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Abstract. Dialogue-based tutoring platforms have shown great promise
in helping individual students improve mastery. Short answer grading is
a crucial component of such platforms. However, generative short answer
grading using the same platform for diverse disciplines and titles is a cru-
cial challenge due to data distribution variations across domains and a
frequent occurrence of non-sentential answers. Recent NLP research has
introduced novel deep learning architectures such as the Transformer,
which merely uses self-attention mechanisms. Pre-trained models based
on the Transformer architecture have been used to produce impressive
results across a range of NLP tasks. In this work, we experiment with fine-
tuning a pre-trained self-attention language model, namely Bidirectional
Encoder Representations from Transformers (BERT) applying it to short
answer grading, and show that it produces superior results across multi-
ple domains. On the benchmarking dataset of SemEval-2013, we report
up to 10% absolute improvement in macro-average-F1 over state-of-the-
art results. On our two psychology domain datasets, the fine-tuned model
yields classification almost up to the human-agreement levels. Moreover,
we study the effectiveness of fine-tuning as a function of the size of the
task-specific labeled data, the number of training epochs, and its gener-
alizability to cross-domain and join-domain scenarios.
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1 Introduction

Dialogue-based tutoring (DBT) platforms such as AutoTutor [6], Rimac [1],
DeepTutor [24] and the Watson Tutor [28] have shown great promise in meeting
individual student’s needs. In such systems, the tutoring platform interacts with
the student by asking questions and provides individual feedback based on all
student answers. To provide appropriate feedback and rectify student mistakes,
accurately understanding student answers is crucial. However, devising a generic
short answer grading system that performs well across different questions and
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domains of study is a challenge due to data distribution variations (differences
in used language, length and depth of answers, use of non-sentential answers,
among other issues).

Various Deep Learning (DL) based techniques have been explored for short
answer grading [2,11,12,17,25]. However, availability of limited labeled data
(reference and student answer pairs) often prohibits meaningful training; fur-
thermore, due to domain discrepancy between the public corpora and short
answer grading corpus, the utilization of the former by augmentation is not effi-
cient. Lately, transfer learning has largely supplanted the use of the older DL
techniques, and have had a substantial impact on the state of Natural Language
Processing (NLP) [16]. The main concept within transfer learning is to apply the
knowledge from one or more source tasks to a target task [18]. Broadly, a target
task can use the knowledge of labeled data from other tasks or from unlabeled
data called self-taught learning [21]. In NLP, word embedding is one of the most
influential transfer models due to its capability of capturing semantic context
of a word by producing vector representations of words from large unlabeled
corpora such as Wikipedia and news articles [13].

As a transition of a robust transfer learning model, Peters et al. introduced
contextualized word representations (called Embeddings from Language Mod-
els or ELMo) [19]. ELMo captured contextual information from word represen-
tations by combining the hidden states of multiple bidirectional LSTMs and
initial embeddings. In 2018, diverse novel fine-tuning language models such as
Universal Language Model Fine-tuning (ULMFiT) [9] and OpenAI′s Genera-
tive Pre-Training (GPT)1 [20] were proposed followed by a robust transfer lan-
guage model called Bidirectional Encoder Representations from Transformers,
or BERT [5]. OpenAI′s GPT and BERT adapted the Transformer architecture
to learn the text representations, a novel and efficient language model architec-
ture based on a self-attention mechanism [27]. However, while OpenAI′s GPT
used an unidirectional attention approach (the decoder in Transformer), BERT
used a bidirectional one (the encoder in Transformer) to better understand the
text context. BERT can be trained in two phases. In the pre-training phase,
deep bidirectional representations inherited by the nature of the Transformer
Encoder can use unlabeled huge corpora. In the fine-tuning phase, task-specific
labeled data and parameter tuning is performed to optimize results for a specific
problem, such as question answering or short answer grading.

In this work, we experiment with fine-tuning a pre-trained BERT language
model and explore the following questions:

• How well do Transformer-based DL approaches (we use BERT as it is the
latest iteration of such models) apply to short answer grading?

• How much does fine-tuning, involving the collection of domain-specific labeled
answers, impact the results obtained?

• What is the amount of training (number of epochs) needed in order to produce
an optimized model using this approach?

• How well does the same fine-tuned Transformer-based model work across
different domains of study for the short answer scoring task?

1 https://blog.openai.com/language-unsupervised/.

https://blog.openai.com/language-unsupervised/
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We begin with an overview of recent approaches in short answer grading, and an
overview of BERT and the BERT model architecture, before presenting details
on our experiments designed to answer these questions.

2 Related Work

Broadly speaking the literature pertaining to the problem of short answer grad-
ing can be categorized into two: (1) earlier approaches that relied heavily on
hand-crafted features, and (2) recent deep learning approaches that require min-
imum, if not none at all, feature engineering.

2.1 Hand-Crafted Features

Mohler and Mihalcea [15] and Mohler et al. [14] are among the earliest research
works towards automatic short answer grading. These approaches relied on vari-
ous word similarity measures, corpus-based measures, and alignment of parses of
reference and student answers. A benchmark in the field was established with the
Student Response Analysis Challenge as part of SemEval-2013 [7]. Participat-
ing approaches relied on a range of hand-crafted features including corpus-based
word similarities, WordNet based word similarities, part-of-speech tags, sentence
parsing, and n-grams; one of the participants also explored domain adaptation.
Broadly, the problem of Student Response Analysis is modeled as a special case
of Textual Entailment or Semantic Textual Similarity. Ramachandran et al. [22]
proposed to extract phrase patterns from reference answers to form basis of scor-
ing approach. The approach improves over earlier approaches in that it explicitly
extracts semantic information at sentence as opposed to earlier word similarity
metrics. Ramachandran and Foltz [23] proposed a short answer grading based
on text summarization.

2.2 Deep Learning Approaches

With the advances in deep learning approaches, various works leveraged these
approaches. Sultan et al. [26] represented a sentence as sum of word embed-
dings [13] of its tokens in conjunction with other features. The approach uses
word embeddings obtained by deep learning on large corpus; however, obtain-
ing feature representations of a sentence as sum of word embeddings ignores
the structural information. Thus, as a logical extension subsequent works have
explored more sophisticated ways to obtain feature representations of answer
sentences. Mueller and Thyagarajan [17] proposed a Long Short-Term Memory
(LSTM) based Siamese network to compare student answer against reference
answer. They observe that one of the major limitations in training LSTM net-
works is the lack of large amount of training data. They generate additional pairs
of answers by replacing words in the original dataset. The extended dataset is
used for training LSTM networks for short answer grading. The data inten-
sive nature of deep learning approaches has emerged as an interesting issue for
research, particularly in data-starved problems such as short answer grading.
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Transfer Learning has evolved into a promising research direction to address
this. It claims that a generic learning of natural language can be obtained from
a data-rich generic task, which can be then transferred to downstream tasks
which may have limited data. Research efforts to learn universal sentence embed-
dings for task-specific transfer have yielded impressive improvements on vari-
ous benchmarks. Notable works include InferSent [4], ELMo [19], ULMFiT [9],
GPT [20], and BERT [5]. Saha et al. [25] explored sentence embedding features
from InferSent in conjunction with traditional token features. In another recent
work, Marvaniya et al. [12] showed that short answer grading based on sen-
tence embedding features can be further improved by leveraging their proposed
scoring rubric approach. The current state of the short answer grading research
has shown that transfer of sentence embeddings is useful, yet non-contextual
approaches encounter their limitations at downstream tasks. In this study, we
aim to demonstrate the ability and various characteristics of BERT (a latest and
robust transfer language model) for short answer grading with limited domain-
specific training data.

3 BERT for Short Answer Grading

The broad premise of BERT [5] is that there is a high-level language model that
needs to be encoded into the network irrespective of the downstream task. The
high-level language model is learned based on two semi-supervised objectives
of (1) Masked Language Model (MLM) for a deep bidirectional representation
and (2) Next Sentence Prediction (NSP) for understanding relationship between
sentences; this training leverages multiple corpora. The resultant model, often
called the pre-trained BERT model, forms the basis for downstream target tasks.
For the task of short answer grading, we perform fine-tuning in the form of
Sentence Pair Classification. This model allows to classify a pair of reference
and student answers into desired categories of correct, incorrect, contradiction,
and so on.

3.1 BERT Model Architecture

As described in Devlin et al. [5], BERT takes a single token sequence from a sin-
gle text sentence for the MLM objective or from a pair of text sentences (adding
[SEP] token between them as a separator) for the NSP objective. The special
classification embedding [CLS] is added in front of each sequence and it is used
as input to the classification-task layer. As shown in Fig. 1, the input repre-
sentations are obtained by combining the token, segment, and learned position
embeddings. The segment embeddings identify which sentence tokens are from
and the position embeddings relative positioning of tokens. This is the input to
the first Transformer Encoder layer and the output of this layer is fed into the
next Transformer layer. BERT may have a stack of multiple Transformer lay-
ers. Each Transformer Encoder is composed of two major parts: a self-attention
layer with multiple attention heads, followed by token-wise feed-forward layers.
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Fig. 1. BERT model architecture for short answer grading. We employed the Sentence
Pair Classification task specific model using BERT. To describe the details of the
model we used the same colors for the same representations as in [5,27].

Each attention head acts akin to a convolution in a convolutional neural network
(ConvNet), except for a weighted average. As part of self-attention mechanism,
BERT computes three vectors from each token (called query, key, and value)
by multiplying three trainable weight matrices (WQ, WK , WV respectively).
The weight matrices emphasize different location values of the input as the role
of kernels in ConvNet and they are adjusted for every head.

qi
j = xjW

Q
i ki

j = xjW
K
i vi

j = xjW
V
i (1)

where, qi
j , ki

j , and vi
j are the query, key, and value vectors (projections) respec-

tively for jth token xj in ith head. Then, with the query and key vectors BERT
calculates attention weights by: (1) the dot product of the query vector of a
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particular token and all the key vectors (ki
1...k

i
n in ith head where n is the num-

ber of tokens), (2) an adjustment of the dot products by 1√
dk

where dk is the
dimension of the key vectors, and (3) a softmax normalization sequentially. The
scaling factor of 1√

dk
helps finely adjust larger vectors to avoid extremely small

gradients from the softmax.
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where awi
jk is kth normalized attention weight for jth token in ith head. The

attention weights capture how much all tokens are related to a particular token in
headi. BERT multiplies each value vector by the corresponding attention weight
and sums up the weighted results. The output vector contains the bi-directional
attention information, the value vectors of related tokens contributing more
than others.
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where zi
j is the output of a self-attention layer for jth token and vi

k is kth value
vector in ith head. There may be multiple zj from multiple attention heads.
To aggregate these results, BERT concatenates all zj vectors, multiplying them
by a weight matrix. The result vector having all attention information along
all heads is summed with the original token representations, followed by layer
normalization [3]. Each of the final vectors (representing a particular token)
discretely goes to the corresponding fully connected feed-forward network. This
full procedure repeats as many as the number of Transformer Encoders and at
the last Transformer Encoder the final output for the [CLS] token is used as
the sequence representation. Up to this point, this is the pre-training model
and BERT can leverage an unlabeled huge corpus of text to construct a high-
level language model. Then, BERT adapts the labeled data for short answer
grading not only for fine tuning the pre-training model but also constructing
a classification model through the feed-forward classification layer on the pre-
training model.

4 Experiments

We evaluated our proposed approach on two datasets:

1. ScientsBank-3way dataset of SemEval-2013 [7]: We used SciEnts-
Bank dataset for the 3-way task in SemEval 2013 challenge. The data con-
sists of questions, reference answers, student answers, and three-way labels
(correct, incorrect, and contradictory or in short co, ic, and cd
respectively) in the science domain. The SemEval 2013 challenge involves
three classification subtasks on three given test sets: unseen answers (UA),
unseen questions (UQ), and unseen domains (UD).
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2. Two psychology domain datasets: The datasets contain a collection
of questions, reference answers, student answers, and three-way labels
(correct, partially-correct, and incorrect or in short co, pc, and
ic respectively). These are based on student answers from two psychology-
related textbooks (one is from behavioral physiology and has a lot of technical
language and the other is from developmental psychology with mostly non-
technical material). Each student response is manually annotated by three
experts. Groundtruth is obtained as majority voting of the three annotations.

As shown in the Table 1, the class distribution of both datasets is highly skewed.
Due to the class imbalance we select a macro-average-F1 method to observe how
our proposed approach preforms overall across the latest other approaches. The
macro-average-F1 computes the F1 score independently for each class and then
takes the average of all F1 scores. Moreover, we report results in terms of accu-
racy and weighted-average-F1, but due to the class-imbalance in the datasets,
these two metrics may provide biased evidences.

Table 1. Details of class distribution and train-test split protocols for SciEntsBank
3-way dataset of SemEval 2013 challenge and our psychology domain 1 and 2 datasets.
The test set of SciEntsBank is divided into three different test sets for the three
subtasks: unseen answers (UA), unseen questions (UQ), and unseen domains (UD).

Dataset Class distribution Train-test split
Training Test

SemEval-2013 [7] 4,459 (co) 5,307 (ic) 1,038 (cd) 4,969 540 (UA)
733 (UQ)
4,562 (UD)

Psychology domain 1 14,460 (co) 3,845 (pc) 1,790 (ic) 16,076 4,019
Psychology domain 2 12,295 (co) 2,495 (pc) 1,090 (ic) 12,704 3,176

4.1 Pre-training Setup

We chose BERTBASE, Uncased2 pre-trained model, which used the concate-
nation of BooksCorpus (800M words) and English Wikipedia (2,500M words)
for pre-training. Uncased means that the text has been converted to lower-case
before tokenization, dropping any accent markers. BERT uses WordPiece embed-
dings [29] using a 30,000 token vocabulary and up to 512 tokens are supported for
the input sequence. The details of the BERTbase model can be found in [5].

4.2 Fine-Tuning Setup

For fine-tuning the pre-trained BERTbase model and a classification layer, we
generated the two datasets in tab-separated values (TSV) files. We changed
the learning rate of Adam optimizer to 2e–5 for SemEval-2013 and 3e–5 for two

2 https://github.com/google-research/bert.

https://github.com/google-research/bert
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psychology domain datasets with the same batch size 32. We have also gradually
reduced the training size up to 20% of the entire set to observe how many labeled
data are required for fine-tuning. We changed the number of epochs from 4 to 12
to observe how many epochs the BERT and classifier are required to complete
fine-tuning. For the fine-tuning process, we used two NVIDIA Tesla P100 GPUs
(Graphics Card RAM 16 GB) and 120-GB memory.

Table 2. Performance on SciEntsBank Dataset of SemEval-2013 [7]. All results of ‡ are
as reported in [25]. MEAD [23], Graph [23] and Marvaniya et al. [12] reported results on
unseen answer protocol only as their approaches are designed for this scenario. Accuracy
(Acc), macro-average-F1 (M-F1), and weighted-average-F1 (W-F1) are reported in
percentage.

Unseen answer Unseen question Unseen domain
Acc M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F1

Baseline [7] 55.6 40.5 52.3 54.0 39.0 52.0 57.7 41.6 55.4

ETS [8] 72.0 64.7 70.8 58.3 39.3 53.7 54.3 33.3 46.1

SOFTCAR [10] 65.9 55.5 64.7 65.2 46.9 63.4 63.7 48.6 62.0

MEAD [23] - 42.9 55.4 -

Graph [23] - 43.8 56.7 -

Sultan et al. [26]‡ 60.4 44.4 57.0 64.3 45.5 61.5 62.7 45.2 60.3

Saha et al. [25] 71.8 66.6 71.4 61.4 49.1 62.8 63.2 47.9 61.2

Marvaniya et al. [12] - 63.6 71.9 -

Proposed BERTBASE 75.9 72.0 75.8 65.3 57.5 64.8 63.8 57.9 63.4

4.3 Results and Analysis

We performed a set of experiments to study various aspects of the proposed
BERTbase model for the problem of short answer grading, including (1) perfor-
mance comparison with published literature and human agreements, (2) suffi-
ciency of fine-tuning in terms of supervised data requirement and the number of
training epochs, (3) applicability of fine-tuned model on different domain, and
(4) ability to jointly fine-tune for multiple domains. Based on the various exper-
iments and their results presented on benchmark SciEntsBank dataset and our
two psychology domain datasets, we make following key observations:

Table 3. Performance comparison of human agreements and the proposed method
on our two psychology (psych.) domain datasets. Accuracy (Acc), macro-average-F1
(M-F1), and weighted-average-F1 (W-F1) are reported in percentage.

Psych. domain 1 Psych. domain 2
Acc M-F1 W-F1 Acc M-F1 W-F1

Majority-vote vs. Human1 86.0 77.4 86.5 91.2 81.8 91.0
Majority-vote vs. Human2 89.4 81.1 89.6 88.9 80.9 89.1
Majority-vote vs. Human3 85.7 78.0 86.0 87.6 79.8 88.4
Proposed BERTBASE 91.8 85.7 91.8 91.0 82.2 91.0
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Effectiveness of Transfer Learning: As shown in Tables 2 and 3, on all the
datasets the fine-tuned model yields impressive results. On SciEntsBank dataset,
we establish state-of-the-art results. Compared to state-of-the-art, Saha et al.
[25], which includes sentence embeddings of InferSent [4] along with token fea-
tures, we report improvements ranging from 6% up to 10% in macro-average-F1.
Note that, unsupervised pre-training of BERT helps to leverage a huge amount
of existing natural language material. This puts the approach at an advantage
over techniques such as InferSent [4] that requires large supervised (and therefore
expensive and limited) corpus for pre-training.

Fig. 2. Macro-average-F1 scores with different size of training sets of two domains,
overlaid human performance. Evaluations are done on a held-out test set of 20%.

On our datasets, we obtain impressive macro-average-F1 of from 80% up to
85%, indicating the robustness of the model’s transferability to the target task
of short answer grading. On our datasets, we report human performance as
a baseline against which the model can be compared. As outlined earlier, each
student response is annotated by three experts. The variability in the annotation
enables us to establish a human performance baseline. Table 3 lists each human
annotation’s comparison against the majority vote (MV) in terms of accuracy
(Acc), macro-averaged-F1 (M-F1), and weighted-average-F1 (W-F1).

Effectiveness for Data-Starved Problems: Task-specific supervised fine-
tuning is possible with small number of samples. On SciEntsBanks dataset, the
training set includes ∼5K samples; which yields results better than task-specific
learning. To further study this property of the model, we design an experiment
to train the model with small portions of training data. Figure 2 shows the per-
formance in terms of macro-average-F1, when the training data is reduced from
80% of the whole set to mere 20%. Evaluation is done on a constant held-out test
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set consisting of 20% samples. Note the decrease in the slope as the training set
expands, suggesting diminishing returns as training data is added. The increase
in M-F1 is about 10% as the training set increases from 20% to 80%. For data-
starved problems, a rather generous trade-off can be made to obtain a reasonably
good performance with limited task-specific fine-tuning data. Interestingly, the
M-F1 with 40% training data is in same range as human performance (shown in
Table 3).

Effectiveness of Training Epoch on Fine-Tuning: We also performed
experiments for fine-tuning BERT with varying number of epochs. We observed
that fine-tuning for 4 and 12 epochs does not yield significantly different results
on macro-average-F1 (85.7 and 85.4 on domain 1, 82.2 and 83.7 on domain 2
respectively), indicating that task-specific transfer takes place within initial few
epochs only.

Table 4. Cross- and joint- domain fine-tuning. Accuracy (Acc), macro-average-F1 (M-
F1), and weighted-average-F1 (W-F1) are reported in percentage.

Training set Test set
Psych. domain 1 Psych. domain 2
Acc M-F1 W-F1 Acc M-F1 W-F1

40% of Psych. domain 1 88.0 79.7 88.1 76.4 51.1 75.5
40% of Psych. domain 2 72.4 48.2 70.0 90.1 79.1 90.0
40% each of domain 1 & 2 86.7 79.1 87.5 88.9 77.0 88.7

Effectiveness in Cross- and Joint- Domain Fine-Tuning: We further eval-
uated the fine-tuned model’s ability to generalize to unseen domains. Table 4
reports the performance of fine-tuned models on both domains. It shows that
the model fine-tuned using domain 1 yields very poor results on domain 2, and
vice versa. This suggests that domain specific supervised data is indeed required
for efficient fine-tuning. As a follow-up, we fine-tuned a model using a combined
set of both domain data; which yields results relatively similar to domain specific
tuning. It provides evidence that the model can be jointly fine-tuned for both
models.

5 Conclusion

This paper conclusively demonstrates that Transformer-based pre-trained mod-
els push the state-of-the-art in short answer grading to a level that may be
approaching the ceiling of what is possible. In comparison with human scorers,
the model learns the “wisdom of the crowd”, surpassing the performance of any
individual human scorer on our datasets. The amount of fine-tuning needed is
reasonable; even with just a few thousand labeled samples, we are able to get
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superior results. We also show that while applying a model fine-tuned on data
associated with one domain cannot directly apply to grading other domains, it
is possible to create a single model fine-tuned using data from multiple domains
that works for each of them. Going forward, we expect to investigate whether
adding an additional domain-specific text corpus to a pre-trained model improves
the ability to process language for that domain. We will continue to experiment
with ways to minimize the amount of fine-tuning (e.g., through characterization
of what types of labeled samples yield the highest marginal improvement during
fine-tuning, thus allowing for more efficient data collection for automated grad-
ing). Finally, work on model management, reuse of models, and devising efficient
methods to add new labeled samples to existing fine-tuned methods will be of
interest so that a model adapts over time.

Acknowledgements. We would like to thank Yoonsuck Choe (Texas A&M Univer-
sity) for helpful comments on an earlier version of this paper.
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