2)-GNF with
nonterminals S (start symbol) and A,B,C,D that uses context-free rules with
S as its left-hand side in its first phase; after using the context-free rules, in a
second phase non-context-free erasing rules AB → λ and CD → λ are applied to
finally derive a string t ∈ T ∗. Hence, the derivation in a grammar in (5, 2)-GNF
proceeds in two phases, where the first phase splits into two stages. In phase one,
stage one, rules of the form S → uSa are used, with u ∈ {A,C}∗, a ∈ T . In stage
two, rules of the form S → uSv are used, with u ∈ {A,C}∗ and v ∈ {B,D}∗.
It is also shown in [7] that any attempt to mix the applications of rules of these
two types cannot yield to a terminal string in view of the chosen encodings.
Also, rules of the form S → uv are available that prepare the transition into
phase two, where (i.e., in phase two) the erasing non-context-free rules are used
exclusively. The normal form variations we discuss next are always derived from
(5, 2)-GNF by applying morphisms to all context-free rules, where in particular
S �→ S maintains the start symbol, so that in particular the rules involving
the start symbol keep up the same form as with (5, 2)-GNF, without further
mentioning this below.

GNF with 4 Nonterminals. We now discuss another normal form of type-
0 grammars due to Geffert [7]. We then list some important properties of this
normal form that are discussed and proved in [4,5]. These follow from the con-
structions of the normal form and well-known properties of (5, 2)-GNF.

The normal form (4, 1)-GNF is obtained from (5, 2)-GNF normal form (using
nonterminals S,A,B,C,D) by applying the morphism A �→ AB, B �→ C, C �→ A
and D �→ BC to all context-free rules. Moreover, we add one non-context-free
erasing rule ABC → λ. This means that the following properties hold:

Proposition 3 [5]. The following properties hold for (4, 1)-GNF grammars:

1. If S ⇒∗ w, then w ∈ {A,AB}∗{S, λ}{BC,C}∗(T ({BC,C} ∪ T)∗ ∪ {λ}).
2. If S ⇒∗ w, then sub(w) ∩ ({BBB} ∪ {C}{B}∗{A}) = ∅.
3. If S ⇒∗ w, with w = w′t, where w′ ∈ {A,AB}+{BC,C}+, t ∈ (T ({BC,C}∪

T)∗∪{λ}), then w′ contains exactly one occurrence from {ABC,AC,ABBC}
as a substring. We refer to this substring as the central part of w.
Only with ABC as central part, possibly w′ ⇒∗ λ as intended in a derivation
that yields a terminal string. If AC or ABBC occur as a central part of the
string, then it will not derive to a terminal string.

4. If S ⇒∗ w, with w = w′t, where w′ ∈ {A,AB}+ ∪ {BC,C}+ and t ∈
(T ({BC,C} ∪ T)∗ ∪ {λ}), then w does not derive any terminal string.

5. Again, the derivation proceeds in two phases, the first one is split into two
stages. Only in phase two (where non-context-free erasing rules are applied),
a central part will appear.

116 H. Fernau et al.

The normal form (4, 2)-GNF is obtained from (5, 2)-GNF (using nontermi-
nals S,A,B,C,D) by applying the morphism A �→ CAA, B �→ BBC, C �→ CA
and D �→ BC to all context-free rules. Moreover, the two non-context-free
erasing rules AB → λ and CC → λ are added. Then if S ⇒∗ w, then
w ∈ {CA,CAA}∗{S, λ}{BC,BBC}∗(T ({BC,BBC} ∪ T)∗ ∪ {λ}).

Remark 4. Though the central part is either AB or CC, unwanted strings like
AC or CB can appear in the center; the derivation is stuck in these cases. Similar
properties as stated in the previous proposition can be derived for (4, 2)-GNF.

GNF with 3 Nonterminals. In [7], it was also proved that every RE language
is generated by a type-0 grammar with three nonterminals only. The context-
free rules of this (3, 1)-GNF normal form (where N = {S,A,B}) are obtained
from (5, 2)-GNF by applying the morphism A �→ AB, B �→ BBA, C �→ ABB
and D �→ BA. The only non-context-free rule is ABBBA → λ. It is sometimes
more practical to work with the two non-context-free erasing rule BBB → λ
and AA → λ instead, leading to a grammar in (3, 2)-GNF.

Remark 5. The central part for (3, 1)-GNF or (3, 2)-GNF is either BBB or AA,
but unwanted strings like ABBA or ABBBBA are possible in the center.

3 Computational Completeness of MSSC Grammars

In the proofs, we are making use of several variations of Geffert normal form as
discussed above, starting with (4, 1)-GNF.

Theorem 6. MSSC(2, 1; 6; 4, 2, 2) = RE.

Proof. Let L ∈ RE be generated by a grammar in (4, 1)-GNF of the form G =
(N,T, P ∪ {ABC → λ}, S) such that P contains only context-free productions
and N = {S,A,B,C} (see Proposition 3). Next, we define the MSSC grammar
G′ = (N ′, T, P ′∪P ′′, S), where N ′ = N ∪{A′, C ′} (assuming that {A′, C ′}∩N =
∅), P ′ contains (single-production) matrices of the form [(S → α, 0, 0)] whenever
S → α ∈ P and P ′′ contains the following two (multi-production) matrices plus
the (single-production) matrix m3 = [(C ′ → λ, 0, A′)]:

m1 = [(A → A′, 0, C ′), (C → C ′)],
m2 = [(B → λ,A′B), (A′ → λ,A′C ′)].

We now show that L(G′) = L(G).
First, it is clear that context-free rules like S → α ∈ P can be easily simulated

by single-production matrices of the form [(S → α, 0, 0)] and vice versa. In fact,
it could be that m1 is applied in-between applying matrices [(S → α, 0, 0)], but
then only matrices [(S → α, 0, 0)] can apply until switching to Phase two, where
m2 might follow, which is discussed in detail next, assuming that m1 would have
been applied last, not changing the resulting sentential form.

Matrix Regulated Rewriting Grammars 117

According to Proposition 3, then (after Phase one of the GNF grammar),
ignoring boundary cases, we face a string of the form αξβt, where α ∈ {A,AB}∗,
ξ ∈ {ABC,AC,ABBC}, β ∈ {B,BC}∗ and t ∈ T ({B,BC}∪T)∗ ∪{λ}. Assume
that ξ = ABC, i.e., we are still in the situation that (in case t ∈ T ∗) αξβt might
derive a terminal string in G. Applying ABC → λ in G, we could arrive at
αβt. This can be simulated by αξβt ⇒m1 αA′BC ′βt ⇒m2 αC ′βt ⇒m3 αβt. By
induction, this shows that L(G) ⊆ L(G′).

We are now finishing the proof of the converse direction L(G) ⊇ L(G′) by
explaining the decisive induction step, starting out with some αξβt (as above)
that is derivable both in G and in G′. If αξβt is the current sentential form
in G′ with ξ = ABC, then clearly only m1 applies (due to the absence of primed
symbols). This means that any occurrence of A (which must be in αξ) and any
occurrence of C (from ξβt) is turned into the primed counterparts. Now, the
presence of A′ and C ′ prevents applying m1 or m3, forcing us into applying
matrix m2 next. Now, the context checks become important. Both rules check
for the presence of a certain symbol to the right of A′. As both checked symbols
are different and there is only one occurrence of A′ in the sentential form, the
first rule in m2 must remove the occurrence of B to the right of A′. Moreover,
to the right of that occurrence of B, C ′ must occur in the sentential form, which
enforces that in fact the A occurring in ξ must have been turned into A′ when
applying m1, and likewise the C occurring in ξ must have been turned into C ′

before. In other words, we know that αABCβt ⇒m1 αA′BC ′βt ⇒m2 αC ′βt.
Due to the presence of C ′ and the absence of A′, m3 is the only applicable rule,
leading to αβt as intended.

However, there are also situations to study where we know that within G,
there will be no terminal string derivable at all, while this might happen within
the simulated grammar G′.

Case 1. Consider the sentential form αACβt. Now, we could apply m1, turning
one occurrence of A within αA into A′ and one occurrence of C within Cβt into
C ′. Now, m2 is the only applicable rule. In order to apply the first rule in m2,
B must have been sitting to the right of the A-occurrence that we have replaced
when applying m1, but this means that now we find A′ within the part of the
word previously called α, where no C- or C ′-occurrences are to be found, which
would be necessary to apply the second rule of m2. In a sense, the A-occurrence
in the central part AC serves as a barrier between the possible substrings AB
within α and the C-ocurrences to match with. Hence, the derivation gets stuck.

Case 2. Consider the sentential form αABBCβt. Now, again m1 is the only
applicable matrix. Turning one occurrence of A within αA into A′ and one
occurrence of C within Cβt into C ′. With a similar argument as in the previous
case, one sees that not both rules of the only applicable matrix m2 can be applied
in sequence. Here, the second B-occurrence in the central part ABBC serves as
a barrier between the possible substrings AB within αAB and the C-ocurrences
to match with.

118 H. Fernau et al.

Case 3. Boundary cases. This concerns situations where there is no central part
available at all. In particular, this means that we are facing sentential forms like
αt or βt with α ∈ {A,AB}∗, β ∈ {B,BC}∗ and t ∈ T ({B,BC}∪T)∗∪{λ}. Now,
either none of the matrices apply, or m1 might apply but then the derivation is
stuck, because the permitting context A′C ′ in m2 cannot be met.

In summary, we have shown that whenever starting with a string w that is
derivable both in G′ and in G, with G′, we will be forced to produce a string that
is also derivable in G, which proves that L(G) ⊇ L(G′), so that together with our
previous considerations, we have shown that L(G) = L(G′) as claimed. ��

Notice that in the proof of the preceding theorem, we showed that after
applying m2, we were forced to apply m3. So, the idea of simply appending m3
to m2 would work, giving a sort of trade-off result in terms of parameters. As
the only purpose of the context check in the rule of m3 was to guarantee that
m3 is not applied in another situation, we can furthermore omit context checks
in the appended rule C ′ → λ. Hence, otherwise following the same reasoning as
before, the two (multi-production) matrices

m1 = [(A → A′, 0, A′), (C → C ′)] ,
m2 = [(B → λ,A′B), (A′ → λ,A′C ′), (C ′ → λ)]

provide the simulation of the non-context-free rule ABC → λ of a type-0 gram-
mar G in (4, 1)-GNF. This shows the following result.

Theorem 7. MSSC(2, 1; 6; 3, 2, 3) = RE. ��
With a similar intuition, one could observe that an application of matrix m1

should be always followed by an application of m2. By tuning a bit on the roles
of A′ and C ′, we propose the multi-production matrix

m = [(A → A′, 0, A′), (C → C ′), (B → λ,A′B), (C ′ → λ,A′C ′)]

to work together with the one-production matrix [(A′ → λ, 0, 0)] in order to
simulate the non-context-free rule ABC → λ. This can be worked out to prove:

Theorem 8. MSSC(2, 1; 6; 3, 1, 4) = RE. ��
Working out further the idea of merging matrices of Theorem 6, as m1,

m2 and m3 must be applied in order, one can observe that the forbidden con-
text checks become obsolete, leading us to use the following (multi-production)
matrix

m = [(A → A′), (C → C ′), (B → λ,A′B), (A′ → λ,A′C ′), (C ′ → λ)]

to simulate the non-context-free rule ABC → λ. This idea yields the following.

Theorem 9. MSSC(2, 0; 6; 2, 1, 5) = MP(2; 6; 2, 1, 5) = RE. ��

Matrix Regulated Rewriting Grammars 119

So far, we derived our results starting off from (4, 1)-GNF. We needed two
more nonterminals in order to uniquely mark the boundaries of the central part
of the sentential form. We are first trying to reduce the number of nonterminals
at the expense of more conditional rules. To this end, we continue discussing our
previous constructions, in particular, those based on the proof of Theorem 6.
Observe that an application of matrix m1 should be always followed by an
application of m2. By merging the roles of A′ and C ′ within #, we propose
the multi-production matrix

m = [(A → #, 0,#), (B → λ,#B, 0), (C → #,#C, 0), (# → λ,##, 0)]

to work together with the one-production matrix [(# → λ, 0, 0)] in order to
simulate the non-context-free rule ABC → λ. This idea can be worked out to
prove the following result.

Theorem 10. MSSC(2, 1; 5; 4, 1, 4) = RE. ��
Combining the ideas leading to the previous two theorems, we would again

combine everything within one long matrix, now having the possibility to remove
all forbidden context checks. This leads us to the following result, based on

m = [(A → #), (B → λ,#B), (C → #,#C), (# → λ,##), (# → λ)].

Theorem 11. MSSC(2, 0; 5; 3, 1, 5) = MP(2; 5; 3, 1, 5) = RE.

In order to aim at the use of fewer nonterminals (but possibly with more
small-length matrices), we turn to another GNF, namely, to (4, 2)-GNF, which
we are going to use in the following, trading off the number of conditional rules
with avoiding forbidden strings.

Theorem 12. MSSC(2, 1; 5; 3, 3, 2) = RE.

Proof. Let L ∈ RE be generated by a grammar in (4, 2)-GNF of the form
G = (N,T, P ∪ {AB → λ,CC → λ}, S) such that P contains only context-
free productions and N = {S,A,B,C} (see Remark 4). Next, we define the
MSSC grammar G′ = (V ′, T, P ′ ∪ P ′′, S), where N ′ = N ∪ {#} (assuming that
�∈ N), P ′ contains (single-production) matrices of the form [(S → α, 0, 0)]
whenever S → α ∈ P and P ′′ contains the three (multi-production) matrices:

m1 = [(A → #, 0,#), (B → #)] ,
m2 = [(C → #, 0,#), (C → #)] ,
m3 = [(# → λ,##, 0), (# → λ)] .

We can show L(G′) = L(G) by an inductive argument. ��
Theorem 13. MSSC(2, 0; 5; 5, 3, 2) = MP(2; 5; 5, 3, 2) = RE.

Proof. Let L ∈ RE be generated by a grammar in (4, 2)-GNF of the form
G = (N,T, P ∪ {AB → λ,CC → λ}, S) such that P contains only context-
free productions and N = {S,A,B,C} (see Remark 4). Next, we define the

120 H. Fernau et al.

MSSC grammar G′ = (N ′, T, P ′ ∪ P ′′, S), where N ′ = N ∪ {#} (assuming
that # /∈ N), P ′ contains (single-production) matrices of the form [(S → α, 0)]
whenever S → α ∈ P and P ′′ contains the three (multi-production) matrices:

m1 = [(A → #, AB), (B → #,#B)]
m2 = [(C → #, CC), (C → #,#C)]
m3 = [(# → λ,##), (# → λ)].

We can show L(G′) = L(G) by an inductive argument. ��
Observe that in a correct simulation in Theorem 13, m1 must be followed by

m3 and m2 must be followed by m3, as well. Hence, by appending m3 to m1
and to m2, we can obtain another computational completeness result with less
but longer matrices, omitting the context conditions in the matrices m1 and m2
from the proof of Theorem 13.

Theorem 14. MSSC(2, 0; 5; 2, 2, 4) = MP(2; 5; 2, 2, 4) = RE. ��
In order to further lower the number of nonterminals that we have to use,

we are moving on to GNFs that are more parsimonious in this respect, i.e., to
(3, 2)-GNF or (equivalently) to (3, 1)-GNF.

Theorem 15. MSSC(3, 0; 4; 5, 3, 3) = MP(3; 4; 5, 3, 3) = RE.

Proof. Let L ∈ RE be generated by a grammar in (3, 2)-GNF of the form G =
(N,T, P ∪ {AA → λ,BBB → λ}, S) such that P contains only context-free
productions and N = {S,A,B}. We define the MSSC grammar G′ = (N ′, T, P ′∪
P ′′, S), where N ′ = N ∪ {#} (assuming that # /∈ N), P ′ contains (single-
production) matrices of the form [(S → α, 0)] whenever S → α ∈ P and P ′′

contains the following three matrices with five conditional rules:

m1 = [(B → #, BBB), (B → #, 0), (B → #,#B#)]
m2 = [(A → ##, AA), (A → ##, 0), (# → λ,###)]
m3 = [(# → λ,###), (# → λ, 0), (# → λ, 0)].

The intended simulation of αABBBAβt ⇒G αβt works as follows.

αABBBAβt ⇒m1 αA###Aβt ⇒m3 αAAβt ⇒m2 α###βt ⇒m3 αβt.

Again, we have to prove that L(G) = L(G′) by an inductive argument based
on some case analysis. ��

Can we somehow shorten the matrices involved in the previous construction?
What somehow comes to mind that the matrix dealing with A are stronger than
those dealing with B in the sense of being more deterministic. As the non-
determinism observed with the matrix m1 dealing with BBB is not a crucial
drawback, one could use m2′ = [(A → #, AA), (A → ##,#A)] instead. Check-
ing cases one sees that this does not create any additional problems indeed. We
can also try to use ## instead of ### for marking purposes, which would allow

Matrix Regulated Rewriting Grammars 121

us to shorten the length of m3 as well. Still, we have to split the matrix dealing
with BBB, which is done as follows (at the cost of additional context checks):

m0 = [(B → #, BBB), (B → #, BB#)],
m1 = [(B → #,#B#), (# → λ,###)],
m2 = [(A → #, AA), (A → #,#A)],
m3 = [(# → λ,##), (# → λ)].

We explain the necessity of these context checks by one example: If we omitted
the BBB check in the first rule of m1, we might enter the matrix not having
BBB as the central part, but without the BB# context of the second rule, it
might be that we had replaced two occurrences of B’s that are both not within
BBB, so that we could re-apply m0, or possibly also directly apply m3. Also
observe that with the proposed version, the shortcut of applying m3 immediately
after m0 would lead to no continuation, because the central part would have been
successfully destroyed, so that from now on no other matrix is applicable. Based
on this construction, one can show (analogously to the previous case):

Theorem 16. MSSC(3, 0; 4; 7, 4, 2) = MP(3; 4; 7, 4, 2) = RE. ��
We are now going to follow the strategy again to merge some of the matrices.

Also, we could be more parsimonous with checking contexts in this case. This
leads us to the following matrices simulating the non-context-free rules:

m1 = [(B → #, 0), (B → #, 0), (B → λ,#B#), (# → λ,##), (# → λ, 0)],
m2 = [(A → #, 0), (A → #, 0), (# → λ,##), (# → λ, 0)].

These two matrices with three conditional rules form the basis of the following.

Theorem 17. MSSC(3, 0; 4; 3, 2, 5) = MP(3; 4; 3, 2, 5) = RE. ��
Alternatively, we could use more conditional rules and longer matrices (but

smaller degrees) with the following matrix m1′ replacing m1 above: m1′ =
[(B → #, 0), (B → #,#B), (# → #, B#), (# → #, A#), (B → λ,#A), (# →
λ,##), (# → λ, 0)]. Observe that if we have a string w ∈ {A,B,#}∗ with
two #-occurrences and moreover {#A,#B,A#, B#} ⊆ sub(w), then either
A#B and B#A or both A#A and B#B are substrings of w. Now if some B
is deleted to produce w′, so that afterwards ## is a substring of w′, then only
A#B#A ∈ sub(w) follows. This implies that BBB → λ is correctly simulated.

Theorem 18. MSSC(2, 0; 4; 6, 2, 7) = MP(2; 4; 6, 2, 7) = RE. ��

4 Conclusions and Discussions

We have tried to describe the frontier of computational completeness for MSSC
grammars, obtaining quite a lot of trade-off results between the six descriptional
complexity measures that we studied. The natural question is if our bounds can

122 H. Fernau et al.

be further improved or if there are more trade-off results than already presented.
We are working on the idea of re-using the start nonterminal within matrices.

Conversely, it would be also good to know which descriptional complexity
restrictions lead to language classes smaller than RE. For instance, we believe
that, irrespectively of the size of the other parameters, one nonterminal is insuf-
ficient to describe all of RE. This can be seen by inspecting the proof of the
corresponding result for graph-controlled grammars in [3, Theorem 15].

However, whether or not two or three nonterminals might suffice is open.
Let us finally sketch the difficulties that we face when trying to use previous
results on matrix languages in particular. In the proof of [3, Corollary 6], showing
that three nonterminals {A,B,C} suffice to generate any RE-language by using
context-free matrix grammars with appearance checking, the appearance checks
have been performed on rules X → Cg (for some large number g encoding
failure). Picking some nonterminal Y �= X, this check could be simulated by an
SSC rule (Y → Y, 0,X). This bounds the degree to (0, 1), as no permitting string
checks are ever needed, and the nonterminals to three, yet, all other interesting
parameters are unbounded. As the matrix length is a classical parameter in
matrix grammars, this observation might revive some interest in the descriptional
complexity of more classical rewriting systems (as matrix grammars): there are
still open problems in that area. For instance, it is also still unknown if context-
free matrix grammars with two nonterminals only describe RE.

References

1. Ábrahám, S.: Some questions of phrase-structure grammars. I. Comput. Linguist.
4, 61–70 (1965)

2. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS
Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)

3. Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal com-
plexity of graph-controlled, programmed, and matrix grammars. J. Autom. Lang.
Comb. 12(1/2), 117–138 (2007). https://doi.org/10.25596/jalc-2007-117

4. Fernau, H., Kuppusamy, L., Oladele, R., Raman, I.: Improved descriptional com-
plexity results for simple semi-conditional grammars (2019). Submitted to Fund.
Inform

5. Fernau, H., Kuppusamy, L., Oladele, R.O.: New nonterminal complexity results for
semi-conditional grammars. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE
2018. LNCS, vol. 10936, pp. 172–182. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94418-0 18

6. Gazdag, Z., Tichler, K.: On the power of permitting semi-conditional grammars. In:
Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 173–184.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62809-7 12

7. Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Theor. Inform.
Appl. 25, 473–498 (1991)

8. Hauschildt, D., Jantzen, M.: Petri net algorithms in the theory of matrix grammars.
Acta Inform. 31, 719–728 (1994). https://doi.org/10.1007/BF01178731

9. Masopust, T.: Formal models: regulation and reduction. Ph.D. thesis, Faculty of
Information Technology, Brno University of Technology, Brno, Czech Republic
(2007)

https://doi.org/10.25596/jalc-2007-117
https://doi.org/10.1007/978-3-319-94418-0_18
https://doi.org/10.1007/978-3-319-94418-0_18
https://doi.org/10.1007/978-3-319-62809-7_12
https://doi.org/10.1007/BF01178731

Matrix Regulated Rewriting Grammars 123

10. Meduna, A., Gopalaratnam, M.: On semi-conditional grammars with productions
having either forbidding or permitting conditions. Acta Cybern. 11(4), 307–323
(1994). http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n4/Meduna1994A
ctaCybernetica.xml

11. Meduna, A., Kopeček, T.: Simple semi-conditional versions of matrix grammars
with a reduced regulating mechanism. Comput. Inform. 23, 287–302 (2004).
http://www.cai.sk/ojs/index.php/cai/article/view/430

12. Meduna, A., Švec, M.: Reduction of simple semi-conditional grammars with
respect to the number of conditional productions. Acta Cybern. 15(3), 353–360
(2002). http://www.inf.u-szeged.hu/actacybernetica/edb/vol15n3/Meduna2002A
ctaCybernetica.xml

13. Okubo, F.: A note on the descriptional complexity of semi-conditional grammars.
Inform. Process. Lett. 110(1), 36–40 (2009). https://doi.org/10.1016/j.ipl.2009.10.
002

14. Păun, G.: A variant of random context grammars: semi-conditional gram-
mars. Theoret. Comput. Sci., pp. 1–17. (1985). https://doi.org/10.1016/0304-
3975(85)90056-8

15. Vaszil, G.: On the descriptional complexity of some rewriting mechanisms regulated
by context conditions. Theoret. Comput. Sci. 330, 361–373 (2005). https://doi.
org/10.1016/j.tcs.2004.06.032

http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n4/Meduna1994ActaCybernetica.xml
http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n4/Meduna1994ActaCybernetica.xml
http://www.cai.sk/ojs/index.php/cai/article/view/430
http://www.inf.u-szeged.hu/actacybernetica/edb/vol15n3/Meduna2002ActaCybernetica.xml
http://www.inf.u-szeged.hu/actacybernetica/edb/vol15n3/Meduna2002ActaCybernetica.xml
https://doi.org/10.1016/j.ipl.2009.10.002
https://doi.org/10.1016/j.ipl.2009.10.002
https://doi.org/10.1016/0304-3975(85)90056-8
https://doi.org/10.1016/0304-3975(85)90056-8
https://doi.org/10.1016/j.tcs.2004.06.032
https://doi.org/10.1016/j.tcs.2004.06.032

Regulated Tree Automata

Henning Fernau(B) and Martin Vu

Universität Trier, FB IV—Abteilung Informatikwissenschaften, CIRT,
54286 Trier, Germany

{fernau,s4vivuuu}@uni-trier.de

Abstract. Regulated rewriting is one of the classical areas in Formal
Languages, as tree automata are a classical topic. Somewhat surprisingly,
there have been no attempts so far to combine both areas. Here, we start
this type of research, introducing regulated tree automata, proving in
particular characterizations of the yields of such regulated automata.

Keywords: Regulated rewriting · Graph control · Tree automata ·
Yield operation

1 Introduction

The area of regulated rewriting, still well-covered by the classical monograph of
Dassow and Păun [4], drew its main motivation from the idea to enrich context-
free grammars with certain control mechanisms in order to be able to model
linguistic features that are not expressible with traditional context-free gram-
mars, yet keeping at least some of the beauties of these. More specifically, pro-
grammed grammars, matrix grammars, and grammars with regular control were
introduced and studied around 1970. It soon became clear that control involv-
ing so-called appearance checks tends to be too powerful in the sense that all
recursively enumerable languages can be characterized this way. This somewhat
counter-acts the idea of keeping some of the advantages of context-free gram-
mars over, say, Turing machines. Therefore, we are mainly focusing on models
without appearance checks in the following. Applications and motivations are
also underlined in the relatively recent monograph by Meduna and Zemek [15].

Conversely, finite tree automata have been invented to allow for processing
(mostly ordered) trees (as opposed to strings) in a simple manner. Trees not
only showed up as a kind of intermediate data structure within compilers, but
they are a ubiquitous data structure when it comes to processing semi-structured
documents and also for working with natural languages [2,12,13].

Recall the basic well-known link between context-free grammars and deriva-
tion trees, often established in practice via considering pushdown automata.
However, it is not possible to go this way in connection with regulated rewrit-
ing, as already observed by Meduna and Kolář in [14]. The basic reason is that
the work of pushdown automata rather corresponds to leftmost (or rightmost)
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 124–136, 2019.
https://doi.org/10.1007/978-3-030-23247-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_9&domain=pdf
http://orcid.org/0000-0002-4444-3220
https://doi.org/10.1007/978-3-030-23247-4_9

Regulated Tree Automata 125

derivations in a very strict sense (called leftmost-1 in [4]). Yet, this strict interpre-
tation does not increase the descriptive power of context-free languages, which
counter-acts one of the basic motivations for considering regulated rewriting.

Rather, we are going to follow here the path pioneered by Doner, Thatcher
(and also to Wright) [5,16] who showed that the context-free string languages are
just the languages that can be obtained by mapping the tree language accepted
by some finite tree automaton to its so-called yield, which means that, given an
ordered tree, we read the labels of the leaves from left to right. We will obtain
similar results for regulated tree grammars in this paper. As tree automata usu-
ally come in two working modes (top-down versus bottom-up), our studies also
revive the question of generating versus accepting (or analyzing) grammars [1].

We are going to present basic results concerning regulated tree automata
and their yields. Due to reasons of space, (straightforward) formal induction
arguments are not given here. Most of these can be found in [17].

2 Definitions

2.1 Classical Regulated Rewriting

There are several ways to introduce the basic control mechanisms of regulated
rewriting. We are giving a simplified exposition now, basically following [7],
adapted to the case of not allowing appearance checks.

A graph-controlled grammar is an 8-tuple G = (VN , VT , P, S, Γ,Σ, Φ, h) where

– (VN , VT , P, S) define, as in a phrase structure grammar, the set of nontermi-
nals, terminals, context-free core rules, and the start symbol, respectively;

– Γ is a digraph, i.e., Γ = (U,E), with E ⊆ U × U ;
– Σ ⊆ U are the initial vertices;
– Φ ⊆ U are the final vertices;
– h : U → (2P \ {∅}) relates vertices with rule sets.

We say that (x, u) ⇒ (y, v) holds in G with (x, u), (y, v) ∈ (VN ∪ VT)∗ × U
if, for some x1, x2, α, β ∈ (VN ∪ VT)∗,

x = x1αx2, y = x1βx2, α → β ∈ h(u), and (u, v) ∈ E.

The reflexive transitive closure of ⇒ is denoted by ∗⇒. The language generated
by G (where P contains only context-free (generating, non-erasing) rules from
VN × (VN ∪ VT)+) is defined by

Lgen(G) = {x ∈ V ∗
T | ∃u ∈ Σ ∃v ∈ Φ ((S, u) ∗⇒ (x, v))}.

The corresponding language family is written Lgen(G,CF − ε), as we do not
allow ε-rules. If P contains only context-free (accepting) rules from (VN ∪VT)+×
VN , then the language accepted by G is defined by

Lacc(G) = {x ∈ V ∗
T | ∃u ∈ Σ ∃v ∈ Φ ((x, u) ∗⇒ (S, v))},

yielding the language family Lacc(G,CF − ε).
We consider three special cases of graph-controlled grammars in the following.

126 H. Fernau and M. Vu

– A grammar with regular control is a graph-controlled grammar where every
vertex contains exactly one rule. Usually, these grammars are introduced via
regular control languages, but the correspondance with automata graphs is
obvious. By Lgen(rC,CF − ε), the family of languages generated by context-
free grammars with regular control is denoted.

– A programmed grammar is a grammar with regular control with no designated
initial or final vertices, i.e., formally Σ = Φ = U . This means that it is
possible to start a derivation in each vertex containing a rule whose left-hand
side equals the start symbol S, and it is possible to stop anywhere when
a terminal string has been derived. As language families, we obtain, e.g.,
Lgen(P,CF − ε).

– A matrix grammar is a grammar with regular control obeying the additional
restriction:

• Initial and final vertices coincide. Only the initial vertices (not necessarily
containing rules with left-hand side S) are allowed to have more than one
in-going arc. Only predecessors of final vertices are allowed to have more
than one out-going arc. Moreover, between every predecessor of a final
vertex and every initial vertex, there is an arc.

As language families, we obtain, e.g., Lgen(M,CF − ε).

With literally the same restrictions, we can define, for instance, Lacc(M,CF−
ε). Recall that all language families introduced in this subsection coincide [1,4].

Remark 1. The formalization of regular control is possibly most different from
the one found in traditional textbooks. However, if Γ = (U,E) together with
Σ,Φ, h defines the control graph structure, then we can relate a finite automaton
A with state set U as follows: We have a transition (u, r, v) if h(u) = {r}; Σ
is the set of initial states, and if u ∈ Φ and (u, v) ∈ E, then v is a final state
of A. Now, if u1, u2, . . . , un describes a directed path from u1 ∈ Σ to un ∈ Φ,
then via {ri} = h(ui) this corresponds to a sequence of rules r1r2 . . . rn, which,
when fed into A, will be accepted. Also the converse construction is possible.
Hence, we can in particular assume that the automaton A that describes the set
of permitted rule sequences is deterministic.

2.2 Tree Automata

Let N be the set of nonnegative integers and let (N∗, ·, ε) (or simply N
∗) be the

free monoid generated by N. For y, x ∈ N
∗, we write y ≤ x iff there is a z ∈ N

∗

with x = y · z. “y < x” abbreviates: y ≤ x and y
= x. As usual, |x| denotes the
length of the word x.

We now give the necessary definitions for trees and tree automata. More
details can be found, e.g., in [2], where also many examples can be found.

A ranked alphabet V is a finite set of symbols together with a finite relation
called rank relation rV ⊂ V × N. Define Vn := {f ∈ V | (f, n) ∈ rV }. Since
elements in Vn are often considered as function symbols (standing for functions
of arity n), elements in V0 are also called constant symbols. A tree over V is a

Regulated Tree Automata 127

mapping t : Δt → V , where the domain Δt is a finite subset of N
∗ such that

(1) if x ∈ Δt and y < x, then y ∈ Δt; (2) if y · i ∈ Δt, i ∈ N, then y · j ∈ Δt

for 1 ≤ j ≤ i. An element of Δt is also called a node of t, where the node ε
is the root of the tree. Then t(x) ∈ Vn whenever, for i ∈ N, x · i ∈ Δt iff
1 ≤ i ≤ n. If t(x) = A, A is the label of x. Let V t denote the set of all finite trees
over V . By this definition, trees are rooted, directed, acyclic graphs in which
every node except the root has one predecessor and the direct successors of any
node are linearly ordered from left to right. Interpreting V as a set of function
symbols, V t can be identified with the well-formed terms over V . A frontier
node in t is a node y ∈ Δt such there is no x ∈ Δt with y < x. If y ∈ Δt is
not a frontier node, it is called interior node. The depth of a tree t is defined as
depth(t) = max{|x| | x ∈ Δt}, whereas the size of t is given by |Δt|. Letters will
be viewed as trees of size one and depth zero.

We are now going to define a catenation on trees. Let $ be a new symbol, i.e.,
$ /∈ V , of rank 0. Let V t

$ denote the set of all trees over V ∪ {$} which contain
exactly one occurrence of label $. By definition, only frontier nodes can carry
the label $. For trees u ∈ V t

$ and t ∈ (V t ∪ V t
$), we define an operation # to

replace the frontier node labelled with $ of u by t according to

u#t(x) =
{

u(x), if x ∈ Δu ∧ u(x)
= $;
t(y), if x = z · y ∧ u(z) = $ ∧ y ∈ Δt.

If U ⊆ V t
$ and T ⊆ (V t∪V t

$), then U#T := {u#t | u ∈ U∧t ∈ T}. For t ∈ V t

and x ∈ Δt, the subtree of t at x, denoted by t/x, is defined by t/x(y) = t(x · y)
for any y ∈ Δt/x, where Δt/x := {y | x·y ∈ Δt}. ST(T) := {t/x | t ∈ T ∧x ∈ Δt}
is the set of subtrees of trees from T ⊆ V t. Furthermore, for any t ∈ V t and any
tree language T ⊆ V t, the quotient of T and t is defined as:

UT (t) :=
{{u ∈ V t

$ | u#t ∈ T}, if t ∈ V t \ V0;
t, if t ∈ V0.

Let V be a ranked alphabet and m be the maximum rank of the symbols
in V . A (bottom-up) (finite-state) tree automaton over V is a quadruple A =
(Q,V, δ, F) such that Q is a finite state alphabet (disjoint with V0), F ⊆ Q is
a set of final states, and δ = (δ0, . . . , δm) is an m + 1-tuple of state transition
functions, where δ0(a) = {a} for a ∈ V0 and δk : Vk × (Q ∪ V0)k → 2Q for
k = 1, . . . , m. In this definition, the constant symbols at the frontier nodes are
taken as sort of initial states. Now, a transition relation (also denoted by δ) can
be recursively defined on V t by letting

δ(f(t1, . . . , tk)) :=
{{f}, if k = 0;⋃

qi∈δ(ti),i=1,...,k δk(f, q1, . . . , qk), if k > 0.

A tree t is accepted by A iff δ(t)∩F
= ∅. The tree language accepted by A is
denoted by Lt(A). A is deterministic if each of the functions δk maps each pos-
sible argument to a set of cardinality at most one. Deterministic tree automata
can be viewed as algorithms for labelling the nodes of a tree with states. Anal-
ogously to the case of string automata, it can be shown that nondeterministic

128 H. Fernau and M. Vu

and deterministic bottom-up finite-state tree automata accept the same class of
tree languages, namely the regular tree languages, at the expense of a possibly
exponential state explosion.

Rules are sometimes also written like f(q1, . . . , qk) → q instead of saying that
q ∈ δk(f, q1, . . . , qk). Sometimes, also ε-moves are allowed, written like q′ → q,
i.e., no part of the tree is consumed, only the state is changed. As in the string
case, finite tree automata with ε-moves only accept regular tree languages.

An alternative view on the work of tree automata is that of labelling a tree
with states. To this end, we will formally view all symbols from Q as having
rank zero, so that they may serve as labels of frontier nodes. Now, A (or more
specifically, its transition function δ) defines a derivation relation �δ on (V ∪Q)t

by s �δ t if s
= t and there are trees u ∈ (V ∪Q)t$, s′ = f(q1, . . . , qk), t′ = q with
s = u#s′, t = u#t′, f ∈ Vk, q ∈ δk(f, q1, . . . , qk). Clearly, s ∈ V t is accepted by
a tree automaton A = (Q,V, δ, F) if s �∗

δ qf for some qf ∈ F . If we consider δ
as a set of rules, it makes also sense to define s �δ′ t for subsets of rules δ′ ⊆ δ.
We will use this notation when defining regulated tree automata.

It is also possible to define tree automata A = (Q,V, δ, I) that work top-down.
Rules are now of the form q → f(q1, . . . , qk), and the derivation relation basically
reverses the arrows. Hence, also finite top-down tree automata characterize the
regular tree languages. However, deterministic finite top-down tree automata are
a strictly weaker model.

We already informally recalled the Theorem of Doner, Thatcher (and also to
Wright) [5,16]. To formally state it, we provide the necessary key notion: For
t ∈ V t, we define the yield-operator Y as follows:

Y(t) =
{

t(ε), if t(ε) ∈ V0;
Y(t/1) · · · Y(t/k), if t(ε) ∈ Vk, k > 0.

In words, the recursion means that the yield of a tree with a root with k
children equals the concatenation of the yields of the trees whose roots are these
children. The operator naturally extends to tree languages and tree language
families.

Theorem 2 (Doner, Thatcher, Wright). A string language is context-free
if and only if it is the yield of a regular tree language.

Notice that the proof of this result makes use of the fact that for context-
free languages, we can assume that they are generated by some context-free
grammar without erasing productions, neglecting the possibility to describe the
empty word itself. As it is still an open problem whether or not we can get rid of
erasing rules with regulated grammars as introduced in the previous subsection,
we restricted our attention to regulated grammars without erasing rules there,
as we strive for analogues of Theorem 2 in the following.

2.3 Regulated Tree Automata

We are now defining the central new notion of this paper, combining the two
classical worlds so far introduced. Hence, a graph-controlled finite tree automaton
is an 8-tuple A = (Q,V, δ, F, Γ,Σ, Φ, h) where

Regulated Tree Automata 129

– A′ = (Q,V, δ, F) define a finite tree automaton;
– Γ,Σ,Φ define the graph structure as in graph-controlled grammars;
– h : U → (2δ \ {∅}) relates vertices with rule sets; notice that we consider δ as

a set of rules here.

We say that (s, u) |= (t, v) holds via A with (s, u), (t, v) ∈ (Q ∪ V)t × U if

s �h(u) t and (u, v) ∈ E.

The reflexive transitive closure of |= is denoted by |=∗. The tree language
accepted by A (assuming that A′ works bottom-up) is defined by

Lbu(A) = {t ∈ V t | ∃q ∈ F ∃u ∈ Σ ∃v ∈ Φ((t, u) |=∗ (q, v))}.

Similarly, we can define acceptance for top-down automata, yielding the lan-
guage Ltd(A). This gives the tree language families Lt(G, bu) and Lt(G, td),
depending on whether bottom-up or top-down automata are considered. If we
want to explicitly rule out ε-moves, we add −ε to our notations. As the notions of
regular control, matrix and programmed have been introduced in Subsect. 2.1 as
simple syntactical restrictions of graph control, we can carry over them immedi-
ately to regulated finite tree automata, giving, e.g., the notion of a matrix finite
tree automaton. This also gives language families such as Lt(P, td ,−ε).

3 Basic Results for Regulated Tree Automata

By the definitions themselves, we can conclude (also confer [11], but mind the
partially different definitions):

Lemma 3. Let μ ∈ {bu, td}. Then, we have

Lt(P, μ) ⊆ Lt(rC, μ) ⊆ Lt(G, μ) and Lt(M, μ) ⊆ Lt(rC, μ).

Proposition 4. For C ∈ {G,P, rC,M}, Lt(C, bu) = Lt(C, td).

Proof. Recall [2] that for any finite top-down tree automaton Atd , one can
construct an equivalent finite bottom-up automaton Abu by simply reversing the
relation �, plus exchanging initial and final states. Similarly, we can simulate A =
(Atd , Γ,Σ, Φ, h) by A′ = (Abu , Γ ′, Σ′, Φ′, h′), where Γ ′ = (U ′, E′) is obtained
from Γ = (U,E) by reversing the arcs, Σ′ = Φ, Φ′ = Σ, and h′ associates the
reversed rule variants of h(u) to u ∈ U ′ = U . Clearly, if (Γ,Σ,Φ, h) satisfies the
restrictions imposed by C ∈ {G,P, rC,M}, then (Γ ′, Σ′, Φ′, h′) does so, as well.
The converse inclusion is similarly seen. ��

Hence, we can from now on consider either the bottom-up or the top-down
case, whatever is more convenient to us. We are going to present a sequence
of technical lemmas that combine classical ideas from tree automata and from
regulated rewriting. Illustrations by examples can be found in the Appendix.

130 H. Fernau and M. Vu

Lemma 5. Lt(G, bu) ⊆ Lt(rC, bu).

Proof. We only sketch the construction. Consider a graph-controlled finite tree
automaton is an 8-tuple A = (Q,V, δ, F, Γ,Σ, Φ, h). We derive an equivalent
finite tree automaton with regular control Ar = (Q,V, δ, F, Γr, Σr, Φr, hr) as
follows. Let Γ = (U,E). Then, Γr = (Ur, Er) with Ur =

⋃
u∈U{u} × h(u),

Er = {((u, x), (v, y)) | (u, x), (v, y) ∈ Ur, (u, v) ∈ E}, Σr =
⋃

u∈Σ{u} × h(u),
Φr =

⋃
u∈Φ{u} × h(u), and hr((u, x)) = {x} for (u, x) ∈ Ur. By construction,

|hr((u, x))| = 1 for all (u, x) ∈ Ur. Moreover, if (s, u) |= (t, v) holds via A, then
s �h(u) t and (u, v) ∈ E, so that for some x ∈ h(u), s �{x} t, i.e., (s, (u, x)) |=
(t, (v, y)) holds via Ar for all y ∈ h(v). Induction shows the claim. ��
Lemma 6. Lt(rC, bu) ⊆ Lt(P, bu).

Proof. We are modifying bottom-up tree automata with regular control step
by step in order to obtain an equivalent programmed control. (i) We can assume
that initial vertices (from Σ) have no in-going arcs and that there is only one
final vertex (i.e., |Φ| = 1) that has no out-going arcs. This can be easily seen
by keeping in mind the relation to regular languages and hence to finite string
automata (as control devices) as recalled in Remark 1. (ii) Moreover, by using
a shadow state alphabet Q′, the finite tree automaton itself can check if the
derivation control had started in some ui ∈ Σ and also that the corresponding
rule was used only once. Namely, the starting rules (that have to process a
terminal symbol at some leaf node of the tree) will lead to a primed state q′

(when it would go to q in the original automaton), and the fact that exactly
one primed state was ever entered is then propagated to the root of the tree.
Here, it is also necessary to split vertices of the control graph. More specifically,
if vertex v contains a rule f(q1, . . . , qk) → q, we create k many twins of v, say,
v1, . . . , vk, and then vi contains the rule f(q1, . . . , qi−1, q

′
i, qi+1, . . . , qk) → q′ to

properly propagate the prime information. This already shows that we can now
let any vertex be initial in our control graph without changing the set of accepted
trees. (iii) As a further step, we can introduce another shadow state alphabet F̂
as a new set of final states and modify the rules associated to the control graph
vertices so that (only and exactly) when moving to uf , with {uf} = Φ, such
a final state q̂ is entered. This step might involve splitting vertices v that are
predecessors of uf into v and v̂, where v̂ contains the rule introducing q̂, while
v contains the rule introducing the corresponding state q. Otherwise, v and v̂
have the same predecessors. However, uf is the only successor of v̂ (and not a
successor of v), while all other successor vertices that previously existed for v
are still successor vertices of v (and not for v̂). Now, we can (formally) let every
vertex be a final vertex without changing the accepted tree language. Again, the
correctness of the construction is seen by induction. ��
Remark 7. For all statements made so far in this section, similar results hold
when disallowing ε-moves. We refrain from making this explicit. However, this
is no longer obvious for the following construction. This also gives a first open
question in the area of regulated tree automata.

Regulated Tree Automata 131

Lemma 8. Lt(P, bu) ⊆ Lt(M, bu).

Recall that in the classical construction simulating programmed grammars by
matrix grammars, the state information is maintained in a special nonterminal.
We follow the same idea here, but with tree automata, this is technically more
involved due to the absence of erasing rules.

Proof. Consider a programmed automaton A = (Q,V, δ, F, Γ,Σ, Φ, h) with Γ =
(U,E) and Σ = Φ = U . Now, we can also assume that the rules associated to
start vertices are of the form a → q for some terminal a ∈ V0 and some state q,
this way (formally) specifying Σ̂ ⊆ Σ. (a) We add rules by r = a → [q, u] and
introduce a new vertex v̂, with h(v̂) = {r} and v ∈ Σ, for those u that are
successors of v in Γ . More formally, this means that we introduce for each v ∈ Σ̂
as many twins as there are successors of v in Γ . This also defines a new set of
initial vertices Σ′, with more vertices to be added. All these vertices v̂ have out-
going arcs to all vertices from Σ′. (b) For each q ∈ Q ∪ V0 and each u, v ∈ U \ Σ
with (u, v) ∈ E, we introduce a new rule [q, u] → [q, v] and a new vertex [q, u, v]
into Γ ′ hosting this new rule. All these vertices also belong to Σ′. (c) Introduce
an arc from each vertex [q, u, v] to the vertex u containing the rule h(u). All such
vertices u have arcs to all vertices from Σ′. (d) For each q ∈ Q∪V0 and each u, v ∈
U \ Σ with (u, v) ∈ E and each 1 ≤ i ≤ k with h(u) = {f(p1, . . . , pk) → p} such
that pi = q, we introduce a new rule f(p1, . . . , pi−1, [pi, u], pi+1, . . . , pk) → [p, v];
moreover, we create a vertex [q, i, u, v] containing exactly this newly created rule,
put it into Σ′ and link it to all vertices from Σ′. (e) For each q ∈ Q ∪ V0 and
each u, v ∈ U \ Σ with (u, v) ∈ E, if h(u) = {q → p}, i.e., u hosts an ε-move,
then we introduce the new rule [q, u] → [p, v] and call the vertex hosting this rule
[q, 1, u, v] for simplicity. Again, such vertices are put into Σ′ and linked to all
vertices from Σ′. To summarize, we described a new graph-controlled automaton
A′ = (Q′, V ′, δ′, F ′, Γ ′, Σ′, Φ′, h′) with Γ ′ = (U ′, E′), where Q′ ⊇ Q, V ′ ⊇ V ,
δ′ ⊇ δ, Σ′, U ′ ⊇ U and E′ as specified above. As final state set F ′, we take
F ′ = F × U . The final vertices (from Φ′) contain U and all vertices from Σ′

introduced in steps (a), (d) and (e). Clearly, A′ is with matrix control. Again,
the correctness of the construction is seen by induction. ��

We can summarize our results as follows.

Theorem 9. Let μM , μP , μrC , μG ∈ {bu, td}. Then, we have

Lt(M, μM) = Lt(P, μP) = Lt(rC, μrC) = Lt(G, μG) and

Lt(M, μM ,−ε) ⊆ Lt(P, μP ,−ε) = Lt(rC, μrC ,−ε) = Lt(G, μG,−ε).

This result gives rise to the following natural second open question: Is the
trivial inclusion Lt(G, td ,−ε) ⊆ Lt(G, td) strict or not? Recall that for classical
finite tree automata, we can dispose of ε-moves as a normal form.

132 H. Fernau and M. Vu

4 Relation to String Languages

We already introduced the yield operator above that allows us to associate strings
to trees and hence string languages to tree languages. Recall Theorem 2.

Lemma 10. Y(Lt(G, bu)) ⊆ Lacc(G,CF − ε).

Proof. Consider a graph-controlled finite tree automaton A = (Q,V, δ, F, Γ,Σ,
Φ, h) with Γ = (U,E). We are going to construct a graph-controlled context-free
grammar GA = (VN , VT , P, qf , Γ,Σ, Φ, h′) such that Y(Lbu(A)) = Lacc(GA). As
it is usually the case with nondeterministic automata, we can assume (without
loss of generality) that A only one final (accepting) state, i.e., F = {qf}. We
construct a simulating accepting grammar GA as follows: N = Q, T = V0,
w → q ∈ h′(u) if q ∈ Q, w = w1 · · · wk, wj ∈ V0 ∪ Q whenever g(w1, . . . , wk) →
q ∈ h(u) for some g ∈ Vk (*).

Now, each derivation of A producing a certain yield can be simulated by
GA, where the correct labels of inner nodes are guessed during the derivation
due to (*). Conversely, these guesses according to (*) label the inner nodes of a
derivation tree in a way corresponding to a tree that can be accepted by A.

A formal reasoning would be a relatively tedious exercise, based on the ideas
originating from Doner, Thatcher and Wright in the late sixties, which can be
also found in any textbook on tree languages. Therefore, we only sketch the basic
idea of the inductive step of the proof in the following. Recall that the definition
of � transforms trees with leaf labels from (V0 ∪ Q) into trees with leaf labels
from (V0 ∪ Q); extending the definition of the yield operator Y accordingly,
this means that sentential forms of GA are transformed. Notice that the graph
control stays the same, which allows the induction to succeed. ��

Literally the same construction allows us to state:

Lemma 11. Y(Lt(G, td)) ⊆ Lgen(G,CF − ε).

For the converse direction, we need a normal form result for regulated
context-free grammars that might be of independent interest. A graph-controlled
context-free grammar G = (VN , VT , P, S, Γ,Σ, Φ, h) is called arity-deterministic
if for each nonterminal A ∈ N , there exists a unique number α(A) (called the
arity of A) such that any rule A → w ∈ P (in the generating case) or w → A ∈ P
(in the accepting case) obeys |w| = α(A).

Theorem 12 (Arity-deterministic normal form). For any L ∈ Lacc(G,
CF − ε), there exists an arity-deterministic context-free ε-free graph-controlled
context-free grammar G accepting L. A similar statement holds for generating
grammars.

As the induction proof given in [9, Theorem 2] can be easily adapted to our
case, we omit it here. We only mention that similar results are also true for other
forms of control, like matrix grammars.

Regulated Tree Automata 133

Lemma 13. Y(Lt(G, bu)) ⊇ Lacc(G,CF − ε).

Proof [Sketch]. Starting with an arity-deterministic graph-controlled context-
free grammar G, we can easily interpret its rules as transitions of a controlled
finite tree automaton AG. More specifically, we can consider VN ∪ VT as a
ranked alphabet V , with V0 = VT . For any rule w → A, we introduce a rule
δi,k(A,w1, . . . , wk) = {A′}, where |w| = α(A) = k. Notice that we have to for-
mally distinguish the nonterminal A of arity k from the state A′ that has, in
a sense, arity zero. AG accepts derivation trees of G. Conversely, the yield of
any tree that derives S′ (in AG) corresponds to a sentential form that derives S
(in G). For further details, we refer to [9, Lemma 2]. ��
Lemma 14. Y(Lt(G, td)) ⊇ Lgen(G,CF − ε).

Together with the results from the previous section, we conclude a known fact:

Theorem 15. Let μM , μP , μrC , μG ∈ {gen, acc}. Then, we have

LμM (M,CF − ε) = LμP (P,CF − ε) = LμrC (rC,CF − ε) = LμG(G,CF − ε).

Remark 16. As the constructions presented in this section do not introduce chain
rules (into context-free grammars) and as chain rules correspond to ε-moves
for tree automata, the open questions formulated in the previous section easily
translate into open questions in the more classical realm of regulated context-
free grammars as follows: Does there exist a normal form for regulated context-
free grammars (without erasing productions) that allows us to avoid chain-rules?
Related to this is another open question in the more classical realm of regulated
context-free grammars: Does there exist a Chomsky normal form result? Loosely
speaking, this corresponds to an arity-bounded normal form for derivation trees.

5 Adding Appearance Checks

Appearance checks (or maybe better said applicability checks, see [11]) are one
of the key features introduced within regulated rewriting. On the level of graph
control, this corresponds to considering bicolored digraphs as control structure
[7,18]. For reasons of space, we refrain from giving a formal definition in this
extended abstract. Notice that there are two ways of interpreting appearance
checks in connection with control by bicolored digraphs, with the choice inter-
pretation that first selects a rule in the rule set h(u) and then checks for appli-
cability of the selected tree rewriting rule, or with the interpretation that only
considers h(u) to be not applicable if none of the rules in h(u) is applicable. We
signal the choice interpretation by adding a c as a subscript. We can prove:

Theorem 17. Let μ ∈ {bu, td}. Then, we have

Lt(M, μ, ac) = Lt(P, μ, ac) = Lt(rC, μ, ac) = Lt(G, μ, ac) = Lt(Gc, μ, ac).

134 H. Fernau and M. Vu

We could state similar results as in Theorem 9 for the case when disallowing
ε-moves. We have to distinguish more carefully between the bottom-up and the
top-down cases due to the following results.

Theorem 18. Let μ ∈ {gen, acc}. Then, we have Lμ(M,CF − ε, ac) =
Lμ(P,CF−ε, ac) = Lμ(rC,CF−ε, ac) = Lμ(G,CF−ε, ac) = Lμ(Gc,CF−ε, ac).
Moreover, Lgen(M,CF − ε, ac) = Y(Lt(M, td , ac)) � Lacc(M,CF − ε, ac) =
Y(Lt(M, bu, ac)).

Corollary 19. Lt(M, td , ac) � Lt(M, bu, ac).

Proof. The inclusion itself is seen as before; notice that we can simulate a rule
q → f(q1, . . . , qk) that is applied in appearance checking by some ε-move that
checks for the presence of q. If the converse inclusion would hold, as well, then
the yields of both tree language families would coincide, which contradicts known
facts on regulated rewriting, see [1]. ��

6 Conclusions

We started investigations on regulated tree automata in this paper. This new
way of looking at trees and regulated rewriting opens up quite an ample ground
of research. Apart from the concrete open problems mentioned throughout the
paper, which mostly also extend to the case admitting appearance checks, we
ask the following, more concrete research questions.

– So far, we completely neglected studying closure properties or algorithmic
questions of (variants of) regulated tree automata. It seems to be the case that
the standard constructions for showing certain closure properties of regular
tree languages (see [2]) transfer to the regulated case, but, moreover, we
conjecture positive closure results for (general) tree homomorphisms, to give
one concrete open question in this area.

– There are many relations between regulated rewriting and parallel rewriting;
see [4,8]. We are not aware of a theory of parallel tree automata. We would
also expect (again) relations to the question of accepting versus generating
grammars [6]. Also, the area of grammar systems is barely touched [3,9,
10]. Due to the connections between regulated rewriting and cooperating
distributed grammar systems (CDGS), see [3], these investigations might also
stir some new interest in and even give some new proof ideas for some old
open problems. For instance, it is still open whether (context-free) matrix
languages can be characterized by CDGS working in = k-mode. Can results
from tree automata be helpful here? We refer to [9] for results on cooperating
distributed tree automata.

– Operations on trees have been one of the cornerstones for developing prac-
tically useful mechanisms [13] for formalizing mild context-sensitivity. The
relations between, for instance, tree adjoining languages and variants of regu-
lated context-free grammars have been largely unexplored until today. Apart

Regulated Tree Automata 135

from this concrete question, we have the hope that combining tree processing
with regulated rewriting mechanisms opens up new (practical) applications
of regulated rewriting, also leading to new algorithmic questions.

Finally, we like to once more point to the various open problems in the area of
classical regulated rewriting scattered throughout the paper. This should renew
the interest of the Formal Language community in that area. We hope that the
approach via considering tree languages might be a way to solve some of these
problems. A crucial key to all these questions are normal forms. For instance,
can ε-rules be removed as shown for random context grammars in [19]?

References

1. Bordihn, H., Fernau, H.: Accepting grammars with regulation. Int. J. Comput.
Math. 53(1–2), 1–18 (1994). https://doi.org/10.1080/00207169408804310

2. Comon, H., et al.: Tree Automata, Techniques and Applications (2007). http://
tata.gforge.inria.fr/

3. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, Newark
(1994). https://dl.acm.org/citation.cfm?id=561869

4. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS
Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)

5. Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci.
4(5), 406–451 (1970). https://doi.org/10.1016/S0022-0000(70)80041-1

6. Fernau, H., Bordihn, H.: Remarks on accepting parallel systems. Int. J. Comput.
Math. 56, 51–67 (1995). https://doi.org/10.1080/00207169508804387

7. Fernau, H.: Graph-controlled grammars as language acceptors. J. Autom. Lang.
Comb., pp. 79–91. (1997). https://doi.org/10.25596/jalc-1997-079

8. Fernau, H.: Parallel grammars: a phenomenology. Grammars 6(1), 25–87 (2003).
https://doi.org/10.1023/A:1024087118762

9. Fernau, H.: Cooperating distributed tree automata. In: Bordihn, H., Kutrib, M.,
Truthe, B. (eds.) Languages Alive; Dassow Festschrift. LNCS, vol. 7300, pp. 75–85.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31644-9 5

10. Fernau, H., Holzer, M., Bordihn, H.: Accepting multi-agent systems: the case
of cooperating distributed grammar systems. Comput. Artif. Intell. 15, 123–139
(1996)

11. Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting
based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Com-
putation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20000-7 5

12. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
13. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Cognitive Technologies.

Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14846-0
14. Meduna, A., Kolář, D.: Regulated pushdown automata. Acta Cybern. 14(4),

653–664 (2000). http://www.inf.u-szeged.hu/actacybernetica/edb/vol14n4/
Meduna2000ActaCybernetica.xml

15. Meduna, A., Zemek, P.: Regulated Grammars and Automata. Springer, New York
(2014). https://doi.org/10.1007/978-1-4939-0369-6

https://doi.org/10.1080/00207169408804310
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
https://dl.acm.org/citation.cfm?id=561869
https://doi.org/10.1016/S0022-0000(70)80041-1
https://doi.org/10.1080/00207169508804387
https://doi.org/10.25596/jalc-1997-079
https://doi.org/10.1023/A:1024087118762
https://doi.org/10.1007/978-3-642-31644-9_5
https://doi.org/10.1007/978-3-642-20000-7_5
https://doi.org/10.1007/978-3-642-14846-0
http://www.inf.u-szeged.hu/actacybernetica/edb/vol14n4/Meduna2000ActaCybernetica.xml
http://www.inf.u-szeged.hu/actacybernetica/edb/vol14n4/Meduna2000ActaCybernetica.xml
https://doi.org/10.1007/978-1-4939-0369-6

136 H. Fernau and M. Vu

16. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. J. Comput. Syst. Sci. 1(4), 317–322
(1967). https://doi.org/10.1016/S0022-0000(67)80022-9

17. Vu, M.: Regulierte Grammatiken und regulierte Baumautomaten. Bachelorarbeit,
Informatikwissenschaften, Universität Trier, Germany (2016)

18. Wood, D.: Bicolored digraph grammar systems. RAIRO Theor. Inform. Appl. 7(1),
45–52 (1973). http://www.numdam.org/article/M2AN 1973 7 1 45 0.pdf

19. Zetzsche, G.: On erasing productions in random context grammars. In: Abramsky,
S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 175–186. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14162-1 15

https://doi.org/10.1016/S0022-0000(67)80022-9
http://www.numdam.org/article/M2AN_1973__7_1_45_0.pdf
https://doi.org/10.1007/978-3-642-14162-1_15
https://doi.org/10.1007/978-3-642-14162-1_15

Generalized de Bruijn Words and the
State Complexity of Conjugate Sets

Daniel Gabric1, Štěpán Holub2, and Jeffrey Shallit1(B)

1 School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada
{dgabric,shallit}@uwaterloo.ca

2 Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

holub@karlin.mff.cuni.cz

Abstract. We consider a certain natural generalization of de Bruijn
words, and use it to compute the exact maximum state complexity for
the language consisting of the conjugates of a single word. In other words,
we determine the state complexity of cyclic shift on languages consisting
of a single word.

1 Introduction

Let x, y be words. We say x and y are conjugates if one is a cyclic shift of the
other; equivalently, if there exist words u, v such that x = uv and y = vu. For
example, the English words listen and enlist are conjugates.

The set of all conjugates of a word x is denoted by C(x). Thus, for example,
C(eat) = {eat, tea, ate}. We also write C(L) for the set of all conjugates of
elements of the language L.

For a regular language L let sc(L) denote the state complexity of L: the
number of states in the smallest complete DFA accepting L. State complexity
is sometimes also called quotient complexity [5]. The state complexity of the
cyclic shift operation L → C(L) for arbitrary regular languages L was studied in
Maslov’s pioneering 1970 paper [17]. More recently, Jirásková and Okhotin [14]
improved Maslov’s bound, and Jirásek and Jirásková studied the state complex-
ity of the conjugates of prefix-free languages [13].

In this note we investigate the state complexity of the finite language C(x),
over all words x of length N . In other words, we determine the state complexity
of cyclic shift on languages consisting of a single word. Clearly sc(C(x)) achieves
its minimum—namely, N +2—at words of the form aN , where a is a single letter.
By considering random words, it seems likely that sc(C(x)) = O(N2).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 137–146, 2019.
https://doi.org/10.1007/978-3-030-23247-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_10

138 D. Gabric et al.

Our main result makes this precise:

Theorem 1. Let Σk be an alphabet of cardinality k ≥ 2, and let N ≥ 1 be an
integer. Define r = �logk N� and v = (kr+1 − 1)/(k − 1). Then

max
w∈Σn

k

sc(C(w)) = 2v + N(N − 2r − 1) + 1.

Furthermore, we characterize those words x achieving this maximum.
Our theorem depends on a certain natural generalization of de Bruijn words,

of independent interest, which is introduced in the next section.

2 Generalized de Bruijn Words

De Bruijn words (also called de Bruijn sequences) have a long history [3,4,8,
10,16], and have been extremely well studied [9,18]. Let Σk denote the k-letter
alphabet {0, 1, . . . , k − 1}. Traditionally, there are two distinct ways of thinking
about these words: for integers k ≥ 2, n ≥ 1 they are

(a) the words w having each word of length n over Σk exactly once as a factor; or
(b) the words w having each word of length n over Σk exactly once as a factor,

when w is considered as a “circular word”, or “necklace”, where the word
“wraps around” at the end back to the beginning.

For example, for k = 2 and n = 4, the word

0000111101100101000

is an example of the first interpretation and

0000111101100101

is an example of the second.
In this paper, we are concerned with the second (circular) interpretation of de

Bruijn words, and we write D(k, n) for the set of all such words. Obviously, such
words exist only for lengths of the form kn. Is there a sensible way to generalize
this class of words so that one could speak fruitfully of (generalized) de Bruijn
words of every length?

One natural way to do so is to use the notion of subword complexity (also
called factor complexity or just complexity). For 0 ≤ i ≤ N let γi(w) denote the
number of distinct length-i factors of the word w ∈ ΣN

k (considered circularly).
For all words w, there is a natural upper bound on γi(w) for 0 ≤ i ≤ N , as
follows:

γi(w) ≤ min(ki, N). (1)

This is immediate, since there are at most ki words of length i over Σk,
and there are at most N positions where a word could begin in w (considered
circularly).

Generalized de Bruijn Words and the State Complexity of Conjugate Sets 139

Ordinary de Bruijn words are then precisely those words w of length kn for
which γn(w) = kn. But even more is true: w ∈ D(k, n) also achieves the upper
bound in (1) for all i ≤ kn. To see this, note that if i ≤ n, then every word of
length i occurs as a prefix of some word of length n, and every word of length
n is guaranteed to appear in w. On the other hand, all kn (circular) factors of
each length i ≥ n are distinct, because their length-n prefixes are all distinct.

This motivates the following definition:

Definition 1. A word x of length N over a k-letter alphabet is said to be a
generalized de Bruijn word if γi(x) = min(ki, N) for all 0 ≤ i ≤ N .

Table 1 gives the lexicographically least de Bruijn words for a two-letter
alphabet, for lengths 1 to 31, and the number of such words (counted up to
cyclic shift). This forms sequence A317586 in the On-Line Encyclopedia of Inte-
ger Sequences (OEIS) [20]. The second author has computed these numbers up to
N = 63.

We point out an alternative characterization of our generalized de Bruijn
words.

Proposition 1. A word w ∈ ΣN
k is a generalized de Bruijn word iff both of the

following hold:

(a) γr(w) = kr; and
(b) γr+1(w) = N ,

where r = �logk N�.
Proof. A generalized de Bruijn word trivially has these properties. An argument
similar to the discussion before Definition 1 shows that the two properties imply
the bound in Eq. (1). �	

The main result of this section is the following.

Theorem 2. For all integers k ≥ 2 and N ≥ 1 there exists a generalized de
Bruijn word of length N over a k-letter alphabet.

Proof. For k = 2 the proof can be found in [19], although strangely it is not
explicitly stated anywhere in the paper. (Lemma 3 implies it.)

For k > 2 we can derive this result from a paper by Lempel [15]. Lempel
proved that for all k ≥ 2, n ≥ 1, N ≤ kn, there exists a circular word w =
w(k, n,N) of length N for which the factors of size n are distinct. (Also see
[6,11].) However, as stated, this result is not strong enough for our purposes. For
example, there are circular words, such as 000101 of length 6, having 6 distinct
factors of length 4, but only 3 distinct factors of length 2. For our purposes, then,
we need a stronger version of the result, which can nevertheless be obtained from
a further analysis of Lempel’s proof.

An Eulerian graph is a directed graph in which, for each vertex v, the indegree
of v is equal to the outdegree of v. By a closed chain we mean a sequence of
edges (a, v1), (v1, v2), (v2, v3), . . . , (vn−1, a), where each edge is distinct, but

http://oeis.org/A317586

140 D. Gabric et al.

Table 1. Generalized de Bruijn words.

N Lexicographically least generalized
binary de Bruijn word of length N

Number of
such words

1 0 2

2 01 1

3 001 2

4 0011 1

5 00011 2

6 000111 3

7 0001011 4

8 00010111 2

9 000010111 4

10 0000101111 3

11 00001011101 6

12 000010100111 13

13 0000100110111 12

14 00001001101111 20

15 000010011010111 32

16 0000100110101111 16

17 00000100110101111 32

18 000001001101011111 36

19 0000010100110101111 68

20 00000100101100111101 141

21 000001000110100101111 242

22 0000010001101001011111 407

23 00000100011001110101111 600

24 000001000110010101101111 898

25 0000010001100101011011111 1440

26 00000100011001010011101111 1812

27 000001000110010100111011111 2000

28 0000010001100101001110101111 2480

29 00000100011001010011101011111 2176

30 000001000110010110100111011111 2816

31 0000010001100101001110101101111 4096

vertices may be repeated. Each closed chain forms an Eulerian graph and each
connected Eulerian graph admits a closed chain containing all its edges.

Let Gn
k be the k-ary de Bruijn graph of order n. This is a directed graph where

the vertices are the words of length n, and edges join a word x to a word y if x = at
and y = tb for some letters a, b and a word t. So every vertex of Gn

k has k incoming

Generalized de Bruijn Words and the State Complexity of Conjugate Sets 141

edges, and k outgoing edges, and therefore the underlying graph Gn
k is regular

of degree 2k. By Proposition 1, building a generalized de Bruijn word of length
N = kn + j, where 0 ≤ j ≤ (k − 1)kn, over a k-letter alphabet then amounts to
constructing a closed chain of length N in Gn

k that visits every vertex.
One of Lempel’s main results [15, Theorem 1] states that such a closed chain

exists, but does not mention explicitly whether it visits every vertex. In the
proof, the chain is obtained by constructing a connected Eulerian graph using
[15, Lemma 6]. Now, the analysis of the proof of [15, Lemma 6] shows that the
constructed Eulerian graph is not only connected (which is the explicit concern
of the lemma) but also spanning. The closed chain is eventually obtained as a
complement of a graph G (denoted as Tp in [15]), where G is an Eulerian graph
contained in Gn

k such that the degree of each vertex in G is at most 2(k − 1).
Therefore, its complement is obviously spanning. �	
Remark 1. We have not been able to find this precise notion of generalized de
Bruijn word in the literature anywhere, although there are some papers that
come very close. For example, Iványi [12] considered the analogue of Eq. (1) for
ordinary (non-circular) words. He called a word w supercomplex if the analogue
of the upper bound (1) is attained not only for w, but also for all prefixes of w.
However, binary supercomplex words do not exist past length 9. The third author
also considered the analogue of Eq. (1) for ordinary words [19]. However, Lemma
3 of that paper actually implies the existence of our generalized (circular) de
Bruijn words of every length over a binary alphabet, although this was not stated
explicitly. Anisiu, Blázsik, and Kása [2] discussed a related concept: namely,
those length-N words w for which max1≤i≤N ρi(w) = maxx∈ΣN

k
max1≤i≤N ρi(x)

where ρi(w) denotes the number of distinct length-i factors of w (here considered
in the ordinary sense, not circularly). Also see [7].

We now count the total number of factors of a generalized de Bruijn word.
This is a generalization of Theorem 2 of [19] to all k ≥ 2, adapted for the case
of circular words.

Proposition 2. If w ∈ ΣN
k is a generalized de Bruijn word, then

∑

0≤i≤N

γi(w) =
kr+1 − 1

k − 1
+ N(N − r),

where r = �logk N�.
Proof. We have

∑

0≤i≤N

γi(w) =
∑

0≤i≤N

min(ki, N)

=
∑

0≤i≤r

ki +
∑

r<i≤N

N

=
kr+1 − 1

k − 1
+ N(N − r). �	

142 D. Gabric et al.

3 State Complexity

We start with a general upper bound on state complexity.

Theorem 3. Let Σ be an alphabet of cardinality k ≥ 2 and let L ⊆ ΣN . Define
m = |L|, r = �logk m� and v = (kr+1 − 1)/(k − 1). If N ≥ 2r + 1 then sc(L) ≤
2v + m(N − 2r − 1) + 1.

Proof. A level is a set of all nodes at a particular distance from the root. The
complete k-ary tree of r + 1 levels therefore corresponds to words of length ≤ r,
and the total number of nodes in this tree is 1 + k + · · · + kr = kr+1−1

k−1 .
The language L can be accepted by a DFA with the following topology: there

is a complete k-ary tree of r + 1 levels rooted at the initial state pε. At the very
next level there are at most m nodes, and these nodes form the roots of at most
m chains of N − 2r − 1 nodes each. These chains need not be disjoint, but will
be in the worst case. At the end, there is another complete k-ary tree of r + 1
levels culminating in a single accepting state. Finally, there is also a single non-
accepting state that captures all transitions not yet defined. The total number
of states is therefore 2v + m(N − 2r − 1) + 1.

More formally, define

X = Σ≤r ∪ {x : r < |x| < N − r − 1 and x is a prefix of an element of L}
Y = {y : |y| = N − r − 1 and y is a prefix of an element of L}

The states of our DFA are d, a “dead” state; px, for x ∈ X; and sz, for all z
with |z| ≤ r. The states px correspond to prefixes of words of L and the states
sz correspond to suffixes of words of L.

The initial state is pε.
The transitions are given by δ(px, a) = pxa for x ∈ X and a ∈ Σ and

δ(py, a) = sz, if y ∈ Y and yaz ∈ L; δ(sav, a) = sv for v ∈ Σ<i and a ∈ Σ. All
other transitions go to d.

Finally, the unique final state is sε. �	
This construction is illustrated in Fig. 1 for k = 2, N = 12, m = 10, r = 3,

v = 15, N − 2r − 1 = 5, and

L = {000010100000, 000101100010, 011110100001, 100110011111, 101011110111,
110100100110, 110101010011, 110110101101, 111001100101, 111110110100}.

As a corollary, we now get an upper bound on sc(C(x)):

Corollary 1. If x is a word of length N over a k-letter alphabet, with k ≥ 2,
then

sc(C(x)) ≤ 2v + N(N − 2r − 1) + 1,

where r = �logk n� and v = (kr+1 − 1)/(k − 1).

Generalized de Bruijn Words and the State Complexity of Conjugate Sets 143

Fig. 1. Example of the construction.

Proof. Let x be a word of length N , and let L = C(x). Set m = |L| ≤ N ,
r = �logk N� and v = (kr+1 − 1)/(k − 1). The inequality N ≥ 2r + 1 holds in all
cases except k = 2 and n = 2; this case can be checked separately. Theorem 3
therefore yields sc(L) ≤ 2v + N(N − 2r − 1) + 1, as desired. �	

It now remains to prove that there exist words that achieve this upper bound.
In fact, such words are exactly the generalized de Bruijn words defined in Sect. 2.

Theorem 4. A length-N word x over a k-letter alphabet satisfies

sc(C(x)) = 2v + N(N − 2r − 1) + 1,

where r = �logk N� and v = (kr+1 − 1)/(k − 1) iff x is a generalized de Bruijn
word.

Proof. Suppose x is a generalized de Bruijn word. We first show that there are
2v + N(N − 2r − 1) + 1 inequivalent words for the Myhill-Nerode equivalence
relation R associated with C(x). This will show sc(C(x)) ≥ 2v + N(N − 2r −
1) + 1 and hence, by Corollary 1, that sc(C(x)) = 2v + N(N − 2r − 1) + 1.

Representatives of the Myhill-Nerode classes can be classified as follows:

(a) all the words of length ≤ r;
(b) all the factors of conjugates of x of length �, for r < � < N − r;
(c) for each word w of length ≤ r, the lexicographically least factor z of C(x)

of length N − r for which zw ∈ C(x);
(d) the single equivalence class corresponding to words not in C(x).

There are v words in (a), and v words in (c), there are N(N − 2r − 1) words
in (b), and one word in (d).

We need to see that these are all inequivalent. Since all the words in C(x) are
of length N , no two factors of different lengths can be equivalent. It therefore
suffices to examine pairs of words of identical length.

144 D. Gabric et al.

In group (a), let y, z be two distinct words of length j ≤ r. Since x, considered
circularly, contains all factors of length r = �logk N�, it contains y and z as
factors. Let yy′ (resp., zz′) be a conjugate of x with prefix y (resp., z). Then
|y′| = |z′| = N − j ≥ r + 1. If both yz′ and zz′ occur in C(x), we would have
two separate occurrences of z′ in x (considered circularly), which is impossible
since x is of length N and has N distinct factors of length N − j (considered
circularly). So yz′ �∈ C(x) and y, z are inequivalent under Myhill-Nerode. This
gives v = (kr+1 − 1)/(k − 1) equivalence classes.

In group (b), let y, z be two distinct factors of C(x) (considered circularly)
of length j with r < j < N − r. Since x is of length N and contains N distinct
factors of length r, the first r symbols of y (resp., z) uniquely determine the
position of y (resp., z) within x (considered as a circular word). So there is a
unique y′ such that yy′ ∈ C(x), and similarly, there is a unique z′ such that
zz′ ∈ C(x). Just as in case (a), since |y′| = |z′| ≥ r +1, we see that y′ �= z′. This
gives N(N − 2r) equivalence classes.

In group (c), for each word t of length ≤ r, let xt be the lexicographically least
word of length n− r such that xtt ∈ C(x). (We know such a word exists because
each such t is a factor of x, considered circularly.) Let t, u be distinct words of
length j. Then since |xt| ≥ r + 1, the word xt occurs in exactly one location in
x, considered circularly, and there it must be followed by t. So xtu �∈ C(x), so xt

and xu are inequivalent under Myhill-Nerode. This gives v = (kr+1 − 1)/(k − 1)
equivalence classes.

Now let us prove the reverse direction. Suppose x is such that sc(C(x)) =
2v + N(N − 2r − 1) + 1. Then from the upper bound in Corollary 1 and
the construction of Theorem 3 from which it is derived, we know that all the
words corresponding to the states of the automaton in Theorem 3 are pairwise
inequivalent under Myhill-Nerode. But there are kr such words of length r and
N such words of length r + 1. Hence, by Proposition 1, we have that x is a
generalized de Bruijn word. �	

For k = 2 the maximum state complexity of C(x) over length-N words x is
given in Table 2 for 1 ≤ N ≤ 10. It is sequence A316936 in the OEIS [20].

4 Final Comments

We do not currently know an accurate asymptotic expression for the number of
generalized de Bruijn words of length N , except in few simple cases. If N = kn,
then it follows from known results [1] that this number is (counted up to cyclic
shift) (k!)kn−1

/kn.
Thus far we represented generalized de Bruijn words of length kn+j as closed

chains in Gn
k that visit each vertex. However, in the case of the ordinary de

Bruijn word, it is well known that it is more convenient to represent such a word
as an Eulerian path in the graph Gn−1

k . This exploits a natural correspondence
between edges of Gn−1

k and vertices of Gn
k . This point of view helps to understand

generalized de Bruijn words of length kn +1. They correspond to Eulerian paths

http://oeis.org/A316936

Generalized de Bruijn Words and the State Complexity of Conjugate Sets 145

Table 2. Maximum state complexity of conjugates of binary words of length N .

N maxx∈ΣN
2
sc(C(x))

1 3

2 5

3 7

4 11

5 15

6 21

7 29

8 39

9 49

10 61

in Gn−1
k where one edge is doubled. It is straightforward to see that the only

edge which can be doubled so that the resulting graph remains Eulerian is a
loop. Therefore, each generalized de Bruijn word of length kn + 1 is obtained
from an ordinary de Bruijn word of length kn by replacing a factor an−1 with an

where a is a single letter. For k = 2, it follows that the number of such words is
22

n−1
/2n−1. A similar argument yields the same number of generalized de Bruijn

words of length 2n − 1.
Already for kn ± 2 these kinds of considerations become very complex. We

leave this as a challenging open problem.

Acknowledgments. We thank the anonymous referees for helpful comments and
suggestions.

References

1. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear
graphs. Simon Stevin 28, 203–217 (1951)

2. Anisiu, M., Blázsik, Z., Kása, Z.: Maximal complexity of finite words. Pure Math.
Appl. 13, 39–48 (2002)

3. de Bruijn, N.G.: A combinatorial problem. Proc. Konin. Neder. Akad. Wet. 49,
758–764 (1946)

4. de Bruijn, N.G.: Acknowledgement of priority to C. Flye Sainte-Marie on the
counting of circular arrangements of 2n zeros and ones that show each n-letter
word exactly once. Technical report 75-WSK-06, Department of Mathematics and
Computing Science, Eindhoven University of Technology, The Netherlands (1975)

5. Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang.
Comb. 15(1/2), 71–89 (2010). https://doi.org/10.25596/jalc-2010-071

6. Etzion, T.: An algorithm for generating shift-register cycles. Theoret. Comput. Sci.
44, 209–224 (1986). https://doi.org/10.1016/0304-3975(86)90118-0

https://doi.org/10.25596/jalc-2010-071
https://doi.org/10.1016/0304-3975(86)90118-0

146 D. Gabric et al.

7. Flaxman, A., Harrow, A.W., Sorkin, G.B.: Strings with maximally many
distinct subsequences and substrings. Electron. J. Combin. 11(1), 8 (2004).
http://www.combinatorics.org/Volume11/Abstracts/v11i1r8.html

8. Flye Sainte-Marie, C.: Question 48. L’Intermédiaire Math. 1, 107–110 (1894)
9. Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms.

SIAM Rev. 24, 195–221 (1982). https://doi.org/10.1137/1024041
10. Good, I.J.: Normal recurring decimals. J. London Math. Soc. 21, 167–169 (1946)
11. Hemmati, F., Costello Jr., D.J.: An algebraic construction for q-ary shift register

sequences. IEEE Trans. Comput. 27(12), 1192–1195 (1978). https://doi.org/10.
1109/TC.1978.1675025

12. Iványi, A.: On the d-complexity of words. Ann. Univ. Sci. Budapest. Sect. Comput.
8, 69–90 (1987)

13. Jirásek, J., Jirásková, G.: Cyclic shift on prefix-free languages. In: Bulatov, A.A.,
Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 246–257. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38536-0 22

14. Jirásková, G., Okhotin, A.: State complexity of cyclic shift. RAIRO Theor. Inform.
Appl. 42(2), 335–360 (2008). https://doi.org/10.1051/ita:2007038

15. Lempel, A.: m-ary closed sequences. J. Combin. Theory 10, 253–258 (1971)
16. Martin, M.H.: A problem in arrangements. Bull. Am. Math. Soc. 40, 859–864

(1934)
17. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.

Nauk SSSR 194(6), 1266–1268 (1970). In Russian. English translation in Soviet
Math. Doklady 11(5), 1373–1375 (1970)

18. Ralston, A.: De Bruijn sequences — a model example of the interaction of discrete
mathematics and computer science. Math. Mag. 55, 131–143 (1982). https://doi.
org/10.2307/2690079

19. Shallit, J.: On the maximum number of distinct factors of a binary string. Graphs
Combin. 9(2–4), 197–200 (1993). https://doi.org/10.1007/BF02988306

20. Sloane, N.J.A. et al.: The on-line encyclopedia of integer sequences (2019). https://
oeis.org

http://www.combinatorics.org/Volume11/Abstracts/v11i1r8.html
https://doi.org/10.1137/1024041
https://doi.org/10.1109/TC.1978.1675025
https://doi.org/10.1109/TC.1978.1675025
https://doi.org/10.1007/978-3-642-38536-0_22
https://doi.org/10.1051/ita:2007038
https://doi.org/10.2307/2690079
https://doi.org/10.2307/2690079
https://doi.org/10.1007/BF02988306
https://oeis.org
https://oeis.org

The Syntactic Complexity of Semi-flower
Languages

Kitti Gelle and Szabolcs Iván(B)

Department of Computer Science, University of Szeged, Szeged, Hungary
{kgelle,szabivan}@inf.u-szeged.hu

Abstract. Semi-flower languages are those of the form L∗ for some finite
maximal prefix code L, or equivalently, those recognizable by a so-called
semi-flower automaton, in which all the cycles have a common state q0,
which happens to be the initial state and the only accepting state.

We show that the syntactic complexity of these languages is exactly
nn − n! + n (where n stands for the state complexity as usual) and that
this bound is reachable with an alphabet of size n.

1 Introduction

The state complexity of a regular language is the number of states of its min-
imal automaton, or equivalently, the number of classes of its syntactic right-
congruence. The syntactic complexity of a language is the number of classes of
its syntactic congruence, or equivalently, the size of the transition monoid of its
minimal automaton.

It is clear (and already observed by Maslov [9]) that if a language has state
complexity n, then it can have a syntactic complexity of at most nn as there are
only so many transformations of an n-element set. Moreover, as three functions
(an elementary swap, a circular permutation and a rank-(n − 1) function) can
generate all the transformations of a finite set, this maximal syntactic complexity
can be reached by an automaton over a ternary alphabet. For the case of binary
alphabets, Holzer and König [7] gave upper bounds for the maximal size of the
transition monoid of an n-state minimal automaton while for the unary case and
for the binary case for prime n, they determined a sharp bound.

When C is a class of regular languages, then its syntactic complexity is a
function over the single integer variable n, namely it is the maximum possible
syntactic complexity of a language belonging to C and having state complexity
at most n. That is, for the whole class of the regular languages, this complexity
is nn. In the recent years, there is a growing interest of determining the syntactic
complexity of subregular classes of languages (proper subclasses of the regular

S. Iván—Ministry of Human Capacities, Hungary grant 20391-3/2018/FEKUSTRAT
is acknowledged. Szabolcs Iván was supported by the János Bolyai Scholarship of the
Hungarian Academy of Sciences.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 147–157, 2019.
https://doi.org/10.1007/978-3-030-23247-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_11

148 K. Gelle and S. Iván

languages), e.g. for ideal and prefix- or factor closed languages [6], prefix-, suffix-,
bifix- and factor-free languages [4], several classes of star-free languages [3], R-
and J-trivial languages [2], regular ideals [5] amongst others.

It is also an interesting question to determine the alphabet size needed to
reach the maximum possible syntactic complexity: for the whole class of regular
languages, an alphabet of ternary size suffices, but e.g. for factor-closed languages
an alphabet of size 6 is needed [4], while for bifix-free languages (n − 2)n−3 +
(n − 3)2n−3 − 1 generators are needed if n ≥ 6 [13].

In the recent years, Singh and Krishna initiated the investigation of semi-
flower automata [10–12], which are the minimal automata of valid code words
over a finite maximal prefix code. In particular, in [12] they showed that if a cir-
cular semi-flower automaton over a binary alphabet has a single “branching point
in”, or bpi (a state q is called a bpi if there are at least two tuples (p, a) ∈ Q×Σ
with pa = q), then it has a linear syntactic complexity, and if it possesses exactly
two bpis, then 2n(n + 1) is a sharp bound on its syntactic complexity. Clearly,
this is a serious restriction: it essentially restricts the elementary transforma-
tions to a circular permutation and some semi-flower transformation of rank at
most 2 (for the definitions, see the Notation section). They also remark that over
a ternary alphabet there exists a semi-flower automaton with two bpis having
larger syntactic complexity than 2n(n + 1).

In this paper we determine that the syntactic complexity of languages recog-
nizable by semi-flower automata (without placing any restriction on the number
of their “branch points going in”) is nn − n! + n and show that this bound is
reachable by an alphabet of size n.

2 Notation and Some Facts

We assume the reader has some knowledge in automata and formal language
theory (a standard resource is [8]). In this paper an automaton is a triple A =
(Q,Σ, ·) with Q and Σ being the finite sets of states and input symbols or letters,
and · is an action Q × Σ → Q, written in infix notation: q · a for q ∈ Q and
a ∈ Σ. The action is extended to words acting on the states in the usual unique
way as q · ε = q for the empty word ε and q · (ua) = (q · u) · a for each word
u ∈ Σ∗ and a ∈ Σ. The transformation q �→ q ·u for the word u ∈ Σ∗ is denoted
as uA. The action is also extended to sets of states as Q′ · u = {q · u : q ∈ Q′}.

When f : Q → Q is a transformation of some set Q, and q ∈ Q is a member
of its domain, then we often write q · f for f(q), that is, writing the function
application as a right action, moreover, for composing functions we define f ◦ g
as q �→ (q · f) · g (note the order). This way it holds that (uv)A = uA ◦ vA.

We denote the transition monoid of an automaton A = (Q,Σ, ·) by T (A),
that is, T (A) is the monoid over the set {uA : u ∈ Σ∗} ⊆ QQ, equipped by
function composition where uA ◦ vA = (uv)A. For a function f : Q → Q, let
rank(f) stand for |Qf |, the size of the image of f .

The automaton B = (Q,Δ, •) is a renaming of the automaton A = (Q,Σ, ·)
if for each b ∈ Δ there exists some b′ ∈ Σ with bB = (b′)A. Since in that case

The Syntactic Complexity of Semi-flower Languages 149

(b1 . . . bk)B = (b′
1 . . . b′

k)A for each k and b1, . . . , bk ∈ Δ, we get that T (B) is
a submonoid of T (A). The automaton B = (Q′, Σ, •) is a sub-automaton of
A = (Q,Σ, ·) if Q′ ⊆ Q and the action of B is the restriction of the action of A:
q • a = q · a for each q ∈ Q′ and a ∈ Σ. The automaton B is a homomorphic
image or quotient of A if there exists some surjective mapping h : Q → Q′ such
that h(q ·a) = h(q)•a. If the mapping h is a bijection, then the two automata are
isomorphic. An automaton which is a homomorphic image of a subautomaton
of A is called a divisor of A.

An automaton A = (Q,Σ, ·) is minimal with respect to some initial state
q0 ∈ Q and a set F ⊆ Q of final states if {q0 · u : u ∈ Σ∗} = Q and for each
pair p �= q of distinct states, there exists a word u ∈ Σ∗ with either pu ∈ F and
qu /∈ F or pu /∈ F and qu ∈ F .

The language recognized by A = (Q,Σ, ·) from q0 ∈ Q with F ⊆ Q is the set
L(A, q0, F) = {u ∈ Σ∗ : q0 ·u ∈ F} of words. A language L ⊆ Σ∗ is recognizable
or regular if L = L(A, q0, F) for some finite automaton A, initial state q0 and
set F of final states. It is well-known that for any regular language L there exists
a minimal automaton AL which recognizes L from some initial state with some
set of final states, moreover, AL divides every automaton in which L can be
recognized.

A is called a semi-flower automaton [10] (in short, SFA) if all cycles in A
have a common state. An automaton A is called circular if some letter acts as a
circular permutation on the states of A, and is a circular semi-flower automaton,
CSFA in short [11], if it is both circular and semi-flower.

Clearly, any circular automaton A = (Q,Σ, ·) is minimal with respect to any
initial state q0 ∈ Q and the set F = {q0} of final states: if a induces a circular
permutation in A, then we have Q = {q0 · ak : 0 ≤ k < n} where n = |Q|. On
the other hand, if p = q0 ·ak and q = q0 ·at are distinct states, then p ·an−k = q0
while q · an−k �= q0.

Let [n] stand for the set {1, . . . , n}. We call a function f : [n] → [n] a semi-
flower transition over [n] if i < i · f for each 1 ≤ i < n. We denote the rotation
operation by +: for a state i ∈ [n] and an integer k, let i+k stand for

(
(i+k−1)

mod n
)
+1. In particular, n+1 = 1, and the mapping i �→ i+1 (which happens

to be a circular permutation) is a semi-flower transition.
The following proposition relates circular semi-flower automata and semi-

flower transitions:

Proposition 1. An automaton A over some alphabet Σ is a semi-flower
automaton if and only if it is isomorphic to some automaton of the form
([n], Σ, ·) such that each letter induces a semi-flower transition over [n].

This latter form is called a normal form of semi-flower automata.

Proof. If each letter induces a semi-flower transition over [n] in A = ([n], Σ, ·)
then we claim that each cycle contains the state n.

Indeed, let p1
a1→ p2

a2→ . . .
ak→ pk+1 = p1 be a cycle in A. Then pi ≥ pi+1 for

some i, which, as ai induces a semi-flower transition, can happen only if pi = n.
Thus, A is semi-flower.

150 K. Gelle and S. Iván

For the other direction, assume A = (Q,Σ, ·) is an n-state semi-flower
automaton and let qn ∈ Q be a common state of all the cycles of A. Then,
considering the graph G with vertex set V = Q − {qn} and edge set {(p, pa) :
a ∈ Σ, p, pa ∈ V } we get that G is a directed acyclic graph, hence its vertices
can be ordered as q1 < q2 < . . . < qn−1 such that for each edge (p, q) of G we
have p < q. Then, the mapping qi �→ i establishes an isomorphism between A
and a semi-flower automaton in normal form.
�

Clearly, if A is a circular semi-flower automaton in normal form, then the
letter a inducing a circular permutation of [n] has to induce the function i �→ i+1
as this is the only semi-flower permutation over [n].

3 Minimal Circular Semi-flower Automata and Syntactic
Complexity

A language L is a semi-flower language if L = L(A, q0, {q0}) for some semi-
flower automaton A = (Q,Σ, ·) and state q0 ∈ Q, which is a common state of
all cycles of A.

A language P ⊆ Σ+ is a prefix code if there are no words u, v ∈ P with u
being a proper prefix of v, and is a maximal prefix code if additionally, for any
word w /∈ P , the set P ∪{w} is not prefix-free anymore. If P is a maximal prefix
code, u ∈ Σ∗ is a proper prefix of some member of P and a ∈ Σ is a letter,
then ua is still a (not necessarily proper) prefix of some member of P . A good
reference on codes is [1].

It holds that semi-flower languages are exactly languages of the form P ∗ for
some finite maximal prefix code P ⊆ Σ+. Indeed, given L = L(A, q0, {q0}) for
the semi-flower automaton A, we can take the language

P = {u ∈ Σ∗ : q0u = q0, q0v �= q0 for any proper nonempty prefix v of u}
which is a finite language since otherwise some cycle would avoid the initial-final
state q0. For the other direction, for a finite maximal prefix-free language P one
can take the state set as Q = {u ∈ Σ∗ : u is a proper prefix of some v ∈ P},
define the action as u · a = ε if ua ∈ P and ua otherwise, and pick ε as q0, the
resulting semi-flower automaton recognizes the language P ∗.

The syntactic complexity of a class L of regular languages is a unary function
over the single variable n: for each n, its value is defined as

max
{

|T (AL)| : L ∈ L and AL has at most n states
}

.

Since up to isomorphism and renaming there is only a finite number of
automata having at most n states, this notion is well-defined for any class L
of regular languages.

In this paper we show that the syntactic complexity of semi-flower languages
is exactly nn − n! + n by analyzing the size of T (A) for a particular (circular)
semi-flower automaton A = An for each n.

The Syntactic Complexity of Semi-flower Languages 151

4 The Transition Monoid of Semi-flower Automata

If in an n-state automaton A, no letter acts as a permutation on the state set,
then its transition monoid does not contain any nontrivial permutation, thus in
that case, |T (A)| ≤ nn − n! + 1.

Clearly, if some letter induces a permutation in a semi-flower automaton,
then it has to be a circular permutation (otherwise there would be two disjoint
cycles in its graph). So in the remaining part of the section we deal with the
transition monoid of an n-state circular semi-flower automaton.

Let us begin by handling the permutations present in T (A) when A is a
circular semi-flower automaton.

Proposition 2. If f : Q → Q is a permutation belonging to T (A) for some
circular semi-flower automaton A over the state set Q, in which a induces a
circular permutation, then f is induced by some word of the form ak where
0 ≤ k < n.

Proof. Let us assume A = ([n], Σ, ·) is in the normal form specified by Propo-
sition 1. Since the only permutation which is a semi-flower transition is the
transformation i �→ i + 1, bA has to be this function for each letter b inducing a
permutation.

Also, if f = (b1b2 . . . bk)A is a permutation, then each bA
i has to be a per-

mutation, thus f = (ak)A in that case for some k and, as (an)A is the identity
map, we get f = (ak)A for some 0 ≤ k < n.
�

Note that there are n such permutations, so T (A) contains n permutations
and all its other members have rank less than n. Hence, the absolute maximum
syntactic complexity an n-state (circular) semi-flower automaton can have is
nn − n! + n. In the rest of the paper we show that this bound is attainable.

Let us fix n ≥ 1, the state set Q = [n] and the n-state automaton A =
(Q,Σ, ·) for the rest of the section, where

Σ = {bi : i ∈ [n]}
where for each i ∈ [n], the action of bi is defined as

j · bi =

{
j + 1, if j < n;
i, otherwise.

Since all the functions bA
i are semi-flower transitions over [n], A is a semi-flower

automaton over n letters. Observe that b1 induces the circular permutation i �→
i+1, thus A is a circular semi-flower automaton. To make a visual distinction, we
also refer to b1 as a and to ease notation, we frequently identify the mapping bA

with the letter b.
In the rest of the section we aim to show that T (A) contains all the transfor-

mations of [n] with rank less than n. Since the circular permutation induced by a
is also present, we also have n permutations in T (A) by Proposition 2, so this

152 K. Gelle and S. Iván

yields |T (A)| = nn −n!+n ≥ nn −n!+ 1, proving that the syntactic complexity
of semi-flower languages is nn − n! + n as well (and this bound is attainable by
a circular semi-flower automaton over n letters.)

In the following, we show that several fundamental transformations, as
“merging” two states, or “swapping” two states of some proper subset of the
state set, each belong to T (A).

Lemma 3. For all p, q ∈ Q, the function fp,q : Q → Q, where p · f = q and for
all r �= p we have r · f = r, belongs to T (A).

Proof. Let us consider the function f = an−p◦bq+n−p+1◦ap−1. (Here q+(n−p+1)
is understood with the rotation operation from the Notation section, so this value
is a member of [n]).

Clearly, for p we have p·an−p = n, n·bq+n−p+1 = q+n−p+1 (in the rotating
sense) and (q+n−p+1) ·ap−1 = q+n = q, so that p ·f = q. On the other hand,
for any r �= p we have r·an−p = r+n−p �= n so (r+n−p)·bq+n−p+1 = r+n−p+1
and (r + n − p + 1) · ap−1 = r + n = r. Thus indeed, r · f = r for each r �= p.

For an example, see Fig. 1.
�

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

an−p

bq+n−p+1

ap−1

Fig. 1. The semi-flower transitions creating a function fp,q which merges two states
(Here p = 2, q = 4).

As a corollary we can collapse the kernel of any transformation of Q, each
kernel class to one member of the class. (Recall that the kernel of a function f :
Q1 → Q2 is the equivalence relation ∼f over Q1 defined as p ∼f q ⇔ pf = qf .)

Corollary 4. For any transformation f : Q → Q, there exists some function
g ∈ T (A) such that

– for each p, q ∈ Q, pf = qf if and only if pg = qg;
– for each p ∈ Q, pgf = pf .

The Syntactic Complexity of Semi-flower Languages 153

In other words, g associates to each state q ∈ Q a representative state of the
class of q in the kernel of f .

Proof. Lemma 3 states fp,q is a member of T (A) for each p, q ∈ Q.
Let C ⊆ Q be a nonempty set of states. We claim that there exists some

function gC ∈ T (A) and a state p ∈ C such that C · gC = {p} and r · gC = r for
each r /∈ C. Indeed, let C = {q1, . . . , qk}. If C is a singleton, then the identity
function trivially satisfies the conditions, so assume |C| > 1.

Then the function fq1,qk ◦ fq2,qk ◦ . . . ◦ fqk−1,qk satisfies the claim with p = qk.
Hence, for any transformation f : Q → Q, if C1, . . . , Ck ⊆ Q are the classes

of the kernel of f (that is, the sets Ci give a partition of Q and for each p, q ∈ Q,
p · f = q · f if and only if p and q belong to the same Ci), then the function
g = gC1 ◦ . . . ◦ gCk

satisfies the conditions of the corollary.
�
The next lemma states that if we have some proper subset Q′ of the states,

then we can swap two of these states and retain the other members of Q′ in their
original place with some function from T (A):

Lemma 5. Assume Q′ � Q is some subset of the states and p, q ∈ Q′. Then
some function f : Q → Q satisfying p · f = q, q · f = p and r · f = r for all
r ∈ Q′ − {p, q} belongs to T (A).

Proof. If p = q, then the claim holds trivially as the identity belongs to T (A) so
we can assume p �= q.

By |Q′| < n, there exists some state � /∈ Q′. We claim that the function f =
fp,� ◦fq,p ◦f�,q satisfies the conditions of the Lemma. Indeed, if r /∈ {p, q, �}, then
none of the functions involved moves r, so that r · f = r for each r ∈ Q′ −{p, q};
and clearly, p · fp,� = �, � · fq,p = � and � · f�,q = q shows p · f = q and similarly
q · fp,� = q, q · fq,p = p and p · f�,q = p shows q · f = p.

So this f ∈ T (A) satisfies the conditions of the lemma.
For an example, see Fig. 2.
�
Now in order to show an arbitrary function f : Q → Q with rank less

than n, we dissect f as f = f1 ◦ π ◦ g where f1 collapses the kernel classes of f
into their representative elements (we can do that according to Corollary 4),
π is an appropriate permutation on these representatives (Lemma 6 ensures
the existence of such a suitable permutation in T (A)), and g is a “monotone”
mapping (Lemma 7 will ensure that g ∈ T (A)).

Lemma 6. For each Q′ � Q and permutation π : Q′ → Q′ there exists some
f ∈ T (A) extending π: q · f = q · π for each q ∈ Q′.

Proof. By Lemma 5 we get that for any transposition t swapping two states
of Q′ there exists some member belonging to T (A) which extends t. Since every
permutation π can be written as a composition of transpositions, and T (A)
is closed under composition, we get that each permutation of Q′ � Q can be
extended to some member of T (A).
�

154 K. Gelle and S. Iván

1 2 3 4 5 6 7 8

p q �

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

fp,�

fq,p

f�,q

Fig. 2. Steps for building a swap function for two states (here p = 2, q = 4) from
semi-flower transitions. The marked states belong to Q′.

For the sets Q′ ⊆ Q, let us call a mapping f : Q′ → Q monotone if i < j,
i, j ∈ Q′ implies i · f < j · f . Our next lemma states that all the monotone maps
belong to T (A).

Lemma 7. For each set Q′ ⊆ Q and monotone mapping f : Q′ → Q there
exists some f ′ ∈ T (A) extending f .

Proof. The statement is vacuously satisfied when Q′ = ∅ so assume Q′ �= ∅.
For two functions f, g : Q′ → Q, let us define d(f, g) as

∑
q∈Q′ |q ·f −q ·g|. We

show that if for two monotone functions f, g : Q′ → Q we have d(f, g) > 0, and g
has some extension g∗ ∈ T (A), then there also exists some monotone function
g′ : Q′ → Q having an extension g′

∗ ∈ T (A) with d(f, g′) < d(f, g). As this
distance can only have nonnegative integer values, and the identity function is a
monotone function belonging to T (A) (so we can start the induction somewhere),
this proves the statement.

So let us consider two monotone functions f, g : Q′ → Q with d(f, g) > 0.
This means that there exists some state q ∈ Q′ with q · f �= q · g. Let us choose
q so that q′ · f = q′ · g for each q′ < q.

There are two cases: either q · f < q · g or q · g < q · f .
If q · f < q · g, then no state r with q · f ≤ r < q · g can be in the image

of g: by monotonicity, p · g = r < q · g would yield p < q but by the choice of q,
p · g = p · f < q · f holds in that case. By Lemma 3, the function g0 = fq·g,q·f
belongs to T (A), and q · (g ◦ g0) = (q · g) · g0 = q · f , and since g is injective, we
have q′ · g �= q · g if q′ �= q, so that q′ · g · g0 = q′ · g for each q′ ∈ Q′. Observe also
that g ◦ g0 is still a monotone function. As g ◦ g0 belongs to T (A) if so does g,
and d(f, g ◦ g0) < d(f, g), this proves the claim in this subcase.

If q · g < q · f , then consider the following sequence q = q0 < q1 < . . . of
members of Q′: first, let us set q0 = q, then for each t ≥ 0, if (qt · g) + 1 belongs

The Syntactic Complexity of Semi-flower Languages 155

to the image of g, say p · g = (qt · g) + 1 for the state p ∈ Q′, then let us set
qt+1 = p, otherwise let qt be the terminating element of the sequence.

As g is a monotone function, we get that qt < qt+1 holds for each t where the
sequence is defined for qt+1. Thus, the sequence has to be finite. Moreover, by
construction, the sequence q0 ·g, q1 ·g, . . . contains consecutive states by definition
for the states q0 < q1 < . . ., thus, by q0 · g < q0 · f , applying induction we get
qt · g < qt · f for each valid index t. Hence, for the last state qt of the sequence
we have by construction that qt · g < qt · f and that (qt · g) + 1 does not belong
to the image of g. (Observe that being less than qt · f , the state qt · g cannot
be n.) By Lemma 3, the function g0 = fqt·g,(qt·g)+1 belongs to T (A) so again,
for the monotone function g · g0 we get qt · g · g0 = (qt · g) + 1 and for any other
member q of Q′, q · g = q · g · g0. Again, g ◦ g0 belongs to T (A) if so does g, and
d(f, g ◦ g0 < d(f, g), proving this subcase and the lemma as well.
�
Lemma 8. For each Q′ � Q and injective mapping f : Q′ → Q there exists
some g ∈ T (A) extending f .

Proof. Let Q′ = {q1, . . . , qk} with q1 < . . . < qk and let π : Q′ → Q′ be the
unique permutation with qi ·π · f < qi+1 ·π · f for each 1 ≤ i < k. (That is, qi ·π
is qj if and only if qi · f is the jth least element of Q′ · f).

Then f = π ◦ f ′ for the monotone map f ′ : Q′ → Q with qi · f ′ = (qi · π−1) · f ,
hence by Lemmas 6 and 7 there is some function g ∈ T (A) extending f (Fig. 3).
�

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

f

π

f ′

Fig. 3. Example of the decomposition f = π ·f ′. The marked states are belonging to Q′.

156 K. Gelle and S. Iván

Equipped with our lemmas, we can prove the main theorem of the present
paper:

Theorem 9. The monoid T (A) contains all the transformations of [n] having
rank less than n, thus |T (A)| = nn − n! + n is the syntactic complexity of the
semi-flower languages.

This bound can be reached by an alphabet of size n for each n.

Proof. Let f : Q → Q be a function with rank(f) < n. By Corollary 4, there
exists some function g ∈ T (A) mapping each state to a representative of its kernel
class, that is, with some Q′ � Q, |Q′| = rank(f) such that Q · g = Q′, satisfying
q ·g ·f = q ·f for each state q ∈ Q, moreover, with p ·f = q ·f implying p ·g = q ·g.
Then, let f ′ denote the restriction of f to Q′. Then, by construction, f ′ is an
injective mapping from Q′ to Q, thus it has an extension g′ ∈ T (A) by Lemma 8.
Thus, for the mapping h = g ◦g′ we have q ·h = q ·g ·g′ = q ·g ·f ′ = q ·g ·f = q ·f
for each state q ∈ Q, proving the theorem.
�

5 Conclusion

We showed that the syntactic complexity of semi-flower languages is exactly
nn −n!+n and that in order to reach this complexity, an alphabet of linear size
suffices. We left open the question whether n letters are needed to achieve this
or maybe an even smaller alphabet suffices.

The authors wish to thank the reviewers for their careful work which
improved the presentation of the paper. Reviewer 3 even sketched a proof show-
ing that the minimal number of letters to achieve maximal syntactic complexity
is �n+1

2 �, which we include here, slightly reformatted.

Theorem 10 (Reviewer 3). The maximal syntactic complexity nn −n! +n of
an n-state semi-flower automaton can be reached by an alphabet of size �n+1

2 �
and this bound is sharp.

Proof. One can observe that in A = ([n], Σ, ·) studied in the previous section
still contains redundant letters. If 1 < k < n, then (n+2−k) ·ak−2 ·bk = k while
i · ak−2 · bk = i + k − 1 for each i �= n + 2 − k. In particular, the image of i = 1 is
also k, so ak−2bk merges 1 and n+2−k into k and permutes the (n−1)-element
set {2, . . . , n} (as 1 does not belong to its image). Hence (ak−2bk)(n−1)! acts as
the identity on {2, . . . , n} and maps 1 to n+2−k. Thus, a(ak−2bk)(n−1)! maps n
to n + 2 − k and acts as i �→ i + 1 on the other states, so it induces the the same
transformation as bn+2−k. Thus, with an appropriate composition of b1 and b2
one can induce the same transformation as bn+2−2 = bn, from b1 and b3 we get
bn−1 and so on, thus the subset {bi : 1 ≤ i ≤ �n+1

2 �} of Σ generates the same
transition monoid T (A), and so �n+1

2 � letters suffice.
On the other hand, assume A = ([n],Δ, ·) is a semi-flower automaton in

normal form. Let us define the distance of two states p ≤ q ∈ [n] as d(p, q) =
min{q − p, n + p − q}, that is, their “circular” distance and if p > q, then let

The Syntactic Complexity of Semi-flower Languages 157

d(p, q) = d(q, p). Clearly, d(p, q) = d(pa, qa) whenever a has rank n. Assume
w = a1 . . . ak induces a transformation of rank n− 1. Then there is a least index
i ∈ [k] such that ai induces a transformation of rank n − 1 and each aj , j < i
induces the permutation � �→ �+1. Let p �= q be the states merged by ai and p′, q′

be the states with p′a1 . . . ai−1 = p and q′a1 . . . ai−1 = q. Then, w merges the
states p′ and q′ whose distance is d(p′, q′) = d(p, q) depending only on ai. Hence,
if T (A) contains all the transformations of rank n − 1, then for each possible
distance D > 0, the alphabet Δ has to contain at least one letter of rank n − 1
merging two states of distance D. Since there are �n

2 � possible distances on the
cycle of length n, along with the letter inducing the circular permutation an
alphabet of size at least �n

2 � + 1 = �n+1
2 � is needed in a circular semi-flower

automaton to generate all the transformations of rank (n − 1).
�

References

1. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata (Encyclopedia of
Mathematics and Its Applications). Cambridge University Press, New York (2009).
https://dl.acm.org/citation.cfm?id=1708078

2. Brzozowski, J., Li, B.: Syntactic complexity of R- and J-trivial regular languages.
Int. J. Found. Comput. Sci. 25(07), 807–821 (2014). https://doi.org/10.1142/
S0129054114400097

3. Brzozowski, J., Li, B., Liu, D.: Syntactic complexities of six classes of star-free
languages. J. Autom. Lang. Comb. 17(2), 83–105 (2012)

4. Brzozowski, J.A., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and
factor-free regular languages. Theoret. Comput. Sci. 449, 37–53 (2012). https://
doi.org/10.1016/j.tcs.2012.04.011. Preliminary version at DCFS 2011

5. Brzozowski, J.A., Szyku�la, M., Ye, Y.: Syntactic complexity of regular ideals. The-
ory Comput. Syst. 62(5), 1175–1202 (2018). https://doi.org/10.1007/s00224-017-
9803-8

6. Brzozowski, J.A., Ye, Y.: Syntactic complexity of ideal and closed languages. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1 11

7. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size.
Theoret. Comput. Sci. 327(3), 319–347 (2004). https://doi.org/10.1016/j.tcs.2004.
04.010

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

9. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970). in Russian. English translation in Soviet Math.
Doklady 11(5), 1373–1375 (1970)

10. Singh, S.N.: Semi-Flower Automata. Ph.D. thesis, IIT Guwahati, India (2012)
11. Singh, S.N., Krishna, K.V.: The holonomy decomposition of some circular semi-

flower automata. Acta Cybernet. 22(4), 791–805 (2016). https://doi.org/10.14232/
actacyb.22.4.2016.4

12. Singh, S.N., Krishna, K.V.: On syntactic complexity of circular semi-flower
automata. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 312–323.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94812-6 26

13. Szyku�la, M., Wittnebel, J.: Syntactic complexity of bifix-free regular languages.
Theoret. Comput. Sci. (2019, to appear). https://doi.org/10.1016/j.tcs.2018.12.
025

https://dl.acm.org/citation.cfm?id=1708078
https://doi.org/10.1142/S0129054114400097
https://doi.org/10.1142/S0129054114400097
https://doi.org/10.1016/j.tcs.2012.04.011
https://doi.org/10.1016/j.tcs.2012.04.011
https://doi.org/10.1007/s00224-017-9803-8
https://doi.org/10.1007/s00224-017-9803-8
https://doi.org/10.1007/978-3-642-22321-1_11
https://doi.org/10.1016/j.tcs.2004.04.010
https://doi.org/10.1016/j.tcs.2004.04.010
https://doi.org/10.14232/actacyb.22.4.2016.4
https://doi.org/10.14232/actacyb.22.4.2016.4
https://doi.org/10.1007/978-3-319-94812-6_26
https://doi.org/10.1016/j.tcs.2018.12.025
https://doi.org/10.1016/j.tcs.2018.12.025

Limited Nondeterminism of Input-Driven
Pushdown Automata: Decidability

and Complexity

Yo-Sub Han1, Sang-Ki Ko2, and Kai Salomaa3(B)

1 Department of Computer Science, Yonsei University, 50, Yonsei-Ro,
Seodaemun-Gu, Seoul 120-749, Republic of Korea

emmous@yonsei.ac.kr
2 AI Research Center, Korea Electronics Technology Institute, Seongnam,

Gyeonggi-do, Republic of Korea
sangkiko@keti.re.kr

3 School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca

Abstract. We study the decidability and computational complexity for
several decision problems related to limited nondeterminism of finite-
state automata equipped with a pushdown stack. Ambiguity and tree
width are two measures of nondeterminism considered in the literature.
As a main result, we prove that the problem of deciding whether or
not the tree width of a nondeterministic pushdown automaton is finite
is decidable in polynomial time. We also prove that the k-tree width
problem for nondeterministic input-driven pushdown automata (respec-
tively, nondeterministic finite automata) is complete for exponential time
(respectively, for polynomial space).

Keywords: Nondeterminism · Tree width · Ambiguity ·
Input-driven pushdown automata

1 Introduction

Nondeterminism plays a fundamental role in automata and formal language the-
ory. There have been various ways to quantify the nondeterminism of automaton
models [8,9,12,17,18]. For instance, the expressive power of finite automata is
the same even if we allow the use of nondeterminism since both deterministic
(DFA) and nondeterministic finite automata (NFA) accept the class of regular
languages. However, the descriptional complexity of minimal DFAs and NFAs
accepting the same regular language differs significantly as it is well-known that
the determinization of NFAs causes an exponential blow-up in size of the result-
ing DFAs in the worst-case.

On the other hand, for some models such as pushdown automata, the expres-
sive power of the automata is strictly increased if we allow the use of non-
determinism. In other words, there exist (context-free) languages that can be

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 158–170, 2019.
https://doi.org/10.1007/978-3-030-23247-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_12

Limited Nondeterminism of IDPDAs: Decidability and Complexity 159

described by a nondeterministic pushdown automaton (NPDA) and not by a
determinististic PDA (DPDA).

The ambiguity of a nondeterministic machine means the number of accept-
ing computations on an input string. An NFA is said to be an unambiguous
finite-state automaton (UFA) if it has a unique accepting computation on every
accepted string. Obviously, every DFA is an UFA. Similarly, there are finitely
ambiguous automata where the number of accepting computations is bounded
by a constant. For the remaining automata that have an unbounded number
of accepting computations, we can further distinguish between polynomially
ambiguous and exponentially ambiguous depending on the relationship between
the length of the string and the number of accepting computations on the
string [14]. Chan and Ibarra [5] proved that the problem of deciding whether
or not the ambiguity of a given NFA is bounded by a given integer k is PSPACE-
complete. They also showed that the problem of deciding whether or not the
ambiguity of an NFA is bounded by a constant can be solved in polynomial
space by applying a matrix algorithm. Later, Weber and Seidl [20] presented a
polynomial time algorithm for the problem by observing a simple criterion which
characterizes the infinite degree of ambiguity of an NFA.

There is another approach for quantifying the nondeterminism of automata
models called leaf size [3,12], path size [16,17], or tree width [18]. The tree width
means the total number of (complete and incomplete) computations on an input
string regardless of the acceptance of the string. Palioudakis et al. [18] considered
NFAs having finite tree width where the computation on any input string has a
constant number of branches. They gave effective characterizations of such NFAs
and a tight bound for the determinization as a function of the tree width and
the size of an NFA. They also revealed that the problem of deciding whether or
not a given NFA has finite tree width is decidable in polynomial time.

Okhotin and Salomaa [17] studied the descriptional complexity of determiniz-
ing an NIDPDA that has limited nondeterminism. They called an NIDPDA with
at most k computations on any input a k-path NIDPDA. In other words, the tree
width of the NIDPDA is bounded by k. It is known that the size of the smallest
DIDPDA obtained from an NIDPDA of size n is 2Θ(n2) [2] but in the case of a
k-path NIDPDA, the determinization yields a DIDPDA of size at most Θ(nk).
They also provided an algorithm for deciding whether or not a given NIDPDA
has the k-path property and showed that the problem is P-complete for a fixed
k. Finally, Caralp et al. [4] studied the decision problems regarding the ambi-
guity of NIDPDAs by investigating an interesting extension of IDPDAs. They
proposed an extension of IDPDAs by means of positive integer weights asso-
ciated with transitions. Then, they define the multiplicity of an NIDPDA as
the supremum of multiplicities over all possible input strings, which is defined
as the degree of ambiguity here. They proved that the k-boundedness problem
(the problem of deciding whether or not the ambiguity is bounded by k) is
EXPTIME-complete (complete for exponential time) and the finiteness problem
(the problem of deciding whether or not the ambiguity is bounded by a constant)
is solvable in polynomial time.

160 Y.-S. Han et al.

We study several unsolved cases of the complexity and decidability questions
related to limited nondeterminism for computational models such as NFAs, NID-
PDAs, and NPDAs. For instance, the decidability of the problem of deciding
whether or not a given NIDPDA has finite tree width (i.e., finite path size) has
been left open in [17]. We complete the complexity and decidability landscape
presented in Table 1 regarding the decision problems about the ambiguity and
the tree width of NFAs, NIDPDAs, and NPDAs. In Sect. 2, we give basic defini-
tions and notations that are used throughout the paper. Section 3 provides the
results on the decision problems for the tree width and ambiguity of NPDAs. In
Sect. 4, we present the new results on the decision problems for the tree width
of NIDPDAs and NFAs. Lastly, Sect. 5 concludes the paper.

Table 1. The complexity landscape of decision problems regarding the nondeterminism
in NFAs, NIDPDAs, and NPDAs. Our results are written in bold. We assume that the
integer k is given as part of input and represented in unary notation.

Problem For NPDAs For NIDPDAs For NFAs

k-ambiguity Undecidable (Proposition 4) EXPTIME-c [4] PSPACE-c [5]

k-tree width k ≥ 3 Undecidable [17] EXPTIME-c PSPACE-c

k < 3 P (Proposition 3) (Theorem 5) (Theorem 6)

Finite tree width P (Theorem 2) P (Theorem 2) P [18]

Finite ambiguity Undecidable [10,21] P [4] P [20]

2 Preliminaries

We briefly present definitions and notations used throughout the paper. The
reader may refer to the textbooks [11,19,21] for complete knowledge of automata
and formal language theory.

Let Σ be a finite alphabet and Σ∗ be a set of all strings over Σ. A language
over Σ is any subset of Σ∗. The symbol ∅ denotes the empty language, the
symbol λ denotes the null string and Σ+ denotes Σ∗ \ {λ}.

A nondeterministic finite automaton (NFA) is specified by a quintuple A =
(Σ,Q, q0, F, δ) where Σ is a finite alphabet, Q is a finite set of states, q0 is the
initial state, F ⊆ Q is the set of final states and δ is a multi-valued transition
function from Q × Σ into 2Q. The automaton A is deterministic (a DFA) if δ
is a (single-valued) function Q × Σ → Q. It is well known that the NFAs and
DFAs all recognize the regular languages [7,19,21].

A nondeterministic pushdown automaton (NPDA) is specified by a tuple
P = (Q,Σ, Γ, δ, q0, Z0, F), where Q is a finite set of states, Σ is a finite input
alphabet, Γ is a finite stack alphabet, δ : Q × (Σ ∪ {λ}) × Γ → 2Q×Γ ≤2

is a
transition function, q0 ∈ Q is the start state, Z0 is the initial stack symbol and
F ⊆ Q is the set of final states. Our definition restricts that each transition of P
has at most two stack symbols, that is, each transition can push or pop at most
one symbol. We use |δ| to denote the number of transitions in δ.

Limited Nondeterminism of IDPDAs: Decidability and Complexity 161

A configuration of an NPDA P is a triple (q, w, v), where q ∈ Q is the current
state, w ∈ Σ∗ is the remaining input, and v ∈ Γ ∗ is the contents on the stack.
Denote the set of configurations of P by C(P) and we define the single step
computation relation as �P ⊆ C(P) × C(P). The language L(P) is the set of
strings accepted by P .

Consider q, p ∈ Q, b ∈ (Σ ∪ λ), X ∈ Γ and u ∈ Γ ∗. If (p, u) ∈ δ(q, b,X),
we say that (q, b,X) → (p, u) is a transition of P , and it is called a λ-transition
if b = λ (i.e., a λ-transition does not consume an input symbol). For q ∈ Q,
b ∈ (Σ ∪ λ) and X ∈ Γ , a transition (q, b,X) → (p, u) is nondeterministic if

1. for some (p′, u′) �= (p, u), (p′, u′) ∈ δ(q, b,X), or,
2. b is an element of Σ and δ(q, λ,X) �= ∅, or,
3. b = λ and there exists c ∈ Σ such that δ(q, c,X) �= ∅.

A transition (q, b,X) → (p, u) is nondeterministic if, roughly speaking, the tuple
(q, b,X) allows the NPDA to make also a different transition.

The question whether a λ-transition involves a nondeterministic step may
depend on what is the next input symbol and we need to be a little more precise
in the definition. A λ-transition (q, λ,X) → (p, u) is said to be inherently non-
deterministic if there exist (p′, u′) �= (p, u) such that (p′, u′) ∈ δ(q, λ,X) (i.e.,
the case 1. holds). A λ-transition (q, λ,X) → (p, u) which is not inherently non-
deterministic, is said to be Z-nondeterministic, ∅ �= Z ⊆ Σ, if the set Z consists
of all alphabet symbols c ∈ Σ such that δ(q, c,X) �= ∅. Note that applying an
inherently nondeterministic λ-transition always involves a nondeterministic step.
Applying a Z-nondeterministic (Z ⊆ Σ) λ-transition involves a nondeterministic
step only if the next input symbol belongs to Z.

A nondeterministic input-driven pushdown automaton (NIDPDA) [1,15,17]
is a restricted version of an NPDA, where the input alphabet Σ consists of three
disjoint classes, Σc, Σr, and Σl. Namely, Σ = Σc ∪ Σr ∪ Σl. The class where the
input symbol belongs to determines the type of stack operation: The automaton
always pushes a symbol onto the stack when it reads a call symbol in Σc. If
the input symbol is a return symbol in Σr, the automaton pops a symbol from
the stack. Finally, the automaton neither uses the stack nor even examines the
content of the stack for the local symbols in Σl. Formally, the input alphabet is
defined as ˜Σ = (Σc, Σr, Σl), where three components are finite disjoint sets.

An NIDPDA is formally defined by a tuple A = (˜Σ,Γ,Q, q0, F, δc, δr, δl),
where Σ = Σc ∪ Σr ∪ Σl is the input alphabet, Γ is the finite set of stack
symbols, Q is the finite set of states, q0 ∈ Q is the start state, F ⊆ Q is the
set of final states, δc : Q × Σc → 2Q×Γ is the transition function for the push
operations, δr : Q × (Γ ∪ {⊥}) × Σr → 2Q is the transition function for the pop
operations, and δl : Q × Σl → 2Q is the local transition function. We use ⊥ /∈ Γ
to denote the top of an empty stack. The single step transition relation �A of
an NIDPDA A is described as follows:

– Push operation: (q, aw, v) �A (q′, w, γv) for all a ∈ Σc, (q′, γ) ∈ δc(q, a), γ ∈
Γ,w ∈ Σ∗ and v ∈ Γ ∗.

162 Y.-S. Han et al.

– Pop operation: (q, aw, γv) �A (q′, w, v) for all a ∈ Σr, q
′ ∈ δr(q, γ, a), γ ∈

Γ,w ∈ Σ∗ and v ∈ Γ ∗; furthermore, (q, aw, λ) �A (q′, w, λ), for all a ∈
Σr, q

′ ∈ δr(q,⊥, a) and w ∈ Σ∗.
– Local operation: (q, aw, v) �A (q′, w, v), for all a ∈ Σl, q

′ ∈ δl(q, a), w ∈ Σ∗

and v ∈ Γ ∗.

An initial configuration of an NIDPDA A = (˜Σ,Γ,Q, s, F, δc, δr, δl) is
(s, w, λ), where s is the start state and w is an input word. an NIDPDA accepts
a word if A arrives at a final state by reading the word from the initial configu-
ration. Formally, we write the language recognized by A as

L(A) = {w ∈ Σ∗ | (s, w, λ) �∗
A (q, λ, v) for some q ∈ F, v ∈ Γ ∗}.

We call the languages recognized by NIDPDAs the input-driven pushdown
languages. The class of input-driven pushdown languages is a strict subclass of
deterministic context-free languages and a strict superclass of regular languages.
While many closure properties such as complement and intersection do not hold
for context-free languages, input-driven pushdown languages are closed under
most operations including other basic operations such as concatenation, union,
and Kleene-star.

Below we use NPDA to define various nondeterminism measures since the
same definition holds for NIDPDA and NFA as they are special cases of NPDA.

Computation Trees and Tree Width [18] (a.k.a. Path Size [16]). Let us
consider an NPDA A = (Q,Σ, Γ, δ, q0, Z0, F) and be C = (q, w, y), where q ∈ Q
is a state, w ∈ Σ∗ is the remaining input, and y ∈ Γ ∗ is the current stack con-
tents, be a configuration of A. Then, the initial configuration of the NPDA A on
a string w is C0 = (q0, w, Z0). If a configuration C in one computation step of A
yields configurations C1, . . . , Cm,m ≥ 0, we denote it by C �A (C1, . . . , Cm).
For example, the successor configurations of a configuration C = (q, bu,Xs) are
obtained by applying m different transitions applicable to triple (q, b,X) and
also by applying λ-transitions applicable to (q, λ,X). Now the computation tree
of A on input w is defined as follows:

1. the root node is labelled by the initial configuration C0;
2. if a node v is labelled by a configuration C and C �A (C1, . . . , Cm),m ≥ 0,

then the node v has m children that are labelled, respectively, by C1, . . . , Cm

in the computation tree;
3. if a node v is labelled by configuration C and no computation step is defined

in C, then the node v is a leaf node.

Intuitively, the tree width measure counts the number of partial computa-
tions on a given input and for NFAs it is normally defined in terms of the number
of leaves of the computation tree. However, since an NPDA A may have infi-
nite cycles caused by λ-transitions we define the tree width of A on an input w,
twA(w), as the maximal number of pairwise independent nodes in the compu-
tation tree of A on w. (For automaton models that do not allow infinite cycles,
such as NFAs or NIDPDAs, this value coincides with the number of leaves of
the computation tree.)

Limited Nondeterminism of IDPDAs: Decidability and Complexity 163

The (maximum) tree width of A on strings of length m is defined as twA(m) =
max{twA(w) | w ∈ Σm}. The tree width of A is finite if the values twA(m), where
m ∈ N, are bounded and in that case we denote twsup

A = supm∈N
twA(m).

Note that we can define the tree width of any other nondeterministic devices
exactly in the same way. (For devices without a pushdown stack, we just omit
the third component.) We say that an NPDA A has tree width k if the tree
width of A on any string is at most k and there exists a string w where the tree
width of A on w is k, that is, if twsup

A = k.

Ambiguity [5,20]. An automaton (which can be either an NFA, an NPDA, or
an NIDPDA) A is unambiguous if any string has at most one accepting compu-
tation. The degree of ambiguity of A on a string w is the number of accepting
computations of A on w and denoted by daA(w). More formally, daA(w) is the
number of leaves of the computation tree of A on w that are labeled by accepting
configurations.

The degree of ambiguity of A on strings of length m is defined as daA(m) =
max{daA(w) | w ∈ Σm}. The degree of ambiguity of A is finite if the values
daA(m), where m ∈ N, are bounded as follows: dasupA = supm∈N

daA(m).
The automaton A is unambiguous if dasupA = 1. Clearly, every deterministic

automaton is unambiguous.

3 Problems on Tree Width and Ambiguity for NPDAs

Okhotin and Salomaa [17] show that deciding whether a given NPDA has tree
width (at most) k is undecidable for k ≥ 3. Additionally, it is shown in [17] that
for a given k ∈ N one can decide in polynomial time whether or not the tree
width of a given NIDPDA is k. However, the question whether we can decide
whether the tree width of a given NIDPDA is finite is left open in [17].

We give an algorithm that decides finiteness of tree width in polynomial time
even for general NPDAs. The crucial observation is that, in fact, the algorithm
does not need to rely on specific properties of input-driven computation and,
instead, it is sufficient to check for an NPDA M whether some nondeterministic
transition can be used an unbounded number of times, that is, the tree width
of M is infinite if and only if in computations of M some nondeterministic
transition can be used an unbounded number of times.

The above property is stated formally in Lemma 1 and the proof of the lemma
follows directly from the definition of computation trees and tree width using
the fact that the number of transitions is finite.

For λ-transitions we have to be a little more precise in defining the use of a
nondeterministic transition. In the below lemma when saying that computation
on input w uses a nondeterministic transition (q, λ,X) → (p, u) this means that
either (i) the λ-transition is inherently nondeterministic, or (ii) the λ-transition
is Z-nondeterministic and the next input character belongs to Z ⊆ Σ.

Lemma 1. For an NPDA M , twsup
M is infinite if and only if there exists a

nondeterministic transition (q, b,X) → (p, u) of M such that for all c ∈ N there

164 Y.-S. Han et al.

exists a word w such that M has a computation on w that uses the transition
(q, b,X) → (p, u) as a nondeterministic transition1 more than c times.

Theorem 2. We can decide whether or not the tree width of a given NPDA is
finite in polynomial time.

Proof. Let P = (Q,Σ, Γ, δ, q0, Z0, F) be an NPDA. By Lemma 1, the tree
width of P is infinite if and only if there exist computations that use an
unbounded number nondeterministic steps involving some nondeterministic
transition (q, b,X) → (p, u) where q, p ∈ Q, b ∈ Σ ∪ {λ}, X ∈ Γ , u ∈ Γ ∗.
Consequently we can decide whether or not the tree width of P is infinite by
finding such a transition. A technical issue we need to take care of is that a
Z-nondeterministic (Z ⊆ Σ) λ-transition involves a nondeterministic step only
if the next input character belongs to Z.

Consider q, p ∈ Q, b ∈ Σ ∪ {λ}, X ∈ Γ and u ∈ Γ ∗ such that the transition
t = (q, b,X) → (p, u) is nondeterministic. When b = λ, this means that either
(q, λ,X) → (p, u) is inherently nondeterministic or it is Z-nondeterministic for
some ∅ �= Z ⊆ Σ. From the given NPDA P , for a nondeterministic transition t
we construct a new NPDA Pt which, roughly speaking, reads a character only
when simulating a nondeterministic step of P involving the transition t.

We have three cases to consider. In cases 1. and 2. the set of states of Pt will
be the same as the set of states of the original NPDA P but in the third case Pt

will need additional states.

1. When t = (q, b,X) → (p, u) is not a λ-transition, i.e., b ∈ Σ, we construct the
NPDA Pt by replacing the input labels of all transitions except the transition
t by λ and replacing the set of final states by the singleton set {q}.

2. If b = λ and t = (q, λ,X) → (p, u) is inherently nondeterministic, Pt is
constructed from P by replacing the input labels of all transitions other than
t by λ and, furthermore, the transition t is replaced by (q, $,X) → (p, u)
where $ is a new input symbol.

3. Suppose then that t = (q, λ,X) → (p, u) is Z-nondeterministic for ∅ �= Z ⊆ Σ,
i.e., t is not inherently nondeterministic. If Q is the state set of P , the states
of Pt will have a second component, i.e., state set of Pt is Q × {0, 1}. The
purpose of the second components is just to enforce that after applications of
t that are “counted as a nondeterministic transition”, the next real transition
of P that is simulated must use an input symbol in the set Z.
In real transitions t′ = (r, d, Y) → (s, v), d ∈ Σ, the input symbols are again
replaced by λ. More precisely, if d �∈ Z, t′ is replaced by ((r, 0), λ, Y) →
((s, 0), v) and if d ∈ Z, t′ is replaced by both ((r, 0), λ, Y) → ((s, 0), v) and

((r, 1), λ, Y) → ((s, 0), v). (1)

λ-transitions t′ = (r, λ, Y) → (s, v) that are distinct from t are replaced by
((r, 0), λ,X) → ((s, 0), v) and ((r, 1), λ,X) → ((s, 1), v). Finally, the transi-
tion t itself is replaced by ((q, 0), $,X) → ((p, 1), u), ((q, 1), $,X) → ((p, 1), u),
and ((q, 0), λ,X) → ((p, 0), u).

1 This is explained in the paragraph before the lemma. Whether or not a λ-transition
involves a nondeterministic step may depend on the next input symbol.

Limited Nondeterminism of IDPDAs: Decidability and Complexity 165

In cases 1. and 2. it is clear that Pt accepts an infinite number of input
strings if and only if P has computations that use the transition t an unbounded
number of times. Note that in case 1. and 2. all applications of the transition t
are nondeterministic.

The construction in the case 3. enforces that Pt accepts an infinite number
of strings if and only if P has computations that use t as a nondeterministic
transition an unbounded number of times. This is verified as follows. The only
real (non-λ) transitions of Pt are

((q, 0), $,X) → ((p, 1), u) and ((q, 1), $,X) → ((p, 1), u).

Thus, applying a real transition of Pt changes the second component of the
state to 1 (or makes the second component remain 1 if it was 1 already). When
the second component of the state is one, only transitions that simulate a λ-
transition of P can be applied until we apply a transition (1) that simulates a
real transition of P on d ∈ Z, that is, on an input symbol with respect to which
the λ-transition t is nondeterministic.

Our algorithm constructs the NPDA Pt for each nondeterministic transition t
of P . Thus, we can decide whether the tree width of P is infinite by checking
whether for some nondeterministic transition t the language L(Pt) is infinite.
Otherwise, our algorithm answers that the tree width of P is finite. We describe
the process in pseudocode in Algorithm 1.

Algorithm 1. Algorithm deciding the finiteness of the tree width of P

Input : An NPDA P = (Q, Σ, Γ, δ, q0, Z0, F)
Output: Finiteness of the tree width of P
foreach transition t of P do

if t is nondeterministic then
Construct Pt from P ;
if |L(Pt)| = ∞ then

return False
end

end

end
return True

Clearly, our algorithm terminates in polynomial time since testing the finite-
ness of a context-free language can be done in polynomial time. First we convert
an NPDA into a context-free grammar using the standard triple construction [11]
and again convert the grammar into the Chomsky normal form. Then, we draw a
dependency graph with nodes labeled by nonterminals of the context-free gram-
mar. For instance, if there is a rule such as S → AB|BC|a, we draw edges from S
to A, B and C. Now we can decide whether or not the context-free grammar
generates an infinite number of strings by finding any cycle from the nonterminal
dependency graph. Since we repeat the above procedure |Q|2 ·(|Σ|+1)·|Γ |3 times

166 Y.-S. Han et al.

in the worst case, the total procedure terminates in polynomial time. Strictly
speaking, instead of all transitions, it is sufficient to enumerate the left sides of
the transitions and the above estimation can obviously be improved. ��

Thus, for a given NPDA we can decide in polynomial time whether the tree
width is finite and deciding whether the tree width equals k ≥ 3 is undecidable
[17]. Next we consider the remaining case of k being 1 or 2.

Proposition 3. For a given NPDA P and an integer k ∈ {1, 2}, it is decidable
whether or not the tree width of P is bounded by k in polynomial time.

Proof. Consider the case when k = 1. Given an NPDA P = (Q,Σ, Γ, δ, q0, Z0, F)
and a transition of P , we can check whether the transition is useful by changing
the target state of the transition to the only final state of P and checking whether
the modified NPDA accepts any string. Since the emptiness of an NPDA can be
decided in polynomial time, we can find useful transitions in polynomial time.
Then, we check whether or not there exists a nondeterministic transition which
is useful in P . If there is such a transition, we can decide that the tree width
of P is not bounded by 1 because we can reach the state and choose a transition
between two choices.

Let us consider the case when k = 2. Similarly to the previous case, we
first find useful transitions from P . If there exists a useful transition with at
least 3 nondeterministic choices, then the tree width is at least 3. Otherwise, we
need to check whether a nondeterministic transition is reachable from another
nondeterministic transition.

First we choose a nondeterministic useful transition of P that corresponds
to a tuple (q, a,A). We modify P by replacing the labels of all transitions by λ
except the chosen transition and change the target state, say p, of the chosen
transition to p′ which is the created copy of p. Let us change the label of the
chosen transition to a special symbol �, where � /∈ Σ ∪ {λ}.

So far, the only transition with a non-empty label is the chosen transition.
Then, we choose a nondeterministic useful transition from the copied NPDA
and change the target state of the transition to the only final state. It is easy to
verify that the only string that can be accepted by the constructed NPDA is �
after two nondeterministic choices. Since there are a polynomial number of pairs
of nondeterministic transitions of P and the acceptance of the string � can be
decided in polynomial time, we can decide whether or not the tree width of P
is bounded by 2 in polynomial time. ��

Harrison [10] shows using a reduction from the Post Correspondence Problem
that it is undecidable whether a context-free grammar G is ambiguous and a
simple modification of the proof shows that finite ambiguity is undecidable for
context-free grammars.2 By converting the grammars to pushdown automata it
follows that the same property is undecidable for NPDAs.

For the sake of completeness, we show below that for an NPDA P it is
undecidable whether the ambiguity of P is bounded by a fixed k ∈ N. The proof

2 For original references see Wood [21].

Limited Nondeterminism of IDPDAs: Decidability and Complexity 167

is modified from a construction showing that deciding the exact tree width of
an IDPDA is undecidable [17].

Let Σ = {a, b}. Recall that an instance of the Post Correspondence Problem
(PCP) is a set of pairs of words I = {(u1, v1), . . . , (un, vn)} ⊆ Σ∗ × Σ∗, n ≥
1, and a solution to the instance I a sequence of indices 	1, . . . , 	k with each
1 ≤ 	i ≤ n such that: u�1 · · · u�k = v�1 · · · v�k . It is well known that for a given
PCP instance I it is undecidable to determine whether or not I has a solution
[10,11,19,21].

Proposition 4. Let k ≥ 1 be fixed. For a given NPDA P it is undecidable
whether or not the degree of ambiguity of P is bounded by k.

4 Problems on Tree Width for NIDPDAs and NFAs

It is known that we can decide whether or not the tree width of an NIDPDA
is bounded by a fixed integer k in polynomial time [17]. However, for the com-
plexity of deciding whether tree width is bounded by a variable k, only an EXP-
TIME upper bound has been known.

Theorem 5. Given an NIDPDA A and an integer k ≥ 1, the problem of deter-
mining whether or not the tree width of A is bounded by k is EXPTIME-complete.

Proof. Note that the EXPTIME upper bound is already proven by Okhotin and
Salomaa [17]. They have shown that for an NIDPDA A with n states and an
integer k ≥ 0, we can decide whether or not twsup

A ≤ k in time poly(kk · nk).
We prove the EXPTIME-hardness by reduction from the intersection empti-

ness of deterministic top-down tree automata [6]. It is known that a determin-
istic top-down tree automaton can be translated into a DIDPDA in polynomial
time [2]. Thus, we can convert k deterministic top-down tree automata into
k DIDPDAs in polynomial time and then, the intersection emptiness of the k
DIDPDAs is also EXPTIME-hard (in fact, EXPTIME-complete).

Now we construct a new NIDPDA A that has the initial state connected to
the initial states of k DIDPDAs by transitions on a new local symbol $. We
first create a new final state f of A which will be the only final state of A. This
implies that we change all final states of the k DIDPDAs into non-final states.
Then, for each final state of all k DIDPDAs, we create two nondeterministic
transitions labelled by a new symbol ‘#’ that go to the sole final state f of A. It
is easy to see that the tree width of A is 2k if and only if the k DIDPDAs have
a non-empty intersection.

We can see that the problem of deciding whether or not the tree width of an
NIDPDA is bounded by a given integer 2k decides also whether the intersection
of k deterministic top-down tree automata is empty. As a result, we conclude
that the k-tree width problem for NIDPDAs is EXPTIME-complete. ��

Now we consider the tree width of an NFA. It is known that there is a
simple polynomial time algorithm to decide whether the tree width of an NFA

168 Y.-S. Han et al.

is finite [18]. Here we show that the problem of deciding whether or not the tree
width of an NFA is bounded by a given integer k is PSPACE-complete. The proof
is inspired by the corresponding result for the degree of ambiguity by Chan and
Ibarra [5].

Theorem 6. Given an NFA A and an integer k ≥ 1, the problem of determining
whether or not the tree width of A is bounded by k is PSPACE-complete.

Proof. Let A = (Σ,Q, q0, F, δ) be an input NFA. We construct a DFA A′ =
(Σ,Q′, q′

0, F
′, δ′), where Q′ = (Q∪#)k+1 is the set of states, q′

0 = (q0,#, . . . ,#)
is the initial state, F ′ = {(q1, q2, . . . , qk+1) ∈ Qk+1 | |{q1, q2, . . . , qk+1}∩Q| = k+
1} is the set of final states, and δ′ is the transition function that simulates at most
k+1 computations of A in the (k+1)-tuple states in Q′ simultaneously. From the
initial state q′

0 = (q0,#, . . . ,#), A′ changes its first component according to the
transition function δ of A. For instance, if δ(q0, a) = {p}, then A′ moves from
(q0,#, . . . ,#) to (p,#, . . . ,#) by reading the character a. If A′ encounters a
nondeterministic computation step such as δ(p, a) = {p1, p2} from (p,#, . . . ,#),
then A′ moves to (p1, p2,#, . . . ,#) ∈ Q′ by reading a. The idea is to replace the
first ‘#’ entries of the (k+1)-tuple into the target states of the nondeterministic
choices of A. In this way, we can decide whether or not the tree width of A is k
since L(A′) is empty if and only if the tree width of A is k.

Obviously, the number of states in A′ is bounded by (n + 1)k+1. The non-
emptiness of L(A′) can be decided in nondeterministic polynomial space by
guessing a candidate string w of length smaller than (n + 1)k+1.

The PSPACE-hardness can be obtained by slightly modifying the proof of
Theorem 5 on the EXPTIME-hardness reduction. If we simply replace the k
DIDPDAs with k DFAs, then we can see that the problem of deciding whether or
not the tree width of an NFA is k is PSPACE-hard from the PSPACE-completeness
of the DFA intersection emptiness [13]. ��

5 Conclusion

As the main result we have shown that the question whether the tree width of an
NPDA is finite can be decided in polynomial time. This question was previously
open even for NIDPDAs. The main open problem is whether or not for input-
driven pushdown automata with unbounded ambiguity, the degree of growth of
ambiguity can be decided effectively. Similarly questions can naturally be asked
also about tree width growth rates. The elegant structural characterization given
by Weber and Seidl [20] for NFAs with polynomial or exponential ambiguity
growth rates does not seem to work in the presence of stack operations. On
the other hand, when stack operations are input-driven, showing undecidability
using a reduction from the Post Correspondence Problem, analogously as done
e.g. in Proposition 4, clearly is not possible either.

Limited Nondeterminism of IDPDAs: Decidability and Complexity 169

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) Pro-
ceedings 36th Annual ACM Symposium on Theory of Computing (STOC 2004),
pp. 202–211. ACM, New York (2004). https://doi.org/10.1145/1007352.1007390

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009). https://doi.org/10.1145/1516512.1516518

3. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J.
Comput. System Sci. 78(1), 198–210 (2012)

4. Caralp, M., Reynier, P.-A., Talbot, J.-M.: Visibly pushdown automata with mul-
tiplicities: finiteness and K -boundedness. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT
2012. LNCS, vol. 7410, pp. 226–238. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31653-1 21

5. Chan, T., Ibarra, O.H.: On the finite-valuedness problem for sequential machines.
Theoret. Comput. Sci. 23(1), 95–101 (1983)

6. Fernau, H., Krebs, A.: Problems on finite automata and the exponential
time hypothesis. Algorithms 10(1), 24:1–24:25 (2017). https://doi.org/10.3390/
a10010024

7. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, pp. 1–68. Springer, Heidelberg (1997). https://
doi.org/10.1007/978-3-642-59126-6 1

8. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234
(2002). https://doi.org/10.3217/jucs-008-02-0193

9. Goldstine, J., Leung, H., Wotschke, D.: Measuring nondeterminism in pushdown
automata. J. Comput. Syst. Sci. 71(4), 440–466 (2005)

10. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, Boston
(1978)

11. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

12. Hromkovic, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communica-
tion complexity method for measuring nondeterminism in finite automata. Inform.
Comput. 172(2), 202–217 (2002). https://doi.org/10.1006/inco.2001.3069

13. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of 18th Annual
Symposium on Foundations of Computer Science (SFCS 1977), pp. 254–266. IEEE
Computer Society (1977). https://doi.org/10.1109/SFCS.1977.16

14. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

15. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

16. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45(2), 47–67 (2014). https://doi.org/10.1145/2636805.2636821

17. Okhotin, A., Salomaa, K.: Input-driven pushdown automata with limited nonde-
terminism. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp.
84–102. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09698-8 9

18. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs.
J. Autom. Lang. Comb. 17(2), 245–264 (2012)

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1007/978-3-642-31653-1_21
https://doi.org/10.1007/978-3-642-31653-1_21
https://doi.org/10.3390/a10010024
https://doi.org/10.3390/a10010024
https://doi.org/10.1007/978-3-642-59126-6_1
https://doi.org/10.1007/978-3-642-59126-6_1
https://doi.org/10.3217/jucs-008-02-0193
https://doi.org/10.1006/inco.2001.3069
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1145/2636805.2636821
https://doi.org/10.1007/978-3-319-09698-8_9

170 Y.-S. Han et al.

19. Shallit, J.O.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge (2008)

20. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoret.
Comput. Sci. 88(2), 325–349 (1991)

21. Wood, D.: Theory of Computation. Harper & Row (1986)

Computability on Quasi-Polish Spaces

Mathieu Hoyrup1(B), Cristóbal Rojas2, Victor Selivanov3,4,
and Donald M. Stull1

1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
{mathieu.hoyrup,donald.stull}@inria.fr
2 Universidad Andres Bello, Santiago, Chile

crojas@mat-unab.cl
3 A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russia

vseliv@iis.nsk.su
4 Kazan Federal University, Kazan, Russia

Abstract. We investigate the effectivizations of several equivalent
definitions of quasi-Polish spaces and study which characterizations hold
effectively. Being a computable effectively open image of the Baire space
is a robust notion that admits several characterizations. We show that
some natural effectivizations of quasi-metric spaces are strictly stronger.

1 Introduction

Classical descriptive set theory (DST) [11] deals with hierarchies of sets, func-
tions and equivalence relations in Polish spaces. Theoretical Computer Science,
in particular Computable Analysis [21], motivated an extension of the classi-
cal DST to non-Hausdorff spaces; a noticeable progress was achieved for the
ω-continuous domains and quasi-Polish spaces [3,18]. The theory of quasi-Polish
spaces is already a well-established part of classical DST [3,5].

Theoretical Computer Science and Computable Analysis especially need an
effective DST for some effective versions of the mentioned classes of topological
spaces. A lot of useful work in this direction was done in Computability Theory
but only for the discrete space N, the Baire space N , and some of their relatives
[6,16]. For a systematic work to develop the effective DST for effective Polish
spaces see e.g. [7,14,15]. There was also some work on the effective DST for
effective domains and approximation spaces [2,18–20].

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk�lodowska-Curie grant agreement No
731143
C. Rojas was supported by Marie Curie RISE project CID.
V. Selivanov was supported by Inria program Invited Researcher and the Regional
Mathematical Center of Kazan Federal University (project 1.13556.2019/13.1 of the
Ministry of Education and Science of Russian Federation).
D.M. Stull was supported by Inria post-doc program.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 171–183, 2019.
https://doi.org/10.1007/978-3-030-23247-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_13

172 M. Hoyrup et al.

In this paper we continue the search of a “correct” version of a computable
quasi-Polish space initiated in [13,20]. By a correct version we mean one hav-
ing properties similar to effective versions of those in the classical case: the
computable quasi-Polish spaces have to subsume the well established classes of
computable Polish spaces and computable ω-continuous domains and to admit
a good enough effective DST.

We identify effective versions of quasi-Polish spaces satisfying these specifica-
tions. One of them is the class of computable effectively open images of the Baire
space identified and studied in [20]. We provide some characterizations of this
class which are effective versions of the corresponding known characterizations
of quasi-Polish spaces in [3]. However we show that some natural effectivizations
of complete quasi-metric spaces are strictly stronger.

The results of this paper were obtained in September 2018 during a research
stay of the second and third authors in Inria, Nancy. On the final stage of
preparing this paper the preprint [4] appeared where some of our results where
obtained independently (using a slightly different approach and terminology),
notably Definition 8 and Theorem 9.

In order to make our discussion of effective spaces closer to the corresponding
classical theory, we use an approach based on the canonical embeddings of cb0-
spaces into the Scott domain P(ω) and on the computability in this domain.
This approach (which emphasizes the notion of effective continuity rather than
the equivalent notion of computability w.r.t. admissible representations more
popular in Computable Analysis) was promoted in [12,19].

We start in the next section with recalling definitions of some notions of
effective spaces and of effective DST in such spaces; we also try to simplify
and unify rather chaotic terminology in this field. In Sects. 2 and 3 we establish
the main technical tools used in the sequel. In Sect. 4 we propose a definition of
effective quasi-Polish spaces and prove characterizations of this notion. In Sect. 5
we propose two effective notions of quasi-metric space and prove that they differ
from the notion of effective quasi-Polish space.

2 Preliminaries

Here we recall some known notions and facts, with a couple of new observations.
Notions similar to those considered below were introduced (sometimes inde-

pendently) and studied in [9,12,19] under different names. We use a slightly
different terminology, trying to simplify it and make it closer to that of classical
topology. Note that the terminology in effective topology is still far from being
fixed. All topological spaces considered in this paper are assumed to be count-
ably based. Such a space satisfying the T0-separation axiom is sometimes called
a cb0-space, for short. We recall that (We)e∈N is some effective enumeration of
the computably enumerable (c.e.) subsets of N.

Definition 1. An effective topological space is a countably-based T0 topo-
logical space coming with a numbering (BX

i)i∈N of a basis, such that there is a
computable function f : N2 → N such that BX

i ∩ BX
j =

⋃
k∈Wf(i,j)

BX
k .

Computability on Quasi-Polish Spaces 173

Many popular spaces (e.g., the discrete space N of naturals, the space of reals
R, the domain P(ω), the Baire space N = N

N, the Cantor space C = 2N and the
Baire domain N

≤N = N
∗ ∪ N

N of finite and infinite sequences of naturals) are
effective topological spaces in an obvious way. The effective topological space N is
trivial topologically but very interesting for Computability Theory. We use some
almost standard notation related to the Baire space. In particular, [σ] denotes
the basic open set induced by σ ∈ N

∗ consisting of all p ∈ N having σ as an
initial segment; we sometimes call such sets cylinders. Let ε denote the empty
string in N

∗.
In [17,19] the effective Borel and effective Hausdorff hierarchies in arbitrary

effective topological spaces X were introduced. Also the effective Luzin hierar-
chy is defined naturally [20]. Below we use the simplified notation for levels of
these hierarchies like Π0

n(X), Σ1
n(X) or Σ−1

n (X) (which naturally generalizes
the notation in computability theory) and some of their obvious properties. We
will also use the expression effective open set for sets in the class Σ0

1(X), which
are the sets

⋃
i∈W BX

i for some c.e. set W ⊆ N.

Definition 2. If X,Y are effective topological spaces then a function f : X → Y
is computable if the sets f−1(BY

i) are uniformly effective open sets.

As observed in [20], for any effective topological space X, the equality rela-
tion =X on X is in Π0

2 (X × X). The argument in [20] shows that also the spe-
cialization partial order ≤X has the same descriptive complexity. In particular,
every singleton is in the boldface class Π0

2(X).
With any effective topological space X we associate the canonical embed-

ding e : X → P(ω) defined by e(x) = {n | x ∈ BX
n } (in [19] the canonical

embedding was denoted as Oξ; we changed the notation here to make it closer
to that of the paper [5] which is cited below). The canonical embedding is a
computable homeomorphism between X and the subspace e[X] of P(ω). It can
be used to study computability on cb0-spaces [12,19] using the fact that the
computable functions on P(ω) coincide with the enumeration operators [16].

The more popular and general approach to computability on topological
spaces is based on representations [21]. The relation between the two approaches
is based on the so called enumeration representation ρ : N → P(ω) defined
by ρ(x) = {n | ∃i(x(i) = n + 1)}. The function ρ is a computable effectively
open surjection. The canonical embedding e induces the standard represen-
tation ρX = e−1 ◦ ρA of X where A = e(X) and ρA is the restriction of ρ
to ρ−1(A). The function ρX is a computable effectively open surjection. We will
implicitly identify any effective topological space X with its image under the
canonical embedding, so that X is a subspace of P(ω), and ρX is the restriction
of ρ to ρ−1(X).

Note that for effective topological spaces X and Y , f : X → Y is computable
iff there exists a computable function F : dom(ρX) → dom(ρY) such that ρY ◦
F = f ◦ ρX .

174 M. Hoyrup et al.

3 Results on Π0
2 -Sets

This section contains the technical tools that will be used to prove the charac-
terizations of effective quasi-Polish spaces.

Definition 3. Let X be an effective topological space. We say that A ⊆ X is
computably overt if the set {i ∈ N : BX

i ∩ A
= ∅} is c.e.

Observe that the overt information does not uniquely determine the set,
but only its closure. In the literature, overt and computably overt sets are often
assumed to be closed. It is important to note that in this paper, no such assump-
tion is made.

We recall that if X is an effective topological space then a set is in Π0
2 (X) if

it is an intersection of Boolean combinations of uniformly effective open subsets
of X. We prove an effective version of Theorem 68 in [3].

Lemma 4. Let X be an effective topological space. For A ⊆ X,

– A ∈ Π0
2 (X) iff ρ−1

X (A) ∈ Π0
2 (dom(ρX)),

– A is computably overt iff ρ−1
X (A) is computably overt.

Proof. If A ∈ Π0
2 (X) then one easily obtains ρ−1

X (A) ∈ Π0
2 (dom(ρX)). We now

prove that if ρ−1
X (A) ∈ Σ0

2(dom(ρX)) then A ∈ Σ0
2(X), which implies the same

result for the class Π0
2 . Let ρ−1

X (A) = dom(ρX) ∩ ⋃
n Un \ Vn where Un, Vn ∈

Σ0
1(N) uniformly and Vn ⊆ Un. Then the set

A′ :=
⋃

σ,n

ρX([σ] ∩ Un) \ ρX([σ] ∩ Vn)

belongs to Σ0
2(X), because the image of a Σ0

1(N)-set is a Σ0
1(X)-set uni-

formly. We show that A = A′. The inclusion A′ ⊆ A is straightforward.
For the other inclusion, let x ∈ A. One has ρ−1

X (x) ∈ Π0
2(N) so ρ−1

X (x) is
quasi-Polish so it is a Baire space ([3]). One has ρ−1

X (x) ⊆ ⋃
n Un \ Vn. By

Baire category, there exists n such that ρ−1
X (x) ∩ Un \ Vn is somewhere dense

in ρ−1
X (x), i.e. there exists σ ∈ N

∗ such that ∅
= ρ−1
X (x) ∩ [σ] ⊆ Un \ Vn. As a

result, x ∈ ρX([σ] ∩ Un) \ ρX([σ] ∩ Vn) ⊆ A′.
If A is computably overt then [σ] ∩ ρ−1

X (A)
= ∅ iff ρX([σ]) ∩ A
= ∅ which is
c.e. as ρX([σ]) ∈ Σ0

1(X), uniformly in σ.
If ρ−1

X (A) is computably overt then [σ] ∩ A
= ∅ iff ρ−1
X ([σ]) ∩ ρ−1

X (A)
= ∅ is
a c.e. relation as ρ−1

X ([σ]) ∈ Σ0
1(X), uniformly in i.

An important property of computably overt Π0
2 -sets is that they contain

computable points. It is a crucial ingredient in the next results.

Proposition 5 ([10]). In a computable Polish space, a Π0
2 -set is computably

overt if and only if it contains a dense computable sequence.

Moreover, the next result shows that in a computably overt Π0
2 -set, not only

can one find an effective indexing over N of a dense set of elements, but one can
even find an effective indexing over N of all its elements.

Computability on Quasi-Polish Spaces 175

Lemma 6. Let A ⊆ N be non-empty. The following are equivalent:

(i) A is a computably overt Π0
2 -set,

(ii) There exists a computable effectively open surjective map f : N → A.

When we write that f : N → A is open, we mean that for each σ ∈ N
∗, there

exists an open set Uσ ⊆ N such that f([σ]) = A ∩ Uσ. f is effectively open
when Uσ is effectively open, uniformly in σ.

Proof. Assume (i). Let A =
⋂

n An where An are uniformly effective open sets.
We can assume w.l.o.g. that An+1 ⊆ An.

One can build a computable sequence (uσ)σ∈N∗ such that uε = ε and:

– If τ properly extends σ then uτ properly extends uσ,
– If |σ| = n then [uσ] ⊆ An,
– [uσ] intersects A,
– [uσ] ∩ A is contained in

⋃
i∈N

[uσ·i].

We build this sequence inductively in σ. Given uσ intersecting A with |σ| = n,
one can compute a covering of [uσ]∩An+1 with cylinders properly extending uσ

and extract the cylinders intersecting A. Let (uσ·i)i∈N be some computable enu-
meration of them.

We now define f . For each p ∈ N , the sequence up �n converges to some q ∈
N . We define f(p) = q. One easily checks that the function f : N → A is
computable, onto and effectively open as f([σ]) = [uσ] ∩ A.

Now assume (ii). The function f has a computable right-inverse, i.e. g : A →
N such that f ◦ g is the identity on A. Indeed, given p ∈ A, one can enumerate
all the cylinders intersecting f−1(p) as [σ] ∩ f−1(p)
= ∅ iff p ∈ f([σ]) which can
be recognized as f([σ]) is effectively open. Hence one can progressively build an
element of the closed set f−1(p).

The function g is a partial computable function from N → N . Its domain
is Π0

2 and contains A. One has p ∈ A ⇐⇒ p belongs to the domain of g
and p = f ◦g(p). As a result, A is Π0

2 . The image under f of a dense computable
sequence in N is a dense computable sequence in A, so the set of cylinders
intersecting A is c.e.

This result can be extended to subsets of P(ω).

Lemma 7. Let A ⊆ P(ω) be non-empty. The following are equivalent:

(i) A is a computably overt Π0
2 -set,

(i) There exists a computable effectively open surjective map f : N → A.

Proof. If A is a computably overt Π0
2 -set then so is ρ−1(A), so there exists a

computable effectively open onto function f : N → ρ−1(A). The function ρ ◦ f
satisfies the required conditions.

Conversely, assume that f : N → A is a computable effectively open surjec-
tive function.

176 M. Hoyrup et al.

Claim. There exists a computable function g : ρ−1(A) → N such that f ◦ g = ρ.

Proof (of the claim). Given p ∈ ρ−1(A), let Ap = {q ∈ N : f(q) = ρ(p)}. The
set Ap is a computably overt Π0

2 -set relative to p. Indeed, it is Π0
2 relative to p

because equality is Π0
2 in P(ω). It is computably overt relative to p because a

cylinder [σ] intersects Ap iff ρ(p) ∈ f([σ]) which is a c.e. relation in p as f is
effectively open. As a result, by relativizing Proposition 5, one can compute an
element in Ap. Everything is uniform in p, so there is a computable function g
mapping each p ∈ ρ−1(A) to an element of Ap, hence f ◦ g(p) = ρ(p).

Now, one has q ∈ ρ−1(A) iff g(q) is defined and f ◦g(q) = ρ(q). Both relations
are Π0

2 , so ρ−1(A) ∈ Π0
2 (N) hence A ∈ Π0

2 (P(ω)) by Lemma 4. Moreover, A
is computably overt because for each basic open set B of P(ω), B ∩ A
= ∅
iff f−1(B)
= ∅, which is a c.e. relation.

4 Effective Quasi-Polish Spaces

According to Theorem 23 of [3], the quasi-Polish spaces (defined originally as
the countably based completely quasi-metrizable spaces) coincide with the con-
tinuous open images of the Baire space. Effectivizing this definition, we obtain
the following candidate for a notion of effective quasi-Polish space.

Definition 8. An effective topological space X is an effective quasi-Polish
space if X is the image of N under a computable effectively open map, or X is
empty.

Of course this notion is preserved by computable homeomorphisms (bijec-
tions that are computable in both directions).

Theorem 9. Let X be an effective topological space with its standard represen-
tation ρX . The following statements are equivalent:

1. X is effective quasi-Polish,
2. The image of X under its canonical embedding in P(ω) is a computably

overt Π0
2 -subset of P(ω),

3. dom(ρX) is a computably overt Π0
2 -subset of N .

Proof. The equivalence 1. ⇐⇒ 2. is the content of Lemma 7. The equiva-
lence 2. ⇐⇒ 3. is the content of Lemma 4 for the space P(ω).

We also formulate the effective version of Theorem 21 of [3].

Theorem 10. Let X be an effective quasi-Polish space. A subspace Y ⊆ X is
an effective quasi-Polish space iff Y is a computably overt Π0

2 -subset of X.

Proof. Via the canonical embedding, we have Y ⊆ X ⊆ P(ω). We start by
assuming that Y is a computably overt Π0

2 -subset of X. As Y ∈ Π0
2 (X) and X ∈

Π0
2 (P(ω)), one has Y ∈ Π0

2 (P(ω)). To show that Y is computably overt in P(ω),
simply observe that for a basic open set B of P(ω), B intersects Y iff BX := B∩X
intersects Y . It is a c.e. relation as Y is computably overt in X.

Computability on Quasi-Polish Spaces 177

If Y is effective quasi-Polish then it is a computably overt Π0
2 -subset of P(ω)

so it is a computably overt Π0
2 -subset of X, which is a subspace of P(ω).

Sometimes it is easier to work with a computably admissible representation
other than the standard representation.

Theorem 11. Let X be an effective topological space. If X admits a computably
admissible representation whose domain is a computably overt Π0

2 -subset of N ,
then X is an effective Polish space.

Proof. Let δ be a computably admissible representation of X such that dom(δ)
is a computably overt Π0

2 -subset of N . By definition of computably admissi-
ble, δ is computably equivalent to ρX , i.e. there exist partial computable func-
tions F,G :⊆ N → N satisfying ρX = δ ◦ F and δ = ρX ◦ G. We show
that dom(ρX) is a computably overt Π0

2 -set.
We recall that ρX is the restriction of the representation ρ of P(ω) to ρ−1(X).

We show that dom(ρX) = ρ−1(X) is a computably overt Π0
2 -set. Let p ∈ N . One

has p ∈ dom(ρX) = ρ−1(X) iff F (p) is defined, F (p) ∈ dom(δ) and ρ(G◦F (p)) =
ρ(p). All these conditions are Π0

2 , so ρ−1(X) belongs to Π0
2 (N).

One has [σ] ∩ dom(ρX)
= ∅ iff δ−1(ρ([σ]))
= ∅ which is c.e. in σ as dom(δ) is
computably overt.

5 Effective Quasi-Metric Spaces

We now propose two effective versions of quasi-metric spaces and compare them
with the notion of effective quasi-Polish space. A quasi-metric on a set X is a
function d : X × X → R≥0 satisfying:

– d(x, z) ≤ d(x, y) + d(y, z),
– x = y iff d(x, y) = d(y, x) = 0.

The quasi-metric d induces a metric d̂(x, y) = max(d(x, y), d(y, x)).

Definition 12. A computable quasi-metric space is a triple (X, d, S) where
d is a quasi-metric on X and S = {si}i∈N is a d̂-dense sequence such that d(si, sj)
are uniformly computable.

We recall that a real number x is right-c.e. if x = infi qi for some computable
sequence of rationals (qi)i∈N.

Definition 13. A right-c.e. quasi-metric space is a triple (X, d, S) where d

is a quasi-metric on X and S = {si}i∈N is a d̂-dense sequence such that d(si, sj)
are uniformly right-c.e.

Every right-c.e. quasi-metric space is an effective topological space with the
basis of balls B(s, r) = {x ∈ X : d(s, x) < r} with s ∈ S and r positive
rational. To see this, we consider formal inclusion between balls: B(s, q) � B(t, r)
iff d(t, s)+ q < r. Formal inclusion is c.e. and Bi ∩Bj =

⋃
k:Bk�Bi and Bk�Bj

Bk,
so the axiom of effective topological spaces is satisfied. As a result, any such
space has its standard representation δS . We define another representation.

178 M. Hoyrup et al.

Definition 14. The Cauchy representation δC is defined in the following
way: a point x ∈ X is represented by any sequence sn ∈ S such that d(sn, sn+1) <

2−n and sn converges to x in the metric d̂.

Theorem 15. On a right-c.e. quasi-metric space, the Cauchy representation is
computably equivalent to the standard representation.

Proof. For the proof we will also consider a slightly different representation δ′
C

where x is represented by any sequence sn such that d(sn, x) < 2−n and sn

converges to x in d̂.
We prove the following computable reductions: δC ≤ δ′

C ≤ δS ≤ δC .
Proof of δC ≤ δ′

C . Assume we are given a δC-name of x, which is essentially
a sequence (sn)n∈N such that d(sn, sn+1) < 2−n and limn→∞ d̂(sn, x) = 0. One
easily checks that the sequence (sn+1)n∈N is a δC-name for x.

Proof of δ′
C ≤ δS . Assume we are given a δ′

C-name of x, which is essentially
a sequence sn such that d(sn, x) < 2−n and limn→∞ d̂(sn, x) = 0. We show that
we can enumerate the basic balls containing x. Indeed, we show that x ∈ B(s, r)
if and only if there exists n such that d(s, sn) < r − 2−n. First assume that the
latter inequality holds. By the triangle inequality,

d(s, x) ≤ d(s, sn) + d(sn, x) < r − 2−n + 2−n = r.

Conversely, if d(s, x) < r then as d̂(sn, x) converges to 0, for sufficiently large n
one has d(x, sn) + 2−n < r − d(s, x) so d(s, sn) ≤ d(s, x) + d(x, sn) < r − 2−n.

Proof of δS ≤ δC . Assume we are given an enumeration of the basic balls
containing x, call it U1, U2, U3, We build a sequence (sn)n∈N as follows.

We take s0 such that d(s0, x) < 1, which we can find by looking for a ball
of radius 1 containing x. Once s0, . . . , sn have been defined, we look for sn+1

satisfying:

– sn+1 ∈ U1 ∩ . . . ∩ Un+1,
– d(sn, sn+1) < 2−n,
– d(sn+1, x) < 2−n−1.

Such a point must exist, as if x′ is sufficiently d̂-close to x, the first and third
conditions are satisfied, and d(sn, x′) ≤ d(sn, x) + d(x, x′) < 2−n + d(x, x′) by
induction hypothesis, so d(sn, x′) < 2−n if d(x, x′) is sufficiently small. Such a
point can be effectively found, d is right-c.e. on S.

The sequence (sn)n∈N satisfies the conditions of being a δC-name of x.
Indeed, d(x, sn) converge to 0, as for each rational ε there exists s ∈ S such
that d̂(s, x) < ε, so the ball B(s, ε) appears as some Ui, so for n ≥ i, d(x, sn) ≤
d(x, s) + d(s, sn) < 2ε.

We recall that a quasi-metric d is (Smyth-)complete if every Cauchy sequence
converges in the metric d̂, and that a space is quasi-Polish iff it is completely
quasi-metrizable [3]. One direction of this equivalence admits an effective version.

Computability on Quasi-Polish Spaces 179

Theorem 16. Every right-c.e. quasi-metric space that is complete is an effective
quasi-Polish space.

Proof. The domain of the Cauchy representation is a computably overt Π0
2 -

set. Indeed, the relation ∀n, d(sn, sn+1) < 2−n is Π0
2 , and any finite sequence

satisfying this condition can be extended (to an ultimately constant sequence,
e.g.). As the Cauchy representation is computably equivalent to the standard
representation, we can apply Theorem 11.

Proposition 17. In a right-c.e. quasi-metric space, the following conditions are
equivalent for a point x:

– x is computable,
– The numbers d(s, x) are right-c.e., uniformly in s ∈ S.

Proof. One has x ∈ B(s, r) ⇐⇒ d(s, x) < r. The first relation is c.e. iff x is
computable. The second relation is c.e. iff d(s, x) is right-c.e.

We recall that a real number x is left-c.e. if −x is right-c.e.

Proposition 18. In a computable quasi-metric space, the following conditions
are uniformly equivalent for a point x:

– x is computable,
– The numbers d(s, x) are right-c.e., uniformly in s ∈ S,
– The numbers d(s, x) and d(x, s) are right-c.e. and left-c.e. respectively, uni-

formly in s ∈ S.

Proof. We only have to prove that for a computable point x, the numbers d(x, s)
are uniformly left-c.e. Let (sn)n∈N be a computable δC-name of x. We show
that d(x, s) = supn d(sn, s) − 2−n which is left-c.e., uniformly in s.

Indeed, d(x, s) ≥ d(sn, s) − d(sn, x), and as d(x, sn) ≤ d̂(x, sn) converges
to 0, d(x, s) ≤ d(x, sn) + d(sn, s) is arbitrarily close to d(sn, s).

6 Separation

Classically, a space is quasi-Polish if and only if it is completely quasi-metrizable
[3]. However the proof is not constructive. We know that each right-c.e. quasi-
metric space that is complete is an effective quasi-Polish space, but that the
converse fails. For this, we fully characterize the effective notions of quasi-Polish
space in a restricted case.

Let [0, 1]< come with the quasi-metric d(x, y) = max(0, x − y), with the
rational points as d̂-dense sequence. It is a computable quasi-metric space that is
complete. For α ∈ (0, 1), the subspace [α, 1]< is an effective topological subspace
of [0, 1]<. We investigate when it is an effective quasi-Polish space, a computably
quasi-metrizable space, and a right-c.e. quasi-metrizable space.

180 M. Hoyrup et al.

Proposition 19. The space [α, 1]< is an effective quasi-Polish space iff α is
left-c.e. relative to the halting set.

Proof. Observe that the set {q : (q, 1]∩A
= ∅} is always c.e. Therefore, [α, 1]< is
an effective quasi-Polish space if and only if [α, 1] ∈ Π0

2 ([0, 1]<) by Theorem 10
(the c.e. conditions is always satisfied as observed above). This is equivalent
to the existence of uniformly right-c.e. numbers ri such that [α, 1] =

⋂
i(ri, 1],

i.e. α = supi ri. This is equivalent to α being left-c.e. relative to the halting set.

Proposition 20. The space [α, 1]< admits a computably equivalent computable
quasi-metric structure if and only if α is right-c.e.

Proof. Assume first that α is right-c.e. There is a computable enumeration S =
{qi}i∈N of the rational numbers in (α, 1]. The quasi-metric d(x, y) = max(0, x−y)
is computable on S.

Conversely, assume a computable quasi-metric d with an associate set S =
{si}i∈N. We now prove that the points si are uniformly computable real num-
bers, which implies that α = infs si is right-c.e. The function mapping a real
number x ∈ [α, 1] to d(x, si) is left-c.e. (x is given using the standard Cauchy
representation). Indeed, from x one can compute a name of x in [0, 1]<, from
which one can compute a name of x in [α, 1]< and we can apply the uniform
relative version of Proposition 18.

The left-c.e. function x �→ d(x, si) is non-decreasing. Indeed, for x ≤ x′, one
has d(x, si) ≤ d(x, x′) + d(x′, si) = d(x′, si). Therefore, it can be extended to a
left-c.e. non-decreasing function f over [0, 1]. Indeed, if f0 : [0, 1] → R is a left-
c.e. function such that f0(x) = d(x, si) for x ∈ [α, 1], then f(x) := inf{f0(x′) :
x′ ∈ [x, 1]} is left-c.e. non-decreasing and agrees with d(x, si) on [α, 1].

As a result, for q ∈ Q, q > si if and only if f(q) > 0 which is a c.e. condition,
so si is right-c.e. Of course, si is left-c.e. as it is a computable point of [α, 1]<.

Proposition 21. The space [α, 1]< admits a computably equivalent right-c.e.
quasi-metric structure if and only if α is left-c.e. or right-c.e.

Proof. If α is right-c.e. then there is a computable quasi-metric structure by
Proposition 20. If α is left-c.e. then we can take S = {si}i∈N with si = max(qi, α),
where (qi)i∈N is a computable enumeration of the rational numbers in [0, 1]. We
can take the restriction of the quasi-metric d(x, y) = max(0, x − y). It is right-
c.e. on S. To approximate d(si, sj) from the right, do the following: if qi ≤ qj

then output 0 (correct as si ≤ sj in that case). If qi > qj then start approx-
imating d(qi, sj) from the right (possible as sj is left-c.e.) and switching to 0
if we eventually see that qi < α. Conversely, assume a right-c.e. metric struc-
ture (d′, S). Given q ∈ Q ∩ [α, 1], d′(si, q) is uniformly right-c.e. Indeed, each
such q is a computable point of the right-c.e. quasi-metric space ([α, 1]<, d′, S),
so by Proposition 17, d′(si, q) is right-c.e.

Claim. Given s ∈ S, ε > 0, one can compute δ > 0 such that B′(s, δ) ⊆ B(s, ε).

Computability on Quasi-Polish Spaces 181

Proof. (of the claim) The identity from the quasi-metric space [α, 1]< to the
quasi-metric space is computable, so B(s, ε) is effectively open in [α, 1]<, hence
can be expressed as a union of d′-balls. One can find one of them, B′(t, r),
containing s. One has d′(t, s) < r and d′(t, s) is right-c.e., so one can compute δ >
0 such that d′(t, s) + δ < r. One has B′(s, δ) ⊆ B′(t, r) ⊆ B(s, ε).

Let δs,ε be obtained from the previous Claim. Consider thet set E = {q ∈
Q∩[0, 1] : ∃s ∈ S, ε > 0, d′(s, q) < δs,ε and d(s, q) > ε}.It is a c.e. set. It is disjoint
from [α, 1]: if q ∈ [α, 1] and q ∈ B′(s, δs,ε) then q ∈ B(s, ε). As a result, sup E
is left-c.e. and supE ≤ α. If α is not left-c.e. then supE < α. As a result, we
can fix some rational number q0 between sup E and α, and work with rationals
above q0 only, so that they do not belong to E.

Let F = {(q, ε) : q ∈ Q ∩ [q0, 1], ε > 0,∃s ∈ S, such that d′(s, q) < δs,ε}.
F is c.e. so I := inf{q + ε : (q, ε) ∈ F} is right-c.e. If q > α then there must
exist s ∈ S such that s ≤ q, i.e. d′(s, q) = 0, so (q, ε) ∈ F for every ε > 0. As a
result, I ≤ α. If α is not right-c.e. then I < α.

Take (q, ε) ∈ F such that q + ε < α. Let s ∈ S witness that (q, ε) ∈ F . One
has d′(s, q) < δs,ε and d(s, q) ≥ d(α, q) > ε so q ∈ E, giving a contradiction.

Therefore, α is left-c.e. or right-c.e.

Corollary 22. There exists an effective quasi-Polish space which cannot be pre-
sented as a right-c.e. quasi-metric space.

Proof. Take α that is left-c.e. relative to the halting set but neither left-c.e. nor
right-c.e., and apply Propositions 19 and 21.

7 Discussion and Open Questions

By a computable Polish space we mean an effective topological space X induced
by a computable complete metric space (X, d, S) [8,15,21]. Most of the popular
Polish spaces are computable.

By a computable ω-continuous domain [1] we mean a pair (X, b) where X is
an ω-continuous domain and b : N → X is a numbering of a domain base in X
modulo which the approximation relation � is c.e. Any computable ω-continuous
domain (X, b) has the induced effective base β where βn = {x | bn � x}. Most
of the popular ω-continuous domains are computable.

By Theorem 1 in [20], both the computable Polish spaces and computable
ω-continuous domains are computable effective images of the Baire space, hence
they are effective quasi-Polish, hence the notion of effective quasi-Polish space
introduced in this paper is a reasonable candidate for capturing the computable
quasi-Polish spaces. By Theorem 4 in [13] (which extends Theorem 4 in [20]),
any effective quasi-Polish space satisfies the effective Suslin-Kleene theorem. By
Theorem 5 in [20], any effective quasi-Polish space satisfies the effective Hausdorff
theorem.

It seems that our search, as well as the independent search in [4] resulted
in natural and convincing candidates for capturing the computable quasi-Polish

182 M. Hoyrup et al.

spaces. Nevertheless, many interesting closely related questions remain open.
Since the class of quasi-Polish spaces admits at least ten seemingly different
characterizations [3], the status of effective analogues of these characterizations
deserves additional investigation. In particular, this concerns the characteriza-
tion of quasi-Polish spaces as the subspaces of non-compact elements in (ω-
algebraic or ω-continuous) domains.

References

1. Abramsky, S.: Domain theory. In: Abramsky, S., Gabbay, D., Maibaum, T.S.E.
(eds.) Handbook of Logic in Computer Science. Clarendon Press, Oxford (1994)

2. Becher, V., Grigorieff, S.: Borel and Hausdorff hierarchies in topological spaces of
choquet games and their effectivization. Math. Struct. Comput. Sci. 25(7), 1490–
1519 (2015). https://doi.org/10.1017/S096012951300025X

3. de Brecht, M.: Quasi-polish spaces. Ann. Pure Appl. Logic 164(3), 356–381 (2013)
4. Brecht de, M., Pauly, A., Schröder, M.: Overt choice. CoRR abs/1902.05926 (2019).

http://arxiv.org/abs/1902.05926
5. Chen, R.: Notes on quasi-Polish spaces. CoRR abs/1902.05926 (2018). http://

arxiv.org/abs/1809.07440
6. Gao, S.: Invariant Descriptive Set Theory. CRC Press, New York (2009)
7. Gregoriades, V.: Classes of polish spaces under effective Borel isomorphism. Mem.

Amer. Math. Soc. 240(1135) (2016). https://doi.org/10.1090/memo/1135
8. Gregoriades, V., Kispéter, T., Pauly, A.: A comparison of concepts from com-

putable analysis and effective descriptive set theory. Math. Struct. Comput. Sci.
27(8), 1414–1436 (2017). https://doi.org/10.1017/S0960129516000128

9. Grubba, T., Schröder, M., Weihrauch, K.: Computable metrization. MLQ Math.
Log. Q. 53(4–5), 381–395 (2007). https://doi.org/10.1002/malq.200710009

10. Hoyrup, M.: Genericity of weakly computable objects. Theory Comput. Syst.60(3),
396–420 (2017). https://doi.org/10.1007/s00224-016-9737-6

11. Kechris, A.S.: Classical Descriptive Set Theory, GTM, vol. 156. Springer, New York
(1995). https://doi.org/10.1007/978-1-4612-4190-4

12. Korovina, M.V., Kudinov, O.V.: Towards computability over effectively enumer-
able topological spaces. Electron. Notes Theor. Comput. Sci. 221, 115–125 (2008).
https://doi.org/10.1016/j.entcs.2008.12.011

13. Korovina, M., Kudinov, O.: On higher effective descriptive set theory. In: Kari,
J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 282–291. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58741-7 27

14. Louveau, A.: Recursivity and compactness. In: Müller, G.H., Scott, D.S. (eds.)
Higher Set Theory. LNM, vol. 669, pp. 303–337. Springer, Heidelberg (1978).
https://doi.org/10.1007/BFb0103106

15. Moschovakis, Y.N.: Descriptive Set Theory. Mathematical Surveys and Mono-
graphs, Second edition. American Mathematical Society (2009). http://www.math.
ucla.edu/∼ynm/lectures/dst2009/dst2009.pdf

16. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability.
MIT Press, Cambridge (1987). https://mitpress.mit.edu/books/theory-recursive-
functions-and-effective-computability. (Reprint from 1967)

17. Selivanov, V.: On index sets in the Kleene-Mostowski hierarchy. Trans. Inst. Math.
2, 135–158 (1982). in Russian

https://doi.org/10.1017/S096012951300025X
http://arxiv.org/abs/1902.05926
http://arxiv.org/abs/1809.07440
http://arxiv.org/abs/1809.07440
https://doi.org/10.1090/memo/1135
https://doi.org/10.1017/S0960129516000128
https://doi.org/10.1002/malq.200710009
https://doi.org/10.1007/s00224-016-9737-6
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1016/j.entcs.2008.12.011
https://doi.org/10.1007/978-3-319-58741-7_27
https://doi.org/10.1007/BFb0103106
http://www.math.ucla.edu/~ynm/lectures/dst2009/dst2009.pdf
http://www.math.ucla.edu/~ynm/lectures/dst2009/dst2009.pdf
https://mitpress.mit.edu/books/theory-recursive-functions-and-effective-computability
https://mitpress.mit.edu/books/theory-recursive-functions-and-effective-computability

Computability on Quasi-Polish Spaces 183

18. Selivanov, V.L.: Towards a descriptive set theory for domain-like structures. The-
oret. Comput. Sci. 365(3), 258–282 (2006). https://doi.org/10.1016/j.tcs.2006.07.
053

19. Selivanov, V.L.: On the difference hierarchy in countably based T0-spaces. Elec-
tron. Notes Theor. Comput. Sci. 221, 257–269 (2008). https://doi.org/10.1016/j.
entcs.2008.12.022

20. Selivanov, V.: Towards the effective descriptive set theory. In: Beckmann, A.,
Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 324–333. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-20028-6 33

21. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000). https://doi.
org/10.1007/978-3-642-56999-9

https://doi.org/10.1016/j.tcs.2006.07.053
https://doi.org/10.1016/j.tcs.2006.07.053
https://doi.org/10.1016/j.entcs.2008.12.022
https://doi.org/10.1016/j.entcs.2008.12.022
https://doi.org/10.1007/978-3-319-20028-6_33
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9

NFA-to-DFA Trade-Off for Regular
Operations

Galina Jirásková and Ivana Krajňáková(B)

Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia
{jiraskov,krajnakova}@saske.sk

Abstract. We examine the operational state complexity assuming that
the operands of a regular operation are represented by nondetermin-
istic finite automata, while the language resulting from the operation
is required to be represented by a deterministic finite automaton. We
get tight upper bounds 2n for complementation, reversal, and star, 2m

for left and right quotient, 2m+n for union and symmetric difference,
2m+n−2m−2n+2 for intersection, 2m+n−2n+1 for difference, 3

4
2m+n for

concatenation, and 2mn for shuffle. We use a binary alphabet to describe
witnesses for complementation, reversal, star, and left and right quo-
tient, and a quaternary alphabet otherwise. Whenever we use a binary
alphabet, it is always optimal.

1 Introduction

The state complexity of a regular language L, sc(L), is the smallest number
of states in any deterministic finite automaton (DFA) recognising L. The state
complexity of a k-ary regular operation ◦ is a function from N

k to N given by

(n1, n2, . . . , nk) �→ max{sc(◦(L1, L2, . . . , Lk)) | sc(Li) ≤ ni for i = 1, 2, . . . , k}.

The first results on the state complexity of basic regular operations have been
obtained by Maslov [11], Birget [1], and Yu et al. [15]. Holzer and Kutrib [6]
considered the representation of regular languages by nondeterministic finite
automata (NFAs) and defined and studied the nondeterministic state complex-
ity of regular languages and operations in an analogous way. Jirásek Jr. et al.
[8,9] investigated operational state complexity using representation of regular
languages by self-verifying and unambiguous finite automata. Notice that in all
of the above mentioned cases, the arguments and the results of regular operations
are represented by the same computational model.

Research supported by grant VEGA 2/0132/19 and grant APVV-15-0091. This work
was conducted as a part of PhD study of the second author at Comenius University in
Bratislava.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 184–196, 2019.
https://doi.org/10.1007/978-3-030-23247-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_14

NFA-to-DFA Trade-Off for Regular Operations 185

In this paper, we consider the NFA-to-DFA trade-off for regular operations,
that is, we assume that the arguments of an operation are represented by NFAs,
while the resulting language is required to be represented by a DFA. Our moti-
vation comes from the following two streams of research.

While investigating operational state complexity on self-verifying or unam-
biguous automata, which are nondeterministic, the NFA-to-DFA trade-off pro-
vides an upper bound on the complexity of the corresponding operation since
every DFA is self-verifying as well as unambiguous. As shown in [8,9], these
upper bounds are tight for several operations.

Our second motivation comes from the research on the state complexity of
combined operations that began with the paper by Salomaa et al. [12]. If a
combined operation does not contain complementation, we can perform all the
included operations using NFAs. Then, the NFA-to-DFA trade-off for the outer-
most operation can be used to get an upper bound on the desired complexity of
a given combined operation.

We examine the NFA-to-DFA trade-off for complementation, intersection,
union, difference, symmetric difference, reversal, star, concatenation, shuffle, and
left and right quotient. For each of these operations, we get tight upper bound
on its NFA-to-DFA trade-off. To describe witnesses, we use either binary or
quaternary alphabets. The binary alphabet is always optimal in the sense that
the corresponding upper bounds cannot be met by any unary languages.

To conclude this introduction, let us mention that the trade-offs between
different models of finite automata have been studied for the forever operator
defined as L �→ (Σ∗Lc)c by Birget [2] and Hospodár et al. [7].

2 Preliminaries

We assume that the reader is familiar with basic notions in formal languages
and automata theory. For details and all unexplained notions, the reader may
refer to [14].

Let Σ be a finite non-empty alphabet. Then Σ∗ denotes the set of all words
over Σ including the empty word ε. If u, v, w ∈ Σ∗ and w = uv, then u is prefix
of w. Moreover, if u �= w, then u is a proper prefix of w. A language over an
alphabet Σ is any subset of Σ∗.

If K and L are languages over Σ, then the complement of L is Lc = Σ∗ \ L.
The intersection, union, difference, and symmetric difference of K and L are
defined as for arbitrary sets. Next, we consider the following regular opera-
tions: concatenation KL = {uv | u ∈ K and v ∈ L}, star L∗ =

⋃
i≥0 Li

where L0 = {ε} and Li+1 = LiL, reversal LR = {wR | w ∈ L}, shuffle
K � L = {u1v1u2v2 · · · ukvk | ui, vi ∈ Σ∗, u1u2 · · · uk ∈ K, v1v2 · · · vk ∈ L},
right quotient KL−1 = {x ∈ Σ∗ | xy ∈ K for some y ∈ L}, and left quotient
L−1K = {x ∈ Σ∗ | yx ∈ K for some y ∈ L}.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, ·, s, F),
where Q is a finite non-empty set of states, Σ is a finite input alphabet, s ∈ Q
is the starting (or initial) state, F ⊆ Q is the set of final (or accepting) states,

186 G. Jirásková and I. Krajňáková

and · : Q × Σ → 2Q is the transition function which can be extended to the
domain 2Q × Σ∗ in the natural way. The language recognised by the NFA A is
the set of words L(A) = {w ∈ Σ∗ | s · w ∩ F �= ∅}.

An NFA A is a deterministic finite automaton if |q · a| = 1 for each q ∈ Q

and a ∈ Σ. In such a case we write q ·a = q′ instead of q ·a = {q′}, and use q
a−→ q′

to denote that q · a = q′. Sometimes we permit non-deterministic automata to
have more initial states; in such a case we use an abbreviation NNFA from [14].

A subset S of Q is reachable in an NNFA A = (Q,Σ, ·, I, F) if S = I ·
w for some w ∈ Σ∗, and it is co-reachable if it is reachable in the reversed
automaton AR obtained from A by reversing all its transitions and swapping
the roles of the initial and final states.

Every NNFA A = (Q,Σ, ·, I, F) has an equivalent deterministic finite
automaton D(A) = (2Q, Σ, ·, I, {T ⊆ Q | T ∩ F �= ∅}). The DFA D(A) is
called the subset automaton of A. The following observation provides a sufficient
condition that guarantees distinguishability of all states in a subset automaton.
We use this lemma throughout the paper.

Lemma 1 (Distinguishability). Let A be an NFA such that for every state q
of A the singleton set {q} is co-reachable in A. Then every two distinct states of
the subset automaton D(A) are distinguishable.

Proof. Let us take two distinct subsets S and T of D(A). Without loss of gener-
ality, let q ∈ S \T . Since the set {q} is co-reachable in A, there is a word wq that
is accepted by A from the state q and rejected from every other state. It follows
that in D(A), the word wq is accepted from S and rejected from T . Hence S
and T are distinguishable in D(A). ��

The next lemma shows that every subset of the state set of the NFA from
Fig. 1 is reachable in the corresponding subset automaton. It also shows that to
reach every non-empty subset, the final state n − 1 may be visited only in the
very last steps. This is an important property which is used later the get the
results for concatenation.

Lemma 2 (Reachability). Let A = ({0, 1, . . . , n − 1}, {a, b}, ·, 0, {n − 1}) be
the NFA from Fig. 1. where i · a = {i + 1} if 0 ≤ i ≤ n − 2, and i · b = {0, i}.
Then for each subset S of {0, 1, . . . , n−1}, there exists a word uS ∈ {a, b}∗ such
that 0 · uS = S. Moreover,

(1) if S �= ∅ and n − 1 /∈ S, then n − 1 /∈ 0 · u′ for each prefix u′ of uS;
(2) if n − 1 ∈ S and 0 /∈ S, then n − 1 /∈ 0 · u′ for each proper prefix u′ of uS,
(3) if n − 1 ∈ S and 0 ∈ S, then uS = u′b and n − 1 /∈ 0 · u′′ for each proper

prefix u′′ of u′,

Proof. In the subset automaton D(A), each singleton set {i} is reached from the
initial subset {0} by ai and the empty set is reached from {n − 1} by a. Each
set {i1, i2, . . . , ik} of size k, where 2 ≤ k ≤ n and 0 ≤ i1 < i2 < · · · < ik ≤ n − 1,
is reached from the set {i2 − i1, i3 − i1, . . . , ik − i1} of size k − 1 by bai1 . This

NFA-to-DFA Trade-Off for Regular Operations 187

0 1 2 . . . n− 2 n− 1a

b

a

b

b
a

b

b

a

b

b

a

b

b

Fig. 1. A binary witness NFA for determinization and complementation.

proves the reachability of all subsets of {0, 1, . . . , n − 1} by induction. Hence for
each S ⊆ {0, 1, . . . , n − 1}, there is a word uS ∈ {a, b}∗ such that 0 · uS = S. By
a careful analysis of the proof above, we get the properties (1), (2), and (3). ��

3 Complementation, Reversal, Star, and Concatenation

In this section we examine the NFA-to-DFA trade-off for basic unary operations
and concatenation. We start with complementation. Its state complexity is n
while its non-deterministic state complexity is 2n [10]. The next theorem shows
that its NFA-to-DFA trade-off is 2n as well.

Theorem 3 (Complementation). Let L be a language over Σ recognised by
an n-state NFA. Then sc(Lc) ≤ 2n, and the bound is tight if |Σ| ≥ 2.

Proof. Since sc(Lc) = sc(L), the upper bound follows from the upper bound on
determinization. For tightness, let L be the language recognised by the NFA A
shown in Fig. 1. By Lemma 2, every subset of {0, 1, . . . , n − 1} is reachable in
the subset automaton D(A). Since every singleton set is co-reachable in A via a
word in a∗, all states of D(A) are pairwise distinguishable by Lemma 1. ��

Notice that the binary alphabet used in the previous proof is optimal since
every unary n-state NFA can be simulated by a DFA of 2O(

√
n lnn) states as

shown by Chrobak [5]. Let us continue with the reversal operation. Note that
it is enough to take the reversal of any DFA with one final state meeting the
upper bound 2n on the state complexity of reversal. Such a binary DFA was
described by Šebej [13]. Here we describe a different witness with significantly
simpler proof.

Theorem 4 (Reversal). Let L be a language over Σ recognised by an
n-state NFA, where n ≥ 2. Then sc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 2.

Proof. Let L be accepted by an n-state NFA A = (Q,Σ, ·, s, F). By reversing
all the transitions in A and taking F as the set of starting states and {s} as set
of final states we obtain an n-state NNFA that accepts LR. It follows that LR

is accepted by a DFA with at most 2n states.
To prove tightness, consider the binary language L recognised by the

n-state NFA N = ({0, 1, . . . , n − 1}, {a, b}, ·, 0, {0, 1, . . . , n − 1}) shown in Fig. 2

188 G. Jirásková and I. Krajňáková

0 1 2 . . . n− 2 n− 1a a

b

a

b

a

b

a

a

b

Fig. 2. A binary witness NFA for reversal meeting the upper bound 2n.

where i · a = {i + 1 mod n}, i · b = {i} if i ≥ 1. By reversing NFA N we get
an NNFA NR that recognises LR.

The set of initial state of NR is {0, 1, . . . , n − 1} and its unique final state
is 0. Notice that each subset of the state set of NR can be shifted cyclically by
one by reading a, and the state 0 can be eliminated from every set containing 0
by reading b. It follows that every subset of {0, 1, . . . , n−1} can be reached from
the initial subset {0, 1, . . . , n − 1} in the subset automaton D(NR). Next, every
set {i} is co-reachable in NR via a word in a∗ and using Lemma 1 we get that
every two distinct states of the D(NR) are distinguishable. ��

The binary alphabet used in the previous theorem is optimal for the same
reason as in the case of complementation. We continue with the star operation.
While its state complexity is 3

42n [11] and its nondeterministic state complexity
is n + 1 [10], we show that the NFA-to-DFA trade-off for star is 2n.

Theorem 5 (Star). Let n ≥ 2. Let L be a language over an alphabet Σ recog-
nised by an n-state NFA. Then sc(L∗) ≤ 2n, and the bound is tight if |Σ| ≥ 2.

Proof. Let L be recognised by an n-state NFA A = (Q,Σ, ·, s, F). Construct
an NNFA N recognising L∗ from A as follows. First, for each transition (p, a, q)
in A with q ∈ F , add the transition (p, a, s). Next, if s /∈ F , then add a new
initial and final state q0 to accept the empty word. Consider the subset automa-
ton D(N). The only reachable set in D(N) containing the state q0 is the initial
subset {s, q0}. All the remaining reachable sets are subsets of Q. Moreover, if
a reachable set contains a final state of A, then it also contains the state s.
If A has a final state different from s, then at least 2n−2 sets are unreachable
in D(N), so the upper bound is 1 + (3/4)2n in this case. If F = {s}, then the
construction above results in the same automaton, so L∗ = L. In such a case,
the upper bound is 2n.

To prove tightness, consider the binary language L recognised by the
n-state NFA A = ({0, 1, . . . , n − 1}, {a, b}, ·, 0, {0}) shown in Fig. 3 where for
each state i, i · a = {i + 1 mod n}, i · b = {0, i} if i ≥ 1. Then L∗ = L. In the
subset automaton D(A), the empty set is reached from the initial subset {0}
by b. The reachability of all non-empty subsets is proved exactly the same way
as in the proof of Lemma 2. Since every singleton set is co-reachable in A via a
word in a∗, all the states of D(A) are pairwise distinguishable by Lemma 1. ��

The witness from the previous proof is described over a binary alphabet. It
is impossible to meet the upper bound 2n in the unary case since every unary

NFA-to-DFA Trade-Off for Regular Operations 189

0 1 2 . . . n− 2 n− 1a a

b

b
a

b

b

a a

b

b

a, b

b

Fig. 3. A binary witness NFA for star meeting the upper bound 2n.

n-state NFA can be simulated be a DFA with 2O(
√
n lnn) states. The unary

language recognised by the NFA from Fig. 4 provides a lower bound (n−1)2 +2;
notice that this NFA is not unambiguous. We conjecture that this lower bound
is tight. Our computations support this conjecture.

0 1 2 . . . n− 2 n− 1a a a a a

a

a

Fig. 4. A possible unary witness for star meeting the bound (n − 1)2 + 2.

We conclude this section with the concatenation operation the state com-
plexity of which is m2n−2n−1 [11] and nondeterministic complexity is m+n [6].
The next theorem shows that NFA-to-DFA trade-off for concatenation is 3

42m+n,
that is, it is exponential in both m and n.

Theorem 6 (Concatenation). Let K and L be non-empty languages over an
alphabet Σ recognised by an m-state and n-state NFA, respectively, with m,n ≥
3. Then sc(KL) ≤ 3

42m+n, and the bound is tight if |Σ| ≥ 4.

Proof. Let A = (QA, Σ, ·A, sA, FA) and B = (QB , Σ, ·B , sB , FB) be NFAs recog-
nising K and L, respectively, with |QA| = m, |QB | = n Construct an NNFA N
for KL from NFAs A and B as follows. For each transition (p, a, q) in NFA A
with q ∈ FA, add the transition (p, a, sB). The set of initial states of N is {sA}
if sA /∈ FA, or {sA, sB} if sA ∈ FA. The set of final states of N is FB. The
following condition holds in the subset automaton D(N): each reachable sub-
set containing a state from FA must contain the state sB. It follows that at
least 2m+n−2 are unreachable in D(N), and the upper bound follows.

For tightness, let Σ = {a, b, c, d} and K and L be the languages over Σ
recognised by the NFAs A = ({q0, q1, . . . , qm−1}, Σ, ·A, q0, {qm−1}) and B =
({0, 1, . . . , n − 1}, Σ, ·B , 0, {n − 1}) shown in Fig. 5. Notice that transitions on a
and b in A are the same as in the NFA in Fig. 1 and perform the identity function
in B. The roles of the transitions on c and d in B are the same as the roles

190 G. Jirásková and I. Krajňáková

of a and b in A. Therefore, it follows from Lemma 2 that for every subset S
of {q0, q1, . . . , qm−1}, there is a word uS in {a, b}∗ such that q0 ·A uS = S,
and for every subset T of {0, 1, . . . , n − 1}, there is a word vT in {c, d}∗ such
that 0 ·B vT = T . Moreover, the words uS satisfy the conditions (1), (2), (3) in
Lemma 2.

To get an NFA N recognising KL from NFAs A and B, add the transitions
(qm−2, a, 0), (qm−1, b, 0), and (qm−1, c, 0). The initial state of N is {q0} and its
unique final state is n − 1. Let S ⊆ {q0, q1, . . . , qm−1} and T ⊆ {0, 1, . . . , n − 1}
be two subsets such that if qm−1 ∈ S then 0 ∈ T . The following transitions use
the words uS ∈ {a, b}∗ and vT ∈ {c, d}∗ given by Lemma 2 to show that the
set S ∪ T is reachable in the subset automaton D(N):

{q0} am−1

−−−→ {qm−1, 0} b−→ {q0, qm−1, 0} d−→ {q0, 0};

{q0, 0} vT−−→ {q0} ∪ T
uS−−→ S ∪ T if S �= ∅;

{q0, 0} a−→ {q1, 0} d−→ {0} vT−−→ T ;

let us emphasise that by Lemma 2, while reading uS , the final state qm−1 of A
is not visited, except for the last step if q0 /∈ S and qm−1 ∈ S and when we must
have 0 ∈ T , and for the last two steps if q0 ∈ S and qm−1 ∈ S when uS ends
with b that fixes the initial state 0 of B which must be in T . This proves the
reachability of 3

42m+n states in the subset automaton D(N).
To prove distinguishability, notice that each singleton set {j}, 0 ≤ j ≤ n − 1

is co-reachable in N via a word in c∗. Next, {qm−1} is co-reachable by cn, and
each {qi}, 0 ≤ i ≤ m − 2 is co-reachable via a word in cna∗. By Lemma 1, all
states of D(N) are pairwise distinguishable. ��

q0 q1 q2 . . . qm−2 qm−1

0 1 2 . . . n− 2 n− 1

a

b, c, d

a

b

b
a

b

b

a

b

b

a

b

b, c

c

a, b, d

c

a, b, d

d
c

a, b, d

d

c c

a, b, d

d d

a, b, d

Fig. 5. Witness NFAs for concatenation meeting the upper bound 3
4
2m+n.

The witness in the previous proof is defined over a quaternary alphabet.
Consider binary languages K = (a + b)∗a(a + b)m−2 and L = (a + b)n−1 recog-
nised by an m-state and n-state NFA, respectively. Then KL = (a + b)∗a(a +
b)m+n−3, the minimal DFA for which has 2m+n−4 states. This gives the lower
bound (1/16)2m+n in the binary case which is asymptotically the same as

NFA-to-DFA Trade-Off for Regular Operations 191

the upper bound for quaternary case. In the unary case the upper bound is
2O(

√
(m+n) ln(m+n)). A lower bound 1 + F (n − 1) is given by languages K = {ε}

and L equal to the witness for determinization in the unary case; here F (n) is
Landau’s function given by F (n) = max{lcm(x1, . . . , xk) | n = x1 + · · · + xk},
and with F (n) ≈ 2

√
n lnn.

4 Boolean Operations

Here we consider NFA-to-DFA trade-off for four binary Boolean operations.
First, we recall some notions. We call a state q of a DFA A = (Q,Σ, ·, s, F)
a sink state if q · a = q for every letter a ∈ Σ. The state q is called dead if
reading every word from the state q results in a non-accepting state of A.

To get an automaton recognising union, intersection, difference, or symmetric
difference of two languages we use the product construction as described below.
Let A = (QA, Σ, ·A, sA, FA) and B = (QB , Σ, ·B , sB , FB) be two DFAs over an
alphabet Σ. Let ◦ ∈ {∩,∪, \,⊕}. Then the language L(A) ◦ L(B) is recognised
by the product automaton M◦ = (QA × QB , Σ, ·, (sA, sB), F◦) where (p, q) · a =
(p ·A a, q ·B a) for all p ∈ QA, q ∈ QB , and a ∈ Σ, and

F◦ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

FA × FB , if ◦ = ∩;
(FA × QB) ∪ (QA × FB), if ◦ = ∪;
FA × (QB \ FB), if ◦ = \;
(FA × (QB \ FB)) ∪ ((QA \ FA) × FB), if ◦ = ⊕.

If the operation inputs are given by NFAs, we first apply the subset construc-
tion to get DFAs for those inputs. Then we construct the corresponding product
automaton. Notice that every subset automaton has at least one rejecting sink
state, namely, the empty set. The following lemma provides upper bounds for
Boolean operations on DFAs considering the presence of the rejecting sink states.

Lemma 7. Let K and L be languages over Σ accepted by DFAs with m and n
states respectively. Assume that both DFAs have a rejecting sink state. Then
sc(K ∪ L) ≤ mn, sc(K ⊕ L) ≤ mn, sc(K ∩ L) ≤ mn − m − n + 2, and
sc(K \ L) ≤ mn − n + 1.

Proof. For each Boolean operation ◦ ∈ {∪,∩, \,⊕}, the language K ◦ L is
recognised by the product automaton M◦ which has mn states. This gives
the upper bounds for union and symmetric difference. Let dA and dB be the
rejecting sink states of A and B, respectively. Then in the product automa-
ton M∩ recognizing K ∩L, the states (dA, q) with q ∈ QB and the states (p, dB)
with p ∈ QA are dead and can be merged into one sink state. This gives the
upper bound (m−1)(n−1)+1 = mn−m−n+2. In the product automaton M\
recognising K \L, the states (dA, p) with p ∈ QB are dead, which gives the upper
bound (m − 1)n + 1 = mn − n + 1. ��

192 G. Jirásková and I. Krajňáková

0A 1 2 . . . m− 2 m− 1

0B 1 2 . . . n− 2 n− 1

a

b, c, d

a

b, c, d

b
a

b, c, d

b

a

b, c, d

b

a

b

b, c, d

c

a, b, d

c

a, b, d

d
c

a, b, d

d

c

a, b, d

d

c

d

a, b, d

Fig. 6. Quaternary witnesses for Boolean operations.

Now we are ready to get tight upper bounds on NFA-to-DFA trade-off for
Boolean operations.

Theorem 8. Let K and L be languages over Σ recognised by an m-state and
n-state NFA, respectively, where m,n ≥ 2. Then sc(K ∪ L), sc(K ⊕ L) ≤ 2m+n,
sc(K ∩ L) ≤ 2m+n − 2m − 2n + 2, and sc(K \ L) ≤ 2m+n − 2n + 1. All these
bounds are tight if |Σ| ≥ 4.

Proof. Let A be an m-state NFA recognising K and B be an n-state NFA recog-
nising L. Consider the corresponding subset automata D(A) and D(B) with 2m

and 2n states, respectively. Both of them have at least one rejecting sink state,
namely, the empty set. Then all upper bounds follow from Lemma 7.

For tightness, let K and L by the languages recognised by NFAs A and B
from Fig. 6. Notice that transitions on a and b in A are the same as in the NFA
in Fig. 1 and perform the identity function in B. The roles of the transitions
on c and d in B are the same as the roles of a and b in A. Moreover c and d
perform the identity function in A. It follows from Lemma 2 that for every
S ⊆ {0, 1, . . . ,m−1}, there is a word uS ∈ {a, b}∗ such that 0 ·A uS = S, and for
every T ⊆ {0, 1, . . . , n − 1}, there is a word vT ∈ {c, d}∗ such that 0 ·B vT = T .

Let ◦ ∈ {∪,⊕,∩, \}. Construct the product automaton M◦ from DFAs D(A)
and D(B). The initial state of M◦ is ({0}, {0}). Let S ⊆ {0, 1, . . . ,m − 1} and
T ⊆ {0, 1, . . . , n − 1}. Then the state (S, T) is reachable in M◦ from the initial
state by the word uSvT . Hence each state of M◦ is reachable.

To prove distinguishability first consider union. Then (S, T) is final in M∪
if m − 1 ∈ S or n − 1 ∈ T . Let (S, T) and (S′, T ′) be two distinct states of M∪.
Then S �= S′ or T �= T ′. In the first case, without loss of generality let s ∈ S \S′.
Consider the word am−1−scn. Notice that

(S, T) am−1−scn−−−−−−−→ ({m − 1} ∪ S1, ∅) for some S1 ⊆ {0, 1, . . . ,m − 1};

(S′, T ′) am−1−scn−−−−−−−→ (S′
1, ∅) where m − 1 /∈ S′

1.

NFA-to-DFA Trade-Off for Regular Operations 193

It follows that am−1−scn is accepted by M∪ from (S, T) and rejected
from (S′, T ′). The case of T �= T ′ is symmetric. We can prove distinguisha-
bility for symmetric difference in the exact same manner. We can also find the
appropriate words that distinguish the desired number of states in the product
automaton for intersection and difference. ��

Notice that the upper bounds in the previous theorem cannot be met by
unary languages. The cases of binary and ternary alphabets remain open.

5 Shuffle, Left and Right Quotient

Here we consider three more binary operations. In all three cases the upper
bound constructions are similar to the case when the operation inputs are given
by DFAs. Our lower bound for shuffle is the same as the upper bound on its
state complexity. The lower bound for left quotient is greater by one than its
state complexity. For right quotient, the NFA-to-DFA trade-off is 2m, while its
(nondeterministic) state complexity is m.

Theorem 9 (Shuffle). Let K and L be languages over Σ recognised by an m-
state and n-state NFA, respectively, where m,n ≥ 3. Then sc(K � L) ≤ 2mn,
and the bound is tight if |Σ| ≥ 4.

Proof. Let A = (QA, Σ, sA, ·A, FA) and B = (QB , Σ, sB , ·B , FB) be an
m-state and n-state NFAs recognising the languages K and L, respectively. Then
the language K � L is recognised by mn-state NFA

N = (QA × QB , Σ, ·, (sA, sB), FA × FB)

where for each (p, q) ∈ QA × QB and a ∈ Σ,

(p, q) · a = {(p, q′) | q′ ∈ q ·B a} ∪ {(p′, q) | p′ ∈ p ·A a}.

It follows that sc(K � L) ≤ 2mn.
The m-state and n-state partial DFAs over {a, b, c, d, f} meeting this upper

bound have been described in [4, Proof of Theorem 1]. Notice in that the role
of c and d in that proof is to reach the set QA × QB in the subset automaton.
The same goal can be achieved if we replace c and d by the transitions on
letter e defined as follows: 0 ·A e = {0, 1}, i ·A e = {i + 1}, if 1 ≤ i ≤ m − 2,
and 0 ·B e = {0, 1}, j ·B e = {j + 1}, if 1 ≤ j ≤ n − 2. As a result we get a
quaternary witness for shuffle. ��

In the unary case the upper bound for shuffle is again 2O(
√

(m+n) ln(m+n)).

Theorem 10 (Left and Right Quotient). Let K and L be languages over
an alphabet Σ recognised by an m-state and n-state NFA, respectively, where
m,n ≥ 2. Then sc(L−1K), sc(KL−1) ≤ 2m, and the bounds are tight if |Σ| ≥ 2.

194 G. Jirásková and I. Krajňáková

Proof. Let A = (QA, Σ, sA, ·A, FA) be an m-state NFA recognising K. The lan-
guage L−1K is recognised by the m-state NFA N obtained from A by changing
the set of initial states to {sA ·A w | w ∈ L}. The language KL−1 is recog-
nised by the m-state NFA N obtained from A by changing the set of final states
to {q ∈ QA | q ·A w ∈ FA for some w ∈ L}. Hence sc(L−1K), sc(KL−1) ≤ 2m.

For tightness, notice that {ε}−1K = K{ε}−1 = K. Therefore, the upper
bound 2m is met in both cases by L = {ε} and K equal to the binary m-state
witness NFA for determinization given by Lemma 2; for distinguishability, notice
that each singleton set is co-reachable in this NFA. ��

The binary alphabet used in the theorem above is optimal since determiniza-
tion in the unary case is in 2O(

√
n lnn).

6 Conclusions

We investigated the NFA-to-DFA trade-off for several regular operations. Our
results are summarised in Table 1. The table also displays the size of alphabet
used to describe our witnesses. Whenever we used a binary alphabet, it was
is always optimal in the sense that the corresponding upper bounds cannot be
met by any unary languages. The table also compares our results to the known
results on the state complexity and the nondeterministic state complexity of all
considered operations [3,6,10,11,15].

Table 2 shows the operational state complexity on languages represented
by self-verifying and unambiguous finite automata from [8,9]. The NFA-to-
DFA trade-off for concatenation, shuffle, left and right quotient is up to one
state almost the same as the complexity of these operations on unambiguous
automata. The same holds for left quotient on self-verifying automata.

Table 1. The NFA-to-DFA trade-off vs (nondeterministic) state complexity.

NFA-to-DFA |Σ| DFA |Σ| NFA |Σ|
Complementation 2n 2 n 1 2n 2

Reversal 2n 2 2n 2 n + 1 2

Star 2n 2 3
4

· 2n 2 n + 1 1

Concatenation 3
4
2m+n 4 m2n − 2n−1 2 m + n 2

Union 2m+n 4 mn 2 m + n + 1 2

Symmetric difference 2m+n 4 mn 2 ?

Intersection 2m+n − 2m − 2n + 2 4 mn 2 mn 2

Difference 2m+n − 2n + 1 4 mn 2 ?

Shuffle 2mn 4 ≤ 2mn 5 mn 2

Left quotient 2m 2 2m − 1 2 m + 1 2

Right quotient 2m 2 m 1 m 1

NFA-to-DFA Trade-Off for Regular Operations 195

Table 2. Operational complexity for self-verifying and unambiguous automata.

SVFA |Σ| UFA |Σ|
Complementation n 1 n2−ε ≤ · ≤

20.79n+log n
1

Reversal 2n + 1 2 n 1

Star 3
4

· 2n 3
4

· 2n + 1 3
4

· 2n 3

Concatenation Θ(3
m
3 2n) 3

m
3 + 2n + 1 3

4
· 2m+n − 1 7

Union mn 2 mn + m + n ≤ · ≤
m + n20.79n+log n

4

Symmetric difference mn 2 ?

Intersection mn 2 mn 2

Difference mn 2 ?

Shuffle ? 2mn − 1 5

Left quotient 2m − 1 2m + 1 2m − 1 2

Right quotient 3
m
3 3

m
3 + 2 2m − 1 2

Acknowledgement. We would like to kindly thank Michal Hospodár for his valuable
notes and comments.

References

1. Birget, J.: Intersection and union of regular languages and state complex-
ity. Inf. Process. Lett. 43(4), 185–190 (1992). https://doi.org/10.1016/0020-
0190(92)90198-5

2. Birget, J.: The state complexity of Σ∗L and its connection with temporal
logic. Inf. Process. Lett. 58(4), 185–188 (1996). https://doi.org/10.1016/0020-
0190(96)00044-0

3. Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang.
Comb. 15(1/2), 71–89 (2010). https://doi.org/10.25596/jalc-2010-071

4. Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of
shuffle of regular languages. J. Autom. Lang. Comb. 7(3), 303–310 (2002). https://
doi.org/10.25596/jalc-2002-303

5. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3),
149–158 (1986). https://doi.org/10.1016/0304-3975(86)90142-8

6. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003). https://doi.org/10.
1142/S0129054103002199

7. Hospodár, M., Jirásková, G., Mlynárčik, P.: Descriptional complexity of the forever
operator. Int. J. Found. Comput. Sci. 30(1), 115–134 (2019). https://doi.org/10.
1142/S0129054119400069

8. Jirásek, J.Š., Jirásková, G., Szabari, A.: Operations on self-verifying finite
automata. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS, vol.
9139, pp. 231–261. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20297-6 16

https://doi.org/10.1016/0020-0190(92)90198-5
https://doi.org/10.1016/0020-0190(92)90198-5
https://doi.org/10.1016/0020-0190(96)00044-0
https://doi.org/10.1016/0020-0190(96)00044-0
https://doi.org/10.25596/jalc-2010-071
https://doi.org/10.25596/jalc-2002-303
https://doi.org/10.25596/jalc-2002-303
https://doi.org/10.1016/0304-3975(86)90142-8
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1142/S0129054119400069
https://doi.org/10.1142/S0129054119400069
https://doi.org/10.1007/978-3-319-20297-6_16
https://doi.org/10.1007/978-3-319-20297-6_16

196 G. Jirásková and I. Krajňáková

9. Jirásek Jr., J., Jirásková, G., Šebej, J.: Operations on unambiguous finite automata.
Int. J. Found. Comput. Sci. 29(5), 861–876 (2018). https://doi.org/10.1142/
S012905411842008X

10. Jirásková, G.: State complexity of some operations on binary regular languages.
Theor. Comput. Sci. 330(2), 287–298 (2005). https://doi.org/10.1016/j.tcs.2004.
04.011

11. Maslov, A.N.: Estimates of the number of states of finite automata. Sov. Math.
Dokl. 11(5), 1373–1375 (1970)

12. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theor.
Comput. Sci. 383(2–3), 140–152 (2007). https://doi.org/10.1016/j.tcs.2007.04.015

13. Šebej, J.: Reversal of regular languages and state complexity. In: Pardubská, D.
(ed.) Proceedings of the Conference on Theory and Practice of Information Tech-
nologies, ITAT 2010. CEUR Workshop Proceedings, vol. 683, pp. 47–54. CEUR-
WS.org (2010). http://ceur-ws.org/Vol-683/paper8.pdf

14. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, pp. 41–110. Springer, Heidelberg (1997). https://doi.org/10.
1007/978-3-642-59136-5 2

15. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). https://doi.
org/10.1016/0304-3975(92)00011-F

https://doi.org/10.1142/S012905411842008X
https://doi.org/10.1142/S012905411842008X
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1016/j.tcs.2007.04.015
http://ceur-ws.org/Vol-683/paper8.pdf
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

State Complexity of Simple Splicing

Lila Kari and Timothy Ng(B)

School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada
{lila.kari,tim.ng}@uwaterloo.ca

Abstract. Splicing, as a binary word/language operation, was inspired
by the DNA recombination under the action of restriction enzymes and
ligases, and was first introduced by Tom Head in 1987. Splicing systems
as generative mechanisms were defined as consisting of an initial starting
set of words called an axiom set, and a set of splicing rules—each encod-
ing a splicing operation—, as their computational engine to iteratively
generate new strings starting from the axiom set. Since finite splicing sys-
tems (splicing systems with a finite axiom set and a finite set of splicing
rules) generate a subclass of the family of regular languages, descriptional
complexity questions about splicing systems can be answered in terms
of the size of the minimal deterministic finite automata that recognize
their languages. In this paper we focus on a particular type of splicing
systems, called simple splicing systems, where the splicing rules are of
a particular form. We prove a tight state complexity bound of 2n − 1
for (semi-)simple splicing systems with a regular initial language with
state complexity n ≥ 3. We also show that the state complexity of a
(semi-)simple splicing system with a finite initial language is at most
2n−2 + 1, and that whether this bound is reachable or not depends on
the size of the alphabet and the number of splicing rules.

1 Introduction

In [10] Head described a language-theoretic operation, called splicing, which
models DNA recombination, a cut-and-paste operation on DNA double-stranded
molecules, under the action of restriction enzymes and ligases. A splicing system
is a formal language model which consists of a set of initial words, I (represent-
ing double-stranded DNA strings), and a set of splicing rules R (representing
restriction enzymes). The most commonly used definition for a splicing rule is
a quadruplet of words r = (u1, v1;u2, v2). This rule splices two words x1u1v1y1
and x2u2v2y2: the words are cut between the factors u1, v1, respectively u2, v2,
and the prefix (the left segment) of the first word is recombined by catenation
with the suffix (the right segment) of the second word; see Fig. 1 and also [16].
The words u1v1 and u2v2 are the restriction sites in the rule r. A splicing sys-
tem generates a language which contains every word that can be obtained by
successively applying rules to axioms and the intermediately produced words.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 197–209, 2019.
https://doi.org/10.1007/978-3-030-23247-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_15

198 L. Kari and T. Ng

The most natural variant of splicing systems, often referred to as finite splicing
systems, is to consider a finite set of axioms and a finite set of rules.

Several different types of splicing systems have been proposed in the litera-
ture, and Bonizzoni et al. [1] showed that the classes of languages they generate
are related. Shortly after the introduction of splicing in formal language theory,
Culik II and Harju [4] proved that finite splicing systems can only generate reg-
ular languages; see also [11,15]. Gatterdam [7] gave (aa)∗ as an example of a
regular language which cannot be generated by a finite splicing system; thus,
the class of languages generated by finite splicing systems is strictly included in
the class of regular languages.

x1 u1 v1 y1

x2 u2 v2 y2

=⇒ x1 u1 v2 y2

Fig. 1. Splicing of the words x1u1v1y1 and x2u2v2y2 by the rule r = (u1, v1; u2, v2).

Descriptional complexity considers the complexity of a language in terms of
the size of a computational device (in this case splicing system) that generates or
recognizes it. For instance, Mateescu et al. [14] consider a number of descriptional
complexity measures for simple splicing systems, such as the number of rules,
the number of words in the initial language, the maximum length of a word
in the initial language, and the sum of the lengths of all words in the initial
language. Loos et al. [13] consider the descriptional complexity of finite splicing
systems by using the number of rules, the length of the rules, and the size of the
initial language as complexity measures. Păun [16] proposed using the radius,
the largest ui in a rule, as a descriptional complexity measure.

As the class of languages generated by splicing systems forms a subclass of the
family of regular languages, their descriptional complexity can also be considered
in terms of the finite automata that recognize them. For example, Loos et al. [13]
gave a bound on the number of states required for a nondeterministic finite
automaton to recognize the language generated by an equivalent finite splicing
system.

We focus our attention on simple splicing systems, that is, splicing systems
where the rules (u1, v1;u2, v2) are of a particular form: u1 = u2 = a, are single-
ton letters, and v1 = v2 = ε are the empty word. The descriptional complexity
of simple splicing systems was considered by Mateescu et al. [14] in terms of the
size of a right linear grammar that generates a simple splicing language. Here
we consider the descriptional complexity of simple splicing systems in terms of
deterministic state complexity [6]. In other words, we measure the descriptional
complexity of a simple splicing system in terms of the size of the minimal deter-
ministic finite automaton that recognizes the language generated by the splicing
system.

In this paper, we prove tight state complexity bounds for simple and semi-
simple splicing systems with regular and finite initial languages. In Sect. 2, we

State Complexity of Simple Splicing 199

fix notation and definitions for simple splicing systems. We consider the state
complexity of simple splicing systems with regular and finite initial languages in
Sect. 3. In Sect. 4, we give tight state complexity bounds for semi-simple splicing
systems with finite initial languages. We consider the state complexity of the
crossover operation related to simple splicing systems in Sect. 5.

2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over
Σ, including the empty word, which we denote by ε. We denote the length of a
word w by |w| = n. If w = xyz for x, y, z ∈ Σ∗, we say that x is a prefix of w, y
is a factor of w, and z is a suffix of w.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F) where
Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q×Σ → Q, s ∈ Q
is the initial state, and F ⊂ Q is a set of final states. We extend the transition
function δ to a function Q × Σ∗ → Q in the usual way. A DFA A is complete if
δ is defined for all q ∈ Q and a ∈ Σ. We will make use of the notation q

w−→ q′

for δ(q, w) = q′, where w ∈ Σ∗ and q, q′ ∈ Q. A state q ∈ Q is called a sink state
if δ(q, a) = q for all a ∈ Σ and q �∈ F .

Each letter a ∈ Σ defines a transformation of the state set Q. Let δa : Q → Q
be the transformation on Q induced by a, defined by δa(q) = δ(q, a). We extend
this definition to words by composing the transformations δw = δa1 ◦δa2 ◦· · ·◦δan

for w = a1a2 · · · an. We denote by im δa the image of δa, defined im δa = {δ(p, a) |
p ∈ Q}.

The language recognized or accepted by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈
F}. A state q is called reachable if there exists a string w ∈ Σ∗ such that
δ(q0, w) = q. Two states p and q of A are said to be equivalent if δ(p,w) ∈ F if
and only if δ(q, w) ∈ F for every word w ∈ Σ∗. A DFA A is minimal if each state
q ∈ Q is reachable from the initial state and no two states are equivalent. The
state complexity of a regular language L is the number of states of the minimal
complete DFA recognizing L [6].

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, I, F)
where Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q×Σ → 2Q,
I ⊆ Q is a set of initial states, and F is a set of final states. The language
recognized by an NFA A is L(A) = {w ∈ Σ∗ | ⋃

q∈I δ(q, w) ∩ F �= ∅}. As with
DFAs, transitions of A can be viewed as transformations on the state set. Let
δa : Q → 2Q be the transformation on Q induced by a, defined by δa(q) = δ(q, a).
The image of δa is defined by im δa = {δ(p, a) | p ∈ Q}. We make use of the
notation P

w−→ P ′ for P ′ =
⋃

q∈P δ(q, w), where w ∈ Σ∗ and P, P ′ ⊆ Q.

2.1 Simple Splicing Systems

In this paper we will use the notation of Păun [16], even though simple splic-
ing systems can be defined using any of the three definitions of splicing.
The splicing operation is defined via sets of quadruples r = (α1, α2;α3, α4)

200 L. Kari and T. Ng

with α1, α2, α3, α4 ∈ Σ∗ called splicing rules. For two strings x = x1α1α2x2

and y = y1α3α4y2, applying the rule r = (α1, α2;α3, α4) produces a string
z = x1α1α4y2, which we denote by (x, y)
r z.

A splicing scheme is a pair σ = (Σ,R) where Σ is an alphabet and R is a
set of splicing rules. For a splicing scheme σ = (Σ,R) and a language L ⊆ Σ∗,
we denote by σ(L) the language

σ(L) = L ∪ {z ∈ Σ∗ | (x, y)
r z,where x, y ∈ L, r ∈ R}.
Then we define σ0(L) = L and σi+1(L) = σ(σi(L)) for i ≥ 0 and

σ∗(L) = lim
i→∞

σi(L) =
⋃

i≥0

σi(L).

For a splicing scheme σ = (Σ,R) and an initial language L ⊆ Σ∗, we say the
triple H = (Σ,R, L) is a splicing system. The language generated by H is defined
by L(H) = σ∗(L).

Mateescu et al. [14] define a restricted class of splicing systems called simple
splicing systems. A simple splicing system is a triple H = (Σ,M, I), where Σ
is an alphabet, M ⊆ Σ is a set of markers, and I is a finite initial language
over Σ. For a ∈ M , we have (x, y)
a z if and only if x = x1ax2, y = y1ay2, and
z = x1ay2 for some x1, x2, y1, y2 ∈ Σ∗.

In other words, a simple splicing system is a system in which the set of rules
is M = {(a, ε; a, ε) | a ∈ M} and the initial language I is finite. Since the
rules are determined solely by our choice of M ⊆ Σ, the set M is used in the
definition of the simple splicing system rather than the set of rules M. Based
on these properties, one can deduce that the class of languages generated by
simple splicing systems is subregular [4,15]. Mateescu et al. [14] show that these
languages form a proper subclass of the extended star-free languages.

In this paper, we will relax the condition that the initial language of a simple
splicing system must be a finite language. We will consider also simple splicing
systems with regular initial languages. By [16], it is clear that such a splicing
system will also produce a regular language. In the following, we will use the
convention that I denotes a finite language and L denotes an infinite language.

3 State Complexity of Simple Splicing

In this section, we will give tight state complexity bounds for simple splicing
systems with regular and finite initial languages. First, we will define an NFA
that recognizes the language of a given simple splicing system. The construction
follows a more general construction due to Loos et al. [13] for finite splicing
systems. This construction is a simplification of a construction by Pixton [15],
which itself is a simplification of the original proof of regularity of finite splicing
due to Culik II and Harju [4].

Proposition 1. Let H = (Σ,M,L) be a simple splicing system with a regular
initial language L and let L be recognized by a DFA with n states. Then there
exists an NFA A′

H with n states such that L(A′
H) = L(H).

State Complexity of Simple Splicing 201

Proof. Let H = (Σ,M,L) and let A = (Q,Σ, δ, q0, F) be a DFA for L. We will
define the NFA AH = (Q′, Σ, δ′, q0, F), where Q′ = Q∪QM with QM = {pa, p′

a |
a ∈ M} and the transition function δ′ is defined

– δ′(q, a) = {δ(q, a)} if q ∈ Q and a ∈ Σ,
– δ′(q, ε) = {pa} if q ∈ Q, a ∈ M , and δ(q, a) is not the sink state,
– δ′(pa, a) = {p′

a} if pa ∈ QM ,
– δ′(p′

a, ε) = im δa if p′
a ∈ QM and a ∈ M .

First, we describe the construction of [13]. Let M = {(a, ε; a, ε) | a ∈ M}
be the set of rules for H. For each rule (α1, α2;α3, α4) ∈ M, add new states
and transitions corresponding to α1α4 and α3α2. That is, if α1 = a1 · · · ai,
α2 = b1 · · · bj , α3 = c1 · · · ck, and α4 = d1 · · · d�, then add states and transitions

corresponding to a path r0
a1−→ r1

a2−→ · · · d�−→ ri+� for α1α4 and a path s0
c1−→

s1
c2−→ · · · bj−→ sj+k corresponding to α3α2. Now consider each path q

α1α2−−−→ q′

in A such that q is reachable from the initial state q0 and a final state of A
is reachable from q′. We add an ε-transition from q to r0 and from sj+k to q′.
Similarly, for each path t

α3α4−−−→ t′, add ε-transitions from t to s0 and from ri+�

to t′.
Now, since H is a simple splicing system, this construction can be simplified

further. Since every rule of H is of the form (a, ε; a, ε), we only need to add states
and transitions for pa

a−→ p′
a for each rule. Then add ε-transitions from states q

of A to pa if q has an outgoing transition on a to a non-sink state of A. From
each state p′

a, add ε-transitions to each state of A with an incoming transition
on a. Recall that im δa is the image of the transformation of δ induced by a, and
therefore it is the set of states of A with an incoming transition on a.

pa pa

...
...

aε

ε

ε

ε

...
...

a

a

a

a

Fig. 2. New states and transitions for a ∈ M (left), after ε-removal (right).

Finally, we can simplify this NFA by removing ε-transitions in the usual way
to obtain an NFA A′

H = (Q,Σ, δ′, q0, F), where

δ′(q, a) =

⎧
⎪⎨

⎪⎩

{δ(q, a)}, if δ(q, a) is the sink state;
{δ(q, a)}, if a �∈ M ;
im δa, if a ∈ M.

Figure 2 illustrates the new states and transitions added for a ∈ M before
and after ε-removal. Observe that by removing the ε-transitions, we also remove

202 L. Kari and T. Ng

the states that were initially added earlier in the construction of AH . Thus, the
state set of A′

H is exactly the state set of the DFA A recognizing L. �
Given a splicing system H = (Σ,M,L), one can obtain a DFA that recognizes

L(H) by performing the subset construction on A′
H . As shown in Proposition 1,

if L is recognized by a DFA with n states, then A′
H also has n states. By applying

the subset construction and observing that the empty set is not reachable from
any subset of Q in A′

H , this gives an upper bound of 2n − 1 states for a DFA
equivalent to A′

H .
We will now show that there exists a family of regular languages Ln with

state complexity n such that a simple splicing system H = (Σ,M,Ln) with one
marker requires 2n − 1 states for an equivalent DFA to recognize it.

Proposition 2. For |Σ| ≥ 3 and n ≥ 3, there exists a simple splicing system
with a regular initial language H = (Σ,M,Ln) with |M | = 1 where Ln is a
regular language with state complexity n such that the minimal DFA for L(H)
requires at least 2n − 1 states.

Proposition 2 is proved via the family of languages Ln accepted by DFAs An,
shown in Fig. 3, with M = {c}.

0start 1 2 · · · n − 2 n − 1

b, c b, c b, c
b, c c

a a a a a

a, b

Fig. 3. The DFA An.

Together, Propositions 1 and 2 give the following result.

Theorem 3. For a simple splicing system with a regular initial language H =
(Σ,M,Ln) where M ⊆ Σ and Ln ⊆ Σ∗ has state complexity n, the state com-
plexity of L(H) is at most 2n − 1 and this bound can be reached in the worst
case.

We will now consider simple splicing systems with a finite initial language.
We will show that the upper bound of Proposition 1 is not reachable in this case.

Proposition 4. Let H = (Σ,M, I) be a simple splicing system with a finite
initial language, where I is a finite language recognized by a DFA A with n
states. Then a DFA recognizing L(H) requires at most 2n−2 + 1 states.

State Complexity of Simple Splicing 203

We will show that this bound is reachable. We note that the lower bound
witness used in the following lemma is defined over an alphabet with size expo-
nential in the number of states of the DFA recognizing the initial language.

Lemma 5. There exists a simple splicing system with a finite initial language
H = (Σ,M, In) where In is a finite language with state complexity n such that
a DFA recognizing L(H) requires 2n−2 + 1 states.

Together, Proposition 4 and Lemma 5 give the following result.

Theorem 6. For a simple splicing system with a finite initial language H =
(Σ,M, In) where M ⊆ Σ and In ⊆ Σ∗ has state complexity n, the state com-
plexity of L(H) is at most 2n−2 + 1 and this bound can be reached in the worst
case.

The bound of Lemma 5 is reached by a witness defined over an alphabet size
of 2n−3 + 1. An obvious question is whether this bound can be reached via a
smaller alphabet. We will consider in the following the state complexity of simple
splicing systems with a finite initial language for small, fixed alphabets. We begin
with a general observation on the transition function of a DFA recognizing the
language of a simple splicing system.

Lemma 7. Let H = (Σ,M,L) be a simple splicing system with a regular initial
language and let AH be an NFA recognizing L(H). If a ∈ M and δ′ is the
transition function of AH , then | im δ′

a| = 2.

First, we will consider simple splicing systems with a finite initial language
defined over a unary alphabet.

Proposition 8. Let H = ({a},M, I) be a simple splicing system where M is
nonempty and I is a finite language containing a word of length at least 2. Then
the minimal DFA recognizing L(H) has exactly two states.

Next, we consider simple splicing systems with a finite initial language defined
over a binary alphabet. We will show that the small size of the alphabet restricts
the number of transformations that can be performed on the state set and that
the upper bound on the number of states falls far below the upper bound of
Proposition 4 as a result.

Proposition 9. Let H = ({a, b},M, I) be a simple splicing system where I is
a finite language with state complexity n. Then the minimal DFA recognizing
L(H) has at most 2n − 3 states and this bound is reachable in the worst case.

We will now consider the state complexity of simple splicing systems with
a finite initial language defined over a ternary alphabet. We will show that the
upper bound of 2n−2+1 from Proposition 4 cannot be reached with an alphabet
of size 3.

Proposition 10. Let H = ({a, b, c},M, I) be a simple splicing system where I
is a finite language with state complexity n. Then the minimal DFA recognizing
L(H) has at most 2

n
2 + 1 states if n is even and 3 · 2

n−3
2 + 1 states if n is odd.

204 L. Kari and T. Ng

We note that the upper bound of the previous lemma is similar to the state
complexity of the reversal operation on finite languages [2]. We will use this result
as inspiration for a family of lower bound witnesses in the following lemma.

Lemma 11. There exists a family of finite languages In ⊆ {a, b, c}∗, for n ≥ 4,
recognized by a DFA with n states such that the minimal DFA for a simple
splicing system H = ({a, b, c},M, In) requires at least 2

n
2 + 1 states if n is even

and 3 · 2
n−3
2 + 1 states if n is odd.

The family of witness languages In used to prove Lemma 11 is accepted by
DFAs An, shown in Fig. 4, with M = {c}.

0start 1 · · · n
2 − 1

n
2 · · · n − 2 n − 1

a, b, c a, b, c a, b, c

a

a, b a, b a, b, c

b, c

c

a, b, c

Fig. 4. The ternary witness DFA An.

Together, Proposition 10 and Lemma 11 give us the following theorem.

Theorem 12. For a simple splicing system with a finite initial language H =
(Σ,M, In) where |Σ| = 3, M ⊆ Σ, and In ⊆ Σ∗ has state complexity n, the
state complexity of L(H) is at most 2

n
2 + 1 states if n is even and 3 · 2

n−3
2 + 1

states if n is odd and this bound can be reached in the worst case.

4 State Complexity of Semi-simple Splicing

In this section, we will give tight state complexity bounds for semi-simple splicing
systems with regular and finite initial languages. In particular, we will show that
the upper bound is reachable for semi-simple splicing systems with a finite initial
language defined over a fixed alphabet.

Goode and Pixton [9] generalize simple splicing systems by defining semi-
simple splicing systems. A splicing system is semi-simple if every rule is of the
form (a, ε; b, ε) for a, b ∈ Σ. Again, rather than explicitly define a set of rules M,
we refer instead to the set M (2) ⊆ Σ × Σ of pairs of symbols, which determines
the set of rules. As with simple splicing systems, one can conclude that the class
of languages generated by semi-simple splicing systems is subregular [4,15].

State Complexity of Simple Splicing 205

In the following, we will give a construction for an NFA that recognizes the
language generated by a semi-simple splicing system. As with the NFA for simple
splicing systems from Proposition 1, the construction will follow the more general
construction for finite splicing systems of Loos et al. [13].

Proposition 13. Let H = (Σ,M (2), L) be a semi-simple splicing system with
a regular initial language. Then there exists an NFA B′

H with n states such that
L(B′

H) = L(H).

It is clear from Proposition 13 that for a given regular language L, the lan-
guage of a semi-simple splicing system H = (Σ,M (2), L) can require 2n−1 states
in the worst case. Since a simple splicing system is also a semi-simple splicing
system, the lower bound witness from Proposition 2 holds. Therefore, we can
focus on the more interesting case of semi-simple splicing systems with finite
initial languages. First, we observe that even with semi-simple splicing rules,
the upper bound on the number of states for a DFA recognizing a semi-simple
splicing system with a finite initial language remains the same.

Proposition 14. Let H = (Σ,M (2), I) be a semi-simple splicing system with a
finite initial language where I is a finite language recognized by a DFA A with n
states. Then a DFA recognizing L(H) requires at most 2n−2 + 1 states.

The proof of this fact is identical to the proof of Proposition 4.
Recall from Lemma 5, that the lower bound witness for simple splicing sys-

tems with a finite initial language was defined over an alphabet with size expo-
nential in the state complexity of the initial language. We will show in the fol-
lowing lemma that for semi-simple splicing systems with a finite initial language,
a lower bound witness defined over an alphabet of size 3 exists.

Lemma 15. Let n ≥ 4. Then there exists a semi-simple splicing system with
a finite initial language H = (Σ,M (2), In) where |Σ| = 3 and In is a finite
language with state complexity n such that L(H) is recognized by a DFA that
requires at least 2n−2 + 1 states.

The family of witness languages In of Lemma 15 is accepted by DFAs An, shown
in Fig. 5, with Σ = {a, b, c} and M (2) = {(a, c)}.

0start 1 · · · n − 3 n − 2 n − 1

c

c

a, b, c a, b a, b a, b a, b, c

a, b, c

Fig. 5. The ternary witness DFA An.

206 L. Kari and T. Ng

From Proposition 14 and Lemma 15, we have the following result.

Theorem 16. For a semi-simple splicing system with a finite initial language
H = (Σ,M (2), In) where M ⊆ Σ and In ⊆ Σ∗ has state complexity n, the state
complexity of L(H) is at most 2n−2 + 1 and this bound can be reached in the
worst case.

5 State Complexity of the Crossover Operation

In this section, we will give tight state complexity bounds for the crossover
operation [3], which can be thought of as a single step of semi-simple splicing.
Mateescu et al. [14] gave an algebraic characterization of the class of languages
generated by simple splicing systems based on the crossover operation therein. A
similar such characterization for the class of languages generated by semi-simple
splicing systems is given by Ceterchi [3].

For M = M1×M2 ⊆ Σ×Σ, define the operation �M on two strings u, v ∈ Σ+

by

u �M v =

{
u′av′, if u = u′a, v = bv′for(a, b) ∈ M,u′, v′ ∈ Σ∗;
undefined, otherwise.

Then for two languages L1, L2 ⊆ Σ∗, we have

L1 �M L2 = {x �M y | x ∈ L1, y ∈ L2}.

The operation �M is a variant of the Latin product defined in [8]. Based on
�M , we define the crossover operation �M for M ⊆ Σ × Σ and two languages
L1, L2 ⊆ Σ∗ by

L1�ML2 = pref(L1) �M suff(L2),

where pref(L1) is the set of prefixes of words in L1 and suff(L2) is the set of
suffixes of words in L2. From this definition, the operation �M can be viewed
as a combination of operations under each of which the regular languages are
closed. Therefore, it is easy to see that the regular languages are closed under
�M .

Note that by restricting M to pairs (a, a) for a ∈ Σ, we get an operation that
can be thought of as a single step of simple splicing. The operation �M , when
restricted to pairs of the form (a, a) has some similarities to many operations
that have been studied in the literature, such as the chop operation [12] and the
word blending operation [5]. In fact, word blending can be seen as a special case
of the crossover operation, taking M = {(a, a) | a ∈ Σ}.

We will now give a DFA construction for the crossover of two regular lan-
guages.

Proposition 17. Let A and B be two DFAs defined over Σ with m and n
states, respectively. Then for any M ⊆ Σ × Σ, there exists a DFA C such that
L(C) = L(A)�ML(B) and C has at most m · 2n states.

State Complexity of Simple Splicing 207

Proof. Let A = (QA, Σ, δA, sA, FA) and B = (QB , Σ, δB , sB , FB) be two DFAs.
We will construct a DFA C = (QC , Σ, δC , sC , FC) that recognizes A�MB for
some M ⊆ Σ × Σ, defined by

– QC = QA × 2QB ,
– sC = 〈sA, ∅〉,
– FC = {〈q, P 〉 ∈ QA × 2QB | P ∩ FB �= ∅},

and the transition function δC is defined for q ∈ QA, P ⊆ QB , and a ∈ Σ by
δC(〈q, P 〉, a) = 〈q′, P ′〉, where q′ = δA(q, a) and

P ′ =

{
im(δB)b, if (a, b) ∈ M and q′ is not a sink state;
⋃

p∈P δB(p, a), otherwise.

Informally, the machine traces a computation of A and computations of B. For
each pair (a, b) ∈ M , whenever a transition on a occurs in A, all states of B with
incoming transitions on b are added to the computation. It is clear from the defi-
nition of C that L(C) = L(A)�ML(B) and it has at most m · 2n states. �

We will show that the bound of Proposition 17 is reachable, even when M is
restricted to pairs of the form (a, a).

Lemma 18. There exist languages Am and Bn over Σ with |Σ| ≥ 4 recognized
by DFAs with m and n states, respectively, and a subset M ⊆ Σ × Σ such that
the minimal DFA for L(Am)�ML(Bn) requires at least m · 2n states.

The families of witness languages of Lemma 18 are accepted by DFAs Am and
Bn, shown in Fig. 6, with M = {(d, d)}.

0start 1 · · · m − 3 m − 2 m − 1

b, c, d b, c, d
b, c, d b, c a, b, c, d

a a a a d

a

0start 1 2 · · · n − 2 n − 1

a, c, d a, c, d a, c, d
a, c, d a, d

b b b b b

b, c

Fig. 6. The DFAs Am (above) and Bn (below).

208 L. Kari and T. Ng

Together, Proposition 17 and Lemma 18 give us the following theorem.

Theorem 19. For regular languages Lm and Ln, with m,n ≥ 3, defined over an
alphabet Σ, with |Σ| ≥ 4, and a subset M ⊆ Σ × Σ, if Lm has state complexity
m and Ln has state complexity n, then Lm�MLn has state complexity at most
m · 2n and this bound can be reached in the worst case.

6 Conclusion

We have given tight bounds for the state complexity of simple and semi-simple
splicing systems and the associated crossover operation. In almost all cases, the
exponential upper bound was easily reached via splicing systems defined over a
fixed-size alphabet with one rule. The exception is with simple splicing systems
with a finite initial language, where a natural open problem to consider is the
worst-case state complexity when the initial languages are defined over alphabets
of size between 3 and 2n−3.

References

1. Bonizzoni, P., Ferretti, C., Mauri, G., Zizza, R.: Separating some splicing models.
Inform. Process. Lett. 79(6), 255–259 (2001)

2. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State Complexity of Basic Opera-
tions on Finite Languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45526-4 6

3. Ceterchi, R.: An algebraic characterization of semi-simple splicing. Fund. Inform.
73(1–2), 19–25 (2006)

4. Culik II, K., Harju, T.: Splicing semigroups of dominoes and DNA. Discrete Appl.
Math. 31(3), 261–277 (1991). https://doi.org/10.1016/0166-218X(91)90054-Z

5. Enaganti, S.K., Kari, L., Ng, T., Wang, Z.: Word blending in formal languages: the
brangelina effect. In: Stepney, S., Verlan, S. (eds.) UCNC 2018. LNCS, vol. 10867,
pp. 72–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92435-9 6

6. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J.
Autom. Lang. Comb. 21(4), 251–310 (2017). https://doi.org/10.25596/jalc-2016-
251

7. Gatterdam, R.W.: Splicing systems and regularity. Int. J. Comput. Math. 31(1–2),
63–67 (1989). https://doi.org/10.1080/00207168908803788

8. Golan, J.S.: Semirings and their Applications. Springer, Dordrecht (1999). https://
doi.org/10.1007/978-94-015-9333-5

9. Goode, E., Pixton, D.: Semi-simple splicing systems. Where Mathematics. Com-
puter Science, Linguistics and Biology Meet, pp. 343–352. Springer, Dordrecht
(2001). https://doi.org/10.1007/978-94-015-9634-3 30

10. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bull. Math. Biol. 49(6), 737–759 (1987)

11. Head, T., Pixton, D.: Splicing and regularity. In: Esik, Z., Mart́ın-Vide, C.,
Mitrana, V. (eds.) Recent Advances in Formal Languages and Applications. SCI,
vol. 25, pp. 119–147. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-
540-33461-3 5

https://doi.org/10.1007/3-540-45526-4_6
https://doi.org/10.1007/3-540-45526-4_6
https://doi.org/10.1016/0166-218X(91)90054-Z
https://doi.org/10.1007/978-3-319-92435-9_6
https://doi.org/10.25596/jalc-2016-251
https://doi.org/10.25596/jalc-2016-251
https://doi.org/10.1080/00207168908803788
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1007/978-94-015-9634-3_30
https://doi.org/10.1007/978-3-540-33461-3_5
https://doi.org/10.1007/978-3-540-33461-3_5

State Complexity of Simple Splicing 209

12. Holzer, M., Jakobi, S.: Chop operations and expressions: descriptional complexity
considerations. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp.
264–275. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-
1 23

13. Loos, R., Malcher, A., Wotschke, D.: Descriptional complexity of splicing systems.
Internat. J. Found. Comput. Sci. 19(4), 813–826 (2008)

14. Mateescu, A., Păun, G., Rozenberg, G., Salomaa, A.: Simple splicing systems.
Discrete Appl. Math. 84(1–3), 145–163 (1998). https://doi.org/10.1016/S0166-
218X(98)00002-X

15. Pixton, D.: Regularity of splicing languages. Discrete Appl. Math. 69(1–2), 101–
124 (1996). https://doi.org/10.1016/0166-218X(95)00079-7

16. Păun, G.: On the splicing operation. Discrete Appl. Math. 70(1), 57–79 (1996).
https://doi.org/10.1016/0166-218X(96)00101-1

https://doi.org/10.1007/978-3-642-22321-1_23
https://doi.org/10.1007/978-3-642-22321-1_23
https://doi.org/10.1016/S0166-218X(98)00002-X
https://doi.org/10.1016/S0166-218X(98)00002-X
https://doi.org/10.1016/0166-218X(95)00079-7
https://doi.org/10.1016/0166-218X(96)00101-1

Nondeterminism Growth and State
Complexity

Chris Keeler(B) and Kai Salomaa

School of Computing, Queen’s University, Kingston, Ontario K7L 2N8, Canada
{keeler,ksalomaa}@cs.queensu.ca

Abstract. Tree width (respectively, string path width) measures the
maximal number of partial (respectively, complete) computations of a
nondeterministic finite automaton (NFA) on an input of given length. We
study the growth rate of the tree width and string path width measures.
As the main result we show that the degree of the polynomial bounding
the tree width of an NFA differs by at most one from the degree of the
polynomial bounding the string path width. Also we show that for m ≥ 4
there exists an m-state NFA with finite string path width such that any
equivalent finite tree width NFA needs 2m−2 + 1 states.

1 Introduction

Deterministic and nondeterministic finite automata (DFA and NFA) define the
class of regular languages, and have been systematically studied for over 60 years.
More recently there has been much interest in automata employing limited non-
determinism [2,5,12]. Different measures of nondeterminism allow us to quantify
the amount and type of nondeterminism present in an NFA’s computations.

Ambiguity is probably the first nondeterminism measure to be studied sys-
tematically. The ambiguity [9,10,12,14] of an NFA A on an input string counts
the number of accepting computations of A on that string and the tree width
[5,11] of A counts the number of all computations of A on the input string. The
string path width [6,7] lies between tree width and ambiguity, as it does not count
the partial computations counted by tree width, but it does count complete non-
accepting computations. We extend each of these measures of nondeterminism to
functions on integers, and consider the growth rate of the corresponding function
with respect to worst-case inputs of given length. The growth rate of ambiguity
and tree width has been considered, respectively, e.g., in [9,12,14] and in [5].

State complexity is another topic in automata theory with much recent
research [4,8]. The study of state complexity aspects of limited nondetermin-
ism was initiated by Goldstine et al. [2] who showed that there exists an m-state
NFA A such that any finite branching NFA equivalent to A needs 2m−1 states.
More generally, Goldstine et al. [2] gave a spectrum result which establishes that
there exist regular languages for which different finite amounts of nondetermin-
ism yield incremental savings in the number of states. Hromkovič et al. [5] have
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 210–222, 2019.
https://doi.org/10.1007/978-3-030-23247-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_16

Nondeterminism Measures 211

shown that there exist m-state NFAs with linear ambiguity such that any equiv-
alent finitely ambiguous NFA needs close to 2m states. Palioudakis et al. [11]
showed that there exists an m-state unambiguous NFA such that an equivalent
NFA with finite tree width needs 2m−1 states. Here we establish a similar state
complexity blow-up between NFAs of finite string path width and finite tree
width, respectively.

The contents of this paper are as follows. Section 2 recalls definitions and
fixes the notation. Section 3.1 shows that an NFA has polynomial string path
width if and only if its tree width is polynomial and, furthermore, that the
degrees of the polynomials differ by at most one. Also, it is shown that for
NFAs without useless states the degree of the polynomial bounding the growth
rate of ambiguity coincides with the polynomial bounding string path width.
Section 3.2 shows that an NFA has exponential string path width if and only
if it has exponential tree width. Section 4 gives polynomial-time algorithms to
decide whether the growth rate of an NFA’s tree width (respectively, string path
width) is polynomial or exponential, and additionally, to compute the degree
of the polynomial bounding the growth. These algorithms utilize existing algo-
rithms from the literature [9,14]. Section 5 shows that for m ≥ 4 there exists an
m-state NFA A with finite string path width such that any finite tree width NFA
equivalent to A needs at least 2m−2 + 1 states.

2 Preliminaries

Here we recall definitions and notation needed in later sections. We assume that
the reader is familiar with finite automata, and point them to resources such
as [13]. The set of strings over an alphabet Σ is denoted as Σ∗, Σ+ is the set
of nonempty strings and the set of strings of length � over Σ is Σ�. We use |S|
to mean the cardinality of a finite set S, ε to mean the empty string, and N to
mean the set of positive integers. Consider a function f(�) : N → N. If for d ∈ N,
f(�) ∈ O(�d), (respectively, ∈ Θ(�d)), then we say that f has polynomial growth
degree d (respectively, strict polynomial growth degree d). If f(�) ∈ 2Θ(�), then
we say that f(�) has exponential growth.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F)
consisting of a finite set of states Q, a finite alphabet Σ, a transition function
δ : Q × Σ → 2Q, an initial state q0 ∈ Q, and a set of final states F ⊆ Q. The
transition function is extended in the usual way as a function δ : Q × Σ∗ → 2Q

and the language recognized by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }.
The NFA A is a deterministic finite automaton (DFA) if |δ(q, c)| ≤ 1 for all

q ∈ Q and c ∈ Σ. If δ(q, c) is always a singleton set, A is a complete DFA.
Without loss of generality, we assume that all states of an NFA are reachable

from the start state. In the event that there are non-reachable states, they can
simply be removed. Unless otherwise specified, we do not assume that every state
can reach a final state, i.e., states need not be co-reachable.

A path of A from p1 ∈ Q to p�+1 ∈ Q on a string a1 · · · a� ∈ Σ∗ is an ordered
sequence of the form (p1, a1, p2, a2, . . . , p�, a�, p�+1) such that pi+1 ∈ δ(pi, ai),

212 C. Keeler and K. Salomaa

1 ≤ i ≤ �. The set of all paths from state q to state p on string w ∈ Σ∗ is
denoted as paths (q, w, p).

A path of A from the initial state q0 to a state p on string w is a (complete)
computation on w and it is an accepting computation if p ∈ F . A path of A from
the initial state q0 to a state p on a prefix w1 of w is a partial computation of
A on w if either w1 = w (complete computation) or w = w1bw2, b ∈ Σ, and
δ(p, b) = ∅. That is, a partial computation on w must read the string as far as
it can, until it encounters an undefined transition.

For L ⊆ Σ∗, the Myhill-Nerode equivalence relation of L, ≡L⊆ Σ∗ × Σ∗, is
defined by setting for x, y ∈ Σ∗:

x ≡L y iff (∀z ∈ Σ∗) xz ∈ L ⇔ yz ∈ L.

For a regular language L, the number of equivalence classes of ≡L gives the
number of states of the minimal complete DFA recognizing L [13].

The ambiguity of an NFA A on a string w, denoted da(A,w), is the number
of accepting computations of A on w. The ambiguity of A on all strings of
length � is da(A, �) = max{da(A,w) | w ∈ Σ�}, and the ambiguity of A is
da(A) = sup�∈N

{da(A, �)}. Note that da(A) may be infinite.
The string path width [3,6], roughly speaking, counts the number of complete

computations and tree width [11] counts the number of partial computations.
Formally this is defined as follows. For an NFA A and string w, the string path
width of A on w, spw(A,w), is the number of complete computations of A on w
and the tree width of A on w, tw(A,w), is the number of partial computations
of A on w. Again for � ∈ N, we define spw(A, �) = max{spw(A,w) | w ∈ Σ�}
and tw(A, �) = max{tw(A,w) | w ∈ Σ�}, as well as, spw(A) = sup�∈N

{tw(A, �)}
and spw(A) = sup�∈N

{spw(A, �)}.
An NFA’s tree width will grow unboundedly with respect to the length of

the input string if and only if some cycle has a nondeterministic transition [11].
Figure 1 gives a visual abstraction of this condition.

a1

a1 · · · a

Fig. 1. NFA with infinite tree width.

Directly by the definitions, for any NFA A and � ∈ N we have da(A, �) ≤
spw(A, �) ≤ tw(A, �). If all states of A are final, then the ambiguity and string
path width of A are equal on any string. If A has no undefined transitions, then
its string path width and tree width are equal.

The completion of an NFA A = (Q,Σ, δ, q0, F) is obtained from A by adding
a sink state that is the target of all previously undefined transitions. Formally,
the completion of A is ̂A = (Q′, Σ, δ′, q0, F), where

Nondeterminism Measures 213

Q′ =

{

Q, if δ(q, b) �= ∅ for all q ∈ Q and b ∈ Σ;
Q ∪ {qsink}, otherwise,

and the transitions are defined by setting δ′(qsink, b) = {qsink} for all b ∈ Σ,

δ′(q, b) =

{

δ(q, b), if δ(q, b) �= ∅;
{qsink}, if δ(q, b) = ∅,

q ∈ Q, b ∈ Σ.

Directly from the definition of string path width and tree width we get:

Lemma 1. For any NFA A and string w ∈ Σ∗,

spw(̂A,w) = tw(A,w).

3 Growth of String Path Width and Tree Width

Weber and Seidl [14], based on earlier work, developed structural criteria to
determine the growth rate of ambiguity of an NFA as a function of input length.
We extend and modify these conditions to study the growth rate of string path
width and tree width. In the following A = (Q,Σ, δ, q0, F) is always an NFA.

3.1 Polynomial Growth

For an NFA A, da(A, �) ∈ Ω(�d), d ∈ N, if and only if A complies with a
condition (IDAd) [14] which means that A can be viewed to have a “subgraph”
of a certain type. We refer to such subgraphs as widgets. The widget (IDAd) is
almost the same as (ISPWd) defined below and represented in Fig. 2. The only
difference is that (IDAd) additionally requires that the state cd must be able to
reach a final state.

To characterize polynomial string path width, we use a widget, (ISPWd),
modified from (IDAd) [14].

(ISPWd): There exist states s1, c1, . . . , sd, cd ∈ Q, strings v1, . . . , vd ∈ Σ+, and
strings u2, . . . , ud ∈ Σ∗ such that:

– For all 1 ≤ i ≤ d: si �= ci, and paths (si, vi, si), paths (si, vi, ci), and
paths (ci, vi, ci) are all non-empty.

– For all 2 ≤ j ≤ d: paths (cj−1, uj , sj) is non-empty.

We call the cycle on si a “seeding cycle” and the cycle on ci a “catching
cycle”. The states si and ci must be connected by the same string vi occurring
in the cycles. Note that the uj-strings can be empty, but the vi-strings cannot.
When a string uj is empty for some 2 ≤ j ≤ d, states cj−1 and sj must be the
same state. That is, there exists a state which is involved in a cycle on each of
the strings vj−1 and vj (which may be the same string).

214 C. Keeler and K. Salomaa

s1 c1 s2 . . . cd−1 sd cd
. . .

v1

v1

v1

u2

v2

v2 vd−1

vd−1

ud

vd

vd

vd

Fig. 2. Widget (ISPWd).

Lemma 2. An NFA A has string path width Ω(�d) if and only if A admits a
widget (ISPWd), for some d ∈ N.

Proof. Let A′ be obtained from A by making all of its states final. From [14] we
know that A′ has degree of ambiguity Ω(�d) iff A′ admits the widget (IDAd), and
the latter holds iff A admits the widget (ISPWd). For any string w, da(A′, w) =
spw(A,w). ��

An NFA’s string path width will be finite if and only if it does not admit a
widget (ISPW1).

Corollary 3. For an NFA A, spw(A) ∈ O(1) iff for all q, q′ ∈ Q and w ∈ Σ∗

such that q �= q′:

(i) |paths(q, w, q)| ≤ 1,
(ii) (|paths(q, w, q)| = 1 and |paths(q′, w, q′)| = 1) implies |paths(q, w, q′)| = 0.

Lemma 2 implies that an NFA A has tree width Θ(�d) exactly when A admits
a widget (ISPWd), but does not admit a widget (ISPWd+1).

For an NFA A, the ambiguity and string path width of A on a particular
string, or on strings of given length, can be very different, even assuming that
A has no useless states. For example, if spw(A, �) �= 0, the string path width of
A on all lengths 1, . . . , � − 1 must be positive. On the other hand, it is possible
that da(A, �) = 0 and da(A, � + 1) �= 0.

However, as a consequence of Lemma 2 and [14], we see that, for NFAs
without useless states, the polynomial growth rates of ambiguity and string
path width must coincide. Note that when A has no useless states, an (ISPWd)
widget is also an (IDAd) widget.

Corollary 4. If A is an NFA without useless states, then spw(A, �) ∈ Θ(�d) if
and only if da(A, �) ∈ Θ(�d), for d ∈ N.

To characterize polynomial tree width, we define a new widget, (ITWd),
which is the same as (ISPWd), except:

(i) For the“last state” cd we remove the condition that |paths(cd, vd, cd)| > 0.
That is, the final “catching loop” on state cd does not need to be present.

(ii) For the final pair of states we modify the condition |paths(sd, vd, cd)| > 0 to
be |δ(sd, a)| > 0 instead, where a is the first letter of vd. That is, the state
sd with the final “seeding loop” only needs a nondeterministic transition on
the first symbol of vd.

Nondeterminism Measures 215

q0 s1 c1 s2 . . . cd−1 sd cd
. . .

v1

v1

v1

u2

v2

v2 vd−1

vd−1

ud

vd

a

Fig. 3. Widget (ITWd). The letter a must be the first symbol in vd.

We give a visual abstraction of these alterations in Fig. 3 (cf. Fig. 2).
Next we establish the correctness result for our new criterion.

Lemma 5. An NFA A has tree width Ω(�d), d ∈ N, if and only if A admits a
widget (ITWd).

Proof. Suppose that A has tree width Ω(�d). By Lemma 1, the completion of
A, ̂A, has string path width Ω(�d) and hence by Lemma 2, ̂A admits the widget
(ISPWd). Since si �= ci for i = 1, . . . , d, none of the states si 1 ≤ i ≤ d, or cj ,
1 ≤ j ≤ d − 1 can be the sink state of ̂A because the only state reachable from
the sink state is itself. Thus, in the widget (ISPWd) of ̂A, only the state cd may
be the sink state and all transitions “before” entering cd must exist also in the
original NFA A. This means that A admits (ITWd).

Conversely, assume that A admits a widget (ITWd) and let ̂A be the com-
pletion of A. Using the notation of Fig. 3, denote vd = a · v′

d, a ∈ Σ, and choose
p ∈ δ(cd, v

′
d), that is, p is reached from the state sd on string vd and first making

the transition to state cd. If p = sd, the NFA A has exponential tree width (cf.
Sect. 3.2) and we are done. Thus, we can assume p �= sd. Since ̂A has no unde-
fined transitions, there exist i, k ≥ 1 and a state r of ̂A such that r ∈ δ′(p, vi

d)
and r ∈ δ′(r, vk

d). Choose 0 ≤ m < k such that

1 + i + m ≡ 0 (mod k).

In the cycle from r to r on string vk
d , let t be the state reached by vm

d . Now
the state t can be reached from sd on string v1+i+m

d and paths(t, vk
d , t) �= ∅.

Since 1 + i + m is a multiple of k, the (ITWd) widget can be completed to an
(ISPWd) widget as follows (Fig. 4):

q0 . . . sd t

v1+i+m
d

v1+i+m
d

v1+i+m
d

Fig. 4. Completing the (ITWd) widget to a (ISPWd) widget.

Thus, by Lemma 2, ̂A has string path width Ω(�d). By Lemma 1, tw(A, �) ∈
Ω(�d). ��

216 C. Keeler and K. Salomaa

Again, Lemma 5 implies that tw(A, �) ∈ Θ(�d) exactly when A admits a
widget (ITWd) and does not admit a widget (ITWd+1).

Intuitively, tree width and string path width can seem very different measures
because the former counts all computations while the latter counts only complete
computations. As a consequence of Lemmas 2 and 5, we see that the degrees of
polynomials bounding the growth rate of, respectively, the tree width and the
string path width of an NFA differ by at most one.

Theorem 6. Let A be an NFA and d ∈ N.

(i) If spw(A, �) ∈ Θ(�d), then tw(A, �) is in Θ(�d) or in Θ(�d+1).
(ii) If tw(A, �) ∈ Θ(�d), then spw(A, �) is in Θ(�d) or in Θ(�d−1).

From the characterization of Lemmas 2 and 5 it follows also that, for all d ∈
N, there exists an NFA A such that spw(A, �) ∈ Θ(�d) and tw(A, �) ∈ Θ(�d+1).

To conclude this section we observe that the criteria (ISPWd) and (ITWd)
yield lower bounds for the number of states or the number of transitions of an
NFA having polynomial string path (or tree) width.

Proposition 7. Let A = (Q,Σ, δ, q0, F) be an NFA and d ∈ N.

(i) If tw(A, �) ∈ Θ(�d), then 1 ≤ d < |Q|, and 2 · d ≤ |δ|.
(ii) If tw(A, �) ∈ Θ(�d), and L(A) = w∗, w ∈ Σk, k ∈ N, then

1 ≤ (d · k) + 1 ≤ |Q| and d · (k + 1) ≤ |δ|.

Furthermore, in case (i) (respectively, in case (ii)) there exists an NFA A such
that d = |Q| − 1 and 2 · d = |δ| (respectively, d · k + 1 = Q and d · (k + 1) = |δ|).

3.2 Exponential Growth

In the following A = (Q,Σ, δ, q0, F) is again always an NFA. If NFA A complies
with (EDA) (see Fig. 5), then it has exponential ambiguity [14]. This condition
requires that for some state q there exist two distinct paths from q to q with the
same underlying string.

(EDA): There exists a co-reachable state q ∈ Q and a string w ∈ Σ∗ such that
|paths(q, w, q)| ≥ 2.

The difference between ambiguity and string path width is that the latter
measure does not require computations to be accepting. Based on this observa-
tion, we can formulate the widget (ECOMP) to characterize exponential string
path width, and the correctness of (ECOMP) is verified in Lemma 8.

In the definition of the widget (EDA) or (ECOMP) the string w must have
a length of at least two because there can be only one path from q to q on an
individual alphabet symbol. Since the cycles must have a length of at least two,
it follows immediately that an NFA admitting widget (ECOMP) has to admit
(ISPWd) for all d ∈ N (as should be the case).

Nondeterminism Measures 217

q. . .

w

w

. . .

(a) Widget (EDA)

q. . .

w

w

(b) Widget (ECOMP)

Fig. 5. Exponential nondeterminism growth rate widgets.

(ECOMP): There exists a state q ∈ Q and a string w ∈ Σ∗ such that
|paths(q, w, q)| ≥ 2.

Lemma 8. An NFA A satisfies (ECOMP) if and only if spw(A, �) ∈ 2Θ(�).

An NFA has exponential tree width if and only if it has exponential string
path width. The “if”-direction of the following proposition is proved by applying
Lemma 8 to the completion of the NFA.

Proposition 9. Let A be an NFA. Then A has exponential tree width if and
only if A has exponential string path width.

4 Algorithms for Deciding the Growth Rate

From Theorem 6, we know that there is a relationship between the polynomial
degrees of an NFA’s string path width and tree width. An algorithm which
decides the polynomial degree of an NFA’s string path width or tree width,
roughly speaking, also decides the degree of the other measure.

Palioudakis et. al [11] have shown that for an NFA A we can decide in
polynomial time whether A has finite tree width, but did not give a more precise
time bound for the algorithm.

Theorem 10. Let A = (Q,Σ, δ, q0, F) be an NFA. Then we can decide whether
or not A has finite tree width in O(|Q|4 · |Σ|) time.

Proof. For q ∈ Q and a ∈ Σ, we denote Aq,a = (Q,Σ, δq,a, q, F) where the
transitions are defined for p ∈ Q, b ∈ Σ,

δq,a(p, b) =

{

∅, if p = q and b �= a;
δ(p, b), otherwise.

(1)

In Algorithm 1, for states q and p of an NFA, the distance from q to p is the
length of the shortest nonempty string that takes q to p. If p is not reachable

218 C. Keeler and K. Salomaa

Algorithm 1 Deciding if an NFA has finite tree width
Input: A = (Q, Σ, δ, q0, F)
Output: finite ∈ {true, false}

1: for all q ∈ Q do
2: for all a ∈ Σ do
3: Create Aq,a = (Q, Σ, δq,a, q, F) as in (1).
4: Create the distance matrix Mq,a[p, p′], where Mq,a[p, p′] is the minimum dis-

tance from state p ∈ Q to state p′ ∈ Q in the NFA Aq,a.
5: end for
6: end for
7: finite = true
8: for all q ∈ Q do
9: for all a ∈ Σ do

10: if Mq,a[q, q] �= ∞ then #q can reach itself starting with a
11: if |δ(q, a)| ≥ 2 then #q is a nondeterministic branching point
12: finite = false
13: end if
14: end if
15: end for
16: end for
17: return finite

from q, then the distance is ∞. The distance from q to itself is ∞ unless q is
involved in a cycle.
Complexity analysis of Algorithm 1: Creating each NFA takes O(|Q| + |δ|) time
and space, and creating each distance matrix takes Θ(|Q|3) time and Θ(|Q|2)
space using the Floyd-Warshall reachability algorithm [1]. There are |Q| · |Σ|
NFAs Aq,a and matrices which are created. In lines 8–16, we again check each
combination of state and character, but the inner work on lines 10–14 is done
in constant time with the help of the reachability matrices. The algorithm then
runs in O(|Q|4 · |Σ|) time.
Correctness analysis of Algorithm 1: Recall that an NFA has infinite tree width
if and only if some cycle has a nondeterministic transition. The diagonal of
each distance matrix gives the self-reachability for each combination of state
and character. That is, for all q ∈ Q and a ∈ Σ, Mq,a[q, q] �= ∞ means that
q can reach itself in A on a string that begins with a. The algorithm returns
false (“unbounded tree width”) if and only if there exists a state q ∈ Q and
character a ∈ Σ such that Mq,a[q, q] �= ∞ and |δ(q, a)| ≥ 2. ��

Note that while Algorithm 1 could be modified to decide finiteness of string
path width, its complexity would be worse than existing algorithms [14]. This is
because the algorithm checks only for nondeterministic characters that initiate
cycles, and does not check for strings across cycles.

To design efficient decision algorithms for deciding the growth rate of an
NFA’s tree width, we leverage existing algorithms [9,14] for deciding the growth
rate of ambiguity.

Nondeterminism Measures 219

Lemma 11. [modified from [14]] Let A = (Q,Σ, δ, q0, F) be an NFA. Then we
can decide whether or not A’s tree width is exponential in O(|Q|4 · |Σ|) time.

Using Algorithm 1 and Lemma 11, we can decide whether the growth rate
of tree width of A is finite or exponential, and the remaining possibility is
polynomial.

Corollary 12. For an NFA A = (Q,Σ, δ, q0, F), we can decide whether A’s tree
width is finite, polynomial, or exponential in O(|Q|4 · |Σ|) time.

Using another algorithm by Weber and Seidl [14], we can also determine the
minimum degree of the polynomial bounding an NFA’s tree width.

Proposition 13. [modified from [14]] For an NFA A = (Q,Σ, δ, q0, F) we can
decide in O(|Q|6 · |Σ|) time whether A’s tree width is polynomial, and if so, the
degree d > 0 such that tw(A, �) ∈ Θ(�d).

5 State Complexity

It is known that unambiguous NFAs may be significantly more succinct than
finite tree width NFAs [11]. Since string path width lies in between the measures
of ambiguity and tree width, we initiate here a descriptional complexity com-
parison of NFAs with finite string path width and finite tree width, respectively.
We show that there exist finite string path width NFAs with m states such that
an equivalent finite tree width NFA needs close to 2m states.

Goldstine et al. [2] establishes that for certain regular languages an NFA with
finite branching has to be as large as a DFA. Instead of the branching measure [2]
the below lemma considers tree width.

Lemma 14. [modified from [2]] Let L ⊆ Σ∗ be a regular language and c �∈ Σ.
If A is a finite tree width NFA for (cLc)∗, then A needs as many states as the
minimal incomplete DFA for (cLc)∗.

Let Σ = {a, b, c} and for m ∈ N define

Lm = (a + b)∗a(a + b)m.

Set Qm = {0, 1, . . . ,m + 2} and define Am = (Qm, Σ, δ, 0, {0}) where δ is
defined by setting:

(i) δ(0, c) = {1}, δ(m + 2, c) = {0},
(ii) δ(1, a) = {1, 2}, δ(1, b) = {2},
(iii) δ(i, z) = {i + 1}, z ∈ {a, b}, 2 ≤ i ≤ m + 1.

All transitions not defined above are undefined. Figure 6 depicts the NFA Am

and it is clear that L(Am) = (cLmc)∗.

220 C. Keeler and K. Salomaa

1

0

2 3 . . . m+ 1 m+ 2

c

a

a, b

a, b a, b a, b a, b

c

Fig. 6. NFA Am recognizing the language (cLmc)∗.

Lemma 15. spw(Am) = m + 2.

It is well known that the minimal DFA Bm for Lm has 2m+1 states—the DFA
Bm just remembers the positions of symbols a among the last m + 1 symbols
read. Based on Bm it is easy to construct an incomplete DFA Cm for (cLmc)∗ by
adding a new start state qnew that is the sole accepting state of Cm, a transition
on c from qnew to the start state of Bm and a transition on c from each accepting
state of Bm to qnew. The DFA Cm has 2m+1 + 1 states.

Next using Lemma 14 we show that any finite tree width NFA for (cLmc)∗

needs 2m+1 + 1 states.

Lemma 16. A finite tree width NFA recognizing the language (cLmc)∗ needs
2m+1 + 1 states, m ≥ 1.

Proof. We claim that all strings of K = {ε, b} ∪ c · {a, b}m+1 belong to dis-
tinct congruence classes of ≡(cLmc)∗ . The empty string is inequivalent to all
other strings of K because ε is the only string of K in (cLmc)∗. The string b is
inequivalent to all other string of K because it is the only string of K that is
not a prefix of any string of (cLmc)∗.

Consider two distinct strings w1, w2 ∈ c · {a, b}m+1. Since w1 �= w2 and both
strings have length m + 2, without loss of generality we can write

w1 = cuav1, w2 = cubv2, where |v1| = |v2|, u, v1, v2 ∈ {a, b}∗.

This means that w1 · bm−|v1|c ∈ (cLmc)∗ and w2 · bm−|v1|c �∈ (cLmc)∗.
The above means that the minimal complete DFA for (cLmc)∗ has (at least)

2m+1 + 2 states, and hence the minimal incomplete DFA for (cLmc)∗ needs
2m+1 + 1 states. The claim follows from Lemma 14. ��

As a consequence of Lemmas 15 and 16 we have:

Theorem 17. For m ≥ 1 there exists an (m + 3)-state NFA with finite string
path width such that any equivalent finite tree width NFA needs 2m+1 + 1 states.

Note that Lemma 14 uses the language (cLc)∗, while it seems that the same
claim should hold also for (Lc)∗ and using the latter language would slightly

Nondeterminism Measures 221

improve the state complexity blow-up of Theorem 17. However, we have not been
able to modify the original construction from [2] (that is needed for Lemma 14)
to work with the simpler language. We can note that the NFA Am is also unam-
biguous. The size blow-up given by Theorem 17 is slightly worse than the known
blow-up of converting an unambiguous NFA to a finite tree width NFA [11].

6 Conclusion

As the main result we have shown that the tree width of an NFA A grows
polynomially if and only if the string path width of A is polynomial and the
degrees of the polynomials differ by at most one. Furthermore, if A has no
useless states then the degree of the polynomial growth rate of string path width
coincides with the degree of the polynomial bounding the ambiguity of A. We
have also initiated a descriptional complexity comparison of NFAs with finite
string path width and finite tree width, respectively.

A topic for further research could include the descriptional complexity com-
parison of NFAs with different growth rates of tree width (respectively, string
path width). For example, it is known that the size of NFAs with polynomial
ambiguity is exponentially separated from the size of general NFAs [5,9].

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

2. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in
regular languages. Inf. Comput. 86(2), 179–194 (1990)

3. Han, Y.S., Salomaa, A., Salomaa, K.: Ambiguity, nondeterminism and state com-
plexity of finite automata. Acta Cybern. 23(1), 141–157 (2017)

4. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata - a survey. Inf. Comput. 209(3), 456–470 (2011). https://doi.org/10.
1016/j.ic.2010.11.013

5. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communi-
cation complexity method for measuring nondeterminism in finite automata. Inf.
Comput. 172(2), 202–217 (2002). https://doi.org/10.1006/inco.2001.3069

6. Keeler, C., Salomaa, K.: Branching measures and nearly acyclic NFAs. In:
Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 202–213.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 16

7. Keeler, C., Salomaa, K.: Cycle height of finite automata. In: Konstantinidis, S.,
Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 200–211. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94631-3 17

8. Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal
languages. Bull. EATCS 111, 70–86 (2013)

9. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

10. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found.
Comput. Sci. 16(5), 975–984 (2005)

https://doi.org/10.1016/j.ic.2010.11.013
https://doi.org/10.1016/j.ic.2010.11.013
https://doi.org/10.1006/inco.2001.3069
https://doi.org/10.1007/978-3-319-60252-3_16
https://doi.org/10.1007/978-3-319-94631-3_17

222 C. Keeler and K. Salomaa

11. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs.
J. Autom. Lang. Comb. 17(2–4), 245–264 (2012)

12. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata
to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282
(1989). https://doi.org/10.1137/0218083

13. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge (2008)

14. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Com-
put. Sci. 88(2), 325–349 (1991). https://doi.org/10.1016/0304-3975(91)90381-B

https://doi.org/10.1137/0218083
https://doi.org/10.1016/0304-3975(91)90381-B

Descriptional Complexity of Iterated
Uniform Finite-State Transducers

Martin Kutrib1, Andreas Malcher1, Carlo Mereghetti2(B) ,
and Beatrice Palano3

1 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,andreas.malcher}@informatik.uni-giessen.de

2 Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano,
Via Celoria 16, 20133 Milano, Italy

carlo.mereghetti@unimi.it
3 Dipartimento di Informatica “G. degli Antoni”, Università degli Studi di Milano,

Via Celoria 18, 20133 Milano, Italy
palano@unimi.it

Abstract. We introduce the deterministic computational model of an
iterated uniform finite-state transducer (iufst). A iufst performs the
same length-preserving transduction on several left-to-right sweeps. The
first sweep takes place on the input string, while any other sweep pro-
cesses the output of the previous one. The iufst accepts or rejects upon
halting in an accepting or rejecting state along its sweeps. First, we focus
on constant sweep bounded iufsts. We study their descriptional power
vs. deterministic finite automata, and the state cost of implementing lan-
guage operations. Then, we focus on non-constant sweep bounded iufsts,
showing a nonregular language hierarchy depending on sweep complex-
ity. The hardness of some classical decision problems on constant sweep
bounded iufsts is also investigated.

Keywords: Iterated transducers · State complexity ·
Sweep complexity · Decidability

1 Introduction

Finite-state transducers are finite automata with an output and they have been
studied at least since 1950s. A typical application of finite-state transducers is,
for example, the lexical analysis of a computer program or an XML document.
Here, the correct formatting of the input is verified, comments are removed, the
correct spelling of the commands is checked, and the sequence of input symbols
is translated into a list of tokens. The output produced is subsequently processed
by a pushdown automaton that realizes the syntactic analysis. Another example
is the use of cascading finite-state transducers. Here, one has a finite number
of transducers T1, T2, . . . , Tn, where the output of Ti is the input for the next

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 223–234, 2019.
https://doi.org/10.1007/978-3-030-23247-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_17&domain=pdf
http://orcid.org/0000-0002-7778-7257
http://orcid.org/0000-0003-3948-4658
https://doi.org/10.1007/978-3-030-23247-4_17

224 M. Kutrib et al.

transducer Ti+1. Such cascades of finite-state transducers have been used, for
example, in [5] to extract information from natural language texts. On the other
hand, the Krohn-Rhodes decomposition theorem shows that every regular lan-
guage can be represented as the cascade of several finite-state transducers each
of which having a “simple” algebraic structure [7,8]. Cascades of deterministic
pushdown transducers are investigated in [4] and it is shown that a proper infinite
hierarchy in between the deterministic context-free and deterministic context-
sensitive languages exists with respect to the number of transducers applied. All
the examples considered so far have in common that the subsequently applied
transducers are, at least in principal, different transducers. Another point of
view is taken in [3,14], where subsequently applied identical transducers are
studied. Such iterated finite-state transducers are considered as language gener-
ating devices starting with some symbol in the initial state of the transducer,
iteratively applying in multiple sweeps the transducer to the output produced
so far, and eventually halting in an accepting state of the transducer after a
last sweep. These iterated finite-state transducers are quite powerful, since in
the nondeterministic case non-recursive languages can be generated where the
underlying transducer comprises of three states. Even in the deterministic case,
one state suffices to generate the class of D0L Lindenmayer systems and two
states are sufficient to generate languages which are neither context-free nor
in 0L. It is an essential feature that the underlying finite-state transducer is
not length-preserving. Several restrictions on finite-state transducers are studied
in [16] with respect to the question of whether the (arbitrary) iteration of the
restricted transducers is still computationally universal.

In this paper, we will consider iterated finite-state transducers as language
accepting devices. In addition, to have a simple device, the underlying trans-
ducer is considered to be a Mealy machine [15], that is, a deterministic length-
preserving device where each input symbol is translated according to its tran-
sition function into an output symbol. To be more precise, an iterated uniform
finite-state transducer (iufst) works in several sweeps on a tape which is initially
the input concatenated with a right endmarker. In every sweep the finite-state
transducer starts in its initial state at the first tape cell, is applied to the tape,
and prints its output on the tape. The input is accepted or rejected, if the trans-
ducer halts in an accepting or rejecting state.

We start our investigations of such devices having a fixed number k ≥ 1 of
sweeps. Since in this case the language accepted by a k-iufst is always a reg-
ular language, it is of interest to compare such devices with deterministic finite
automata (dfa) by investigating their descriptional complexity and the state cost
of implementing language operations. General information on descriptional com-
plexity can be found in the survey [10] and many results on the operational state
complexity are surveyed in [6]. In addition, the NL-completeness of commonly
considered decision problems on k-iufsts is pointed out.

We will also consider the case when the number of sweeps is not bounded
by a fixed finite number. In this case, the resulting iufsts can be considered
as restricted variants of one-tape Turing machines that iteratively sweep from
left to right, starting at the first tape cell always in their initial state. It turns

Descriptional Complexity of Iterated Uniform Finite-State Transducers 225

out that such devices can accept non-regular languages as soon as the number
of sweeps is at least the logarithm of the length of the input. Moreover, there
is a hierarchy depending on the number of sweeps and all commonly studied
decidability questions turn out to be not even semidecidable.

The paper is organized as follows. In Sect. 2, we present the model of iufsts,
and provide an example of a language accepted by a constant sweep bounded
iufst, with a number of states which is exponentially smaller than that of
any equivalent dfa. In Sect. 3, we focus on the descriptional power of constant
sweep bounded iufsts (k-iufsts), providing example of languages where iter-
ated transduction either helps or does not help in reducing the number of states
of equivalent dfas. Section 4 is first devoted to study the optimal state cost
of simulations between k-iufsts and dfas. Next, the impact on the number of
states is studied, of modifying the number of sweeps on k-iufsts. The optimal
state cost of implementing Boolean language operations and reversal on k-iufsts
is investigated, and finally the NL-completeness of typical decision problems on
k-iufsts is proved. In Sect. 5, we consider non-constant sweep bounded iufsts.
First, we prove that o(lg n) sweep bounded iufsts accept regular languages
only, and show that such a logarithmic sweep lower bound is tight for nonreg-
ular acceptance. Next, we exhibit a nonregular language hierarchy with respect
to sweep complexity.

2 Definitions and Preliminaries

We denote the set of positive integers and zero {0, 1, 2, ...} by N. The reversal of
a word w is denoted by wR, and for the length of w we write |w|. The reversal of
a language L ⊆ Σ∗ is denoted by LR, its complement by L. By lg n we denote
the logarithm of n to base 2. Throughout the article two devices are said to be
equivalent if and only if they accept the same language.

An iterated uniform finite-state transducer is basically a deterministic finite-
state transducer which processes the input in multiple passes (also sweeps). In
the first pass it reads the input word followed by an endmarker and emits an
output word. In the following passes it reads the output word of the previous
pass and emits a new output word. It can be seen as a restricted variant of a
one-tape Turing machine. The number of passes taken, the sweep complexity,
is given as a function of the length of the input. Since here we are interested
in weak preprocessing devices, we will consider length-preserving deterministic
finite-state transducers, also known as Mealy machines.

Formally, we define an iterated uniform finite-state transducer (iufst) as a
system T = 〈Q,Σ,Δ, q0,�, δ, F+, F−〉, where Q is the set of internal states, Σ
is the set of input symbols, Δ is the set of output symbols, q0 is the initial state,
� ∈ Δ\Σ is the endmarker, F+ ⊆ Q is the set of accepting states, F− ⊆ (Q\F+)
is the set of rejecting states, and δ : Q×(Σ∪Δ) → Q×Δ is the transition function,
which is total on (Q \ (F+ ∪F−))× (Σ ∪Δ) and where the endmarker is emitted
only if it is read, i.e., there are no transitions δ(p, x) = (q,�) with x 	= �.
The iufst halts when the transition function is undefined (which may happen

226 M. Kutrib et al.

only for states from F+ ∪ F−) or if it enters an accepting or rejecting state
at the end of a sweep. Since the transducer is applied in multiple passes, i.e.,
in any but the initial pass it operates on the output of the previous pass, the
transition function depends on input symbols from Σ ∪ Δ. Let v ∈ Δ∗ be the
output produced by T on input w ∈ (Σ ∪ Δ)∗ in a complete sweep. Then we
denote v by T (w). A word w ∈ Σ∗ is accepted by an iufst T if there is an
r ≥ 1 such that w1 = T (w�),wi+1 = T (wi), 1 ≤ i < r, and the transducer T
halts on wr in an accepting state. That is, the initial input is a word over the
input alphabet Σ followed by the endmarker, and the output computed after r−1
iterations drives T in a final sweep where it halts in an accepting state. Similarly,
an input w ∈ Σ∗ is rejected by T if there is an r ≥ 1 such that T halts in the final
sweep on wr−1 in a rejecting state. Note that the output of the last sweep is not
used. The language accepted by T is L(T) = {w ∈ Σ∗ | w is accepted by T }.

Let s : N → N be a function. If any word of length n is accepted or rejected
in at most s(n) sweeps, the iufst is said to be of sweep complexity s(n). In this
case, we use the notation s(n)-iufst.

In order to clarify this notion we continue with an example.

Example 1. For k ≥ 1, we consider the language Ek = {a, b}∗b{a, b}k−1, whose
words are characterized by having the letter b at the kth position from the right.
Any deterministic finite automaton (dfa) needs at least 2k states to accept Ek.
The following k-iufst T = 〈Q,Σ,Δ, qa,�0, δ, F+, F−〉 accepts Ek with 3 states
only. Set Q = {qa, qb, q−}, Σ = {a, b}, Δ = {a, b,�0,�1, . . . ,�k−1}, F+ = {qb},
F− = {q−}, and specify the transition function as:

(1) δ(qa, a) = (qa, a)
(2) δ(qa, b) = (qb, a)
(3) δ(qa,�i) = (qa,�i+1),

for 0 ≤ i ≤ k − 2
(4) δ(qa,�k−1) = (q−,�k−1)

(5) δ(qb, a) = (qa, b)
(6) δ(qb, b) = (qb, b)
(7) δ(qb,�i) = (qa,�i+1),

for 0 ≤ i ≤ k − 2
(8) δ(qb,�k−1) = (qb,�k−1)

The basic idea of the construction is to shift symbol by symbol the input word
to the right (states qa and qb), whereby an a is inserted at the first position and
the last symbol is removed. In this way, in the first k − 1 sweeps the input is
shifted k − 1 positions to the right. Now it is sufficient to check whether the last
symbol is a b which is done in the last sweep. The number of the current sweep
is given by the index of the endmarker. �

3 Iterated Transductions vs. DFAs

As seen in Example 1, iterated transduction may lead to dramatically decrease
the number of states for accepting regular languages. Here, we propose another
family of languages showing the high descriptional power of k-iufst. For any
integer k ≥ 2, we define the language

Bk = { b1#b2# · · · #bm | bi ∈ {0, 1}k, m > 1, ∃i < m : bi = bm }.

For recognizing Bk on a dfa, 22
k+1 states are necessary and sufficient. Instead:

Descriptional Complexity of Iterated Uniform Finite-State Transducers 227

Theorem 2. For any k ≥ 2, the language Bk can be recognized by a 2k-iufst
with 2k(k + 4) states.

Proof. We informally explain the behaviour of a 2k-iufst T for Bk. At the first
sweep, T stores the first block b1 and “erase” any other occurrence of b1# by
replacing it with b1#d. In case b1 = bm, T accepts, otherwise it rewrites � by �1

to store the sweep number, and continues. At the ith sweep, T searches a non-
erased block to store, erases the occurrences of the stored block along the string,
and matches it against bm. If the stored block matches bm, T accepts, otherwise
it rewrites �i−1 with �i to record the sweep number, and continues. Clearly,
within 2k sweeps, T correctly accepts or rejects the input string. The number of
states of T is as follows: 2k+1 − 1 to store a block not yet checked in previous
sweeps, plus 2k(k + 2) states to perform matching with every subsequent block
along the string and to fix the outcome of matching, plus 1 state to continue the
computation when, by reading the endmarker, T realizes it is not the last sweep.
So, the total number of states is 2k+1 − 1 + 2k(k + 2) + 1 = 2k(k + 4). �

However, some languages are so hard that even iterated transduction cannot
reduce the size for their recognition. We are going to present a family of unary
languages for which using k-iufst does not help in reducing the number of states
of equivalent dfas. Let p be any prime number. We define

Lp = { am·p | m ≥ 0 }.

Theorem 3. Let k ≥ 1. Then p states are necessary and sufficient for a k-iufst
to accept Lp.

Proof. For the upper bound, consider the minimal dfa A for Lp, which has
exactly p states. The dfa A can be turned into a p-state k-iufst, as explained
in Lemma 6 below.

For the lower bound, suppose by contradiction there exists a k-iufst T
accepting Lp with x < p states. Consider an input string am·p, for m large
enough, accepted by T at the endmarker after exactly k sweeps (these accep-
tance requirements can be assumed without loss of generality).

Since the input is unary, in the first sweep T runs into a cycle of length,
say c1. Let β1 be the output produced while running through one cycle. Then
the input am·p is rewritten as α1,1β

∗
1γ1,1 with |β1| = c1 = x1 ≤ x < p, such

that T enters and exits the cycle on β1 in the same state. In the second sweep, T
eventually runs into a cycle of length, say c2, on processing β∗

1 . Since |β1| = x1,
we derive c2 = x2 ·x1, for some x2 ≤ x < p. Let β2 be the output produced while
running through one cycle. Then T rewrites β∗

1 as α2,1β
∗
2γ2,1 with |β2| = x2 ·x1,

and the current string after the second sweep has the form α1,2α2,1β
∗
2γ2,1γ1,2.

This process continues until the kth sweep, where T eventually runs into a cycle
of length, say ck, on processing β∗

k−1. Since |βk−1| = xk−1 ·xk−2 · · · x1, we derive
ck = xk · xk−1 · · · x1, for some xk ≤ x < p. Let βk be the output produced while
running through one cycle. Then T rewrites β∗

k−1 as αk,1β
∗
kγk,1 with |βk| =

xk · xk−1 · · · x1 and the current string w after the kth sweep has the form

α1,kα2,k−1 · · · αk,1β
�
kγk,1 · · · γ2,k−1γ1,k,

228 M. Kutrib et al.

for some � ≥ 1. Since the string w is accepted by T at the end of the kth
sweep, also the string α1,kα2,k−1 · · · αk,1β

�−1
k γk,1 · · · γ2,k−1γ1,k is accepted by T

at the end of the kth sweep. But |α1,kα2,k−1 · · · αk,1β
�−1
k γk,1 · · · γ2,k−1γ1,k| =

m · p− |βk| = m · p− ck. Since ck = xk ·xk−1 · · · x1 and the xi are all less than p,
and p is prime, m · p − ck cannot be a multiple of p. This means that T accepts
a string not in Lp, a contradiction. �

4 Descriptional Complexity

In this section, we approach in a more general way the study of the descriptional
power of k-iufst vs. dfas by providing general simulations between the two
models. First, we consider the cost of turning a k-iufst into an equivalent dfa:

Lemma 4. Let k > 0 be an integer. Every n-state k-iufst can be converted to
an equivalent dfa with at most nk states.

The result presented in Lemma 4 turns out to be optimal.

Lemma 5. There exists a family {Ln,k}n,k>0 of unary languages such that each
language Ln,k is accepted by an n-state k-iufst, whereas any equivalent dfa
needs at least nk states.

Proof. For any n, k > 0, we define Ln,k = { ac·nk | c ≥ 0 }.
The k-iufst T = 〈Q,Σ,Δ, q1,�0, δ, F+, F−〉 accepts Ln,k with n states only.

We set Q = {q1, q2, . . . , qn}, Σ = {a}, Δ = {a, 1, 2, . . . , n, n̄,�0,�1, . . . ,�k−1},
F+ = {qn}, F− = {q2, . . . , qn−1}, and specify the transition function as:

(1) δ(qi, σ) =
{

(qi+1, i) if σ ∈ {a, n}
(qi, i) if σ ∈ {1, 2, . . . , n − 1, n̄} for 1 ≤ i ≤ n − 1

(2) δ(qn, σ) =

⎧⎨
⎩

(q1, n) if σ ∈ {a, n}
(qn, n̄) if σ ∈ {1, 2, . . . , n − 1, n̄}
(q2, σ) if σ ∈ {�0,�1, . . . ,�k−1}

(3) δ(q1,�i) = (q1,�i+1) for 0 ≤ i ≤ k − 2
(4) δ(q1,�k−1) = (qn,�k−1)

The basic idea is that, along the first sweep, T checks whether the length of the
input string is a multiple of n by rewriting it as a sequence of consecutive blocks
of the form “12 · · · n”, followed by �1. For the second sweep, T checks whether
the length of the input string is a multiple of n2 by rewriting n consecutive blocks
“12 · · · n” with the block “1n 2n · · · (n − 1)n n̄n−1n”, followed by �2. For the
third sweep, T checks whether the length of the input string is a multiple of n3

by rewriting n consecutive blocks “1n 2n · · · (n − 1)n n̄n−1n” with the block
“1n2

2n2 · · · (n − 1)n2
n̄n2−1n”, followed by �3. Clearly, by Transition (4), the

input string can be accepted after the kth sweep only upon reading �k−1. In
this case, the length of the input is easily seen to be a multiple of nk.

The fact that nk states are necessary for a dfa to accept Ln,k follows from
a trivial pumping argument. �

Let us now focus on the opposite simulation, that is, dfas by k-iufst.

Descriptional Complexity of Iterated Uniform Finite-State Transducers 229

Lemma 6. For n ≥ 3, every n-state dfa can be converted into an equivalent
n-state k-iufst, with k ≥ 1.

Lemma 6 is stated for at least three states. For dfas with less than three
states, we can choose either to maintain the same number of states and perform
one sweep only, or to add a new state and perform k sweeps.

One may expect that the size of a k-iufst may always be decreased by
increasing the number of sweeps. However by Theorem 3, the construction pro-
vided by Lemma 6 is optimal.

4.1 States Versus Sweeps

Here we turn to study the impact of modifying the number of sweeps on the size
of iterated transducers. The possibility of trading states for input sweeps and vice
versa has been investigated in the literature for several models of computations
(see, e.g., [2,13]). Let us start with a simple observation on the minimal number
of states necessary to establish a sweep complexity of at least two.

Lemma 7. Let k ≥ 2 be an integer and T be some k-iufst with input alpha-
bet Σ. Unless T accepts the trivial languages ∅ or Σ∗, it has at least three states.

Proof. Let L(T) be non-trivial. Then there are inputs that have to be accepted
as well as inputs that have to be rejected. To this end, two states are necessary.
On the other hand, T must not be in one of these two states at the end of the
first sweep. Otherwise it would halt and could not start the second sweep. So,
an additional state is necessary. �

Concerning the relations between the necessary number of states and the
number of sweeps we have the following situation: Theorem 3 shows that there
are languages for which additional sweeps do not help to decrease the number
of states at all. By Lemma 4, any n-state k-iufst can be converted into an
equivalent dfa with at most nk states. Conversely, due to Lemma 7 we cannot
reduce the number of states below three by increasing the number of sweeps.
So, there is an upper bound for the number of sweeps that may help. In other
words, for any regular language L we have a fixed sweep range from 1 to some kL

in which we can trade states for sweeps and vice versa. For example, the sweep
range for language Lp of Theorem 3 is given by kLp

= 1, that is, it is just
one sweep. In general, the next theorem gives a lower bound for the number of
necessary states when one sweep is omitted.

Theorem 8. Let k ≥ 2 and n ≥ 3 be integers, and T be an n-state k-iufst such
that the minimal dfa for L(T) has nk states. Then any (k − 1)-iufst for L(T)
must have at least �nk/k−1� states.

Proof. Assume a (k−1)-iufst T ′ for L(T) with strictly less than �nk/k−1� states.
If nk/k−1 is an integer, this means at most nk/k−1 − 1 states. So, by Lemma 4,
we could construct from T ′ a dfa for L(T) with at most (nk/k−1 − 1)k−1 < nk

230 M. Kutrib et al.

states, a contradiction. Similarly, if nk/k−1 is not an integer, we have at most
�nk/k−1� states. Again, by Lemma 4, we could construct a dfa accepting L(T)
with (�nk/k−1�)k−1 < nk states, a contradiction. �
Example 9. For k ≥ 2 and n ≥ 3, let us consider the language Ln,k of Lemma 5,
where an n-state k-iufst accepting Ln,k is constructed. Moreover, we noticed
that the minimal dfa for Ln,k has nk states. So, any (k − 1)-iufst T ′ accept-
ing Ln,k has at least �nk/k−1� states. �

Theorem 8 shows that omitting one sweep in the sweep range may increase
the number of necessary states. However, once we have this increased number of
states, the next question is whether this number of states can be used to decrease
the number of sweeps furthermore for free. For example, assume that we have a
3-state 16-iufst. Then Theorem 8 says that any equivalent 15-iufst needs at
least 4 states. However, since 414 is still greater than 316, four states could be
enough to reduce the number of sweeps by two. The next theorem provides a
gradual reduction of the number of sweeps and the necessary states exemplarily
for the language Ek = {a, b}∗b{a, b}k−1 of Example 1.

Theorem 10. Let � ≥ 1 and k = 2� be integers. Then the useful sweep range
for language Ek is from 1 to 2�. Moreover, for any i ∈ {0, 1, . . . , � − 1} there
is a 2i-iufst accepting Ek with 22

�−i

states, and for i = � there is a 2i-iufst
accepting Ek with 3 states.

Proof. For i = 0 the assertion follows since, in this case, we have a one-sweep
iufst which needs as many states as a dfa to accept Ek, i.e., 22

�

states as
claimed. For i = �, the assertion follows immediately from the construction of
Example 1. For the remaining cases we modify the construction of Example 1 as
follows. Instead of shifting the input k times by one position to the right, now we
shift it 2i times by 2�−i positions to the right. Since 2i ·2�−i = 2� = k, altogether
it is shifted again k positions to the right, so the construction does it. To shift
the input by 2�−i positions, 22

�−i

states are necessary. For i = �, Lemma 7 gives
the lower bound of three states, where one state is needed to start a new sweep.
For i < �, there are enough states to be used to this purpose, i.e., that are neither
accepting nor rejecting and can be entered upon reading the endmarker. �

4.2 The State Cost of Language Operations on k-IUFSTs

As naturally done for many models of computation accepting regular languages
(see, e.g., [1]), we now analyze the state complexity of language operations on
k-iufsts. To this aim, we asssume that their transition functions are always
defined, so that acceptance/rejection takes place on the endmarker only, at the
jth sweep, for some 1 ≤ j ≤ k. If not, transition functions can be easily com-
pleted by adding at most two states where we maintain the accept or reject
outcome obtained in the middle of the input, while reaching the endmarker.

Let us start with Boolean operations. The first we consider is intersection:

Descriptional Complexity of Iterated Uniform Finite-State Transducers 231

Theorem 11. Let m,n, k ≥ 1 be integers, T1 be an m-state k-iufst and T2

be an n-state k-iufst. Then m · n states are sufficient for a k-iufst to accept
L(T1) ∩ L(T2).

The cost of implementing intersection given in Theorem 11 is optimal, as
proved in the following

Theorem 12. Let k ≥ 1 be an integer. There exist infinitely many integers
m,n > 1 such that an m-state k-iufst T1 and an n-state k-iufst T2 can be
built, for which m · n states are necessary to accept L(T1) ∩ L(T2) on a k-iufst.

Proof. Let m and n be co-prime, that is, gcd(m,n) = 1. As explained in the proof
of Lemma 5, the languages Lm,k and Ln,k can be accepted, respectively, by an
m-state k-iufst T1 and n-state k-iufst T2. Since m and n are co-prime, we have
that L(T1) ∩ L(T2) = Lm·n,k. This latter language cannot be accepted with less
than m·n states on any k-iufst T . Otherwise, by applying to T the construction
in Lemma 4, we would obtain a dfa for Lm·n,k with less than (m · n)k states,
which is a contradiction. �

Complementing languages does not increase the size of k-iufst:

Theorem 13. Let k, n ≥ 1 be integers and T be an n-state k-iufst. Then n
states are sufficient and necessary in the worst case for a k-iufst to accept L(T).

Proof. For the size upper bound, it is enough to switch accepting and rejecting
states on T , thus obtaining an n-state k-iufst for L(T). For the size lower
bound, consider the language Ln,k in the proof of Lemma 5. As pointed out,
such a language has a minimal dfa with nk states. Suppose, by contradiction,
that Ln,k can be accepted by a k-iufst M with m < n states. By using on M the
switching technique above, an m-state k-iufst M ′ is obtained for Ln,k = Ln,k.
Now, by Lemma 4, M ′ can be turned into an equivalent dfa with mk < nk

states, a contradiction. �
Finally, we focus on union of languages. We obtain a cost similar to imple-

menting intersection.

Theorem 14. Let m,n, k ≥ 1 be integers, T1 be an m-state k-iufst and T2 be
an n-state k-iufst. Then m · n states are sufficient and necessary in the worst
case for a k-iufst to accept L(T1) ∪ L(T2).

Proof. The size upper bound follows from the upper bounds for intersection and
complementation by De Morgan’s laws.

For the size lower bound, assume by contradiction that less than m ·n states
are sufficient to implement union on k-iufst. Consider the languages Lm,k

and Ln,k with co-prime m and n, used in Theorem 12 to show the optimal-
ity of the cost m · n of intersection on k-iufst. Clearly, we have Lm,k ∩ Ln,k =
Lm,k ∪ Ln,k. By Theorem 13, for Lm,k and Ln,k, respectively, m and n states are
sufficient on a k-iufst. Yet, by our absurdum assumption, less than m ·n states

232 M. Kutrib et al.

are sufficient to accept their union. In turn, again by Theorem 13, complement-
ing the union language can be done with less than m · n states on a k-iufst.
This contradicts Theorem 12. �

Let us conclude this section by discussing the cost of performing reversal on
k-iufst:

Theorem 15. Let k, n ≥ 1 be integers and T be an n-state k-iufst. Then 2nk

states are sufficient and at least 2
nk

k2k states are necessary in the worst case for
a k-iufst to accept L(T)R.

Proof. For the state upper bound, we transform T into an equivalent nk-state
dfa A according to Lemma 4. Next, by standard construction [17], A can be
turned into a 2nk

-state dfa A′ for L(A)R = L(T)R. Finally, by Lemma 6, the
dfa A′ can be simulated by a 2nk

-state k-iufst.
For the state lower bound, let the language Cn,k =

⋃
c>0{a, b}c·nk−1b{a, b}∗.

The minimal dfa for Cn,k
R has at least 2nk

states, which means, by Lemma 4,
that any k-iufst for Cn,k

R must have at least 2nk/k states. By suitably adapting
the k-iufst for the language Ln,k provided in the proof of Lemma 5, we can
obtain a 2n-state k-iufst for Cn,k. Whence, the claimed result follows. �

4.3 Decidability Questions for k-IUFSTs

In this subsection, we obtain that all commonly studied decidability questions
for k-iufsts are NL-complete So, for k-iufsts the questions of testing emptiness,
universality, finiteness, infiniteness, inclusion, or equivalence have the same com-
putational complexity as for dfas [11,12].

Theorem 16. Let k ≥ 1 be an integer. Then for k-iufsts the problems of testing
emptiness, universality, finiteness, infiniteness, inclusion, and equivalence are
NL-complete.

5 Hierarchy of Non-constant Sweep Complexities

We turn to consider s(n)-iufsts where s(n) is a non-constant function. Since
for any constant k ≥ 1 any k-iufst accepts a regular language, the first natural
question is the following: “How many sweeps are necessary to cross the edge to
non-regularity?” The answer is that there is no sublogarithmic sweep complexity
that gives an iufst the power to accept a non-regular language.

Proposition 17. Let s(n) ∈ o(lg n). The language accepted by any s(n)-iufst
is regular.

Proof. From a given s(n)-iufst T , it is not hard to construct an equivalent one-
tape Turing machine M with time complexity 2n · s(n). It is shown in [9] that
any one-tape Turing machine with a time complexity of order o(n lg n) accepts
a regular language. Since s(n) ∈ o(lg n), the time complexity of M is of order
o(n lg n) and, thus, L(M) = L(T) is regular. �

Descriptional Complexity of Iterated Uniform Finite-State Transducers 233

In fact, the gap between constant and ‘useful’ non-constant sweep complex-
ities ends at a logarithmic level. The witness language given by the following
lemma is even unary and non-context-free.

Lemma 18. The non-context-free unary language Luexpo = { a2k | k ≥ 0 } is
accepted by a six-state s(n)-iufst with s(n) ∈ O(lg n).

Next, we turn to extend the sweep complexity hierarchy beyond the loga-
rithm. To this end, we consider sweep complexities of order O(

√
n). The goal is

to show that there is a language accepted by some s(n)-iufst with s(n) ∈ O(
√

n)
that cannot be accepted by any s(n)-iufst with s(n) ∈ o(

√
n).

Lemma 19.
(1) The copy language with center markers Lcpc = {w$mw | w ∈ {a, b}∗,m ≥ 1 }
is accepted by an s(n)-iufst with s(n) ∈ O(n).
(2) The copy language with single marker {w$w | w ∈ {a, b}∗ } is accepted by
an s(n)-iufst with s(n) ∈ O(n).
(3) Let Σ1 be an alphabet not containing the symbol $ and Σ2 be an arbitrary
alphabet. Then language Leq = {u$v | u ∈ Σ∗

1 , v ∈ Σ∗
2 , and |u| = |v| } is

accepted by some s(n)-iufst with s(n) ∈ O(n).

The second ingredient to show that there is a language accepted by some
s(n)-iufst with s(n) ∈ O(

√
n) that cannot be accepted by any s(n)-iufst with

s ∈ o(
√

n) is the acceptance of a language whose word length are quadratic.

Lemma 20. The language Lsqr = { #am−1#am−2 · · · #a1# | m ≥ 0 } is accepted
by an s(n)-iufst with s(n) ∈ O(

√
n).

Now we are prepared to provide the witness language

Lcpsq = {w$w#am−1#am−2 · · · #a1# | m ≥ 0, w ∈ {a, b}m−1 }.

Theorem 21. The language Lcpsq is accepted by an s(n)-iufst with s(n) ∈
O(

√
n).

To show that the witness language Lcpsq is not accepted by any s(n)-iufst
with s(n) ∈ o(

√
n), we use Kolmogorov complexity and incompressibility

arguments.

Theorem 22. The language Lcpsq cannot be accepted by any s(n)-iufst with
s(n) ∈ o(

√
n).

Finally, the sweep complexity hierarchy can be extended beyond the square
root. By Lemma 19 we know already that the copy language with center mark-
ers Lcpc = {w$mw | w ∈ {a, b}∗,m ≥ 1 } is accepted by an s(n)-iufst with
s(n) ∈ O(n). The following theorem separates this level of the sweep complexity
hierarchy from the one induced by s(n) ∈ O(

√
n):

Theorem 23. The copy language with center markers Lcpc cannot be accepted
by any s(n)-iufst with s(n) ∈ o(n).

Acknowledgements. The authors wish to thank the anonymous referees for useful
and kind comments.

234 M. Kutrib et al.

References

1. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The size-cost of Boolean
operations on constant height deterministic pushdown automata. Theor. Comput.
Sci. 449, 23–36 (2012). https://doi.org/10.1016/j.tcs.2012.05.009

2. Bianchi, M.P., Mereghetti, C., Palano, B.: Complexity of Promise Problems on
Classical and Quantum Automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.)
Computing with New Resources. LNCS, vol. 8808, pp. 161–175. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13350-8 12

3. Bordihn, H., Fernau, H., Holzer, M., Manca, V., Mart́ın-Vide, C.: Iterated sequen-
tial transducers as language generating devices. Theor. Comput. Sci. 369(1–3),
67–81 (2006). https://doi.org/10.1016/j.tcs.2006.07.059

4. Citrini, C., Crespi-Reghizzi, S., Mandrioli, D.: On deterministic multi-pass analysis.
SIAM J. Comput. 15(3), 668–693 (1986). https://doi.org/10.1137/0215049

5. Friburger, N., Maurel, D.: Finite-state transducer cascades to extract named enti-
ties in texts. Theor. Comput. Sci. 313(1), 93–104 (2004). https://doi.org/10.1016/
j.tcs.2003.10.007

6. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
J. Autom. Lang. Comb. 21(4), 251–310 (2017)

7. Ginzburg, A.: Algebraic Theory of Automata. Academic Press (1968)
8. Hartmanis, J., Stearns, R.E.: Algebraic Structure Theory of Sequential Machines.

Prentice-Hall (1966)
9. Hartmanis, J.: Computational complexity of one-tape turing machine computa-

tions. J. ACM 15(2), 325–339 (1968). https://doi.org/10.1145/321450.321464
10. Holzer, M., Kutrib, M.: Descriptional complexity - an introductory survey. In:

Mart́ın-Vide, C. (ed.) Scientific Applications of Language Methods, pp. 1–58. Impe-
rial College Press (2010)

11. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Com-
put. System Sci. 11(1), 68–85 (1975)

12. Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time.
Theor. Comput. Sci. 3(1), 105–117 (1976)

13. Malcher, A., Mereghetti, C., Palano, B.: Descriptional complexity of two-way push-
down automata with restricted head reversals. Theor. Comput. Sci. 449, 119–133
(2012). https://doi.org/10.1016/j.tcs.2012.04.007

14. Manca, V.: On the generative power of iterated transductions. In: Ito, M., Paun,
G., Yu, S. (eds.) Words, Semigroups, and Transductions - Festschrift in Honor of
Gabriel Thierrin, pp. 315–327. World Scientific (2001)

15. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34,
1045–1079 (1955). https://doi.org/10.1002/j.1538-7305.1955.tb03788.x

16. Pierce, A.: Decision problems on iterated length-preserving transducers. Bachelor’s
thesis, SCS Carnegie Mellon University, Pittsburgh (2011)

17. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theor. Comput. Sci. 320(2–3), 315–329 (2004)

https://doi.org/10.1016/j.tcs.2012.05.009
https://doi.org/10.1007/978-3-319-13350-8_12
https://doi.org/10.1016/j.tcs.2006.07.059
https://doi.org/10.1137/0215049
https://doi.org/10.1016/j.tcs.2003.10.007
https://doi.org/10.1016/j.tcs.2003.10.007
https://doi.org/10.1145/321450.321464
https://doi.org/10.1016/j.tcs.2012.04.007
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x

On Classes of Regular Languages Related
to Monotone WQOs

Mizuhito Ogawa1 and Victor Selivanov2,3(B)

1 Japan Advanced Institute of Science and Technology, Nomi, Japan
mizuhito@jaist.ac.jp

2 A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russia
vseliv@iis.nsk.su

3 Kazan Federal University, Kazan, Russia

Abstract. We study relationships of monotone well quasiorders to
regular languages and ω-languages, concentrating on decidability of the
lattices of upper sets on words and infinite words. We establish rather
general sufficient conditions for decidability. Applying these conditions
to concrete natural monotone WQOs, we obtain new decidability results
and new proofs of some known results.

Keywords: Regular language · Monotone WQO ·
Lattice of upper sets · Periodic extension · Decidability ·
Difference hierarchy

1 Introduction

In this work, we continue the study of relationships of well quasiorders (WQO)
to regular languages and ω-languages initiated in [2,12] and continued by several
people (see [8] and references therein for languages of finite words). In contrast
with these works, we concentrate on the lattices of languages of upper sets of
monotone WQOs on words and of induced WQOs on infinite words. In particular,
we investigate decidability of such lattices and of levels of difference hierarchies
over such lattices.

On this way, we identify natural apparently new classes of regular languages
and prove decidability of them. We establish rather general sufficient conditions
guaranteeing decidability. Applying these conditions to some natural monotone
WQOs, we obtain new decidability results and new proofs of some known results.
Our approach also suggests many interesting open questions.

M. Ogawa—This research was partially supported by Japan Society for the Promotion
of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks).
V. Selivanov—The research of V. Selivanov was supported by Russian Science Foun-
dation, project 18-11-00100.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 235–247, 2019.
https://doi.org/10.1007/978-3-030-23247-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_18

236 M. Ogawa and V. Selivanov

After recalling some preliminaries in the next section we describe in Sect. 3
some general properties of the mentioned classes of regular languages. In Sect. 4,
we prove decidability of some of those classes. In Sects. 5 and 6, we study similar
questions for ω-languages. We conclude in Sect. 7 with mentioning some of the
remaining open questions.

2 Preliminaries

Here we recall some notation, notions and facts used throughout the paper. Some
more special information is recalled in corresponding sections below.

We use standard set-theoretic notation, in particular P (S) denotes the set
of subsets of a set S which forms a Boolean algebra under ∪,∩, .̄ For a class
C ⊆ P (S) of subsets of S, BC(C) is the Boolean closure of C (i.e., the Boolean
algebra generated by C within (P (S);∪,∩, ,̄ ∅, S)), and co-C = {C̄ | C ∈ C} is
the class of complements C̄ = S \ C of elements of C.

We use standard notation and terminology on partially ordered sets (posets)
and quasiordered sets, which may be found in [1]. Recall that a quasiorder (QO)
on a non-empty set S is a reflexive transitive binary relation on S. We denote
QOs by symbols like ≤,�,	, possibly with indices. A partial order on S is an
antisymmetric QO. The strict part of a QO (S;≤) is < = ≤ \ ≥. Any QO (S;≤)
induces the partial order (S/ �;≤), where the set S/ � is the quotient set of S
under the equivalence relation � = ≤ ∩ ≥ on S, i.e., the set S/ � consists of all
equivalence classes [a] = {x | x � a}, a ∈ S. The partial order ≤ is overloaded
by [a] ≤ [b] ↔ a ≤ b.

Definition 1. A QO ≤ on Σ∗ is monotone if u ≤ v implies xuy ≤ xvy, for all
x, y ∈ Σ∗.

A well quasiorder (WQO) on S is a QO that has neither infinite strictly
descending chains nor infinite antichains. There are several interesting and useful
characterizations of WQOs of which we will frequently use the following: a QO
≤ on S is a WQO iff for every non-empty upward closed set U in (S;≤) there
are finitely many x1, . . . , xn ∈ U such that U= ↑ x1 ∪ · · · ∪ ↑ xn where ↑ x={y |
x ≤ y} for x ∈ S.

It is known that if (S;≤) is a WQO then every QO on S that extends ≤,
as well as every subset of S with the induced QO, are also WQOs. Also, the
Cartesian product of two WQOs is a WQO, and if (S;≤) is QO and P,Q ⊆ S
are such that (P ;≤), (Q;≤) are WQOs then (P ∪ Q;≤) is a WQO. There are
also many other useful closure properties of WQOs including the following: If
Q is a WQO, then (Q∗;≤∗) is a WQO where Q∗ is the set of finite sequences
in Q and (x1, . . . , xm) ≤∗ (y1, . . . , yn) means that for some strictly increasing
ϕ : {1, . . . , m} → {1, . . . , n} we have xi ≤ yϕ(i) for all i (Higman’s lemma [5]).
In particular, the embedding relation on words over a finite alphabet is a WQO.

A couple of our proofs use a stronger notion of the hierarchy of WQOs (e.g.,
ω2-WQO) and a better quasiorder (BQO). Since they are more technical than a
WQO, we just make corresponding references to the literature [7,9–11].

On Classes of Regular Languages Related to Monotone WQOs 237

We assume the reader to be familiar with the standard notions and facts of
automata theory which may be found in [13,19]. Throughout the paper, we work
with a fixed alphabet Σ (a finite nonempty set the elements of which are called
letters). Let Σ∗ and Σ+ be the sets of finite (respectively, of finite non-empty)
words over Σ. Sets of words are called languages. The empty word is denoted by
ε, uv stands for the concatenation of words u, v ∈ Σ∗. By Σn, Σ≤n, and Σ>n,
we denote the set of words u of length n (i.e., |u| = n), length less-than-equal n
(i.e., |u| ≤ n), and length greater than n (i.e., |u| > n), respectively.

We use standard notation and terminology related to automata and regu-
lar expressions. In particular, L(A) denote the language recognized by a finite
automaton A. Languages recognized by finite automata are called regular. The
class of such languages is denoted by RΣ or just by R. This class is closed under
union, intersection and complement, i.e. (R;∪,∩,̄ , ∅, Σ∗) is a Boolean algebra.

Let Σω be the set of infinite words (also called ω-words) α = α(0)α(1) · · · ,
α(i) ∈ Σ, over Σ. For factors of infinite words we sometimes use notation
like α[m,n) = α(m) · · · α(n − 1) ∈ Σn−m. Sets of infinite words are called ω-
languages. We use standard notation and terminology related to automata on
ω-words (such as Büchi automata) and ω-regular expressions. E.g., v1v2 · · · is
the infinite concatenation of vi ∈ Σ+ and V1.V2. · · · = {v1v2 · · · | vi ∈ Vi} for all
Vi ⊆ Σ+. In particular, vω=vv · · · is the ω-power of v ∈ Σ+. Let Lω(A) be the
ω-language recognized by a Büchi automaton A. Languages recognized by Büchi
automata are called regular. The class of such languages is denoted by Rω

Σ or
just by Rω. This class is closed under union, intersection and complement.

A basic fact of automata theory (Myhill-Nerode theorem) states that a lan-
guage L ⊆ Σ∗ is regular iff it is closed w.r.t. some congruence of finite index on
Σ∗ (recall that a congruence is an equivalence relation ≡ such that u ≡ v implies
xuy ≡ xvy, for all x, y ∈ Σ∗). In [2] the following version of Myhill-Nerode the-
orem was established:

Theorem 2 (Theorem 3.3 in [2]). A language L ⊆ Σ∗ is regular iff it is
upward closed w.r.t. some monotone WQO on Σ∗.

Associate with any monotone WQO ≤ the class L≤ of upward closed sets
(also known as upper sets) in (Σ∗;≤). By the above theorem, L≤ is a class
of regular languages. One of the main objectives of this paper is the study of
such and some other related classes. In particular, we are interested in the stan-
dard question for automata theory on the decidability of such classes (a class of
regular languages is decidable if there is an algorithm which, for a given finite
automaton A, determines whether the language L(A) is in the class). We also
study analogous questions on classes of regular ω-languages defined in a similar
way based on an ω-version of Theorem 2 established in [12]. Since this requires
more technicalities, we recall the details in the corresponding sections below.

Let us recall some information on the difference hierarchies. By a base in
a set S we mean any class L of subsets of S which is closed under union and
intersection and contains ∅, S as elements. For any k < ω, let L(k) be the class of
sets of the form

⋃
i(L2i \ L2i+1), where L0 ⊇ L1 ⊇ · · · is a descending sequence

238 M. Ogawa and V. Selivanov

of sets from L and Li = ∅ for i ≥ k. The sequence {L(k)}k<ω is called the
difference hierarchy over L. As is well-known, L(k)∪co-L(k) ⊆ L(k +1) for each
k, and the class

⋃
k L(k) coincides with the Boolean closure BC(L) of L.

Associate with any QO (Q;≤) the base L≤ in Q consisting of all upper sets
of Q, including the empty set; a set L ⊆ Q is upper if x ∈ L and x ≤ y imply
y ∈ L. By an alternating chain of length k for a set K ⊆ Q we mean a sequence
(x0, . . . , xk) of elements of Q such that x0 ≤ · · · ≤ xk and xi ∈ K ↔ xi+1 �∈ K
for every i < k. Such a chain is called a 1-alternating chain if x0 ∈ K, otherwise it
is called a 0-alternating chain. Variants of the following fact from [18] frequently
appear when treating the difference hierarchies.

Proposition 3. Let (Q;≤) be a QO, L≤ the base of upper sets, and K ⊆ Q.
For every k < ω, K ∈ L(k) iff K has no 1-alternating chain of length k.

3 Classes of Languages Related to Monotone WQOs

Here we make some observations on how the classes L≤ look like.
Let Q(S) be the class of QOs on S. Define binary operations �,� on Q(S) as

follows: let ≤ � ≤′ be the intersection of ≤,≤′, and let ≤ � ≤′ be the transitive
closure of ≤ ∪ ≤′. Then ≤ � ≤′ and ≤ � ≤′ are respectively the infimum and the
supremum of ≤,≤′ in the poset (Q(S);⊆). Clearly, the equality =S and S×S are
respectively the smallest and the largest elements of this poset. Therefore, the
structure (Q(S);�,�,=S , S×S) is a bounded lattice. The set W(S) of WQOs on
S is closed under both operations, hence (W(S);�,�, S ×S) is the substructure
of (Q(S);�,�, S ×S) with the largest element S ×S. We removed equality from
the signature because if S is infinite then =S is not a WQO.

Lemma 4. For every QO ≤ on S, (L≤;∪,∩, ∅, S) is a substructure of the
structure (P (S);∪,∩, ∅, S). The function ≤�→ L≤ is an isomorphic embedding
of (Q(S);⊆) into the poset (Sub(P (S));⊇) of substructures of the structure
(P (S);∪,∩, ∅, S).

Below we consider variants of (Q(S);�,�, S × S) and (Sub(P (S));�,
�, {∅, S}) where, for each L,M ∈ Sub(P (S)), L � M is the substructure gener-
ated by L ∪ M, L � M is the intersection of L,M, and {∅, S} is the smallest
element of Sub(P (S)). Note that the restriction of ≤�→ L≤ to W(S) is an isomor-
phic embedding of (W(S);�,�, S × S) into (Sub(P (S));�,�, {∅, P (S)}). In the
particular case S = Σ∗ we can restrict the function ≤�→ L≤ to the class M(Σ∗)
of monotone WQOs. We collect some properties of this restriction which show,
in particular, that any class L≤ is a small portion of R.

Proposition 5. 1. ≤�→ L≤ is an embedding of (M(Σ∗);�,�, Σ∗×Σ∗) into the
structure (Sub(R);�,�, {∅, Σ∗}) of substructures of (R;∪,∩, ∅, Σ∗).

2. For any monotone WQO ≤, the bounded lattice L≤ contains no infinite
sequence of nonempty pairwise disjoint elements and is a proper subset of R.

3. For any monotone WQO ≤, the bounded lattice L≤ is Boolean iff ≤ is a
congruence of finite index.

On Classes of Regular Languages Related to Monotone WQOs 239

4. The poset ({L≤ |≤∈ M(Σ∗)};⊆) is directed, has no maximal elements and
satisfies

⋃{L≤ |≤∈ M(Σ∗)} = R.

There are many examples of monotone WQOs of which we mention here
four infinite series. The first one is formed by the congruences of finite index. In
particular, this class contains the so called syntactic congruences ≡L of regular
languages L defined by: u ≡L v iff ∀x, y ∈ Σ∗(xuv ∈ L ↔ xvy ∈ L).

The second one is formed by the monotone WQOs of finite index (i.e., the
associated congruence of which is of finite index). This class contains, e.g., the
syntactic QOs ≤L associated with each regular language L as follows [14]: u ≤L v
iff ∀x, y ∈ Σ∗(xuv ∈ L → xvy ∈ L). Note that the associated congruence of ≤L is
≡L. This class also contains QOs associated with various one-sided Ehrenfeucht-
Fraisse games (several examples may be found in [18]). For every such QO ≤,
the Boolean algebra BC(L≤), which is equal to L�, is finite.

Although the examples of monotone WQOs above are important for the gen-
eral theory, they are not very interesting for this paper because the decidability
problem for them is solved in an obvious way. Decidability issues are more inter-
esting for monotone WQOs of infinite index. A typical example is the embedding
partial order on words. We will discuss two infinite series of such QOs which will
be used below to illustrate our methods.

The third infinite series consists of monotone WQOs studied in [3,17]. For
any k < ω the following partial order was studied: u ≤k v, if either u = v ∈ A≤k

or u, v ∈ A>k such that pk(u) = pk(v), sk(u) = sk(v), and there is a k-embedding
f : u → v. Here pk(u) (resp. sk(u)) is the prefix (resp. suffix) of u of length k,
and the k-embedding f is a monotone injective function from {0. . . . , |u| − 1} to
{0. . . . , |v|−1} such that u(i) · · · u(i+k) = v(f(i)) · · · v(f(i)+k) for all i < |u|−k.
In [3,17], it was shown that every ≤k is a monotone WQO. Note that the relation
≤0 is just the embedding of words.

The fourth infinite series of monotone WQOs was introduced in [2]. A set
I ⊆ Σ∗ is unavoidable if almost all words contain a word from I as a factor. With
any finite unavoidable set I, we associate a QO (Σ∗;≤I) defined by: u ≤I v iff
v is obtained from u by a finite (possibly, empty) series of subsequent insertions
of words from I as a factor. As shown in [2], any such ≤I is a monotone WQO.

4 Decidability of Levels L≤(n)

Here we consider decidability issues for the classes of languages discussed above.
First we prove a rather general sufficient condition for decidability and next
illustrate this condition for the mentioned examples of monotone WQOs. In this
section letters A,B, possibly with indices, are used to denote finite automata.

Definition 6. We call a monotone WQO ≤ computable if it is a computable
relation on Σ∗ and there is a computable family {Au}u∈Σ∗ of finite automata
such that L(Au) =↑ u for each u ∈ Σ∗.

Theorem 7. For any computable monotone WQO ≤, the levels L≤(n) of the
difference hierarchy over L≤ are decidable uniformly on n.

240 M. Ogawa and V. Selivanov

Proof. We have to show that the relation L(A) ∈ L≤(n) is decidable. By the Post
theorem from computability theory (see [16]), it suffices to show that the relation
itself and its complement L(A) �∈ L≤(n) are semidecidable (i.e., computably
enumerable). First we show semidecidability of the relation L(A) ∈ L≤. By the
definition of L≤, L(A) ∈ L≤ iff L(A) = ∅ or

∃m < ω∃u0, · · · , um ∈ Σ∗(L(A) = L(Au0) ∪ · · · ∪ L(Aum
)).

As is well known, the relations L(A) = ∅ and L(A) = L(Au0)∪ · · ·∪L(Aum
) are

decidable, hence the relation L(A) ∈ L≤ is semidecidable.
Turning to the level n of the difference hierarchy, we consider for technical

reasons only the case n = 2m of even n (the case of odd n is treated in a similar
way). By the definition of L≤(n), we have: L(A) ∈ L≤(n) iff

∃B0, . . . ,Bn−1

(
L(B0), . . . , L(Bn−1) ∈ L≤ ∧
L(B0) ⊇ · · · ⊇ L(Bn−1) ∧
L(A) =

⋃
i<m L(B2i) \ L(B2i+1)

)
.

Since the relations in the first conjunct are semidecidable and all other relations
in big parenthesis are computable, the relation L(A) ∈ L≤(n) is semidecidable.
On the other hand, by Proposition 3 we have: L(A) �∈ L≤(n) iff

∃u0, . . . , un ∈ Σ∗(
u0 < · · · < un ∧ u0 ∈ L(A) ∧ ∀i < n(ui ∈ L(A) ↔ ui+1 �∈ L(A))

)
.

Since all relations in big parenthesis are computable, the relation L(A) �∈ L≤(n)
is semidecidable. ��

We believe that Theorem 7 applies to many monotone WQOs (maybe, even
to all finitely presented ones). One only has to check the computability of a given
WQO. Here we observe that this is really the case for the examples of monotone
WQOs discussed in Sect. 3.

Corollary 8. For all k, n < ω, the levels L≤k
(n) of the difference hierarchy over

L≤k
are decidable uniformly on k, n.

Proof. By Theorem 7, we have to show that the monotone WQOs ≤k are com-
putable uniformly in k. This was shown in [3,17]. ��

The above corollary is not new, earlier obtained in [3,17]. Moreover, in those
papers, the decidability of classes BC(L≤k

) was also established. We hope that
this last fact would be generalized to a wider class of monotone WQOs. In con-
trast, the next corollary of Theorem 7 seems not explicitly mentioned elsewhere.

Theorem 9. For any finite unavoidable set I ⊆ Σ∗, the levels L≤I
(n) of the

difference hierarchy over L≤I
are decidable uniformly on n.

Proof. By Theorem 7, we only have to show that the monotone WQO ≤I is
computable. This follows from an inspection of the proofs of Lemmas 4.6 and
4.7 in [2]. We also note that, by Theorem 4.13 in [2], it is decidable whether I is
unavoidable. Therefore, we also have uniformity on I. ��

On Classes of Regular Languages Related to Monotone WQOs 241

5 Extending Monotone WQOs to Infinite Words

Here we discuss how to extend notions and results about monotone WQOs to
infinite words, based on [12]. Fix a monotone WQO ≤ on Σ∗. A QO (Σω,�) is
a monotone extension of (Σ∗,≤) if ∀i(ui ≤ vi) implies u1u2u3 · · · � v1v2v3 · · · .
We define important subclasses of monotone extensions.

Definition 10 (Definition 2.1 in [12]). Let (Σ∗;≤) be a monotone WQO.

1. A QO (Σω;�) is a periodic extension of (Σ∗;≤) if � is a monotone extension
of ≤, and for each α ∈ Σω there exist u, v ∈ Σ∗ with α�uvω, where � = �
∩ �. The set of periodic extensions of ≤ is denoted by PE(≤).

2. A WQO (Σω;�) is a regular extension of (Σ∗;≤) if � is a monotone exten-
sion of ≤, and for each α ∈ Σω the upward closed set ↑ α w.r.t. � is a regular
ω-language. The set of regular extensions of ≤ is denoted by RE(≤).

Definition 11 (Definition 3.1 in [12]). A monotone extension (Σω;�) of a
monotone WQO (Σ∗;≤), is a continuous extension, if (Σω;�) is a WQO, and

– For each u, v ∈ Σ∗ and α, β ∈ Σω, u ≤ v and α � β imply uα � vβ.
– Let uj , vj ∈ Σ∗ for each j and let αi = v1 · · · vi−1ui · · · for each i and α∞ =

v1v2 · · · . For β ∈ Σω, if ui ≤ vi and αi � β for each i, then α∞ � β; and if
ui ≥ vi and αi � β for each i, then α∞ � β.

The set of continuous extensions of ≤ is denoted by CE(≤).

The following ω-versions of Theorem 2 are fundamental for this paper.

Theorem 12 (Theorem 2.2 and 3.2 in [12]). For any L ⊆ Σω we have:

1. L is regular iff L is upward closed under some periodic extension of a mono-
tone WQO.

2. L is regular iff L is upward closed under some continuous extension of a
monotone WQO.

We prove some relationships between introduced classes of extensions.

Theorem 13. For a monotone WQO ≤, CE(≤) ⊆ RE(≤) = PE(≤) ⊆
W(Σω).

Proof. Since Theorem 12 and its proof imply PE(≤) ∪ CE(≤) ⊆ RE(≤) and
PE(≤) ⊆ W(Σω), we show RE(≤) ⊆ PE(≤). Let � be a regular extension of
≤. For every α ∈ Σ∗, we have to find x, y ∈ Σ∗ such that α � xyω.

The upward closed set ↑ α=L	(α) is a regular ω-language so there is a
congruence ≈ of finite index on Σ∗ that saturates ↑ α, i.e., ↑ α =

⋃
U.V ω for

≈-classes U, V with V.V ⊆ V such that U.V ω ∩ U ′.V ′ω �= φ implies U = U ′

and V = V ′. Since ≤ is a WQO, there are finitely many (modulo ≤ ∩ ≥)
minimal elements {x1, · · · , xl} and {y1, · · · , yk} of U and V , respectively. Since
α ∈ U.V ω, let α = uv1v2 · · · with u ∈ U and vi ∈ V . Then, xi ≤ u for some

242 M. Ogawa and V. Selivanov

i, and for all j′, s > 0 there is j with yj ≤ vj′ · · · vj′+s (recall that V.V ⊆ V).
By Ramsey theorem, we have 1 ≤ j1 < j2 < · · · and j, j′ ≤ k such that
yj ≤ vj1 · · · vj2−1, vj2 · · · vj3−1, · · · and yj′ ≤ v1 · · · vj1−1. For any ≈-class U ′

with xiyj′ ∈ U ′, α ∈ U.V ω ∩ U ′.V ω implies U = U ′. Let xi′ ≤ xiyj′ . Since � is
a monotone extension of ≤, xi′yω

j � α. Since xi′yω
j ∈ U.V ω ⊆↑ α, α � xi′yω

j . ��
Although we do not know whether CE(≤) = PE(≤) for each monotone

WQO ≤ at the moment, we guess this holds in natural cases.

Lemma 14. For a monotone WQO (Σ∗;≤), PE(≤) (resp. CE(≤)) is closed
under intersection.

Proof. Let �1,�2∈ PE(≤). Since � = �1 ∩ �2 is a monotone extension of ≤,
it remains to show that, for each α ∈ Σω, there are u, v ∈ Σ∗ with α � uvω. Let
≈1 and ≈2 be finite congruences saturating L	1(α) and L	2(α), respectively.
Then, ≈ = ≈1 ∩ ≈2 is a finite congruence saturating L	1(α) ∩ L	2(α). By the
proof of Theorem 13, there exist ≈-classes U, V with α ∈ U.V ω, and minimal
elements u ∈ U and v ∈ V with α ≈ uvω, which leads α � uvω.

For CE(≤), the statement is immediate from Definition 11. ��
Associate with any monotone WQO ≤, the class Lω

≤ of ω-languages which are
upper sets w.r.t. some periodic extension of ≤, i.e., Lω

≤ =
⋃{L	 |� ∈PE(≤)}.

Proposition 15. 1. ��→ L	 is an embedding from (PE(≤);�,�, Σω×Σω) into
the structure (Sub(Rω);�,�, {∅,Rω}) of substructures of (Rω;∪,∩, ∅, Σω).

2. For any � ∈PE(≤), every sequence of nonempty pairwise disjoint elements
of L	 is finite.

3. Lω
≤ is closed under union and intersection.

4.
⋃{Lω

≤ |≤ ∈M(Σ∗)} = Rω.

The study of classes Lω
≤ becomes simpler if there is the smallest periodic

extension � of ≤, i.e., the smallest element of (PE(≤);⊆). The reason is that
in this case Lω

≤ = L	. Note that, for a periodic (resp. continuous) extension
�, if a monotonic extension �′ of ≤ holds �⊆�′, �′ is also a periodic (resp.
continuous) extension. Currently, we do not know whether every monotone WQO
has the smallest periodic extension. Instead, we show the existence of the smallest
continuous extension (Theorem 18), if ≤ is a monotone ω2-WQO over Σ∗.

Lemma 16. Let ≤ be a monotone WQO over Σ∗. Assume that a transfi-
nite sequence (�λ)λ∈Λ with �λ ∈PE(≤) holds �λ ⊇ �λ′ if λ < λ′. Let
� =

⋂
λ∈Λ �λ. Then, for each α ∈ Σω, there is a countable subset Δ ⊆ Λ

such that

1. For λ ∈ Λ, there is λ′ ∈ Δ with λ < λ′.
2. For λ ∈ Λ, there are ≈λ-classes Uλ, Vλ saturating L	λ

(α) and minimal ele-
ments (w.r.t. �λ) uλ ∈ Uλ, vλ ∈ Vλ such that α ∈ Uλ.V ω

λ and uλvω
λ �λ α.

3. For λ, λ′ ∈ Δ with λ < λ′, uλ ≤ uλ′ and vλ ≤ vλ′ .
4. α is the upper limit of (uλvω

λ)λ∈Δ (w.r.t. �), i.e., limλ∈Δ uλvω
λ � α.

On Classes of Regular Languages Related to Monotone WQOs 243

Proof. From the proof of Theorem 13, for each α ∈ Σω and λ ∈ Λ, there exist
≈λ-classes Uλ, Vλ saturating L	λ

(α) with α ∈ Uλ.V ω
λ and minimal elements

uλ ∈ Uλ, vλ ∈ Vλ with α ≈λ uλvω
λ . Since ≤ is a monotone WQO, there is a

countable subset Δ ⊆ Λ (by Ramsey-type argument [6]) such that uλ ≤ uλ′ ,
vλ ≤ vλ′ for λ, λ′ ∈ Δ with λ < λ′ and

(*) for each λ ∈ Λ, there is λ′ ∈ Δ with λ < λ′.

Since �κ∈ PE(≤) for each κ ∈ Λ, uλvω
λ �κ uλ′vω

λ′ . Since α ≈κ uκvω
κ , uκvω

κ �κ α.
Thus, for each λ, λ′ ∈ Δ with λ < λ′, uλvω

λ �λ′ α (by instantiating λ′ to κ).
With the condition (*), for each λ ∈ Δ, we have uλvω

λ � α.
Assume that limλ∈Δ uλvω

λ � α does not hold. Then, there exists β such that
β ≺ α with uλvω

λ � β for each λ ∈ Δ. Since β ≺ α, there exists λ′ ∈ Δ with
β ≺λ′ α, which contradicts to α �λ′ uλ′vω

λ′ . ��
Corollary 17. Let ≤ be a monotone ω2-WQO over Σ∗ and let {�λ}λ∈Λ be a
transfinite sequence of regular WQOs such that each �λ is a monotone extension
of ≤ with �λ ⊇ �λ′ for λ < λ′. Then, � =

⋂
λ∈Λ �λ is a WQO.

Proof. We borrow the notations in Lemma 16. For each α ∈ Σω, we set Seq(α) =
((uλ, vλ))λ∈Δ. Since ≤ × ≤ is an ω2-WQO on Σ∗ × Σ∗, the embedding ↪→ on
(Σ∗ ×Σ∗)ω is a WQO [9]. Then, for each infinite sequence α1, α2, · · · , there are
i, j with i < j and Seq(αi) ↪→ Seq(αj), which implies αi � αj by Lemma 16. ��

Note that the assumption of ω2-WQO frequently holds for typical WQOs,
e.g., ≤k [3,17] and ≤I [2]. An exception is Rado’s example [15].

Theorem 18. Let ≤ be a monotone ω2-WQO over Σ∗. Then, CE(≤) has the
smallest element (w.r.t. the set inclusion).

Proof. Note that a continuous extension of ≤ is a periodic extension by Theo-
rem 13. For each descending chain (�λ)λ∈Λ in CE(≤), there is a lower bound
(actually, the lower limit

⋂
λ∈Λ �λ) by Lemma 16. Since

⋂
λ∈Λ �λ is a WQO by

Corollary 17,
⋂

λ∈Λ �λ∈ CE(≤) from Definition 11. Therefore, there is a mini-
mal element � in CE(≤) by Zorn’s Lemma. This � is the smallest; otherwise,
there exists an incomparable element �′ in CE(≤). Since � ∩ �′⊂�,�′ is a
continuous extension of ≤ by Lemma 14, which contradicts to the minimality. ��
Corollary 19. Let ≤ be a monotone ω2-WQO over Σ∗. If CE(≤)=PE(≤),
PE(≤) has the smallest element (w.r.t. the set inclusion).

Although Corollary 19 suggests that many monotone WQOs have smallest
periodic extensions, the proof is nonconstructive and gives no hint how such an
extension looks like. It makes sense to look for explicit descriptions of smallest
periodic extensions for concrete natural monotone WQOs. Here we provide such
descriptions for monotone WQOs in Sect. 3.

For any k < ω, define the binary relation �k on Σω as follows: α �k β if
pk(α) = pk(β) and there is a k-embedding f : α → β. Here pk(α) = α[0, k) is the

244 M. Ogawa and V. Selivanov

prefix of α of length k, and the k-embedding f is a monotone injective function
on ω such that α[i, i + k] = β[f(i), f(i) + k] for all i < ω. Note that the relation
≤0 is just the embedding of ω-words.

For any α ∈ Σω and n ≥ 1, let Fn(α) (resp. F∞
n (α)) be the set of u ∈ Σn such

that u is a factor of α (resp. u occurs in α as a factor infinitely often). Let Fn(v)
for v ∈ Σ+ be defined similarly, F (v) =

⋃
n Fn(v), and F∞(α) =

⋃
n F∞

n (α).
The next two lemmas are included without proof in order to help the reader to
reconstruct omitted details in the proof of Theorem 22.

Lemma 20. 1. F∞
n (α) �= ∅.

2. If x ∈ F∞
n (α) and m > n then x is a factor of some y ∈ F∞

m (α).
3. If x is a factor of y ∈ F∞

n (α) then x ∈ F∞
|x|(α).

4. If there is a k-embedding of α into β then F∞
k+1(α) ⊆ F∞

k+1(β).

Define the binary relation Rk on Σω by: αRkβ iff there exist factorizations
α = u0u1 · · · , β = v0v1 · · · such that ui, vi ∈ Σ+ and ui ≤k vi for all i.

Lemma 21. 1. Rk ⊆�k.
2. For any α ∈ Σω there exist u, v ∈ Σ+ such that αRkβRkα where β = uvω.
3. αRkβ iff α �k β and F∞

2k (α) ∩ F∞
2k (β) �= ∅.

4. If uω �k vω then uωRkγRkvω for some γ ∈ Σω.

Theorem 22. For any k < ω, �k is the smallest periodic extension of ≤k.

Proof. Obviously, �k is a QO. By Lemma 21(1), �k is a monotone extension of
≤k. By Lemma 21(2), �k is a periodic extension of ≤k.

It remains to show that �k⊆� for every �∈ PE(≤k). Since � is a monotone
extension of ≤k, Rk ⊆�. Since � is transitive, TC(Rk) ⊆�k, where TC(Rk) is
the transitive closure of Rk. Hence, it suffices to show that �k⊆ TC(Rk).

Let α �k β. By Lemma 21(2), αRkuvωRkα and βRku1v
ω
1 Rkβ for some

u, v, u1, v1. By Lemma 21(4), uvωRkγRku1v
ω
1 for some γ. Thus, αTC(Rk)β. ��

Remark 23. The analogue R of the relation Rk may be defined for any monotone
WQO ≤, and again we have TC(R) ⊆� for each �∈ PE(≤). Thus, if TC(R)
is a periodic extension of ≤ then it is the smallest one. So in the search of the
smallest periodic extension TC(R) is the first candidate.

Theorem 24. For any finite unavoidable set I ⊆ Σ+, the relation �I =RI is
the smallest periodic extension of ≤I .

Proof Sketch. The relation RI is the smallest monotone extension of ≤I . It is
easy to check that RI is a QO. An inspection of the proofs of Lemma 4.7 and
Theorem 4.8 in [2] shows that the relation ≤I is not only a WQO but also a
BQO. The standard technique of BQO-theory applies to show that �I is a BQO,
hence also a WQO. By Theorem 13, it suffices to show that any upper set ↑ α
w.r.t. �I is regular.

↑ α is accepted by a pushdown Büchi automaton, which pushes when it starts
to read an inserted element u of I and pops when u is read while reading α. By
Lemma 4.7 in [2], the size of the stack is bounded by the smallest number k0
such that any word in Σ≥k0 has a factor from I. Thus, the pushdown Büchi
automaton is reduced to a finite Büchi automaton. ��

On Classes of Regular Languages Related to Monotone WQOs 245

6 Decidability of Levels L�(n)

Here we consider, in parallel to Sect. 4, decidability issues for the classes of ω-
languages related to monotone WQOs. First we prove a rather general sufficient
condition for decidability and next illustrate this condition for the mentioned
examples of periodic extensions of monotone WQOs. Letters A,B, possibly with
indices, are now used to denote Büchi automata.

Definition 25. Let ≤ be a monotone WQO. By a computable periodic extension
of ≤ we mean a periodic extension � of ≤ such that the 4-ary relation uvω �
u1v

ω
1 on Σ+ is computable and there is a computable family {Au,v}u,v∈Σ+ of

Büchi automata such that Lω(Au,v) = {α | uvω � α} for all u, v ∈ Σ+.

The proof of next result is similar to that of Theorem 7.

Theorem 26. For any computable periodic extension � of a monotone WQO
≤, the levels L	(n) of difference hierarchy over L	 are decidable uniformly on n.

We illustrate Theorem 26 by the monotone WQOs from Sect. 3. Note that
by Theorem 22 we have L	k

= Lω
≤k

and L	I
= Lω

≤I
.

Theorem 27. The levels L	k
(n) of the difference hierarchy over L	k

are decid-
able uniformly on k, n.

Proof. By Theorem 26, it suffices to show that �k is a computable periodic
extension of ≤k uniformly on k. Since uvω �k u1v

ω
1 iff u ≤k u1v

|u|
1 and v ≤k v

|v|
1

for all k < ω and u, u1, v, v1 ∈ Σ+, the relation uvω �k u1v
ω
1 is computable

uniformly on k.
It remains to find a computable family {Ak,u,v}k<ω,u,v∈Σ+ of Büchi automata

such that Lω(Ak,u,v) = {α | uvω �k α} for all k < ω, u, v ∈ Σ+. From k, u, v it
is straightforward to compute a first order sentence ϕk,u,v of signature {<,Qa |
a ∈ Σ} such that Lω

ϕk,u,v
= {α | uvω �k α} where Lω

ϕ is the set of ω-words that
satisfy a given sentence ϕ (see [19] for details of the logical approach to regular
languages). By the Büchi-Trakhtenbrot theorem, there is a computable family
{Ak,u,v}k<ω,u,v∈Σ+ of Büchi automata such that Lω(Ak,u,v) = Lω

ϕk,u,v
for all

k < ω, u, v ∈ Σ+. ��
Theorem 28. For every finite unavoidable set of words I, the levels L	I

(n) of
the difference hierarchy over L	I

are decidable uniformly on n.

Proof. By Theorem 26, it suffices to show that �k is a computable periodic
extension of ≤k. As above, for all u, u1, v, v1 ∈ Σ+ we have: uvω �I u1v

ω
1 iff

u ≤I u1v
|u|
1 and v ≤I v

|v|
1 , hence the relation uvω �I u1v

ω
1 is computable.

If α = uvω then the Büchi automaton Au,v constructed in the proof of
Theorem 24 verifies the second condition of the computability of �I . ��

246 M. Ogawa and V. Selivanov

7 Conclusion and Open Questions

We hope that the above results clearly demonstrate that the classes of upper
sets induced by monotone WQOs and their extensions to infinite words are
interesting and deserve further investigation. Many interesting questions remain
open, we mention some of them below.

1. It is already clear that the class of monotone WQOs is rich. However, we still
do not know whether this class is countable.

2. Is there a nice classification of finitely presented monotone WQOs? Are all
such WQOs computable?

3. Does every finitely presented monotone WQO have the smallest periodic
extension? Are all such extensions computable?

4. Our methods of proving decidability are easy and natural but they do not
provide any upper complexity bounds at all. One has to develop new methods
which do provide reasonable upper bounds. Such methods for a natural class
of monotone WQOs were developed in [4].

5. Ideas and notions of this paper are related to those in the literature on
(ordered) semigroups and ω-semigroups [13,14]. Further investigation of these
relationships seems promising.

References

1. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge (1994)
2. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-

guages. Theor. Comput. Sci. 27, 311–332 (1983)
3. Glaßer, C., Schmitz, H.: The boolean structure of dot-depth one. J. Autom. Lang.

Comb. 6(4), 437–452 (2001). https://doi.org/10.25596/jalc-2001-437
4. Glaßer, C., Schmitz, H., Selivanov, V.L.: Efficient algorithms for membership in

boolean hierarchies of regular languages. Theor. Comput. Sci. 646(C), 86–108
(2016). https://doi.org/10.1016/j.tcs.2016.07.017

5. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc.
s3–2(1), 326–336 (1952). https://doi.org/10.1112/plms/s3-2.1.326

6. Kř́ıž, I., Thomas, R.: Ordinal types in ramsey theory and well-partial-ordering the-
ory. In: Neše tř il, J., Rödl, V. (eds.) Mathematics of Ramsey Theory. Algorithms
and Combinatorics, vol. 5. Springer, Heidelberg (1990). https://doi.org/10.1007/
978-3-642-72905-8 7

7. Laver, R.: Better-quasi-orderings and a class of trees. In: Studies in foundations
and combinatorics, Advances in mathematics: Supplementary studies, vol. 1, pp.
31–48. Academic Press (1978)

8. de Luca, A., Varricchio, S.: Finiteness and Regularity in Semigroups and Formal
Languages. Monographs in Theoretical Computer Science. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-3-642-59849-4

9. Marcone, A.: Foundations of BQO theory. Trans. AMS 345(2), 641–660 (1994)
10. Marcone, A.: Fine analysis of the quasi-orderings on the power set. Order 18(4),

339–347 (2001). https://doi.org/10.1023/A:1013952225669
11. Nash-Williams, C.S.J.A.: On well-quasi-ordering transfinite sequences. Math. Proc.

Cambridge Philos. Soc. 61, 33–39 (1965)

https://doi.org/10.25596/jalc-2001-437
https://doi.org/10.1016/j.tcs.2016.07.017
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1007/978-3-642-72905-8_7
https://doi.org/10.1007/978-3-642-72905-8_7
https://doi.org/10.1007/978-3-642-59849-4
https://doi.org/10.1023/A:1013952225669

On Classes of Regular Languages Related to Monotone WQOs 247

12. Ogawa, M.: Well-quasi-orders and regular omega-languages. Theor. Comput. Sci.
324(1), 55–60 (2004). https://doi.org/10.1016/j.tcs.2004.03.052

13. Perrin, D., Pin, J.: Infinite Words, Pure and Applied Mathematics, vol. 141 (2004)
14. Pin, J.: Positive varieties and infinite words. In: Lucchesi, C.L., Moura, A.V. (eds.)

LATIN 1998. LNCS, vol. 1380, pp. 76–87. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054312

15. Rado, R.: Partial well-ordering of sets of vectors. Mathematika 1, 89–95 (1954)
16. Rogers Jr., H.: Theory of recursive functions and effective computability. McGraw-

Hill, New York (1967)
17. Selivanov, V.L.: A logical approach to decidability of hierarchies of regular star—

free languages. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010,
pp. 539–550. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44693-
1 47

18. Selivanov, V.L.: Hierarchies and reducibilities on regular languages related to mod-
ulo counting. RAIRO Theor. Inform. Appl. 43(1), 95–132 (2009)

19. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, vol. B, pp. 133–192. Elsevier Science Publishers (1990)

https://doi.org/10.1016/j.tcs.2004.03.052
https://doi.org/10.1007/BFb0054312
https://doi.org/10.1007/BFb0054312
https://doi.org/10.1007/3-540-44693-1_47
https://doi.org/10.1007/3-540-44693-1_47

State Complexity of GF(2)-Concatenation
and GF(2)-Inverse on Unary Languages

Alexander Okhotin(B) and Elizaveta Sazhneva

St. Petersburg State University, 7/9 Universitetskaya Nab.,
Saint Petersburg 199034, Russia

alexander.okhotin@spbu.ru, sazhneva.eliza@yandex.ru

Abstract. The paper investigates the state complexity of two opera-
tions on regular languages, known as GF(2)-concatenation and GF(2)-
inverse (Bakinova et al., “Formal languages over GF(2)”, LATA 2018),
in the case of a one-symbol alphabet. The GF(2)-concatenation is a vari-
ant of the classical concatenation obtained by replacing Boolean logic in
its definition with the GF(2) field; it is proved that GF(2)-concatenation
of two unary languages recognized by an m-state and an n-state DFA
is recognized by a DFA with 2mn states, and this number of states is
necessary in the worst case, as long as m and n are relatively prime. This
operation is known to have an inverse, and the state complexity of the
GF(2)-inverse operation over a unary alphabet is proved to be exactly
2n−1 + 1.

1 Introduction

Union and concatenation of formal languages are defined in terms of conjunction
and disjunction: a string is in K ∪ L if it is in K or in L, and a string w is in
K · L, if, for some partition w = uv, u ∈ K and v ∈ L—a disjunction of |w| + 1
conjunctions. New variants of these two operations, obtained by replacing dis-
junctions with exclusive OR, have recently been proposed by Bakinova et al. [1].
Union (K ∪ L) is thus replaced with symmetric difference (K � L), whereas for
concatenation (K · L), once the disjunction is replaced with exclusive OR, the
condition of the existence of a partition turns into the condition that the number
of partitions must be odd.

K · L = {w | # of partitions w = uv, with u ∈ K and v ∈ L, is non-zero }
K � L = {w | # of partitions w = uv, with u ∈ K and v ∈ L, is odd }

The latter operation is called GF(2)-concatenation, because it is actually a
weighted concatenation with weights in the GF(2) field. For example, {ε, a} ·
{ε, a} = {ε, a, aa}, but {ε, a} � {ε, a} = {ε, aa}, because two partitions of a

Supported by Russian Science Foundation, project 18-11-00100.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 248–259, 2019.
https://doi.org/10.1007/978-3-030-23247-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_19&domain=pdf
http://orcid.org/0000-0002-1615-2725
https://doi.org/10.1007/978-3-319-77313-1_5
https://doi.org/10.1007/978-3-030-23247-4_19

State Complexity of Unary GF(2)-Concatenation and GF(2)-Inverse 249

cancel each other. Notably, GF(2)-concatenation is invertible: for every language
L ⊆ Σ∗ with ε ∈ L, there exists a unique language L−1 ⊆ Σ∗ that satisfies
L � L−1 = L−1 � L = {ε}. For instance, {ε, a}−1 = a∗, because {ε, a}−1 � a∗ =
{ε}: indeed, every non-empty string in the latter GF(2)-concatenation has two
partitions. Symmetric difference is the GF(2)-union.

Table 1. State complexity of unambiguous, classical and GF(2)-variants of union,
concatenation and star.

Union Concatenation Star

Unambiguous (�) mn − 1 [6] (unamb·) m2n−1 − 2n−2 [4] (unamb∗) 3
82

n + 1 [6]

Classical (∪) mn [9] (·) m2n − 2n−1 [9] (∗) 3
42

n [9]

GF(2) (�) mn [2] (�) m · 2n [1] (−1) 2n + 1 [1]

Using GF(2)-operations instead of the classical operations gives rise to a new
variant of formal language theory. For instance, GF(2)-grammars, defined by
Bakinova et al. [1] and subsequently studied by Makarov and Okhotin [8], are
incomparable in power to classical grammars with union and concatenation, but
still have a parsing algorithm working in time O(nω), with ω < 3, and can be
parsed by circuits of depth O((log n)2).

The family of regular languages is closed under both the GF(2)-concatenation
and the GF(2)-inversion operations. For a pair of languages recognized by an
m-state and an n-state DFA, their GF(2)-concatenation is recognized by a DFA
with m ·2n states; this number of states is necessary in the worst case, witnessed
by automata over a 2-symbol alphabet [1]. Similarly, the GF(2)-inverse of a
language recognized by an n-state DFA is recognized by a DFA with 2n + 1
states, and this bound is tight for alphabets containing at least 3 symbols [1].

To compare with the classical case, classical concatenation has state com-
plexity m2n − 2n−1, and classical Kleene star, or the quasi-inverse, has state
complexity 3

42n [9]. Another point of comparison is with unambiguous concate-
nation and unambiguous star, defined by restricting the arguments, so that each
string has a unique representation; classical operations and GF(2)-operations are
two incomparable generalizations of the unambiguous operations. Unambiguous
concatenation has state complexity m2n−1−2n−2 [4], whereas the state complex-
ity of the unambiguous star is 3

82n +1 [6]. The state complexity of unambiguous,
classical and GF(2)-variants of the three main operations on formal languages
is compared in Table 1. All results refer to the case of DFA.

The goal of this paper is to investigate the state complexity of the GF(2)-
operations in the case of a unary alphabet [1]. In general, unary state complexity
is substantially different from the case of multiple-symbol alphabets. The trade-
offs between different types of automata over a unary alphabet were studied
by Chrobak [3], Mereghetti and Pighizzini [10], Geffert et al. [5], Kunc and
Okhotin [7], Okhotin [11], and others. The state complexity of operations on
unary DFA was first investigated by Yu et al. [13], who proved that concatena-
tion is representable with mn states, and this bound is tight for relatively prime
m and n; the state complexity of star on unary languages is (n − 1)2 + 1.

250 A. Okhotin and E. Sazhneva

How do the GF(2)-operations stand in comparison? For the GF(2)-
concatenation of unary languages recognized by DFA with m and n states, the
results generally resemble the classical case: it shall be established in Sect. 2 that
2mn states are sufficient, and for relatively prime m,n, this number of states
is necessary. On the other hand, the case of GF(2)-inverse of a unary language
is substantially different from the classical case; the state complexity turns out
to be 2n−1 + 1, which is established in Sects. 3–6 by determining a connection
between the states of a DFA recognizing a GF(2)-inverse and the coefficients of
a certain associated sequence of polynomials over GF(2).

2 GF(2)-Concatenation

As usual, a DFA is defined as a quintuple (Σ,Q, q0, δ, F), where Σ is the input
alphabet and Q is a finite set of states, with initial state q0 ∈ Q, transition
function δ : Q × Σ → Q and accepting states F ⊆ Q. This paper considers DFA
over a unary alphabet Σ = {a}, where the transition function defines a sequence
of states q0, q1, . . ., with qi+1 = δ(qi, a). Let j be the least number with qj = qi for
some i < j. This is the point where the automaton starts to behave periodically;
the states q0, . . . , qi−1 are called the tail, and the periodic part qi, . . . , qj−1 is
called the cycle. If the tail is empty, the automaton is called cyclic.

The known construction for GF(2)-concatenation of two given DFA, A =
(Σ,P, p0, η, E) and B = (Σ,Q, q0, δ, F), works as follows [1]. The language
L(A) � L(B) is recognized by a DFA C with the set of states P × 2Q. In a
state (p, S), with p ∈ P and S ⊆ Q, the automaton simulates the computa-
tion of A in the first component p, while S is the set of all states reached an
odd number of times in the ongoing simulated computations of B. The initial
state of C is (p0, {q0}) if ε ∈ L(A) and (p0, ∅) otherwise. Its transition function,
π : (P × 2Q)×Σ → P × 2Q, is defined on a pair (p, S) as follows. Each currently
simulated computation of B is continued, represented by the following set S′.

S′ = { q′ | the number of states q ∈ S, with q′ = δ(q, a), is odd }
If the simulated automaton A passes through an accepting state, then the

transition π((p, S), a) also adds a new computation to the set S′.

π((p, S), a) =

{
(η(p, a), S′), if η(p, a) /∈ E;
(η(p, a), S′�{q0}), if η(p, a) ∈ E.

A state (p, S) is marked as accepting, if S contains an odd number of accept-
ing states of B.

F ′ =
{

(p, S)
∣∣ |S ∩ F | is odd

}
This completes the known construction, which is valid for every alphabet.
In the case of a unary alphabet, the state complexity of GF(2)-concatenation

on two unary DFA is first investigated in the special case of both automata being
cyclic, each with a unique accepting state. Under these restrictions, the state
complexity depends only on the number of states in the given automata.

State Complexity of Unary GF(2)-Concatenation and GF(2)-Inverse 251

Lemma 1. Let A and B be two minimal cyclic DFA over a unary alphabet, one
with the cycle of length m and the other with the cycle of length n, and each with a
single accepting state. Then, the GF(2)-concatenation L(A)�L(B) is recognized
by a cyclic DFA with period of length 2mn

gcd(m,n) , and this is the minimal DFA for
this language.

Proof. Let A = ({a}, P, 0, η, E), with P = {0, . . . , m − 1}, η(i, a) = i + 1 mod m
for all i ∈ P , and E = {e}. Similarly, let B = ({a}, Q, 0, δ, F), with Q =
{0, . . . , n − 1}, δ(i, a) = i + 1 mod n for all i ∈ Q, and F = {f}.

Let C = (Σ,Q′, q0, π, F ′) be the DFA recognizing the GF(2)-concatenation
L(A) � L(B), with the set of states Q′ = { (p, S) | p ∈ P, S ⊆ Q }, and with
accepting states F ′ = { (p, S) | p ∈ P, f ∈ S }.

Claim. For all p ∈ P and k ∈ {1, . . . , n
gcd(m,n) − 1}, there are exactly two reach-

able subsets S1, S2 ⊆ Q with |S1| = |S2| = k and π((p, S1), a) 	= π((p, S2), a). For
k = 0 or k = n

gcd(m,n) , there is a unique reachable subset (p, S) with (p, S) ∈ Q′

and |S| = k. Accordingly, Q′ contains 2mn
gcd(m,n) reachable states.

Assume that e 	= 0. After reading ae, the automaton reaches the state (e, {0}).
From this point on, consider the states reached by the automaton after reading
repetitive blocks am. The state in the first component is rejecting until the
last symbol in the block, and hence the states in both components are cyclically
shifted by m, until the accepting state e reappears in the first component. At the
last step, a new state 0 is added to the second component, while all pre-existent
states in the second component have been shifted by m (mod n). Altogether,
the following states are visited.

π((0, ∅), ae) = (e, {0})
π((e, {0}), am) = (e, {0, k1}) where k1 ≡ m (mod n)

π((e, {0, k1}), am) = (e, {0, k1, k2}) where k2 ≡ 2m (mod n), etc.

The subset continues to grow until some j-th step, with δ(kj , a
m) = 0. This

means that (j + 1)m ≡ 0 (mod n). Since j is the least such number, it must be
j = n

gcd(m,n) − 1. Therefore, π((e, ∅), ajm) = (e, {0, k1, k2, . . . kj}).
From this point on, consider further computations upon reading repetitive

blocks am. The states in the second component keep cyclically shifting, and the
states 0 added in the end of each block cancel out these states in the same order
as they were added.

π((e, {0, k1, k2, . . . kj}), am) = (e, {k1, k2, . . . kj})
π((e, {k1, k2, . . . kj}), am) = (e, {k2, k3, . . . kj}), etc.

In the end, π((e, {0, k1, k2, . . . kj}), ajm) = (e, ∅). Finally, after reading am−e,
the automaton returns to its initial state.

π((e, ∅), am−e) = (0, ∅)

Overall, the automaton for the GF(2)-concatenation is a cycle on 2mn
gcd(m,n)

states.

252 A. Okhotin and E. Sazhneva

Claim. The period 2mn
gcd(m,n) is minimal.

The idea of the argument is that C has a block of m+n consecutive rejecting
states, and that this block occurs only once in the automaton. ��
Theorem 2. Let A and B be any two DFA over a unary alphabet, with m
and with n states, respectively. Then, the GF(2)-concatenation L(A) � L(B) is
recognized by a DFA with 2mn states.

For relatively prime m and n, this number of states is necessary in the worst
case.

Proof (a sketch). Let A have the set of states P = {0, 1, . . . ,m−1}, with accept-
ing states E ⊆ P . For each state i ∈ P , define a DFA Ai by setting i in A as the
only accepting state. Then, L(A) =

⋃
i∈E L(Ai), and the union is disjoint. Let

the language be periodic starting from k, with period m − k.
Similarly, let the set of states of B be Q = {0, 1, . . . , n − 1}, with accepting

states F ⊆ Q. Let Bj be B with j as the only accepting state, so that L(B) =⋃
i∈F L(Bi). Let the periodic part begin at �, with period n − �.

Then, the desired GF(2)-concatenation can be represented as follows.

L(A) � L(B) =
(⋃

i∈E

L(Ai)
)

�
(⋃

j∈F

L(Bj)
)

=
(�

i∈E

L(Ai)
)

�
(�

j∈F

L(Bj)
)

=

=
�

i∈E
j∈F

L(Ai) � L(Bj)

Each of these |E| · |F | languages is periodic beginning from k + � − 1, with
period 2(m − k)(n − �); the proof is omitted due to space constraints. These
languages are then joined into a single automaton with at most 2mn states.

For the lower bound, Lemma 1 with relatively prime m,n provides the desired
witness languages. ��

3 Automaton for GF(2)-Inverse

With respect to GF(2)-concatenation, every language L containing the empty
string is invertible, in the sense that there is a language L−1 satisfying L�L−1 =
L−1 � L = {ε}. The GF(2)-inverse operation, f(L) = L−1, preserves regularity,
and its state complexity is 2n + 1 [1].

Theorem A (Bakinova et al. [1, Thm. 2]). For every language L over an
alphabet Σ, with ε ∈ L, a string w ∈ Σ∗ is in L−1 if and only if it has an
odd number of representations of the form w = w1w2 . . . wk, with k � 0 and
w1, . . . , wk ∈ L \ {ε}.

As proved by Bakinova et al. [1], for every n-state DFA A = ({a}, Q, q0, δ, F),
with ε ∈ L(A), the language L(A)−1 is recognized by a DFA C = ({a}, 2Q ∪
{q′

0}, q′
0, δ

′, F ′) defined as follows. The states of C are all subsets of Q and a new

State Complexity of Unary GF(2)-Concatenation and GF(2)-Inverse 253

initial state q′
0, Its transition function is δ′ : (2Q ∪ {q′

0}) × {a} → 2Q ∪ {q′
0}. The

transition in the state q′
0 produces a singleton state corresponding to a single

computation of A.

δ′(q′
0, a) = {δ(q0, a)}

In a state S ⊆ Q, first let S′ = { q | # of states p ∈ S with δ(p, a) =
q is odd }. Then the transition is defined as follows.

δ′(S, a) =

{
S′, if |S ∩ F | is even
S′ � δ(q0, a), if |S ∩ F | is odd

The set of accepting states is F ′ =
{

S
∣∣ |S ∩ F | is odd

} ∪ {q′
0}.

Example 3. Consider the following 5-state unary DFA.

0 1 2a 3 4a a a

a

The DFA for its inverse, constructed by the above method, is shown in Fig. 1.
It has a cycle of length 15 and a tail of length 2 (along with 16 unreachable
states).

In the general case, the DFA for the GF(2)-inverse L(A)−1 of an n-state DFA
A has 2n + 1 states, and it is known that this number is necessary in the worst
case, for alphabets with at least three symbols [1]. It turns out that in the unary
case it is always sufficient to use 2n−1 + 1 states.

This upper bound is easy to establish for non-cyclic automata.

Lemma 4. Let A = ({a}, Q, 0, δ, F) be an n-state non-cyclic DFA with 0 ∈ F .
Then, the DFA for the GF(2)-inverse L(A)−1 constructed as above, has at most
2n−1 + 1 reachable states.

Proof. Indeed, no subset containing the state 0 is ever reached, since this state
is not reachable by any transitions. ��

For cyclic automata A, a deeper analysis of the automaton for its inverse is
needed, since the set of unreachable states is harder to specify. The first result to
be established is the following dependence between the membership of individual
states in the subsets.

Lemma 5. Let A = ({a}, Q, 0, δ, F) be a cyclic DFA with Q = {0, . . . , n − 1},
δ(i, a) = i + 1 mod n for all i, and 0 ∈ F . Let C = ({a}, 2Q ∪ {q′

0}, q′
0, δ

′, F ′)
be the DFA recognizing the GF(2)-inverse of L(A), defined as above. For each
i � 1, let Si ⊆ Q be the state of C reached upon reading the string ai.

254 A. Okhotin and E. Sazhneva

{0} ∅

{2}

{3} {1,4}
{0,1,2}

{0,1}

{1}

{0,2}

{0,3}
{0,1,4}

{1,2}

q0'

{2,3}

{0,2,3}

{0,1,3,4}

{2,4}

{1,3}

{0,1,2,4}

{1,2,3}
{0,1,2,3,4}

{2,3,4}

{3,4}

{4}

{1,3,4}

{0,2,4}

{0,1,3}

{1,2,4}

{0,1,2,3}
{1,2,3,4}

{0,2,3,4}

{0,3,4}

{0,4}

Fig. 1. DFA for the GF(2)-inverse of the language in Example 3.

Denote the membership of the j-th state in Si by a Boolean value Sj
i ∈ {0, 1},

with Sj
i = 1 if j ∈ Si, and Sj

i = 0 otherwise. Then, the membership of state 1
in each set Si is determined by the set Si−1 by the following formula.

S1
i =

∑
f∈F\{0}

Sf
i−1 (for i � 2)

Furthermore, the membership of 0 in Si depends on its membership in the
previous n − 1 states as follows.

S0
i =

∑
f∈F\{0}

S0
i−f (for i � n + 1)

Proof (a sketch). The formula for S1
i is directly inferred from the definition of

automata. The second formula is inferred from this one using the following two
observations: first, 0 is in Si if and only if 1 is in Si−(n−1); second, a state f is
in Si−n if and only if 0 is in Si−f . ��

State Complexity of Unary GF(2)-Concatenation and GF(2)-Inverse 255

4 Polynomials for GF(2)-Inverse

The subsets reached by the automaton for the GF(2)-inverse of a cyclic language
L have a useful characterization in terms of certain polynomials over GF(2).
First, based on the automaton for L, a sequence of polynomials shall be con-
structed, and then the leading coefficients of these polynomials shall correspond
to the membership of state 0 in the subsets of the automaton for L−1.

A few definitions are due. Let f(x) = an−1x
n−1 + . . .+a1x+a0 be a polyno-

mial of degree n − 1 over GF(2), with a0, . . . , an−1 ∈ {0, 1} and with an−1 = 1.
For every i � 0, let pi(x) be the polynomial obtained by taking xi modulo

f(x); this is a polynomial of degree at most n − 2. The polynomials pi(x) form
a sequence, in which the first term is p0(x) = 1, and every succeeding term is
obtained from the previous term as follows: if a polynomial pi(x) does not contain
the monomial xn−2, then the next term is pi+1(x) = x · pi(x); and if there is
a monomial xn−2 in pi(x), then the next term is pi+1(x) = x · pi(x) + f(x); in
other words, xn−1 is replaced with an−2x

n−2 + . . . + a1x + a0.
The first n terms in the sequence {xi mod f(x)}i=0 are 1, x, x2, . . . , xn−2,

xn−1 + f(x). The form of the subsequent terms non-trivially depends on f .
A polynomial f(x) of degree n−1 is called primitive, if this sequence contains

all 2n−1 − 1 non-zero polynomials. For each n � 2, primitive polynomials are
known to exist.

For all i � 0 and j ∈ {0, . . . , n − 2}, let bi,j ∈ {0, 1} be the coefficient at the
monomial xj in pi(x). The coefficient at the term xn−2 in pi(x) depends on the
coefficients at the same term in the preceding n−1 polynomials in the sequence.

Lemma 6. For every i � n − 1, the coefficient bi,n−2 depends on the earlier
coefficients as follows, with all arithmetic in GF(2).

bi,n−2 =
n−2∑
k=0

bi−(n−1−k), n−2ak

Let A = ({a}, Q, 0, δ, F) be a cyclic unary DFA with the set of states Q =
{0, . . . , n − 1} and with 0 ∈ F . The corresponding polynomial over GF(2) is
defined as f(x) =

∑
j∈F xn−1−j . In the sequence of polynomials xi modulo f(x),

let bi,n−2 be the coefficient at xn−2 in the i-th polynomial. Then, by Lemma 6,
each coefficient is expressed through the preceding n − 1 coefficients as follows.

bi,n−2 =
n−2∑
k=0

(
bi−(n−1−k),n−2 · (n − 1 − k

?∈ F)
)

=
∑

j∈F\{0}
bi−j,n−2

This is the same recurrent formula as in Lemma 5.

Example 7 (continued from Example 3). For the 5-state cyclic automaton with
accepting states F = {0, 3, 4}, the corresponding polynomial is f(x) = x4 +
x+ 1. Then, the sequence xi modulo f(x) begins with the following polynomials.
p0(x) = 1, p1(x) = x, p2(x) = x2, p3(x) = x3, p4(x) = x+1, p5(x) = x2 +x, etc.

256 A. Okhotin and E. Sazhneva

The following table puts the subsets reachable by the automaton alongside
the polynomials in this sequence. The acceptance status of each subset is pro-
vided for reference.

i Si+2 pi(x) ai+2
?∈ L−1

0 {2} 1 –
1 {3} x +
2 {1, 4} x2 +
3 {0, 1, 2} x3 +
4 {2, 3} x + 1 +
5 {1, 3, 4} x2 + x –
6 {0, 2, 4} x3 + x2 –
7 {0, 1, 3} x3 + x + 1 –
8 {1, 2, 4} x2 + 1 +
9 {0, 1, 2, 3} x3 + x –
10 {1, 2, 3, 4} x2 + x + 1 –
11 {0, 2, 3, 4} x3 + x2 + x +
12 {0, 3, 4} x3 + x2 + x + 1 +
13 {0, 4} x3 + x2 + 1 –
14 {0, 1} x3 + 1 +

For every i, the state 0 is in the subset Si+2 if and only if the polynomial
contains the term x3. This is not a coincidence, and this correspondence shall
now be established in the general case.

5 Upper Bound for the GF(2)-Inverse

The following two binary sequences turn out to be identical. First, there is the
sequence {S0

i } representing the membership of the state 0 in the subsets reached
by the automaton for the GF(2)-inverse. The other sequence is the sequence
{bi,n−2} of coefficients at xn−2.

Lemma 8. Let A = ({a}, Q, 0, δ, F) be a cyclic DFA with Q = {0, . . . , n − 1}
and 0 ∈ F . For each i � 1, let Si ⊆ Q be the state of the automaton for the
inverse given in Sect. 3, reached upon reading the string ai. For each i � 1, let
pi(x) be xi taken modulo f(x) =

∑
j∈F xn−1−j. Then, for every i � 0, the state

0 is in Si+2 if and only if the monomial xn−2 is in pi(x).

The proof is by induction on i: the base cases are i ∈ {0, 1, . . . , n − 2}, on
which the sequences coincide. The induction step follows by Lemmata 5 and 6,
since both sequences are defined by the same formulae on the same data.

Lemma 9. Assume that the sequence {S0
i }∞

i=0 has period p beginning at �, in
the sense that S0

i = S0
i+p for all i � �. Then, the sequence of states {Si}∞

i=0 has
period p beginning at �.

State Complexity of Unary GF(2)-Concatenation and GF(2)-Inverse 257

Lemma 10. Let A = ({a}, Q, 0, δ, F) be an n-state cyclic DFA with 0 ∈ F .
Then, the DFA for the GF(2)-inverse L(A)−1, constructed as in Sect. 3, has at
most 2n−1 + 1 reachable states.

Proof (a sketch). The sequence of polynomials xi modulo f(x) =
∑

j∈F xn−1−j

contains at most 2n−1 − 1 distinct polynomials. By Lemma 8, this sequence
coincides with the sequence of state 0, and then, by Lemma 9, the sequence
of subsets has the same total length of the tail and the period. This gives the
desired upper bound on the number of states. ��

6 Lower Bound for the GF(2)-Inverse

The lower bound shall be established using cyclic witness languages. The follow-
ing property of GF(2)-inverses of cyclic unary languages comes useful.

Lemma 11. Let L ⊆ a∗, with ε ∈ L, be a unary language recognized by an
n-state cyclic DFA. Then, its GF(2)-inverse L−1 contains a string a�, with � �
n+1, if and only if the number of representations a� = a�−jaj, with a�−j ∈ L−1,
aj ∈ L \ {ε} and j < n, is odd.

The proof is by establishing the equivalence with the condition in Theorem A.
For any language L ⊆ a∗, with ε ∈ L, let αi = 1 if ai ∈ L−1, and αi = 0

otherwise. Then the condition in Lemma 11 can be written down as the following
formula.

Lemma 12. Let L ⊆ a∗ be a language, with ε ∈ L, recognized by an n-state
cyclic DFA. Then, αi =

∑
j∈F\{0} αi−j for i � n + 1.

As in Sect. 4, let f(x) = an−1x
n−1 + . . .+a1x+a0 be a primitive polynomial

over GF(2), with an−1 = a0 = 1 (primitive polynomials of any degree over
GF(2) are known to exist). For every i � 0, let pi(x) = bi,n−2x

n−2 + . . . +
bi,1x+bi,0 be xi modulo f(x). Since f is primitive, by definition, all polynomials
p0(x), . . . , p2n−1−2 are pairwise distinct, and then p2n−1−1 = p0(x) = 1.

It turns out that the sequence of coefficients at xn−2 has the same period as
the sequence of full polynomials.

Lemma 13. The minimal period of the sequence {bi,n−2}∞
i=0 is 2n−1 − 1.

Lemma 14. The sequence {bi,n−2}∞
i=0 contains all binary substrings of length

n − 1, except for (0, . . . , 0).

A cyclic automaton Af corresponding to this primitive polynomial f(x) =
an−1x

n−1 + . . . + a1x + a0 is defined as Af = ({a}, Q, 0, δ, F), with Q =
{0, . . . , n − 1}, δ(i, a) = i + 1 mod n for all i, and F = {n − 1 − i | ai = 1 } (by
the same principle as in Lemma 8).

Let L = L(Af), and consider the sequence {αi}∞
i=0 defined as above. The

goal is to prove that (α2, . . . , αn) 	= (0, . . . , 0).

258 A. Okhotin and E. Sazhneva

Table 2. State complexity of unambiguous, classical and GF(2)-variants of sum,
concatenation and star: the case of a unary alphabet.

Sum Concatenation Star

Unambiguous (�) � 1
2mn [6] (unamb·) m+ n − 1 [6] (unamb∗) n − 2 [6]

Classical (∪) � mn [12] (·) � mn [13] (∗) (n − 1)2 + 1 [13]

GF(2) (�) mn (�) � 2mn (−1) 2n−1 + 1

Lemma 15. Let L be a unary language with ε ∈ L and L 	= {ε}, a∗, which is
recognized by a DFA with n states. Then, the inverse L−1 contains a string of
length between 2 and n.

Since the sequence {αi}∞
i=2 begins with something other than n−1 zeroes, by

Lemma 13, the binary substring (α2, . . . , αn) occurs somewhere in the sequence
{bi,n−2}∞

i=0. By Lemma 12, the rest of the terms of the sequence {αi} are defined
by the same formula as the sequence {bi,n−2}, which makes the binary strings
α2, . . . , α2n−1 and b0,n−2, . . . , b2n−1−2 identical up to a cyclic shift. In particular,
the period of the sequence {αi}∞

i=2 is 2n−1 − 1.
It remains to determine the length of the tail. Since the construction in

Sect. 3 produces 2n−1 + 1 states, the length of the tail is at most 2. It turns out
that it cannot be shortened, because the strings a and a2n−1 − 1 have different
membership status.

Lemma 16. α1 	= α2n−1+1, and therefore the length of the tail is 2.

The following theorem has thus been established.

Theorem 17. For every n � 2, there exists a language L, with ε ∈ L, recognized
by n-state unary cyclic DFA, for which the minimal DFA recognizing its GF(2)-
inverse L−1 has 2n−1 + 1 states.

7 Future Work

The results of this paper are summarized and compared to related results in
Table 2.

A problem proposed for future research is to determine the number of states
in NFA needed to represent these operations. There are two different modes of
nondeterminism involved: existential nondeterminism in NFA and parity non-
determinism in both GF(2)-operations. Intuitively, one kind of nondeterminism
cannot help implementing another kind, and the following straightforward con-
struction might actually turn out to be the best possible: first, determinize the
arguments, with a blow-up of the order e(1+o(1))

√
n lnn [3]; and then, apply the

constructions for deterministic automata presented in this paper. Could this
construction be substantially improved upon?

State Complexity of Unary GF(2)-Concatenation and GF(2)-Inverse 259

References

1. Bakinova, E., Basharin, A., Batmanov, I., Lyubort, K., Okhotin, A., Sazhneva, E.:
Formal languages over GF(2). In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.)
LATA 2018. LNCS, vol. 10792, pp. 68–79. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-77313-1 5

2. Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang.
Comb. 15(1/2), 71–89 (2010). https://doi.org/10.25596/jalc-2010-071

3. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3),
149–158 (1986). https://doi.org/10.1016/0304-3975(86)90142-8

4. Daley, M., Domaratzki, M., Salomaa, K.: Orthogonal concatenation: language
equations and state complexity. J. UCS 16(5), 653–675 (2010). https://doi.org/
10.3217/jucs-016-05-0653

5. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theor. Comput. Sci. 295, 189–203 (2003).
https://doi.org/10.1016/S0304-3975(02)00403-6

6. Jirásková, G., Okhotin, A.: State complexity of unambiguous operations on deter-
ministic finite automata. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018.
LNCS, vol. 10952, pp. 188–199. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94631-3 16

7. Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite
automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT
2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22321-1 28

8. Makarov, V., Okhotin, A.: On the expressive power of GF(2)-grammars. In:
Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS,
vol. 11376, pp. 310–323. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-10801-4 25

9. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Doklady 11, 1373–1375 (1970)

10. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30(6), 1976–1992 (2001). https://doi.org/10.1137/
S009753979935431X

11. Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Comput.
212, 15–36 (2012). https://doi.org/10.1016/j.ic.2012.01.003

12. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002). https://doi.
org/10.1142/S012905410200100X

13. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). https://doi.
org/10.1016/0304-3975(92)00011-F

https://doi.org/10.1007/978-3-319-77313-1_5
https://doi.org/10.1007/978-3-319-77313-1_5
https://doi.org/10.25596/jalc-2010-071
https://doi.org/10.1016/0304-3975(86)90142-8
https://doi.org/10.3217/jucs-016-05-0653
https://doi.org/10.3217/jucs-016-05-0653
https://doi.org/10.1016/S0304-3975(02)00403-6
https://doi.org/10.1007/978-3-319-94631-3_16
https://doi.org/10.1007/978-3-319-94631-3_16
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/978-3-030-10801-4_25
https://doi.org/10.1007/978-3-030-10801-4_25
https://doi.org/10.1137/S009753979935431X
https://doi.org/10.1137/S009753979935431X
https://doi.org/10.1016/j.ic.2012.01.003
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

Pushdown Automata and Constant
Height: Decidability and Bounds

Giovanni Pighizzini and Luca Prigioniero(B)

Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
{pighizzini,prigioniero}@di.unimi.it

Abstract. It cannot be decided whether a pushdown automaton accepts
using constant pushdown height, with respect to the input length, or not.
Furthermore, in the case of acceptance in constant height, the height
cannot be bounded by any recursive function in the size of the description
of the machine. In contrast, in the restricted case of pushdown automata
over a one-letter input alphabet, i.e., unary pushdown automata, the
above property becomes decidable. Moreover, if the height is bounded
by a constant in the input length, then it is at most exponential with
respect to the size of the description of the pushdown automaton. This
bound cannot be reduced. Finally, if a unary pushdown automaton uses
nonconstant height to accept, then the height should grow at least as the
logarithm of the input length. This bound is optimal.

1 Introduction

The investigation of computational devices working with a limited amount of
resources is a classical topic in automata theory. It is well known that by lim-
iting the memory size of a device by some constant, the computational power
of the resulting model cannot exceed that of finite automata. For instance, if
we consider pushdown automata in which the maximum height of the push-
down is limited by some constant, the resulting devices, called constant-height
pushdown automata, can recognize only regular languages. Despite their lim-
ited computational power, constant-height pushdown automata are interesting
since they allow more succinct representations of regular languages than finite
automata [5]. A natural generative counterpart of these devices are non-self-
embedding context-free grammars, roughly context-free grammars without “true”
recursion [4], which have been recently showed to be polynomially related in size
to constant-height pushdown automata [7].

In this paper, we focus on standard pushdown automata, namely with an
unrestricted pushdown store, that, however, are able to accept their inputs by
making use only of a constant amount of the pushdown store. More precisely,
we say that a pushdown automaton M accepts in constant height h, for some
given h, if for each word in the language accepted by M there exists one accepting
computation in which the maximum height reached by the store is bounded

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 260–271, 2019.
https://doi.org/10.1007/978-3-030-23247-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_20

Pushdown Automata and Constant Height: Decidability and Bounds 261

by h. Notice that this does not prevent the existence of accepting or rejecting
computations using an unbounded pushdown height.

It is a simple observation that a pushdown automaton M accepting in con-
stant height h can be converted into an equivalent constant-height pushdown
automaton: in any configuration it is enough to keep track of the current height
in order to stop and reject when a computation tries to exceed the height limit.
The description of the resulting constant-height pushdown automaton has size
polynomial in h and in the size of the description of M.

While studying these size relationships, we tried to understand how large
can h be with respect to the size of the description of M. We discovered that h
can be arbitrarily large. Indeed, in the first part of the paper we prove that there
is no recursive function bounding the maximal height reached by the pushdown
store in a pushdown automaton accepting in constant height, with respect to
the size of its description. We also prove that it cannot be decided if a pushdown
automaton accepts in constant height.

In the second part of the paper we restrict the attention to the case of
pushdown automata with a one-letter input alphabet, namely unary pushdown
automata. By studying the structure of the computations of these devices, we
are able to prove that, in contrast to the general case, it can be decided whether
or not they accept in constant height. Furthermore, we also prove that if a unary
pushdown automaton M accepts in height h, constant with respect to the input
length, then h can be bounded by an exponential function in the size of M. By
presenting a suitable family of pushdown automata, we show that this bound
cannot be reduced.

In the final part of the paper, we consider pushdown automata that accept
using height which is not constant in the input length. Our aim is to investigate
how the pushdown height grows. In particular, we want to know if there exists
a minimum growth of the pushdown height, with respect to the length of the
input, when it is not constant. The answer to this question is already known and
it derives from results on Turing machines: the height of the store should grow at
least as a double logarithmic function [1]. This lower bound cannot be increased,
because a matching upper bound recently obtained in [3]. As a consequence of
the constructions presented in the second part of the paper, we are able to prove
that in the unary case this lower bound is logarithmic. We also show that it
cannot be further increased.

For brevity reasons, many of the proofs are only outlined in this version of
the paper.

2 Preliminaries

We assume the reader familiar with the standard notions from formal language
and automata theory as presented in classical textbooks, e.g., [9]. As usual, the
cardinality of a set S is denoted by #S, the length of a string x is denoted by |x|,
the empty string is denoted by ε.

We first recall the notion of pushdown automata and present the form for
these devices that will be used in the paper. A pushdown automaton (pda, for

262 G. Pighizzini and L. Prigioniero

short) is a tuple M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 where Q is the finite set of states,
Σ is the input alphabet, Γ is the pushdown alphabet, q0 ∈ Q is the initial state,
Z0 ∈ Γ is the start symbol, F ⊆ Q is the set of final states. Without loss of
generality, we make the following assumptions about pdas:

1. at the start of the computation the pushdown store contains only the start
symbol Z0, being at height 0; this symbol is never pushed on or popped off
the stack;

2. the input is accepted if and only if the automaton reaches a final state, the
pushdown store contains only Z0 and all the input has been scanned;

3. if the automaton moves the input head, then no operations are performed on
the stack;

4. every push adds exactly one symbol on the stack.

Note that the transition function δ of a pda M can be written as

δ : Q × (Σ ∪ {ε}) × Γ → 2Q×({−,pop}∪{push(A)|A∈Γ}).

In particular, for q, p ∈ Q, A,B ∈ Γ , σ ∈ Σ, (p,−) ∈ δ(q, σ,A) means that the
pda M, in the state q, with A at the top of the stack, by consuming the input σ,
can reach the state p without changing the stack contents; (p, pop) ∈ δ(q, ε, A)
((p, push(B)) ∈ δ(q, ε, A), (p,−) ∈ δ(q, ε, A), respectively) means that M, in the
state q, with A at the top of the stack, without reading any input symbol, can
reach the state p by popping off the stack the symbol A on the top (by pushing
the symbol B on the top of the stack, without changing the stack, respectively).

Now we present the main measure we consider in the paper, namely the
pushdown height. The height of a pda M in a given configuration is the number of
symbols in the pushdown store besides the start symbol Z0. Hence, in the initial
and in the accepting configurations the height is 0. The height in a computation C
is the maximum height reached in the configurations occurring in C.

We say that M uses height h(x) on an accepted input x ∈ Σ∗ if and only if
h(x) is the minimum pushdown height necessary to accept x, namely, there exists
a computation accepting x using pushdown height h(x), and no computations
accepting x using height less than h(x). Moreover, if x is rejected then h(x) = 0.
To study pushdown height with respect to input lengths, we consider the worst
case among all possible inputs of the same length. Hence, we define h(n) =
max {h(x) | x ∈ Σ∗, |x| = n}. When there is a constant H such that, for each n,
h(n) is bounded by H, we say that M accepts in constant height. Each pda
accepting in constant height can be easily transformed into an equivalent finite
automaton. So the language accepted by it is regular.

In the following, by the size of a pda we mean the length of its description.
Notice that for each pda in the above-defined form, over a fixed input alpha-
bet Σ, the size is polynomial in the cardinalities of the set of states and of the
pushdown alphabet.1

1 In some papers pdas are presented in different forms. As pointed out in [2], it is
possible to turn the definition of pdas into these equivalent forms, with a polynomial
increase in size and by preserving the property of being constant height.

Pushdown Automata and Constant Height: Decidability and Bounds 263

We now present some technical notions that will be useful in order to state
our results. Let M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a fixed pda.

A surface pair is defined by a state q ∈ Q and a symbol A ∈ Γ , and it
is denoted by [qA]. The surface pair in a given configuration is defined by the
current state and the topmost stack symbol, namely the only part of the stack
which is relevant in order to decide the next move.

A surface triple is defined by two states q, p ∈ Q and a symbol A ∈ Γ , and it is
denoted by [qAp]. Surface triples are used to study parts of computations starting
and ending at the same pushdown height and that do not go below that height
in between. More precisely, a [qAp]-computation on an input string x ∈ Σ∗ is a
computation C which starts from the state q with A on the top of the pushdown
at some height h and the input head on the tape cell containing the leftmost
symbol of x, and ends in the state p with A on the top of the pushdown at the
same height h and the input head on the cell to the right of the cell containing
the rightmost symbol of x, without reaching pushdown height less than h in
between. We also say that C consumes the input x. We point out that, during C,
the symbol A at height h is never replaced and C does not depend on h and on
the symbols in the pushdown store at height less than h. The stack increment
during C is the difference between the maximum stack height in C and the stack
height at the beginning and at the end of C. Notice that the surface pairs at the
beginning and at the end of C are [qA] and [pA].

We denote by L[qAp] the set of input strings consumed in all possible [qAp]-
computations. By suitably modifying M, we can obtain a pda accepting L[qAp]

which, hence, is context free.
An horizontal loop on a surface pair [qA] is any [qAq]-computation consuming

at least one input symbol. By considering a computation of 0 moves, we always
have ε ∈ L[qAq]. Hence [qA] has a horizontal loop when L[qAq] contains at least
one more string.

If a [qAp]-computation C contains a proper [qAp]-subcomputation C′, for the
same triple [qAp], which starts with stack higher than at the beginning of C, then
the pair (X ,Y) where X is the prefix of C ending in the first configuration of C′,
and Y is the suffix of C starting from the last configuration of C′, is called vertical
loop. Notice that at the end of X a nonempty string Aα is on the pushdown above
the occurrence of A which was on the top at the beginning of C, and such a string
is popped off during Y.

It is well known that context-free languages defined over a one-letter alphabet
are regular [6]. The size costs of the conversions of unary pdas and context-free
grammars into equivalent finite automata have been studied in [13].

3 Undecidability and Non-Recursive Bounds

In this section we prove that it cannot be decided whether a pda accepts in
constant height or not. Furthermore, the trade-off between the sizes of pdas
accepting in constant height and the maximal heights that are reached by their
pushdown stores is not recursive.

264 G. Pighizzini and L. Prigioniero

These results are proved by using a technique introduced in [8], based on
suitable encodings of single-tape Turing machine computations. Roughly, con-
figurations of a such machine T with state set Q and alphabet Γ are denoted in
a standard way as strings from Γ ∗QΓ ∗. A computation consisting of m config-
urations α1, α2, . . . , αm is encoded as a string of blocks, separated by a delim-
iter $ /∈ Q ∪ Γ , where the ith block is αi when i is odd, αR

i when i is even (in
the following, we use α(R)

i to denote either αR
i or αi according to the parity of

the index i). Hence, the (encoding of a) valid computation of T on input w is a
string C = α1$αR

2 $α3$αR
4 $ · · · $α(R)

m , for some integer m ≥ 1 such that:

1. αi ∈ Γ ∗QΓ ∗, i.e., αi encodes a configuration of T , i = 1, . . . ,m;
2. α1 encodes the initial configuration on input w;
3. αi+1 is reachable in one step from αi, i = 1, . . . ,m − 1;
4. αm is a halting configuration of T .

A partial valid computation is defined in a similar way, by dropping Condition 4.
As proved in [8], the complement of the set of all valid computations of T is

a context-free language.

Theorem 1. It is undecidable whether a pda accepts in constant height.2

Proof. (outline) We give a reduction from the halting problem. Let T be a deter-
ministic Turing machine. With an easy modification, we suppose that arbitrarily
long computations use arbitrarily large amounts of tape.

Given an input w, let α1, α2, . . . be the (possibly infinite) sequence of config-
urations in the computation of T on w. By adapting the techniques used in [8]
to prove the above mentioned result, we describe a pda MT,w accepting the
complement of the language partial(T , w) of partial computations of T on w.

Given an input D = β1$βR
2 $ · · · $β(R)

r , with βi ∈ (Q ∪ Γ)∗, i = 1, . . . , r,
MT,w guesses which one among Conditions 1, 2 and 3 is not satisfied. For the
first two conditions, the finite control is sufficient. For the third condition, MT,w

nondeterministically selects one block β(R)
i , 1 ≤ i ≤ r, copies it on the pushdown

store and checks the condition by scanning the (i + 1)th block, if any, while
suitably comparing it with the block just saved on the store. (If i = r then
the verification fails.) Suppose that D satisfies Conditions 1 and 2, but not
Condition 3. Then, there is a computation which accepts D using pushdown
height equal to the length of the first block β(R)

i for which the condition is
not satisfied, i.e., the block corresponding to the largest i such that βj = αj

for j = 1, . . . , i. Since the pushdown height used to accept a string x is defined
as the minimum pushdown height in accepting computations on x, we conclude
that the pushdown height used to accept D is bounded by |αi|. So, if T halts
on w, then the maximum amount of the pushdown store used to accept a string
in (partial(T , w))c is bounded by the length of the largest configuration reached
by T on w. Otherwise, for each integer h, any string α1$αR

2 $ · · · αi$βR, where i
is odd, |αi| ≥ h, β ∈ Γ ∗QΓ ∗, and β
= αi+1, requires height at least h to be
accepted.
2 We point out that for unambiguous pdas, the property is decidable [10].

Pushdown Automata and Constant Height: Decidability and Bounds 265

Hence, T halts on w if and only if MT,w accepts in constant height. ��

As already observed in the introduction, any pda M accepting in constant
height h can be converted into an equivalent constant-height pda. From such
a machine, equivalent nfas and dfas with a number of states exponential and
double exponential in h, respectively, are easily obtained. In the worst case these
bounds cannot be reduced [5]. We now show that, however, h cannot be bounded
by any recursive function in the size of M.

Theorem 2. For any recursive function f : N → N and for infinitely many inte-
gers n there exists a pda of size n accepting in constant height H(n), where H(n)
cannot be bounded by f(n).3

Proof (outline). The argument is derived from [12, Prop. 7]. For n > 0, let BBn

be a busy beaver with a set of n states Qn and tape alphabet Γ = {1, b̄}, namely
a single-tape deterministic Turing machine that, starting with an empty tape,
ends the computation with a string on the tape in which the number of 1′s,
denoted as Σ(n), is maximum. It is known that Σ(n) cannot be bounded by
any recursive function [14]. Hence, also the maximal length of configurations
occurring in such a computation cannot be bounded by any recursive function.

Let Cn be the encoding of the valid computation of BBn on ε. By adapting the
arguments used to prove Theorem 1, we can define a pda Mn, whose description
has a size polynomial in n, which accepts all the strings over (Qn ∪ Γ ∪ {$})∗

different from Cn, and such that each string different from Cn is accepted using
height bounded by the length of the longest configuration occurring in Cn. Since n
is fixed, Mn accepts in constant height. Furthermore, by suitably modifying Cn,
we can obtain a string that requires height equal to the maximal length of
configurations occurring in Cn to be accepted by Mn.

This allows to conclude that the pushdown height used by Mn cannot be
bounded by any recursive function in the size of Mn. ��

Corollary 3. There is no recursive function bounding the size blowup from
pdas accepting in constant height to finite automata.

4 Constant Height Decidability in the Unary Case

In Sect. 3 we proved that it cannot be decided if a pda accepts in constant height.
This section is devoted to showing that this property turns out to be decidable
in the restricted case of pdas with a one-letter input alphabet. We first give an
informal outline of the argument.

Any accepting computation on a sufficiently long input should contain hor-
izontal or vertical loops. The use of vertical loops can lead to computations
using unbounded height. However, we prove that if an accepting computation
on an input a� visits a surface pair on which there exists a horizontal loop, then
there is another accepting computation for the same input in which almost all
3 Notice that here H(n) is a function of the size of the pda and not of the input.

266 G. Pighizzini and L. Prigioniero

occurrences of the vertical loops are replaced by occurrences of such horizontal
loop. The number of vertical loops which remain in the resulting computation is
bounded by a constant. As a consequence, the amount of pushdown store suffi-
cient to accept a� is also bounded by a constant. In contrast, when all accepting
computations on a long string a� do not visit any surface pair having a horizontal
loop, vertical loops and an increasing of the stack cannot be avoided. Hence, the
given pda works in constant height if and only if the cardinality of Lv \ Lh is
finite, where Lh (Lv, resp.) is the set of strings which are accepted by a compu-
tation visiting a (not visiting any, resp.) surface pair having a horizontal loop.
Since we are considering a unary alphabet, languages Lv and Lh are regular. So
the finiteness of their difference is decidable. To obtain these results, we refine
some of the arguments given in [13] to study the size costs of the transformations
of unary context-free grammars and pushdown automata into equivalent finite
automata.

4.1 Loops and Grammars

Let G = 〈V,Σ, P, S〉 be a context-free grammar in binary normal form, an exten-
sion of Chomsky normal form where, besides productions A → BC and A → a,
also unit productions A → B and ε-productions are allowed. Let v = #V be the
number of variables of G.

If T is a parse tree whose root is labeled with a variable A ∈ V and such
that the labels of the leaves, from left to right, form a string α ∈ (V ∪ Σ)∗,
then we write T : A

�⇒ α. Furthermore, we indicate by ν(T) the set of variables
occurring as labels of the nodes in T . As usual, the height of a derivation tree T
is the maximum number of edges from the root to a leaf of T . A gap tree from
a variable A ∈ V , also called A-gap tree, is a tree corresponding to a nonempty
derivation of the form A

+⇒ xAy, with x, y ∈ Σ∗.
Let us suppose that G is unary, i.e., Σ = {a}. The following lemma will be

crucial to obtain the main result of this section. It states that each long enough
string a� in the language generated by G can be derived by pumping a derivation
tree of some short string by many occurrences of a same gap tree. Furthermore,
such a gap tree can be arbitrarily chosen among the A-gap trees generating
“short” nonempty strings, with A occurring in the derivation of a�.

Lemma 4. For any derivation tree T : S
�⇒ a� and for any A-gap tree TA :

A
�⇒ aiAaj, with 0 < i+ j ≤ 2v2 −2v2−v and A ∈ ν(T), there exists a derivation

tree T ′ : S
�⇒ a� which is obtained by pumping a tree T0 : S

�⇒ a�0 such
that ν(T0) = ν(T), 0 ≤
0 ≤ 2v2−1 + (2v2 − 2v2−v)2, with k ≥ 0 occurrences
of TA.

Proof (outline). First, the tree T is “un-pumped” by removing several gap trees,
up to find a tree Tr : S

�⇒ a�r , with
r ≤ 2v2−1 and ν(Tr) = ν(T). The tree Tr

is then “re-pumped” to get T0, by using a number bounded by a constant of
occurrences of the removed gap trees. The tree T ′, which generates the same
string as the original T , can be obtained by pumping T0 with a suitable number

Pushdown Automata and Constant Height: Decidability and Bounds 267

of occurrences of TA. The possibility of doing these transformations, which finally
produce a different tree for the same string, derives from a result related to
Diophantine equations [11, Lemma 2.6] and from the fact that in the unary case
terminal symbols commute. ��

4.2 Simulating Vertical Loops by a Horizontal Loop

Let us consider a fixed (not necessarily unary) pda M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉.
We define the grammar G = 〈V,Σ, P, S〉, where the elements of V are triples
[qAp], with q, p ∈ Q, A ∈ Γ , plus the start symbol S (hence v = #V = 1 +
(#Q)2 · #Γ), and P contains the following productions:

1. [qAp] → [qAr][rAp], for q, p, r ∈ Q, A ∈ Γ ;
2. [qAp] → [q′Bp′], for q, q′, p, p′ ∈ Q, A,B ∈ Γ such that (q′, push(B)) ∈

δ(q, ε, A) and (p, pop) ∈ δ(p′, ε, B);
3. [qAp] → σ, for q, p ∈ Q, σ ∈ Σ ∪ {ε}, A ∈ Γ such that (p,−) ∈ δ(q, σ,A);
4. [qAq] → ε, for q ∈ Q, A ∈ Γ ;
5. S → [q0Z0q], for q ∈ F .

Applying standard techniques, we can prove that G generates the language
accepted by M. Since we are interested in the amount of stack used by M,
we state such equivalence in a stronger form, which also considers the use of the
stack in the computations. In particular, we relate the stack increment to the
unit production height which, for a derivation tree T of the above grammar G,
is defined as the maximum number of edges corresponding to unit productions
in a path from the root to a leaf in T . As a consequence of a technical lemma,
which is omitted, we obtain:

Corollary 5. For any integer h ≥ 0, a string x is accepted by M using push-
down height h if and only if there is a derivation tree T of x in G with unit
production height h.

Let us restrict to the unary case. Using Corollary 5, we can reformulate
Lemma 4 in terms of pushdown automata. Roughly, we can say that for each
computation C accepting a “long” input, there is another computation accepting
the same input, which is obtained by pumping a suitable computation C0, chosen
from a finite set, with a repeated pattern which is arbitrarily selected from
another finite set that depends on C0. We will use this property to replace in an
accepting computation C almost all the vertical loops with many occurrences of
a horizontal loop, in the case a surface pair [rB] having a horizontal loop occurs
in C. In this way, we will be able to obtain an accepting computation on the
same input using a bounded amount of pushdown storage.

Theorem 6. Let C be an accepting computation on input a� which visits a sur-
face pair [rB] having a horizontal loop. Then there exists another accepting com-
putation on a� which uses pushdown height at most 2O(v2).

268 G. Pighizzini and L. Prigioniero

Proof (outline). First, we observe that if C visits the surface pair [rB] then
there exists a derivation tree T : S

�⇒ a� with [rBr] ∈ ν(G). In fact, one
of the triples [rBs] or [sBr] for some s ∈ Q should appear in the derivation
tree corresponding to C. Since G contains the productions [rBs] → [rBr][rBs],
[sBr] → [sBr][rBr] and [rBr] → ε, we can suitably modify the tree in order to
introduce one occurrence of [rBr], without changing the derived string.

Now we select a [rBr]-gap tree T[rBr] deriving a “short” non empty string, i.e.,
T[rBr] : [rBr] �⇒ ai[rBr]aj , with 0 < i+ j ≤ 2v2 −2v2−v. According to Lemma 4,
we can obtain another tree T ′ : S

�⇒ a� by pumping a tree T0 : S
�⇒ a�0 , such

that ν(T0) = ν(T), 0 ≤
0 ≤ 2v2−1 + (2v2 − 2v2−v)2, with k ≥ 0 occurrences
of T[rBr].

We observe that in the tree T ′ the k occurrences of T[rBr] could be nested,
possibly giving a stack height in the corresponding computation which linearly
increases with k. To fix this problem, we modify T ′ as we now describe.

Let u be a node of T0 labeled by [rBr] and Tu be the subtree of T0 rooted
at u, such that T0 is pumped starting from u with t > 1 nested occurrences
of T[rBr]. We rearrange these t occurrences of T[rBr] in a sequence by inserting,
starting from node u, a subtree corresponding to a derivation [rBr] �⇒ [rBr]t

obtained by using t − 1 times the production [rBr] → [rBr][rBr]. To each leaf
of this subtree we append one occurrence of the [rBr]-gap tree T[rBr]. Finally, to
the leaf labeled [rBr] of the first occurrence of T[rBr] we append the tree Tu, and
to each of the remaining t − 1 leaves labeled [rBr] we append one leaf labeled
with the empty word.

Let T ′′ be the tree obtained after this modification, which still generates a�.
Using Corollary 5 we now estimate the amount of pushdown store used in
the computation C′′ corresponding to T ′′. The unit production height of T ′′

is bounded by the maximum number h0 of such edges in a path in T0 plus
the maximum number h1 of such edges in a path in T[rBr] which, in turn, are
bounded by the height of T0 and T[rBr], respectively. We can prove that h0 + h1

is 2O(v2). According to Corollary 5, this allows us to conclude that a� is accepted
by a computation which uses pushdown height 2O(v2). ��

4.3 Decidability

We are now able to prove the main result of this section:

Theorem 7. Let M be a unary pda with n states and m pushdown symbols.
Then M accepts in constant height if and only if it accepts in height bounded
by 2O(v2), where v = n2m + 1.

Proof (outline). Let L be the language accepted by M. We also consider the
following two languages Lh and Lv, whose union gives L:

– Lh is the set of strings accepted by the computations of M which visit at
least one surface pair having a horizontal loop.

Pushdown Automata and Constant Height: Decidability and Bounds 269

– Lv is the set of strings accepted by the computations of M which visit only
surface pairs that do not have horizontal loops.

According to Theorem 6, all strings in Lh are accepted in constant height 2O(v2).
If the set Lv \ Lh is infinite, then it should contain arbitrarily long strings.

It can be verified that an arbitrarily high stack is required to accept them.
Otherwise, M accepts in constant height. In this case, we evaluate the height

of the stack used to accept the strings in Lv \ Lh. We can modify M to obtain
pdas Mv and Mh accepting languages Lv and Lh, respectively. According
to Corollary 2 in [13], these automata can be converted into equivalent dfas
with 2O(v2) states. Hence Lv \ Lh, which is finite, is accepted by a dfa with less
than 2O(v2) states. So, the longest string in Lv \ Lh has length at most 2O(v2).
This implies that each string in Lv \Lh is accepted by M using height 2O(v2). ��

Corollary 8. It is decidable whether a unary pda accepts in constant height.

5 Size Versus Height in the Unary Case

The arguments used in Sect. 4 to prove that it is decidable whether a unary pda
A accepts in constant height, give an exponential upper bound for the maximum
stack height, with respect to the size of A. We can prove that such an exponential
bound cannot be reduced:

Theorem 9. For each integer k > 0 there exists a pda Mk having a size poly-
nomial in k and accepting in height which is constant with respect to the input
length but exponential in k.

Proof (outline). For each integer k > 0, let us consider the language Hk =
{at | t = α2k + β(2k + 1), α, β ≥ 0}. We can define a pda Mk of size O(k) which
accepts each string in Hk by computations consisting of two parts. In the first
part, a horizontal loop which consumes 2k input symbols is repeated an arbitrary
number α ≥ 0 of times. This uses constant height O(k). In the second part, a
vertical loop consuming 2k+1 input symbols occurs β ≥ 0 times, using height β+
k − 1. According to Theorem 6, each accepting computation can be replaced by
an equivalent accepting computation in which the number of occurrences of the
vertical loop is bounded by a constant. Hence Mk accepts in constant height.

However, an height exponential in k is necessary. In fact, let at ∈ Hk be the
string obtained by choosing α = 0 and β = 2k − 1, namely, t = (2k − 1)(2k + 1).
We can prove that the only solution of the equation t = α′2k + β′(2k + 1),
with integers α′, β′ ≥ 0 is α′ = α = 0 and β′ = β = 2k − 1. This allows
to conclude that the only accepting computation on at is the one which uses
height β + k − 1 ≥ 2k. Hence, to accept at an exponential height, with respect
the size of Mk, is necessary. ��

270 G. Pighizzini and L. Prigioniero

6 An Optimal Lower Bound for Non-Constant Height

In this section we turn our attention to pdas accepting in non-constant height. It
is known that in this case the height of the pushdown store should grow at least
as the function log log n, with respect to the input length n [1]. Furthermore, this
lower bound is optimal [3]. We show that in the unary case the optimal bound
increases to a logarithmic function.

Let us start by proving the lower bound:

Theorem 10. Let M be a unary pda using height h(n). Then either h(n) is
bounded by a constant or there exists c > 0 such that h(n) ≥ c log n infinitely
often.

Proof (outline). According to the proof of Theorem 7, if h(n) is not constant,
then there exist infinitely many strings in Lv \Lh that are accepted only by com-
putations that use vertical loops and do not visit surface pairs having horizontal
loops. Let Mv be the pda accepting Lv and, for an ∈ Lv \ Lh, Mh(n) be the
pda obtained by bounding the height of the pushdown of Mv to h(n).

Using Corollary 2 in [13], we can prove that there exists an nfa Nh(n)

equivalent to Mh(n) whose number of states is bounded by 2d·h(n)+1 + 1,
where d = 2 · (#Q)2 · #Γ .

Since Mh(n) has stack height bounded by h(n), it cannot have vertical loops.
Furthermore, accepting computations of Mv do not use surface pairs with hor-
izontal loops. Hence, the language accepted by Mh(n) is finite. Thus, in Nh(n)

the string an is accepted by a path without any repeated state. This implies
that Nh(n) must have more than n states.

Given any constant c, if h(n) < c log n, then the number of states of Nh(n)

would be 2d·h(n)+1 + 1 < 2d·c log n+1 + 1 = 2nd·c + 1. For c sufficiently small,
e.g., c < 1/(2d), we get that the number of states of Nh(n) is less than n,
provided that n is not too small. This gives a contradiction. Hence, it must exist
a constant c such that h(n) ≥ c log n infinitely often. ��

We now prove a matching upper bound:

Theorem 11. There exists a unary pda accepting every word a�,
 > 0, using
pushdown height exactly �log2
� + 1 and the empty word using height 0.

qI

qI qF

q1 q2

qI qF

qF

0 1
a

Fig. 1. The evolution of the pushdown store of A during the recursive subroutine
leading from qI to qF , when recursive calls are made. The dashed lines should be
replaced either by an ε-move or, recursively, by the same pattern.

Pushdown Automata and Constant Height: Decidability and Bounds 271

Proof (outline). Consider the pda A = 〈Q, {a}, Γ, δ, qI , Z0, {qF }〉, where Q =
{qI , q1, q2, qF }, Γ = {Z0, 0, 1}, and δ defined as follows, for X ∈ Γ :

1. δ(qI , ε,X) = (qF ,−);
2. δ(qI , ε,X) = (qI , push(0));
3. δ(qF , ε, 0) = (q1, pop);

4. δ(q1, a,X) = (q2,−);
5. δ(q2, ε,X) = (qI , push(1));
6. δ(qF , ε, 1) = (qF , pop).

From the initial state qI , the pda A can reach the final state qF with the same
pushdown height either with an ε-move (Transition 1) or by using a computation
path making two recursive calls and consuming one input symbol as depicted in
Fig. 1. Each string in a∗ is accepted by A. Furthermore, pushdown height h is
necessary and sufficient to accept all strings of length
, with 2h−1 ≤
 < 2h. ��

References

1. Alberts, M.: Space complexity of alternating Turing machines. In: Budach, L. (ed.)
FCT 1985. LNCS, vol. 199, pp. 1–7. Springer, Heidelberg (1985). https://doi.org/
10.1007/BFb0028785

2. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Removing nondeterminism
in constant height pushdown automata. Inform. Comput. 237, 257–267 (2014)

3. Bednárová, Z., Geffert, V., Reinhardt, K., Yakaryilmaz, A.: New results on the
minimum amount of useful space. Internat. J. Found. Comput. Sci. 27(2), 259–282
(2016). https://doi.org/10.1142/S0129054116400098

4. Chomsky, N.: A note on phrase structure grammars. Inform. Control 2(4), 393–395
(1959). https://doi.org/10.1016/S0019-9958(59)80017-6

5. Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular
languages by automata and regular expressions. Inform. Comput. 208(4), 385–394
(2010). https://doi.org/10.1016/j.ic.2010.01.002

6. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM
9(3), 350–371 (1962). https://doi.org/10.1145/321127.321132

7. Guillon, B., Pighizzini, G., Prigioniero, L.: Non-self-embedding grammars,
constant-height pushdown automata, and limited automata. In: Câmpeanu, C.
(ed.) CIAA 2018. LNCS, vol. 10977, pp. 186–197. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94812-6 16

8. Hartmanis, J.: Context-free languages and Turing machine computations. In:
Mathematical Aspects of Computer Science. Proceedings of Symposia in Applied
Mathematics, vol. 19, pp. 42–51. American Mathematical Society (1967)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

10. Malcher, A., Meckel, K., Mereghetti, C., Palano, B.: Descriptional complexity of
pushdown store languages. J. Autom. Lang. Comb. 17(2–4), 225–244 (2012)

11. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30(6), 1976–1992 (2001)

12. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proceedings of 12th Annual Symposium on Switching and
Automata Theory, pp. 188–191. IEEE Computer Society (1971)

13. Pighizzini, G., Shallit, J., Wang, M.: Unary context-free grammars and pushdown
automata, descriptional complexity and auxiliary space lower bounds. J. Comput.
Syst. Sci. 65(2), 393–414 (2002). https://doi.org/10.1006/jcss.2002.1855

14. Rado, T.: On non-computable functions. Bell Syst. Tech. J. 41(3), 877–884 (1962).
https://doi.org/10.1002/j.1538-7305.1962.tb00480.x

https://doi.org/10.1007/BFb0028785
https://doi.org/10.1007/BFb0028785
https://doi.org/10.1142/S0129054116400098
https://doi.org/10.1016/S0019-9958(59)80017-6
https://doi.org/10.1016/j.ic.2010.01.002
https://doi.org/10.1145/321127.321132
https://doi.org/10.1007/978-3-319-94812-6_16
https://doi.org/10.1007/978-3-319-94812-6_16
https://doi.org/10.1006/jcss.2002.1855
https://doi.org/10.1002/j.1538-7305.1962.tb00480.x

On the Decidability of Finding a Positive
ILP-Instance in a Regular Set

of ILP-Instances

Petra Wolf(B)

FB 4 - Abteilung Informatikwissenschaften, Universität Trier, Trier, Germany
wolfp@uni-trier.de

Abstract. The regular intersection emptiness problem for a decision
problem P (intReg(P)) is to decide whether a potentially infinite regular
set of encoded P-instances contains a positive one. Since intReg(P) is
decidable for some NP-complete problems and undecidable for others,
its investigation provides insights in the nature of NP-complete prob-
lems. Moreover, the decidability of the intReg-problem is usually achieved
by exploiting the regularity of the set of instances; thus, it also estab-
lishes a connection to formal language and automata theory. We consider
the intReg-problem for the well-known NP-complete problem Integer
Linear Programming (ILP). It is shown that any DFA that describes
a set of ILP-instances (in a natural encoding) can be reduced to a finite
core of instances that contains a positive one if and only if the original
set of instances did. This result yields the decidability of intReg(ILP).

Keywords: Deterministic finite automaton · Regular languages ·
Regular intersection emptiness problem · Decidability ·
Integer linear programming

1 Introduction

The problem Integer Linear Programming (ILP for short) asks whether
a given set of inequalities with integer coefficients has an integer solution.
ILP is among the first problems for which NP-hardness was shown (it is on
Karp’s original list of 21 NP-complete problems) and it is of great practical rel-
evance in mathematical optimisation. There is a large number of academic pro-
totypes as well as commercial implementations of ILP-solvers that are applied
in various contexts; therefore ILP is arguably of similar importance as the well-
known Boolean satisfiability problem. For recent theoretical papers on ILP see,
e. g., [5,7].

Linear and Integer Linear Programs are often used to model observations of
the real world under the assumption that some properties are present. Impor-
tant fields of applications are for example image segmentation [12] and motion

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 272–284, 2019.
https://doi.org/10.1007/978-3-030-23247-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_21

Finding a Positive ILP-Instance in a Regular Set of ILP-Instances 273

segmentation [13]. These models often face uncertainties due to lack of infor-
mation or measurement errors [10]. One possibility to handle this problem is to
take every possible instance into account, in which the uncertainty is replaced
by an actual value and ask whether one of them is solvable. In doing so, we get
a potentially infinite set of instances under which we seek a solvable one. For
example, suppose we have a system of two inequalities a11x1 + a12x2 ≤ b1 and
a21x1a22x2 ≤ b2 with two integer variables x1 and x2 and only partial knowledge
of the coefficients a11, a12, b1, a21, a22, b2. Due to measurement inaccuracies all
we know is that a11 is a power of 2; a12 is even and negative; b1 is positive and
less than 100; a21 is congruent to 3 modulo 29; a22 is 1 less than an odd power
of 2; and b2 is negative. The described inequalities form an infinite family of
inequalities and the described system represents an infinite family S of instances
of ILP. Since each coefficient fits a regular pattern, a DFA can describe the
encodings of exactly the instances in S.

Compact representations of finite sets of instances have already been consid-
ered for other problems. In graph modification,1 the task is to transform a given
graph using a given set of edit operations into a graph of a certain graph-family
using as few operations as possible [2,14]. The possible edit operations give rise
to an edit distance [8] with respect to the set of graphs; thus, the above described
task can be seen as checking whether the set of all graphs within a certain dis-
tance from the given graph contains a member of the specified graph-family. The
same can be done for string-problems where a given string is to be transformed
(by using certain operations) into a target string [4].

Searching for a positive instance among infinitely many instances of a prob-
lem P seems to be a natural generalization of this setting. If we consider regular
sets of instances, this task can be formalised as checking whether a given regular
language of P -instances (represented by a deterministic finite automaton) and
the fixed language of positive P -instances have a non-empty intersection. This
was the original viewpoint of the line of research introduced by Güler et al. [9,23],
where this problem is called the intReg-problem of P (or intReg(P) for short).2

The intReg-problem has independently been studied under the name regu-
lar realizability problem RR(L), where the filter language L plays the role of
problem P as defined above, i. e., RR(L) = intReg(L) (see [1,15–17,19–21]). The
RR problem appeared when considering models of generalized nondeterminism
(GNA) where an auxiliary memory is used as a source of nondeterminism [18].
For each GNA class there are complete RR(L) problems where the filter lan-
guage L consists of prefixes of GNA-certificates (or guess words) [19]. That fact
already gives RR-problems which are complete under log space reductions for
LOG, NLOG, P, NP, PSPACE, EXP, and Σ1. This observation motivated the
attempt to present with the RR-problem ‘a specific class of algorithmic problems
that represents complexities of all known complexity classes [. . .] in a unified way’
[20]. It turned out that RR-problems are universal in the sense that for any prob-

1 A Dagstuhl seminar on ‘Graph Modification Problems’ was held in 2014 [2].
2 Note that this problem is only well-defined if it is clear how P is represented as a
language, i. e., we have to define how P -instances are encoded as strings.

274 P. Wolf

lem P , there exists an RR-problem RR(L) with the same complexity (note that
P and L are different languages). In [21], instead of focusing on which complexity
classes can be covered by an RR-problem, the authors concentrate on context-
free filter languages and present examples for which RR(L) is either P-complete,
NLOG-complete or has an intermediate complexity. In [17] the decidability of
the RR-problem with languages of permutations of binary words as filters have
been considered. In this line of research, the filter languages are closely related
to computations of specific machine models. As a consequence the regularity of
the input language is not exploited at all and the hard part of a problem is coded
into regular languages consisting of single words only. In [20] the author notes
that the presented reductions ‘cut off almost all properties of regular languages’.

In [1], intReg(L) has been studied for L with low computational complexity,
but which describe structural properties of words that have high relevance for
combinatorics on words and formal language theory (e.g., set of primitive words,
palindromes, etc.). In this regards, (efficient) decision procedures are obtained.

In contrast to these research questions, the line of work initiated in [9,23]
focuses on classical (hard) computational problems as filter languages and
respective decision procedures heavily take advantage of the regularity of the
set of input instances. Investigating the intReg-problem for NP-complete prob-
lems shows that the decidability of their intReg-problem is not trivial, e. g.,
intReg(SAT) is decidable [9], whereas intReg(Bounded Tiling) is not [23].3

This is particularly interesting because the original hardness proofs of SAT and
Bounded Tiling are both given by directly encoding Turing-machine com-
putations into a problem instance [3,6]. Finding a generic characterization of
NP-complete problems with a decidable intReg-problem is still an open problem.
This work continues this line of research and we will focus on the NP-complete
integer linear programming problem as the filter language, i. e., we investigate
the problem intReg(ILP).

Our main result is that intReg(ILP) is decidable. The idea is to transform
the given DFA that represents the regular set of instances into a condensed one
that accepts a finite set of instances, such that the condensed set contains a
positive instance if and only if this is the case for the original set.4 This is done
by first identifying for all pairs of states the set of coefficients that can be read
between these two states, and then choosing a finite number of representatives
for each such set of coefficients (in a sense, these are the coefficients that are
‘most promising’ regarding possible solutions). Then, again for all pairs of states,
we identify a set of whole inequalities that can be read between these two states
and that only have coefficients from the set of ‘promising’ coefficients constructed
before. Finally, we will again choose suitable representatives for those sets of
inequalities, from which we will construct the desired condensed automaton.
We will also give bounds on the number and length of words accepted by the

3 LOGSPACE and P also contain problems with undecidable intReg-problem [23].
4 Our construction uses similar ideas as given in [11].

Finding a Positive ILP-Instance in a Regular Set of ILP-Instances 275

condensed automaton and, in the conclusions, discuss the chosen encoding and
present an alternative encoding. The presented arguments can easily be adapted
to proof the decidability of the intReg-problem for Linear Programming (with
integer coefficients). Due to space restrictions some proofs are omitted.

2 Preliminaries

We assume the reader to be familiar with the basics of formal language the-
ory and the complexity class NP. For a language descriptor A (e. g., regular
expressions or automata), L(A) denotes the language described by A. With [n],
n ∈ N we denote the set {1, . . . , n}. A deterministic finite automaton (DFA) A
is a tuple (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ a finite alphabet,
δ : Q×Σ → Q the (partial) transition function, q0 the start state, and F is the set
of final states. The transition function δ extends to the function δ∗ : Q×Σ∗ → Q
in the usual way. We will only consider partial automata where every state is
coaccessible, i. e., from every state, some final state is reachable.

We first give a formal definition of the problem Integer Linear Program-
ming. While the standard-form of ILP varies in different areas, we refer to the
definition in [22] where this problem is called LIQ. We will refer to the described
problem as ILP. The problem is NP-complete if we ask for solutions in Z [22].

Definition 1 (ILP).
Given: Finite set A of pairs (α, β) where α ∈ Z

m and β ∈ Z.
Question: Is there an m-tuple x ∈ Z

m such that αᵀ · x ≤ β for all (α, β) ∈ A?

The problem will be encoded in the following way. The whole set A will be
encoded in one word. For each pair (α, β) the elements of α and the β-value are
encoded in binary over {0,1}. Each positive integer will be preceded with a +
while each negative integer will be preceded with a −. The integers of α will be
separated from β by a ≤ symbol. The inequalities themselves are terminated by
$-symbols. Since we want to talk about regular languages of ILP-instances, we
aim to have an encoding which is verifiable by a finite automaton. Therefore, we
allow the inequalities of an ILP-instance to have different numbers of variables.
The assignment of the coefficients to the variables is implicitly made by the order
in which the coefficients occur. So, the i-th encoded coefficient in an inequality
refers to variable xi and is referenced as the coefficient with index i. As the
inequalities of an ILP-instance may have different numbers of coefficients, they
are interpreted as filled up with coefficients zero until all inequalities have the
same number of coefficients and hence the same number of variables. Alternative
encodings are discussed in Sect. 5. More formally,

Lenc := L
((

([+|−][0|1(0|1)∗])∗ ≤ [+|−][0|1(0|1)∗]$
)∗)

is the set of all encoded ILP-instances and with ILPenc we denote the set of all
solvable encoded ILP-instances. As an example, consider the following integer

276 P. Wolf

linear program and its encoding:

{((5, 1, 0,−7), 15) , ((0,−8, 1, 0),−4) , ((1, 0, 0, 0),−1)} ,

+ 101 + 1 + 0 − 111 ≤ +1111 $ − 0 − 1000 + 1 ≤ −100 $ + 1 ≤ −1 $.

Note that coefficients zero can either occur with a + or a − sign.
The question we want to investigate is whether the set of solvable ILP-

instances, encoded in the above described way, and a regular language, given
by an automaton, have a non-empty intersection.

Definition 2 (intReg(ILP)).
Given: Deterministic finite automaton A.
Question: Is L(A) ∩ ILPenc �= ∅?

3 Construction of the Condensed Automaton

We will follow the ideas presented in [9] of investigating what kinds of loops
can occur in the automaton without violating the encoding format, namely
loops inside a coefficient, loops over whole coefficients, and loops over whole
inequalities.

Definition 3. Let A = (Q,Σ, δ, q0, F) be a DFA. We define for all q, q′ ∈ Q
and s ∈ {+,−} the coefficient transition set Λs

q,q′ and β-transition sets Bs
q,q′ as

Λs
q,q′ = {si | i ∈ {0, 1}∗ ∧ ∃σ ∈ Σ\{0, 1, $} : δ∗(q, si) = q′ ∧ δ(q′, σ) �= ∅}.

Bs
q,q′ = {si | i ∈ {0, 1}∗ ∧ δ∗(q, si) = q′ ∧ δ(q′, $) �= ∅}.

Intuitively speaking, these transition sets contain all coefficients and β-values
which can be completely read between q and q′. Note that automata recognizing
the transition sets are easily obtained from the original automata. When q, q′

and s is clear from the context, then we will simply write Λ and B.
We now want to find a set of representatives reps(Λ) for each coefficient

transition set Λ. The set reps(Λ) will contain only the smallest and largest coef-
ficient, which in the following we will denote extreme coefficients, from the set Λ.
Since all inequalities are of the form α1x1 + · · ·+αnxn ≤ β, increasing the abso-
lute value of a positive summand αixi makes the inequality system harder to be
solved, while decreasing it may only enlarge the set of solutions (correspondingly
for negative summands). So, we only have to consider the largest and smallest
coefficient αi contained in the coefficient transition set. The largest and smallest
coefficient will correspond, in combination with a negative and positive xi value,
respectively, to the smallest negative and positive summand, respectively. If a
coefficient transition set is infinite, it contains coefficients with an arbitrarily
large magnitude, which we will represent by the meta-characters +∞ and −∞
in order to indicate that we can replace them with large enough values. Similarly,
if a β-transition set B+

q,q′ is infinite, we will use +∞-symbol as a representative
(indicating that we can find arbitrary large β-values and therefore such inequal-
ities can be ignored), and for β-transition sets B−

q,q′ we choose the element with
the smallest magnitude as representative.

Finding a Positive ILP-Instance in a Regular Set of ILP-Instances 277

Definition 4. For transition sets Λs
q,q′ and Bs

q,q′ , we define:

reps(Λ+
q,q′) :=

{
{min(Λ+

q,q′),+∞}, if |Λ+
q,q′ | = ∞;

{min(Λ+
q,q′), max(Λ+

q,q′)}, otherwise,

reps(Λ−
q,q′) :=

{
{−∞,max(Λ−

q,q′)}, if |Λ−
q,q′ | = ∞;

{min(Λ−
q,q′), max(Λ−

q,q′)}, otherwise,

reps(B+
q,q′) :=

{
{+∞}, if |B+

q,q′ | = ∞;
{max(B+

q,q′)}, otherwise,

reps(B−
q,q′) := {max(B−

q,q′)}.

Since the transition sets are given by finite automata, it can be checked
whether they are finite or infinite. The next step is to identify all inequali-
ties which can be completely read in between two states and that only contain
extreme coefficients, i. e., members from reps(Λ) and reps(B) as coefficients and
β-values.

Definition 5. Let A = (Q,Σ, δ, q0, F) be a DFA with L(A) ⊆ Lenc. For every
pair of states q, q′ ∈ Q we define the inequality transition set Ξq,q′ as:

Ξq,q′ = {s1i1s2i2 . . . skik ≤ sbj$ | k ∈ N,∃p0, . . . , pk+2 :
k∧

�=1

s�i� ∈ reps(Λs�
p�−1,p�

)

∧ p0 = q ∧ δ(pk,≤) = pk+1 ∧ sbj ∈ reps(Bsb
pk+1,pk+2

) ∧ δ(pk+2, $) = q′}.

Now we want to pick finitely many representatives for every inequality tran-
sition set Ξq,q′ . Some sets Ξ contain for every partial solution x an inequality
which can be satisfied by an extension of x.5 For those inequality transition sets,
we simply choose $ as the representative to indicate that this transition set does
not participate in the problem as we can always find a satisfiable inequality in
it. Two types of inequality transition sets have this property. If Ξq,q′ contains an
inequality with an +∞-symbol as β-value, then an inequality with an arbitrary
high actual β-value can be read in between q and q′. So, for every value of the
left side of the inequality we can read an even larger right side. The other type
of Ξ sets are those which contain inequalities with an unbounded number of
non-zero coefficients. Recall that the Ξ sets only contain coefficients which are
representatives of Λ sets and hence the number of different coefficients in all Ξ
sets is finite. Hence, the only reason an Ξ set is infinite is because the num-
ber of coefficients in the inequalities can be arbitrarily large. Therefore, those
inequality transition sets are exactly the sets which are infinite after we removed
all inequalities ending with more than |Q| = n consecutive coefficients zero. By
removing more than n consecutive coefficients zero from the end of the sum, we
ensure that there is a non-zero coefficient under the last n coefficient. If the set is
still infinite we can find inequalities with non-zero coefficients with an arbitrary
5 An extension v′ ∈ Z

n of v ∈ Z
m with n > m coincides with v in all positions i ≤ m.

278 P. Wolf

high index. If the modified inequality transition sets are finite, we simply pick
the whole set as the set of representatives. Inequalities with more than n con-
secutive coefficients zero after the last non-zero coefficient can also be ignored,
because there is an equivalent inequality with less than n coefficients zero in
the inequality transition set. With this considerations in mind, we define for all
states q, q′ ∈ Q a set of representatives reps(Ξq,q′) for the inequality transition
set Ξq,q′ .

Definition 6. Let LVal := L ([+|−] ([0|1(0|1)∗]|∞)) and let LTrash := L((LVal)∗

([+|−]0)>n ≤ LVal$). For every inequality transition set Ξq,q′ we define

reps(Ξq,q′) :=

⎧
⎪⎨
⎪⎩

{$}, if ∃w ∈ Ξq,q′ which ends with +∞$;
or |Ξq,q′\LTrash| = ∞;

Ξq,q′\LTrash, otherwise.

Note that there are only finitely many sets reps(Ξq,q′) which are by construc-
tion all of a finite size.

We will now construct a condensed automaton which will have the finitely
many inequalities, chosen as a representative, as its alphabet.

Definition 7. Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton with
L(A) ⊆ Lenc. We define cond(A) := (Q,Σ′, δ′, q0, F) with the alphabet Σ′ =⋃

q,q′∈Q reps(Ξq,q′) and δ′ = {(q, ξ, q′) | ξ ∈ reps(Ξq,q′)}.
Lemma 12 will show that we only have to consider simple paths in cond(A).

4 Correctness of the Condensed Automaton

We will now present several lemmas which in the end will prove that L(A) ∩
ILPenc �= ∅ if and only if L′(cond(A)) ∩ ILPenc �= ∅. With L′(cond(A)) we
refer to the language L(cond(A)) where the wild-cards ∞ are replaced by actual
coefficients. First, we will show that it is sufficient to consider only the largest
and smallest coefficient which can be read in between two states.

Lemma 8. Let A = (Q,Σ, δ, q0, F) be a DFA, let w ∈ L(A) ∩ ILPenc with
solution x and let αij be the j-th coefficient of the i-th inequality of w. Let
w = w′αijw

′′. If αij = aijbijcij, bij �= ε, and δ∗(q0, w′aij) = δ∗(q0, w′aijbij),
then the following holds:

1. Assume xj ≥ 0 and αij has a + sign. Let w′ result from w by replacing αij

with aijcij. Then w′ ∈ L(A) ∩ ILPenc and x is a solution for w′.
2. Assume xj ≥ 0 and αij has a − sign. Let w′ result from w by replacing αij

with aij(bij)2cij. Then w′ ∈ L(A) ∩ ILPenc and x is a solution for w′.
3. Assume xj ≤ 0 and αij has a + sign. Let w′ result from w by replacing αij

with aij(bij)2cij. Then w′ ∈ L(A) ∩ ILPenc and x is a solution for w′.
4. Assume xj ≤ 0 and αij has a − sign. Let w′ result from w by replacing αij

with aijcij. Then w′ ∈ L(A) ∩ ILPenc and x is a solution for w′.

Finding a Positive ILP-Instance in a Regular Set of ILP-Instances 279

Next, we will focus on whole inequalities and show that restricting the inequal-
ities in words from L(A) to the above defined representatives does not affect
the existence of a solvable ILP-instance in L(A). We already explained before
Definition 6 that for every solution vector x we can replace the inequalities
with an +∞-symbol as β-value by inequalities with actual β-values, which are
satisfied by x. With respect to inequality transition sets containing inequalities
with arbitrarily large non-zero coefficients, we will show next how to simultane-
ously replace such inequalities in a way that the replacements are satisfied by an
extension of x. So, if the ILP-instance is solvable without inequalities from sets
Ξ which are represented by $-symbols, then we can enlarge the instance and the
solution to include those inequalities.

For the next lemma, we want to distinguish the infinite inequality transition
sets without an unbounded β-value from the finite ones.

Definition 9.

InfΞ := {Ξq,q′ | reps(Ξq,q′) = {$} ∧ Ξq,q′ ∩ (L (LVal
∗ ≤ +∞$) = ∅)}

FinΞ := {Ξq,q′ | reps(Ξq,q′) �= {$}}
We will now find alternative representatives for the sets in InfΞ such that if an

ILP-instance consisting only of inequalities from the sets in FinΞ has a solution
x, then we can extend the ILP-instance with any combination of alternative
representatives of the sets in InfΞ , such that x can be extended to a solution of
the extended ILP-instance (we shall prove this in Lemma 11). This shows that we
can ignore inequalities from the sets in InfΞ , i. e., the ones with representative $.

Definition 10. Let σ : [|InfΞ |] → InfΞ be an arbitrary but fixed ordering of
the sets in InfΞ . Let n := |Q| and #±(w) denote the number of signs in an
inequality w. The function min

lex
returns the lexicographical minimal element of a

set6. For every 1 ≤ i ≤ |InfΞ | we define for the inequality transition set σ(i) in
InfΞ a set of alternative representatives arep as

arep(σ(i)) ← min
lex

({w ∈ σ(i) | (i + 1) · n < #±(w) ≤ (i + 2) · n}).

For each fixed i the assignment of arep(σ(i)) in the above definition can be
determined by computing the intersection of two regular sets given by DFAs,
yielding a finite language. This finite language can be enumerated in order to
find the lexicographical minimal element. The idea is to pick inequalities as
alternative representatives which together form a matrix in row echelon form.
For every inequality we assign the variable xk with the highest indexed non-zero
coefficient αk with a value of which magnitude is large enough, such that the
summand αkxk dominates the inequality. An inequality in the sets of FinΞ can
only consist of up to n = |Q| different coefficients. The definition of arep(Ξ)
6 The function min

lex
is used to make the definition clear. Any other element of the set

could be used as well.

280 P. Wolf

ensures that the representatives of Ξ ∈ InfΞ contain more coefficients than
any representative of the finite inequality transition sets. It also ensures that
the number of coefficients contained in the representing inequality is strictly
monotonously rising with the order σ. Especially, the index of the highest non-
zero coefficient of arep(σ(i+1)) is higher than the index of the highest non-zero
coefficient of arep(σ(i)).

Lemma 11. Let w be a solvable ILP-instance consisting only of inequalities
from sets in FinΞ . Let x be a valid solution of w. Then, for every ILP-instance
w′ consisting of w and additional inequalities from {arep(Ξ) | Ξ ∈ InfΞ} the
vector x can be extended to a solution x′ of w′.

Proof. Let x = (x1, x2, . . . , xi), let m be the number of variables in w′, and
let var -set(ξ) be a function returning the variables appearing in the inequality
ξ with a non-zero coefficient. Let coeff (ξ, yj) denote the coefficient of variable
yj in the inequality ξ, let value(yj) denote the assigned value xj of the vari-
able yj , and let β(ξ) refer to the right side β of the inequality ξ. Algorithm 1
assigns values to the new variables yi+1, yi+2, . . . , ym appearing in w′ such that
x′ = (x1, . . . , xi, xi+1, . . . , xm) is a solution of the instance w′ and works as fol-
lows. We go through the inequalities appearing in w′ which have been chosen

Algorithm 1. Extending solution x of ILP-instance w to solution x′ of w′.
AssignedVars ← {y1, . . . , yi}
for j ← 1 to |InfΞ | do

CurIneq ← arep(σ(j)), ToAssign ← ∅
if CurIneq appears in w′ then

ToAssign ← var -set(CurIneq)\AssignedVars
MaxVar ← yk ∈ ToAssign with highest index k
for all y ∈ ToAssign\{MaxVar} do

value(y) ← 0
end for
SumOthCoeff ← ∑

yl∈{var-set(CurIneq)\{MaxVar}}
coeff (CurIneq, yl) · value(yl)

CoeffMaxVar ← coeff (CurIneq, MaxVar), b ← β(CurIneq)
value(MaxVar) ← |b − SumOthCoeff| · (−1) CoeffMaxVar

|CoeffMaxVar|
AssignedVars ← AssignedVars ∪ ToAssign

end if
end for

as alternative representatives for the sets in InfΞ in the same order as when
we assigned the representatives. Thus, the number of appearing variables per
inequality is rising. In every considered inequality, there is at least one variable
which has not appeared in the previously considered inequalities. We assign the
new variables with a zero value, except for the variable with the highest index.
This variable (MaxVar) gets a value which compensates all the other summands
in the inequality. The sign of MaxVar is converse to the sign of its coefficient

Finding a Positive ILP-Instance in a Regular Set of ILP-Instances 281

resulting in a negative summand. We can choose the value of MaxVar freely,
since the variable has not appeared in any other inequality we considered ear-
lier. If it appears in any later considered inequality, there will always be at least
one new variable in the inequality which has not appeared earlier, and which
can again compensate every other summand. It is easy to see that the consid-
ered inequality CurIneq is satisfied by the chosen variable assignment. Hence,
x′ = (x1, . . . , xi, value(yi+1), . . . , value(ym)) is a solution of the ILP-instance w′.

��
Only simple paths in cond(A) have to be considered in order to find a solvable

ILP-instance in L′(cond(A)).

Lemma 12. Let w,w′ ∈ Lenc and w′ be w without an arbitrary inequality ξ
from w. (So, w′ is w with one inequality less.) If w ∈ ILPenc then w′ ∈ ILPenc.

We will now show that if there is a solvable ILP-instance in L′(cond(A)),
then we can replace any $-symbols in this instance by actual inequalities, result-
ing in a solvable ILP-instance in L(A). On the other hand, if there is a solv-
able ILP-instance in L(A) the modifications we made on A while constructing
cond(A) preserve the existence of a solvable ILP-instance in the obtained lan-
guage L′(cond(A)).

Theorem 13. Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton with
L(A) ⊆ Lenc. Then, L(A) ∩ ILPenc �= ∅ if and only if L′(cond(A)) ∩ ILPenc �= ∅.
Proof Sketch. Let w ∈ L(A)∩ILPenc. We only keep those inequalities in w which
are read between some states q and q′ on the path labeled with w in A and for
which Ξq,q′ ∈ FinΞ . All other inequalities in w are replaced by $-symbols. Then,
wherever possible we pump the coefficients in w up or down, corresponding to
the sign of the associated variable in x until we obtain an ILP-instance w′ in
L′(cond(A)). It holds that w′ is also solvable.

Let w ∈ L′(cond(A))∩ILPenc. The corresponding ILP-instance in L(cond(A))
only consists of inequalities from Ξ sets in FinΞ or $-symbols. We first replace
all $-symbols which are representatives of Ξ sets in InfΞ by alternative represen-
tatives from Definition 10. According to Lemma 11 the obtained ILP-instance
is still solvable. Then, we replace the leftover $-symbols which are representa-
tives of Ξ sets which contain inequalities with an unbounded β-value. Since we
know a solution for the considered ILP-instance, we can pick inequalities with
large enough β-value such that the obtained ILP-instance w′ is satisfied by an
extension of the considered solution. In w′ all $-symbols are replaced by actual
inequalities and hence w′ ∈ L(A). As w′ is also solvable L(A) ∩ ILPenc �= ∅
follows. ��

Now, we are ready to put the pieces together and present our main result.
In the following, we give a decision procedure for the intReg-problem of ILP.

Theorem 14. The problem intReg(ILP) is decidable.

282 P. Wolf

Proof. Since Lenc is regular, we can restrict L(A) to the regular language
L(A) ∩ Lenc. Let A′ = (Q,Σ, δ, q0, F) be a deterministic finite automaton with
L(A′) = L(A) ∩ Lenc. For the automaton A′, the Definitions 3 and 4 describe
the construction of coefficient transition sets and assigning their representatives.
In Definition 5 inequality transition sets are constructed based on those rep-
resentatives. These inequality transition sets get representatives themselves in
Definition 6. In Definition 7 a new automaton cond(A′) is defined, based on
the representatives for the inequality transition sets. All those constructions can
be computed by an algorithm. Theorem 13 states that L(A′) ∩ ILPenc �= ∅ ⇔
L′(cond(A′)) ∩ ILPenc �= ∅. Finally, Lemma 12 tells us that if there is a solvable
ILP-instance in L′(cond(A′)) at all, then there is a solvable ILP-instance w′ in
L′(cond(A′)) with a corresponding ILP-instance w ∈ L(cond(A′)) which can be
read on a simple path in cond(A′). The instance w is obtained from w′ by replac-
ing coefficients with an absolute value above 3|Q| · (|Q|2|Q|)

2|Q|+4
(1 + 2|Q|) by

∞-symbols. Since there are only finitely many simple paths in an automaton,
and testing a given ILP-instance for solvability can be done in finite time, we
can test all words in L′(cond(A′)) which correspond to labels of simple paths in
cond(A′) for membership in ILPenc in finite time. Hence, L(A) ∩ ILPenc �= ∅ is
decidable. ��

5 Conclusion

The number of considered words in L′(cond(A)) is bounded by 2O(|Q|2 log(|Q|)).
The length of considered words in L(cond(A)) regarding the alphabet Σ′ of
cond(A) is bounded by O(|Q|). Finally, the length of considered words regarding
the alphabet Σ of A, meaning that we replace $- and ∞-symbols by actual sub-
strings over Σ, is bounded by O(|Q|7). Therefore, we can guess some word in
L′(cond(A)) and check its membership in ILPenc by solving the represented
ILP-instance. Since ILP is NP-complete intReg(ILP) ∈ NP follows. For a given
ILP-instance, we can construct a DFA accepting only this instance in polynomial
time. Hence intReg(ILP) is NP-complete.

According to [19], the presented results are stable under applying a length-
preserving morphism to the encoding scheme. The results are also stable under
changing the binary encoding to any base-k encoding. Recall that in order to talk
about regular sets of problem-instances, we want to have a problem encoding
which can be verified by a deterministic finite automaton. In particular, we
can not verify with a DFA that all variables appear in a certain inequality or
that the inequalities have the same length. Therefore, we have implicitly filled
the inequalities with coefficients zero to ensure the same number of variables
per inequality. Note that this forbids an explicit matrix representation of an
ILP-instance. Instead of referencing the variables of an inequality implicitly by
the number and order of the coefficients we could also use another encoding,
where we explicitly name the variable and the coefficient. In this setting multiple
occurrences of the same variable would be possible and would be interpreted as
a summation of terms. Here, we would define transition sets for coefficients and

Finding a Positive ILP-Instance in a Regular Set of ILP-Instances 283

for variables. We would not pump the number of variables in an inequality but
instead pump the label of a variable to make it independent of other variables and
inequalities. We would still treat the coefficients in the same way and we would
also consider only simple paths. In terms of the ‘intReg-techniques’ of [23] we
would switch from the replacing technique to the separating technique and the
intReg-problem of ILP in this variable-explicit encoding would still be decidable.

Although we considered partial DFAs, the construction also works for partial
NFAs. It might be worthwhile to investigate further extensions of intReg(ILP)
such as Boolean combinations of inequalities or quadratic programming.

Acknowledgment. The author thanks Markus L. Schmid for proofreading and help-
ful discussions and is grateful to the anonymous reviewers for their suggestions. The
author was partially supported by DFG (FE 560/9-1).

References

1. Anderson, T., Loftus, J., Rampersad, N., Santean, N., Shallit, J.: Detecting palin-
dromes, patterns and borders in regular languages. Inf. Comput. 207(11), 1096–
1118 (2009). https://doi.org/10.1016/j.ic.2008.06.007

2. Bodlaender, H.L., Heggernes, P., Lokshtanov, D.: Graph modification problems
(Dagstuhl seminar 14071). Dagstuhl Rep. 4(2), 38–59 (2014)

3. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A.,
Banerji, R.B., Ullman, J.D. (eds.) Proceedings of 3rd Annual ACM Symposium on
Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971)

4. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. ACM Trans. Algorithms 3(1), 2:1–2:19 (2007)

5. Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Unary integer linear programming
with structural restrictions. In: Lang, J. (ed.) Proceedings of 27th International
Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 1284–1290 (2018)

6. Emde Boas van, P.: The Convenience of Tilings. Lecture Notes in Pure and Applied
Mathematics, pp. 331–363. Marcel Dekker Inc., New York (1997)

7. Ganian, R., Ordyniak, S.: The complexity landscape of decompositional parameters
for ILP. Artif. Intell. 257, 61–71 (2018)

8. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. PAA Pattern
Anal. Appl. 13(1), 113–129 (2010). https://doi.org/10.1007/s10044-008-0141-y

9. Güler, D., Krebs, A., Lange, K.-J., Wolf, P.: Deciding regular intersection emptiness
of complete problems for PSPACE and the polynomial hierarchy. In: Klein, S.T.,
Mart́ın-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp. 156–168.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77313-1 12

10. Hlad́ık, M.: Interval linear programming: a survey. In: Mann, Z.A. (ed.) Linear
Programming – New Frontiers in Theory and Applications, Chap. 2, pp. 85–120.
Nova Science Publishers, New York (2012)

11. Lange, K., Reinhardt, K.: Set automata. In: Combinatorics, Complexity and Logic;
Proceeding, DMTCS 1996, pp. 321–329 (1996)

12. Lempitsky, V.S., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a
bounding box prior. In: ICCV 2009, pp. 277–284. IEEE Computer Society (2009)

13. Li, H.: Two-view motion segmentation from linear programming relaxation. In:
Proceedings of IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR 2007), pp. 1–8. IEEE Computer Society (2007)

https://doi.org/10.1016/j.ic.2008.06.007
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1007/978-3-319-77313-1_12

284 P. Wolf

14. Liu, Y., Wang, J., Guo, J.: An overview of kernelization algorithms for graph
modification problems. Tsinghua Sci. Technol. 19(4), 346–357 (2014)

15. Rubtsov, A.A.: Regular realizability problems and regular languages. CoRR
abs/1503.05879 (2015). http://arxiv.org/abs/1503.05879

16. Rubtsov, A.A., Vyalyi, M.N.: Regular realizability problems and models of a gen-
eralized nondeterminism. CoRR abs/1105.5894 (2011). http://arxiv.org/abs/1105.
5894

17. Tarasov, S., Vyalyi, M.: Orbits of linear maps and regular languages. In: Kulikov,
A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 305–316. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20712-9 24

18. Vyalyi, M.N.: On models of a nondeterministic computation. In: Frid, A., Morozov,
A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 334–
345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03351-3 31

19. Vyalyi, M.N.: On regular realizability problems. Probl. Inf. Transm. 47(4), 342–352
(2011)

20. Vyalyi, M.N.: On expressive power of regular realizability problems. Probl. Inf.
Transm. 49(3), 276–291 (2013). https://doi.org/10.1134/S0032946013030058

21. Vyalyi, M.N., Rubtsov, A.A.: On regular realizability problems for context-free
languages. Probl. Inf. Transm. 51(4), 349–360 (2015). https://doi.org/10.1134/
S0032946015040043

22. Wagner, K., Wechsung, G.: Computational Complexity. Springer, Netherlands
(1986)

23. Wolf, P.: Decidability of the regular intersection emptiness problem. Master’s the-
sis, Wilhelm Schickhard Institut für Informatik, Universität Tübingen (2018)

http://arxiv.org/abs/1503.05879
http://arxiv.org/abs/1105.5894
http://arxiv.org/abs/1105.5894
https://doi.org/10.1007/978-3-642-20712-9_24
https://doi.org/10.1007/978-3-642-03351-3_31
https://doi.org/10.1134/S0032946013030058
https://doi.org/10.1134/S0032946015040043
https://doi.org/10.1134/S0032946015040043

How Does Adiabatic Quantum
Computation Fit into Quantum

Automata Theory?

Tomoyuki Yamakami(B)

Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
TomoyukiYamakami@gmail.com

Abstract. Quantum computation has emerged as a powerful computa-
tional medium of our time, having demonstrated the efficiency in solving
the integer factoring and searching a database faster than any currently
known classical computer algorithm. Adiabatic evolution of quantum
systems have been studied as a potential means that physically realizes
such quantum computation. Up to now, all the research on adiabatic
quantum systems has dealt with polynomial time-bounded computation
and little attention has been paid to, for example, adiabatic quantum
systems consuming only constant memory space. Such quantum systems
can be modeled in a form similar to quantum finite automata. This
exposition dares to ask a bold question of how to make adiabatic quan-
tum computation fit into the rapidly progressing framework of quantum
automata theory. As our answer to this eminent but profound question,
we first lay out a basic framework of adiabatic evolutionary quantum
systems (AEQSs) with limited computational resources and then estab-
lish their close connection to quantum finite automata. We also explore
fundamental structural properties of languages solved quickly by such
adiabatic evolutionary quantum systems.

Keywords: Adiabatic quantum computation ·
Quantum finite automata · Hamiltonian · Schrödinger equation

1 Motivations and a Quick Overview

1.1 Adiabatic Quantum Computation

Quantum computation has gained large popularity over the past few decades.
There are several important milestones to remember in our time. Shor proposed
polynomial-time quantum algorithms of factoring a positive integer and com-
puting discrete logarithms whereas Grover presented a quantum way to locate
a key in a unstructured database quadratically faster than traditional search
algorithms. Basis of such quantum computation has been modeled typically by
quantum Turing machines and quantum circuits. See, e.g., [8,10,14].
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
M. Hospodár et al. (Eds.): DCFS 2019, LNCS 11612, pp. 285–297, 2019.
https://doi.org/10.1007/978-3-030-23247-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23247-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-23247-4_22

286 T. Yamakami

In a given quantum system, its quantum state |ψ(t)〉 evolves according to the
Schrödinger equation ı� d

dt |ψ(t)〉 = H(t)|ψ(t)〉 using a specified time-dependent
Hamiltonian H(t) (which is simply a Hermitian matrix), where � is the reduced
Planck constant. In early 2000’s, Farhi, Goldstone, Gutmann, and Sipser [6] and
Farhi, Goldstone, Gutmann, Lapan, Lundgren, and Preda [5] developed quantum
algorithms based on a variant of quantum annealing, called adiabatic quantum
computation, in which an initial quantum system whose ground state is easily
prepared gradually evolves to find a solution represented by a ground state (i.e.,
an eigenvector of the smallest eigenvalue) of a final quantum system. A crucial
point is how fast this evolution takes place. Unfortunately, it turns out that the
algorithm of Farhi et al. [5] requires exponential time to execute [4].

Adiabatic quantum computation is dictated by a quadruple (n, ε,Hini,Hfin)
of two Hamiltonians Hini and Hfin of dimension 2n and a closeness bound ε
such that Hini’s ground state is easily prepared and the outcome of the sys-
tem becomes the ground state of Hfin and this ground state is ε-close to the
desired solution. Such a quantum system starts with the ground state |ψg(0)〉
of H(0) = Hini at time t = 0. If H(t) changes sufficiently slowly, the evolving
quantum state |ψ(t)〉 stays close to the ground state |ψg(t)〉 of H(t). For the effi-
ciency of adiabatic quantum computation, we have concerned with the evolution
time of the underlying quantum system and the structural complexity of two
Hamiltonians used in the system. The running time of the system is determined
roughly by the evolution time of the system and is basically proportional to
the reciprocal of the spectral gap of Hini and Hfin according to the well-known
adiabatic theorem [9,11]. See Sect. 2.3.

Later, van Dam, Mosca, and Vazirani [4] gave a detailed analysis of adiabatic
quantum computation and presented how to simulate adiabatic quantum com-
putation on quantum circuits. In addition, Aharonov, van Dam, Kemp, Landau,
Lloyd, and Regev [1] demonstrated how to simulate quantum circuit computation
by adiabatic quantum computation and thus established the (polynomial) equiv-
alence between adiabatic quantum computation and standard quantum compu-
tation.

Although adiabatic quantum computation is no more powerful than stan-
dard quantum computation, it seems to remain as significant potentials to real-
ize restricted variants of quantum computation. With the current technology,
it is still difficult to build a large-scale adiabatic quantum computing device
since making local evolution in a large system is quite sensitive to decoher-
ence. It is rather better to make global evolution in a small system. It thus
remains more realistic to prepare Hamiltonians of adiabatic quantum computa-
tion using a memory-restricted quantum device. We may wonder what would
happen if we restrict our attention onto a constant-memory model of quantum
Turing machine, which is conceptually realized by appropriately modified quan-
tum finite automata families. To seek for yet-unearthed potentials of adiabatic
quantum computation in such a realistic setting, this exposition intends to make
a new, bold step by taking an automata-theoretic approach toward adiabatic
quantum computability. Since adiabatic quantum computation follows the grad-

Adiabatic Quantum Computation and Quantum Automata Theory 287

ual evolution between ground states of two Hamiltonians Hini and Hfin, the
key to the realization of such computation relies on how easily we can build
these Hamiltonians. This fact motivates us to consider the circumstances where
the matrices are “generated” by memory-restricted device, namely, quantum
finite automata. This exposition reports an initial result of our bold attempt to
deal with adiabatic quantum computation from a viewpoint of quantum finite
automata.

At first glance, since our desired quantum algorithm to solve a given decision
problem requires outcomes for one-bit solutions, it seems sufficient for us to
prepare either |1〉 or |0〉 as a unique ground state of a final Hamiltonian Hfin. For
such a preparation, however, we should know the solution well ahead of quantum
computation. Without knowing any solution of the problem, we might not in
general prepare Hfin prior to the start of the computation. Farhi et al. [5]’s idea
of designing a final Hamiltonian Hfin to solve Search-2SAT (i.e., a search version
of the satisfiability problem for 2CNF formulas) is to encode a solution of the
problem directly into Hfin without knowing the solution. In a similar fashion, we
want to find a way to prepare Hfin without apparently computing any solution to
the target problem. This exposition proposes the use of quantum finite automata
as a mechanical tool to directly generate Hamiltonians as the automata read
input symbols one by one. In this way, we can prepare Hamiltonians even without
knowing a solution to a given decision problem.

1.2 Quantum Automata Theory

A quantum finite automaton takes an input string given onto its read-only input
tape and, as reading the input symbol one by one, it changes inner states in a
quantum manner until it finally terminates. This process can be described by
quantum transitions of inner states chosen according to input symbols. The
theory of quantum finite automata has been developed significantly since the
first installment of quantum finite automata in the 1990s (see, e.g., a survey [3]).

Since a paradigm of adiabatic quantum computation looks quite different
from a standard framework of quantum finite automata, we certainly face the
following challenging question. Is it possible for us to make adiabatic quantum
computation fit into the framework of quantum automata theory?

1.3 An Overview of Main Contributions

This exposition attempts to answer the aforementioned question of how adiabatic
quantum computation fits into quantum automata theory.

We need to define a scaled-down model for adiabatic quantum computa-
tion, aiming at capturing an essence of such computation in terms of quantum
finite automata. For this purpose, we introduce an adiabatic evolutionary quan-
tum system (AEQS, pronounced as “eeh-ks”) consisting of an input alphabet, a
size parameter, a closeness bound, two Hamiltonians for each input, and accep-
tance/rejection criteria for each input size (whose precise definition will be given
in Sect. 2.4).

288 T. Yamakami

Lemma 1. For any language L over an alphabet Σ, there is a series of AEQSs
{Sx}x∈Σ̌ of finite size such that, for any x, Sx computes L(x).

Although this lemma demonstrates the power of AEQSs, it does not provide
us with a constructive mechanism of generating AEQSs.

In this exposition, we are focused on how to prepare two Hamiltonians of
AEQSs using variants of quantum finite automata. The way of algorithmic con-
struction of Hamiltonians also adds practicality to our adiabatic quantum com-
putation. After giving the basic notions and notation in Sect. 2, we will demon-
strate how to design (or program) AEQSs for several languages (in Proposition
2) in Sect. 3.

Concerning the computational complexity of AEQSs, we wish to further limit
the behaviors of AEQSs. To describe the families of decision problems (or equiv-
alently, languages) associated with AEQSs under a set F of certain “natural”
conditions on key ingredients, two Hamiltonians, we use the notation AEQS(F).
In general, the complexity class AEQS(F) is composed of all decision problems
(or languages), each of which is solved (or recognized) with “high-accuracy”
by a certain AEQS whose Hamiltonians satisfy the conditions specified by F .
This helps us discuss various types of conditions, which play essential roles in
determining the computational complexity of AEQSs. Of all possible types of
conditions, we are focused on the following 4 condition types.

Firstly, we are interested in how to “generate” two Hamiltonians of AEQSs.
In particular, we consider the case where those Hamiltonians are generated by
certain one-way quantum quasi-automata families (abbreviated as 1qqaf’s), each
1qqa of which acts as a means to produce a series of Kraus operators according
to each input symbol so that the product of its adjoint and itself matches the
target Hamiltonians (whose precise definition will be given in Sect. 2.2). We use
the notation F = “1qqaf” to denote the use of 1qqaf’s to generate Hamiltonians
of AEQSs. We also define another condition set F = “2cqqaf” using two-way
classical-head quantum quasi-automata families (or 2cqqaf’s) in place of 1qqa’s.
In a similar manner, we define F = “1qpdqa” to mean the use of one-way
quantum pushdown quasi-automata families (abbreviated as 1qpdqaf’s) induced
from a quantum version of pushdown automata.

Secondly, we are concerned with the (system) size of AEQSs, where the
(system) size of an AEQS is the logarithm of the dimension of its Hamiltonians.
We write F = “constsize” (constant size), F = “logsize” (logarithmic size), and
F = “linsize” (linear size) to express the sizes of target AEQSs.

Thirdly, we pay attention to the value of the spectral gap of a final Hamil-
tonian of an AEQS, where the spectral gap is the difference between the first
and the second smallest eigenvalues. This value provides an upper bound of the
runtime of the AEQS. For instance, if the final Hamiltonian of an AEQS have
their spectral gap inverse-polynomially large, then the adiabatic evolution of the
AEQS takes only polynomially many steps. Notice that, even if Hamiltonians
are generated by 1qqa’s, there seems a chance that the spectral gap is expo-
nentially small. From this fact, we introduce the notation F = “polygap” to
mean that the spectral gap is at least 1/nO(1) (i.e., inverse-polynomially large).

Adiabatic Quantum Computation and Quantum Automata Theory 289

Similarly, F = “constgap” indicates that the spectral gap is at least 1/O(1) (i.e.,
constantly large).

Fourthly, we look into the ground energy level of a final Hamiltonian of an
AEQS. In certain cases [5,6], it is possible to set the ground energy of a final
Hamiltonian to be 0. This motivates us to define F = “0-energy” for the situation
where the ground energy of a final Hamiltonian is 0 for every input x.

Proposition 2. Let N denote the set of all natural numbers. The following
statements hold.

1. For each fixed string a ∈ {0, 1}∗, the regular language La = {ax | x ∈ {0, 1}∗}
is in AEQS(1qqaf, constsize, constgap).

2. The reversible unary language Leven defined as Leven = {a2n | n ∈ N} is in
AEQS(1qqaf, constsize, constgap, 0-energy).

3. The deterministic context-free language Leq = {0n1n | n ∈ N} is in
AEQS(2cqqaf, logsize,polygap).

4. The language TRI consists of all strings of the form w1#w2#w3 such that
w1, w2, w3 ∈ {0, 1}∗, |w1| = |w2| = |w3|, (w1 = wR

2) XOR (w1 = wR
3). This

language is in AEQS(1qpdqaf, linsize,polygap).

We show a more general theorem below. 1MOQFA is a language family char-
acterized by bounded-error 1-way measure-once quantum finite automata [12].

Theorem 3. 1MOQFA ⊆ AEQS(1qqa, constsize, constgap, 0-energy).

Next, we target the class REG of all regular languages. If we use 1qqaf’s to
generate Hamiltonians, then we obtain the following relations.

Theorem 4. REG ⊆ AEQS(1qqaf, linsize, constgap, 0-energy).

We further explore structural properties of AEQS(F). A language family
L is said to be closed under a binary operation ◦ if, for any two languages
L1, L2 ∈ L, L1 ◦ L2 also belongs to L. We say that F allows a swap of accep-
tance/rejection criteria if the new AEQS obtained from any given AEQS satis-
fying F by exchanging its S

(n)
acc and S

(n)
rej also satisfies F , where S

(n)
acc and S

(n)
rej

respectively denote sets of indices providing criteria for acceptance and rejection
of ground states. Additionally, we say that F allows the amplification of accu-
racy if, for any AEQS satisfying F and any constant c > 0, there always exists
another computationally-equivalent AEQS with F whose accuracy is at least c
times as high as the original AEQS’s.

Proposition 5. Let F be any nonempty set of conditions. Each of the following
statements holds.

1. AEQS(F) is closed under complementation if F allows a swap of accep-
tance/rejection criteria.

2. AEQS(F) is closed under XOR if F allows the amplification of accuracy.

290 T. Yamakami

This exposition is merely the initial attempt to expand the scope of adiabatic
quantum computability and to relate it to quantum finite automata using the
new notion of AEQSs. We expect that this exposition marks the beginning of a
series of exciting research works, aiming at the deeper understanding of adiabatic
quantum computation.

2 Preparations: Notions and Notation

2.1 Numbers, Vectors, and Matrices

The notation N expresses the set of all natural numbers (that is, nonnegative
integers) and we set N

+ = N − {0}. Given two integers m,n with m ≤ n, the
integer interval [m,n]Z is the set {m,m + 1,m + 2, . . . , n}, which is compared
to a real interval [a, b]. Let C denote the set of all complex numbers; in partic-
ular, we set ı =

√−1. All polynomials are assumed to have nonnegative integer
coefficients and all logarithms are taken to the base 2.

We deal with finite-dimensional Hilbert spaces. To express (column) vectors
of such a space, we use Dirac’s notation |·〉. A density operator (or a density
matrix) expresses a mixed quantum state. Given a complex matrix A, A† indi-
cates the complex conjugate transpose of A. For any matrix A and its index pair
(q, r), the notation A[q, r] indicates the (q, r)-entry of A. Similarly, for a vector v,
v[i] denotes the ith entry of v. Given any square complex matrix A, the notation
eA expresses a matrix exponential defined by eA =

∑∞
k=0

1
k!A

k (where 0! = 1
and A0 = I) and the spectral norm ‖A‖ is defined by ‖A‖ = max|φ〉�=0{‖A|φ〉‖2

‖|φ〉‖2
},

where ‖ · ‖2 indicates the �2-norm. For a number ε ∈ [0, 1] and for two vectors v1
and v2 in the same Hilbert space, we say that v1 is ε-close to v2 if ‖v1−v2‖2 ≤ ε.
The commutator [A,B] of square matrices A and B is defined as AB − BA.

We use the notation W for the Walsh-Hadamard transform. For convenience,
we write |â〉 = W |a〉 for any a ∈ {0, 1}. The Hadamard basis is {|0̂〉, |1̂〉} and the
computational basis is {|0〉, |1〉}.

A Hamiltonian is a complex Hermitian matrix. For any Hamiltonian H, we
set Δ(H) to be the spectral gap of H, which is the difference between the lowest
eigenvalue and the second lowest eigenvalue of H. The lowest eigenvalue is called
the ground energy of H and its eigenvector is called the ground state of H.

2.2 Languages and Quantum Quasi-Automata

An alphabet is a finite nonempty set of “symbols” or “letters.” A string over
an alphabet Σ is a finite sequence of symbols in Σ. The length of a string x is
the total number of symbols in x and is denoted by |x|. In particular, the empty
string has length 0 and is denoted by λ. The notation Σ∗ stands for the set of
all strings over Σ. A language over Σ is a subset of Σ∗. Hereafter, we freely
identify a decision problem with its associated language.

A one-way quantum finite automaton1 (abbreviated as a 1qfa) with
mixed states and quantum operations M is a septuple (Q,Σ, {|c, $}, {Aσ}σ∈Σ̌ ,

1 This model is called general quantum finite automata in a survey [3].

Adiabatic Quantum Computation and Quantum Automata Theory 291

q0, Qacc, Qrej), where Q is a finite set of inner states, Σ is an (input) alpha-
bet, |c and $ are respectively the left endmarker and the right endmarker,
Σ̌ = Σ ∪ {|c, $}, and each Aσ is a quantum operation2 acting on the Hilbert
space of linear operators on the configuration space spanned by the basis vectors
{|q〉 | q ∈ Q} [2,7,15]. Such a quantum operation Aσ has a Kraus representation
with Kraus operators (or operation elements) {Aσ,j}j∈[k] for a certain constant
k ∈ N

+. More precisely, Aσ takes the form Aσ(H) =
∑k

j=1 Aσ,jHA†
σ,j for any

linear operator H and satisfies the completeness relation
∑k

j=1 A†
σ,jAσ,j = I.

In particular, when k = 1, we identify Aσ,1 with Aσ and then obtain Aσ(H) =
AσHA†

σ. Given strings y1, y2, · · · , yk in Σ̌, we abbreviate a matrix multiplication
Ayk

·Ayk−1 · · · Ay2 ·Ay1 as Ay1y2···yk−1yk
. Given a language L, M recognizes with

error probability at most ε if, for any x ∈ L, tr(PaccA|cx$(ρ0)) ≥ 1 − ε and, for
any x /∈ L, tr(PrejA|cx$(ρ0)) ≥ 1 − ε, where ρ0 = |q0〉〈q0| and Pacc and Prej are
projections onto the spaces spanned by {|q〉 | q ∈ Qacc} and by {|q〉 | q ∈ Qrej},
respectively. This model is in essence equivalent to a garbage-tape model used
in [16]. In contrast, a one-way measure-once quantum finite automaton (or a
1moqfa) applies only unitary operators until it reads $. The state complexity of
a finite automaton is the total number of inner states of the automaton. We
write 1MOQFA and 1QFAmix to denote the collections of all languages rec-
ognized respectively by bounded-error 1moqfa’s and bounded-error 1qfa’s with
mixed states and quantum operators.

We attempt to run quantum finite automata to produce Hamiltonians, which
are necessary to carry out adiabatic quantum computation. For this purpose, we
need to modify the aforementioned model of 1qfa’s so that they can produce
“matrices.” A one-way quantum quasi-automata family (or a 1qqaf, for short)
is a family of 1qqa’s equipped with mixed states and quantum operations with
no use of initial state and final state. More formally, a 1qqaf M = {Mn}n∈N is
a family {(Q(n), Σ, {|c, $}, {A

(n)
σ }σ∈Σ̌ , Λ

(n)
0)}n∈N, where each A

(n)
σ is a quantum

operation on the Hilbert space of linear operators on the configuration space and
Λ
(n)
0 is a Hermitian operator acting on the same space. The nth machine Mn

can produce a matrix A
(n)
|cx$ for any given input x ∈ Σn. Notice that A

(n)
|cx$(B) is

a Hermitian matrix for any Hermitian B. From this fact, we say that a family
{H(n)}n∈N of Hamiltonians is generated by a 1qqaf M if H(n) coincides with
A

(n)
|cx$(Λ0) for every index n ∈ N.

As a natural extension of 1qqa’s, in a model of 2-way classical-head quantum
quasi-automata family (or 2cqqaf), when a two-way tape head reads an input
symbol σ, firstly we use a deterministic procedure to apply either a quantum
operation Aσ to or a projection measurement on a finite quantum register and,
secondly we deterministically move the tape head; in the case of a measurement,
we utilize a result of the measurement as well.

Similarly to [13], a 1-way quantum pushdown quasi-automata family (or a
1qpdqaf) is a family of 1-way quantum quasi-automata equipped with a stack
in which we can push and pop stack symbols as an input tape head reads input
symbols.

2 This is a completely positive, trace preserving map and is also called a superoperator.

292 T. Yamakami

2.3 Adiabatic Evolution of a Quantum System

Loosely following [6], we briefly discuss how a quantum system evolves according
to the Schrödinger equation of the following general form: ı� d

dt |ψ(t)〉 = H(t)|ψ(t)〉
for a time-dependent Hamiltonian H(t) and a time-dependent quantum state
|ψ(t)〉. To carry out adiabatic quantum computation, we prepare two Hamilto-
nians Hini and Hfin acting on the same Hilbert space and, for a sufficiently large
constant T > 0, we define H(t) =

(
1 − t

T

)
Hini + t

T Hfin for a time parameter
t ∈ [0, T], provided that [Hini,Hfin] �= 0. To ensure [Hini,Hfin] �= 0, we often
use the Hadamard basis for Hini and the computational basis for Hfin [5].

At time t = 0, we assume that the quantum system is initialized to be the
ground state |ψg(0)〉 of Hini. We allow the system to gradually evolve by applying
H(t) discretely from time t = 0 to t = T . Let |ψ(t)〉 denote the quantum state at
time t ∈ [0, T]. This evolutionary process is referred to as an adiabatic evolution
according to H for T steps. We take the smallest value T for which |ψ(T)〉 is
ε-close to the ground state of Hfin. For convenience, we call this T the minimum
evolution time of the system. The runtime of the system is then defined to be
T ·maxt∈[0,T] ‖H(t)‖ and the outcome of the system is the quantum state |ψ(T)〉.
The adiabatic theorem [9,11] gives a lower bound on T . The following assertion is
taken from [1]. For any constant δ > 0, if T ≥ Ω

(‖Hfin−Hini‖1+δ

εδ mint∈[0,T]{Δ(H(t))2+δ}
)
, then

|ψ(T)〉 (with an appropriately chosen global phase) is ε-close to the ground state
of Hfin, provided that H(t) has a unique ground state for each value t ∈ [0, T].

For a practical simulation of the system, it is useful to consider a refinement
of the time intervals. Let R be a fixed number satisfying T R and consider a
refined time interval of [jT

R , (j+1)T
R] for each index j ∈ [0, R − 1]Z.

Lemma 6. Given a quantum system (n, ε,Hini,Hfin) of adiabatic evolution,
let T be the minimum evolution time. Let UT denote a unitary matrix satisfying
|ψ(T)〉 = UT |ψ(0)〉. Let R be a number with T R. Let αj = 1

�

T
R

(
1 − 2j+1

2R

)
and

βj = 1
�

T
R

2j+1
2R for each index j ∈ [0, R−1]Z. It then follows that UT can be approx-

imated by the matrix VR =
(
e−ıαRHini · e−ıβRHfin

) · · · (e−ıα1Hini · e−ıβ1Hfin
)
.

2.4 Adiabatic Evolutionary Quantum Systems

Our major target of this exposition is decision problems (or equivalently, lan-
guages). Instead of searching solutions as in [5], we are asked to determine
“acceptance” (yes) or “rejection” (no) of any given input string. Let us define
our quantum systems that evolve adiabatically. Since adiabatic quantum com-
putation is dictated by the ground states of an initial Hamiltonian and a final
Hamiltonian, we thus need to specify these Hamiltonians for each given input.

We loosely adapt the definition of Aharonov et al. [1] but modify it sig-
nificantly to match our purpose. First of all, we wish to realize adiabatic
quantum computation by a new notion of an adiabatic evolutionary quantum
system (or an AEQS, pronounced as “eeh-ks”). An AEQS S is a septuple
(m,Σ, {H

(x)
ini }x∈Σ∗ , {H

(x)
fin}x∈Σ∗ , {S

(n)
acc}n∈N, {S

(n)
rej}n∈N), where m : Σ∗ → N is

Adiabatic Quantum Computation and Quantum Automata Theory 293

a size function, Σ is an (input) alphabet, both H
(x)
ini and H

(x)
fin are Hamiltoni-

ans acting on the same Hilbert space of 2m(x) dimension (where this space is
referred to as the system’s evolution space), and S

(n)
acc and S

(n)
rej are sets of indices

representing acceptance and rejection (where each pair (S(n)
acc, S

(n)
rej) is called an

(acceptance/rejection) criteria pair). The function m(x) is particularly called
the (system) size of S, expressing how large the evolution space is.

An evolution process of an AEQS can be described as in Sect. 2.3. Letting
Tx indicate the minimum evolution time of this system, we define H(x)(t) to
be

(
1 − t

Tx

)
H

(x)
ini + t

Tx
H

(x)
fin for any real number t ∈ [0, Tx]. At time t = 0, the

AEQS is initialized to be the ground state |ψg(0)〉 of H(x)(0) (= H
(x)
ini). The

system slowly evolves by applying H(x)(t) discretely from time t = 0 to t = Tx.
The AEQS is considered to take the runtime of Tx · maxt∈[0,Tx] ‖H(x)(t)‖.

To solve a mathematical problem using the adiabatic evolution of a quantum
system, following [5], we may assume that H

(x)
ini =

∑
u∈S

(x)
0

h(u)|u〉〈u|, where

S
(x)
0 is the set of all indices for which |u〉 are eigenvectors of H

(x)
ini and h(u) is

a real value associated with |u〉. The ground state |ψg(0)〉 of H
(x)
ini is |u0〉 if u0

satisfies that u0 ∈ S
(x)
0 and h(u0) = min{h(u) | u ∈ S

(x)
0 }.

To work on decision problems, in particular, we need to specify accepting
and rejecting quantum states in the evolution space on which H(x)(t) acts. This
can be done by incorporating the two sets S

(n)
acc and S

(n)
rej . We define QS

(n)
acc and

QS
(n)
rej respectively to be the Hilbert spaces spanned by {|u〉 | u ∈ S

(n)
acc} and

{|u〉 | u ∈ S
(n)
rej}. We call QS

(n)
acc and QS

(n)
rej the accepting space and the rejecting

space, respectively.
To determine the outcome of an AEQS, we want to design the AEQS to

make the ground state of H
(x)
fin sufficiently “close” to a certain accepting or

rejecting quantum state, which belongs to QS
(m(x))
acc ∪QS

(m(x))
rej . The closeness of

the ground state of H
(x)
fin to such a quantum state corresponds to the accuracy

of the AEQS to the desired solution of a decision problem on each input x.

Definition 7. Given a decision problem L and any constant ε ∈ [0, 1], we
say that an AEQS S = (m,Σ, {H

(x)
ini }x∈Σ∗ , {H

(x)
fin}x∈Σ∗ , {S

(n)
acc}n∈N, {S

(n)
rej}n∈N)

solves (or recognizes) L with accuracy at least ε if (i) for each input x ∈ Σ∗,
there exists a unique ground state |ψg(0)〉 of H

(x)
ini , (ii) for any string x ∈ L, the

ground state of H
(x)
fin is

√
2(1 − ε)-close to a certain quantum state in QS

(m(x))
acc ,

and (iii) for any string x ∈ Σ∗ − L, the ground state of H
(x)
fin is

√
2(1 − ε)-close

to a certain quantum state in QS
(m(x))
rej . The adiabatic quantum size complexity

of L is m(x), where “x” expresses a “symbolic” input.

Proof Sketch of Lemma 1. Let Σ be any alphabet and let L be any language
over Σ. For each fixed string x ∈ Σ∗, we define an AEQS Sx as follows: H

(x)
ini =

|−〉〈−| and H
(x)
fin = |L(x)〉〈L(x)|, where |−〉 = 1√

2
(|0〉 − |1〉) and L(x) = 1 − L(x)

294 T. Yamakami

for every input x ∈ Σ∗ and L(x) is the characteristic function of L. Note that
the ground state of H

(x)
ini is |+〉 = 1√

2
(|0〉 + |1〉) and that of H

(x)
fin is |L(x)〉. It

then follows that x ∈ L iff Sx outputs L(x). The accuracy of Sx thus turns out
to be 1. ��

We consider a complexity class of decision problems solved by certain AEQSs.

Definition 8. Let F indicate a set of conditions imposed on Hamiltonians. The
complexity class, highly-accurate AEQS(F), is the collection of all languages,
each of which is recognized by a certain AEQS on each input with accuracy
at least an absolute constant ε ∈ (α̂, 1] and Hamiltonians of the AEQS sat-

isfy the conditions specified by F , where α̂ = 1 −
√

1 − 1/
√

2. Since we discuss
only highly-accurate AEQS’s in the subsequent sections, we often drop the prefix
“highly-accurate” and simply call them AEQS’s.

As an example, we may use F to specify a type of quantum quasi-automata,
such as 1qqa’s. We may also use F to refer to the condition that the spectral
gaps of Hamiltonians are at most the reciprocal of a certain polynomial. By the
adiabatic theorem, this condition ensures that the corresponding AEQSs run for
polynomially many steps.

One of the difficulties that we face in constructing an AEQS is how to prepare
its Hamiltonians, in particular, H

(x)
fin and to define (acceptance/rejection) criteria

pairs (S(n)
acc, S

(n)
rej). In this exposition, we relate AEQSs to 1qqaf’s. Since AEQSs

are dictated by Hamiltonians, we say that an AEQS S is generated by 1qqaf’s if
(1) there exist two 1qqaf’s M0 and M1 such that H

(x)
ini and H

(x)
fin are generated

respectively by M0 and M1 for each input x ∈ Σ∗, and (2) S
(i)
acc = S

(j)
acc and

S
(i)
rej = S

(j)
rej for any pair i, j ∈ N. We can expand this definition to 2cqqaf’s and

1qpdqaf’s. Possibly, we can relax Condition (2) by requiring a certain one-way
reversible finite automaton (or 1rfa) to determine whether or not “q is in S

(n)
acc”

(as well as “q is in S
(n)
rej”) from inputs of the form (1n, q).

In the subsequent section, we will demonstrate how to design (or program)
AEQSs for the simple languages given in Proposition 2.

3 How to Program AEQSs: Proof of Proposition 2

In what follows, we will demonstrate only (1)–(2) of Proposition 2.
(1) We want to construct the desired AEQS for the language La = {ax | x ∈

{0, 1}∗} for each fixed string a ∈ {0, 1}∗. Here, we consider only the simplest
case where a = 0. Write Σ for {0, 1} for simplicity.

Our goal is to construct H
(x)
ini = W3diag(0, 1, 1)W †

3 , H
(0y)
fin = diag(1, 3/4, 1/4),

and H
(1y)
fin = diag(1, 1/4, 3/4) using 1qqa’s, where W3 is an appropriate 3 × 3

unitary matrix forcing the condition [H(x)
ini ,H

(x)
fin] �= 0. Since the ground energy

of H
(x)
fin is 1/4, it follows that the spectral gap is 3

4 − 1
4 = 1

2 .

Adiabatic Quantum Computation and Quantum Automata Theory 295

To generate the Hamiltonian H
(x)
fin, we need to define an appropriate 1qqa.

Let m(x) = |x|, Q = {q|c, q0, q1}, S
(|x|)
acc = {q1} and S

(|x|)
rej = {q0}. We choose Λ0 =

|q0〉〈q0| + |q1〉〈q1|. We further define Kraus operators {Aσ,i}σ∈Σ̌,i∈[5] as follows.
Let A|c,1|q|c〉 = |q|c〉, A|c,2|q0〉 = 1√

2
|q|c〉, A|c,3|q0〉 = 1√

2
|q0〉, A|c,4|q1〉 = 1√

2
|q|c〉,

A|c,5|q1〉 = 1√
2
|q1〉, and A$,i = A|c,i. Moreover, let A0,1|q|c〉 = |q0〉, A0,2|q0〉 = |q0〉,

A0,3|q1〉 = |q1〉, A1,1|q|c〉 = |q1〉, A1,2 = A0,2, and A1,3 = A0,3. For all other pairs
(σ, i) ∈ Σ̌ × [5], let Aσ,i|q〉 = 0. It then follows that

∑5
i=1 A†

σ,iAσ,i = I for any

σ ∈ Σ̌. It is not difficult to show that A|c0y$(Λ0) = H
(0y)
fin and A|c1y$(Λ0) = H

(1y)
fin .

(2) Next, we are focused on the reversible unary language Leven = {a2n |
n ∈ N}. Let m(x) = |x|, Q = {q0, q1, q2}, S

(|x|)
acc = {q1}, and S

(|x|)
rej = {q2}.

Let U|c|q0〉 = |q1〉, U|c|q1〉 = |q0〉, U|c|q2〉 = |q2〉, and U$ = I. Moreover, let
Ua|q0〉 = |q0〉, Ua|q1〉 = |q2〉, and Ua|q2〉 = |q1〉. It then follows that, for any input
x ∈ {a}∗, U|cx$|q0〉 = |q1〉 if x ∈ Leven and U|cx$|q0〉 = |q2〉 if x /∈ Leven. Let us
define H

(x)
fin = U|cx$Λ0U

†
|cx$, where Λ0 =

∑
q∈Q−{q0} |q〉〈q|. Since U|cx$|q1〉 = |q0〉

and U|cx$|q2〉 = |q2〉 if x ∈ Leven, and |q1〉 otherwise, it follows that H
(x)
fin =

|q0〉〈q0| + Leven(x)|q1〉〈q1| + Leven(x)|q2〉〈q2|, where Leven(x) is the characteristic
function of Leven and Leven(x) = 1 − Leven(x). The ground state of H

(x)
fin thus

becomes |q1〉 if x ∈ Leven, and |q2〉 otherwise. Therefore, we obtain Δ(H(x)
fin) = 1.

Note that the ground energy is 0.

4 Basic Simulations Between QFAs and AEQSs

4.1 Proof of Theorem 3

Aharonov et al. [1] demonstrated how to simulate quantum circuits by adiabatic
quantum computation with polynomial overhead. Our concern here is the AEQSs
of constant size, and thus our situation significantly differs from their’s.

Proof Sketch of Theorem 3. We intend to show that 1MOQFA ⊆
AEQS(1qqaf, constsize, constgap, 0-energy). Let L ∈ 1MOQFA and choose a
1moqfa M = (Q,Σ, {|c, $}, {Uσ}σ∈Σ̌ , q0, Qacc, Qrej) for L with error probabil-
ity at most ε for a certain constant ε ∈ [0, 1/2). For simplicity, we assume that
|Q| is of the form 2k0 for a certain constant k0 ∈ N

+ and that all elements in
Q are expressed as k0-bit strings. Let ρ0 = |q0〉〈q0| and ρi+1 = Uxi

ρiU
†
xi

for
each i ∈ [0, n + 1]Z, where xi denotes the (i + 1)th symbol of |cx$. Let Pacc

and Prej be two projections onto the Hilbert spaces Hacc and Hrej spanned by
{|q〉 | q ∈ Qacc} and {|q〉 | q ∈ Qrej}, respectively. Note that, for any x ∈ L,
tr(Paccρn+2) ≥ 1 − ε and, for any x /∈ L, tr(Prejρn+2) ≥ 1 − ε.

Our goal is to show how to simulate M by a suitable AEQS. We define H
(x)
ini

and H
(x)
fin of the desired AEQS as H

(x)
ini = W⊗k0Λ0W

⊗k0 and H
(x)
fin = U|cx$Λ0U

†
|cx$,

where Λ0 =
∑

q∈Q−{q0} |q〉〈q|.

296 T. Yamakami

For each x ∈ Σ∗, let |φx〉 = U|cx$|q0〉. By the definition of H
(x)
fin, |φx〉 is

its ground state because H
(x)
fin|φx〉 = U|cx$ΛU†

|cx$U|cx$|q0〉 = U|cx$Λ|q0〉 = 0. Note
that, if x ∈ L, then ‖Pacc|φx〉‖2 ≥ 1 − ε. This implies that there is a vector
|φacc〉 ∈ Hacc such that |〈φacc|φx〉|2 ≥ 1 − ε. We then obtain ‖|φx〉 − |φacc〉‖2 ≤
1−|〈φacc|φx〉|2 ≤ ε. Hence, |φx〉 is

√
ε-close to |φacc〉. Thus, the accuracy is more

than α̂ (defined earlier). A similar argument handles the case of x /∈ L.
Next, we consider nonzero eigenvalues of H

(x)
fin. Let |ψq〉 = U|cx$|q〉 for

each q ∈ Q. It then follows that U|cx$Λ0U
†
|cx$ =

∑
q∈Q−{q0}(U|cx$|q〉〈q|U†

|cx$) =
∑

q∈Q−{q0} |ψq〉〈ψq|. Since U|cx$ is unitary, {|ψq〉}q∈Q−{q0} consists of all nonzero

eigenvectors and they must be 1. Therefore, the spectral gap of H
(x)
fin is 1. ��

4.2 Proof of Theorem 4

Finally, we are ready to describe the proof of Theorem 4. This proof is composed
of two critical simulations between AEQSs and 1qfa’s with mixed states and
quantum operators. Since REG = 1QFAmix, it suffices to simulate such a 1qfa
by an appropriately chosen AEQS.

Lemma 9. Any 1qfa M with mixed states and quantum operations can be
exactly simulated by a certain AEQS whose Hamiltonians are generated by cer-
tain linear-size 1qqaf’s with the spectral gap of 1 and the ground energy of 0.

Proof of Theorem 4. Let L be any regular language. Take a 1qfa M with
mixed states and quantum operators that recognizes L with bounded-error prob-
ability. By Lemma 9, there exists an AEQS S that simulates M . ��

References

1. Aharonov, D., van Dam, W., Kemp, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic
quantum computation is equivalent to standard quantum computation. SIAM J.
Comput. 37(1), 166–194 (2007). https://doi.org/10.1137/S0097539705447323

2. Ambainis, A., Beaudry, M., Golovkins, M., Çikusts, A., Mercer, M., Thérien, D.:
Algebraic results on quantum automata. Theory Comput. Syst. 39, 165–188 (2006).
https://doi.org/10.1007/s00224-005-1263-x

3. Ambainis, A., Yakaryilmaz, A.S.: Automata and quantum computing. CoRR
abs/1507.01988 (2015). https://arxiv.org/abs/1507.01988

4. Dam van, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum compu-
tation? In: Proceedings of 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, pp. 279–287. IEEE Computer Society (2001). https://doi.
org/10.1109/SFCS.2001.959902

5. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quan-
tum evolution algorithm applied to random instances of an NP-complete problem.
Science 292, 472–476 (2001). https://doi.org/10.1126/science.1057726

6. Farhi, E., Goldstone, J., Gutmann, S., Sipser., M.: Quantum computation by
adiabatic evolution. CoRR abs/quant-ph/0001106 (2000). https://arxiv.org/abs/
quant-ph/0001106

https://doi.org/10.1137/S0097539705447323
https://doi.org/10.1007/s00224-005-1263-x
https://arxiv.org/abs/1507.01988
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1126/science.1057726
https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0001106

Adiabatic Quantum Computation and Quantum Automata Theory 297

7. Freivalds, R., Ozols, M., Mančinska, L.: Improved constructions of mixed state
quantum automata. Theor. Comput. Sci. 410, 1923–1931 (2009). https://doi.org/
10.1016/j.tcs.2009.01.028

8. Gruska, J.: Quantum Computing. McGraw-Hill (2000)
9. Kato, T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jap. 5,

435–439 (1951)
10. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. AMS,

Providence (2002)
11. Messiah, A.: Quantum Mechanics. Wiley, New York (1958)
12. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars.

Theor. Comp. Sci. 237(1–2), 275–306 (2000). https://doi.org/10.1016/S0304-
3975(98)00191-1

13. Nakanishi, M.: Quantum pushdown automata with garbage tape. Int. J. Found.
Comput. Sci. 29(3), 425–446 (2018). https://doi.org/10.1142/S0129054118500132

14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

15. Yakaryilmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small
space bounds. Inf. Comput. 209(6), 873–892 (2011). https://doi.org/10.1016/j.ic.
2011.01.008

16. Yamakami, T.: Nonuniform families of polynomial-size quantum finite automata
and quantum logarithmic-space computation with polynomial-size advice. In:
Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp.
134–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13435-8 10

https://doi.org/10.1016/j.tcs.2009.01.028
https://doi.org/10.1016/j.tcs.2009.01.028
https://doi.org/10.1016/S0304-3975(98)00191-1
https://doi.org/10.1016/S0304-3975(98)00191-1
https://doi.org/10.1142/S0129054118500132
https://doi.org/10.1016/j.ic.2011.01.008
https://doi.org/10.1016/j.ic.2011.01.008
https://doi.org/10.1007/978-3-030-13435-8_10

Author Index

Beier, Simon 74
Brzozowski, Janusz A. 86

Davies, Sylvie 86, 98

Fernau, Henning 111, 124
Freund, Rudolf 1

Gabric, Daniel 137
Gelle, Kitti 147

Han, Yo-Sub 158
Holub, Štěpán 137
Holzer, Markus 74
Hospodár, Michal 98
Hoyrup, Mathieu 171

Iván, Szabolcs 147

Jirásková, Galina 184

Kari, Jarkko 35
Kari, Lila 197
Keeler, Chris 210
Ko, Sang-Ki 158
Krajňáková, Ivana 184
Kuppusamy, Lakshmanan 111
Kutrib, Martin 223

Madan, Abhishek 86
Malcher, Andreas 223
Mereghetti, Carlo 223

Nagy, Benedek 46
Ng, Timothy 197

Ogawa, Mizuhito 235
Okhotin, Alexander 248

Palano, Beatrice 223
Pighizzini, Giovanni 57, 260
Prigioniero, Luca 260

Raman, Indhumathi 111
Rojas, Cristóbal 171

Salomaa, Kai 158, 210
Sazhneva, Elizaveta 248
Selivanov, Victor 171, 235
Shallit, Jeffrey 137
Stull, Donald M. 171

Vu, Martin 124

Wolf, Petra 272

Yamakami, Tomoyuki 285

	Preface
	Organization
	Contents
	A General Framework for Sequential Grammars with Control Mechanisms
	1 Introduction
	2 Preliminaries
	2.1 Groups and Group Presentations
	2.2 Cayley Graphs
	2.3 Register Machines

	3 A General Model for Sequential Grammars and Regulated Rewriting Based on the Applicability of Rules
	3.1 Graph-Controlled and Programmed Grammars
	3.2 Matrix Grammars
	3.3 Random-Context Grammars
	3.4 Grammars with Priority Relations on the Rules
	3.5 Ordered Grammars
	3.6 Grammars with Activation and Blocking of Rules

	4 General Results
	5 Summary of General Results
	6 Results for Strings and Multisets
	6.1 String Grammars
	6.2 Multiset Grammars
	6.3 Results for String and Multiset Grammars
	6.4 Computational Completeness for Context-Free AB-Grammars with Two Non-terminal Symbols

	7 Arrays and Array Grammars on Cayley Grids
	7.1 Arrays on Cayley Grids
	7.2 Array Grammars on Cayley Grids
	7.3 Results for Array Grammars on Cayley Grids

	8 Cooperating Distributed Grammar Systems
	9 Summary and Future Research
	References

	Low-Complexity Tilings of the Plane
	1 Introduction
	1.1 Configurations and Periodicity
	1.2 Pattern Complexity
	1.3 Nivat's Conjecture
	1.4 Basic Concepts of Symbolic Dynamics
	1.5 Algebraic Concepts

	2 Contributions to Nivat's Conjecture
	3 Line Polynomials and the Structure of the Annihilator Ideal
	4 Low Complexity Configurations in Algebraic Subshifts
	5 Conclusions and Perspectives
	References

	Union-Freeness, Deterministic Union-Freeness and Union-Complexity
	1 Introduction
	2 The Union-Free Language Classes and Their Corresponding Automata Classes
	3 Properties of Union-Free Language Classes
	4 Union-Complexity of Regular Languages
	5 Conclusions
	References

	Limited Automata: Properties, Complexity and Variants
	1 A Short Introduction with a Classical Example
	2 Limited Automata
	2.1 Computational Power, Determinism and Nondeterminism
	2.2 Descriptional Complexity
	2.3 Time Complexity

	3 Strongly Limited Automata
	4 Some Related Models
	4.1 Wechsung's Model
	4.2 Forgetting, Deleting and Restarting Automata
	4.3 No Space Overhead Machines

	5 Further Remarks
	References

	Nondeterministic Right One-Way Jumping Finite Automata (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Variants of Nondeterministic Jumping Finite Automata
	3.1 Right One-Way Jumping Finite Automata
	3.2 Variants of Right One-Way Jumping Finite Automata Without Spontaneous Transitions
	3.3 Variants of Right One-Way Jumping Finite Automata with Spontaneous Transitions

	4 Relations to Finite-State Acceptors with Translucent Letters
	5 Conclusions
	References

	State Complexity of Single-Word Pattern Matching in Regular Languages
	1 Introduction
	2 Terminology and Notation
	3 Matching a Single Prefix
	4 Matching a Single Suffix
	5 Matching a Single Factor
	6 Matching a Single Subsequence
	7 Conclusions
	References

	Square, Power, Positive Closure, and Complementation on Star-Free Languages
	1 Introduction
	2 Preliminaries
	3 Square
	4 Power, Positive Closure, and Complementation
	5 Conclusion
	References

	Descriptional Complexity of Matrix Simple Semi-conditional Grammars
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Matrix (and) Semi-conditional Grammars
	2.2 Geffert Normal Forms

	3 Computational Completeness of MSSC Grammars
	4 Conclusions and Discussions
	References

	Regulated Tree Automata
	1 Introduction
	2 Definitions
	2.1 Classical Regulated Rewriting
	2.2 Tree Automata
	2.3 Regulated Tree Automata

	3 Basic Results for Regulated Tree Automata
	4 Relation to String Languages
	5 Adding Appearance Checks
	6 Conclusions
	References

	Generalized de Bruijn Words and the State Complexity of Conjugate Sets
	1 Introduction
	2 Generalized de Bruijn Words
	3 State Complexity
	4 Final Comments
	References

	The Syntactic Complexity of Semi-flower Languages
	1 Introduction
	2 Notation and Some Facts
	3 Minimal Circular Semi-flower Automata and Syntactic Complexity
	4 The Transition Monoid of Semi-flower Automata
	5 Conclusion
	References

	Limited Nondeterminism of Input-Driven Pushdown Automata: Decidability and Complexity
	1 Introduction
	2 Preliminaries
	3 Problems on Tree Width and Ambiguity for NPDAs
	4 Problems on Tree Width for NIDPDAs and NFAs
	5 Conclusion
	References

	Computability on Quasi-Polish Spaces
	1 Introduction
	2 Preliminaries
	3 Results on 02-Sets
	4 Effective Quasi-Polish Spaces
	5 Effective Quasi-Metric Spaces
	6 Separation
	7 Discussion and Open Questions
	References

	NFA-to-DFA Trade-Off for Regular Operations
	1 Introduction
	2 Preliminaries
	3 Complementation, Reversal, Star, and Concatenation
	4 Boolean Operations
	5 Shuffle, Left and Right Quotient
	6 Conclusions
	References

	State Complexity of Simple Splicing
	1 Introduction
	2 Preliminaries
	2.1 Simple Splicing Systems

	3 State Complexity of Simple Splicing
	4 State Complexity of Semi-simple Splicing
	5 State Complexity of the Crossover Operation
	6 Conclusion
	References

	Nondeterminism Growth and State Complexity
	1 Introduction
	2 Preliminaries
	3 Growth of String Path Width and Tree Width
	3.1 Polynomial Growth
	3.2 Exponential Growth

	4 Algorithms for Deciding the Growth Rate
	5 State Complexity
	6 Conclusion
	References

	Descriptional Complexity of Iterated Uniform Finite-State Transducers
	1 Introduction
	2 Definitions and Preliminaries
	3 Iterated Transductions vs. DFAs
	4 Descriptional Complexity
	4.1 States Versus Sweeps
	4.2 The State Cost of Language Operations on k-IUFSTs
	4.3 Decidability Questions for k-IUFSTs

	5 Hierarchy of Non-constant Sweep Complexities
	References

	On Classes of Regular Languages Related to Monotone WQOs
	1 Introduction
	2 Preliminaries
	3 Classes of Languages Related to Monotone WQOs
	4 Decidability of Levels L(n)
	5 Extending Monotone WQOs to Infinite Words
	6 Decidability of Levels L(n)
	7 Conclusion and Open Questions
	References

	State Complexity of GF(2)-Concatenation and GF(2)-Inverse on Unary Languages
	1 Introduction
	2 GF(2)-Concatenation
	3 Automaton for GF(2)-Inverse
	4 Polynomials for GF(2)-Inverse
	5 Upper Bound for the GF(2)-Inverse
	6 Lower Bound for the GF(2)-Inverse
	7 Future Work
	References

	Pushdown Automata and Constant Height: Decidability and Bounds
	1 Introduction
	2 Preliminaries
	3 Undecidability and Non-Recursive Bounds
	4 Constant Height Decidability in the Unary Case
	4.1 Loops and Grammars
	4.2 Simulating Vertical Loops by a Horizontal Loop
	4.3 Decidability

	5 Size Versus Height in the Unary Case
	6 An Optimal Lower Bound for Non-Constant Height
	References

	On the Decidability of Finding a Positive ILP-Instance in a Regular Set of ILP-Instances
	1 Introduction
	2 Preliminaries
	3 Construction of the Condensed Automaton
	4 Correctness of the Condensed Automaton
	5 Conclusion
	References

	How Does Adiabatic Quantum Computation Fit into Quantum Automata Theory?
	1 Motivations and a Quick Overview
	1.1 Adiabatic Quantum Computation
	1.2 Quantum Automata Theory
	1.3 An Overview of Main Contributions

	2 Preparations: Notions and Notation
	2.1 Numbers, Vectors, and Matrices
	2.2 Languages and Quantum Quasi-Automata
	2.3 Adiabatic Evolution of a Quantum System
	2.4 Adiabatic Evolutionary Quantum Systems

	3 How to Program AEQSs: Proof of Proposition 2
	4 Basic Simulations Between QFAs and AEQSs
	4.1 Proof of Theorem 3
	4.2 Proof of Theorem 4

	References

	Author Index

