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Preface

The 20th International Conference on Artificial Intelligence in Education (AIED 2019)
was held during June 25–29, 2019, in Chicago, USA. AIED 2019 was the latest in a
longstanding series of now yearly international conferences for high-quality research in
intelligent systems and cognitive science for educational applications.

The theme for the AIED 2019 conference was “Education for All in the XXI
Century.” Inequity within and between countries continues to grow in the industrial
age. Education that enables new economic opportunities plays a central role in
addressing this problem. Support by intelligent information technologies have been
proposed as a key mechanism for improving learning processes and outcomes, but may
instead increase the digital divide if applied without reflection. The collective intelli-
gence of the AIED community was convened to discuss critical questions, such as what
the main barriers are to providing educational opportunities to underserved teachers
and learners, how AI and advanced technologies can help overcome these difficulties,
and how this work can be done ethically.

As in several previous years, the AIED 2019 events were co-located with a related
community, the Learning at Scale (L@S 2019) conference. Both conferences shared a
reception and a plenary invited talk by Candace Thille (Stanford University, USA).
Also, three distinguished speakers gave plenary invited talks illustrating prospective
directions for the field with an emphasis on accessibility, equity, and personalization:
Jutta Treviranus (Ontario College of Art and Design University, Canada); Nancy Law
(University of Hong Kong, SAR China); and Luis von Ahn (Carnegie Mellon
University, USA).

There were 177 submissions as full papers to AIED 2019, of which 45 were
accepted as long papers (ten pages) with oral presentation at the conference (for an
acceptance rate of 25%), and 43 were accepted as short papers (four pages) with poster
presentation at the conference. Of the 41 papers directly submitted as short papers, 15
were accepted. Apart from a few exceptions, each submission was reviewed by three
Program Committee (PC) members. In addition, submissions underwent a discussion
period (led by a leading reviewer) to ensure that all reviewers’ opinions would be
considered and leveraged to generate a group recommendation to the program chairs.
The program chairs checked the reviews and meta-reviews for quality and, where
necessary, requested for reviewers to elaborate their review more constructively. Final
decisions were made by carefully considering both meta-reviews (weighed more
heavily) scores and the discussions. Our goal was to conduct a fair process and
encourage substantive and constructive reviews without interfering with the reviewers’
judgment. We also took the constraints of the program into account, seeking to keep the
acceptance rate within the typical range for this conference.



Beyond paper presentations and keynotes, the conference also included:

– A Doctoral Consortium Track that provided doctoral students with the opportunity
to present their emerging and ongoing doctoral research at the conference and
receive invaluable feedback from the research community.

– An Interactive Events session during which AIED attendees could experience
first-hand new and emerging intelligent learning environments via interactive
demonstrations.

– An Industry and Innovation Track, intended to support connections between
industry (both for-profit and non-profit) and the research community.

The AIED 2019 conference also hosted ten half-day workshops with topics across a
broad spectrum of societal issues, such as: life-long learning; educational data mining;
multi-modal multi-channel data for self-regulated learning; ethics; informal learning;
human-centered AI products design; standardization opportunities; team tutoring;
intelligent textbooks and using AI to teach AI in K12 settings.

We especially wish to acknowledge the great efforts by our colleagues at DePaul
University for hosting this year’s conference.

Special thanks goes to Springer for sponsoring the AIED 2019 Best Paper Award
and the AIED 2019 Best Student Paper Award. We also want to acknowledge the
amazing work of the AIED 2019 Organizing Committee, the PC members, and the
reviewers (listed herein), who with their enthusiastic contributions gave us invaluable
support in putting this conference together.

May 2019 Seiji Isotani
Eva Millán
Amy Ogan

Peter Hastings
Bruce McLaren

Rose Luckin
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Abstracts of Keynotes



Learning to Learn Differently

Jutta Treviranus

OCAD University in Toronto, Canada
jtreviranus@ocadu.ca

Abstract. Our data-driven decision processes reduce diversity & complexity.
All data is about the past. This leads to bias against outliers, small minorities,
and novel changes. Most artificial intelligence amplifies and automates this
pattern. This leads to disparity and blind spots in education and research. How
can we design intelligence that recognizes, understands and works for diverse
learners and educators?



Human Development
and Augmented Intelligence

Nancy Law

The University of Hong-Kong, SAR China
nlaw@hku.hk

Abstract. Records of human civilizations date back to more than five millennia.
The history of human civilization is deeply intertwined with its history of
technological advancement. While humans are not alone in their ability to create
tools for augmented performance, humans are the only species that create and
use technology to connect minds over time and space. Hence human society has
been able to advance not only through evolution, but more importantly, through
learning. The twentieth century has brought a major technological breakthrough
in creating machines that learn, machines that provide humans with augmented
intelligence. Scientific investigations of human intelligence and human learning
have inspired and benefitted from technological advances in artificial intelli-
gence from the start of these efforts. Drawing on current studies on human
development in the digital age, this talk explores how human development may
be affected ontologically in the increasingly digitally connected and augmented
world that we are in, and its social implications, particularly for education.



Duolingo: Free Language Education
for the World

Luis von Ahn

Carnegie Mellon University, USA
biglou@cs.cmu.edu

Abstract. Duolingo is the free language education platform that has motivated
over 300 million people worldwide to learn a language. The platform’s
digital-native experience, intuitive design and data-based approach to optimizing
education has lead to its selection by Apple as iPhone App of the Year by
Google, as “Best of the Best Android App” 2 years in a row. Luis will talk about
the company’s trajectory and mission, the future of education, and the role of
computer science in optimizing the learning process in ways that were
previously impossible.
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Abstract. As well-known, structuring knowledge and digital content
has a tremendous potential to enhance meaningful learning. A straight-
forward approach is representing key concepts of the subject matter and
organizing them in a knowledge structure by means of semantic relations.
This results in hypergraphs with typed n-ary relationships, including the
so-called prerequisite or propaedeutic relations among concepts. While
extracting the whole concept graph from a textbook is our final goal,
the focus of this paper is the identification of the propaedeutic relations
among concepts. To this aim, we employ a method based on burst analy-
sis and co-occurrence which recognizes, by means of temporal reasoning,
prerequisite relations among concepts that share intense periods in the
text. The experimental evaluation shows promising results for the extrac-
tion of propaedeutic relations without the support of external knowledge.

Keywords: Relation extraction · Knowledge structure ·
Temporal reasoning

1 Introduction

Concept Maps (CM) are a way for representing key concepts of the subject mat-
ter and organizing them in a knowledge structure by means of semantic relations.
They can be used to automatically generate lesson plans [2] and evaluation tests
[37]. While several methods exist (e.g. [10,34]) to face the issue of automatic
concept extraction, the identification of prerequisite relations among concepts is
still an open research problem, even though there is a long-standing interest on
learning hierarchies since 1971 Gagné’s work [18].

In [1] we proposed an approach for prerequisite relation (PR relation, hence-
forth) extraction from an educational textbook, by combining two methods:
(1) using temporal ordering and co-occurrence of concepts, (2) using the struc-
ture of the textbook and the relevance of the terms. In this paper we propose
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an alternative approach to method 1: instead of using only co-occurrence of con-
cepts and temporal ordering, we propose the use of burst analysis [22] based on
co-occurrence and combined with temporal reasoning. Burst analysis has already
been used in text mining for summarization [31] and relation extraction [36]. It
is based on the idea that terms in a text have bursting intervals, i.e. portions of
text where they are particularly prominent. Relations between pairs of concepts
are derived by observing how pairs of burst intervals that belong to different
terms are positioned in the text flow.

Co-occurrence based methods are the core of many approaches for PR rela-
tion identification [20,24]. However, while co-occurrence is an intuitive condition
for PR, high co-occurrence is not necessarily a measure of PR strength, since it
could identify other types of relations, such as associations, taxonomic relations
and co-requisites among others.

For the experimental evaluation we compared our method for PR relation
extraction, based on burst analysis and co-occurrence, against a baseline method
based exclusively on co-occurrence. Therefore we asked domain experts to man-
ually annotate the relations automatically extracted by both methods and com-
pared the results. The experimental evaluation provides promising results in
terms of Accuracy of PR identification and Precision of top identified relations.
In particular, preliminary results suggest the effectiveness of burst analysis to
filter out relationships between concepts that co-occur frequently but are not
relevant for the educational purpose in terms of PR relations.

The main contribution of this paper to the literature is the improvement of
prerequisite extraction through an unsupervised and domain independent app-
roach, that exploits only the unstructured content of a digital textbook, i.e.
without using external resources such as Wikipedia links [32] or other knowl-
edge bases [29]. Notice that the algorithms and the prerequisite datasets (both
manually annotated and automatically generated) are available for use in future
research (teldh.dibris.unige.it/projects/).

2 Background and Related Work

Relationship extraction is a well-known task of Information Extraction. Its main
goal is to identify relations between entities in a document (see [12,30] for com-
prehensive surveys) in order to give a structured representation of the informa-
tion in the text. Many relationship types can be identified, such as temporal [26]
and lexical-semantic [9] only to name a few. We notice a growing interest towards
the analysis of scientific and educational content [5,17,19]. Pedagogical relations
are in fact of great interest in the AIED community for automatic construction
of ontologies and CM [14].

In this line of research [38] and, more recently, [33] retrieves relations exploit-
ing syntactic analysis of sentences in a text and use them to automatically build
CM. More similarly to our approach, [23,36] use burst analysis to recognize rela-
tionships between concepts and draw them as links in a CM. Contrary to us,
their methods extract all the possible relations between pairs of concepts, while
our effort is to identify specifically PR relations.

http://teldh.dibris.unige.it/projects/
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The PR relation is a dependency relation defining precedence between two
concepts tu and tv. From a cognitive perspective, it represents what a learner
must know/study (concept tu) before approaching concept tv. In CM a concept
is an atomic piece of knowledge of a domain. Contrary to [34], who used latent
semantic analysis, we address concept extraction from educational materials as
a task of terminology extraction (i.e. the most relevant terms of a document
are the domain concepts). By definition, the main properties of a PR relation
are the followings: (1) binary relation: it involves pairs of concepts; (2) anti-
reflexive relation: concept tu cannot be a prerequisite of itself; (3) transitive
relation: if tu ≺ tv and tv ≺ tz, than tu ≺ tz (see for instance the CM of Fig. 1:
browser ≺ HTTP and HTTP ≺ WWW, hence browser ≺ WWW ); (4) anti-
symmetric relation: if concept tu ≺ tv, than tv ≺ tu must not hold (in the map
below, network ≺ internet, so internet cannot be prerequisite of network). These
conditions imply that CM is acyclic.

Fig. 1. Small Concept Map.

Extracting PR from educational materials is a relatively new field of research.
Methods for PR extraction may rely on graph analysis [8,21], structured repre-
sentations of knowledge, such as Wikipedia [32] or other knowledge bases [29]
or, more similar to our approach, on linguistic information of textual documents
[20], often enriched with external knowledge [25,35]. In [27] the authors propose
two approaches based on feature extraction and machine learning to map courses
from different universities onto a space of concepts. Likewise, in [29] the authors
define various features and train a classifier that can identify PR relations from
video transcripts. Both methods use semantics and context based features. [19]
introduces a weak ontology driven approach: they extract lexical and seman-
tic features and apply machine learning techniques for detecting a PR between
learning objects. Contrary to them, we do not need an annotated dataset for
feature extraction, which makes our approach not only faster but also more
domain independent. Another popular approach is based on the RefD metric
[24], which measures the prerequisite relation between two concepts by comput-
ing how differently they refer to each other. This co-reference might be intended
as a co-occurence of terms in a window of textual context or as an explicit ref-
erence, like a citation. Contrary to RefD, that works well on medium-large sets
of documents, our approach works also on small data, like a book chapter. We
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perform PR extraction starting from the educational material where concepts
are described since a PR relation strictly depends on the writer’s communica-
tive intent and teaching style. As an example, consider top-down and bottom-up
approaches, both used in textbooks: the former tends to present a topic start-
ing from broad concepts and definitions, while the latter starts from examples.
Choosing one approach over the other influences the direction of the PR relation
in the text (i.e. from a general concept to a specific one, or vice versa). In other
cases, the relationship identification is made easier by the hierarchical lexical
relation between terms representing concepts: network and Local Area Network
not only share a PR relation, but also the lexical head. In the same way, non-
hierarchical lexical relations are useful to spot misleading prerequisite pairs, like
co-requisites, which are usually presented together for providing complementary
knowledge and have a non-hierarchical nature. To clarify, imagine a possible
description of the HTTP protocol: the client, who sends a request to a server,
is not a prerequisite of server, nor vice versa.

Notation. We define a document D as a textual resource. Concept extraction
returns a terminology T ∈ D with tu ∈ T , where tu is a domain-specific term.
Following [36], we define a burst interval B as a slice of sentences in D where
the occurrences of a term tu are denser than in other segments and Btu [i] is the
i-th bursting period of term tu. The final output of concepts and PR relations
extraction is a concept graph G represented, similarly to [35], as a set of triples in
the form G = {(tu, tv, p)|tu, tv ∈ T, p ≥ 0}, where p is a positive value indicating
the strength of the PR relation between tu and tv (tu prerequisite of tv).

3 Proposed Method

In this paper we propose a new approach for building the concept graph. As
mentioned above, co-occurrence is not always a satisfying measure of PR rela-
tion, since it often overestimates PR relations, including other kinds of relations
between terms that frequently co-occur. Moreover, deciding which concept plays
the role of prerequisite in a pair, by considering only their temporal order of
appearance in the text, may result in a PR relation with wrong direction, where
the prerequisite has been extracted as consequent and vice versa. Actually, con-
cepts in educational textbooks may appear with different scopes along the text
flow: first they might be just mentioned or introduced, then used inside their
definition and later recalled to explain some new information. Therefore, by
viewing the textbook as a stream of sentences, one could analyze these changes
and better understand how the relation between two concepts evolves in the
document.

Kleinberg formally defines and models the periods of an event along a time
series (e.g., a stream of documents such as e-mails or news articles) as a two
state automaton in which the event is in the first state if it has a low occurrence,
but then it moves to the second state if its occurrence rises above a certain
threshold, and eventually it goes back to the first state if its occurrence goes
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below the threshold [22]. These transitions are repeated along the entire dura-
tion of a time series and the periods in which the event remains in the second
state are called burst intervals. If applied to a single document rather than a
set, Kleinberg’s algorithm can be used to detect the bursting intervals of key-
words [23,36]. Intuitively, a rising of bursting activity associated with a concept
signals its appearance or re-appearance in the flow of the discourse, revealing
that certain features, mainly the frequency of the concept in that interval, are
sharply rising [22] and suggesting that the concept has become more prominent.
With the burst detection we gain not only the intervals in which a concept tu
is “bursty” (i.e., Btu [i]), but also the hierarchical level of “burstiness” of these
intervals. In fact, bursts associated with an event form a nested structure, with a
long burst of low intensity potentially containing several shorter bursts of higher
intensity inside it [22]. Moreover, the employ of burst analysis also allows us to
analyze different types of temporal patterns established by two concepts while
they are used in the text. Our interest in applying burst analysis largely arises
from the temporal nature of the PR relation: instead of using co-occurrence as
criterion for the extraction, we propose to extract burst intervals of the concepts
and then apply spatial-temporal reasoning on the extracted patterns in order to
identify PR relations. As a matter of fact, the comparison of temporal patterns
allows a richer analysis: by analyzing the pairs of intervals between two differ-
ent concepts tu and tv, we can exploit Allen’s interval algebra [3] to capture
and formalize their temporal relations. Among Allen’s basic relations, we used
only a subset of temporal patterns, for which we could recognize some meaning-
ful interpretation with respect to the PR relation. Consistently with our main
assumption of co-occurrence as a necessary (though not sufficient) condition for
a PR relation, all adopted patterns imply a co-occurrence of two terms within a
temporal window. Even the before relation, if detected by applying a maximum
gap between two intervals, entails co-occurrence. Our selection is shown in Fig. 2.
For simplicity, tu and tv are referred as X and Y , and BX [i] as BX,i.

Allen’s Relations. Contrary to [23,36], where combinations of burst intervals
were used for identifying generic relationships between concepts, we seek to rec-
ognize the PR relation. To this aim, we make the following assumptions in order
to give a prerequisite interpretation to Allen’s relations.

Fig. 2. Burst relations interpretation
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– BX,i equals BY,j . This pattern emphasizes the relatedness of two concepts
without necessarily implying the existence of a PR relation. In these cases,
some kind of relation between X and Y is highly probable, but we cannot
say whether X is a prerequisite of Y or vice versa. Moreover, this pattern
may not reveal a PR relation at all, since equal is very common when two
concepts are co-requisites. Consequently, we assume equal has a low potential
to reveal a prerequisite.

– BX,i before BY,j . Since a prerequisite commonly precedes its subsidiary con-
cept, in this pattern X could be probably a prerequisite of Y . We do not
consider pairs of bursts with a before pattern when their gap exceeds a cer-
tain number of sentences, since in such cases the two concepts are almost
certainly too far to establish a direct PR relation.

– BX,i overlaps BY,j . If concept X is prerequisite of Y , in the text we would
expect at least some cases where X is first explained and shortly after Y is
introduced, with a certain area of overlapping. Thus, this pattern is highly
informative for the existence of a PR relation.

– BX,i meets BY,j . Here the bursting period of concept X stops exactly when
concept Y begins to be more intense in the text. The two concepts are too
near to completely disregard the possibility of a PR relation, and yet, as
already mentioned, the proximity is not per se a sufficient condition for a PR
relation. Hence, we assume this pattern has a moderate force to suggest a
prerequisite.

– BX,i starts BY,j . The starts pattern can be representative of situations where
two concepts emerge almost simultaneously (most likely because they are
highly related), but then the author temporarily abandons one of the two
concepts while he further develops the other. According to this observation,
there is a moderate/high chance that X is prerequisite of Y .

– BX,i includes BY,j . This pattern shows a concept being discussed within
the span of a more long-standing concept, with the longer one that totally
encompasses the smaller one. The nested concept can be very likely a spec-
ification of the embedding concept at a more fine-grained level (and thus a
PR relation can be appropriately traced), or sometimes it could represent a
detour from the main line of discussion (and thus disclosing a learning content
that is suggested for a deeper analysis). For these reasons, includes is highly
informative.

– BX,i finishes BY,j . Compared to other patterns, here a PR between X and
Y is harder to assume, since BY,j ≺ BX,i. Nevertheless, a low weight should
be still considered to deal with cases of bottom-up explanations.

Algorithm Description. The algorithm is structured in three phases (the pseu-
docode is available at teldh.dibris.unige.it/projects/): a burst extraction phase
(ExtractBursts), a temporal pattern detection phase (DetectTemporalPatterns)
and a prerequisite extraction phase (ExtractPrereqs). The burst extraction phase
takes as inputs a document D containing the full text to analyze, a terminology T
consisting in a list of terms appearing in D and a set of parameters for construct-
ing the Markov’s chain according to Kleinberg’s description (the base s of the

http://teldh.dibris.unige.it/projects/
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exponential distribution used for modeling the event frequencies, the coefficient γ
for the transition costs between states, and the desidered level l within the hierar-
chy of the extracted intervals). D is transformed into an ordered list of sentences
by means of sentence splitting, and the result is QD = {q1, q2, ...., qi}, where qi
is the i-th sentence of D. A dictionary O is built for mapping each concept in
T with the indexes of sentences where it occurs. Burst intervals are identified
for every concept t given its list Otu of sentence indexes, e.g. the burst intervals
of tu are: Btu = {[bstarts1 − bends1 ], [bstarts2 − bends2 ], ..., [bstartsi − bendsi ]}. The
function kleinberg(O[t], s, γ, l) involves the construction of an infinite hidden
Markov model as described in [22]. For this particular procedure we relied on
an implementation of Kleinberg’s algorithm available for Python1 that needs
to be fed with O[t]. In addition, two parameters, s and γ, need to be set in
advance: the former controls the exponential distribution from which an event is
assumed to be drawn (i.e., how frequent an event must be in order to trigger the
detection of a burst); the latter modifies the transition cost to a higher state.
Higher values of s increase the strictness of the algorithm’s criterion for how
dramatic an increase of activity has to be in order to be considered as a burst;
higher values of γ mean that a burst must be sustained over longer periods of
time in order to be recognized [6]. During the tuning of these parameters we opt
for minimal permitted values (s = 1.05, γ = 0.0001) with the aim of maximizing
the extraction of bursting intervals. In the phase DetectTemporalPatterns, every
pair of bursts Btu [i] and Btv [j] (belonging to two distinct concepts tu and tv) are
compared, and temporal relations are identified by performing pattern matching.
A weight Wr is therefore assigned to the identified Allen’s relation r, according
to the considerations described in Section Allen’s relations. Similarly to [23], we
also follow the idea that adding a tolerance gap is necessary in this stage. As a
matter of fact, by considering only the exact starting/ending/meeting point of
two bursts, we can hardly find a complete match, while by adding a tolerance
gap the method becomes more permissive during the identification of temporal
patterns. The result of the current phase is a square matrix P of size |B| × |B|,
where |B| is the total number of extracted bursts, reporting a weight for each pair
of bursts as resulted from the pattern matching procedure (the weight is zero
only for bursts pairs with a distant before relation and for bursts pairs belonging
to the same concept). In the PR extraction phase, the matrix obtained from the
previous step is taken as a basis for constructing an undirected square matrix M
of size |T | × |T |: for each two distinct concepts tu and tv, all the weights associ-
ated to the burst pairs belonging to tu and tv are combined and normalized by
means of the PR formula below, i.e. a modified version of the normalized relation
weight (NRW) formula described in [23]. The resulting weight is stored both in
Mtu,tv and Mtv,tu . Given X,Y ∈ T and X �= Y , we compute PRX,Y as the sum
of the relation weights Wr assigned to the recognized Allen’s patterns, then we
normalize this value by taking into account the frequency f of X and Y in their
respective intervals BX,i and BY,j , the total length (measured in sentences) of

1 Library pybursts, https://pypi.org/project/pybursts/0.1.1/.

https://pypi.org/project/pybursts/0.1.1/
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all bursts of X and Y , and also the number of these bursts2. M is therefore
converted into a direct matrix, and the direction is given by comparing the first
bursts of the concepts in the pair. A directed graph G, with concepts as nodes
and PR relations as edges, can be finally built from M.

PRX,Y =
∑

i

(
Wr

f(X,BX,i) × |BX|∑
i |BX,i|

∑
j∈ rel (BY,j ,BX,i)

f(Y,BY,j) × |BY|
∑

j |BY,j |

)

4 Experimental Evaluation

Goal. The method we proposed for PR relation identification is based on the
assumption that co-occurrence of concepts is likely a condition for the existence
of PR relation between two concepts. In general, high co-occurence frequency is
a good indicator of relations (as shown in previous works [11,24]), thus it can
also underpin other kinds of relations besides PR. The goal of our evaluation is
to investigate the following two hypotheses: (HP1) burst analysis, as in our pro-
posed method, could perform better than methods based only on co-occurrence
frequency, reducing false positive and false negative PR relations; (HP2) burst-
based method for PR identification could reduce false positive PR relations when
two high co-occurring concepts are related by a relation that is not PR.

Methodology. We tested our Burst-based method on a chapter of a computer
science textbook, “Computer Science: An Overview” [7]. The output of the algo-
rithm is compared against a method based on co-occurrence of terms in a win-
dow of context. Both methods are manually evaluated and compared by domain
experts. In the following we call such methods respectively Burst-based method
(BM) and Frequency-based method (FM). To test HP1, we computed the Accu-
racy [28] of BM and FM on a set of 150 randomly selected relations from the
results of BM and FM. To test HP2, we computed the Precision [28] of the Top
150 PR relations returned by the algorithms and therefore analyzed the types
of error. Details are in the following.

Corpus and Concept Extraction. For the evaluation we used Sect. 4 “Net-
working and the Internet” of the above mentioned textbook [7] (20,378 tokens,
distributed over 751 sentences). Concept extraction is addressed by relying on
Text-To-Knowledge platform [13]. The extracted terminology contained both
single nominal structures (e.g. computer) and complex nominal structures with
modifiers (e.g. hypertext transfer protocol). The set of extracted terms was manu-
ally revised by three experts and missing terms were added. The final terminology
consists of 125 terms, for a total of 15,500 pairs of distinct terms (representing
the candidate PRs), excluding symmetric pairs.

2 Note that the current formula takes into account all the relations where an Allen’s
pattern is recognized, while we are working on an improved version that limits them
to relations where the subsidiary concept exhibits high burstiness.
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PR Relation Extraction. We ran the burst algorithm as described above,
assigning Wr weights to burst relations (according to the assumptions discussed
in Sect. 3) on a 10pt scale, and thus we obtained a direct matrix. On the other
hand, the FM method computes how many times two terms of the terminology
appear together in a three sentences span (i.e. the one where a term appears,
the preceding and the following). The output of FM is a direct matrix as well:
values represent co-occurrence frequencies of each term pairs and the direction
is given by the order of first occurrence of the terms.

Experts’ Annotation. In order to evaluate HP1 and HP2, we asked domain
experts to annotate the extracted pairs of concepts, in line with [15,20,24,25].
For the first hypothesis (HP1), we created a sample by randomly selecting,
for each method, 150 pairs of concepts using the following criteria: (1) 50 pairs
identified by the method as having PR relationship, (2) 50 pairs identified by
the method as not having PR relation, (3) 50 pairs (among those not selected for
the other partitions) regardless of whether they have been identified with a PR
relation or not. The third set was done to make the sample more homogeneous
with respect to the algorithms’ outputs, which are significantly unbalanced (i.e.
only 5.11% of the pairs obtained a PR label for the BM method and 4.07% for
the FM method). To evaluate the second hypothesis (HP2), we selected the Top
150 relations returned by each method, ordered according to their weight.

In both cases (HP1 and HP2 evaluations), two domain experts were asked
to annotate the pairs in the two samples, assigning what they believed to be
the correct label for that pair. The guidelines for evaluation explicitly dictated
to read the textbook and assign labels based on how concepts are addressed in
the text. Moreover, a third expert was asked to analyze cases of disagreement
between annotators in order to check if disagreement was due to annotators’ sub-
jectivity or to annotation errors (e.g., distraction, misinterpretation of guidelines
or misinterpretation of the text). The risk of errors is well-known in the literature
as well as the disagreement due to annotators’ subjectivity [4,15,16].

4.1 Results and Discussion

In order to test HP1 (i.e. if our BM method could produce less false positives and
false negatives compared to co-occurrence-only based methods), we computed
the Accuracy, as defined in [28], of BM and FM. To this aim, we compared
the output of the algorithms for the 150 randomly selected pairs of concepts
against each expert’s annotation, and then we took their average score. Notice
that in this evaluation our aim was to assess the correctness of the PR relation
identification, not its strength. Results in Fig. 3 show that BM Accuracy is 0.84,
slightly outperforming FM, whose Accuracy is 0.77.

Considering HP2 (i.e. BM could reduce false positives in cases of frequently
co-occurring concepts connected by a relation that is not a PR relation), we took
into account the Top 150 relations returned by each method. Obviously, for the
FM method such relations are those whose concept pairs have the highest co-
occurrence frequency. First of all, we computed Precision (as defined in [28]) of



10 G. Adorni et al.

both methods against the experts’ annotations. As displayed in Fig. 3, Precision
of BM outperforms FM with a decreasing trend, suggesting that BM method
works better especially in cases of high co-occurrence frequency. To deepen this
analysis, we also performed a qualitative analysis on the error types occurring
in the top 85 relations (as shown in the chart, at point 85 we have the minimum
distance between BM and FM Precision). The third expert was asked to classify
the errors as: (a) very distant relation, (b) relation different from PR, (c) inverse
relation, (d) no relation. As can be seen in Fig. 3, relations different from PR are
12% with BM method and 41% with FM method, confirming that BM method
allows to reduce the identification of non-PR relations between high co-occurring
concepts. These preliminary results seem promising if we also consider that, by
tuning the weights of Burst relations, we could further improve the outcomes.

Fig. 3. Results: (a) Accuracy, (b) Precision top 150 PR, (c) Errors top 85 PR

5 Conclusion and Limits

In this paper we presented a new method based on Burst analysis, co-occurrence,
and temporal reasoning for PR relation extraction from educational materials.
Contrary to most approaches for prerequisite extraction, we developed an unsu-
pervised method able to extract knowledge from unstructured text, without
exploiting external structured knowledge and with light need of training. This
represents our main contribution to the literature, with the goal to provide a
method that is not heavily domain-dependent and not complex to be applied.

Current results in terms of Accuracy and Precision are encouraging, even
though further evaluations are needed to draw conclusions. In this respect, our
future work includes refining the PR formula, applying the method to different
domains and types of resources, and evaluating it on larger corpora.

Moreover, we are confident that a major improvement of the BM method
can be obtained by taking into account more complex patterns and not only
making one-by-one comparisons of pairs of intervals. By taking benefit from this
knowledge we could enhance the method with a much deeper analysis of how
the relation between two concepts evolves across time.

Further research directions are analyzing and interpreting the annotators
agreement and improving the burst-based algorithm with machine learning
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methods: starting from [4], we are collecting a gold dataset of educational
resources annotated with PR relations that can be used to tune the weights
of the temporal patterns.
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Abstract. A key promise of adaptive collaborative learning support is
the ability to improve learning outcomes by providing individual students
with the help they need to collaborate more effectively. These systems
have focused on a single platform. However, recent technology-supported
collaborative learning platforms allow students to collaborate in different
contexts: computer-supported classroom environments, network based
online learning environments, or virtual learning environments with ped-
agogical agents. Our goal is to better understand how students partic-
ipate in collaborative behaviors across platforms, focusing on a specific
type of collaboration - help-giving. We conducted a classroom study (N
= 20) to understand how students engage in help-giving across two plat-
forms: an interactive digital learning environment and an online Q&A
community. The results indicate that help-giving behavior across the two
platforms is mostly influenced by the context rather than by individual
differences. We discuss the implications of the results and suggest design
recommendations for developing an adaptive collaborative learning sup-
port system that promotes learning and transfer.

Keywords: Adaptive collaborative learning support ·
Intelligent collaborative support · Help-giving-behavior ·
Motivation

1 Introduction

Adaptive collaborative learning support (ACLS) provides intelligent support to
enhance collaborating students’ learning outcomes [10]. There are many ACLS
systems that have been applied in different contexts, from face-to-face classroom
environments [1,8,19] to online learning [6]. For example, [6] designed adaptive
support in the form of strategic prompts (e.g., request an explanation, offer
c© Springer Nature Switzerland AG 2019
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assistance, encourage collaboration) to provide a structured and extended dis-
cussion in an online collaborative learning environment. [19] developed a system
to support help-giving in a classroom peer tutoring context by providing timely
and appropriate help. While these technologies show promise, they focus on sup-
porting students within a single activity in a given context, and do not take into
account that students are often collaborating across multiple educational plat-
forms. We build on this prior work to design a cross-platform ACLS to support
student collaborative activity across multiple platforms and improve learning.

Designing ACLS for multiple platforms is important because of the need
to understand how students’ interactions and skills transfer across different
contexts. First, students might behave differently on different platforms, and
focusing interaction within a single context limits the potential effectiveness
of the ACLS. Student behavior in a synchronous collaborative learning envi-
ronment (e.g., text-based communication) might be different than in an asyn-
chronous collaborative learning environment (e.g., online threaded discussion).
For example, [4] assessed graduate student participation in a synchronous chat
and asynchronous threaded discussion environment, and reported more respond-
ing and reacting statements in the synchronous environment compared to the
asynchronous one. [12] explored the social and cognitive presence of graduate
students in a synchronous and a asynchronous tool within the same online envi-
ronment. In this work, we are interested specifically in the quality of collaborative
support within a learning activity distributed across multiple platforms. Second,
as students learn how to collaboratively construct knowledge on one platform,
they will hopefully transfer these skills to a second platform. Their collabora-
tive activity could be informed by one platform to the other. So, facilitating
the transfer of skills using ACLS might ultimately enhance students’ collabora-
tive learning abilities beyond a single context. However, one of the challenges
in supporting collaboration is modeling the collaborative behaviors of students
[19]. For multiple platforms, our first research question is: How do individ-
ual students’ collaborative interactions vary across different learning
platforms?

In this paper, we examine student help-giving behavior in a mathematics
classroom. Help-giving is defined as an activity where students interact with
their peers, give explanations to one another, and provide feedback and examples
[20]. While doing this, students clarify, elaborate, articulate their own under-
standing, justify their reasoning, and organize concepts to explain their idea
[16,21]. These behaviors contribute to the co-construction of knowledge, which
help students learn and transfer their knowledge in multiple contexts. To sup-
port student collaborations across multiple contexts, we need to understand their
patterns of collaborative interactions. As student collaborates with each other,
their motivation in help-giving can affect their participation during collabora-
tion. Thus our second research question is: How does student collaborative
behavior across different platforms predict learning and motivation?
Here, we explore motivation in the context of expectancy-value theory [22]. Both
expectancy (whether an individual expects to be able to perform a task) and
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value are essential motivational factors that might help us to understand student
help-giving behaviors and design ACLS systems for multiple platforms.

In addition to the influence of different learning environments, students’ col-
laborative help-giving behaviors can also be influenced by their motivations.
Much work in CSCL has analyzed the influence of motivation on students’ con-
tributions to online discussions, learning activities, and knowledge acquisition
during classroom collaboration [15,17,24]. We considered both student attitude
towards mathematics (ATM) and self-efficacy (SE) as motivational factors in
this paper. Self-efficacy, a concept developed by Bandura [2], refers to a students’
beliefs about their capacity to accomplish certain tasks which affect human moti-
vation, efforts, persistence, and achievement. Attitude refers to student beliefs
whether a “task is important, enjoyable, or difficult” [9]. Both ATM and self-
efficacy play an important role in how students learn mathematics. To support
a student with a cross-platform ACLS, we need to explore how these individual
motivational differences influence student interaction across different educational
platforms. Our third research question is: How do individual differences pre-
dict student interactions across multiple platforms?

The purpose of this study is to develop an understanding of students’ collab-
orative interactions in a middle school mathematics classroom where students
have different collaborators and use different learning environments. In order
to explore the concept of a cross-platform ACLS, we have chosen two plat-
forms: (1) Modelbook, an interactive digital textbook, and (2) Khan Academy,
an online question answering platform. Modelbook allows synchronous commu-
nication through different tools promoting collaboration mainly in the form of
discussion and text-based chat. On the other hand, in Khan Academy students
participate in a collaborative activity through answering questions. We investi-
gate our research questions within the context of these two platforms.

2 System Description

Our learning environment leverages a 5-day curriculum which we co-designed
with an expert consultant fluent in Modeling pedagogy, a type of instructional
pedagogy where students collaborate in small groups to answer a problem [7].
The curriculum focused on a ratio and proportions unit in middle school mathe-
matics, including the topics of proportional relationships, lines, and linear equa-
tions. On Day 1, students were asked to devise a method for mixing blue and red
paint in the perfect ratio to create purple. On Day 2, students iterated on their
models and discussed the definition of a proportion, and then on Day 3 students
looked at other examples of proportions. In Days 4 and 5, students received
hands on experience applying their understanding of ratios and proportions to
modeling the speed of a moving car. Following modeling pedagogy, on each day
students alternated between individual problem-solving, small-group activities,
and whole class discussions, creating multiple opportunities for collaboration.

Modelbook incorporates several components to facilitate student interaction.
For example, once students have completed their small-group activities, the
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teacher asked students to upload photos of their work to a gallery. The students
discussed each image, providing feedback to others (see Fig. 1 left). Modelbook
also has a chat feature where students can engage in general discussion. With
the guidance of the teacher, students were encouraged to perform help-giving
interactions in the gallery and general chat.

Fig. 1. Left: Gallery image thread with student discussion, Right: Khan Academy
discussion thread

ModelBook was built using the Django web framework. The front end of the
application is implemented using HTML, jQuery, and CSS. Templates within
Django contain the static parts of the desired HTML output as well as provision
for inserting dynamic content. For each tool in Modelbook, there are icons on
the left hand of the application, which, when clicked, triggers a jQuery event to
dynamically load related interface on the right-hand side of the application. All
discussion threads were implemented using the “Pusher” service - a hosted API
for quickly, easily and securely adding a real-time bi-directional connection. We
have used the default SQLite database that accompanies the Django framework.
All user activity (e.g., uploaded images, messages) is stored in the database.

The other collaborative platform used is Khan Academy. While most known
for its instructional videos, Khan Academy allows asynchronous collaboration
with geographically distributed learners in a question and answer environment
under each video (www.khanacademy.org). For our curriculum, students posted
responses to Khan Academy questions four times over the 5-day period. To facil-
itate this activity, students were given a homework sheet that included instruc-
tions to watch a related Khan Academy video, and were asked to look for two
questions posted by other people and provide a response. Students’ responses
were then discussed in class the following day, and they were encouraged to post
in class if they had not done their homework. An example of student participa-
tion in Khan Academy is shown in Fig. 1 (right).

www.khanacademy.org
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3 Method

We conducted a five-day design study to explore how student interactions differed
between ModelBook and Khan Academy, whether individual characteristics pre-
dicted how they interacted, and whether their interactions on the two platforms
predicted their learning outcomes.

3.1 Participants

We conducted the study at a middle school in the southwestern United States
with a minority enrollment of 47%. The study was conducted as part of regular
classroom practice in an eighth-grade mathematics class with a class of 28 stu-
dents. We received parental permission for 20 students and thus excluded the
other 8 from the analysis. Student ages ranged from 12–14; there were 11 boys,
8 girls, and 1 student who selected “Other” on the question. Participant self-
reported ethnicity was as follows: Hispanic (10), White (3), African American
(2), Native American (1), Asian (1), and Other (3).

Of the 20 students who consented to participate in the study, only 16 students
participated in all elements of the study: two students incorrectly filled out the
motivation questionnaire (i.e., selected multiple items), one student was absent
for the pre-survey, and one student did not post on Khan Academy. Thus, the
final data analysis was done with 16 students.

3.2 Procedure

Domain pretests and a motivation survey were given to students on the Friday
before the intervention week. Over the five days of the intervention, students fol-
lowed the curriculum and engaged in multiple types of activities and interactions,
such as: receiving direct instruction from the facilitator, working in small groups
of two or three, participating in classroom discussions, completing Modelbook
activities, and answering questions on Khan Academy (both in class and for
homework). While the classroom teacher was present for each day of the study,
the activities were facilitated by one of the authors who was a former teacher
and was also our expert consultant in modeling curriculum. On the Wednes-
day following the five intervention days, students took a domain posttest and a
motivation post-survey.

3.3 Measures

Domain Assessment. The pretest and posttest consisted of two isomorphic forms
designed to assess students’ ability to solve proportional and ratio problems and
relevant proportional definitions. It was based on district benchmarks and co-
designed with the expert consultant. Each test form included 12 items, with
eleven items assessing students’ mastery of the domain concepts, and one item
asking students to provide an explanation. Forms were counterbalanced across
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participants (i.e., half the participants received form A for the pretest and B for
the posttest, and half received form B for the pretest and A for the posttest).
After giving the tests in the study, we noticed that a multi-part question (con-
sisting of 3 items) on Form B was unclear to students and resulted in a dispro-
portionate number of incorrect responses. We excluded that question from the
test analysis, along with the corresponding question on Form A. Thus, a total
of 8 items were summed to assess student domain learning, with 1 item used to
assess student explanatory skill.

Motivation Pre-measure. We surveyed students about their attitudes towards
math and mathematical self-efficacy. The instrument consisted of 22 five-level
Likert-type items. Value and enjoyment of mathematics were assessed using a
portion of the Attitudes Towards Math Scale [18], modified by reversing some
items to balance positive and negative statements. To examine students’ mathe-
matics self-efficacy, we adapted items from the Motivated Strategies for Learning
Questionnaire (MSLQ) [5,14]. The MSLQ scale is generic, so we modified the
items to be specific to mathematics. An example item is, “I believe I will receive
an excellent grade in math class.”

Motivation Post-measure. The post-intervention motivation scale consisted of
15 questions based on Expectancy-Value Theory, with 5 equivalent questions
for each platform (ModelBook, Khan Academy, and face-to-face interaction).
We wanted to assess whether students perceptions of the tasks differed between
platforms and varied based on their experiences during the intervention. The
scale was modified from [3] to reflect students’ motivation towards help-giving
in math. Two example items are: “I’m certain I can make others understand the
most difficult material presented in the question” (expectancy), and, “I enjoy
helping others with their math questions” (value).

Coding of Interactions. We coded the digital interaction data using a coding
scheme based on [21] with the following dimensions: (1) Level of Relevance to
the content (LOR), (2) Level of Elaboration (LOE), and (3) Social factors (S).
LOR was coded using three categories: General (information on the content but
not enough to call it a explanation; e.g., “I agree because my board also was not
an exact pattern.”), Specific (information specific to the content; e.g., “I think
the unit rate is not 2/3 but it is 2:3”), Offtopic (irrelevant to the domain content).
LOE coded for on-topic (general & specific) utterances has two categories: Non-
Elaborated (answer without example or explanation; e.g., “I agree our car also
did not go in a straight line.”) and Elaborated (answer with example, proper
explanation with reasoning and justification; e.g., “if we have 2 cups+3 cups that
would = five but we need 20 cups”). Finally, we classified an utterance as social
if it had at least one of the following four factors: praise (“the graph is good”),
apologetic (“No offense but this makes no sense to me, sorry.”), polite (“Thank
you”), and encouragement (“Just do your best”). A second rater independently
coded 17% of the dialogues with LOE (kappa = .805), LOR (kappa = .954) and
Social (kappa = 1.0). Disagreements were resolved through discussion.
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4 Results

For the analysis, we computed both the total numbers of each code dimension
as well as student-level percentages with respect to the total utterances for each
dimension. Table 1 shows the means and standard deviations for N = 16 for
Modelbook (MB) and Khan Academy (KA):

Table 1. M and SD for each coding category

LOE LOR

Non-Elaborated Elaborated General Specific Offtopic

Platform M SD M SD M SD M SD M SD

MB 8.5 4.89 1.06 1.237 5.81 4.490 3.75 3.0 1.375 2.156

KA 2.438 1.364 0.81 1.223 0.25 0.683 3.0 1.155 0 0

1. How does student interaction differ between Modelbook and Khan
Academy?

Table 2 shows mean percentages and standard deviations of categories elab-
orated, specific, and social utterances for both Modelbook and Khan Academy
with respect to the total utterances for each dimension (i.e., LOE, LOR, and S).

Table 2. M and SD for distinct types of utterances

Modelbook Khan Academy

M SD M SD

Elaborated 10.7 12.5 22.9 34.2

Specific 44.0 26.7 92.7 20.2

Social 21.9 18.2 0 0

To investigate differences in interaction between platforms, a repeated mea-
sures MANOVA was conducted with percent elaborated, percent specific, and
percent social as dependent variables, and platform (Modelbook or Khan
Academy) as an independent variable. The overall model was significant,
F (3, 13) = 32.136, p < .001. Univariate tests revealed that while percent elab-
orated was not significantly different between conditions [F (1, 15) = 2.480,
p = .136], percent specific was [F (1, 15) = 45.226, p < .001], as was percent
social [F (1, 15) = 23.122, p < .001]. It should be noted that interaction on Khan
Academy followed a fairly uniform pattern, with nearly all on-topic utterances
being specific, and no utterances being social.

As students gave both elaborated help and specific help in Modelbook and
Khan Academy, we computed correlations between elaborated help across both
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platforms and specific help across both platforms. Elaborated help in Modelbook
was not significantly correlated with elaborated help in Khan Academy [r(16) =
0.433, p = 0.094]; and specific help in Modelbook was not significantly correlated
with specific help in KA [r(16) = 0.261, p = 0.328]. Interestingly, specific help in
Modelbook was correlated with elaborated help in Khan Academy [r(16) =.746,
p = .001]. This analysis demonstrates that not only was interaction different in
general across the different platforms, but for each individual student, interaction
on one platform did not predict their interaction on another platform.

Table 3. M and SD for post-motivational measure on help-giving behavior

Modelbook Khan Academy

M SD M SD

Self-efficacy 3.25 1.065 2.88 1.147

Importance 3.50 1.095 3.38 1.408

Interest 3.19 .911 3.13 1.147

Utility 3.62 .957 3.38 1.025

Cost 3.75 .931 3.44 1.031

While behaviors were different across the different platforms, perceptions
of students’ own interactions in the platforms were not. A repeated measures
MANOVA was conducted with each of the motivational post-measures (self-
efficacy, importance, interest, utility, and cost) as the dependent variables and
platform (Modelbook or Khan Academy) as an independent variable. The over-
all model was not significant [F (5, 11) = 1.082, p = .422] and there were no
significant univariate effects. Table 3 summarizes the result.

2. How does help-giving behavior predict learning and motivation?
Table 4 shows means and standard deviations of the pre-test and post-test

scores. We conducted a repeated-measures ANOVA and found that learning was
not significantly different from pretest to posttest. Despite the overall lack of
learning gains, we still look at predictors that may contribute to learning for
individuals.

Table 4. M and SD for domain assessment and pre-motivational measures

Measures Pretest Posttest Self-efficacy Value Enjoyment

M 4.563 4.687 2.742 3.312 2.617

SD 1.4127 1.4477 .8773 .7288 .975

We did a stepwise multiple regression analysis with percent elaborated in
both Modelbook and Khan Academy, percent specific in both Modelbook and
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Khan Academy, percent social in Modelbook, pre self-efficacy, attitude towards
math score, and pre-test score as predictor variables, with post-test score as
the dependent variable. The model that emerged from the stepwise analysis
contained only percent elaborated in Modelbook (β = 0.584; p = 0.003) and
pretest score (β = .488; p = 0.010) as significant predictors, together explaining
67% of the total variance (Adjusted R-square = 0.619; F (2, 13) = 13.181; p =
0.001). Thus, the only behavioral variable that predicted posttest score was the
level of elaborated help in Modelbook.

3. How does motivation and prior domain knowledge predict student
help-giving behavior across the two platforms?

Table 4 shows the means and standard deviations of the pre-motivational
measures: math self-efficacy, value, and enjoyment. To determine how motivation
and prior knowledge predicts student help-giving behaviors, we conducted two
multivariate regressions. The first analysis was done for Modelbook behaviors.
We used percent elaborated, percent specific and social as dependent variables
with pre-test score, average self-efficacy, and average attitude towards math score
as predictors. No significant model emerged from it. Univariate tests also did not
show any significant results; F (3, 10) = .471, p = .709, for pre-test score; F (3,
10) = 1.046, p = .414 for average pre self-efficacy, and F (3, 10) = 1.007, p
= .430 for average attitude towards math score. Multivariate analysis done for
Khan Academy behaviors with percent elaborated, percent specific as dependent
variables with pre-test score, average self-efficacy, and average attitude towards
math score as predictors also demonstrated similar result. Univariate tests didn’t
show any significant results; F (2, 11) = .618, p = .557, for pre-test score; F (2,
11) = .596, p = .568 for average pre self-efficacy, and F (2, 11) = .286, p =
.756 for average attitude towards math score. Students’ motivation prior to the
intervention did not have an effect on their behaviors during the intervention.

5 Discussion and Conclusion

To design adaptive support for collaboration, student activity history in the col-
laboration contexts and current engagement in collaborative activities are essen-
tial [13]. In this paper, we examined whether student interactions differed across
different technological platforms, how their interactions predicted learning and
motivation, and how their interactions were informed by their individual charac-
teristics. We found that students displayed better help-giving behavior in Khan
Academy compared to Modelbook, but only help-giving behaviors in Modelbook
predicted student learning. Individual characteristics like prior knowledge and
math motivation did not predict how students gave help.

One interesting finding from this work was that while students gave more
high-quality help in Khan Academy than in Modelbook, only the elaborated help
in Modelbook was predictive of student posttest scores (controlling for pretest).
The affordances of Khan Academy (asynchronous communication with an exter-
nal community) may have led students to take more time to formulate their
response [23], leading to more specific help and more elaborated help. In contrast,
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Modelbook represented synchronous, informal communication with peers, lead-
ing to overall less high-quality help but more social behaviors (which have shown
in other work to be beneficial for learning [11]). In Khan Academy, because of
the increased pressure of asynchronous public posts, students may have engaged
in knowledge-telling behaviors [16], where they gave help on concepts they had
already mastered. This may have led to less learning than their more off-the-
cuff interactions in Modelbook, which may have represented knowledge-building,
where they construct their knowledge as they are constructing their explana-
tions. One implication of this finding for the design of adaptive support is that
to improve outcomes from help-giving, it may be sufficient to encourage more
elaborated help in Modelbook. However, in Khan Academy, it may be necessary
to directly scaffold students in constructing the elaborated help so that they
engage in reflective knowledge-building behaviors.

Another critical element of our results is that while context dictated how stu-
dents gave help, individual differences did not. Students’ help-giving behavior
was more elaborate and specific in Khan Academy compared to their behavior
in Modelbook, and for individual students, these behaviors were not correlated
with each other. This indicates that student behavior in one platform does not
inform how they will behave in another platform; rather, the different platforms
influenced how students will help each other. Additional support for this finding
is provided by the fact that neither prior knowledge, math self-efficacy, nor atti-
tude towards math predicted how students gave help in either platform. This
finding implies that a model of student help-giving on one platform is unlikely
to generalize to the same student’s help-giving behaviors on a different platform,
and context thus needs to be part of any knowledge-tracing model of help-giving.

This study has a number of limitations. First, the sample size was small.
Second, the number of interactions was greater in Modelbook compared to Khan
Academy due to the design of the curriculum. To adapt to this limitation, we used
student-level percentages to compute the results rather than absolute counts of
student interactions. Third, students did not learn as a whole from pretest to
posttest, possibly because the intervention time was too short or our assessment
wasn’t sensitive enough to detect changes in student knowledge.

Nevertheless, the present research has important implications for computer-
supported collaborative learning and ACLS. Students’ interactions in different
platforms can be used to design individualized support that facilitates productive
communication across collaborative learning environments. This goal will require
a cross-platform student interaction model along with a domain knowledge model
and motivation model for each student. Investigation is required to understand
how to make predictions about student behavior within a single platform using
this cross-platform interaction model, whether and how to encourage students
to participate in platforms they are less comfortable with, whether and how
to encourage students to transfer their skills from one platform to a different
platform, and whether and how the same student should be given different kinds
of support on different platforms.
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In this paper, we examined students’ help-giving behavior across Modelbook
and Khan Academy. This paper takes a step towards establishing the need for
understanding cross-platform collaborative behavior, and based on our findings,
we are currently building a cross-platform help-giving model. We believe this
approach will ultimately enhance peer collaboration as students move between
platforms of interaction.
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Abstract. Predicting academic performance requires utilization of stu-
dent related data and the accurate identification of the key issues regard-
ing such data can enhance the prediction process. In this paper, we pro-
posed a bootstrapped resampling approach for predicting the academic
performance of university students using probabilistic modeling taking
into consideration the bias issue of educational datasets. We include in
this investigation students’ data at admission level, Year 1 and Year
2, respectively. For the purpose of modeling academic performance, we
first address the imbalanced time series of educational datasets with
a resampling method using bootstrap aggregating (bagging). We then
ascertain the Bayesian network structure from the resampled dataset
to compare the efficiency of our proposed approach with the original
data approach. Hence, one interesting outcome was that of learning and
testing the Bayesian model from the bootstrapped time series data. The
prediction results were improved dramatically, especially for the minority
class, which was for identifying the high risk of failing students.

Keywords: Performance prediction · Bayesian networks ·
Resampling · Bootstrapping · EDM

1 Introduction

According to the Higher Education Statistics Agency (HESA) in the UK [1],
the drop-out rate among undergraduate students has increased in the last three
years. The statistics published by the HESA reveal that a total of 26,000 stu-
dents in England in 2015 dropped out from their enrolled academic programmes
after their first year. Also, the statistics show that the higher education (HE)
qualifications obtained by students for all levels, including undergraduate and
postgraduate levels, decreased from 788,355 in 2012/13 to 757,300 in 2016/17.
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The growing availability of such reports provides new opportunities to educa-
tional researchers. A large body of research has investigated the issues associated
with students’ learning and academic performance. For instance, educational
data mining (EDM) researchers have attempted to analyse and evaluate student
data to enhance their education and provide solutions to failure issues using the
state-of-the-art Artificial Intelligence (AI) methods.

Predicting student performance is a major area of interest within the field
of EDM in terms of ascertaining accurately what, as yet, unknown knowledge
regarding this performance, such as final grades [2], will transpire to be. However,
it is a very difficult task as it is influenced by social, environmental and behavioral
factors [3,4]. Thus, machine learning algorithms are increasingly being used to
discover the relationships between these factors and the academic performance of
students. There are different educational predictive models for student assistance
aimed at helping them to achieve an improvement in their studies. What is
interesting about these models is that they model students’ achievement by
using Bayesian networks (BNs) to handle uncertainty as well as representing the
student’s knowledge. For instance, [5] used Dynamic Bayesian networks (DBNs)
to analyze students’ cognitive structure over time. BNs [6] involve a classification
approach based on probability theory [7] and are considered the best predictors.
Such probability predicts the membership of all student-related factors and the
class factor by assuming that the independency of the latter is based on the
associated values with the other attributes in the prediction model [8].

However, from a practical point of view, a common issue with classifying stu-
dents is that the educational datasets usually contain imbalanced data, especially
for high risk or failed students compared to the excellent or medium performance
ones. Because of this, we exploited a resampling method on students’ obtained
grades and other students related attributes, namely bootstrapping, to ensure
that more states of student overall performance are obtained than using the
original time series datasets.

This paper provides, first, a novel DBN approach for predicting university
students’ academic performance from time series educational data using a prob-
abilistic modeling approach. Secondly, it explores the use of a bootstrapping
method to resample the educational datasets in order to improve the learning
of the BN structure, whilst also enhancing the detection of the students of the
minority class, who are those at high risk, as early as possible.

2 Related Work

A considerable number of studies have been conducted to predict the perfor-
mance of the students based on the Bayesian method. For instance, [8] compared
the Bayesian approach with other classification approaches to identify useful pat-
terns that could be extracted from students’ personal and pre-university data in
order to predict students’ performance at the university. Similarly, authors of [9]
used the same approach for a comparative study of classification algorithms but
their aim was to classify the students and identify the most influencing attributes
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on students’ failure. Though some researchers were attempting to use the BNs
for characterizing performance and exploring the correlation between the per-
formance and the attributes, others were interested in detecting and modeling
students’ learning styles [10,11]. For example, [12] conducted a study to analyze
demographic, social and assessment data to predict the slow learning students
in order to improve their performance and reduce failure rate prior to the exam.

However, there is not much-related work in the educational system that han-
dles the issues with the imbalanced educational data through exploiting the
bootstrap approach [13,14]. Feng and co-authors [15] utilized and validated their
statistical results by using bootstrapping with logistic regression to evaluate stu-
dents’ learning based on different educational interventions. Similarly, a study
has been conducted by [16] to evaluate students’ understanding of statistical
inference with a bootstrapping approach while did not consider time. To the
best of our knowledge, there is no previous work in this field that applied DBNs
on the bootstrapped “time series” dataset of students progression data. Hence,
this work is a first attempt to use them, with the aim of achieving an improve-
ment in student performance overall.

3 Method

As with many prediction issues, educational datasets usually include imbalanced
data, because the number of students in Low, Medium and High risk classes is
not equally balanced (see Fig. 5(A)). We focus here on first predicting students
performance at university based on the original educational time series records.
Then, we investigate our resampling approach in order to have some insights
into the current problems with the imbalanced educational time series records.
Hence, the issue of predicting students’ performance based on imbalanced data
can be determined using our resampling approach. For this purpose, a DBN
model was learned from student’s temporal data, taking into consideration the
imbalance issue of the predictive classes (see Fig. 1).

Fig. 1. This diagram presents Bayesian structure learning and the resampling strategy
used for learning the DBN model.
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3.1 Datasets

The datasets used in this paper were collected from Brunel University admis-
sions and computer science databases. This consists of 377 records for students’
progression and other student-related data in 2014, 2015 and 2016, respectively.
The datasets contained the following data categories:

• Admissions dataset: includes students’ application data when entering the
university. such as: nationality, ethnicity, country of birth, disability, been in
care, socioeconomic class ...etc.;

• Progression dataset: this includes student final grades for all Year 1 and
Year 2 modules at the university for measuring students’ overall academic
performance;

• Engagement attitude: this includes students’ attitude towards turning
up to classes and labs in Year 1 and Year 2 at the university;

• Online temporal assessment profiles: this includes a student online
assessment profile based on their online time-series assessment trajectories.
These profiles were obtained using dynamic time warping (DTW) and hier-
archical clustering algorithms.

3.2 Resampling with Bootstrapping

Resampling strategies are fundamental approaches in the pre-processing phase,
which are used to change the distribution of data in a dataset [17]. After we
had discretised the students’ overall grade bands from (A, B, C, D, E and F) to
qualitative states of low, medium and high risk students, we still encountered an
imbalance issue especially for the high risk students (see the confusion matrix
in Fig. 5(A)). As aforementioned, imbalance data is a very common issue in
educational datasets, which affects learning the predictive models as well as
making difficulties in identifying the cases of the minority classes. The minority
class in this work is the high risk class, which is the class assigned for those
students who obtained low grades (D, E and F) in most of the modules. We
exploited here a resampling approach on the datasets to obtain reliable accuracy
of the prediction results using bootstrapping.

We exploited the bootstrapping approach using bootstrap aggregation (bag-
ging) [18] to sample the original data with replacement. This approach was also
applied to estimate the accuracy of the BN in predicting more student records
of all classes and to avoid overfitting. To implement the bootstrap approach, we
used the REPTree algorithm with the classification and regression tree algorithm
(CART) in the WEKA [19] mining tool. We decided to resample the data using
the decision tree algorithm as it is widely used for the low bias and high variance
models. To this end, we spilt the dataset into 60% training set and 40% testing
set. We tested the model on the training data through 10 iterations for bagging
using the same size as the original dataset. It is important to mention that, we
could have resampled any size from the dataset, but we decided to obtain the same
number of students’ records as in the original dataset for better comparisons to
the imbalanced data and decision making using our proposed approach.
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To validate the bootstrapped data, we computed the mean µ of the distri-
bution to give an 95% bootstrap confidence interval. The mean was x = 0.67 for
students overall performance, which we used as an estimated value of the mean
for the underlying distribution. To calculate the confidence interval we needed
to measure the difference between the distribution of x around the mean μ, as
follows:

δ = x − μ (1)

To get this distribution, we found the standard deviation for the entire stu-
dent records δ.1 and δ.9, the 0.1 and 0.9, which are critical values of δ to achieve
a 95% confidence interval of [x − δ.1, x − δ.9]. The StdDev for the full data was
obtained from the following equation:

P (δ.9 ≤ x − μ ≤ δ.1|μ) = 0.95 ⇐⇒ P (x − δ.9 ≥ μ ≥ x − δ.1|μ) = 0.95 (2)

However, the bootstrap offers a direct approach to obtain the distribution of
δ, which can be measured by the distribution of:

δ∗ = x∗ − x (3)

where, x∗ indicates the mean of the bootstrap data. We generated one boot-
strapped sample of size of 377, which was the size of the original data.

3.3 Bayesian Structure Learning

The learning of the BN structure was performed using GeNIe [20], software
implemented for learning and modelling Bayesian Networks (BNs) and Dynamic
Bayesian networks (DBNs). For learning the BN structure, we used a Bayesian
search on two datasets: the original and bootstrapped datasets. We trained the
BNs on these two datasets as we wanted to obtain a very accurate and reliable
predictive model. The BNs with temporal links inferred from the admissions and
students historical grades, are represented in three time slots (t, t+1 and t+2)
(see Fig. 2). In our discrete time BNs, three-time slots are observed to identify the
correlation between students’ overall performance and other related attributes,
such as module grades, online temporal assessment profiles and students’ engage-
ment attitude. For example, Fig. 3 shows that the disability attribute at time (t)
affects the states of some grades at Year 1 and Year 2.

3.4 Bayesian Parameter Learning

The principle goal of learning a DBN is to find the posterior distribution that
is adapted to students’ progression data, which allows for identifying the states
of all students’ attributes as well as overall performance. The parameters of the
Dynamic Bayesian model were learned using the expectation maximization (EM)
algorithm [21] with the bootstrapped data. We implemented this algorithm to
estimate the posterior distribution of students’ attributes in time slots t, t+1
and t+2. We used the EM algorithm as it performs the maximum likelihood for
temporal data, which supports learning from time series data.
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Fig. 2. Dynamic Bayesian network proposed approach for three time slots (t, t+1 and
t+2).

4 Experimental Results

The results provide an evaluation of our proposed DBN approach in predicting
third year university students’ performance. Two key experiments were under-
taken: learning from the original data and learning from the bootstrapped data.
We set up these two experiments as we wanted to show improvement in pre-
dicting the performance, especially for high risk students, who belonged to the
minority class in these experiments. In the learning process, we learned the BN
structure from students’ data in three different time slots. These were students’
admissions attributes (time slot t), their obtained grades at Year 1 (time slot
t+1) and Year 2 (time slot t+2). In Fig. 3, we present the discovered correlations
between students’ admission and progression data (grades). It is interesting to
note that some of the admission nodes influence students’ achievement in some
of the Year 1 and Year 2 modules. In addition, students’ performance in Year
2 was mainly influenced by their grades in CS1811 (Fundamental Programming
Assessment), CS2003 (Usability Engineering) and CS2005 (Networks and Oper-
ating Systems), which are compulsory modules for computer science students.

To examine the bootstrapping on improving prediction of the high risk stu-
dents and the other classes, we provide a comparison between the two approaches
used, as shown in Fig. 4. The accuracy results were obtained using the 10 fold
cross validation for predicting the academic performance in time slot t+2. Figure
4 shows a significant improvement in identifying the low, medium and high risk
students for the bootstrapped data. For example, the accuracy obtained for the
high risk class using the bootstrapped data was 0.94, whilst when using the
original data it was only 0.63.

The confusion matrices in Fig. 5 indicate the predicted low, medium and high
risk students using the original and the proposed bootstrapped data approach.
It also reveals the percentage of classification accuracy for each predicted class
using the original dataset (A) and bootstrapped dataset (B).
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Fig. 3. Dynamic Bayesian structure learned from the bootstrapped temporal educa-
tional data. The strong relationships between students’ attributes were coloured in
blue. (Color figure online)

For evaluating the performance of the BN model, we performed sensitivity
and specificity analysis on the cohort of students who were predicted to be at
low, medium and high risk. To this end, we visualized the Receiver Operating
Characteristics curve (ROC) and the Area under the Curve (AUS), as shown in
Fig. 6. We used these two performance measurements as we had a multi class
predictive model. It can be seen from the ROC curves in Fig. 6 that for the
low risk prediction (A) and high risk prediction (C) are very close to 100%
sensitivity and 100% specificity, which means a perfect discrimination of the
overall prediction accuracy based on the bootstrapped data.

Fig. 4. Prediction probabilities for students’ overall performance using two approaches
(original and bootstrapped data). It represents the accuracy results for the three classes.
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Fig. 5. Academic performance confusion matrices comparing prediction results for the
class attribute using the original dataset (A) and bootstrapped dataset (B).

Fig. 6. ROC curves of students’ overall performance for the three states, these being:
(A) state 0 for the low risk, (B) state 1 for the medium risk and (C) state 2 for the
high risk students.

We then examined the validation of our DBN approach in predicting the
performance in Year 3 using supplied test sets, as shown in Fig. 7. Firstly, we
predicated students’ performance based on admissions data only at time slot t for
the two datasets, which were the original and the bootstrapped data. Secondly,
we added more data, which were students’ progressions and final grades at Year
1, to see how better we can predict using the temporal approach. After that,
we predicted performance using all students’ attributes. It is apparent from
Fig. 7 that, the prediction was improved in time slot t+1 when we added Year
1 grades. This improvement was due to the direct relation between students’
achieved grades in Year 1 with their overall performance.

5 Confidence Interval Results

This section presents the influence of using bootstrapping to improve learn-
ing a BN model. The plotted chart in Fig. 8(A–C) compares the accuracy, the
precision and the sensitivity results for predicting the performance of students,
among 377 students’ time series records for two different datasets (original, boot-
strapped). We also show the error bars with a 95% confidence interval, which
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Fig. 7. Validation probabilities for students’ performance based on the original and
bootstrapped data. It represents the prediction results in time slots (t, t+1 and t+2).

helps in observing the difference between error bars where they overlap or not. It
is apparent from Fig. 8(A) the error bars are quite small due to the correspond-
ing confidence interval results. Whenever the confidence interval error bars do
not overlap, as clearly illustrated in Fig. 8(B and C), for the precision and the
sensitivity, then, this means that the two datasets are statistically significant.

Fig. 8. Confidence interval (CI) error bars charts for the accuracy (A), the precision
(B) and the sensitivity (C) for predicting the performance of the students based on the
original and the bootstrapped data approaches.

6 Conclusion and Future Work

The prediction of the performance of students has been increasingly emerging
in the educational field as it is now possible to transform huge amounts of data
into useful knowledge. However, this is a very difficult task because of the issues
associated with data. Usually, educational datasets have missing, inaccurate,
imbalanced data and so forth, which are also very common issues in all the
other research fields. Learning from imbalanced data requires approaches and
techniques to transform such data into useful knowledge [22]. To this end, a
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resampling approach was explored in this paper for learning DBNs using boot-
strap aggregating (bagging). This approach was adopted to tackle the imbalance
issue with educational datasets.

The objective of this paper was to model a DBN for predicting the perfor-
mance of students and the early detection of students at risk of failing or dropping
a module based on their time series data. For this purpose, we used students’
admission, Year 1 and Year 2 grades in conjunction with other attributes to pre-
dict the performance at Year 3, taking into consideration the imbalanced issue of
the educational data. A set of two BNs were learned from the educational time
series data. The first was learned from the original data, whereas the second
model was learned from the resampled data (via bootstrapping). We evaluated
the obtained BN models in terms of predicting more states of students’ overall
performance from temporal educational data using the two different approaches.

Important analytically relevant findings were found when comparing the two
approaches used for learning the DBNs. The results show that more states of stu-
dent’s overall performance were achieved when learning from the bootstrapped
data, especially for the minority class which was for detecting the high-risk stu-
dents. We have also demonstrated how the bootstrapped resampling approach
enhances the overall prediction of student performance using DBNs. These find-
ings have significant implications for developing education and enhancing stu-
dents’ learning using artificial intelligence. We intend to use these findings to
differentiate between the different cohorts of students who perform with simi-
lar dynamics and therefore, simplify them to obtain a better understanding of
students’ performance.

Further experimental works are needed to explore the extension of these
Bayesian models with the investigation of latent attributes, with the aim of
capture hidden factors that may influence the dynamics of students’ academic
performance. In our future works, we attempt to compare the proposed method-
ology especially DBNs with other classification approaches. Moreover, we try to
compare other balancing methods with the Bootstrap approach and being more
precise in bootstrapping time series grades.
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Abstract. This paper describes an initial pilot study of Rimac, a natural-
language tutoring system for physics. Rimac uses a student model to guide
decisions about what content to discuss next during reflective dialogues that are
initiated after students solve quantitative physics problems, and how much
support to provide during these discussions—that is, domain contingent scaf-
folding and instructional contingent scaffolding, respectively. The pilot study
compared an experimental and control version of Rimac. The experimental
version uses students’ responses to pretest items to initialize the student model
and dynamically updates the model based on students’ responses to tutor
questions during reflective dialogues. It then decides what and how to discuss
the next question based on the model predictions. The control version initializes
its student model based on students’ pretest performance but does not update the
model further and assigns students to a fixed line of reasoning level based on the
student model predictions. We hypothesized that students who used the
experimental version of Rimac would achieve higher learning gains than stu-
dents who used the control version. Although we did not find a significant
difference in learning between conditions, the experimental group took signifi-
cantly less time to complete the pilot study dialogues than did the control
group. That is, the experimental condition led to more efficient learning, for both
low and high prior knowledge level learners. We discuss this finding and
describe future work to improve the tutor’s potential to support student learning.

Keywords: Dialogue-based tutoring systems � Student modeling �
Contingent scaffolding

1 Introduction

The key features of instructional scaffolding, as described by [12], include contingency,
fading and, correspondingly, the gradual transfer of responsibility for learning and
successful performance to the learner. “Contingency” refers to the adaptive nature of
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scaffolding and is believed to be its core feature, from which the other two features
stem. Instructors dynamically adjust their degree of control over the learning task
according to their diagnosis of the student’s current level of understanding or perfor-
mance [14]. “Fading” refers to the gradual release of this support so that scaffolding can
achieve its ultimate aim: to shift responsibility for successful performance to the
student.

Wood and Wood [14] distinguished between three types of contingency during
human tutoring sessions: temporal, domain, and instructional contingency (see also
[13]). Temporal contingency is concerned with deciding when to intervene versus
letting the learner struggle for a while or request help. Domain contingency is con-
cerned with choosing appropriate content to address during an intervention, while
instructional contingency is concerned with deciding how to address focal content—for
example, in how much detail and through which pedagogical strategies (e.g., modeling,
hinting, explaining, question asking)?

For the Rimac natural-language tutor [1, 2, 5, 9], we developed an Instructional
Factors student model [4] that dynamically updates throughout the tutorial dialogue in
order to represent the student’s current level of understanding. The student model is
used during decision-making about domain and instructional contingency. We com-
pared this version of Rimac to a version that uses a static representation of the student’s
understanding based solely on the student’s pretest performance, i.e., to a version that
uses an array of knowledge components initialized with pretest scores as a student
model, to make decisions about domain and instructional contingency. We predicted
that classroom students who interacted with the version of Rimac that incorporates the
adaptive student model would show greater learning gains than those who interacted
with a version of Rimac that incorporates a simple static representation of a student’s
level of understanding. A student model that reflects students’ progress should lead to
more appropriate decisions regarding domain and instructional contingency. To our
knowledge, this is the first real-time test of an Instructional Factors Model (IFM) being
used by an ITS to tutor students in the classroom.

2 Rimac: An Adaptive Natural-Language Tutoring System

Rimac is a dialogue-based tutoring system that engages high school students in con-
ceptual discussions after they solve quantitative physics problems (e.g., [1, 2, 10]).
These dialogues are developed using an authoring framework called Knowledge
Construction Dialogues (KCDs) (e.g., [6, 7, 11]). KCDs present a series of carefully
ordered questions known as a Directed Line of Reasoning (DLR) [6], which guide
students in responding to complex conceptual questions (reflection questions, or RQs).
When the student makes an error at a particular step in the DLR, the tutor initiates a
remedial sub-dialogue to address that error. Figure 1 shows the system’s interface
which presents, in the left pane, the problem statement along with a sample solution to
a quantitative problem that students watch as a video and, in the right pane, an excerpt
of a reflective dialogue between the system and the student which addresses conceptual
knowledge associated with the quantitative problem.
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Rimac adapts its instruction to students’ ever evolving knowledge by incorporating
a student model that is updated as the student engages in the dialogues and by
implementing policies that, with the help of the student model predictions, allow it to
choose the next question to ask at the appropriate level of granularity and with adequate
support. The granularity level refers to domain contingency—that is, how much content
is explicitly discussed with the student (e.g. discuss all the steps in the reasoning vs
skip over some steps that the student can likely infer on her own). Adequate support
refers to instructional contingency—that is, how much detail should be provided in
questions and hints about the selected content.

An individual learner’s student model is built in two steps: first, using the results of
the student’s pretest, a clustering algorithm classifies the student as low, medium, or
high. The purpose of this initial clustering is to increase the accuracy of the student
model’s predictions. Second, the student is assigned a cluster-specific regression
equation that is then personalized with the results of the student’s pretest. The
regression equation assigned to the student represents an implementation of an
Instructional Factor Analysis Model (IFM), as proposed by [4]. This student model
uses logistic regression to predict the probability of a student answering a question
correctly as a linear function of the student’s proficiency in the relevant knowledge
components (KCs). Additionally, as the student progresses through the dialogues, her
student model is dynamically updated according to the correctness of her responses to
the tutor’s questions [5].

Fig. 1. Rimac interface. Problem statement shown in upper left pane, worked example video in
lower left pane, and dialogue excerpt in right pane.
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To be able to vary the level at which the tutorial discussions are conducted, for each
reflection question (RQ), we developed dialogues at three different levels of granu-
larity: an expert level (P—primary) which only includes the essential steps of the
reasoning, a medium level (S—secondary), and a novice level (T—tertiary) which
includes more basic knowledge such as definitions of concepts and laws. Figure 2
shows a graphic representation of an excerpt of a line of reasoning (if the net force on
an object is zero then the object’s velocity is constant) at three different levels of
granularity.

After the tutor asks the student a reflection question, it first needs to decide if the
student is knowledgeable enough to skip the discussion all together. To this end, if the
student answers the reflection question correctly, the tutor consults the student model
and if the student is predicted to know the relevant knowledge pertaining to the RQ
with a probability of 80% or higher, she is considered to have mastered the target
knowledge and is allowed to skip the RQ. On the other hand, if the student either does
not answer the RQ correctly or has not mastered its relevant knowledge, the tutor
engages in a reflective dialogue with the learner. At each step of this discussion, the
tutor needs to decide at what level of granularity it will ask the next question in the line
of reasoning (LOR) (or in a remedial sub-dialogue if the previous question was
answered incorrectly) in order to proactively adapt to the student’s changing knowl-
edge level. It performs this adaptation by following policies aimed at driving the
student to reason in an expert-like manner while providing adequate scaffolding.
Hence, the tutor will choose a question in the highest possible granularity level that it
deems the student will respond to correctly or that it perceives will be in the student’s
zone of proximal development (ZPD)—“a zone within which a child can accomplish
with help what he can later accomplish alone” [3].

To make this choice, Rimac consults the student model, which predicts the like-
lihood that the student will answer a question correctly. The tutor interprets this
probability in the following way: if the probability of the student responding correctly

Fig. 2. Graphical representation of the line of reasoning Fnet = 0 ! v = constant with different
levels of granularity. Nodes represent questions the tutor could ask. Arcs represent the knowledge
(KCs) required to make the inference from one node to the next.
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is higher than 60% then the student is likely to be able to respond correctly, and if it is
lower than 40% the student is likely to respond incorrectly. However, as the prediction
gets closer to 50%, there is greater uncertainty since there is a 50% chance that she will
be able to answer correctly and a 50% chance that she will answer incorrectly. This
uncertainty on the part of the tutor about the student’s ability could indicate that the
student is in her ZPD with regards to the relevant knowledge. Hence the tutor perceives
the range of probabilities between 40% and 60% as a model of the student’s ZPD [5].
Thus, the tutor will choose to ask the question in the highest possible level of the LOR
that has a predicted probability of at least 40% of being answered correctly [2]. The
exception to this policy is for questions belonging to the expert level LOR. For those
questions, the tutor takes a more cautious approach and only asks them if it is quite
certain that the student will answer them correctly, i.e., if the predicted probability of
the student answering the expert level question is equal to or greater than 60%.

The expression of each question within the LOR is adapted to provide increased
support as the certainty of a correct answer decreases [9]. For example, the tutor can
ask a question directly with little support such as, “What is the value of the net force?”
or with more support by expressing it as “Given that the man’s acceleration is zero
what is the value of the net force applied on the man?” In the latter case, the object is
named concretely and a relevant hint (“Given that the man’s acceleration is zero”) is
included, making this second version of the question less cognitively demanding.

3 Testing the System

3.1 Conditions

Two versions of the system were developed to use as control and experimental con-
ditions. The control version used a “poor man’s” student model that consisted of an
array of KCs initialized with a score based on the student’s pretest performance and
that score did not vary throughout the study. Additionally, when students started a
reflection question, they were assigned to a fixed LOR level (expert, medium, or
novice) based on the correctness of their response to the RQ and on their KC scores
according to the algorithm shown in Fig. 3.

The experimental condition used the adaptive version of the system described in
previous sections, which embeds a student model that updates its estimates as the
dialogue progresses and implements domain and instructional contingent scaffolding.

3.2 Participants

Students from a high school in Pittsburgh, Pennsylvania, in the U.S. were recruited to
participate in the study. They were taking a college preparatory class (though not
honors or Advanced Placement) that covered the topics discussed in the system. Stu-
dents were randomly assigned to the control and experimental conditions and used the
system as an in-class homework helper, hence the system was used after the material
had been covered in class. A total of 73 students participated in the study; N = 42 were
in the control condition and N = 31 in the experimental condition. The imbalance in
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the number of participants was due to students missing school and hence not com-
pleting the study (a t-test revealed no pretest difference between students who com-
pleted the study and those that did not, p = .471).

3.3 Materials

Using the experimental and control versions of the system, students solved 5 problems
with 3–5 reflection questions per problem on the topic of dynamics. A pretest and
isomorphic posttest (i.e., the pretest and corresponding posttest items only differed in
their cover stories) were developed. The tests consisted of 35 multiple-choice test items
that were presented online and automatically graded, though students did not receive
feedback on the correctness of their answers. The test items were conceptual questions
that tested the KCs associated with tutor’s reflection questions but were not similar to
the homework problems which required quantitative solutions as seen in the sample
problem solution in Fig. 1. Students were given 30 min to complete the tests.

3.4 Protocol

Students started by taking the online pretest. After the pretest, they interleaved solving
homework problems on paper with using the system in the following way: First,
students solved on paper the quantitative homework problem presented by the system;
second, they viewed a video of a sample solution to that problem on the system as
feedback (the video contained no discussion of conceptual material); third, students
engaged in conceptual dialogues with the tutorial system which addressed the

Fig. 3. Flow chart showing behavior of control condition
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conceptual aspects of the quantitative problem they had just attempted to solve. After
all problems were completed, students took the online posttest and a short satisfaction
survey. The entirety of the study was performed in class over the course of 4 days. All
students took the pretest on Day 1 and the posttest on Day 4 and worked on the
homework problems at their own pace on Days 1–3.

3.5 Results

Our main hypothesis is that students in the experimental condition would learn more
than those in the control condition due to the system’s proactive adaptation of scaf-
folding to students’ evolving needs. To test this hypothesis, we started by evaluating
whether students in each condition learned from interacting with the system. Then we
compared the mean learning gains between conditions and checked for an aptitude
treatment interaction. Finally, we compared time on task between conditions.

Did students in each condition learn from interacting with the system? To
answer this question a paired-samples t-test was performed comparing the mean scores
of the pretest to those of the posttest in each condition. The tests revealed a statistically
significant difference between mean pretest scores and mean posttest scores for students
in both conditions suggesting that students learned from interacting with the system.
Table 1 shows the results.

Did students in one condition learn more than in the other? To investigate
whether one version of the system fostered more learning than the other, we first
performed an ANCOVA with Condition as fixed factor, prior knowledge (as measured
by pretest) as covariate, and Posttest as the dependent variable. The results of this test
suggest that condition had no statistically significant effect on posttest when controlling
for the effects of prior knowledge, F(1,70) = 1.770, p = .19 Additionally, we per-
formed an independent samples t-test comparing the mean gain from pretest to posttest
between conditions. No statistically significant difference was found between the mean
gain of the experimental condition (M = .087, SD = .074) and the mean gain of the
control condition (M = .112, SD = .096), t(71) = 1.226, p = .22. The results of the
t-test and ANCOVA suggest that students in both conditions learned equally. We also
evaluated whether the incoming knowledge—as measured by pretest score—of stu-
dents in each condition was comparable. An independents sample t-test revealed no
statistically significant difference in students’ prior knowledge between conditions
t(71) = .127, p = .90.

Table 1. Pretest vs. Posttest scores

Condition Pretest mean SD Posttest mean SD t(n) p Cohen’s d

Experimental M = .505 SD = .093 M = .592 SD = .091 t(30) = 6.540 <.001 1.2
Control M = .503 SD = .091 M = .615 SD = .089 t(41) = 7.565 <.001 1.2
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Did the effectiveness of the treatment vary depending on students’ prior
knowledge? In other words, was there an aptitude-treatment interaction? To study
this issue, we performed a regression analysis using Condition, Pretest, and Condi-
tion*Pretest (interaction term) as independent variables and gain as the dependent
variable. The regression coefficient of the interaction term was not significant sug-
gesting no aptitude-treatment interaction F(1,69) = 1.456, p = .23.

Was one version of the system more efficient than the other? To investigate this
possibility, we compared the mean time that students spent working on the system1

between conditions by performing an independent samples t-test. The test revealed that
the mean time on task of the experimental condition (M = 51.26 min, SD = 12.44
min) was significantly shorter than the mean time on task of the control condition
(M = 71.52 min, SD = 16.42 min), t(71) = 5.754, p < .001, Cohen’s d = 1.4.

A closer look at time on task: Was the experimental system more efficient than
the control system for students of all incoming knowledge levels? In a prior study
where we compared a version of Rimac that used a “poor man’s” student model
(similar to the control condition of this study) to a version of Rimac that did not have a
student model and had all students go through the novice LOR, we found the system
with the student model was significantly more efficient than the system without the
student model, but only for high prior knowledge students [8]. Hence, we decided to
investigate if in the current study the experimental version was more efficient than the
control for students of all levels of incoming knowledge. To this end, we partitioned
the students in each condition into those with high incoming knowledge and those with
low incoming knowledge using a median split. We then compared the time on task of
high prior knowledge students in the control and experimental groups. To that end we
performed an ANOVA which revealed that the mean time of task of high pretesters in
the experimental group was 31% (20.8 min) shorter than in the control group, a sta-
tistically significant difference. Similarly, when comparing time on task for low prior
knowledge students between conditions, an ANOVA revealed a 27% time on task
difference in favor of the experimental condition which was statistically significant. See
results in Table 2 and Fig. 4.

Table 2. Comparison of time on task (TOT) between conditions for high and low incoming
knowledge students

Student
prior kw

Condition N Mean TOT
(min)

SD TOT
(min)

F p Cohen’s
d

Low Control 21 74.72 14.82 F(1,35) = 18.29 <.001 1.4
Experimental 16 54.78 12.95

High Control 21 68.33 17.66 F(1,34) = 16.201 <.001 1.4
Experimental 15 47.51 11.09

1 Time on task did not include the time students spent solving the problems on paper. Additionally,
any inactivity longer than three minutes while a student worked on the system was not counted
towards the time on task estimate since it could be indicative that the student had taken a break from
the learning activity.
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4 Discussion and Future Work

In this paper we report on the comparison of two versions of Rimac to explore the
effectiveness of incorporating a student model that is dynamically updated throughout
the interaction to enable domain and instructional contingency during tutorial dia-
logues. One version of Rimac (experimental version) proactively adapts the content it
discusses as well as the amount of support it provides during its interaction with the
student by using the predictions of a student model that dynamically updates its
assessment of students’ understanding of particular KCs as the student progresses
through the dialogues. The second version of Rimac (control version) sets the student
on a fixed line of reasoning, rather than adapting to the students’ evolving knowledge
needs, based on the student’s initial response to the reflection question under consid-
eration and on the predictions of a static student model that only considers the student’s
pretest performance. We found that students in both conditions learned equally well.
One possible reason this may have occurred is that regardless of the level of line of
reasoning at which students are placed in the control system, if they lack the necessary
knowledge to answer a question correctly, they are presented with a remedial sub
dialogue that covers the knowledge subsumed in the lower level LORs. Hence, it is
possible that the fixed LOR with its remediations were enough for students to have
comparable knowledge gains as in the more adaptive, experimental condition.

The key finding of this work is that students who used the system with the dynamic
student model (i.e., the experimental system) learned more efficiently, that is, in less
time, than those who used the system with the static student model (i.e., control
version). Of particular interest is the discovery that students with low incoming
knowledge in the experimental condition were able to go through all the dialogues 27%
faster (on average, experimental condition: 55 min, control condition: 75 min) than

Fig. 4. Comparison of time on task between conditions for High and Low prior knowledge
students.
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those in the control condition. This suggests that a dynamic student model is more
effective than a static one in supporting domain and instructional contingency. The
dynamic student model is able to effectively adjust to the students’ evolving knowledge
allowing them to traverse higher level lines of reasoning—which are shorter—as their
knowledge improves, thereby saving them time. In contrast, a static student model will
keep the granularity of the discussions with the students at the level defined by their
incoming knowledge regardless of improvements in their knowledge that occur during
the dialogues.

In future work, we plan to compare the adaptive system with two less adaptive
versions of the system to try to separate on the one hand, the effect on learning of
updating the student model during the dialogues and, on the other hand, the effects of
providing domain and instructional contingency. In the first study, we will perform a
more in-depth analysis of the impact that the student model’s dynamic updates have on
students’ learning by isolating the evaluation of this feature. We will compare the
current experimental version of the system with a control condition that would perform
exactly the same way as the experimental version—i.e., deciding at what level to ask the
next question and with how much support to express it rather than placing students in a
fixed LOR—except that it would choose the next question based on the predictions of
the static KC scores derived from the pretest rather than on the dynamically updated
model. In the second study, we will evaluate more precisely the value of performing
domain and instructional contingency (i.e., deciding what to ask and how to ask it on
each step of the dialogue) by comparing the current version of the experimental con-
dition with a control condition that improves on the flexibility of the one presented in
this paper by placing students in fixed low, medium or high levels of lines of reasoning
not just when the student answers the reflection question correctly (as in the current
study) but also when the student answers it incorrectly. This may allow Rimac to place a
student who may have slipped when answering the RQ in a more appropriate LOR level.
The comparison of these versions of Rimac might provide additional evidence of the
value of implementing scaffolding that contains domain and instructional contingency.
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Masaryk University, Brno, Czech Republic
{xcechak1,pelanek}@fi.muni.cz

Abstract. Data collected in a learning system are biased by order in
which students solve items. This bias makes data analysis difficult and
when not properly addressed, it may lead to misleading conclusions.
We provide clear illustrations of the problem using simulated data and
discuss methods for analyzing the scope of the problem in real data from
a learning system. We present the data collection problem as a variant of
the explore-exploit tradeoff and analyze several algorithms for addressing
this tradeoff.

1 Introduction

As students solve items in a learning system, the system can collect data on
their performance. This data can be used to reason about student knowledge
and learning and properties of items. Based on the results of data analysis we
can take actions to improve student learning; the action can be either automatic
(algorithmic) or manual (based on insight obtained from analysis) [1].

However, data from learning systems are biased by data collection, and these
biases can lead to misleading conclusions [15]. A specific data collection issue is
item ordering. Students often solve items in a similar order, specifically “from
easier to more difficult”. This ordering bias makes the analysis of data difficult as
it confounds increase in item difficulty and student learning [4,13,15]. Moreover,
data are often influenced by attrition bias—students leave a system in non-
random order, e.g., due to mastery learning or self-selection bias. Samples of
population solving different items are thus not representative. This issue has
been studied previously in learning curves research [7,10,11].

For data analysis purposes it is beneficial to have some degree of randomiza-
tion in the data collection process [12,15]. In this way, we may overcome some
of the biases. However, randomization usually goes against pedagogical princi-
ples, e.g., the progression “from easier to more difficult” is usually pedagogically
desirable. We thus have a specific case of the explore-exploit tradeoff [2]: we want
to present items to students in such a way that the collected data enable us to
understand student learning and properties of items (exploration) and at the
same time we want students to learn efficiently in the system (exploitation). The
explore-exploit tradeoff in learning system has been in different variants studied
in several recent works [3,8,9].

In this work, we focus specifically on biases related to item ordering. Although
item ordering biases have been noted before, it was only as a sidenote of another
c© Springer Nature Switzerland AG 2019
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analysis [4] or as one example of a wide discussion of biases [15]. We provide a
deep analysis of the issue, which is relevant to many learning systems.

We use simulated data to provide a clear illustration of the item ordering bias
and to discuss under what circumstances the problem is important and why. We
also discuss methods for understanding data collected from real students (with
respect to item ordering) and illustrate the application of these methods on
real data from learning systems. Finally, we describe and compare several algo-
rithms for addressing the explore-exploit tradeoff with respect to item ordering
in learning systems.

2 Background

The basic setting for our analyses and discussions are problem solving exercises.
These exercises are typically presented in an interactive form such as a web page
or a mobile app. Students are presented with problem solving exercises with
varying difficulty. The students may be working on the problem either in their
free time or as a part of the class assignment. Examples of these problems include
but are not limited to simple programming exercises, math problems, and logic
puzzles.

The student performance is measured as the time required to solve the exer-
cise. To be precise, we use a logarithm of time since problem solving times in
learning systems are typically log-normally distributed [6]. While there are other
possible performance measures, solving time is universally applicable to various
exercise types.

2.1 Used Data

The analyses are performed on data collected from systems Umı́me1 and
RoboMission2. There are four datasets in total, three from the former and one
from the latter. These datasets cover three problem solving exercises: a logic puz-
zle with marble in a maze (Marble and Marble2 ), Sokoban logic puzzle (Sokoban)
and block-based programming tasks (RoboMission).

These datasets contain student interaction logs where each entry represents
an attempt of a student at solving an item (a single problem solving exercise).
Each entry also holds information whether the student’s attempt was successful
or not. Overall statistics can be seen in Table 1. The distribution of the number
of items seen by a given student and the number of students that have seen a
given item is roughly geometric.

2.2 Simulations

To better understand the behavior of the system and possible biases we used
simulations. Simulations give us the possibility to control every aspect of the
1 https://www.umimeto.org/, available only in Czech.
2 https://en.robomise.cz/.

https://www.umimeto.org/
https://en.robomise.cz/
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Table 1. Basic statistics of the used datasets.

Dataset Students Items Interactions

Marble 17868 110 258848

Marble2 2364 98 28810

Sokoban 12384 109 182979

RoboMission 4174 85 62534

Table 2. An overview of the simulation scenarios used in this paper.

Name Skill distribution Learning Skill Δ Attrition

Incremental N (−3, 0.1) Incremental 6 No

Incr. small N (−0.5, 0.1) Incremental 1 No

Step N (−3, 0.1) Step 6 No

Steep N (−3, 0.1) Steep 6 No

Diverse N (−3, 3) Incremental 6 No

diverse + att. N (−3, 3) Incremental 6 Yes

const. + att. N (0, 3) No 0 Yes

system and also provide us ground truth for observation comparison. The main
function of our simulation framework can be simplified as take a student, while
there is an available item, pick an item and generate solving time using a model.
The source code of the framework is publicly available3.

The student solving time model is defined as follows: t = b + aθ + ε. In
this equation, t is a logarithm of solving time, b is an item difficulty, a is an
item discrimination factor, θ is a student skill, and ε = N (0, c2) is Gaussian
noise. In-depth description of the model is in [16]. To keep the simulation simple
parameters a and c were fixed to values −1 and 1 respectively.

The framework is modular to allow modeling of different scenarios. They do
not reflect reality but deliberately exaggerate some aspect to illustrate a specific
bias. We choose to keep item difficulties fixed for better comparison. An overview
of the scenarios used later in this paper can be found in Table 2.

The column name refers to a label we will use for the given scenario later
in the paper. In the description of simulation results, we will also add a suffix
indicating which item selection strategy was used.

Skill distribution describes how student skills were generated. We sampled
the skill values from a normal distribution with parameters given in the table.

The column learning contains information about the type of student learning.
Incremental means that a student is learning in small steps with each solved
item. After each item, the student skill is increased by skill Δ

#items . Step learning
models a situation where students do not understand the concept, but they can

3 https://github.com/adaptive-learning/simulations-aied2019.

https://github.com/adaptive-learning/simulations-aied2019


Item Ordering Biases in Educational Data 51

“learn” the concept with some probability after solving an item. The learning
happens by increasing the student skill by skill Δ with 5% probability after each
solved item. The skill of a given student is increased at most once. We do not
model knowledge deterioration, e.g., forgetting. Once the concept is mastered,
the student keeps the gained skill. Steep learning is a situation where a student
is learning rapidly and only a few items are enough to master the concept. Real
life example would be learning of the user interface. In our simulation, it takes
10 items for a student to completely learn the concept.

The skill Δ states the maximal amount of skill the student can gain after
solving every item. For example, if the student has a skill of −3.2 at the beginning
and the skill Δ is 6. Then after solving all items, the student’s skill will be 2.8.

The last column refers to whether the attrition is modeled or not. When there
is no attrition, all students solve every item. When the attrition is modeled, all
students have a fixed time budget they can spend solving items. For better
illustration, it is set so that only a few students reach the last item. In our
simulations, this happens to be at 0.6 times a sum of all items difficulties.

3 Item Ordering Bias

The data collected from student interactions in a learning system that uses a
fixed item order may be biased. These biases manifest themselves as dispro-
portions between the estimated item difficulty and the actual item difficulty.
We use simulations to explore and clearly illustrate estimates in scenarios from
Table 2. We also compare situations when students solve items from easier to
more difficult (ordered) and in a random order (random).

Figure 1 shows plots of different scenarios and their effect on estimated item
difficulties. In this context, true item difficulty is equal to solving time of an
average skilled student, i.e., the one with skill value of 0. The y-axis shows item
difficulty. The x-axis corresponds to item order when sorted by their true diffi-
culty. Curves for different scenarios show estimates of item difficulties computed
as mean solving times. The translucent bands around them signify 95% confi-
dence interval (computed by bootstrapping) for the mean.

Figure 1(a) illustrates the importance of the relationship between student
learning and item difficulty increase. We consider incremental and incr. small.
scenarios in the ordered variant. In the incremental scenario, student learning
dominates item difficulty increases, and the estimates of item difficulty are almost
reversed, i.e., easier items are estimated as harder than truly hard items. In the
incr. small scenario the item difficulty increases dominate. While easier items are
still being overestimated and harder item underestimated, the relative ordering
is reasonably well estimated.

Figure 1(c) illustrates the results of the analysis under different assumptions
about student learning. We keep the incremental scenario and compare it with
step and steep. Students again solve items in the fixed order. The curve shapes
differ substantially though in all three the difficulties of the first few items are
highly overestimated. Real life example of this behavior could be introductory
items teaching students how to use and work with the system.
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a) b)

c) d)

Fig. 1. Illustration of problem ordering bias. Note that in (b) and (d) the true difficulty
(partially) overlaps with other curves.

Figure 1(d) illustrates that the fixed item order causes problems with esti-
mates. If we let students solve items in a random order, estimates become accu-
rate in the sense of relative ordering. The absolute values of estimates and true
difficulties differ as the expected value of student skill for a random student
differs between the scenarios.

Figure 1(b) illustrates the effect of attrition. In the diverse and diverse +
att. scenarios, the student population is changing as students are learning in
the process of solving items. In addition, the attrition leads to a change in
a population sample for different items. Only the students with high skill are
able to solve many items in a fixed amount of time. Consequently, later items
are solved only by outstanding students. The similar result is achieved even in
const. + att. scenario. In diverse + att. the learning amplifies this effect.

4 Understanding Data

Experiments with simulated data show that the fixed item order can have a
significant impact on the analysis of data. To asses how relevant the problem is
in a particular system, we need to understand the data. In what order do students
solve items within a system? In some systems, the order is completely fixed. In
such cases the potential bias caused by the ordering is high, but at least it is quite
clear what is happening. In many realistic systems, however, the ordering of items
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Fig. 2. Analysis of item ordering in RoboMission dataset.

Fig. 3. Analysis of item ordering in Marble dataset.

is neither completely fixed nor random. One common setting is the following:
items are presented to students in some specific default order, but students do
not necessarily have to follow this order exactly. The provided ordering can be
chosen manually or algorithmically; often it is explicitly or implicitly from easier
items to more difficult.

To understand the data, we propose to use the following type of graph. For
each student, we construct a student’s item solving sequence by ordering the
items the student has seen. The items are sorted from the first seen to the last
seen. Aggregating over all students gives us a set of observed orders for any given
item. We then visualize the distribution of these orders, sorting items by their
median order.

An example of this visualization for the RoboMission dataset is in Fig. 2. The
distributions for individual items are visualized using the “letter value” plot [5]
(an extension of boxplot). Items with tall boxes usually have fewer observations
(solutions). This visualization provides an overview of student behavior in the
system. In the specific case illustrated in Fig. 2, it is clear that although students
do not proceed through the system in a completely identical order, there are
strong regularities, particularly with respect to items solved at the beginning.
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Items in the RoboMission system are divided into levels and sublevels; in the
graph, we can see “steps”, where flat part are the items from the same sublevel.

For comparison, we include the same analysis for Marble dataset in Fig. 3.
We can see that the median orders are slightly lower and they do not increase
between items as much resulting in a “flatter” look. The former is caused by
students solving on average fewer items resulting in shorter item sequences and
lower item orders. The latter is caused by the randomness of the student item
solving sequences. If orders of items are identically distributed on some finite
interval, i.e., there is no precedence between items, the medians of all items are
the same.

To better grasp the item ordering effect, it is useful to provide comparative
analysis across different datasets and to quantify the effect. Figure 4 presents
analysis analogical to Figs. 2 and 3, but showing only the median order for each
item and providing a comparison of several datasets. The plot shows the median
of item orders (translucent) and corresponding linear regression lines (solid bold)
for all datasets introduced earlier. The slope of the regression line indicates
similarity of item sequences. The more students solve items in similar order the
higher the slope.

For Marble and Sokoban, the median orders of all items are fairly low, and the
slope is small as well. These are distinct exercises with the same recommendation
behavior. In both a random unsolved item is recommended after the student had
successfully finished solving the item. The Marble2 dataset is from the same
exercise as Marble with a change in the recommender behavior. The system
recommends items in a fixed order created by an expert. We can see a substantial
increase in the slope. In RoboMission the items are divided into nine levels
and each level is further divided into three sublevels. The recommended item is
always taken randomly from the easiest not yet mastered sublevel. Hence the
recommendations are ordered in terms of sublevels while random within the
sublevel. The slope is between a fixed and random ordering as one would expect
from the semi-ordered items. Note that similar type of analysis (using slightly
different visualization) was used by [4].

In all four cases, the students may ignore the recommendation and choose
any item from an item overview. Moreover, students typically solve only a few
items. Consequently, most median item orders are low. The items in the overview
are presented in some kind of lattice resulting in an implicit ordering that some
students may choose to follow. Due to these factors, the extreme values of the
slope are unlikely in real life scenarios.

Slope lines may not intersect the origin as evident from the Fig. 4. The slope
intersecting x-axis to the right of the origin indicates that students choose items
randomly in the beginning and later begin to follow a common trend. The slope
intersecting on the left-hand side of the origin indicates that students solve more
randomly chosen items later as they progress through the system.

One may choose to interpolate the item medians with polynomials or different
kinds of curves. This is a viable option, and by definition, the fit will be tighter.
Linear regression has the benefit of being non-parametric. Figure 4 illustrates
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Fig. 4. Analysis of ordering from real systems. The regression line slopes for each
dataset are located in parentheses in the plot legend.

that even the simple slope analysis can differentiate between various system
behaviors. It could, in turn, be used to asses the relevance of the item ordering
related biases in a system.

5 Algorithms for Dynamic Item Ordering

In learning systems, we would like the items to be ordered well for efficient
student learning, i.e., from easier to more difficult. We call it the ideal ordering.
At the same time though, we would like “good” orderings for the analysis. As
evident from the earlier simulations that would be a randomized ordering. We
can perceive the situation as a variation on exploit-explore tradeoff. The problem
lies in balancing exploitation (students are learning efficiently) and exploration
(obtaining unbiased data about items).

It would be possible to avoid the use of randomization and to fully focus
on exploitation if we take student learning into account in the analysis. The
shown bias arises from student learning, and the modeling of student learning
removes the bias. However, this approach is valid only when the used model of
student learning fits very well the actual progress of student learning. There are
many different student modeling approaches [14], and it is nontrivial to choose a
suitable model for a particular situation. Moreover, all models are simplifications,
and even the use of an appropriate type of model can cause distortions in model
analysis. It thus makes sense to explore “model-free” methods for the analysis.

5.1 Algorithms

We have devised three algorithms that combine exploration with exploitation in
various ways. The algorithms are quite simple and definitely could be improved
upon. Our main aim is to illustrate the methodology that could be used to
compare such algorithms.
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First K Random. The algorithm lets the first K students go through the items
in a completely random order. After the Kth student, the estimates for item
difficulty are computed for each item as a mean problem solving time for the K
students. The items are sorted based on their estimates from the easiest to the
most difficult. This order is then fixed for any later student.

ε-greedy. The algorithm keeps an approximation of the ideal ordering. With
probability 1-ε a student follows this ordering. With probability ε a student
gets randomly ordered items. The approximation could initially be set to any
ordering desired, in our case some random ordering. The item difficulty estimates
are updated after each student that got the randomly ordered items. Only times
of students with random passes are used for estimates.

Adaptive Periodic K. The algorithm keeps an ordering based on estimates of item
difficulties. The initial ordering is random, and the estimates are recomputed
after K students have gone through the system since the last update. Times of
all the previous students are used in the computation of estimates.

5.2 Experiments

We once again used the simulations to get insight into the properties of these
algorithms in different scenarios. We are mainly interested in convergence prop-
erties, i.e., can the algorithm find the ideal ordering. The metric we choose is
the Spearman’s correlation coefficient with ideal ordering. The Fig. 5 shows the
progression of the correlation as new students are coming to the system. Each
data point is a mean of correlations for ten consecutive students. This step is
done to smooth out the curves yet still retain some local variations.

In the case Fig. 5(a) we can see that all three algorithms are performing
well. This is the scenario where problem solving time estimates follow true item
difficulties. Figure 5(b) shows results for a scenario where the ordering bias is
highly present. We can see that Adaptive periodic 20 algorithm is struggling and
oscillating around a non-ideal ordering. Even in this scenario, 20 random student
passes are enough to obtain a reasonable approximation of the ideal ordering as
illustrated by First 20 random algorithm. The scenario (c) adds attrition on top.
We can see that the performance of all algorithms is impacted. The 0.05-greedy
algorithm is still able to slowly approach the ideal ordering. We can compare
the scenario (d) to others to gain some insight into the interplay of attrition and
learning. Compared to (c) we can see that all algorithms are performing better.
Adaptive periodic 20 is doing even better than in scenario (b) with learning and
no attrition. Other algorithms are affected by limited information gained from
student solving only a subset of items.

It is worth noting that the robustness of ε-greedy algorithm is achieved at
the expense of some students having randomly ordered items. That is also the
reason for the ruggedness of its curve in the plots.
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a) incr. small b) incremental

c) diverse + att. d) const. + att.

Item order convergence (Spearman's corr. coef.)

Fig. 5. Convergence of ordering computed as the Spearman’s correlation coefficient.

6 Discussion

Students often solve items in a specific order, particularly in a progression from
easier to more difficult. Such regularities in student behavior lead to biases in
data collected from learning systems. When not taken into account in the anal-
ysis, these biases may lead to misleading conclusions. We have illustrated the
potential biases using simulated data, showing how the importance of biases
depends on the speed and nature of student learning (relative to the increases
in item difficulty). We have also proposed a technique for analyzing the degree
of ordering bias in data from real systems.

To overcome biases caused by fixed ordering, we can utilize dynamic item
orderings. An interesting research question is how to realize such a dynamic
ordering. In this work, we analyzed three simple algorithms for a dynamic order-
ing of items. Using simulated data we showed that their performance depends on
the specific application scenario (what is the speed and nature of student learn-
ing, what is the distribution of item difficulties). The results show that under
some settings, naive use of automatic adaptation can lead to worse results than
solutions based on simple randomization. An interesting direction for future work
is to consider more complex combinations of adaptation and randomization.
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Abstract. Automatic question generation, which aims at converting
sentences in an article to high-quality questions, is an important task
for educational practices. Recent work mainly focuses on designing effec-
tive generation architectures based on deep neural networks. However,
the first and possibly the foremost step of automatic question genera-
tion has largely been ignored, i.e., identifying sentences carrying impor-
tant information or knowledge that is worth asking questions about. In
this work, we (i) propose a total of 9 strategies, which are grounded
on heuristic question-asking assumptions, to determine sentences that
are question-worthy, and (ii) compare their performance on 4 datasets
by using the identified sentences as input for a well-trained question
generator. Through extensive experiments, we show that (i) LexRank,
a stochastic graph-based method for selecting important sentences from
articles, gives robust performance across all datasets, (ii) questions col-
lected in educational settings feature a more diverse set of source sen-
tences than those obtained in non-educational settings, and (iii) more
research efforts are needed to further improve the design of educational
question generation architectures.

Keywords: Educational question generation · Sentence selection ·
Deep neural network

1 Introduction

In education, automatically generating high-quality questions for learning prac-
tices and assessment has long been desired. Previous studies have indicated that
reading is one of the most frequent strategies adopted by students to learn [30].
To assess students’ understanding, instructors and teachers need to design cor-
responding assessment questions about the reading material [3,28]. However,
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such a question creation process is usually time-consuming and cognitively-
demanding. Therefore, automatic question generation, which aims at automat-
ing the creation process through computational techniques, has attracted much
research attention [5,8,10,15].

One common strand of work in automatic question generation is generating
questions in a rule-based manner, in which educational experts are recruited to
carefully define a set of syntactic rules to turn declarative sentences into inter-
rogative questions [1,15,23]. In recent years, deep neural networks have emerged
as a more promising approach to question generation [8–11,33,35]. In contrast to
rule-based methods, neural question generation methods can capture complex
question generation patterns from data without handcrafted rules, thus being
much more effective and scalable. Typically, neural question generation meth-
ods tackle the generation process as a sequence-to-sequence learning problem,
which directly maps a piece of text (usually a sentence) to a question [10].

Table 1. Question-worthy sentence in a paragraph.

Have you ever dropped your swimming goggles in the deepest part of the pool and
tried to swim down to get them? It can be frustrating because the water tries to
push you back up to the surface as you’re swimming downward. This upward
force exerted on objects submerged in fluids is called the buoyant force.

Given a paragraph or an article, often there are only a limited number of
sentences that are worth asking questions about, i.e., those carrying important
concepts. An example is shown in Table 1, where the last sentence defines the
most important concept “buoyant force”. We, therefore, argue that selecting
question-worthy sentences is of critical importance to the generation of high-
quality educational questions.

Existing studies, however, pay little attention to this step: they either assume
that the question-worthy sentences have been identified already [10] or simply
take every sentence in an article as input for the question generator. For instance,
[15] assumes that all sentences in an article are question-worthy and thus gen-
erate one question for each sentence and select high-quality ones based on their
linguistic features. To our knowledge, [8] is the only study that explicitly tackles
the question-worthy sentence selection problem. It uses a bidirectional LSTM
network [19] to simultaneously encode a paragraph and calculate the question-
worthiness of a sentence in the paragraph. However, training such a network
relies on a large amount of ground-truth labels of question-worthy sentences
(e.g., tens of thousands). Obtaining these labels is a long, laborious, and usually
costly process. Furthermore, the proposed deep neural network was only vali-
dated in short paragraphs instead of the whole article. Considering that reading
materials can be much longer and deep neural networks can fail at processing
long sequence data due to the vanishing gradient problem [18], it remains an
open question whether the proposed method can handle long articles.
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Instead of developing a novel neural network architecture that simultaneously
does sentence selection and question generation (like [8] does), this work takes
one step back and focuses extensively on question-worthy sentence selection. We
aim at achieving a better understanding of the effectiveness of different textual
features in identifying question-worthy sentences from an article, so as to clar-
ify the main criteria in selecting question-worthy sentences, and to adequately
inform question generator design.

To this end, we first propose a total of 9 strategies for question-worthy sen-
tence selection, which cover a wide range of possible question-asking patterns
inspired by both low-level and high-level textural features. For instance, we rep-
resent our assumption that informative sentences are more likely to be asked
about by leveraging low-level features such as sentence length and the number
of concepts as informativeness metrics; our assumption that important sentences
are more worth asking about is represented by leveraging semantic relevance
between sentences, which can be measured by using summative sentence identi-
fication techniques [4,13]. To evaluate the effectiveness of the proposed strategies,
we apply them to identify question-worthy sentences on 4 question generation
datasets, i.e., TriviaQA [20], MCTest [31], RACE [21] and LearningQ [5]. Among
the four considered datasets, only RACE and LearningQ are collected in edu-
cational settings and they consist of questions covering various cognitive levels.
In contrast, TriviaQA and MCTest are collected to advance the development
of machine reading comprehension and they mainly contain questions seeking
for factual details. By including all of these datasets, we expect to identify the
specific characteristics of question-worthy sentences for the task of educational
question generation. We use the sentences identified by the proposed strategies
as input for a well-trained question generator and evaluate the effectiveness of
sentence selection strategies by comparing the quality of the generated questions.

To the best of our knowledge, our work is the first one that systematically
studies question-worthy sentence selection strategies across multiple datasets.
Through extensive experiments, we find that LexRank, which identifies impor-
tant sentences by calculating their eigenvector centrality in the graph represen-
tation of sentence similarities, gives the most robust performance across different
datasets among the nine selection strategies. Furthermore, we demonstrate that
questions collected for human learning purposes usually feature a more diverse
set of sentences, including those that are most informative, important, or contain
the largest amount of novel information, while non-learning questions (e.g., those
seeking for factual details from Wikipedia articles in TriviaQA) are often posi-
tioned at the start of sentences. Lastly, we show that there is a large improvement
space for existing educational question generation architectures.

2 Methodology

Our research methodology is depicted in Fig. 1. In the following, we first describe
the nine strategies we developed for question-worthy sentence selection and then
introduce our method for evaluating these strategies, including the question gen-
erator that takes the selected sentences as input for question generation, the
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Fig. 1. Research methodology.

experimental datasets, the automatic evaluation metrics, and the human study.
We evaluate the effectiveness of the proposed sentence selection strategies by
comparing the quality of the questions generated by applying those sentence
selection strategies.

2.1 Sentence Selection Strategies

In the following, we describe in detail our proposed sentence selection strategies
based on different question-asking assumptions and sentence properties mea-
sured by different textual features.

Random Sentence (Random). As the baseline, we randomly select a sentence
and use it as input for the question generator.

Longest Sentence (Longest). This strategy selects the longest sentence in
an article. The assumption is that people tend to ask questions about sentences
containing a large amount of information, which, intuitively, can be measured
by their lengths.

Concept-Rich Sentence (Concept). In contrast to Longest, this strategy
assumes that the amount of information can be better measured by the total
number of entities in a sentence. The more entities a sentence contains, the richer
the information it has.

Concept-Type-Rich Sentence (ConceptType). This strategy is a variant of
Concept. It calculates the total number of entity types in a sentence to measure
the informativeness of a sentence.

The above three strategies approximate question-worthiness of a sentence by
informativeness, which is further measured by different textual features. In con-
trast, the following two strategies approximate question-worthiness of a sentence
by difficulty and novelty, respectively.

Most Difficult Sentence (Hardest). This strategy is built on the assump-
tion that difficult sentences can sometimes bring the most important messages
that should be questioned and assessed. Therefore, it chooses the most difficult
sentence in an article as the question-worthy sentence. We calculate the Flesch
Reading Ease Score [6] of sentences as their difficulty indicators.

Novel Sentence (Novel). Unlike Hardest, this strategy assumes that sentences
with novel information that people do not know before are more question-worthy.
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We calculate the number of words that never appear in previous sentences as a
sentence’s novelty score [34] and select the most novel one.

Finally, we introduce three strategies that approximate question-worthiness
of a sentence by the relative importance of the sentence with respect to the
remaining ones in an article. The importance is either measured by the relative
position of a sentence or its centrality represented by semantic relevance with
other sentences.

Beginning Sentence (Beginning). In the research of text summarization, a
common hypothesis about sentence positions is the importance of a sentence
decreases with its distance from the beginning of the article [26], and therefore
less question-worthy. This strategy selects the first sentence in an article as the
most question-worthy sentence.

Centroid Based Important Sentence (LexRank). In line with Beginning,
this strategy also assumes that question-worthy sentences should be selected
from those of greater importance. The difference here is that the sentence impor-
tance is measured by the centroid-based method, LexRank [13], which calcu-
lates sentence importance based on eigenvector centrality in a graph of sentence
similarities.

Maximum Marginal Relevance Based Important Sentence (MMR). In
contrast to LexRank, this strategy computes sentence importance by considering
a linear trade-off between relevance and redundancy [4]. That is, the strategy
selects the sentence that is most relevant but shares least similarity with the
other sentences as the most important sentence.

2.2 Evaluation Method

To evaluate the proposed strategies, we feed the selected sentences to a popular
question generator and evaluate the effectiveness on four benchmarking datasets
through both automatic evaluation and human evaluation.

Question Generator. There have been several studies working on construct-
ing effective question generators [10,11,33,35], most of which assume that the
answer to a question (usually a span of text in the input sentence) is deter-
mined prior to the generation of the question and use both the sentence and the
answer as input for the question generator. Our focus in this work is to develop
effective sentence selection strategies for educational question generation with-
out observing the answers to questions beforehand. We, therefore, adopt the
question generator proposed in [10], which only takes a sentence as input to
generate a question, as our testbed to evaluate the effectiveness of the proposed
sentence selection strategies. The question generator is based on an attention-
based sequence-to-sequence learning framework [2], which maps a sentence from
an article to a question by using an LSTM encoder and decoder [19]. Particu-
larly, the decoder incorporates the attention mechanism over the encoder hidden
states, which enables the question generator to focus on important concepts in
the input sentence during question generation.
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Table 2. Statistics of the 4 experimental datasets.

Data source TriviaQA MCTest RACE LearningQ

Wikipedia

articles

Human-

generated

stories

Language

learning articles

Lecture

transcripts

# Articles 138,537 660 23,530 1,102

# Questions 138,537 2,640 64,120 7,621

# Avg. sentence/article 202.39± 173.12 18.93± 7.25 19.05± 7.05 42.89± 25.57

# Avg. words/sentence 27.19± 24.92 12.84± 6.47 17.36± 10.12 19.76± 12.48

# Avg. questions/article 1.00± 0.00 4.00± 0.00 2.73± 1.11 6.92± 1.80

Datasets. Generally, all datasets with questions and the corresponding articles,
which the questions are about, can be used to evaluate the selection strategies.
Our work aims at identifying the unique characteristics of sentences that can be
used to generate high-quality questions for educational practices, i.e., questions
that are natural and readable to people and contain pedagogical value. We,
therefore, select experimental datasets that contain natural questions designed
by humans instead of search queries [12,24] or cloze-style questions [16,17,25].
We also include datasets that are collected for not only educational purposes
but also non-educational purposes, e.g., those designed for the advancement
of machine reading comprehension, so as to underline the difference between
selecting sentences for the generation of learning questions and non-learning
questions. To summarize, we include the following datasets for experiments.

– TriviaQA [20] contains questions from trivia and quiz-league websites and
evidence articles gathered from web search and Wikipedia. Here we only
consider questions with evidence articles collected from Wikipedia, which
results in 138K question-article pairs.

– MCTest [31] consists of 660 stories written by crowd-workers and 2,000
associated questions about the stories.

– RACE [21] collects 23,000 reading comprehension articles for English learn-
ing and 64,000 assessment questions.

– LearningQ [5] contains both instructor-designed questions gathered from
TED-Ed and learner-generated questions gathered from Khan Academy. As
the learner-generated questions can be redundant about the same knowledge
concepts (i.e., same sentences), to avoid concept bias, we only include the
7,000 instructor-designed questions for experiments.

TriviaQA and MCTest are collected in non-educational settings: TriviaQA
questions mainly seek for factual details and the answers can be found as a
piece of text in the source article from Wikipedia, and MCTest questions are
designed for young children. RACE and LearningQ are collected in educational
settings: RACE questions are mainly used to assess students’ knowledge level
of English, whereas LearningQ covers a diverse set of educational topics, more
complex articles, and the questions require higher-order cognitive skills to solve.
Descriptive statistics of these datasets are given in Table 2.
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Automatic Evaluation Metrics. We adopt Bleu1, Bleu2, Bleu3, Bleu4,
Meteor and RougeL for evaluation (following [10]). Bleu-n scores rely on the
maximum n-grams for counting the co-occurrences between a generated ques-
tion and a set of reference questions; the average of Bleu is employed as the
final score [27]. Meteor computes the similarity between the generated question
and the reference questions by taking synonyms, stemming and paraphrases into
account [7]. RougeL reports the recall rate of the generated question with respect
to the reference questions based on the longest common sub-sequence [22].

Table 3. Examples of generated Questions and the corresponding source Sentences.

Grammaticality Clarity Usefulness

S1: As other sources of natural gas decrease, the
costs of non-renewable energies rise, and cutting-
edge technologies make renewable energies so acces-
sible
Q1: What is the source of natural gas decrease?

2 1 0

S2: The brain can solve complicated problems, and
grasp concepts such as infinity or unicorns.
Q2: What problems can the brain solve?

3 3 0

S3: When testing a new headache medication, a
large pool of people with headaches would be ran-
domly divided into two groups, one receiving the
medication and another receiving a placebo
Q3: How is a new headache medication tested?

3 3 1

Human Study. To gain better insights about the quality of the generated
questions, we recruited three native speakers of English to rate the quality of
200 randomly-selected questions (along with the corresponding source sentence
and article) generated from RACE and LearningQ, respectively. Specifically, we
considered three metrics here: Grammaticality, Clarity and Usefulness. Firstly,
we only presented a question to the evaluators and asked them to rate the
grammatical correctness of the question on a scale of [1, 3], with 3 being exactly
correct. Then, the corresponding sentence from which the question was generated
was presented to the evaluators and the evaluators were asked to specify how
clear the question was and to what extent the question was making sentence
given the input sentence on a scale of [1, 3], with 3 being very clear. Lastly, the
evaluators were presented with the source article (i.e., the article from which
the source sentence was selected) and rate the usefulness of the question for
learning (e.g., enabling a better understanding of the article, assessing students’
knowledge) on a scale of [0, 1] with 1 being useful and 0 being not useful at all.
The ratings given by the three evaluators for each metric were averaged as the
final rating for a question. Three examples of the generated questions along with
the source sentences and the corresponding human evaluation ratings are given
in Table 3. Due to the limited space, we omit the source articles in Table 3.
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3 Experiments

This section presents and compares the performance of our proposed strate-
gies for question-worthy sentence selection as evaluated across the considered
datasets.

3.1 Experimental Setup

To our knowledge, SQuAD [29] is the only dataset which contains ground-truth
labels for over 97,000 sentence-question pairs. In line with [10], we also use the
labeled input sentences and the corresponding questions in SQuAD for training
the question generator. We set the hyper-parameters as suggested in [10] and
use beam search (N = 3) to generate a question.

Articles can be of different lengths and thus possibly contain different num-
bers of question-worthy sentences (shown in Table 2). During experiments, the
number of selected sentences should be dependent on the number of ground-
truth questions gathered about an article: different ground-truth questions are
seeking for different details about the article, i.e., based on different question-
worthy sentences. We therefore evaluate each of the questions generated by dif-
ferent selected sentences against all the ground-truth questions of a article and
consider the result with the best performance as an indication of the selected
sentence matched with the ground-truth question.

3.2 Results and Analysis

Table 4 reports the results of the proposed sentence selection strategies on four
datasets. We highlight the top-3 strategies for each dataset. Based on these
results, several interesting findings are observed as follows.

For TriviaQA, Beginning achieves the best performance, indicating that
most questions in TriviaQA are about the first sentence in the source article.
Considering that the articles of TriviaQA are collected from Wikipedia, such
a result can be interpreted by the fact that the first sentences of Wikipedia
paragraphs/articles often contain the most important information worth asking
about [36]. This observation can be further verified by the well-performing results
given by LexRank and MRR – ranking at the 2nd and 3rd position, respectively
– which also identifies important sentences but uses a different method. Over-
all, these results show that importance-based strategies are more effective than
informativeness-based (e.g., Longest, Concept), difficulty-based (i.e., Hardest),
or novelty-based ones (i.e., Novel).

For the two datasets collected in educational contexts, namely RACE and
LearningQ, Longest, LexRank, and Novel generally show better performance
than the other strategies. Such a result suggests that questions in learning related
datasets are relevant to a more diverse set of sentences, i.e., those informative,
important, or contain novel information, a result is likely due to the diverse learn-
ing goals related to the questions. We further observe big gaps between these
three strategies and the remaining ones. For example, Longest, LexRank, and
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Table 4. Experimental results of automatic evaluation on TriviaQA, MCTest, RACE
and LearningQ. The top three results in each metric are in bold.

Datasets Strategies Bleu1 Bleu2 Bleu3 Bleu4 Meteor RougeL

TriviaQA Random 6.69 2.07 0.70 0.31 6.21 8.29

Beginning 9.42 3.67 1.51 0.74 6.66 10.70

Longest 3.37 1.21 0.45 0.21 3.57 8.67

Hardest 1.99 0.66 0.23 0.11 2.37 6.84

ConceptMax 0.73 0.19 0.06 0.02 1.63 4.04

ConceptTypeMax 1.94 0.57 0.19 0.08 2.94 6.02

LexRank 8.79 3.11 1.14 0.52 5.54 9.81

MMR 7.13 2.44 0.92 0.42 5.06 8.93

Novel 3.25 1.12 0.42 0.20 3.47 8.28

MCTest Random 4.18 1.41 0.55 0.21 7.04 16.46

Beginning 4.69 1.56 0.63 0.27 7.93 17.36

Longest 5.75 1.99 0.79 0.29 9.95 17.96

Hardest 4.41 1.42 0.51 0.18 7.53 16.73

ConceptMax 3.92 1.48 0.60 0.27 5.72 16.71

ConceptTypeMax 4.01 1.49 0.60 0.28 5.89 16.66

LexRank 5.24 1.85 0.70 0.22 8.55 18.13

MMR 4.53 1.53 0.57 0.22 7.52 17.20

Novel 4.92 1.58 0.57 0.20 9.15 17.14

RACE Random 4.24 1.28 0.45 0.20 5.74 11.47

Beginning 4.50 1.33 0.43 0.18 5.95 11.82

Longest 6.48 2.08 0.74 0.33 7.83 12.84

Hardest 4.36 1.35 0.47 0.21 5.51 11.60

ConceptMax 2.74 0.86 0.34 0.16 3.41 10.69

ConceptTypeMax 2.78 0.88 0.35 0.17 3.45 10.71

LexRank 5.47 1.73 0.63 0.29 6.79 12.59

MMR 4.45 1.39 0.51 0.24 5.78 11.75

Novel 5.89 1.80 0.61 0.26 7.59 12.32

LearningQ Random 5.66 1.48 0.43 0.14 5.55 14.83

Beginning 5.02 1.29 0.37 0.13 5.13 14.53

Longest 6.34 1.81 0.57 0.22 9.10 16.86

Hardest 5.92 1.60 0.52 0.21 5.77 15.48

ConceptMax 4.57 1.25 0.40 0.16 4.77 14.20

ConceptTypeMax 4.75 1.29 0.41 0.16 4.91 14.24

LexRank 6.74 1.91 0.62 0.26 7.44 16.40

MMR 5.86 1.53 0.47 0.17 5.72 15.12

Novel 6.00 1.64 0.50 0.17 8.93 16.28
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Novel are the only strategies achieving Bleu1 scores greater than 5 and MeteorL

scores greater than 6 on RACE. This observation reveals that sentence selection
strategies based on similar sentence properties however measured through dif-
ferent textual features (e.g., Longest vs. Concept and LexRank vs. Beginning)
can have big variance in terms of performance. This highlights the importance
of selecting appropriate textual features in question-worthy sentence selection.

Similar results also hold on the MCTest dataset: Longest, LexRank, and Novel
generally achieve good performance, which suggests that questions in MCTest
are also relevant to a diverse set of sentences. On the other hand, strategies
such as Beginning and ConceptMax also perform well on several metrics, signi-
fying that different measures of sentence properties (e.g., informativeness using
Longest and ConceptMax ) do not necessarily lead to highly different sentence
selection results on MCTest. Despite this, we can observe that LexRank is the
only sentence selection strategy consistently ranking in top-3 across all the 4
datasets, demonstrating its robustness against all the other compared strategies.

Table 5. Experimental results of human evaluation on RACE and LearningQ.

Grammaticality Clarity Usefulness

RACE 2.12 1.92 0.53

LearningQ 1.87 1.34 0.22

Table 5 reports the human evaluation results on 200 questions randomly
selected from RACE and LearningQ, whose source sentences were selected by
applying the best-performing strategies, i.e., Longest and LexRank, respectively.
Compared to LearningQ questions, RACE questions have higher ratings across
all metrics, which indicate that RACE questions are more readable and making
better sense to people. This can be explained by the fact that RACE only con-
sists of articles and questions used for English learning, while LearningQ covers
a wide range of subjects ranging from arts and humanities to science and tech-
nology; as well LearningQ articles are much longer and contain relatively more
diverse sentence and question patterns. Correspondingly, this poses more chal-
lenges to the question generator to deliver high-quality questions. Noticeably, in
terms of Usefulness, the ratings are 0.53 and 0.22 on the 0–1 scale for RACE
and LearningQ, respectively. This indicates that only about 50% and 20% of
the generated RACE and LearningQ questions respectively can be used for edu-
cational practices. This is in line with previous findings from [5] and demands
further investigations to improve the existing architectures for educational ques-
tion generation.

4 Conclusion and Future Work

Question-worthy sentence selection is an important however largely ignored topic
in automatic generation of educational questions. This paper presented a sys-
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tematic study on nine sentence selection strategies inspired by different question-
asking heuristics. Extensive experiments showed that LexRank, which selects
important sentences from articles by calculating eigenvector centrality in a graph
of sentence similarities, gave robust performance across multiple datasets. Our
experimental results also revealed that the beginning sentence in an article is
often worth questioning about in non-educational settings, while questions in
educational contexts feature a more diverse set of source sentences that are
informative, important, or contain novel information. Also, we demonstrated
that there is quite some improvement space for developing effective educational
question generation architectures. These findings inspire our future research to
combine multiple strategies for selecting question-worthy sentences in learning
contexts and improve the design of existing educational question generation
architectures by applying techniques such as reinforcement learning [32] and
generative adversarial networks [14].
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Abstract. Automatic item generation enables a diverse array of ques-
tions to be generated through the use of question templates and
randomly-selected parameters. Such automatic item generators are most
useful if the generated item instances are of either equivalent or pre-
dictable difficulty. In this study, we analyzed student performance on
over 300 item generators from four university-level STEM classes col-
lected over a period of two years. In most cases, we find that the choice
of parameters fails to significantly affect the problem difficulty.

In our analysis, we found it useful to distinguish parameters that were
drawn from a small number (<10) of values from those that are drawn
from a large—often continuous—range of values. We observed that values
from smaller ranges were more likely to significantly impact difficulty, as
sometimes they represented different configurations of the problem (e.g.,
upward force vs. downward force). Through manual review of the prob-
lems with significant difficulty variance, we found it was, in general, easy
to understand the source of the variance once the data were presented.
These results suggest that the use of automatic item generation by college
faculty is warranted, because most problems don’t exhibit significant dif-
ficulty variation, and the few that do can be detected through automatic
means and addressed by the faculty member.

Keywords: Automatic item generation · Item models

1 Introduction

In classroom settings, computerized assessment offers many advantages com-
pared to paper-based assessment, in both formative and summative assess-
ment. In both contexts, it enables automatically grading a wide range of prob-
lem types [26], which reduces grading workloads, and provides students with
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immediate feedback [3], which has been shown to improve learning [22]. In for-
mative assessment, computerized assessment enables mastery-oriented pedago-
gies [6,18] where students can repeat problem types until mastery is demon-
strated, and it permits assigning different problems to each student to discour-
age plagiarism [23]. In summative assessment, computer-based testing enables
more authentic item types (e.g., programming exams on computers where com-
pilers and debuggers are available), reduces the overhead of exam administration,
especially for large classes [27] and permits the use of adaptive testing [19].

Many of these applications of computer-based assessment benefit from large
pools of problems. One proposed method of generating a large collection of prob-
lems is automatic item generation (AIG) [13,17], where item instances (items)
are generated by instantiating parameterizable problem templates with specific
values (see Sect. 2.1). AIG has been used across a broad range of disciplines [15]
and has proven useful for generating large pools of items.

AIG is most useful, however, if the item instances produced by an item gen-
erator are of similar difficulty, or at minimum of a predictable difficulty. Previous
research has shown that generally there is variation in psychometric properties of
the item instances (items) produced by an item generator (item model), but that
variation tends to be smaller than the variation between generators [1,2,7,10–
12,16,20,21,24]. There is a growing consensus that calibration should be done at
the level of the item generator, using a multi-level strategy where item instances
are nested within item generator [7,9,11,14,25].

This previous work, however, has largely focused on questions designed by
psychometricians for standardized testing. For wide spread adoption of AIG
across educational contexts, it is important to understand the extent to which
disciplinary experts that are not experts in test construction can construct AIGs.

In this paper, we study AIG item difficulty variance in an ecologically-valid
higher-education setting where university faculty members have written AIGs
for use in both computerized homework and exams in large-enrollment STEM
courses. We analyze student exam performance across a two-year time period on
a collection of over 300 AIGs. We believe this also represents the largest reported
study of AIGs to date. We describe our experimental data in detail in Sect. 2.

Our analysis focuses on how the choice of parameters for a given problem
affects its difficulty. Methodologically, we found it necessary to break our analysis
of parameters into two separate groups. In the first group, the number of unique
values of the parameter was small (<10), which meant that we had sufficiently
many samples for each parameter to use the hybrid Fisher’s exact test to check
for significant variation in difficulty between the parameters. The analysis of
these discrete parameters is presented in Sect. 3. In the other group, the number
of unique parameters was large enough that only a few samples were available
for many of the parameter values, and for some parameters every student had
a unique value. For this continuous parameter group, we used the Kolmogorov-
Smirnov test, as described in Sect. 4.

In this analysis, we find that the vast majority of the AIGs studied can
be characterized as uniform generators, in that their generated instances are
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of equal difficulty (or at least any differences in difficulty are too small to be
detected). In our university-level STEM context, the few non-uniform genera-
tors—where some instances are significantly harder than others—that we found,
were more frequently due to discrete parameters that represented different “con-
figurations” of the problem. University STEM students may be largely insensitive
to the specific numbers in problems because they are allowed to use calculators.
Our paper makes the following contributions:

1. We demonstrate the utility of using the Kolmogorov-Smirnov test to analyze
the difficulty variance in AIG with many unique parameter values,

2. We provide evidence that faculty that are disciplinary content experts, but not
experts in test construction or psychometrics, are largely capable of writing
AIGs without significant difficulty variation, and

3. We find that once an AIG has been identified as having significant difficulty
variance, it is generally easy to understand the source of the variance. This
suggests that an automated analysis tool could be used by disciplinary faculty
to correct item generators or divide an item generator into a collection of item
generators that each have a stable difficulty.

2 Experimental Data

The data was collected at a large R1 university in the US from Fall 2016 to
Summer 2018. The four courses studied are drawn from introductory sequences
in Electrical & Computer Engineering (electronics) and Mechanical Engineering
(statics, dynamics, and solid mechanics). These courses administered a signifi-
cant part of their summative assessments in a Computer-Based Testing Facility
(CBTF) via the PrairieLearn system. With IRB approval we obtained all the
PrairieLearn data collected in the CBTF.

2.1 PrairieLearn and the Computer-Based Testing Facility

In their simplest conception, two components comprise AIGs: a template (or
model) providing the structure of the question and a computation that randomly
parameterizes this template (see Fig. 1) [4]. AIGs, however, can be quite sophis-
ticated, if enabled by the authoring tool. The courses studied in this paper use
the PrairieLearn LMS [26], which permits authors to write an arbitrary piece
of server-side code and use the full power of HTML5/JavaScript to render a
question. This enables questions to not just populate text templates, but also
programmatically generate images (e.g., pictures of beams with forces in differ-
ent places) and provide client-side interaction, e.g., providing in-browser CAD
tools for students to design finite-state machines.

PrairieLearn can be used for both online homework and for exams. The data
for this paper was drawn from exams, which we believe—due to their higher
stakes and better security—to be more reliable. The exams in question were
taken in a Computer-Based Testing Facility (CBTF) [27], which is a proctored
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Fig. 1. A simple automatic item generator involving a computation that generates a
pair of random numbers which are used in a template to generate an item instance.

physical computer lab where the tests are available. To support classes with hun-
dreds of students with an 85-seat computer lab, CBTF exams are asynchronous;
students can choose when to take their CBTF exam during a 3-day period.
As such, each student’s exam is uniquely generated when they take the exam;
PrairieLearn supports both AIGs for random problem parameterization and ran-
domly selecting from a pool of AIGs for a given slot on the exam. PrairieLearn
exams are not adaptive, so the sub-population receiving any given problem is an
unbiased random sample of the class’s population.

2.2 Detailed Data Specification

For each class in each semester, we obtained the information of all generated
items in the form (class ID, semester ID, exam ID, generator ID, prob-
lem parameters, student ID, score). The class, semester, exam, genera-
tor, and student IDs are unique identifiers that differentiate between classes,
semesters, exams within a semester (retained across semesters), generators, and
students. The problem parameters are a list of parameter-value pairs used by
the item generator to generate an item. The value of each parameter can be an
integer, a real number, a string, or a container (dictionary or array) containing
further parameters. The score is an integer that is 1 if the student’s submitted
answer was correct and 0 if the submitted answer was incorrect. For questions in
PrairieLearn that allowed multiple attempts, we only extracted the first scored
student submission. Course details can be found in Table 1.

Table 1. The four courses studied have, in aggregate, 378 unique AIGs.

Course Number

of item

generators

Number

of discrete

parameters

Number

of continuous

parameters

Number

of exams

Number

of semesters

Number

of students

Number

of item

instances

Number

of unique

item

instances

Class A 92 213 69 3 4 1,670 40,496 12,063

Class B 116 243 269 7 4 1,532 31,538 23,353

Class C 93 398 234 6 7 1,473 58,157 46,799

Class D 77 153 269 7 4 940 21,430 18,792

To facilitate the analysis, we performed the two preprocessing steps. First,
we dropped the semester ID to merge data across semesters to obtain the best
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statistical power possible. We did not, however, drop exam ID (giving us 432
unique combinations of class ID, exam ID and generator ID) as some AIGs were
used in multiple exams within a semester, and students’ performance on an AIG
might vary across the different exams. Second, we flattened containers (dictio-
naries or arrays) with less than 10 elements to facilitate studying the parameters
in the containers independently. The 10-element cutoff prevents flattening arrays
that contain hundreds of real values. After this flattening, the AIGs had a total
of 1,848 parameters (4.88 parameters/AIG).

Some of these parameters had a small number of discrete values, while other
were drawn from large, often continuous, ranges (e.g., floating-point numbers).
These two classes of parameters required different statistical approaches and
so were analyzed independently. As our AIGs, in general, had both discrete
and continuous parameters, we have chosen to formulate the analysis in terms of
parameters to identify the parameters that have a significant impact on difficulty.

3 Discrete Parameters

3.1 Analysis Method for Discrete Parameters

For each unique combination of (class ID, exam ID, generator ID), we first
considered all of the discrete parameters of the item generators. For each dis-
crete parameter, we computed a 2 × n contingency table between the score and
the parameter values, where n is the number of unique values of the parame-
ter. Table 2 shows an example contingency table where n = 2. With the con-
tingency table, we applied the hybrid Fisher’s exact test to obtain a p-value
describing whether the score is dependent on the parameter values. The hybrid
Fisher’s exact test is a combination of Fisher’s exact test and the chi-squared
test. Specifically, a chi-squared test is performed when Cochran’s rule [8] (no cell
has expected counts less than 1 and more than 80% of the cells have expected
counts at least 5) is satisfied, otherwise Fisher’s exact test is performed. The
null hypothesis of the test states that the score is independent of the parameter
values. A small p-value would indicate that the null hypothesis is not likely true
and thus we may want to reject it.

Table 2. Example contingency table.

Score Parameter value Total

Left Right

0 399 275 674

1 96 250 346

Total 495 525 1,020

With the above method, the data resulted in 1,223 contingency tables. Such a
large number of hypothesis tests introduces the multiple testing problem, which
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states that running large number of hypothesis tests without correction will
unavoidably end up with rejected null hypotheses (discoveries) that shouldn’t
have been rejected. For example, if we run 1,000 hypothesis tests with α =
0.05, even if all null hypotheses are true, we still expect about 50 (= 1, 000 ×
0.05) of them to be rejected. To address this issue, we employed the Benjamini-
Yekutieli procedure [5] which provides a bound on the percentage of rejected
null hypotheses that shouldn’t have been rejected, regardless of the dependency
structure of these tests.

3.2 Results for Discrete Parameters

We conducted the hybrid Fisher’s test on the 1,223 contingency tables and
obtained the same number of p-values. We sorted the p-values from the small-
est to the largest and plotted them in this sorted order in Fig. 2. The way the
Benjamini-Yekutieli procedure works is that it draws a line passing through the
origin with slope α/(NHN ) where N is the number of hypothesis tests to be per-
formed and HN is the partial sum of the first N terms in the harmonic series.
The Benjamini-Yekutieli procedure states that the points below this straight line
correspond to significant results where the points above correspond to insignif-
icant results. Figure 2 shows there are 17 points below the line, which suggests
that there are 17 significant cases (that is, 17 discrete parameters causing non-
uniform generators).

100 101 102 103

k (index of sorted p-values {pk})

10−22

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

p
-v

al
ue

Significant Insignificant

k = 17.5

Fig. 2. Distribution of p-values for discrete parameters, log log version.

With the significant cases identified, we computed the non-uniform parameter
fraction for discrete parameters to be 1.39% (95% CI [0.73, 2.05]), and plotted
it as the first bar of Fig. 3a. We also computed the average maximum difference
in correct rate for discrete parameters, which is calculated by iterating over each
non-uniform parameter discovered by discrete parameter analysis, finding the
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pair of parameter values that gives the maximum difference in correct rate, and
then averaging this over all non-uniform parameters. The result is 25.97% (95%
CI [21.14, 30.80]), and we plotted it as the first bar of Fig. 3b.
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Fig. 3. (a) The non-uniform parameter fraction for each parameter type. (b) The aver-
age maximum difference in correct rate for parameters that we detected as non-uniform.

3.3 Manual Analysis of Outliers for Discrete Parameters

Figure 4a shows one of the seventeen non-uniform AIGs with a problematic dis-
crete parameter. This AIG asked students to find either the x or y component
of the velocity of a particle, given its speed, a description of its path, and its
direction—either “left” or “right”—along this path. Figure 4b shows that stu-
dents are significantly more likely to answer the item generator incorrectly when
the direction of motion is “left.” This result is easily explained by noting that a
common mistake is neglecting to flip the sign of the velocity—from positive to
negative—when the particle is moving to the left. Post-hoc analysis verified this
hypothesis. As shown in Fig. 4b, percent incorrect was originally 80.6% for left
and 52.4% for right. If we treat all cases in which students made a sign error as
correct, then these results become 53.0% for left and 50.3% for right—in other
words, the significant variation disappears. Difficulty variation in the sixteen
other non-uniform generators could be similarly explained.

4 Continuous Parameters

4.1 Analysis Method for Continuous Parameters

Similar to the discrete parameter case, we considered the continuous parameters
for each unique combination of (class ID, exam ID, problem ID). We excluded any
string– or container–valued parameters from the analysis. For each parameter,
we grouped the parameter values based on the corresponding score. This divides
parameter values into two groups (those answered correctly and those answered
incorrectly). We then applied the Kolmogorov-Smirnov test to the two groups
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Fig. 4. (a) A non-uniform AIG with a problematic discrete parameter. (b) Percent
correct as a function of a two-valued parameter.

of parameter values to examine if the two groups of parameter values are likely
to be drawn from the same distribution. If the p-value from the Kolmogorov-
Smirnov test is small, then it is likely that the two groups of parameter values
are from different distributions, which indicates that this particular parameter
can alter the difficulty of the item generated.

With the above method, the data resulted in 947 hypotheses tests to be
performed. We again applied the Benjamini-Yekutieli procedure to resolve the
multiple testing problem as in the discrete parameter case.
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Fig. 5. Distribution of p-values for continuous parameters, log log version.

4.2 Results for Continuous Parameters

We again plotted the sorted p-values against the index and the straight line used
by the Benjamini-Yekutieli procedure in Fig. 5. As the figure shows, there are 4
points below the line, which indicates that there are 4 significant cases (that is,
4 continuous parameters producing non-uniform generators).
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Similarly to the discrete parameter case, we computed the non-uniform
parameter fraction for continuous parameters to be 0.42% (95% CI [0.01, 0.84]),
and plotted it as the second bar of Fig. 3a. We also computed the average maxi-
mum difference in correct rate by treating the continuous parameters as discrete
and using the procedure in Sect. 3.2, to obtain 51.37% (95% CI [15.21, 87.53]),
and we plotted this as the second bar of Fig. 3b.

With the number of significant cases computed for both discrete and con-
tinuous parameters, we performed a t-test to examine if there is a difference in
non-uniform parameter fraction for these two types of parameters. The p-value
for this test is 0.0146, which indicates that there is a statistically significant
difference in the probability of a discrete parameter producing a non-uniform
generator versus the probability of a continuous parameter doing so. We also
performed a t-test on the average maximum difference in correct rate between
the two types of parameters, and the p-value is 0.1093, which suggests that there
isn’t enough evidence to conclude that one type of parameter is more damaging
to fairness than the other.

To understand the overall behavior of parameters, we also computed the non-
uniform parameter fraction for the two types of parameters combined, which
is 0.97% (95% CI [0.56, 1.38]). We plotted it as the third bar of Fig. 3a. We
also computed the average maximum difference in correct rate for both type of
parameters combined, which is 30.81% (95% CI [23.58, 38.04]). We plotted it
as the third bar of Fig. 3b. In total, there were 20 non-uniform generators (17
discrete and 4 continuous non-uniform parameters, with two of them appearing
on a single generator).
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Fig. 6. (a) One of the non-uniform AIGs we found where a continuous parameter
significantly affects difficulty. (b) Percent correct as it varies with this continuous
parameter—note the change in difficulty between positive and negative values.
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4.3 Manual Analysis of Outliers for Continuous Parameters

Figure 6a shows one of the four non-uniform AIGs with a problematic continuous
parameter. This generator asked students to find the polar coordinates (r, θ) of a
point, given its Cartesian coordinates (x, y). Figure 6b shows, in particular, that
students are significantly more likely to answer this AIG correctly when x > 0.
This result is easily explained by noting that θ must be computed with an arc-
tangent and that a common mistake is not to use the four-quadrant arc-tangent
function. The arc-tangent and the four-quadrant arc-tangent are the same for
precisely those points for which x > 0. Post-hoc analysis verified this hypothesis.
As shown in Fig. 6b, percent incorrect was originally 32.8% when x < 0 and
16.8% when x > 0. If we treat all cases in which students used the arc-tangent
instead of the four-quadrant arc-tangent as correct, then these results become
20.8% when x < 0 and 16.8% when x > 0—in other words, the significant
variation disappears. The continuous parameter variation in difficulty indicated
by our analysis in the other three item generators can be similarly explained.

5 Limitations

There are three limitations in the current work. The first limitation is that
the continuous parameter analysis only considered parameters with numerical
values. This was done so that there was a natural ordering of parameter values,
which is necessary for the Kolmogorov-Smirnov test to be applied (the K-S test
needs to construct a cumulative density function). For parameters that have
string-valued or complex-object-valued parameters, it is not immediately clear
how to apply our analysis framework. We note, however, that our analysis of
discrete parameters does not suffer from this issue.

The second limitation concerns the interactions of parameters. Both the
hybrid Fisher’s exact test and the Kolmogorov-Smirnov test can only handle a
variable with a single dimension, so they are not applicable to multi-dimensional
variables. This can fail to capture interesting interactions between parameters
that could make the item instance easier or harder. For example, suppose an
item generator has two parameters, which give coordinates in the typical Carte-
sian coordinate system. It is entirely possible that item instances with points
in the first and third quadrants are harder while those with points in the sec-
ond and forth quadrants are easier. None of the methods that focus on a single
parameter at a time would be able to capture this difference. The only way to
discover this kind of interaction would be to apply methods that can handle
multi-dimensional data. Unfortunately, the increase of dimensions can result in
the curse of dimensionality, since the increase of dimensionality means that more
data points are necessary for any method to draw a solid conclusion. This would
be an interesting direction for future research.

The third limitation relates to the study’s generalizability. Since the data is
collected in introductory engineering courses at an R1 institution in the US, it
is unclear how well these results apply to K-12 education and other institution
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types in other countries. It is also unclear how applicable these results are to non-
STEM disciplines, as the questions in the courses studied were highly numerical.

6 Conclusion

Of the 378 AIGs that we studied, we found only 20 of them (5.3%) to have param-
eters that led to statistically significant difficulty variation. From this study, we
conclude that there is reason to be cautiously optimistic about the potential for
university STEM faculty to author uniform AIGs. We believe that AIGs have
the potential to improve the efficiency and effectiveness of many educational
contexts, and this result suggests that instructors can be trusted to develop
AIGs.

Furthermore, we found that the source of the variation of non-uniform AIGs
was frequently very easy to comprehend when the parameter that led to the
variance was identified. This suggests to us that an automated analysis run after
every exam, much in the way that standard psychometrics tests are run, can be
used to bring problematic generators to the faculty member’s attention. All of
the instances we observed could be fixed by one of three methods: (1) removing
a particularly problematic parameter value (e.g., 0), (2) splitting the generator
into multiple generators (e.g., one for quadrants 1 and 2 and the other for 3 and
4), or (3) shifting the range of a given parameter. We did have one generator
that required a few hours to track down the source of the difficulty variance, and
it came down to an incorrect problem solving strategy working for part of the
parameter range and not for the rest; this could be addressed by excluding the
problematic part of the range from the question.

Finally, we observed that discrete parameters were more likely to be the
cause of non-uniform generators than continuous parameters. One hypothesis
for this observation is that, in the engineering problems we studied, the continu-
ous parameters often represented the real-numbered values of forces or voltages
or distances. Our students generally use calculators when working with these
numbers and the equations necessary to solve the problems, making the precise
numerical values less important in determining question difficulty.

References

1. Arendasy, M.E., Sommer, M.: Using automatic item generation to meet the increas-
ing item demands of high-stakes educational and occupational assessment. Learn.
Individ. Differ. 22(1), 112–117 (2012)

2. Attali, Y.: Automatic item generation unleashed: an evaluation of a large-scale
deployment of item models. In: Penstein Rosé, C., et al. (eds.) AIED 2018. LNCS
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Abstract. Summarization is an effective strategy to promote and enhance
learning and deep comprehension of texts. However, summarization is seldom
implemented by teachers in classrooms because the manual evaluation of stu-
dents’ summaries requires time and effort. This problem has led to the devel-
opment of automated models of summarization quality. However, these models
often rely on features derived from expert ratings of student summarizations of
specific source texts and are therefore not generalizable to summarizations of
new texts. Further, many of the models rely of proprietary tools that are not
freely or publicly available, rendering replications difficult. In this study, we
introduce an automated summarization evaluation (ASE) model that depends
strictly on features of the source text or the summary, allowing for a purely text-
based model of quality. This model effectively classifies summaries as either
low or high quality with an accuracy above 80%. Importantly, the model was
developed on a large number of source texts allowing for generalizability across
texts. Further, the features used in this study are freely and publicly available
affording replication.

Keywords: Natural language processing � Summarization � Discourse �
Writing � Machine learning � Summary scoring

1 Introduction

There are a number of different strategies to teach students to comprehend and produce
text, including text summarization [1]. Indeed, a recent meta-analysis indicated that
summarization techniques improve comprehension in over 90% of studies [2]. Text
summarization is unique in that it allows students to read and comprehend short texts
and then demonstrate their understanding of those texts in writing. Thus, summariza-
tion taps into both reading and writing skills, essentially writing to learn. Research has
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demonstrated that summarization effectively promotes learning, enhances deeper
understanding of domain topics [3–5] and helps students practice critical academic and
life skills including distinguishing relevant from irrelevant material and integrating new
information with prior knowledge [6]. Written summaries also provide students with
the opportunity to practice writing skills including writing objectively, communicating
main ideas, paraphrasing, and developing cohesive structures [7–10].

While multiple studies have shown that summarization techniques benefit students,
learning to write summaries requires practice. Students often write too much, write too
little, copy verbatim, or fail to appropriately synthesize information [11]. Fortunately,
summarization strategies can be taught and are effective for a wide range of students,
including less skilled readers [12, 13], language learners [14], and students with
learning disabilities [15]. Indeed, a meta-analysis reported that the average weighted
effect size for summarization instruction for adolescent learners (Grades 4–12) was
quite large [16].

Instruction and practice enhance summarization skills; however, it is challenging for
teachers to implement summarization tasks because evaluating summaries requires
effort and time [17, 18]. In response, a number of methods have been developed for
automated summarization evaluation (ASE) in order assess textual elements related to
summaries including integrated content, accuracy of content, language use, and text
coherence [17, 19–24]. However, many of these approaches rely on specific information
outside of the text to predict summarization quality (e.g., expert summarizations of the
source text) or depend on text features that are not publicly available. Such limitations
make these approaches less generalizable, difficult to replicate, and problematic to
implement in a dynamic learning environment. Thus, the purpose of this study is to
develop an automated linguistic model of text summarization quality that is founded on
natural language processing (NLP) features that are publicly available and do not require
topic specific data. We do so by analyzing over 1,000 summaries collected through
crowd-sourced and traditional techniques. The summaries were written on over 30
prompts providing some assurance that an algorithm gleaned from them will be gen-
eralizable. In addition, the bases for our algorithm are linguistic features that are freely
and publicly available to all researchers to facilitate replication of our results. Our goal is
to develop an ASE model that can be used to inform on-line tutoring and feedback
systems and in turn provide strategy instruction to students as well as formative and
summative feedback to writers regarding the quality of their summaries.

1.1 Summarization

Good summaries provide a concise overview of the most important content in a given
passage. To do so, individuals need to construct a coherent, accurate mental model of
the passage and paraphrase it using concise statements [25, 26]. Thus, successful
summarization depends on (at least) two processes: comprehending source material and
reproducing the key elements of that material. Generally speaking, this is achieved
through the processes of reading and writing. Successful summarization depends on
identifying main ideas and their supporting ideas as well as detecting the rhetorical and
organizational structures of the source text [3, 27]. Once these textual elements have
been identified, the content of the source text needs to be reproduced by
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communicating the main points of the text, generally in writing, by using inferences or
generalizations, omitting unimportant details, rephrasing portions of the text, using
objective language, and developing cohesive structures [8, 9, 11, 27].

Summary writing enhances reading comprehension [3, 4] by encoding and
strengthening the retention of information [28–30]. Summarizing texts may also
improve the retention of information to a greater degree than other educational tasks
including argumentative writing [12], short-answer questions [31], and both fill-in-the-
blank and multiple-choice questions [32]. Summary writing also helps develop writing
skills, requiring students to convey information in a succinct manner in one’s own
words and build coherence through well connected sentences [25, 33].

1.2 Automated Summarization Evaluation (ASE)

Research has demonstrated the benefits of using summarizations in education settings,
but the adoption of summarization tasks is not widespread. Manually scoring sum-
maries is time-consuming and potentially subjective [17, 18]. Automatically assessing
summary quality can help alleviate time constraints and, as a result, has become an
important component of many educational technologies. Specifically, researchers are
interested in how summarizations can be scored automatically using linguistic and
semantic features of the summary and the source text and how these same features can
be used to provide feedback to learners in online educational systems [17].

In assessing summary quality, the most important criterion is the inclusion of
complete and accurate content that is consistent with the source text [17, 22–24]. There
are a number of different approaches that have been used to automatically assess
summary quality including overlap of key n-grams between source and summaries,
examining lexical and semantic overlap between source texts and their summaries (or
expert summaries), and the use of rhetorical devices in summaries including connec-
tives. Perhaps the most common approach is the use of Latent Semantic Analysis
(LSA) to assess overlap between summaries and their sources. LSA is a mathematical
method to represent the meaning of words and text segments based on large text
corpora, and in turn, the extent to which documents are semantically related to one
another [20, 21]. Early work by Landauer et al. [34] focused on assessing students’
reading skills by their ability to summarize short articles or excerpts from leveled
readers within a system called Summary Street. Studies on Summary Street indicated
that students receiving feedback from the system performed better than those in control
groups [5, 35]. Other research has examined the potential for LSA to assess summa-
rization quality using semantic overlap between student summaries and the source text
as well as between student summaries and high-quality summaries written by peers and
experts. These studies have shown that that semantic similarity with the expert rater
summary [17, 19] and highly rated peer summaries [17] explain significant amounts of
variance in human judgments of summarization quality.

Other researchers have relied on n-gram (i.e., multi-word phrases) overlap between
summaries and source texts and linguistic features within summaries to predict sum-
marization quality. For instance, Madnani et al. [22] successfully predicted summary
scores using n-gram overlap between the summary and the source text, lexical and
phrasal overlap between the student summary against a set of model (or reference)

86 S. A. Crossley et al.



summaries that received the highest score, the ratio of n-grams copied from the source
text, number of sentences in the summary, and incidence of discourse connector terms
in the summary. In a later study, Sladoljev-agejev et al. [24] examined automated
scoring of summaries for two source texts in the assessment of college-level writing in
English as a second language using six analytic rubrics related to accuracy, com-
pleteness, relevance, coherence, cohesion and text organization. They used linguistic
features related to n-gram overlap between summaries and source texts and between
summaries and reference summaries along with linguistic indices computed by the
NLP tool Coh-Metrix [36, 37]. They also found that accuracy was related to n-gram
overlap and that scores for the other analytic features were only predicted by indices
related to connectives and referential cohesion.

1.3 Current Study

In the current study, our objective is to improve upon previous studies by developing a
an AES model that depends solely on textual features within the source text or in the
summary – in essence, any text any time. In practice, this means that none of the
features used to predict summarization quality are based on sources outside of the text
allowing us to develop a model that can be extended to new source texts. To make
potential extensions more reliable, we develop our model using a wide variety of
source texts (n = 30). Further, the text features we use to develop our model are freely
and publicly available ensuring that replications are possible.

2 Method

2.1 Data

A total of 1,023 summaries were collected from adult participants in the United States.
Among them, 792 summaries of 30 different source texts were collected using the
Amazon Mechanical Turk (MTurk) online research service. The MTurk workers in this
study were asked to each write one summary on three different topics. The remaining
231 summaries were produced by adults who read at less than ninth grade level (i.e.,
adult literacy population). These participants were asked to each write a summary on
two different source texts. Source texts were on unrelated topics ranging from child
safety to internet shopping. The source texts were given by the California Distance
Learning Project (CDLP), with permission from the Sacramento County Office of
Education. The CDLP texts are simplified news stories that are developed to be read by
low-literate adults to improve their comprehension skills [18]. Each of the CDLP texts
was between four and eight paragraphs and ranged from 128 to 452 words (SD =
73.900 words). Flesch-Kincaid grade level was between 4th and 8th grade (SD =
1.100) for all texts. On average, each source text was summarized by 31 participants
(SD = 27.644). The minimum number of participant summaries per text was 20 while
the maximum was 129. Participants were given instruction on how to write a summary,
shown a text, and then asked to summarize the text. No demographic or individual
difference information was collected for the MTurk workers, while this information
was collected for the adult literacy population.

Automated Summarization Evaluation (ASE) Using Natural Language 87



2.2 Summary Rating

The summaries were scored by two expert raters using an analytic scoring rubric that
focused on inclusion of main ideas, accuracy of main ideas, and appropriate length. All
analytic features were on a 0–3 scale. Before rating the summarization, the raters
examined the original texts independently and identified main ideas. Through adjudi-
cation, the raters created a finalized list of main ideas for each source text. During
scoring, the raters referenced this list of main ideas. For the current analysis, we only
focus on the inclusion of main ideas in the summary. Raters gave the summary a score
of 3 if the summary included all main ideas, a score of 2 if the summary included most
of the main ideas, a score of 1 if the summary included some main ideas, and a score of
0 if the summary included no main ideas. Expert raters were first trained with an
independent set of summaries that were not part of the final corpus of summary. Once
the raters were normed, they then scored the entire corpus of summaries independently.

2.3 Linguistic Features

Four NLP tools were used to collect information about the lexical sophistication,
syntactic complexity, lexical diversity, and cohesion of the summaries. These tools
were the Tool for the Automatic Analysis of Lexical Sophistication (TAALES) [38],
and the Tool for the Automatic Analysis of Syntactic Sophistication and Complexity
(TAASSC) [39], the Tool for the Automatic Analysis of Lexical Diversity (TAALED,
a beta version), and the Tool for the Automatic Analysis of Cohesion (TAACO) [40].
These tools were selected because they are freely available, open-source, and well
documented: all features that allow for replicability. Each is briefly discussed below.

TAALES. TAALES calculates lexical and phrasal features, such as lexical frequency
(i.e., how often a word occurs in a reference corpus), psycholinguistic word infor-
mation (e.g., human ratings of familiarity, imageability, and concreteness), and n-gram
(i.e., sequences of contiguous words) frequency (i.e., how often an n-gram occurs in a
reference corpus). In calculating indices related to frequency, various reference corpora
are used, such as the SUBTLEXus corpus of subtitles [41] and the Corpus of Con-
temporary American English (COCA) [42]. Indices are calculated using all words,
content words, or function words.

TAACO. TAACO computes indices related to textual features and text cohesion, such
as type-token ratios (TTRs; the number of types [unique words] divided by the number
of tokens [total running lemmas]), sentence overlap, paragraph overlap, and connec-
tives (e.g., moreover and nevertheless). Overlap indices are calculated based on lemma
overlap and semantic overlap (e.g., using LSA and vector-representation-of-words
[word2vec]). TACCO also provides source-text similarity indices using LSA, latent
dirichlet allocation (LDA), and word2vec.

TAALED. TAALED calculates lexical diversity indices, such as the measure of
textual lexical diversity (MTLD; the mean length of sequential word strings in a text
that maintain a given TTR value) [43] and Moving-average TTR (MATTR). Indices
are calculated using all lemmas, content lemmas, function lemmas, or bi-grams.
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TAASSC. TAASSC computes indices related to clausal and phrasal indices of syn-
tactic complexity and indices related to complexity of verb-argument constructions
(defined as a main verb plus all of its direct dependents). These features include clausal
complexity (e.g., average numbers of particular structures per clause and dependents
per clause) and noun-phase complexity (e.g., standard deviations of dependents per
each noun phrase).

2.4 Statistical Analysis

Based on human ratings, the summary texts were grouped into two categories: a low-
quality group in which summary texts were scored 0 or 1 (n = 432) and a high-quality
group in which summary texts were scored 2 or 3 (n = 591). To par down the number
of linguistic features and control for statistical assumptions, a series of pre-analytic
pruning steps were undertaken. First, linguistic features for which correlations with
summary scores were lower than |.20| were removed. Our threshold of .20 ensured that
only variables with meaningful relations were included in the analysis. These linguistic
indices were then controlled for multicollinearity (defined as r > .700).

To predict summary scores, a generalized linear mixed model (GLMM) was used.
GLMMs combine linear mixed models (which handle both fixed and random effects)
and generalized linear models (which address non-normal data, such as binomial dis-
tributions) to develop predictive model. In our GLMM model, the response/dependent
variable was a binomial response defined as either high-quality or low-quality sum-
marizations. The fixed effects in the analysis were the linguistic features calculated in
each summary text. The random effects in the analysis quantified variation across
source texts and participants. Thus, GLMMs can measure the effects of the linguistic
features on the response variable (i.e., high-quality or low-quality of summary texts)
while accounting for prompt effects and the repeated testing of the same participants.
The GLMM model developed for this study using backward selection of the fixed
effects, such that only significant fixed effects (t > 1.96 at a .05 significance level) were
retained. We also tested interaction effects among the significant fixed effects. We then
included random slope adjustments of source texts for each significant fixed effect
because the effects of linguistic measures on summary scores are likely to differ
depending on the source text.

The data were randomly divided into a training set and a test set using a 67/33 split
[44]. The GLMM was created using the training set (n = 685), and then applied into
the test set (n = 338) to evaluate how well the model classified an independent set of
summaries. The test set contained approximately 33% of the summaries from each of
the participant groups - 264 summaries from the MTurk participants (164 high quality;
100 low quality) and 74 summaries from the adult literacy participants (17 high quality;
57 low quality). Descriptive statistics indicated that the adult literacy participants
produced more low quality summaries than the MTurk participants.

For data analysis, we used R (R Core Team, 2016) and the lme4 package [45] to
construct a GLMM model. We used the LMERConvenienceFunctions package [46] to
perform backward selection of fixed effects and the MuMIn package [47] to calculate a
marginal r-squared (i.e., variance explained by fixed effects only) and a conditional r-
squared (i.e., variance explained by both fixed and random effects).
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3 Results

After pruning the data using test for multicollinearity and effect size, 21 linguistic
indices were retained and used to develop the GLMM model. Details on these features
are reported in Table 1.

Using the training set (n = 685) to develop a baseline GLMM, a random intercept
model was created including the prompts and the participants as random intercepts.
This model explained 45.198% of the variance in the human ratings of summarization.
Performing backward selection of fixed effects, the GLMM included four significant
linguistic features (see Table 2). No significant interaction effects were revealed. The
results indicated that high-quality summary texts tended to have higher type-token
ratios of all words (i.e., less repetition of words/more unique words; t = 7.424,
p < .001), greater similarity with source texts as measured by word2vec (t = 3.388,
p < .001), words that occur less frequently in the COCA spoken corpus (t = –3.376,
p < .001), and lower type-token ratios for content words (i.e., greater repetition of
content words; t = −2.592, p < .01). This model explained 53.412% of the variance
using the fixed factors (i.e., the linguistic features) and 80.756% of the variance using
both fixed and random factors.

Table 1. Correlations between summary scores and computational indices

Index Feature Tool r

Type-token ratio (AW) Cohesion TACCO .469
Frequency (COCA spoken, AW) Lexical sophistication TAALES –.435
Source similarity (word2vec) Cohesion TAACO .406
Adjacent sentence similarity (word2vec) Cohesion TAACO .362
MATTR (FW) Lexical diversity TAALED –.324
Number of CW tokens Lexical diversity TAALED .318
MTLD (FW) Lexical diversity TAALED .309
MTLD bi-grams (FW) Lexical diversity TAALED .303
MTLD (AW) Lexical diversity TAALED .292
MTLD (CW) Lexical diversity TAALED .292
Word frequency (COCA spoken, AW) Lexical sophistication TAALES –.282
Repeated content lemmas and pronouns Cohesion TAACO .282
Lexical density (Percentage of CWs) Cohesion TAACO .254
Type-token ratio (CW) Cohesion TAACO –.247
Frequency (COCA spoken, FW) Lexical sophistication TAALES –.246
SD of dependents per nominal subject Syntactic complexity TAASSC .232
Binary adjacent sentence overlap (FW) Cohesion TAACO .229
Word frequency (SUBTLEXus, CW) Lexical sophistication TAALES –.225
Word frequency (SUBTLEXus, AW) Lexical sophistication TAALES –.216
SD of dependents per clause Syntactic complexity TAASSC .215
SD of dependents per object of the preposition Syntactic complexity TAASSC .204

AW = All words, CW = Content words, FW = Function words, SD = Standard Deviation
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The final GLMM was used to examine how accurately it classified high- and low-
quality summaries in the training set (n = 685; see Table 3). The GLMM correctly
allocated 597 of the 685 summaries in the training set for an accuracy of 87.153%. The
precision scores (i.e., the ratio of correctly classified hits into the high-quality group to
all hits classified into the high-quality group; 374/426) and recall scores (i.e., the ratio
of correctly classified hits into the high-quality group to hits incorrectly classified into
the low-quality group plus hits correctly classified into the high-quality group;
374/410) were .878 and .912, respectively. The combined accuracy of the model (F1)
was .895.

The GLMM classification model was next extended to the test set (n = 338) to
assess classification accuracy (see Table 4). The GLMM correctly allocated 276 of the
338 summaries in the test set for an accuracy of 81.657%. The precision scores
(161/203) and recall scores (161/181) were .793 and .890, respectively. The F1 was
.839. These results provide strong evidence that linguistic features as found in sum-
maries can be used to classify summaries in terms of the inclusion of main ideas.

Table 2. Results of the generalized linear mixed model (GLMM)

Fixed effect Feature Estimate Standard
error

t p

(Intercept) −6.975 2.605 −2.678 <.010
Type-token ratio for all words Cohesive 1.596 .246 6.493 <.001
Source similarity (word2vec) Cohesive 7.424 2.191 3.388 <.001
Frequency for all words (COCA spoken) Lexical –.001 .001 −3.376 <.001
Type-token ratio for content words Cohesive –4.433 1.710 −2.592 <.010

Table 3. Confusion matrix for classifying high- and low-quality summaries in the training set

Actual group Predicted group
Low-quality High-quality

Low-quality 223 52
High-quality 36 374

Table 4. Confusion matrix for classification of high- and low-quality summaries in the test set

Actual group Predicted group
Low-quality High-quality

Low-quality 115 42
High-quality 20 161
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To assess generalization of the model for the two groups, we separately examined
the accuracy of the model on the MTurk and Adult Literacy participant populations.
The GLMM correctly allocated 216 of the 264 summaries in the MTurk summaries in
the test set for an accuracy of 81.818%. The precision and recall scores were .826 and
.896, respectively. The F1 was .860. Similarly, the GLMM correctly allocated 60 of the
74 summaries in the adult literacy populations. This yielded an accuracy of 81.081%
with precision and recall scores of .560 and .824, respectively. The F1 was .667.
Overall, these results are similar to those of the combined test set, suggesting that the
model was generalizable to the two populations.

4 Discussion

Summarization is considered an effective strategy to promote and enhance learning and
deep comprehension of texts. However, this strategy is seldom implemented by
teachers in classrooms because the manual evaluation of students’ summaries requires
time and effort. This problem has led to the development of automated models of
summarization quality. However, these models often rely on features outside of the
student or source texts and are therefore not generalizable to summarizations of new
texts. Furthermore, many of the models rely of proprietary tools that are not freely or
publicly available, rendering replications difficult.

In this study, we developed and presented an ASE model that depends strictly on
features of the source text or the summary, allowing for a purely text-based model of
quality. Summaries (n = 1,023) were collected from adult participants in the United
States. Among them, 792 summaries of 30 different source texts were collected using
the Amazon Mechanical Turk online research service while other summaries were
collected from adult literacy participants with low reading skills. The summaries were
scored by two expert raters using an analytic scoring rubric that focused on inclusion of
main ideas, accuracy of main ideas, and appropriate length Additionally, four NLP
tools were used to collect information about the lexical sophistication, syntactic
complexity, lexical diversity, and cohesion of the summaries.

Our derived model was able to classify summaries as either low or high quality
with an accuracy above 80%. Importantly, the model was developed on a large number
of source texts allowing for generalizability across texts. Moreover, the model gener-
alized well to summaries produced by two different populations (i.e., MTurk and Adult
Literacy populations) for different text genres (i.e., science texts and adult literacy
texts). However, results were stronger for the MTurk population indicating that the
model is better suited for summaries written by writers that are not low literacy.
Further, the features used in this study are freely and publicly available affording
replication. These results provide strong evidence that linguistic features as found in
summaries can be used to classify summaries in terms of the inclusion of main ideas.
Specifically, the model reported that higher rated summaries had greater lexical repe-
tition of all word types (i.e., both function and content words), contained more infre-
quent words, had greater semantic overlap with the source text, and contained fewer
repetitions of content words. These features support the notion that more lexically
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sophisticated summaries that have greater source overlap and more repetition of words
in general (although fewer repetitions of content words) are scored higher.

5 Conclusion

The current study provides a strong foundation for future research on the automated
scoring of student summaries and writing more broadly. Specifically, in terms of
summarization scoring, we are in the process of collecting additional summaries from
different prompts to extend the number and types of prompts in our database. We also
plan to examine expert ratings that go beyond source integration and include text
cohesion, the use of objective language, paraphrasing, and language sophistication. We
are also in the process of refining newer NLP tools that may provide insight into how
textual features are predictive of summarization quality.

The overarching objective of this work is to develop models of writing assessment
that are open and free for educators, students, and researchers. These models will be
integrated within the Writing Assessment Tool (WAT) which is currently under
development. WAT will provide automated writing evaluation (AWE) for persuasive
essays, source-based essays, and ASE for summaries. WAT will also provide access to
validated linguistic and semantic features that characterize writing quality to
researchers so that features such as those identified in this study are readily available to
researchers. In doing so, we hope to increase access to tools that can improve writing
research and writing education.
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Abstract. Virtual reality (VR) is increasingly being used as a training
platform in many fields including surgery. However, practice on VR sim-
ulators alone is not sufficient to impart skills. Provision of performance
feedback is essential to enable skill acquisition by ensuring that mistakes
are identified and corrected, strengths are reinforced, and insights into
consequences of actions are provided. As such, for a simulation system
to be an effective training platform and to enable self-directed learning,
it is imperative that automated performance feedback is provided by the
system. Although there has been increased interest in the development
of feedback methodologies in VR-based surgical training in recent years,
their effectiveness in practice has rarely been investigated. In this paper,
we investigate the impact of performance feedback in a VR-based surgical
training platform with respect to skill acquisition and retention through
a randomized controlled trial. We show that feedback during training is
essential for both acquisition and retention of surgical skills.
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1 Introduction

Virtual reality (VR) has become the go-to technology when developing education
systems in recent years. VR simulators are accepted as ideal for this task, as they
offer risk-free, interactive, immersive, repeatable, and easily accessible platforms,
using which standardized training programs can be developed. The effectiveness
of VR-based systems in teaching skills and knowledge has been tested in different
application domains, but the results have been mixed.

For example, Gamito et al. [13] showed that a VR-based serious games appli-
cation can be used to significantly improve attention and memory functions in
patients in cognitive rehabilitation. Mao et al. [27] discussed how VR can be used
with a robot to improve the gait of subacute stroke patients. A case study on the
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use of VR in American football training [21] showed a 30% average improvement
in scores after VR training. Sacks et al. [35] found that, in training construction
safety, VR is better for stone cladding work and for cast-in-situ concrete work,
but not for general site safety. Wijewickrema et al. [49] showed that there was no
significant difference in knowledge after training on a VR ear anatomy simulator,
when compared to training on the same content in the form of a presentation.
In a comparison between virtual training and physical training for teaching a
bimanual assembly task, Murcia-Lopez and Steed [30] found that there was no
significant difference between groups.

This trend continues in the field of surgery as well, where some studies
showed that VR-based training was better than traditional training, while oth-
ers found no significant differences. In Hamilton et al. [16], Seymour et al. [40],
and Grantcharov et al. [14] it was found that the skill level of surgical residents
performing laparoscopic cholecystectomy improved with VR training. Ost et al.
[32], Rowe et al. [34], and Blum et al. [5] showed that fellows and residents
performed a bronchoscopy task faster and more skilfully after VR training than
untrained controls. Sedlack et al. [37,38] observed that residents and fellows per-
formed better in colonoscopy after VR training. Ahlberg et al. [2] observed that
medical student performance with VR training for laparoscopic appendectomy
was no better than that of non-trained controls. In Hogle et al. [20] it was seen
that there was no significant difference in performance in surgical residents when
performing cholecystectomy between intervention and control groups.

These mixed results show that it is impractical to form sweeping conclusions
as to the effectiveness of VR in surgical education. As such, we also need to
consider other factors such as the task being trained, the skill level of the student,
the level of instruction, and even the design of the evaluation study that may
affect evaluation results. In this paper, we explore one of these factors, namely,
the effect of performance guidance/feedback in VR-based surgical simulation.

It has become evident that the sole availability of a surgical simulator is
not sufficient for a meaningful educational experience and an appropriate cur-
riculum should be available to utilize its full potential [12,44]. One important
aspect when designing an effective surgical curriculum is the provision of per-
formance feedback [44,45]. Feedback is essential for effective skill acquisition,
and must be both timely and contextually relevant [10,28]. Its purpose is to
reinforce strengths, address weaknesses, and foster improvements in the learner
by providing insights into the consequences of their actions and by highlighting
the differences between intended and actual results [44]. It was shown in Hat-
tie & Timperley [19] that the most effective forms of feedback provide cues or
reinforcement to learners; are in the form of video-, audio-, or computer-assisted
instructional feedback; and/or relate to goals.

In recent years, research in developing automated feedback systems for VR
simulation has grown. In temporal bone surgery, most simulators today provide
some form of guidance/feedback to students during and/or after training. Bhutta
[4] in a recent review of simulation platforms in temporal bone surgery identified
several VR simulators that have in-built guidance systems. For example, the
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VR temporal bone surgery simulator developed by Stanford University [29,41]
provides interactive feedback on maintaining proper technique in the form of
coloured dots [39]. The VOXEL-MAN TempoSurg simulator [24,33] provides
step-by-step procedural guidance for performing an operation by showing the
desired end product of each step and a textual explanation in a separate panel.

The virtual temporal bone simulator developed by Ohio State University [47,
48] has an integrated intelligent tutor which provides functions such as structure
identification and an expert demo mode (replaying of a pre-recorded expert
procedure with customizable viewing parameters). The Visible Ear simulator [42,
43] supports an integrated tutor function which provides step-by-step procedural
guidance through the green-lighting of steps on the temporal bone and a separate
panel with information about the current step and the end-product view.

The University of Melbourne VR Temporal Bone Surgery Simulator [31]
provides both technical and procedural guidance during training. For example,
step-by-step guidance on how to perform a cortical mastoidectomy is presented
as highlighted areas on a temporal bone [54]. Copson et al. [7] discuss a similar
implementation of procedural guidance, based on the same simulator, where
visual cues are presented one step at a time along with verbal explanations of
each step. Methods of providing (verbal, auditory) feedback on surgical technique
for this platform are discussed in Zhou et al. [57,58] and Ma et al. [25,26].

In most validation studies, the simulation system as a whole, inclusive of the
automated guidance system, has been evaluated, usually with respect to a con-
trol group [47,56] or in a pre-post comparison [7,11]. A few studies exist that test
the effect of feedback. For example, Wijewickrema et al. [50,53] evaluated how
feedback on technique and procedure respectively affected the performance of
medical students performing a cortical mastoidectomy. Here, the control groups
received no feedback while the intervention groups did. No post-tests were con-
ducted and performance was measured during training. As such, whether surgi-
cal skills were properly acquired and retained were not tested. In another study,
Wijewickrema et al. [52] compared the effect of two different feedback genera-
tion methods. However, it has not been clearly shown what improvements can
be expected with respect to surgical skill acquisition and retention, by providing
automated guidance/feedback.

Here, we aim to bridge this gap through a user study comparing the perfor-
mance of students trained on a VR simulator with and without automated guid-
ance/feedback. To this end, we use the previously developed guidance/feedback
system of the University of Melbourne temporal bone surgery simulator [52],
which provides guidance/feedback on different forms of surgical skill.

2 Background

The VR platform used in this research is the University of Melbourne tempo-
ral bone surgery simulator (see Fig. 1). The virtual operating space consists of
a model of a temporal bone and a surgical drill. The virtual model is gener-
ated using a segmented micro-CT scan of a human cadaveric temporal bone.
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The virtual drill reflects the movements of a haptic device which also pro-
vides tactile feedback to the user. The impression of depth is achieved through
NVIDIA 3D vision technology. A MIDI controller is used as a convenient input
device to change environment variables such as magnification level and burr size.
Using the VR simulator, surgeons can perform ear operations to remove disease
and improve hearing. This often involves removing parts of the temporal bone
or operating on the middle or inner ears and requires safe navigation around
anatomical structures such as the facial nerve, sigmoid sinus, and dura.

Fig. 1. The University of Melbourne VR temporal bone surgery simulator.

As surgical skills are multi-faceted, when expert surgeons teach trainees, they
provide guidance/feedback on different aspects of the same. To emulate this, the
simulation system considers four main aspects of skill that need to be acquired:
procedural knowledge, knowledge of landmarks/surgical limits, manipulation of
environmental variables, and drill handling/technical skills. The following sec-
tions discuss how guidance/feedback is provided in order to teach these skills.

Procedural Guidance: Procedural guidance is provided using the step-by-
step guidance method of Wijewickrema et al. [54]. Each step of the surgery is
highlighted on the temporal bone and the next step is only provided once the
current step is completed. Figure 2 illustrates how the second step of a cortical
mastoidectomy is highlighted (in green) after the first step has been drilled.

Advice on Landmarks/Surgical Limits: There are inherent cues (for exam-
ple, changes in colour and smoothness of the bone) that inform surgeons when
they are nearing an anatomical structure. However, these cues may be too subtle
for a novice to detect. Therefore, it is necessary to provide more obvious warn-
ings to this effect. Following the work of Wijewickrema et al. [51], the system
currently provides verbal warnings when a trainee is drilling within a specified
distance of a structure. Further, to enable learning of the anatomical structures,
functionality to make the temporal bone transparent, so that the underlying
structures can be viewed, is also available.
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Fig. 2. Presentation of step-by-step procedural guidance. (Color figure online)

Feedback on Environmental Settings: The ideal values for environmental
settings such as magnification level and burr size differ according to which area
of the temporal bone is currently being drilled. For example, at the start of the
procedure, in the central area, an overall view of the surgical space is required,
and therefore, a lower magnification level is used. In contrast, when drilling
deeper insider the mastoid, for example, near the facial nerve, more magnifi-
cation will be required to get a better view. We use the method of generating
regions in a temporal bone using morphological operations such as dilation and
erosion as discussed in Wijewickrema et al. [51]. Once the regions are defined, to
identify the valid ranges for each region, pre-collected expert data is used. Then,
in real-time, if an environment setting is outside the pre-defined range of the rel-
evant region, verbal auditory feedback is provided to inform the student of this.
Figure 3 illustrates how these regions are defined for the purpose of providing
feedback on environmental settings.

Fig. 3. Definition of regions where surgical technique is considered to be uniform.

Feedback on Drill Handling/Technical/Motor Skills: Typically, surgical
technique adopted at one stage of a surgery is different to that of another.
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For example, long strokes with a higher force can be used when drilling in an open
area. However, more caution is warranted when drilling near a critical anatomical
structure such as the facial nerve, and to avoid damage, less force should be used.
Wijewickrema et al. [51] identified that the stages of a procedure is related to
the regions being drilled. As such, in our system, different behaviour models are
developed to identify poor technical skills per region in the following process. The
same regions that were defined to provide feedback on environmental settings
(as shown in Fig. 3) are used for this purpose.

The method based on random forests (RFs) discussed in Zhou et al. [57] is
used here to generate feedback on drill handling. First, strokes are identified
from the surgical trajectory using the method introduced in Hall et al. [15]. This
enables the extraction of meaningful segments of the trajectory that can be used
to define the quality of drill handling.

Once strokes are extracted, the values of metrics that define the quality of a
stroke (such as speed and force) can be calculated for each stroke. We used such
stroke metrics calculated for pre-collected expert and trainee data as features
to train behaviour models that identified expert and trainee skill. Note that we
made some modifications to the methods discussed in the original paper [57],
when integrating them into our simulator. First, only the motion-based met-
rics (stroke length, duration, speed, acceleration, straightness, and force) were
used as features when training the RF classifier. In contrast, in Zhou et al.’s
work, they used motion-based metrics as well as environmental settings (simu-
lator parameters) and proximity metrics (distance to structures). We separate
the environmental settings from this and use a simple rule-based method of pro-
viding feedback on these, as discussed above. The distance measures are not
required, once the regions around anatomical structures are defined. Second, in
the original paper, the procedure was divided into stages, which were predicted
using a pre-trained classifier, and behaviour models were trained for each stage.
The prediction errors introduced by the stage detection was avoided here by
using pre-defined regions instead, as discussed above.

If a stroke is classified as a trainee stroke, advice has to be provided on how
to improve it so that expert-level behaviour can be learned. For this, we used the
voting-based scheme used in Zhou et al. [57]. First, the expert stroke closest to
the current trainee stroke was selected (from the pre-collected expert data) using
a nearest neighbour strategy. In order to choose the specific feedback feature, the
current trainee stroke and the closest expert stroke were classified by each tree
in the RF. In a given tree, provided both strokes have been classified correctly,
we computed the first feature (and direction: increase or decrease) on which
the strokes were split into different branches and this feature received one vote.
The feedback was then considered to be the feature and direction that received
the most votes (for example, increase stroke length, decrease force etc.). This
feedback is presented by the system to the user as verbal auditory instructions.
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3 Methodology

We conducted a randomized controlled trial of 40 medical students, with no prior
surgical experience, to evaluate the importance of providing automated guid-
ance/feedback in VR-based temporal bone surgery. This study was approved by
the University of Melbourne Human Ethics Committee (#1135497.3). On the
first day, they were first shown a video tutorial on how to perform a simple
temporal bone surgery (cortical mastoidectomy) on our VR simulator. Then,
they performed this surgery on the VR simulator with no automated guidance
(pre-test). The pre-test was performed in order to gauge their initial skill level,
to account for individual variations in skill acquisition and retention. Next, they
were randomly allocated to one of two groups: control or feedback. Then, they
underwent a training session, performing the same procedure on the simulator.
The feedback group received automated guidance/feedback during this proce-
dure, while the control group did not. On the second day, they underwent another
training session similar to the previous day. After this, on the same day, the par-
ticipants performed a post-test: the same procedure without guidance/feedback.
They came back a week later (on the ninth day), and performed a cortical mas-
toidectomy without guidance/feedback as a retention test. We recorded all the
procedures conducted by participants using screen capture software. The study
design in illustrated in Fig. 4.

Fig. 4. Design of the evaluation study.
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A blinded expert surgeon evaluated videos of the pre-, post- and reten-
tion tests based on a validated assessment scale [23]. This assessment scale was
designed specifically for cortical mastoidectomy. It has been validated to be a
feasible tool with high inter-rater agreement. This scale comprises two parts:
checklist and global instruments, and assesses competency of the surgeon in
performing the surgery as a whole. This takes into consideration all aspects of
surgical skill, for example, knowledge of landmarks and procedure as well as
technical skills.

The checklist instrument consists of 22 items (in 7 categories: initial bone
cuts, defining anatomic limits, open antrum, digastric dissection, thin posterior
EAC cortex (translucent), open facial recess, and posterior atticotomy). Each
item is scored on a Likert scale ranging from 1 (unable to perform), through
3 (performs with minimal prompting), to 5 (performs easily with good flow).
As such the minimum and maximum scores for this instrument are 22 and 110
respectively. However, as our study participants were medical students with no
prior surgical experience, we did not teach them how to perform the 2 latter
parts of the surgery (open facial recess and posterior atticotomy). As such only
13 items were relevant for this study, with minimum and maximum scores of 13
and 65 respectively. The global instrument comprises 10 items: understanding
of objectives of surgery, interpretation of preoperative tests, use of otologic drill,
knowledge of instruments, use of microscope, respect for surgical limits, time and
motion, knowledge of specific procedure, Flow of operation, and overall surgical
performance. The scoring is based on a 5-point Likert scale similar to that of
the checklist instrument. As such, the minimum score is 10 and the maximum
possible score is 50.

4 Results

First, we tested if the initial skill levels of the two groups were significantly
different, using analysis of variance (ANOVA). We found that although the initial
skill level of the feedback group was higher than that of the control group, these
differences were not significant for either scores: checklist or global. Therefore,
we can infer that the randomization procedure was successful.

To compare the level of surgical skill acquired after training by the two
groups (post-test scores), taking into consideration the initial skill level of par-
ticipants (pre-test scores) to account for individual aptitude, we performed an
analysis of covariance (ANCOVA). A similar analysis was conducted to test for
skill retention. Significant differences were observed between groups for both
skill acquisition and retention, with the feedback group showing larger improve-
ments in performance. The comparison results are shown in Table 1. In these
ANCOVA analyses it was also tested what the effect of initial skill level was on
skill acquisition and retention. It was seen that initial skill level was a significant
factor in skill acquisition (p = 0.026 and p = 0.007 for checklist and global scores
respectively), but not in skill retention.

To test if there were skill improvements within groups before and after train-
ing, we used paired t-tests to compare the post- and retention test scores with
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Table 1. Between-group analysis of skill acquisition and retention, taking initial skill
level as a covariate. Statistically significant results are shown in bold.

Score Group Adjusted mean F(1,37) p > F

Skill acquisition

Checklist Feedback 37.08 27.73 <0.001

Control 20.37

Global Feedback 33.13 24.84 <0.001

Control 16.57

Skill retention

Checklist Feedback 28.46 13.73 <0.001

Control 18.84

Global Feedback 25.17 13.24 <0.001

Control 14.83

pre-test scores. Cohen’s d was used to calculate the effect sizes. Significant
improvements with large effect sizes were observed in the feedback group with
respect to both skill acquisition and retention, while the improvements in the
control group were not significant with low effect sizes. Table 2 shows the results.

5 Discussion

From the results of the between group analyses in Table 1, we observe that the
group that received automated feedback during training performed significantly

Table 2. Within-group analysis of performance with respect to skill acquisition and
retention. Statistically significant results are shown in bold.

Group Score P-Value Effect size (d)

Skill acquisition

Feedback Checklist <0.001 1.74

Global <0.001 1.56

Control Checklist 0.239 0.35

Global 0.306 0.28

Skill retention

Feedback Checklist 0.004 0.90

Global 0.006 0.85

Control Checklist 0.386 0.27

Global 0.552 0.19
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better than the control group with respect to both skill acquisition and retention.
The within group analysis (Table 2) shows that the learning and retention rates
of the control group was not significant with low effect sizes. In contrast, the
feedback group had significant levels of skill acquisition and retention with high
effect sizes. These results imply that, at the level of the participants (complete
novices with no prior experience in surgery), task demonstration is not sufficient
to teach surgical skills, and performance feedback on different aspects of surgical
skill is essential during training to ensure that skills are acquired and retained.
These findings are in accordance with the principle of deliberate practice [10]
which states that practice and relevant feedback are both important in gaining
expertise. They also support other studies suggesting the benefit of real-time
automated feedback in training [6,8,18,55].

The significantly better performance after training with automated feedback
further indicates that it was presented in such a way that it could be easily
understood, thus retaining the cognitive load (burden placed on the human cog-
nitive processing system [46]) at a manageable level to enable greater learning
and performance [18]. That these results contradicts the guidance hypothesis
which states that concurrent (real-time) feedback may lead to over-reliance and
diminished performance [36], also indicates that the right amount of feedback
was provided that supported learning, but discouraged over-reliance. However,
as the students gain more experience in surgical procedures, it may be necessary
to reduce the level of instruction, to avoid over-reliance [9,22].

From the between group test results, we see that in addition to the presence
or absence of feedback, the individual aptitude (as measured in the pre-test)
also plays a significant role in the acquisition of surgical skills, but not in their
retention. That individual differences affect complex skill acquisition seems obvi-
ous, but to what extent this is true is dependent on other factors as well. For
example, Ackerman [1] discussed the ability-performance relationship as a func-
tion of task complexity, degree of task practice, and consistency of information-
processing demands. This seems to indicate that with more practice, perhaps
the significance of individual aptitude may lessen.

In this study, the training and evaluation of performance were both conducted
on our VR simulation environment. As such, the results are not indicative of how
participants would perform in a real-world scenario. However, there is evidence
to suggests that skills learned in VR are transferable to real-world applications
[3,17]. This should be explored in future studies.

6 Conclusion

Here, we evaluated the effect of performance feedback on skill acquisition and
retention in a VR-based surgical training platform. We observed that task
demonstration and repeated practice to emulate the task on a VR simulator
is not sufficient to acquire and retain surgical skills. Real-time feedback is not
only helpful, but essential in the acquisition and retention of skills. Although in
this paper, we established this for the test case of temporal bone surgery, the



106 M. Davaris et al.

findings are in line with educational principles such as that of deliberate prac-
tice. This raises an important point which is often overlooked in VR education
system design and development: the importance of appropriate feedback during
training to ensure that the right skills are acquired and retained.
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Abstract. Game-based learning environments (GBLEs) are being increasingly
utilized in education and training to enhance and encourage engagement and
learning. This study investigated how students, who were afforded varying levels
of autonomy, interacted with two types of informational text presentations (e.g.,
non-player character (NPC) instances, traditional informational text) while
problem solving with CRYSTAL ISLAND (CI), a GBLE, and their effect on overall
learning by examining eye-tracking and performance data. Ninety undergraduate
students were randomly assigned to two conditions, full and partial agency,
which varied in the amount of autonomy students were granted to explore CI and
interactive game elements (i.e., reading informational text, scanning food items).
Within CI, informational text is presented in a traditional format, where there are
large chunks of text presented at a single time represented as books and research
articles, as well as in the form of participant conversation with NPCs throughout
the environment. Results indicated significantly greater proportional learning
gain (PLG) for participants in the partial agency condition than in the full agency
condition. Additionally, longer participant fixations on traditionally presented
informational text positively predicted participant PLG. Fixation durations were
significantly longer in the partial agency condition than the full agency condition.
However, the combination of visual and verbal text represented by NPCs were
not significant predictors of PLGs and do not differ across conditions.

Keywords: Autonomy � Proportional learning gain �
Game-based learning environment � Eye tracking

1 Introduction

1.1 Autonomy in Game-Based Learning Environments

Autonomy assumes people, or agents, actively interact with elements in their envi-
ronment instead of being passive bystanders [1]. There is a need for autonomy within
learning environments to promote understanding of content knowledge and skills
critical for learning [2]. It is assumed learners who are active within a learning envi-
ronment can reflect on their progress, whether it be while learning or regulating
motivation and emotions, leading to effective planning and the execution of plans to
achieve sub-goals [1]. In the context of game-based learning environments (GBLEs)
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such as CRYSTAL ISLAND (CI) [3], learners are given autonomy to explore and interact
with several game elements (e.g., choosing which text and science posters to read,
generating hypotheses about potential pathogens, etc.), while also monitoring and
regulating their cognitive, affective, metacognitive, and motivational (CAMM) self-
regulatory processes, critical for effective learning with GBLEs [4].

As such, self-regulated learning (SRL) involves actively monitoring all thoughts,
behaviors, and feelings to then activate and integrate prior knowledge with new
information for future planning, monitoring, and achievement of learning goals [5].
Plan development occurs when a goal is made explicit and challenges the learner which
increases their motivation to achieve the goal with efficiency [1]. If a goal is not
specific, learners with effective SRL skills will identify and modify the plan and
strategies used towards achieving the goal [6]. This may include redefining the goals to
understand the task demands and steps needed to accomplish the task. In sum, SRL is
extremely challenging for most learners, and it is even more challenging in GBLEs
where the full agency afforded by these environments can further hinder effective SRL.

The amount of agency afforded to a learner can influence their ability and oppor-
tunity to use SRL effectively [2, 7]. GBLEs allow learners to choose how they interact
with the environment, specifically while engaging in learning activities, such as reading
about microbiology, collecting evidence, engaging in hypothesis testing, learning from
biology experts, interviewing patients about their symptoms, etc. [8]. GBLEs are
engaging environments for learners to practice SRL skills, accumulate content knowl-
edge, and develop problem solving and reasoning through learning activities [9].
Learners exposed to these environments must monitor their CAMM SRL processes and
adapt to the changing demands of the tasks within the environment to ensure successful
goal achievement (e.g., identifying the disease causing the illness outbreak in CI).
GBLEs are often criticized for their lack of scaffolding provided to the learner, where
extraneous details within the game often distract learners from their role and the overall
goal of the game [10]. Thus, the level of autonomy afforded to a learner within a GBLE
should balance with the scaffolding provided to a learner within the environment [8, 11].
Scaffolding within GBLEs influences developing SRL competencies, where the com-
ponents of the environment that introduce novel information, such as texts and dia-
grams, must be selected, organized, and evaluated for relevancy. If relevant, then the
novel information is integrated with learners’ prior knowledge to achieve their goal.

1.2 Application of the Cognitive Theory of Multimedia Learning
to GBLEs

Multimedia learning occurs when the learner constructs a mental representation from
the content provided through the combination of words and images presented within an
advanced learning technology [15]. Multimedia is typically used to describe learning
environments which are enhanced through the use of combining pictures (e.g., pho-
tographs, illustrations, and animations) and words (e.g., audio and text) [14]. GBLEs
facilitate learners’ construction of concepts and knowledge through navigating the
environment (e.g., CI) and incorporating information that is received by the learner
either through traditionally presented text via large blocks of information or through
interactive elements in the environment such as non-player characters (NPCs).
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The Cognitive Theory of Multimedia Learning (CTML) [12] can be presented within
multimedia environments and their effect on learning processes. This theory is based on
three assumptions: (1) visual and verbal/auditory processes have different channels;
(2) these channels have a limit on the amount of information that can be processed at
once; and, (3) learners actively process information in the environment [13]. In addition
to the three assumptions, there is a set of five specified cognitive processes present
during multimedia learning: (1) selecting relevant words from text, (2) selecting rele-
vant visuals, (3) developing a mental model for selected relevant words, (4) developing
a mental model for selected relevant visuals, and (5) integrating relevant text and
visuals into conjoined representations [12]. These cognitive processes are important to
note in this model as they require learner utilization of SRL skills (e.g., retention and
transfer of learned information) and learner agency for cognitive development [15]. It is
important to note that in deeper processing of multimedia presentations, information
represented by words can be processed through either the visual (e.g., text) channel
along with diagrams and graphs or auditory channel (e.g., spoken language) where they
may then cross channels to be organized into either a verbal or pictorial model [10].

The multimedia principle specifically focuses on CTML’s first basic assumption,
visual and verbal information is processed through separate channels, and third basic
assumption which asserts that learning with both channels simultaneously is more
effective for deeper understanding than learning with information from a singular
channel [14]. The interaction between the learner, more specifically the learner’s ability
to apply SRL strategies, and the presentation of information should be understood in
order to optimally use multiple modes of presentations. This understanding will lead to
the examination of the impact that these different modes can have on learning [14].
With both verbal and visual information being presented in conjunction with each
other, the learner has a greater chance of recall with the information processed with two
separate channels [14].

These channels of information can be presented in multiple ways, including
computers and face-to-face interactions with artificial intelligent agents [12]. However,
in GBLEs, which offer a unique learning opportunity through direct interaction and
exploration of the environment, these presentations can occur through slightly different
means. Instructional materials are integrated with the environment so that the learner
can interact with the information, which should be regulated to control for the influence
the environment can have on the learner and their ability to select and organize critical
information for the goal [14]. Traditionally presented informational texts in GBLEs
mimic books with blocks of written text appearing on the screen, whereas NPCs,
serving as intelligent agents, offer a variation of face-to-face conversations through
real-world interactions and character design. Dynamic content (e.g., animation) has
found to be beneficial to overall learning outcomes compared to static content (e.g.,
graphs) when the dynamic content is realistic to the learner [14]. This has been sup-
ported through studies [16] to increase support to low-knowledge learners [14]. It has
also been applied to GBLEs as the NPCs are typical within the design of GBLEs (refer
to CRYSTAL ISLAND Environment section) and can appear to be realistic and provide
information crucial to achieving goals. Within CI, participants were also presented with
audio as the NPCs interact and answer the prompted questions.
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1.3 Eye Tracking in GBLEs

Using eye tracking technology allows researchers to infer cognitive processes,
specifically attention and implicit strategies, of a learner through observable behavior
[17–19]. Understanding the relationship between cognitive processes and eye move-
ments has become increasingly popular over the past decade, especially in education
and science domains [19]. Using eye movements to measure cognitive processes,
researchers use two types of measures: saccades and fixation durations [17, 19]. Sac-
cades are rapid eye movements between fixations which can be represented by
regressions [17, 19]. Fixation durations result from a relatively still eye motion lasting
approximately 250 ms and may produce several variables such as the number of fix-
ations, average duration of fixations, and total time fixating on an area of interest
(AOI) [19]. For example, in a GBLE a learner could fixate on specific content within
the environment and eye-tracking data captures how many times they fixate on an
object, the proportion of time fixating on said object relative to other objects, as well as
total amount of time the learner fixates on that object, providing inferences on what the
learner may be thinking, the strategies they are using, and whether they are experi-
encing difficulties [18].

Eye tracking allows researchers to understand relationships between SRL strategy
use and learner performance to increase understanding of learner problem-solving
processes that occur in GBLEs [17] which introduces a large gap in current literature
due to the limited study on these relationships. Problem-solving processes are described
by transforming what occurs at the original state provided to the learner to the goal state
when there is no evidence of the solution [17]. Past studies have indicated longer
fixation durations within cognitive tasks perceived as difficult [19]. This includes
problem solving within STEM education. Past research has also concluded improved
problem-solving abilities in environments that highlight and emphasize critical com-
ponents to the goal state [14, 19]. Eye tracking can support inferences about cognitive
processes that are used while reading [19]. This can be combined with text structure
and content within multimedia theories, such as CTML, to further understand the
relationship between SRL strategy use, learning, and the acquisition of content
knowledge within these environments [19]. Generally, understanding and integrating
content is influenced by perceived difficulty of text and learners’ reading ability, which
affects eye movements where fixations increase as difficulty of text increases and
saccades become shorter [19]. As such, learners’ eye movements should allow for
inferences in understanding learners’ cognitive processes, progress throughout a
GBLE, engagement, and SRL strategy use [18].

1.4 CRYSTAL ISLAND Environment

CRYSTAL ISLAND [3], a game-based learning environment, provides an opportunity for
students to develop scientific reasoning skills through a microbiology-centered envi-
ronment where students investigate an illness infecting an island of researchers. Par-
ticipants are to identify the mysterious illness by interacting with NPCs and reading
informational text (see Fig. 1), collecting and scanning food items that may be trans-
mitting the disease, and organizing evidence by completing a diagnosis worksheet.
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Once evidence has been gathered, participants make hypotheses about the illness and
the source of the pathogen and then test their hypotheses. Once a hypothesis has been
tested correctly, the game will end.

2 Current Study

To assess the role of autonomy and the types of presentation of informational text on
PLGs within GBLEs, this study addresses the following research questions: (1) Do
PLGs differ between the full and partial agency conditions?; (2) Do fixation durations
on different types of informational text presentations in the environment predict PLGs?;
and (3) Do fixation durations on different types of informational text presentations
differ between the full and partial agency conditions? To address these questions, the
hypotheses are as follows:

Hypothesis 1: Participants in the partial agency condition will demonstrate higher
PLGs.
Hypothesis 2: The fixation durations of the different types of presentation of
informational text in the environment will predict PLGs.
Hypothesis 3: Participants in the partial agency condition will have significantly
greater fixation durations of both types of presentation of informational text.

Fig. 1. Top: Informational text presented with an NPC; Below: Traditional informational text
presentation
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3 Method

3.1 Participants

A total of 1061 participants recruited from a large public North American university
participated in the current study. Fifteen participants were removed due to eye tracking
data inconsistencies while one participant was removed for not completing the post-
task questionnaires. However, 90 (66% female) undergraduate students recruited from
a large public North American university participated in the current study. Ages ranged
from 18 to 26 years (M = 20.01, SD = 1.66). Participants were randomly assigned to
one of three conditions: (1) full agency (n = 53), (2) partial agency (n = 37), or (3) no
agency condition; we did not analyze data from the no agency condition, so details are
excluded from this study. These conditions reflected the level of autonomy given to
participants to navigate and problem solve with CRYSTAL ISLAND. Participants were
compensated $10/h and up to $30 for completing the study.

3.2 Experimental Conditions

Participants were randomly assigned into one of three groups which allowed for varied
control of gameplay: full agency, partial agency, and no agency. Full agency concedes
full control to the participant where they can interact with the game at their own pace
and discretion. Participants were free to move from building to building in whichever
order they decided as well as choose whether or not to interact with certain game
features such as opening a book or collecting a food item to later scan. Partial agency
contains a “golden path” where participants are required to follow a set path through
the game dictating which building to continue to next, requiring participants to interact
with non-player characters, and having the participants look at each informational text
to complete the concept matrices. For example, once past the tutorial portion of the
game, participants in the partial agency condition were directed to the infirmary
building first while the full agency participants could go to whichever building they
desired. Once in the infirmary, participants in the partial agency condition were
required to talk to both NPCs until the conversation options were exhausted, open all
posters, books, and research articles, and then accurately complete the concept matrices
for all books and research articles. Only after all of these actions were completed, were
the participants able to leave the infirmary and directed to go to the next building. The
no agency condition does not allow control to the participants as the participants will
follow a video of an expert run-through of gameplay. This condition was not used in
the study as the participants were not able to control for how long they fixated on
informational text or NPC dialog.

3.3 Materials

Pre-task measures consisted of a demographic questionnaire and a microbiology
pretest. The pretest quiz contained 21, four-option, multiple choice questions

1 Our dataset derives from a larger study which was modified based on the quality of the data.
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developed by an expert in the field. Post-task measures consisted of a microbiology
posttest similar to the content knowledge pre-test. The SIM EYERED 250 eye tracker,
using a 9-point calibration, recorded fixation duration and gaze movements of partic-
ipants throughout the task. Log-file data was collected containing participant actions
and timestamps.

3.4 Experimental Procedure

Participants read and completed the informed consent. Participants then completed the
demographics questionnaire and the microbiology content knowledge quiz. After
completion, the research assistant calibrated the eye-tracking device individualized to
each participant. The research assistant then explained the scenario of CRYSTAL ISLAND,
the role of the participant in the game, the goal of the game, and the actions available to
the participant throughout the game, such as reading informational text, talking to
NPCs, gathering possible sources of disease transmission, and completing the virtual
worksheet. After the participants finished playing, they completed the post-task mea-
sures. This consisted of the microbiology content knowledge quiz which was similar to
the pre-task version. Participants were then compensated, debriefed, and thanked for
their time.

3.5 Coding and Scoring

A data pipeline that temporally aligned the multimodal, multichannel data was used to
aggregate data during the experiment. Fixation durations were calculated by predefined
areas of interest (AOIs) which included books, research articles, and NPCs. To cal-
culate content knowledge of an individual after gameplay, differences in prior
knowledge were accounted for in measuring the learning gains from the post-test score.
PLGs are calculated using the pre- and post-test content knowledge scores using a
formula accounting for prior knowledge [20].

4 Results

4.1 Research Question 1: Do PLGs Differ Between the Full and Partial
Agency Conditions?

An independent samples t-test was conducted to compare the means of the PLGs
between the full (M = .218, SD = .231) and partial (M = .328, SD = .245) agency
conditions. There were significant differences in PLG (t(88) = −2.18, p < .05;
d = 0.46) where participants in the partial agency condition had significantly higher
PLGs than participants with full agency, suggesting those in the partial agency learned
more about microbiology compared to those in the full agency.
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4.2 Research Question 2: Do Fixation Durations on Different Types Of
Informational Text Presentations in the Environment Predict PLG?

A linear regression was
conducted to examine
whether proportion of
time fixating on NPCs
over total game time (M =
.124, SD = .035) predict
PLG. There was no sig-
nificant regression equa-
tion between the
proportion of time fixat-
ing on NPCs and PLG (p
> .05). An additional lin-
ear regression was calcu-
lated to assess whether the
proportion of time fixat-
ing on traditional infor-
mational text over time
(e.g., books and articles;
M = .319, SD = .130)
predict PLG. There was a
significant positive correlation between the fixation duration of books and articles and
PLGs (r = .233, p < .05), meeting the assumptions for our regression equation, and our
results revealed a significant regression equation where the time spent fixating on
informational texts was a significant positive predictor of PLG, F(1,88) = 5.03, p < .05
with an R2 of .233, indicating that the longer participants fixated on traditionally
presented informational texts, the higher their PLG (ß = .233, p < .05). In sum, these
findings showed that the fixation duration on traditionally presented text is a positive
predictor of participants’ PLG than the fixation duration of NPC instances, challenging
the CTML model where text alone, not the integration of text and diagram, predicts
PLGs.

4.3 Research Question 3: Do Fixation Durations on Different Types
of Informational Text Presentations Differ Between the Full
and Partial Agency Conditions?

A MANCOVA was conducted to examine differences in time spent fixating on dif-
ferent types of informational text between the two conditions with total game duration
as a covariate (see Fig. 2). There were no significant differences in fixation duration of
NPC instances between the full (M = 593.84, SD = 154.17) and partial (M = 682.20,
SD = 170.52) agency conditions (p > .05). However, there were significant differences
in time spent fixating on books and research articles, (F(2,87) = 16.05, p < .0005)
between full (M = 1565.97, SD = 755.05) and partial (M = 1851.13, SD = 915.84)

Fig. 2. Mean fixation durations of types of informational text
presentation between conditions
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agency conditions, where the partial agency condition has significantly higher fixation
durations than the full agency condition. Overall, these results indicate that the
autonomy afforded to a participant influences the fixation duration of the different types
of informational text presentation. There were no differences in the fixation duration
between types of informational text presentations for the full agency whereas partici-
pants afforded partial control of interaction with CI have greater fixation durations of
traditionally presented text.

5 Discussion

In support of the first hypothesis, results show that participants in the partial agency
condition generally had significantly higher PLGs. This indicates that learners with less
autonomy, based on a somewhat prescribed ideal path through game elements allowing
for partial agency, is associated with higher overall content knowledge during learning
and problem solving with GBLEs. Further, the hypothesis was partially supported
when referring to time spent fixating on two types of informational text. NPC instances
are not predictors of PLGs, but the fixation durations of traditional information text are
significant predictors of PLGs. This indicates that the traditional presentation of
information through large amounts of text are better indicators and significantly cor-
relate with higher content knowledge than interacting with NPCs who provide
microbiology content knowledge through a more conversationalist approach. This
finding runs counter to CTML in which the NPC instances, demonstrating a visual
(e.g., the character itself) in conjunction with verbal (e.g., audio and text) information
does not predict higher content knowledge whereas just the presentation of text does
without the aid of an NPC or audio. This could be explained as the NPC presents verbal
information when prompted by the participant that is not as representationally rich as a
relevant diagram, and then participants are given small bits of information, but through
predetermined prompts the participants may or may not have asked otherwise without
room for adjustment of questions. Results partially supported the hypothesis where the
partial agency condition had a higher fixation duration when referring to books and
articles than the full agency condition, but no difference between conditions when
calculating the fixation durations in NPC instances. This indicates that participants who
have a set path fixate more on traditionally presentation of informational text over NPC
instances. The partial agency condition required the participant to ask every prompt for
NPCs as well as open every book and article to complete the concept matrices. From
this, participants in the partial agency condition may identify the traditional presen-
tation of text to hold a greater value in the information that is provided.

5.1 Future Directions: More AI in GBLEs?

This study supports the need for integrating more AI in GBLEs to support reading
activities that are critical to learning about complex topics such as science. In general,
GBLEs should support the development of learners’ SRL strategies where the learner is
guided by the environment in the completion of the goal, especially critical in GBLEs
that afford full agency that may not be beneficial for all learning lacking CAMM SRL
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skills. As supported by our results, GBLEs that intelligently and actively guide the
learner through the environment are needed to optimize proportional learning of
complex instructional content. For example, GBLEs are often preferred over traditional
learning technologies (e.g., hypermedia) due to perceived affordance to agency,
autonomy, and engagement based on constructivist learning models, but our results
show that full autonomy is not ideal since most learners do not have the cognitive and
metacognitive self-regulatory skills need to make accurate instructional decisions such
as when, how, and why instructional text embedded in GBLEs is critical for learning.
In addition, our study also demonstrates that the NPCs (acting as intelligent agents
interacting with learners) did not provide the information-rich instructional material
that was needed and were disregarded, or not engaged with by the learners. The
contrast between the roles on informational text and NPS highlights the careful
attention that is needed in providing adaptive scaffolding during learning with GBLEs
that should be based on time spent on different representations and sequences within
and between representations and other related GBLEs activities. For example, infor-
mation presented through large chunks of text are large components of learner inter-
action and theses affordances are influenced by the amount of autonomy afforded to a
learner when interacting with a GBLE. The study further supports the need for
appropriate direction towards the overall goal of the GBLE in order to obtain optimum
learning from the learner exposed to the environment. In future versions of Crystal
Island, or any text-dependent GBLE, limited, but present support should be given to the
learner through the environment to increase the expected content knowledge gain. We
envision intelligent agents embedded in GBLEs can play a more active role (a) in
assisting learners to select, organize, and integrate instructional content; (b) providing
adaptive scaffolding and feedback based on multimodal multichannel trace data from
log-files, eye tracking, screen recording, facial expression of emotions, and natural
language understanding, and (c) modeling specific self-regulatory processes by
prompting and scaffolding students’ planning, cognitive strategy use, metacognitive
monitoring processes, etc.
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Abstract. Game-based learning environments (GBLEs) are often criticized for
not offering adequate support for students when learning and problem solving
within these environments. A key aspect of GBLEs is the verbal representation
of information such as text. This study examined learners’ metacognitive
judgments of informational text (e.g., books and articles) through eye gaze
behaviors within CRYSTAL ISLAND (CI). Ninety-one undergraduate students
interacted with game elements during problem-solving in CI, a GBLE focused
on facilitating the development of self-regulated learning (SRL) skills and
domain-specific knowledge in microbiology. The results suggest engaging with
informational text along with other goal-directed actions (actions needed to
achieve the end goal) are large components of time spent within CI. Our findings
revealed goal-directed actions, specifically reading informational texts, were
significant predictors of participants’ proportional learning gains (PLGs) after
problem solving with CI. Additionally, we found significant differences in PLGs
where participants who spent a greater time fixating and reengaging with goal-
relevant text within the environment demonstrated greater proportional learning
after problem solving in CI.

Keywords: Metacognitive judgments � Content evaluation �
Game-Based Learning Environments

1 Introduction

1.1 Self-regulated Learning and Metacognitive Monitoring

Self-regulation, the modulation of behavior and internal cognitive processes due to
experience and stimuli in the environment, involves the integration of prior knowledge
and learning strategies to reach a goal [1]. Learners with self-regulated learning
(SRL) skills discern and apply effective strategies needed to accomplish a set goal,
commonly the attainment of knowledge [2, 3]. SRL models highlight the importance of
planning, strategizing, and monitoring [4] to demonstrate an improved academic per-
formance through the utilization of these SRL strategies when engaging, responding,
and adapting to Game-Based Learning Environments (GBLEs) [5].

A significant component of SRL is monitoring and controlling progress of learning
by modifying strategies and goals [2, 6]. In comprehending information, learners
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interpret and integrate the meaning of information as it is presented [5]. To do so,
learners may reread and reevaluate textual information they may not initially under-
stand and judge their own learning through metacognition to evaluate their progress
toward reaching the overall goal [5, 7]. Through metacognitive monitoring, learners
identify discrepancies between their current state of learning and their desired state by
modifying plans and goals to mitigate the discrepancy until the desired goal is reached
[6, 8]. Learning outcomes are dependent upon the metacognitive monitoring strategies
applied by learners [9, 10]. The implementation of these strategies has suggested an
increase in the acquisition of deeper declarative knowledge through the integration of
verbal and visual information provided by advanced learning technologies (ALTs;
[11]). Further, a learner’s ability to apply SRL strategies during learning significantly
influences their performance and future learning [12]. Students using SRL strategies
accurately apply monitoring judgments, such as identifying relevant information when
encountering previously known information or when specified instructions and goals
are provided [5, 13].

1.2 Metacognitive Judgments in Game-Based Learning Environments

Azevedo and colleagues [2] quantified student actions of metacognitive processes
containing 35 micro-level metacognitive judgments under macro-processes (e.g.,
planning, monitoring, strategy use) to identify when students were using effective SRL
processes and strategies. One of the micro-level metacognitive processes includes
evaluating instructional content (e.g., textual information, diagram) known as content
evaluations (CEs), which is described as the ability to monitor relevant information to
attain goals [4]. For example, if a learner, while using a GBLE such as CRYSTAL ISLAND
(CI), has a goal of learning about the Ebola virus, the learner should be able to discern
relevant information related to the virus and disregard irrelevant information that is
extraneous to the current goal (e.g., learning about smallpox). The actions taken
towards achieving an overall goal within a GBLE are referred to as goal-directed
actions within this paper (e.g., reading informational text, talking with non-player
characters, scanning items, solving concept matrices, and consulting the scientific
worksheet). Learners, with accurate CEs, should evaluate the relevancy of information
and, once determined to be goal-relevant, expend more time and effort to studying and
understanding that information which should then increase knowledge acquisition and
improve learning outcomes [9].

ALTs, such as intelligent tutoring systems and GBLEs, are used to engage learners
in educational tasks, such as problem solving, scientific inquiry, and reasoning to foster
SRL processes such as selecting, organizing, and integrating novel or relevant infor-
mation [14, 15]. GBLEs are designed to encourage learners to set and achieve goals [16]
by providing tools that scaffold SRL processes. In GBLEs with narrative-focused goals,
such as CRYSTAL ISLAND, a learner must be able to engage in SRL skills to properly
interact and learn from the environment [12]. GBLEs provide an environment for
learning through multiple modalities such as virtual text and interactive scenarios, where
learning is supported through exposure to information accompanied by visual and verbal
interactions, both enhancing the learning environment in conjunction [17, 18].
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The Cognitive Theory of Multimedia Learning (CTML; [18]) assumes that pro-
cessing visual and verbal information (text and diagrams) occurs separately, there is a
limited amount of information that can be processed at once for visual and verbal
information, and that learners actively process these types of multimedia information
[7, 14]. These processes require the learner to successfully identify relevant information
both from text and diagrams; as these processes occur separately, the identification of
the level of relevancy may differ [7]. This model occurs differently within GBLEs
where most information is presented with dynamic models such as videos, simulations,
or as in CRYSTAL ISLAND, as interactions with the environment. This study focuses on
the absence of dynamic models of information in CI when reading from a traditionally
presented text.

Criticisms of GBLEs arise when several modalities with irrelevant content are
presented to the learner, negating the support of the learner’s self-regulatory develop-
ment [19–21]. Learners within the environment may become distracted from the original
plan or goal with content within the environment that does not directly support the
overall goal. In GBLEs, learners’ CEs result from self-monitoring actions throughout
the game that helps distinguish relevant content from irrelevant content [9, 22]. In order
to continue to develop and encourage the use of learners’ metacognitive abilities, there
needs to be monitoring of real-time cognitive processes and progress within an intel-
ligent system which can lead to effective feedback [14].

1.3 Eye Tracking in Game-Based Learning Environments

Physiologically-based measures are becoming an increasingly utilized method to help
infer the cognitive processes in conjunction with explicit behavior. Brain activity, trace
data, log files, and eye movements have been used in order to supplement the tradi-
tional self-report measures of cognition [14, 22]. Recording eye behaviors can help
track the cognitive processes of learners throughout the duration of a task, which may
be reading, problem solving, or other actions available within a GBLE [23–25]. In
order to record eye movements, there are two core measurements - eye fixations and
saccades [24–26]. Eye fixations are relatively still positioning of the eye where
researchers can measure how many times a learner fixates on an object, the average
fixation duration, and the total time fixating on an object. Saccades are the rapid
movements of the eye between fixations [23–25]. Information learners fixate on can be
categorized by importance, by subject, or by the object within the environment. This
type of information grouping is called the area of interest (AOI) [26].

These specific measures in eye-tracking technology allow for researchers to infer
internal cognitive processes between domains of knowledge, expertise, and perfor-
mance [23, 25–27]. Within text comprehension, eye movements differ with text diffi-
culty where with more difficult texts, the fixation duration increases, saccades become
shorter, and there is an increase in regressions [24]. Experts fixated on content less, had
increased fixations on relevant areas, and was able to find the task-relevant information
quicker than non-experts [27]. Eye tracking in GBLEs allow for researchers to
understand learner engagement and SRL strategies in interactive environments by
providing a better support system for the learner such as reorienting learner attention
and highlighting task-relevant areas [25, 28].
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1.4 CRYSTAL ISLAND: A Game-Based Learning Environment

CRYSTAL ISLAND [29], a GBLE which promotes the use of problem solving, scientific
inquiry, reasoning focused on the development of knowledge in microbiology, begins
on an island where its inhabitants have been infected with a mysterious illness. Par-
ticipants are tasked with completing the game to identify the disease by engaging in
goal-directed actions such as interacting with NPCs, consulting informational texts
(e.g., books and research articles; Fig. 1), filling out concept matrices, collecting items
(e.g., food) to later scan for diseases, gathering information via a worksheet, and
creating and testing hypotheses to find what disease has infected the inhabitants. There
is no difference between the two types of informational text where the books and
articles do not provide varying quality of information to the participant in comparison
to each other. The concept matrices measure the retainment of content knowledge To
complete the game, the participant produces a final diagnosis that includes the type of
illness (i.e., viral or bacterial), name of the illness (i.e., influenza or salmonellosis), and
the transmission source (i.e., eggs, bread, or milk). With this, the learning gains can be
used to investigate learners’ metacognitive judgments as they evaluate the relevancy of
content with GBLEs.

1.5 Related Works

Past studies investigating literacy and reading behaviors in CRYSTAL ISLAND have mostly
examined participant performance throughout the game, measured by concept matrix
attempts [15, 30]. These studies utilized eye gaze behaviors on books as well as the
combination of books and articles to understand the metacognitive processes of par-
ticipants. One study used CRYSTAL ISLAND to enhance student modeling through gaze
behaviors in order to better predict the performance of a participant throughout the
duration of the game [31]. An additional study incorporated relevancy of food item
scanning and worksheet submission attempts to assess efficiency [32]. This current
study aims to directly identify the importance of informational text within GBLEs as
well as investigate the amount of time spent reading and the ability to make accurate
CEs to predict proportional learning gains (PLGs).

Fig. 1. Informational text (left: research article, right: book) with gaze behaviors indicated by
the green markers. (Color figure online)
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2 Current Study, Research Questions, and Hypotheses

The objective of this study was to understand learners’ metacognitive judgments of
informational text by examining gaze behaviors and the PLGs within CI. The current
study aimed to answer four research questions: (1) Are there differences in the pro-
portions of fixation duration during goal-directed actions (e.g., reading informational
text, talking with NPCs, scanning items, solving concept matrices, and consulting the
scientific worksheet) over the duration of the game while problem solving in CI?; (2) Do
the fixation duration proportions of goal-directed actions available to participants predict
PLGs while problem-solving in CI?; (3) Do fixation durations of relevant informational
text significantly predict PLGs?; and (4) Do the PLGs differ between groups of par-
ticipants who revisit relevant texts more often and those who revisit relevant texts less
often? To address the research questions, we hypothesize the following:

Hypothesis 1: There are differences in the proportions of goal-directed action (e.g.,
reading informational text, talking with NPCs, scanning items, solving concept
matrices, and consulting the scientific worksheet) fixation durations while problem-
solving in CI.
Hypothesis 2: The fixation duration proportions of goal-directed action available to
participants throughout the game, specifically fixations on informational text, sig-
nificantly predict PLGs while problem solving in CI.
Hypothesis 3: The fixation durations of relevant informational texts significantly
predict PLGs.
Hypothesis 4: PLGs differ between groups of participants who revisit relevant texts
more often and those who revisit relevant texts less often.

3 Method

3.1 Participants

107 undergraduate students from a public North American university participated in the
current study. Fifteen participants were removed due to missing eye tracking data and
one participant was removed as they did not complete the post-test. A total of 91 (66%
females) participants’ data were considered for these analyses. Participants were ran-
domly assigned to either the full (n = 54) or partial (n = 37) agency conditions. Data
loss resulted in the unequal number of participants assigned to each condition. A third
condition (i.e., no agency condition) was not included in the current study. Participants’
mean age was 20.01 (SD = 1.66). Participants were compensated $10/hour for a
maximum of $30.

3.2 CRYSTAL ISLAND Conditions

Participants were randomly assigned to three groups: full agency, partial agency, and
no agency. The conditions differed based on how students could freely navigate the
environment. More specifically, Full agency allowed the most control, where
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participants can move freely throughout gameplay, while Partial agency provided a
“golden path” to participants where they were directed to complete specific sequences
of actions such as the order of building visitations. Participants in this condition were
required to read all informational text (e.g., research articles and books) and complete
all concept matrices from each book and research article. However, once the golden
path was completed, participants were able to freely interact with the environment
before they submitted their final diagnosis. The no agency condition did not allow any
control as participants watched in third person as an expert solved the mystery illness.
For the purposes of this study, only the full and partial agency conditions were used
because the no agency condition did not allow for autonomy.

3.3 Materials

Participants were given a demographics questionnaire and a 21 item four-choice
multiple choice microbiology content knowledge pre and posttest constructed by an
expert in microbiology. The content knowledge pre and posttests contained questions
that were randomized for both tests to diminish practice effects. The demographics
questionnaire was distributed at pretest, asking about age, gender, and race along with
video gaming habits of participants (e.g., frequency of play, self-perceived skill in
video games, time spent playing games on a weekly basis, and the names of video
games that participants play). Other self-report questionnaires investigating emotions
and motivations were administered to participants, we do not provide more details on
these measure as they were not used in our analyses. For purposes of this study, we
only used demographics questionnaire and the content knowledge measured by the pre
and posttests. A SMI EYERED 250 eye tracker was calibrated using a 9-point cali-
bration to capture fixation duration and gaze movements during gameplay. Log-file
data were also collected to track activity during game. However, for the purposes of
this study, we only used eye-tracking and log-file data in our analyses.

3.4 Experimental Procedure

Participants were first asked to review and complete informed consent. Next, they
completed pre-task measures including the demographics questionnaire and the content
knowledge quiz. After completion, participants were given information about the study
and were instrumented and calibrated to the SMI EYERED 250 eye-tracker by a
researcher. All features in CRYSTAL ISLAND (e.g., informational text, NPCs, food item
scanning, and the worksheet) were explained to the participant prior to gameplay.
Multimodal multichannel data were collected on each participant throughout the
duration of the experiment. After participants finished playing the game, they were
instructed to immediately complete the content knowledge posttest. Participants then
completed post-task self-report measures. After the completion of the post-task mea-
sures, participants were monetarily compensated for their participation, debriefed, and
thanked for their time.
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3.5 Coding and Scoring

Each participant’s fixation duration for goal-directed actions were calculated by summing
the fixation durations of all instances that action had occurred which was identified
through AOIs which specified which action was occurring and for how long. We cal-
culated the proportion of time fixating to control for differences in overall game time
between participants by calculating the total time fixating on each goal-directed action
(e.g., reading informational text, talking with NPCs, scanning items, solving concept
matrices, and consulting the scientific worksheet) and dividing that time by total time in
the game. PLGwas calculated using pre- and post-test content knowledge scores using the
following formula to control for differences in prior knowledge of microbiology [33]:

PLG = ((# correct post-test/total) − (# correct pre-test/total)) / (1 − (# correct pre-
test/total)).

The fixation duration for informational text is the summation of the fixation
durations of all instances for books, research articles, and posters. Relevant informa-
tional text was determined based on the correct diagnosis of the pathogen source for
each participant. For example, if a participant’s correct diagnosis was influenza, then
the book on E. coli would be considered irrelevant, whereas the book on viruses would
be relevant as it contains information crucial to concluding the correct diagnosis. The
fixation duration on relevant informational text were then added for each participant.
For the purposes of research question four in this study, participant data were split
between two groups to identify the participants who engaged in more task-relevant
informational texts (High; n = 48) and participants who did not (Low; n = 43). This
was determined by the identification of relevant text revisits, where if a participant
came back to a relevant text after an initial visit, it would be counted as one revisit. If a
participant revisited a book that was relevant, it was also counted as one relevant
revisit. The groups were determined by splitting the percentage, or value, so that the
participants who revisited relevant texts over 50% of total revisits were placed in the
high group and the others, who spent 50% of their time or greater revisiting irrelevant
texts, were placed in the low group.

4 Results

4.1. Research Question 1: Are there differences in the proportions of fixation
duration during goal-directed actions (e.g., reading informational text) over the
duration of the game while problem solving in CI?;

A repeated measures ANCOVA was calculated to examine the differences of the
proportion of time spent fixating on different goal-directed actions over the duration of
gameplay with condition as a covariate. There was a significant difference between the
fixation durations of the components over the duration of the game (F
(5,450) = 289.955 s, p < .0005) where there are significant differences between the
means for the proportion of informational text fixation duration over game time
(M = 0.323 s, SD = 0.145 s) and the other components of the game with the exception
of the proportion of concept matrix fixation durations over game time (see Table 1).

Examining Gaze Behaviors and Metacognitive Judgments 127



In sum, the time spent engaging with informational text within the game was signifi-
cantly more than the time spent with other goal-directed actions except for concept
matrices.

4.2. Research Question 2: Do the fixation duration proportions of goal-directed
actions available to participants predict PLGs while problem-solving in CI?

A linear regression was run to examine whether goal-directed actions while problem
solving in CI predict PLG. We found a significant correlation between fixation duration
on concept matrices (M = 1707.41 s, SD = 859.01 s) and PLG (M = 0.269, S = 0.246;
r = .269, p < .01) as well as the fixation duration on informational text (M = 1694.13
SD = 8859.08) and PLG (r = .285, p < .01). There was no relationship between PLG
and fixation duration on other goal-directed actions (e.g., talking to NPCs, NPC dialog,
scanning items, and worksheet instances). However, all components of the game used
to achieve the goal of the game positively predicted PLG, (F(6,84) = 2.653, p < .05)
with an R2 of .159. An additional linear regression was run supporting the reading of
informational text independently as a significant predictor of PLG, (F(1,89) = 7.884,
p < .01) with an R2 of .081, where as the fixation durations of informational text
increased, so did participants’ PLGs (ß = .285, p < .01). Overall, time spent engaging
with informational text positively predicted participant PLGs.

4.3. Research Question 3: Do fixation durations of relevant informational text
significantly predict PLGs?

A linear regression was run to see if the amount of time spent fixating on relevant
informational texts can predict PLGs. A significant positive correlation was found
between the total fixation duration of relevant informational texts (M = 1110.61 s,
SD = 526.00 s) and PLGs (r = .299, p < .01). The total fixation duration of relevant
informational texts significantly predicts PLGs (F(1,89) = 8.733, p < .01) with an R2

of .089 where as the fixation duration of information text increased, so did PLGs
(ß = .285, p < .01). Specifically within all engagement of informational text, the fix-
ation on goal-relevant informational texts positively predicts participant PLGs. These
results indicate that participants who engaged with relevant informational text for a
greater period of time, demonstrated increased PLGs, supporting the presence of
metacognitive monitoring.

Table 1. Pairwise comparison of time spent on informational text to other goal-directed actions

Goal-directed action N Mean (s) SD (s) P-value

Talking to NPC 91 0.041 0.029 p < .0005
NPC dialog 91 0.084 0.036 p < .0005
Scanning food items 91 0.022 0.014 p < .0005
Concept matrices 91 0.325 0.145 p > .05
Worksheet 91 0.093 0.040 p < .0005
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4.4. Research Question 4: Do the PLGs differ between groups of participants who
revisit relevant texts more often and those who revisit relevant texts less often?

Participants were split into two separate groups: those who revisit goal-relevant texts
for more than 50% of the total revisits (Low) and those who revisit goal-irrelevant texts
for 50% or more of the total revisits (High). An ANCOVA was run to examine
differences in the number of relevant revisits between groups and PLGs using the full
and partial agency conditions as a covariates. The results revealed a significant dif-
ference between groups, (F(2,88) = 3.226, p < .05), where participants who focused
on relevant texts while revisiting text more than 50% of the time had significantly
higher PLGs than those who revisited relevant texts 50% or less of the time. In sum, the
fixation durations of participants in the High group have significantly higher PLGs than
participants in the Low group. This supports the evidence for metacognitive judgments
where participants discerned the relevancy of the text, how this may be relevant to their
goal, understood their lack of knowledge in a subject, and adjusted their reading of
informational text to optimize learning.

5 Discussion

The objective of this study was to examine learners’metacognitive judgments within CI,
a GBLE. In support of the first hypothesis, results indicate that the proportion of time
fixating on goal-directed actions differ from each other where the fixation duration of
concept matrices and informational text are significant contributors to the overall game
time. Further results support all goal-directed actions, including informational text
independently, as predictors of PLGs. GBLEs contain activities that are crucial for the
progress towards the goal of the game, but often lack in their ability to scaffold [19–21],
especially informational text. In knowing the time distribution between actions as well
as the ability for informational text within GBLEs to predict PLGs, more support can be
directed toward these components of the game to increase overall content knowledge.
Hypotheses were also supported where results indicated that participants who were able
to make accurate metacognitive judgements as to the relevancy of informational text had
higher PLGs. Further examination into evidence of metacognitive judgments yielded
results in support of the hypothesis where participants who displayed a greater number
of instances of content evaluation had higher PLGs. These results show that with
informational text in GBLEs, without the aid of diagrams, are able to encourage the use
of SRL skills while still having and positive impact on PLGs. This contradicts the
CTML model and supporting studies in that within a game-based learning environment,
text-only information presentations increase participants’ proportional learning.

5.1 Implications for Adaptive Game-Based Learning Environments

This study investigates the importance of text within GBLEs as well as the need for
increased scaffolding within these environments directed towards selecting relevant
text-only information. As supported by the study, some students are not as adept at
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accurately monitoring and selecting relevant chunks of information from a large body
of text and understand its relevancy towards the overall goal or their current learning
goal. Time spent in informational text within these environments help to direct
learners’ improvements upon their SRL skills as well as having immediate impacts on
their learning gains within the domain being studied. This encourages the need for
intelligent feedback within CRYSTAL ISLAND and future adaptive GBLEs to provide
needed real-time intelligent scaffolding to students in order to efficiently complete the
game. These results propose that one way to identify the need for increased scaffolding
on an individual level is to identify the patterns in reading informational text within
GBLEs. In a narrative-based, text-centered GBLE like CRYSTAL ISLAND, participants are
constantly engaging in informational text that may be relevant, irrelevant, or redundant
to their overall goal that necessitates accurate metacognitive monitoring and regulation.
A way to provide real-time scaffolding and improve metacognitive monitoring and
regulation will be the use of real-time analysis of gaze behaviors supplemented with
other trace data of self-regulatory processes (e.g., concurrent verbalizations, log-files,
etc.).
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Abstract. Teachers may wish to use open-ended learning activities and tests,
but they are burdensome to assess compared to forced-choice instruments. At
the same time, forced-choice assessments suffer from issues of guessing (when
used as tests) and may not encourage valuable behaviors of construction and
generation of understanding (when used as learning activities). Previous work
demonstrates that automated scoring of constructed responses such as sum-
maries and essays using latent semantic analysis (LSA) can successfully predict
human scoring. The goal for this study was to test whether LSA can be used to
generate predictive indices when students are learning from social science texts
that describe theories and provide evidence for them. The corpus consisted of
written responses generated while reading textbook excerpts about a psycho-
logical theory. Automated scoring indices based in response length, lexical
diversity of the response, the LSA match of the response to the original text, and
LSA match to an idealized peer were all predictive of human scoring. In
addition, student understanding (as measured by a posttest) was predicted
uniquely by the LSA match to an idealized peer.

Keywords: Automated assessment � Natural language processing �
Latent semantic analysis � Write-aloud methodology

1 Introduction

1.1 Generative Activities

Teachers may wish to use open-ended learning activities and tests, but they are bur-
densome to assess compared to forced-choice instruments. At the same time, forced-
choice assessments suffer from issues of guessing (when used as tests) and may not
encourage valuable behaviors of construction and generation of understanding (when
used as learning activities). The use of generative learning activities such as prompting
students to write explanations has been shown to be beneficial to improving under-
standing when learning in science [1–4]. Generating explanations can prompt students
to engage in the construction of a mental model of the concepts in the text. The process
of writing explanations may be effective because it prompts students to generate
inferences and make connections across the text and to their own prior knowledge.
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Prior work has shown that engaging in constructive learning activities, such as
generating explanations, increases student understanding compared to other more
passive activities such as re-reading [3]. However, other work suggests that the quality
of the explanations that are generated may matter [2, 5]. This means that students may
need feedback on the quality of their explanations in order to gain the benefits of
engaging in this learning activity. In turn, this then places a large burden on teachers.
However, if evaluation of student responses such as explanations could be accom-
plished using automated natural language processing indices, then teachers could uti-
lize open-ended learning activities with increased frequency. And, the same methods
could also be used to score open-ended test questions.

1.2 Using Latent Semantic Analysis in Automated Evaluation
of Responses

Latent semantic analysis (LSA) has been useful in automated evaluation of constructed
student responses as it can be used to generate an index representing the overlap in
semantic space between two texts [6]. Foltz et al. [7] used multiple approaches with
LSA to assess short-answer essays written about a cognitive science topic: how a
particular connectionist model accounts for a psycholinguistic phenomenon (the word
superiority effect). Measures of semantic overlap were obtained by comparing student
essays to the original text in two ways: one using the whole text and one using selected
portions that were deemed most important. Both approaches were found to be highly
correlated with scores obtained from human graders who coded for content and quality
of writing. Similarly, Wolfe et al. [8] derived LSA scores by comparing short student
essays about heart functioning to a standard textbook chapter, and found these LSA
scores predicted the grades assigned by professional graders (using a 5-point holistic
measure of quality) as well as the scores that students received on a short-answer test of
their knowledge of the topic.

In addition to comparing student responses to the original text or a standard text,
another approach has compared student responses to an expert summary. León et al. [9]
had students read either a narrative excerpt from a novel (The Carob Tree Legend) or
an encyclopedia entry (The Strangler Tree) and write a short summary. The LSA
comparison to the “gold standard” expert response was more predictive of human
scoring than the LSA comparison to the original text. Similar results have been
obtained in studies with students writing about ancient civilizations, energy sources and
the circulatory system [10], and in response to conceptual physics problems [11].

Prior research has used LSA to make comparisons between student responses and
expert responses; however, when experts write responses they tend to use more aca-
demic language and make different connections and elaborations than students based
on their prior knowledge [12]. Thus, researchers have also explored making compar-
isons to peer responses. Both Foltz et al. [7] and León et al. [9] used exact responses
written by peers to compute an average LSA score from comparisons of each student
response with all other student responses. These average scores were predictive of
human scoring. Other studies have used LSA to contrast student responses against
“best peer” responses. Ventura et al. [12] had students write responses to conceptual
physics problems within an intelligent tutoring system. Student responses were
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compared to both an expert response and a best peer response. The best peer response
was taken randomly from all responses given the grade of an A. When comparing the
LSA match to the expert response and the best peer response, the LSA match to the
best peer more accurately predicted the letter grade assigned by a human grader.

Other work has used LSA measures based in “idealized” peer comparisons to
predict not just human coding, but also student understanding. In Wiley et al. [13],
students read texts as part of a multiple document unit on global warming, and were
asked to generate an explanation about how global warming occurs. An idealized-peer
response was constructed to include the key features from the best student essays.
The LSA scores obtained by comparing the student responses to the idealized-peer
response were predictive of both holistic human scoring, as well as student under-
standing as measured by an inference verification test given at the end of the unit.

The main goal for the present research was to further explore the effectiveness of
automated scoring using peer-based LSA measures to predict understanding from a
social science text in which a theory was presented along with supporting empirical
research and examples to explain the theory. This text structure is representative of the
style of many social science textbooks, including those in introductory psychology.
With such texts, it is the responsibility of the reader to understand how and why the
cited studies and examples support the theory as described. The present study tested
whether the LSA match between student comments generated while reading and an
experimenter-constructed idealized peer could serve not only as a predictor of holistic
human coding, but also serve as a measure of student understanding.

2 Corpus and Human Scoring of Responses

2.1 Corpus

The corpus consisted of short written responses generated by 297 undergraduates while
reading a text about cognitive dissonance, a key topic that is generally covered in most
courses in introductory psychology. The comments were written by undergraduate
students in an introductory psychology course (188 females; Age: M = 18.93, SD =
1.16) as a part of a homework assignment administered through the Qualtrics survey
platform. All responses were edited to correct any typographical errors as well as to
expand contractions and abbreviations. The textbook excerpt that was assigned for this
topic had a Flesch-Kincaid reading level of 12.5 and contained 863 words in 5 para-
graphs. The excerpt began with a real-world example followed by a description of the
theoretical concept. The passage then described two research studies which provided
empirical support for cognitive dissonance theory. Students were given an initial
opportunity to read this textbook excerpt in an earlier homework assignment. During
the target activity for this study, students were given a brief instructional lesson on how
to generate explanations to support their learning from text:
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As you read the texts again today, you should try to explain to yourself the meaning
and relevance of each sentence and paragraph to the overall purpose of the text. At the
end of each sentence and paragraph, ask yourself questions like:

• What does this mean?
• What new information does this add?
• How does this information relate to the title?
• How does this information relate to previous sentences or paragraphs?
• Does this information provide important insights into the major theme of the text?
• Does this sentence or paragraph raise new questions in your mind?

Students then saw an example text with associated example responses to these
questions that could be written at various points in the text.

After the lesson, students reread the textbook excerpt on cognitive dissonance. At
the end of each of the 5 paragraphs, they were prompted to “write your thoughts” for
the current section of the text similar to a “type-aloud” or “write-aloud” procedure [14].
In addition, they were asked to write their thoughts at the end of the entire text. They
were reminded to think about the questions given in the instructions which were
present in a bulleted list on the screen as a reference while they wrote their thoughts.
The 6 thought statements were concatenated into a single response for each student
with an average length of 190 words (SD = 114, range: 6–728) and an average lexical
diversity of 58.05 (SD = 34.71, range: .01–125.50).

Several additional measures were available for each student. Student understanding
of the topic following the homework activity was measured by performance on a 5-
question multiple–choice comprehension test (M = 2.44, SD = 1.21). As seen in
Table 1, these questions were designed to test the ability to reason from information in
the text, and to construct inferences about information left implicit in the text, not just
verbatim memory for facts and details. Students did not have access to the text while
completing the test. This was collected during the next week’s homework activity
which served as a practice test for the upcoming exam. The data set also included
measures of reading ability (ACT scores, M = 23.72, SD = 3.62) and prior knowledge
(performance on a 5-item multiple choice pretest on the topic given during the first
week of the course, M = 1.87, SD = 1.14). Prior studies [except 13] have generally not
included reading ability as a predictor when using automated evaluation systems. This
leaves open the question of whether automated evaluation systems are solely useful in
predicting general reading ability (and detecting features of essays written by better
readers) rather than predicting the quality of features in specific responses.

2.2 Human Scoring of Responses

Student responses were scored by two human coders using a rubric adapted from
McNamara et al. [15] and Hinze et al. [2], similar to what a teacher might use to
quickly assess their quality. A score of 0 was assigned to responses that represented
little to no effort: consisting of only non-word gibberish (“dfkashj”), two or fewer
words per paragraph, or only verbatim phrases that were copied and pasted from the
original text. Responses that included paraphrased ideas from the text (but no addi-
tional elaborations) were assigned a 1 (e.g., “Possible ways to reduce cognitive
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dissonance include changing one’s behavior,” “Two scientist managed an experiment
cognitive dissonance with children and their toys”). Responses that showed evidence of
constructive processing, such as when students identified connections not explicit in the
text, were assigned a score of 2. This could occur through identifying the relations
between theories and evidence, or making connections to relevant prior knowledge
(e.g., “Whenever people have conflicting beliefs and actions, some sort of resolution
must occur. The conflict causes psychological distress and must be removed. In order
to reduce cognitive dissonance, they must alter their beliefs to match the action or
altering behaviors to match the belief”). Interrater agreement between two coders
resulted in Cohen’s kappa of .92.

Table 1. Paragraph 3 of cognitive dissonance text, idealized-peer response from concepts
appearing in highest scoring student responses, and example test question.

Text Excerpt
In 1959, Festinger and Carlsmith conducted an experiment which tested cognitive dissonance
theory. Participants were asked to spend an hour performing a very boring task…. These
participants were asked to recommend the experiment they had just completed to other
potential participants who were waiting to complete the experiment. They were instructed to
tell these potential participants that the experiment was fun and enjoyable. Half of the
participants in this group were paid $1 to recommend the experiment and the other half were
paid $20. These participants were then taken to the interview room and asked the same
questions as the participants in the control group, who were not paid and were not asked to talk
to other participants. The participants in the $20 group responded similarly to the participants
in the control group, namely that they did not find the experiment to be enjoyable and that they
would not sign up to participate in a similar experiment. In contrast, participants in the $1
group rated the experiment as more enjoyable than participants in the other two groups, and
indicated that they would be more willing to participate in another similar experiment.
Most frequent concepts in best
responses

Idealized-peer response

- Identify groups performing
similarly (18%)
- Question the reasoning for
results of study (72%)

The control group and the $20 group both told the truth
that they did not enjoy the experiment. The $1 group rated
the experiment as more enjoyable. This does not make
sense. Why would the $1 group say it was fun?

Test Question
Imagine that the theory in the text was incorrect and that people do not experience cognitive
dissonance. Which result of the Festinger experiment (about getting paid to do a boring task)
would you expect?
a. The control group who got paid nothing would have said they found the task very interesting
b. The group paid $1 would have said they found the task to be boring
c. The group paid $20 would have said they found the task to be very interesting
d. How much people got paid would not have had a bigger effect on what they said about the
task
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2.3 Idealized-Peer Response

The idealized-peer response was constructed by selecting concepts and phrases that
appeared most frequently in responses to each of the 5 paragraphs across the best
student comments (i.e., scored as “2” by human raters). An example of the idealized-
peer response for one paragraph is shown in Table 1. The idealized response, written at
the 8th grade level, included a paraphrase of the main point and 1–2 of the most
frequent elaborations for each paragraph. The elaborations were often written in the
first and second person. Elaborations also included explicit connections between the
theories presented and the experiments that were left implicit in the original text, and
metacognitive comments (e.g., I am not sure why they would do that?).

3 Results Using Automated Scoring Indices

3.1 Automated Scoring Indices

Four automated measures were computed. Two measures were calculated using LSA.
The first compared the student response to the actual text excerpt that was read
(LSAORIG). The second compared the student response to the idealized-peer response
(LSAIDEAL). In addition, the total response comment length (LENGTH) was com-
puted using Linguistic Inquiry and Word Count (LIWC) [16] and the lexical diversity
(LEXDIV) of all words in each student response was measured using Coh-Metrix
index LDVOCDa [17]. The length of a response is often predictive of human scoring,
accounting for over 35% of the variance in human-scored responses [18–20]. The
variety of words used can also predict human scoring. In essays where students were
asked to describe the popularity of comic books or wearing name-brand fashions, or to
write letters responding to a complaint or welcoming an exchange student, the lexical
diversity of the response was a positive predictor of essay grades assigned by human
raters [21]. While features such as the number and diversity of words within a student
response may influence human scoring, other work has found that length may not
predict student understanding, and the relation between lexical diversity and under-
standing may became negative once the LSA match with the idealized-peer essay is
taken into account [13]. To further explore these relations, two additional automated
measures (LENGTH, LEXDIV) were included in the present analyses.

Table 2. Correlations among measures for student responses.

HUMAN LENGTH LEXDIV LSAORIG LSAIDEAL
LENGTH .46** –

LEXDIV .55** .54** –

LSAORIG .68** .55** .55** –

LSAIDEAL .79** .50** .54** .83** –

POSTTEST .15** .10 .08 .19** .23**

**Correlations are significant at the 0.01 level.
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As shown in Table 2, human scoring (HUMAN) predicted posttest performance
(POSTTEST). LSA measures predicted human scoring, and were at least as strong of
predictors of posttest performance as human scoring. Descriptively, the strongest single
predictor of posttest performance was the match with LSAIDEAL (although this cor-
relation was not significantly stronger than the correlation with HUMAN scoring,
z = 1.01, p = .16). Despite the significant correlations among measures, variance
inflation factors in all reported analyses remained below 1.8 indicating that multi-
collinearity was not an issue for analyzing the measures together in regressions.

3.2 Relation of Automated Scoring to Human Scoring

As shown in Table 2, the simple correlations between human scores and all four
automated measures were significant. However, as shown in Table 3, when they were
all entered simultaneously into a regression model, LSAORIG was no longer a sig-
nificant predictor of human scoring. LSAIDEAL and LEXDIV both remained as
positive unique predictors of the human scores, with the full model accounting for 58%
of the variance in human scores, F(4, 292) = 130.53, p < .001.

3.3 Relation of Automated Scoring to Student Understanding

As shown in Table 2, the simple correlations between student understanding (assessed
by posttest scores) and automated measures were only significant for the two LSA
measures (LSAORIG and LSAIDEAL). Posttest scores were not significantly predicted
by response length (LENGTH) or lexical diversity (LEXDIV). Further, as shown in
Table 4, only LSAIDEAL remained as a significant predictor, R2 = .04 F(4, 292) =
4.13, p = .003, when all 4 automated measures were entered simultaneously.

Table 3. Human-scored quality as predicted by automated measures.

Variable Unstandardized beta (B) Std. error Standardized beta (b) t-value p-value
(Constant) 0.27 0.08 3.17 .002
LENGTH 0.00 0.00 .04 0.81 .42
LEXDIV 0.00 0.00 .16 3.56 <.001
LSAORIG −0.03 0.22 −.01 −0.15 .88
LSAIDEAL 2.68 0.25 .69 10.72 <.001

Table 4. Student understanding as predicted by automated measures.

Variable Unstandardized beta (B) Std. error Standardized beta (b) t-value p-value
(Constant) 1.23 0.31 4.01 <.001
LENGTH 0.00 0.00 .00 0.02 .99
LEXDIV 0.00 0.00 −.06 −0.79 .43
LSAORIG 0.13 0.82 .02 0.16 .88
LSAIDEAL 2.16 0.93 .24 2.33 .02
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3.4 Unique Contribution of LSAIDEAL Over and Above Reader
Characteristics

It is typically the case that students who are better readers or who have prior knowledge
of a topic will develop better understanding when learning from text. Indeed, both ACT
scores (r = .25) and prior knowledge measures (PRETEST, r = . 29) were significant
predictors of posttest scores. However, as shown in Table 5, LSAIDEAL remained as a
significant predictor even when both ACT scores and prior knowledge were included in
the model, R2 = .17, F(3, 249) = 16.79, p < .001.

3.5 Comparison of LSAIDEAL to Other LSA Alternatives

There are several possible reasons why idealized-peer responses were more predictive
of understanding than the original text. One may be that sections in introductory
textbooks contain a large number of ideas about each topic. The idealized-peer
response may gain its power by selecting out the most relevant ideas from the section.
Thus, when a student’s response overlaps heavily with the content of the idealized-peer
response, this may reflect that student’s ability to identify, select, and attend to the most
relevant features of the text. This may be similar to the predictive value of just the most
important sentences within the text [7]. A second possible reason may be because
idealized-peer comments are written in more colloquial language that other students
may be more likely to use [12, 13]. A third possible reason is that idealized-peer
responses may explicitly mention key inferences and connections that are left implicit
in the text [12]. And finally, constructing an idealized-peer response from multiple
high-quality student responses may be better than using only one randomly selected
“best student” because comments vary and contain many idiosyncrasies that may be
relevant based on the prior knowledge of one individual more so than another.

To better understand what may be responsible for the predictive power of the
idealized-peer response, several alternative LSA comparisons were computed: the
match of each student’s comments to the same concepts in the LSAIDEAL but written
in academic language at a 12th grade level (ACADEMIC), to an automated selection
(selected by R package LSAfun [22]) of the important sentences in each section of the
text (LSAFUN), to important sentences as selected by expert (SELECTED), to sen-
tences written by an expert to represent the explicit connections that need to be made to
comprehend the text (EXPLICIT), and to a randomly chosen single best peer response
(BESTPEER). The partial correlations after controlling for the unique contributions
from reading ability and prior knowledge are similar as shown in Table 6.

Table 5. Student understanding as predicted by LSAIDEAL and reader characteristics.

Variable Unstandardized beta (B) Std. error Standardized beta (b) t-value p-value
(Constant) −0.80 0.54 −1.49 .14
ACT 0.07 0.02 .22 3.77 <.001
PRETEST 0.22 0.06 .21 3.63 <.001
LSAIDEAL 1.97 0.49 .23 4.01 <.001
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4 Discussion

This study tested multiple automated measures that may be useful for assessing student
understanding. Students wrote responses while reading a textbook excerpt on cognitive
dissonance, a commonly taught subject in introductory psychology courses. All
responses were scored for quality by both humans and using automated measures.

Although lexical diversity of the comments was a significant positive predictor of
human scoring, it was not predictive of student understanding as measured by the
posttest. When the intended purpose of a learning activity is to promote student
understanding, and when the goal for using automated measures is to predict student
understanding (rather than to match holistic impressions of human scorers), then fea-
tures such as length and lexical diversity may be less useful.

In contrast, the LSA match with the idealized-peer response provided a better fit for
both human scoring and for student understanding than did the LSA match to the
original text. Although this predictive model accounted for a relatively small proportion
of the variance in test scores, it provides a first step in exploring how learning activities
that prompt students to record their thoughts online as they are attempting to com-
prehend a text might be able to utilize automated evaluation techniques.

This study represents an advance beyond prior work by the inclusion of reading
ability and prior knowledge in the prediction models, as well as by testing across a
wide range of LSA metrics. Similar results were seen between idealized responses
written in academic and more colloquial language indicating that the use of peer
language may not be as important as hypothesized. Further, the use of idealized-peer
responses that included multiple elements from several of the best students seemed to
produce a better standard than a single randomly chosen best response (although this
finding may be highly variable based on the single response chosen). Additionally, an
expert may choose slightly better sentences than an automated system (LSAfun), but
the advantage of automation may be important for broader implementation.

Another limitation of the current implementation was that the student responses
needed to be edited to correct misspellings and abbreviations prior to processing to
achieve these results. However, simply requiring students to use a spelling and

Table 6. Partial correlations among LSA measures and student understanding.

Posttest
LSAORIG .20**
LSAIDEAL .25**
ACADEMIC .24**
LSAFUN .22**
SELECTED .25**
BESTPEER .23**
EXPLICIT .23**

**Partial correlations are significant at
the 0.01 level.
Note. Controlling for reading ability
(ACT) and prior knowledge (pretest).
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grammar check tool prior to submission has been successful in properly editing
responses for processing [10]. Adding that feature could also aid automation in this
case.

5 Conclusion and Future Directions

The main goal for the present research was to further explore the effectiveness of
automated scoring using LSA to predict understanding from a social science text in
which a theory was presented along with supporting empirical research and examples
to explain the theory. The results of the present study demonstrated that the LSA match
between student comments and an idealized peer could serve not only as a predictor of
holistic human coding, but also as a measure of student understanding.

Ultimately, the motivation behind developing and testing for effective means of
automated coding of student responses is to enable the development of automated
evaluation and feedback systems that support better student comprehension when
attempting to learn from complex social science texts. Generative activities can be
beneficial for learning, but they may be especially effective when feedback is provided
to students. Moving forward, the next step in this research program is exploring how
this automated scoring approach can be used to provide intelligent feedback to students
as they engage in these learning activities.

Though the predictive power of this approach is limited, the results of the present
study are promising as they suggest that evaluations of response quality derived from
an LSA index based in the match between students’ comments and an idealized-peer
might be just as helpful as having a teacher quickly assess the quality of student
comments made during reading. Utilizing these automated measures may make it more
feasible for teachers to assign learning activities that contain open-ended responses, and
for students to learn effectively from them.
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Abstract. Recent years have seen growing interest in utilizing sensors to detect
learner affect. Modeling frustration has particular significance because of its
central role in learning. However, sensor-based affect detection poses important
challenges. Motion-tracking cameras produce vast streams of spatial and tem-
poral data, but relatively few systems have harnessed this data successfully to
produce accurate run-time detectors of learner frustration outside of the labora-
tory. In this paper, we introduce a data-driven framework that leverages spatial
and temporal posture data to detect learner frustration using deep neural network-
based data fusion techniques. To train and validate the detectors, we utilize
posture data collected with Microsoft Kinect sensors from students interacting
with a game-based learning environment for emergency medical training.
Ground-truth labels of learner frustration were obtained using the BROMP
quantitative observation protocol. Results show that deep neural network-based
late fusion techniques that combine spatial and temporal data yield significant
improvements to frustration detection relative to baseline models.

Keywords: Affect detection � Data fusion � Posture � Frustration �
Deep learning

1 Introduction

Affect has a key role in shaping student learning outcomes [1]. Affective states such as
flow tend to promote learning, while states such as boredom are not as conducive to
learning. The affective state of frustration has a complex relationship with learning [2–5].
On the one hand, frustration often coincides with student efforts to overcome impasses,
and it signifies situations in which students are grappling with a concept that is chal-
lenging [6]. On the other hand, frustration can lead to student disengagement, and it has
been correlated with negative learning outcomes [7]. The ability to accurately detect
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student affect at run-time is critical to the development of affect-sensitive learning tech-
nologies that dynamically intervene to support engagement and emotion regulation [3, 8].
The complex relationship between frustration and learning underscores the importance of
reliable frustration detection to inform how affect-sensitive pedagogical interventions are
delivered within intelligent tutoring systems [3].

Several methods for detecting student frustration have been investigated in recent
years. These include both sensor-free methods and sensor-based methods. Sensor-free
methods leverage trace log data from student interactions with a learning environment
to train machine learning-based models of affect [9, 10]. Results have shown that
sensor-free affect detection, in combination with deep recurrent neural networks, can
yield accurate models across several affective states [9]. Alternatively, sensor-based
methods utilize physical sensors to capture trace-level data on learner behavior and
physiology, including facial expression, eye gaze, electrodermal activity (EDA),
electroencephalography (EEG), and posture [3, 4, 11]. Sensor-based methods show
promise for enabling generalized affect detection, which eschews domain-specific input
feature representations, instead leveraging sensor data that can be gathered across a
range of educational domains and learning environments. Notably, sensor-based
approaches to affect detection do not necessarily require specialized hardware because
a growing number of sensors are built directly into computers and tablets, including
webcams, motion-tracking cameras, and increasingly, eye trackers.

Sensor-based frustration detection has shown good results when targeting self-
reported affect data [12] or deploying sensors in laboratory settings [4]. Specific data
channels, such as facial expression, have also shown promise using student data from
classrooms [13], but other data channels, such as posture, have received less attention.
Sensor-based frustration detection outside of the lab raises significant challenges [3].
Physical sensor data can be affected by reliability issues, background noise, poor
calibration, subject mistracking, data storage constraints, and inconsistent sensor
configurations. Further, trace-level data generated by sensors is intrinsically temporal,
yet the input feature representations that are distilled from these data streams often
contain limited temporal information [3]. Spatiotemporal data has been demonstrated to
significantly improve the performance of sensor-based classifiers for action recognition
[14] and engagement intensity [15], and it is likely to benefit affect-sensitive learning
technologies as well.

In this paper, we investigate sensor-based frustration detection using deep neural
network-based data fusion techniques integrating spatial and temporal data on student
posture captured by Microsoft Kinect cameras. The dataset was gathered from a study
involving students using a game-based learning environment for emergency medical
training, TC3Sim. Ground-truth labels for learner frustration were obtained using the
BROMP quantitative observation protocol [16]. We compare the effectiveness of deep
neural network-based early- and late-fusion techniques across several evaluation
metrics. Results show that deep neural network-based late-fusion yields significant
improvements to frustration detection compared to several baseline techniques.

4D Affect Detection: Improving Frustration Detection 145



2 Related Work

There is growing interest in sensor-based affective modeling in advanced learning
technologies. Bosch et al. [13] utilized webcam recordings of students engaged in a
physics-based learning game to construct feature vectors extracted from observed head
positions and movement, brow position, and gross body movement. Ground truth data
was obtained through the BROMP protocol, using trained observers to mark instances
of certain affective states at set time intervals. Utilizing BROMP observations as a
target label, a multitude of classifiers were trained, including Bayesian classifiers and
C4.5 decision trees, to detect affective states such as frustration, boredom, confusion,
delight, and engagement. Motion-tracking cameras, such as the Microsoft Kinect, have
also been utilized in sensor-based affect detection [17]. Grafsgaard et al. utilized learner
posture and gesture data gathered by a Microsoft Kinect as learners engaged in
computer-mediated tutoring sessions for introductory programming [17]. Posture
estimation vectors were distilled from the Kinect’s depth-channel data, and the vectors
were used to determine correlations between specific postures and self-reported frus-
tration, engagement, and learning gains. DeFalco et al. [3] utilized posture data from a
Kinect sensor to detect learner affect in a game-based learning environment for
emergency medical training. Separate classifiers were induced for each of five affective
states: boredom, confusion, concentration, frustration, and surprise. The affect detectors
performed only slightly better than chance, yielding Kappa values between 0 and 0.11.

As an alternative to sensor-based affect detection, Jiang et al. [10] utilized inter-
action trace log data in an investigation of deep neural network-based representation
learning versus expert feature-engineering for sensor-free affect detection using
BROMP data. Time, frequency, and ratio-based features were calculated for each
student based on his/her individual interaction with a game-based learning environment
for physics education. Overall, deep neural network-based models achieved equal or
better performance compared to feature engineering-based models, with a lone
exception being frustration (i.e., the feature-engineering approach was slightly more
accurate). Subsequent work showed that recurrent neural networks (RNNs) outper-
formed the previous classification algorithms in the same affect detection task [9].

Recent efforts in affect detection have started to explore usage of temporal data
channels as an input modality. Yang et al. [15] used several feature extraction
approaches on spatiotemporal face and posture data to train long short-term memory
(LSTM) networks alongside regression fusion to approximate engagement intensity in
individuals watching an educational video. Temporal information has also been used to
develop rule-based models to classify affect through recognition of sequences of joint
movement and repetition of certain motions [18]. The frustration detection framework
presented in this paper builds on recent advances in deep neural network-based data
fusion and introduces an artificial temporal data stream (i.e., a “fourth dimension”)
derived from spatial 3D posture data to enhance run-time detector accuracy during
student interactions with a game-based learning environment.
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3 TC3Sim Game-Based Learning Environment

We investigate automatic detection of student frustration in the context of a game-
based learning environment for training military medical personnel, the Tactical
Combat Casualty Care Simulation (TC3Sim). Developed by Engineering and Com-
puter Simulations (ECS), TC3Sim (Fig. 1) is widely used by the U.S. Army to train
soldiers in the essential procedures required of an Army Combat Medic or Combat Life
Saver. In TC3Sim, trainees complete a series of 3D simulated combat missions
alongside a group of computer-controlled teammates. Each story-driven training sce-
nario includes a series of simulated combat events that lead to the eventual injury of
one or more teammates. Trainees must administer tactical combat casualty care in real-
time, which includes securing the area, assessing casualties, performing triage,
administering treatment, and preparing for medical evacuation. Trainees encounter
opportunities to handle a wide range of injuries, including cuts, puncture wounds,
blocked airways, amputations, and burns. In the present work, we focus on learner
interactions with four training scenarios from TC3Sim, including a tutorial scenario, a
leg injury scenario, a narrative scenario involving a squad of soldiers on patrol, and a
final scenario that is impossible to complete successfully—the patient expires regard-
less of treatment. Prior work with TC3Sim has found evidence of a negative rela-
tionship between frustration and learning, and further, motivational feedback
interventions that target frustration can positively impact learning outcomes [3]. We
seek to improve the effectiveness of generalizable frustration detectors to enable affect-
sensitive pedagogical support with enhanced effectiveness and reliability.

Fig. 1. Screenshot of injured soldier in TC3Sim.
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4 Detecting Frustration with Posture-Based Temporal Data
Fusion

The primary goal of this work was to induce machine learning-based classifiers for run-
time frustration detection using student posture data collected by a Microsoft Kinect
sensor. The detector’s objective was to classify whether a student was frustrated or not
given an input feature vector consisting of spatial and/or temporal posture data.

4.1 Dataset

We utilized a previously published dataset containing data from 119 students (83%
male, 17% female) at the United States Military Academy. The training materials were
administered using the Generalized Intelligent Framework for Tutoring (GIFT), an
open-source software framework for building and deploying adaptive training systems
[19]. All participants worked individually at laptops and received the same materials;
there were no experimental conditions. Study sessions lasted approximately 1 h.

The study procedure was as follows. First, learners completed a brief demographic
questionnaire and content pre-test. Next, they viewed a PowerPoint presentation about
tactical combat casualty care. Afterward, participants completed a series of training
scenarios in TC3Sim, each working at their own pace. The session concluded with a
brief post-test, which included the same knowledge assessment items that were pre-
sented on the pre-test. Utilizing identical items on both the pre- and post-tests reduced
the challenge of identifying items with matching difficulty for counterbalancing the
assessments. Further, no feedback was given about student performance on the pre-test
during the study.

During the study sessions, each participant was instrumented with a tripod-mounted
Microsoft Kinect for Windows 1.0 sensor. The Kinect sensor was positioned in front of
each participant to capture all head movements, body movements, and gestures
throughout participants’ interactions with TC3Sim using built-in skeletal-tracking
features supported by GIFT. Kinect sensor data was recorded at approximately 10–
12 Hz. The data consisted of a series of timestamped feature vectors containing 3D
coordinate data for 91 vertices, each corresponding to a facial or body joint tracked by
the Kinect. In addition to the Kinect, learners were equipped with a wireless Affectiva
Q-Sensor bracelet, and their interaction trace log data was recorded by GIFT. The Q-
Sensors captured timestamped data on learners’ skin temperature, learners’ electro-
dermal activity, and sensor 3D coordinates as measured by built-in accelerometers.
However, the Q-Sensor data contained significant recording gaps for a large number of
participants, and therefore it was not utilized in the current work. The interaction trace
log data was not relevant to devising sensor-based frustration detection, so it was also
not utilized.

To obtain ground-truth labels of learner affect, two field observers recorded
learners’ affect and behavior using the BROMP quantitative field observation protocol
throughout the study [16]. The field observers, who were both BROMP-certified
coders, walked around the perimeter of the classroom and used a hand-held Android
device running the HART field-observation software to discreetly record each learner’s
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affect and behavior at 20-s intervals in round robin sequence. The following emotional
states were recorded: Concentrating, Confused, Boredom, Surprised, Frustrated,
Contempt, and Other.

In total, the study yielded 3,066 BROMP observations by the two field observers.
For the purpose of the current analysis, we utilize a subset of 755 observations coin-
ciding with the time period during which participants interacted with the TC3Sim
game-based learning environment and on which there was no disagreement between
BROMP coders about the occurrence of a target affective state. The distribution of
affective states across these observations were the following: 435 (57.6%) were coded
as Concentrating, 174 (23.1%) as Confused, 73 (9.7%) as Boredom, 32 (4.2%) as
Frustrated, 29 (3.8%) as Surprised, and 12 (1.6%) as Contempt.

To prepare the data for training posture-based frustration detectors, we re-coded the
data into binary categories, yielding 32 instances of Frustrated and 723 instances of
Not-Frustrated. The Kinect data was cleaned to remove instances of tracking anomalies
and extraneous vertex data. Sessions containing fewer than 3 BROMP observations
were also removed. Of the 91 vertices tracked by the Kinect, 3 were utilized for
posture-based frustration detection: top_skull, head, and center_shoulder. These ver-
tices were selected based on prior efforts investigating affect detection from Kinect data
[17]. Next, Kinect and BROMP data were integrated and temporally aligned. A set of
73 posture-related features were computed for each BROMP observation after the
initial data collection, serving as input features for frustration detection. These features
captured spatial information about student posture, and they included summary
statistics (e.g., median, variance, min, max) calculated over time windows of 5, 10, and
20 s preceding the BROMP coding event. These time window sizes are similar to prior
work on affect detection, including a maximum window size that corresponds to the
targeted maximum time between BROMP observations [3, 13]. In addition, features
capturing aggregate changes in learner posture, as well as forward/backward lean
behaviors, were computed. In aggregate, these features provided a detailed view of the
spatial orientation of learners’ posture.

4.2 Temporal Feature Engineering

The spatial features that were distilled from the Kinect posture data had ranges that
varied widely, so feature scaling was performed. Each student’s data was normalized
using Z-score standardization: for each session, the difference between a single data
point and session mean was divided by the session standard deviation. Temporal
posture features were computed from the spatial posture feature vectors using the first
derivative of each observation’s posture coordinates [20]. Using the head vertex, for
each set of (x, y, z) posture coordinates, the coordinate deltas across two consecutive
sensor readings were calculated. The deltas were used to calculate velocity features
averaged across time windows of 3, 5, 10, and 20 s. For each posture coordinate, the
mean, median, max, and variance of the average corresponding velocity were calcu-
lated. This process provided an additional 48 temporally-related posture features. Due
to the large number of additional features calculated per vertex, velocity information
was not calculated for center_shoulder and top_skull. The temporal data was nor-
malized using the same Z-score normalization described previously.
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4.3 Feature Selection

Given the large number of available posture features, automated feature selection was
utilized to reduce the size of the final feature sets for training frustration detectors.
Forward feature selection was performed to investigate alternate configurations of
feature vectors up to length 10. Greedy feature selection was performed using
RapidMiner 9.0, and it was guided by classification performance with the sequential
minimal optimization (SMO) variation of a polynomial-kernel support vector machine
(SVM) [21]. We utilize RapidMiner because it is a convenient toolkit for processing
and modeling data using a range of supervised learning algorithms, and it has been
used widely in prior work on affect detection [3]. Forward feature selection is a
common approach in prior work on affect detection, and SVMs trained with SMO have
previously been found to outperform competing algorithms for frustration detection
with learner data from the TC3Sim environment [3, 13].

4.4 Deep Neural Network Architecture

Each dataset produced by the feature-selection algorithm was used to train a multi-layer
perceptron neural network. Each network was comprised of feed-forward layers con-
taining 800, 800, 500, 100, 50, and 2 nodes, respectively. Each hidden layer utilized a
Rectified Linear Unit (ReLU) activation function. The networks were trained for 10
epochs and used an ADADELTA [22] adaptive learning rate to help prevent overfit-
ting. All deep neural network models were implemented using RapidMiner 9.0 [23].

4.5 Data Fusion

To investigate alternate approaches for integrating spatial and temporal posture fea-
tures, we compared several classifiers induced with both early- and late-fusion tech-
niques. Early fusion is based on the concept of “feature-level” fusion, or concatenation
of multiple feature vectors to form a single vector prior to supervised learning [24]. To
determine the best sequence of feature selection and feature-level fusion, we imple-
mented two variants of early fusion. The first method, EarlyFusion1, performs feature
selection after concatenating the spatial and temporal feature vectors (Fig. 2A). The
second method, EarlyFusion2, performs feature selection on spatial and temporal
features separately. After feature selection, feature-level fusion is performed on the top-
selected features from each modality (Fig. 2B). LateFusion involves training a model
on each modality separately and integrating the results of each classifier to produce a
single prediction (Fig. 2C). This prediction can be determined using several different
methods, such as majority voting, averaging, or weighting [25]. In this work, we
compare the results of late fusion using match-score fusion [26] and the highest con-
fidence level of the late-fusion output.
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5 Results

Frustration detectors were trained using 10-fold student-level cross validation. Data
splits were maintained across all modeling approaches to ensure fair comparisons. To
ensure adequate training coverage for both target classes (i.e., frustrated and not-
frustrated), the training data was oversampled using cloning of minority class instan-
ces. Feature selection and early fusion techniques were implemented in RapidMiner 9.0
[23]. RapidMiner does not support decision-level fusion, as required by our LateFusion
method. Therefore, feature selection and deep neural network models were created
using RapidMiner, the raw outputs of the models were recorded, and then decision-
level fusion was performed outside of RapidMiner using Python.

We observed that z-score feature normalization has a sizable impact on the pre-
dictive accuracy of posture-based frustration detectors. As a baseline, we reproduced a
machine learning pipeline for training SVM-based frustration detectors using spatial
posture data, which had been previously reported in [3], and we investigated how the
resulting models compared to an equivalent machine learning pipeline with z-score
feature normalization added. Evaluation metrics included Cohen’s kappa [27], area
under the curve (AUC), total accuracy, and F1 score. Results are shown in Table 1.
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Fig. 2. Three data fusion techniques for integrating spatial and temporal posture-based
frustration detection methods.
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Based on these results, z-score normalization was used for the remainder of the
analyses reported in this section. Next, we replaced the SVM classifier with the deep
neural network described in Sect. 4.5. Results from comparing the deep neural
network-based frustration detector with the SVM-based detector are shown in Table 2.
The deep neural network model did not show significant improvement regarding Kappa
and F1 score, and even displayed a decrease in the raw accuracy compared to the SVM
model. However, there was substantial improvement in the AUC measurement. Slight
increases in Kappa and F1 score, as well as AUC score indicated that the neural
network had the potential to capture complex patterns in the training data possibly not
detected by the SVM.

Next, temporal posture features were computed from the Kinect data, normalized,
and used as input for the three data fusion methods. For the LateFusion model, two
different selection schemes were tested. The first selection scheme used the model
prediction with the highest confidence level. The second selection scheme took the
average of all confidence levels for a predicted class and used the highest average,
similar to match-score fusion [26]. However, detector accuracy did not change when
the two selection methods were interchanged. This may be due to the high confidence
levels of the classifiers for this particular data set, as well as the relatively small amount
of test data available.

Results from a comparison of early- and late-fusion methods combining spatial and
temporal posture data are shown in Table 3 alongside results from the deep neural
network trained with spatial posture data only as a baseline. Best results for each
evaluation metric are shown in bold. It is apparent that the addition of temporal feature
information improved the quality of frustration detection, particularly for the LateFu-
sion model. Due to the high proportion of non-frustration observations versus frus-
tration observations in the test data, additional emphasis is placed on the Cohen’s kappa
metric, as it accounts for the potential of obtaining true-positives by chance.

Table 1. Effect of z-score normalization on sensor-based frustration detection using spatial
posture features.

Classifier Kappa AUC Accuracy F1 Score

SVM 0.056 0.600 0.687 0.113
SVM (Normalized) 0.190 0.500 0.737 0.249

Table 2. Comparison of SVM and deep neural network models for spatial posture-based
frustration detection under 10-fold student level cross validation.

Classifier Kappa AUC Accuracy F1 Score

SVM 0.190 0.500 0.737 0.249
Deep neural network 0.192 0.808 0.685 0.254

152 N. L. Henderson et al.



EarlyFusion2 outperformed EarlyFusion1 across all evaluation metrics. This may
be attributable to the dimensionality of the datasets used to train the respective models.
Because feature selection operated on a single data stream for EarlyFusion1, the main
difference between this model and the baseline deep neural network was the set of
candidate features subjected to SVM-based feature selection, as EarlyFusion1 con-
catenated temporal velocity features with spatial posture features prior to feature
selection. The temporal posture features added 48 additional attributes to the existing
73 spatial posture features, but feature selection only returned up to 10 features in each
scenario. Alternatively, in EarlyFusion2, two separate feature selection processes are
employed in parallel, yielding a maximum of 20 features as input to the neural network.
This increase in number of attributes is a possible explanation for the improved
accuracy of EarlyFusion2 over EarlyFusion1.

Late fusion offers a different approach due to its capacity to “correct” a single
model’s prediction during circumstances where the model’s confidence level is rela-
tively low. Upon closer examination, several instances were observed when the spatial
posture-based detector made an incorrect prediction with a low confidence level, and
the temporal posture-based model made a correct prediction with a high confidence
level, and the latter was chosen as the representative prediction during match-score
fusion. Several instances of the inverse scenario—the spatial posture-based model
corrected a prediction by the temporal posture-based model—were also observed. This
interaction contributed to the increased accuracy of LateFusion frustration detection
over baseline SVM and deep neural network models, as well as the early fusion
methods.

6 Conclusion

Detection of learner frustration is critical to the creation of affective-sensitive learning
technologies. However, devising sensor-based run-time models of learner frustration
using posture data poses significant challenges. We have introduced a data-driven
framework that combines deep neural network-based data fusion and spatiotemporal
representations of posture data to improve run-time models of frustration detection.
Posture features were distilled using sensor data collected from participants engaging
with a game-based learning environment for emergency medical training. We found
that late fusion methods combining deep neural network-based frustration detectors
trained with spatial and temporal posture feature data outperform several baseline
techniques, including early fusion-based models and spatial posture-based models.

Table 3. Results of early fusion and late fusion on posture and temporal feature data.

Classifier Kappa AUC Accuracy F1 Score

Baseline network 0.192 0.808 0.685 0.254
EarlyFusion1 network 0.178 0.780 0.845 0.213
EarlyFusion2 network 0.281 0.854 0.900 0.321
LateFusion network 0.355 0.809 0.906 0.396
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The results suggest several promising directions for future research. First, it will be
important to investigate whether posture-based temporal data fusion techniques are
transferable to other learning emotions (e.g., boredom, confusion, engaged concen-
tration, surprise) as well as other learning environments. A key promise of sensor-based
affect detection is the potential for creating computational models of learner affect that
generalize across different educational subjects and settings. Second, alternate deep
neural network architectures should be investigated, particularly those that are
explicitly designed for modeling sequential data, such as recurrent neural networks, to
better capture the temporal dynamics of affect as expressed through posture. Recent
work has shown that recurrent neural network architectures, such as long short-term
memory networks, yield significant improvements to sensor-free affect detection, but it
remains to be seen how these methods are best utilized in sensor-based models of
affect. Finally, there is significant promise in integrating posture-based temporal data
fusion techniques for affect detection into run-time learning environments, enabling
delivery of dynamic interventions designed to support student engagement and foster
improved learning.
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Abstract. As artificial intelligence (AI) increasingly enters K-12 class-
rooms, what do teachers and students see as the roles of human versus
AI instruction, and how might educational AI (AIED) systems best be
designed to support these complementary roles? We explore these ques-
tions through participatory design and needs validation studies with K-
12 teachers and students. Using human-centered design methods rarely
employed in AIED research, this work builds on prior findings to con-
tribute: (1) an analysis of teacher and student feedback on 24 design
concepts for systems that integrate human and AI instruction; and (2)
participatory speed dating (PSD): a new variant of the speed dating
design method, involving iterative concept generation and evaluation
with multiple stakeholders. Using PSD, we found that teachers desire
greater real-time support from AI tutors in identifying when students
need human help, in evaluating the impacts of their own help-giving,
and in managing student motivation. Meanwhile, students desire better
mechanisms to signal help-need during class without losing face to peers,
to receive emotional support from human rather than AI tutors, and to
have greater agency over how their personal analytics are used. This
work provides tools and insights to guide the design of more effective
human–AI partnerships for K-12 education.

Keywords: Design · Classroom orchestration · Human-AI interaction

1 Introduction

When used in K-12 classrooms, AI tutoring systems (ITSs) can be highly effec-
tive in helping students learn (e.g., [32,37]). However, in many situations, human
teachers may be better suited to support students than automated systems alone
(e.g., by providing socio-emotional support or flexibly providing conceptual sup-
port when continued problem-solving practice may be insufficient) [29,44,49,53].
ITSs might be even more effective if they were designed not only to support stu-
dents directly, but also to take advantage of teachers’ complementary strengths
and amplify their abilities to help their students [6,27,49,65]. Yet the question
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of how best to combine strengths of human and AI instruction has received
relatively little attention in the AIED literature thus far [29,49,60].

Recent work has proposed the notion of human–AI “co-orchestration” sys-
tems that help teachers and AI agents work together to make complex yet pow-
erful learning scenarios feasible [27,29,43,46,54,60]. For example, Olsen et al.
explored how ITSs might best be designed to share control with teachers in
orchestrating transitions between individual and collaborative activities during
a class session [15,43]. Similarly, in our prior work [26,28,29], we designed a set
of mixed-reality smart glasses that direct teachers’ attention in real-time, during
ITS class sessions, towards situations the software may be ill-suited to handle
on its own (e.g., wheel spinning [7,31], gaming the system [5,58], or hint avoid-
ance [2,51]). An in-vivo classroom experiment demonstrated that this form of
real-time teacher/AI co-orchestration could enhance student learning, compared
with an ITS classroom in which the teacher did not have such support [29].

While this work has begun to explore ways to combine strengths of human
and AI instruction, many open questions remain regarding the design of class-
room co-orchestration systems. If these tools are to be used in actual class-
rooms, beyond the context of research studies, it is critical that they are
well-designed to respect the needs and boundaries of both teachers and stu-
dents [3,14,42,52,66]. For example, prior design research with K-12 teachers has
found that there is a delicate balance between automation and respecting teach-
ers’ autonomy [25,27,34,43]. Over-automation may take over classroom roles
that teachers would prefer to perform and threaten their flexibility to set their
own instructional goals. Yet under-automation may burden teachers with tasks
they would rather not perform, and may limit the degree of personalization they
can feasibly achieve in the classroom [27,43]. Furthermore, this balance may
depend heavily on the specific teacher tasks under consideration [26,55]. Yet
prior work on co-orchestration systems has investigated the design of support
for a relatively limited range of teacher tasks (e.g., monitoring student activities
during class [45,50]). Furthermore, this research has generally focused on the
needs of K-12 teachers, but not students’ perspectives, in AI-enhanced class-
rooms [27,34,43].

The present work builds on prior findings to contribute: (1) an analysis of
teacher and student feedback regarding 24 design concepts for human–AI co-
orchestration systems, to understand key needs and social boundaries that such
systems should be designed to address [13,21,66] and (2) “participatory speed
dating”: a new variant of the speed dating design method [12] that involves mul-
tiple stakeholders in the generation and evaluation of novel technology concepts.

2 Methods

To better understand and validate needs uncovered in prior ethnographic and
design research with K-12 students and teachers (e.g., [20,27,43,52,53]), we
adopted a participatory speed dating approach. Speed dating is an HCI method
for rapidly exploring a wide range of possible futures with users, intended to help
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researchers/designers elicit unmet needs and probe the boundaries of what par-
ticular user populations will find acceptable (which otherwise often remain undis-
covered until after a technology prototype has been developed and deployed)
[12,42,67]. In speed dating sessions, participants are presented with a num-
ber of hypothetical scenarios in rapid succession (e.g., via storyboards) while
researchers observe and aim to understand participants’ immediate reactions.

Speed dating can lead to the discovery of unexpected design opportunities,
when unanticipated needs are uncovered or when anticipated boundaries are dis-
covered not to exist. Importantly, speed dating can often reveal needs and oppor-
tunities that may not be observed through field observations or other design
activities [12,13,42,67]. For example, Davidoff et al. found that, whereas field
observations and interview studies with parents had suggested they might appre-
ciate smart home technologies that automate daily household tasks, a speed dat-
ing study revealed that parents strongly rejected the idea of automating certain
tasks, such as waking or dressing their children in the morning. These findings
led the researchers to dramatically reframe their project—away from creating
smart homes that “do people’s chores,” towards homes that facilitate moments
of bonding and connection between busy family members [12,67].

As described in the next subsection, we adapted the speed dating method
to enable participants from multiple stakeholder groups (K-12 teachers and stu-
dents) to reflect on other stakeholders’ needs and boundaries, and contribute
ideas for new scenarios and technology concepts. We refer to this adaptation as
multi–stakeholder “participatory speed dating” (PSD). Like other speed dating
approaches, PSD can help to bridge between broad, exploratory design phases
and more focused prototyping phases (where associated costs may discourage
testing a wide range of ideas) [12,18,67]. However, drawing from Value Sensi-
tive Design [21,66], PSD emphasizes a systematic approach to balancing multiple
stakeholder needs and values [38]. Drawing from Participatory Design [36,40,56],
in addition to having stakeholders evaluate what is wrong with a proposed con-
cept (which may address other stakeholders’ needs), PSD also involves them in
generating alternative designs, to address conflicts among stakeholder groups.

2.1 Needs Validation Through Participatory Speed Dating

We conducted PSD sessions one-on-one with 24 middle school teachers and stu-
dents. To recruit participants, we emailed contacts at eight middle schools and
advertised the study on Nextdoor, Craigslist, and through physical fliers. A total
of 10 teachers and 14 students, from two large US cities, participated in the study.
Sixteen sessions were conducted face-to-face at our institution, and eight were
conducted via video conferencing. All participants had experience using some
form of adaptive learning software in their classrooms, and 21 participants had
used AI tutoring software such as ALEKS [23] or Cognitive Tutor [48].

We first conducted a series of four 30-minute study sessions focused on con-
cept generation, with two teachers and two students. In each session, participants
were first introduced to the context for which they would be designing: classes
in which students work with AI tutoring software while their teacher uses a
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real-time co-orchestration tool that helps them help their students (specifically,
a set of teacher smart glasses, following [29]). Participants were then shown an
initial set of 11 storyboards, each created to illustrate specific classroom chal-
lenges uncovered in prior research (e.g., [20,27,47,53]), with multiple challenges
hybridized [12,42] into a single storyboard in some cases.1 For example, prior
work suggests that teachers often struggle to balance their desire to implement
personalized, mastery-based curricula with their need to keep the class relatively
synchronized and “on schedule” [27]. Given this conflict, teachers often opt to
manually push students forward in the curriculum if they have failed to master
current skills in the ITS by a certain date, despite awareness that this practice
may be harmful to students’ learning [27,47]. As such, one storyboard (Fig. 1)
presented a system that helps teachers make more informed decisions about when
to move students ahead (based on the predicted learning benefits of waiting a
few more class periods), but without strongly suggesting a particular course
of action [27]. Each participant in these initial studies was then encouraged
to generate at least one new idea for a storyboard, addressing challenges they
personally face in AI-enhanced classrooms as opposed to imagined challenges
of others (cf. [13]). To inform ideation, participants also reviewed storyboards
generated by other teachers and students in prior study sessions. Participants
were provided with editable storyboard templates, in Google Slides [22], and
were given the options to generate entirely new concepts for orchestration tool
functionality (starting from a blank template) or to generate a variation on an
existing concept (starting from a copy of an existing storyboard). In either case,
participants generated captions for storyboard panels during the study session,
using existing storyboards for reference. Immediately following each session, a
researcher then created simple illustrations to accompany each caption.

Following this concept generation phase, we conducted a series of PSD studies
with an additional twelve students and eight teachers. Study sessions lasted
approximately 60 min. In each session, storyboards were presented in randomized
order. Participants were asked to read each storyboard and to describe their
initial reactions immediately after reading each one. An interviewer asked follow-
up and clarification questions as needed. Participants were then asked to provide
an overall summary rating of the depicted technology concept as “mostly positive
(I would probably want this feature in my classroom)”, “mostly negative (I would
probably not want this ...)”, or “neutral” [13]. After participants rated each
concept, they were asked to elaborate on their reasons for this rating. Before
moving on to the next concept, participants were shown notes on reactions to a
given concept, thus far, from other stakeholders. Participants were prompted to
share their thoughts on perspectives in conflict with their own.

In addition, participants were encouraged to pause the speed dating process
at any point, if they felt inspired to write down an idea for a new storyboard.
Each time a participant generated a new idea for a storyboard, this storyboard
was included in the set shown to the next participant. However, if a participant

1 Please refer to https://tinyurl.com/Complementarity-Supplement for the full set of
storyboards and more detailed participant demographics.

https://tinyurl.com/Complementarity-Supplement
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Fig. 1. Example of a storyboard addressing challenges raised in prior research.

saw an existing storyboard that they felt captured the same concept as one they
had generated, the new, “duplicate” storyboard was not shown to subsequent
participants (cf. [27]). In cases of disagreement between stakeholder groups, gen-
erating new storyboard ideas provided an opportunity for students and teachers
to try to resolve these disagreements. For example, as shown in Fig. 2, the gen-
eration of concepts E.3 through E.6 over time represents a kind of “negotiation”
between teachers and students, around issues of student privacy, transparency,
and control. This phase of the study yielded a total of seven new storyboards.

3 Results

In the following subsections, we discuss teachers’ and students’ top five most and
least preferred design concepts, according to the average overall ratings among
those who saw a given concept [13]. To analyze participant feedback regarding
each concept, we worked through transcriptions of approximately 19 h of audio
to synthesize findings using two standard methods from Contextual Design:
interpretation sessions and affinity diagramming [8,24]. High-level themes that
emerged are briefly summarized below, organized by design concept. The most
preferred concepts are presented in Sect. 3.1, and the least preferred are in
Sect. 3.2. Within each subsection, preferences among teachers are presented first,
followed by student preferences and those shared between teachers and students.
Teacher participants are identified with a “T,” and students are identified with
an “S.”
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Fig. 2. Matrix showing overall ratings for all 24 concepts. Columns show participants
(in order of participation, from left to right), and rows show design concepts. Concepts
generated by participants are highlighted in blue. Cell colors indicate ratings as follows:
Red: negative; Green: positive; Yellow: neutral; Grey: concept did not yet exist. Average
ratings among teachers and students are provided in the rightmost columns. (Color
figure online)

3.1 Most Preferred Design Concepts

Most Preferred Among Teachers
[I.2] Real-time Feedback on Teacher Explanations. Consistent with findings from
prior design research [26,27], the most popular concept among teachers was
a system that would provide them with constructive feedback, after helping a
student, on the effectiveness of their own explanations. As one teacher explained,
“Usually our only chance to get [fast] feedback is, you ask [...] the kids [and] they
just say, ‘Oh, yeah, I get it,’ when they don’t really get it” (T7).

[A.1] Ranking Students by their Need for Teacher Help. Another popular con-
cept among teachers was a system that would allow them to see, at a glance,
a visual ranking of which students most need the teacher’s help at a given
moment [27,49]. One teacher commented, “Yeah. Welcome to teaching every
day [...] trying to go to those kids that are [struggling] most” (T5). However,
several other teachers emphasized that such a ranking would be much more use-
ful if it took into account the kind and extent of teacher help that would likely
be needed to address a particular student issue. For example, T1 noted, “If I
could see how much time it would take [to help] I would start with the kids who
I could get [moving again quickly] and then I’d spend more time with the other
kids. [But] if it’s a kid that I know is gonna get completely frustrated [...then I]
wanna [go to] that kid first no matter what.” This concept was also generally well
received by students. As one student put it, “sometimes you just can’t ask [for
help] because you don’t even know what [you’re struggling with], and so it would
just [be] hard to explain it to the teacher” (S7). At the same time, as discussed



Designing for Complementarity 163

below, multiple students expressed preferences for systems that can support stu-
dents in recognizing when (and with what) they need to ask the teacher for help,
rather than always having the system alert the teacher on their behalf (cf. [51]).

[E.1] Alerting Teachers to Student Frustration, Misbehavior, or “Streaks”.
Consistent with [27], teachers were enthusiastic about a concept that would allow
them to see real-time analytics about student frustration, misbehavior (e.g,. off-
task behavior or gaming the system [5,58]), or high recent performance in the
software. They felt that having access to this information could help them make
more informed decisions about whom to help first and how best to help particular
students (e.g., comforting a student or offering praise). Yet students reported
finding aspects of this concept upsetting. While students generally liked the idea
that the system would inform the teacher when they needed help, students often
perceived real-time alerts about emotions like frustration as “really creepy” (S9)
and alerts about misbehavior as “basically the AI ratting out the child” (S3).

[L] Teacher-controlled Shared Displays to Foster Competition. Finally, a pop-
ular concept among teachers was a system that would allow them to transition
the classroom between different “modes,” to help regulate students’ motivation
(cf. [1,43]). This system would allow teachers to switch the class into a “com-
petitive mode,” in which students would be shown a leaderboard of comparable
classrooms in their school district and challenged to move their class to the
top. Teachers expected that such a feature could work extremely well with some
groups of students, while backfiring and potentially serving to demotivate others.
As such, teachers emphasized the importance of teacher control and discretion.

Most Preferred Among Students
[E.6] Asking Students’ Permission before Revealing (Some) Analytics to Teach-
ers. In response to one of teachers’ most preferred design concepts ([E.1]), stu-
dents generated multiple new storyboards that preserved the idea of real-time
teacher alerts, but provided students with greater control over alert policies. One
of these emerged as the most popular design concept among students: a system
that asks students’ permission, on a case-by-case basis, before presenting certain
kinds of information to the teacher on a student’s behalf. Students and teachers
were generally in agreement that an AI system should ask students’ permission
before alerting teachers about affective states, such as frustration. In this sce-
nario, if a student opted not to share affective analytics with their teacher, the
system might privately suggest other ways for students to regulate their own
emotions. Interestingly, one student suggested that if a student opted to share
their affect with the teacher, the system should also ask the student to specify
“How do you want the teacher to react? [...] Help you [in person]? Help you on
the computer?” (S12). This student noted that sometimes, they just want their
teacher to “know how I’m feeling,” but do not actually want them to take action.

[H.3] Student–System Joint Control Over Selection of Peer Tutors. Whereas
teachers often expressed that they know which groups of their students will not
work well together, this did not align with students’ perceptions of their own
teachers. In contrast to teacher-generated concepts where teachers and AI worked
together to match peer tutors and tutees (cf. [43]), the second most popular
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concept among students was a student-generated storyboard that gave students
the final say over peer matching decisions. In this storyboard, the system sends
struggling students a list of suggested peer tutors, based on these students’
estimated tutoring abilities (cf. [57]) and knowledge of relevant skills. Students
could then send help requests to a subset of peers from this list who they would
feel comfortable working with. Those invited would then have the option to
reject a certain number of requests. Some students suggested that it would also
be useful to have the option to accept but delay another student’s invitation if
they want to help but do not want to disrupt their current flow.

[H.1] Enabling Students to Request Not to be Helped. Another of the most
popular concepts among students was a system that, upon detecting that a stu-
dent seems to be wheel-spinning [7,31], would notify the student to suggest that
they try asking their teacher or classmates for help. The system would then only
notify the teacher that the student is struggling if the student both ignored this
suggestion and remained stuck after a few minutes. By contrast, some teachers
expressed that they would want the system to inform them immediately if a
student was wheel-spinning: “They shouldn’t just get the option to keep working
on their own, because honestly it hasn’t been working” (T5). Some students and
teachers suggested a compromise: “the AI should inform the teacher right away
[...] that it suggested [asking for help] but the kid did something else” (T7).

[J] Notifying Teachers of Students they Have Not Visited Recently. Finally, a
popular concept among students was a system that would track a teachers’ move-
ment during class and occasionally highlight students they may be neglecting
(cf. [4,19]). Several students noted that even when they are doing well on their
own, they feel motivated when their teacher remembers to check in with them.
Most teachers responded positively to this concept as, “sometimes you forget
about the kids that work well on their own, but sometimes those kids actually
need help and don’t raise their hands” (T6). However, a few teachers perceived
this system as overstepping bounds and inappropriately judging them: “It’s just
too much in my business now. You better be quiet and give me a break” (T4).

Most Preferred Among Both Teachers and Students
[F.1] “Invisible Hand Raises” and Teacher Reminders. A concept popular with
both teachers and students was a system that would allow students to privately
request help from their teacher by triggering an “invisible hand raise” that only
the teacher could see. To preserve privacy, this system would also allow teachers
to silently acknowledge receipt of a help request. After a few minutes, the teacher
would receive a light reminder if they had not yet helped a student in their queue.
S7 noted, “I don’t actually like asking questions since I’m supposed to be, like,
‘the smart one’ ...which I’m not. So I like the idea of being able to ask a question
without [letting] others know.” Similarly, teachers suspected that students would
request help more often if they had access to such a feature [26,53].
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3.2 Least Preferred Design Concepts

Least Preferred Among Teachers
[C] Helping Teachers Mediate between Students and their Student Models. To
our surprise, although prior field research [30] had suggested teachers might find
it desirable to serve as “final judges” in cases where students wished to contest
their student models (e.g., skill mastery estimates) [11], this was one of the least
popular design concepts among teachers. Students generally viewed teacher-in-
the-loop mediation desirable, since “I feel like the teacher knows the student
better, not the software” (S9). However, teachers generally did not view this as
an efficient use of their time: “I would just trust the tutor on this one” (T3).
Furthermore, some teachers expressed concerns that from a student’s perspective
this concept “pit[s] one teacher against the other, if you consider the AI as a
kind of teacher” (T1), and instead suggested having the system assign a targeted
quiz if a student wants to demonstrate knowledge of particular skills (cf. [11]).

Least Preferred Among Students
[E.4] Notifying Students When the System has Automatically Alerted their
Teacher. A teacher-generated concept intended to provide students with greater
transparency into the analytics being shared about them was among those least
popular with students overall. Interestingly, while students valued having more
control over the information visible to their teachers, they generally did not want
greater transparency into aspects of the system that were outside of their control
(cf. [33]): “That would make me really anxious [...] If it’s not asking students’
[permission], I don’t think they should know about it” (S10).

Least Preferred Among Both Teachers and Students
[E.3] Allowing Students to Hide (All) of their Analytics from Teachers. The least
popular concept among teachers, and the third least popular among students,
was a privacy feature that would enable individual students to prevent their AI
tutor from sharing real-time analytics with their teacher. This was a student-
generated concept intended to mitigate the “creepiness” of having their teacher
“surveil” students’ activities in real-time. Yet as discussed in Sect. 3.1, overall
students felt that it should only be possible for students to hide certain kinds of
analytics (e.g., inferred emotional states), “but if the AI sees a student is really,
really struggling [...] I don’t think there should be that blanket option” (S4).

[H.4] Showing Students Potential Peer Tutors’ Skill Mastery. Consistent
with prior research (e.g., [26]), teachers and students responded negatively to
a student-generated concept that made individual students’ skill mastery visible
to peers. While this concept was intended to help students make informed choices
about whom to request as a peer tutor, most teachers and students perceived
that the risk of teasing among students outweighed the potential benefits.

[M] Allowing Parents to Monitor their Child’s Behavior During Class. Some-
what surprisingly, T3 generated the concept of a remote monitoring system that
would allow parents to “see exactly what [their child is] doing at any moment in
time.”, so that “if a kid’s misbehaving, their parent can see the teacher’s trying
[their] best” (cf. [9,62]). While this concept resonated with one other teacher,
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student and teacher feedback on this concept generally revealed an attitude that
to create a safe classroom environment, “we have to [be able to] trust that data
from the classroom stays in the classroom” (S11). Teachers shared concerns that
data from their classrooms might be interpreted out of context by administra-
tors: “I don’t ever want to be judged as a teacher [because] I couldn’t make it to
every student, if every kid’s stuck that day. [But] using that data [as a teacher]
is very useful” (T5). Students shared fears that, depending on the data shared,
parents or even future employers might use classroom data against them.

[E.2] Providing Automated Motivational Prompts to Frustrated Students.
Finally, among the concepts least popular with both teachers and students was
a system that automatically provides students with motivational prompts when
it detects they are getting frustrated [16,64]. While teachers liked the idea of
incorporating gamification elements to motivate students (cf. [35,62]), providing
motivational messages was perceived as “trying to [do] the teacher’s job” (T1).
Similarly, several students indicated strongly that they would prefer these kinds
of messages to come from an actual person, if at all. S8 said, “I would just get
more annoyed if the AI tried something like that”, and S11 suggested “No emo-
tional responses, please. That feels just [...] not genuine. If it’s from the AI it
should be more analytical, like just [stick to] facts.”

4 Discussion, Conclusions, and Future Work

If new AI systems are to be well-received in K-12 classrooms, it is critical that
they support the needs and respect the boundaries of both teachers and students.
We have introduced “participatory speed dating” (PSD): a variant of the speed
dating design method that involves multiple stakeholders in the iterative genera-
tion and evaluation of new technology concepts. Using PSD, we sampled student
and teacher feedback on 24 design concepts for systems that integrate human
and AI instruction—an important but underexplored area of AIED research.

Overall, we found that teachers and students aligned on needs for “hidden”
student–teacher communication channels during class, which enable students to
signal help-need or other sensitive information without losing face to their peers.
More broadly, both teachers and students expressed nuanced needs for student
privacy in the classroom, where it is possible to have “too little,” “too much,”
or the wrong forms of privacy (cf. [41]). However, students and teachers did not
always perceive the same needs. As discussed in Sect. 3.1, some of students’
highest-rated concepts related to privacy and control were unpopular among
teachers. Additional disagreements arose when teachers and students had differ-
ent expectations of the roles of teachers versus AI agents and peer tutors in the
classroom.

Interestingly, while students’ expressed desires for transparency, privacy, and
control over classroom AI systems extend beyond what is provided by existing
systems [9,11,29,60], these desires are also more nuanced than commonly cap-
tured in theoretical work [10,59,61]. For example, we found that while students
were uncomfortable with AI systems sharing certain kinds of personal analytics



Designing for Complementarity 167

with their teacher without permission, they rejected design concepts that grant
students full control over these systems’ sharing policies. These findings indi-
cate an important role for empirical, design research approaches to complement
critical and policy-oriented research on AI in education (cf. [33,41,63]).

In sum, the present work provides tools and and early insights to guide the
design of more effective and desirable human–AI partnerships for K-12 educa-
tion. Future AIED research should further investigate teacher and student needs
uncovered in the present work via rapid prototyping in live K-12 classrooms.
While design methods such as PSD are critical in guiding the initial development
of novel prototypes, many important insights surface only through deployment
of functional systems in actual, social classroom contexts [30,42,53]. An excit-
ing challenge for future research is to develop methods that extend the advan-
tages of participatory and value-sensitive design approaches (e.g., [39,56,66]) to
later stages of the AIED design cycle. Given the complexity of data-driven AI
systems [17,26,66], fundamentally new kinds of design and prototyping meth-
ods may be needed to enable non-technical stakeholders to remain meaningfully
involved in shaping such systems, even as prototypes achieve higher fidelity.
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et al. (eds.) AIED 2018. LNCS (LNAI), vol. 10947, pp. 154–168. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93843-1 12

30. Holstein, K., McLaren, B.M., Aleven, V.: Co-designing a real-time classroom
orchestration tool to support teacher-AI complementarity. J. Learn. Anal. (Under
review)

31. Kai, S., Almeda, M.V., Baker, R.S., Heffernan, C., Heffernan, N.: Decision tree
modeling of wheel-spinning and productive persistence in skill builders. JEDM—
J. Educ. Data Min. 10(1), 36–71 (2018)

32. Kulik, J.A., Fletcher, J.: Effectiveness of intelligent tutoring systems: a meta-
analytic review. Rev. Educ. Res. 86(1), 42–78 (2016)

33. Lee, M.K., Baykal, S.: Algorithmic mediation in group decisions: fairness percep-
tions of algorithmically mediated vs. discussion-based social division. In: CSCW,
pp. 1035–1048 (2017)

34. van Leeuwen, A., et al.: Orchestration tools for teachers in the context of individual
and collaborative learning: what information do teachers need and what do they
do with it? In: International Society of the Learning Sciences, Inc.[ISLS] (2018)

35. Long, Y., Aman, Z., Aleven, V.: Motivational design in an intelligent tutoring
system that helps students make good task selection decisions. In: Conati, C.,
Heffernan, N., Mitrovic, A., Verdejo, M.F. (eds.) AIED 2015. LNCS (LNAI), vol.
9112, pp. 226–236. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19773-9 23

36. Luckin, R., Clark, W.: More than a game: the participatory design of contextu-
alised technology-rich learning experiences with the ecology of resources. J. e-Learn.
Knowl. Soc. 7(3), 33–50 (2011)

37. Ma, W., Adesope, O.O., Nesbit, J.C., Liu, Q.: Intelligent tutoring systems and
learning outcomes: a meta-analysis. J. Educ. Psychol. 106(4), 901 (2014)

38. Miller, J.K., Friedman, B., Jancke, G., Gill, B.: Value tensions in design: the value
sensitive design, development, and appropriation of a corporation’s groupware sys-
tem. In: Proceedings of the 2007 International ACM Conference on Supporting
Group Work, pp. 281–290. ACM (2007)

39. Mitchell, V., Ross, T., May, A., Sims, R., Parker, C.: Empirical investigation of
the impact of using co-design methods when generating proposals for sustainable
travel solutions. CoDesign 12(4), 205–220 (2016)

40. Muller, M.J., Kuhn, S.: Participatory design. Commun. ACM 36(6), 24–28 (1993)
41. Mulligan, D.K., King, J.: Bridging the gap between privacy and design. U. Pa. J.

Const. L. 14, 989 (2011)
42. Odom, W., Zimmerman, J., Davidoff, S., Forlizzi, J., Dey, A.K., Lee, M.K.: A

fieldwork of the future with user enactments. In: Proceedings of the Designing
Interactive Systems Conference, pp. 338–347. ACM (2012)

43. Olsen, J.: Orchestrating Combined Collaborative and Individual Learning in the
Classroom. Ph.D. thesis, Carnegie Mellon University (2017)

https://doi.org/10.1007/978-3-319-93843-1_12
https://doi.org/10.1007/978-3-319-19773-9_23
https://doi.org/10.1007/978-3-319-19773-9_23


170 K. Holstein et al.

44. Pane, J.F.: Informing progress: insights on personalized learning implementation
and effects. RAND (2017)

45. Prieto, L.P., Holenko Dlab, M., Gutiérrez, I., Abdulwahed, M., Balid, W.: Orches-
trating technology enhanced learning: a literature review and a conceptual frame-
work. Int. J. Technol. Enhanced Learn. 3(6), 583–598 (2011)

46. Prieto Santos, L.P., et al.: Supporting orchestration of blended CSCL scenarios in
distributed learning environments (2012)

47. Ritter, S., Yudelson, M., Fancsali, S.E., Berman, S.R.: How mastery learning works
at scale. In: Proceedings of the Third (2016) ACM Conference on Learning@ Scale,
pp. 71–79. ACM (2016)

48. Ritter, S., Anderson, J.R., Koedinger, K.R., Corbett, A.: Cognitive tutor: applied
research in mathematics education. Psychon. Bull. Rev. 14(2), 249–255 (2007)

49. Ritter, S., Yudelson, M., Fancsali, S., Berman, S.R.: Towards integrating human
and automated tutoring systems. In: EDM, pp. 626–627 (2016)

50. Rodriguez Triana, M.J., et al.: Monitoring, awareness and reflection in blended
technology enhanced learning: a systematic review. Int. J. Technol. Enhanced
Learn. 9, 126–150 (2017)

51. Roll, I., Aleven, V., McLaren, B.M., Koedinger, K.R.: Improving students’ help-
seeking skills using metacognitive feedback in an intelligent tutoring system. Learn.
Instr. 21(2), 267–280 (2011)

52. Schofield, J.W.: Psychology: computers and classroom social processes-a review of
the literature. Soc. Sci. Comput. Rev. 15(1), 27–39 (1997)

53. Schofield, J.W., Eurich-Fulcer, R., Britt, C.L.: Teachers, computer tutors, and
teaching: the artificially intelligent tutor as an agent for classroom change. Am.
Educ. Res. J. 31(3), 579–607 (1994)

54. Sharples, M.: Shared orchestration within and beyond the classroom. Comput.
Educ. 69, 504–506 (2013)

55. Sheridan, T.B.: Function allocation: algorithm, alchemy or apostasy? Int. J. Hum.-
Comput. Stud. 52(2), 203–216 (2000)

56. Trischler, J., Pervan, S.J., Kelly, S.J., Scott, D.R.: The value of codesign: the effect
of customer involvement in service design teams. J. Serv. Res. 21(1), 75–100 (2018)

57. Walker, E., Rummel, N., Koedinger, K.R.: Adaptive intelligent support to improve
peer tutoring in algebra. Int. J. Artif. Intell. Educ. 24(1), 33–61 (2014)

58. Walonoski, J.A., Heffernan, N.T.: Prevention of off-task gaming behavior in intel-
ligent tutoring systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006.
LNCS, vol. 4053, pp. 722–724. Springer, Heidelberg (2006). https://doi.org/10.
1007/11774303 80

59. Watters, A.: The Monsters of Education Technology. Smashwords Edition (2014)
60. Wetzel, J., et al.: A preliminary evaluation of the usability of an AI-infused orches-
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Abstract. Affect dynamics, the study of how affect develops and manifests
over the course of learning, has become a popular area of research in learning
analytics. Despite some shared metrics and research questions, researchers in
this area have some differences in how they pre-process the data for analysis
[17]. Specifically, researchers differ in how they treat cases where a student
remains in the same affective state in two successive observations, referred to as
self-transitions. While most researchers include these cases in their data,
D’Mello and others have argued over the last few years that these cases should
be removed prior to analysis. While this choice reflects the intended focus in
their research paradigm on the transitions out of an affective state, this difference
in data preprocessing changes the meaning of the metric used. For around a
decade, the community has used the metric L to evaluate the probability of
transitions in affect. L is largely believed to have a value of 0 when a transition is
at chance, and this is true for the original use of the metric. However, this paper
provides mathematical evidence that this metric does not have a value of 0 at
chance if self-transitions are removed. This shift is problematic because previ-
ously published statistical analyses comparing L values to the value at chance
have used the wrong value, incorrectly producing lowered p values and in many
cases reporting transitions as significantly more likely than chance when they
are actually less frequent.

Keywords: Affect dynamics � L statistics � Student affect � Engagement �
Self-transitions � Data preprocessing

1 Introduction

In a data mining pipeline, data preprocessing is often considered a step separate from
analysis. Data preprocessing steps like cleaning, sampling, normalization/
standardization, and imputation are performed to clean and consolidate the collected
data into a format ready for input into an analytical technique. The choices made during
pre-processing may, in many cases, have relatively minor implications on the analysis
to follow. But in some cases, a seemingly small, theoretically-justified preprocessing
step can change the meaning of the metric used in the analysis. In this paper, we present
one such example of a misinterpreted metric, D’Mello, Taylor, and Graesser’s [2007]
L, that was used in affect dynamics research for over ten years, in over a dozen
published studies [1–5, 8–11, 13, 14, 17, 19–21, 23–25]. However, a closer look at the
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way data is pre-processed in some of these studies reveals how it changes the meaning
of the metric. We discuss the implication of this new finding on the results of these
studies, some of which appear to have reported results in the wrong direction due to
this shift.

As mentioned, this work occurs in the domain of affect dynamics [18] - an area of
research that studies how students transition between different emotional states, in this
case in a learning setting. Based on increasing evidence that student affect is associated
with learning and long-term outcomes [7, 22], affect has been used to understand the
design of a learning environment [16] and affect-sensitive interventions have been
designed and tested in some systems [12, 15]. Understanding how affect manifests over
time is useful when designing real-time educational interventions that work with nat-
ural patterns and transitions in affect.

Perhaps the mostly widely used metric in research on affect dynamics is D’Mello,
Taylor, and Graesser’s [2007] L statistic. It measures whether a transition from one
affective state to another is more likely than the second state’s base rate. Approximately
20 studies have used this statistic to study the transitions between different emotional
states of interest [17].

During data preprocessing, one key methodological question is whether self-
transitions (when a student remains in the same affective state both before and after)
should be considered or excluded from calculations, with most of the studies by
D’Mello and his colleagues excluding self-transitions [3–5, 8–11, 17] and most of the
work by other research groups including them [1, 2, 13, 14, 19–21, 23–25]. A recent
review found that the exclusion of self-transitions leads to a higher proportion of
transitions being found to be more likely than chance [17]. If valid, this result would
suggest that it is beneficial to exclude self-transitions to increase statistical power.
However, in one recent paper that excluded self-transitions, the researchers reported all
the transitions into engaged concentration were more likely than chance [5], a math-
ematically impossible result. Further investigation with the original authors of this
paper indicated that this result was not a typing error, raising questions about the
validity and interpretation of this widely-used metric. In this paper, we extend prior
work by explicitly investigating the mathematical basis of the L statistic, both when
self-transitions are included and when they are excluded, to see how this impossible
result was obtained and what its implications are for the use of this statistic.

2 L Statistics and Affect Dynamics Analysis

Given an affect sequence, the L statistic [10] calculates the likelihood that an affective
state (prev) will transition to a subsequent (next) state, given the base rate of the next
state occurring.

L prev ! nextð Þ ¼ P next j prevð Þ � P nextð Þ
1� P nextð Þ ð1Þ

The expected probability, P(next) for an affective state is the percentage of times
that the state occurred as a next state. Thus, the first affective state in the sequence of a
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student will be excluded from this calculation since this state cannot take the role of a
next state. Similarly, the calculation of the prev state excludes the last state in the
sequence. The conditional probability, P(next | prev) is given by:

P next j prevð Þ ¼ Count prev ! nextð Þ
Count prevð Þ ð2Þ

where Count(prev ! next) is the number of times the prev state transitioned to the next
state, and Count(prev) is the number of times the state in prev occurred as the previous
state.

There are several special cases in the calculation of L where there is no consensus in
the literature on how to perform the calculation, and [17] has recommended the fol-
lowing treatment:

1. When any affective state (An) being considered in a given study is not present for a
given student’s observation period:
a. Transitions to An do not occur for that student. In this case, P(next) = 0 and P

(next | prev) = 0, and thus, L = 0.
b. Transitions from An also do not occur. In this case, we do not know what

affective state would have followed An, and thus, L = undefined.
2. Following from case 1, if a student remains in a single affective state (As)

throughout an observation period, all other affective states being considered in the
study behave as An. However, the calculations differ based on whether or not the
self-transitions are included.
a. If self-transitions are included in the analyses:
(1) Transitions from As to any other affective state (e.g., An) do not occur, and

therefore, as in 1a, L = 0 for any transition out of As.
(2) Transitions to As from any other affective state (e.g., An) do not occur, and

therefore, as in 1b, L = undefined.
b. If self-transitions are discarded in the analyses, an affect sequence consisting of

repeated observations of the same affective category is reduced to a single
observation of that affective state. In this case, no transitions occur, and therefore
L = undefined for all possible sequences being studied.

It is not always clear how these special cases are treated in past research. In this
study, we follow [17] ’s definition of L as outlined above.

The value of L varies from −∞ to 1. D’Mello and Graesser [8] state in page 7 that
“the sign and the magnitude of L is intuitively understandable as the direction and size of
the association”. As has been expanded in subsequent papers [1, 3–5, 8, 9, 11, 13, 14,
17, 19–21, 23–25], L = 0 is treated as chance, while L > 0 and L < 0 are treated as
transitions that are more likely or less likely (respectively) than chance. To perform
affect dynamics analysis across all students in an experiment, first the L value for each
affect combination is calculated individually per student. Next, as [8, pg. 7] recom-
mends, the researcher runs “one-sample [two-tailed] t-tests to test whether likelihoods
were significantly greater than or equivalent to zero (no relationship between immediate
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and next state)”, on the sample of individual student L values for each transition. Lastly,
a Benjamini-Hochberg post-hoc correction procedure is often used [1, 5, 17, 21, 23–25]
to control for false positive results since the set of hypotheses involves multiple
comparisons.

3 Analysis

This straightforward procedure seems quite logical, but the result seen in [5], where, after
removing self-transitions, all transitions into the affective state of engaged concentration
were more likely than chance, suggests that something may be wrong. As such, it may be
worth examining the mathematical assumptions of this procedure. Specifically, while
calculating the transition likelihood from the affective state of Mt (prev) to Mtþ 1 (next),
D’Mello explains that, “…if Mtþ 1 and Mt are independent [emphasis added], then
Pr Mtþ 1jMtð Þ ¼ Pr Mtþ 1ð Þ” [8]. However, removing self-transitions breaks the inde-
pendence betweenMtþ 1 andMt asMtþ 1 can now only take values other thanMt. Hence,
when self-transitions are excluded, Pr Mtþ 1jMtð Þ 6¼ Pr Mtþ 1ð Þ.

Another sign of potential problems is found in [8], when that paper draws an
analogy between L statistics and Cohen’s kappa, saying, “The reader may note sig-
nificant similarity to Cohen’s kappa for agreement between raters and indeed the
likelihood metric can be justified in a similar fashion.” Although this analogy seems
compelling, it is worth noting that there is a striking difference between the range of
values the two statistics can take. While the value of L varies from −∞ to 1 [2], the
value of Cohen’s kappa varies from −1 to 1 [6].

These raise the question: if a transition occurs at chance, and self-transitions are
excluded, is the value of L still 0?

3.1 Understanding How Removing Self-transitions Affect L Values

Differences between a calculation based on a transition pattern (L) and a calculation
based on a confusion matrix (e.g., Cohen’s k) mean that the chance value takes a
different value for L than for Cohen’s k when transitions are altered. To illustrate, let’s
take an example with three states, A, B, and C, which allows for a total of nine unique
transitions (AA, AB, AC, BB, BA, BC, CC, CA, and CB). We will consider the
hypothetical sequence, ABBCAACCBA.

First, let us consider the case where we keep self-transitions within our calculations.
Our hypothetical sequences contain all the 9 possible transitions occurring each occur-
ring exactly once. As Table 1 shows, this makes all the possible transition types equally
likely (as each occurs at the frequency expected given the base rate of the next state).

Now, consider the transition AB, where A is the prev state and B is the next state.
The expected probability, P(next), is P(B_next) i.e., the probability of occurrence of B
in the next state.

P nextð Þ ¼ P B nextð Þ ¼ 2
6
¼ 0:33
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The conditional probability, P(next | prev), is P(B_next | A_prev). Note that we are
not including the last instance of A as it cannot take the prev state in any transition.
Using Eq. (2), we have

P next j prevð Þ ¼ P B next jA prevð Þ ¼ 1
3
¼ 0:33

Substituting in Eq. (1), we get,

L A ! Bð Þ ¼ 0:33� 0:33
1� 0:33

¼ 0

This holds true for all the transitions. Recall that in Table 1, the conditional
probability, P(next | prev), is equal to the expected probability, P(next). Thus, when
self-transitions are included, all the transition likelihoods in this example take a value
of zero, in line with the claim made in [D’Mello, p. 7].

Next, we consider what happens to the L value at chance when we omit self-
transitions. If we consider the same hypothetical sequence (ABBCAACCBA), only six
unique transitions remain ABCACBA. Though this sequence is different, each affective
state is equally followed by all affective states. Again, consider the transition AB,
where A is the prev state and B is the next state. The probability that B is the next state
remains the same as it did when self-transitions were included.

P nextð Þ ¼ P B nextð Þ ¼ 2
6
¼ 0:33

However, the removal of A -> A sequences results in value of P(next | prev) that is
different than in the original sequence.

P next j prevð Þ ¼ P B next jA prevð Þ ¼ 1
2
¼ 0:5

Table 1. L statistics calculation for an example sequence of ABBCAACCBA when self-
transitions are included

Transition Count P(next | prev) P(next) L

A -> A 1 0.33 0.33 0
A -> B 1 0.33 0.33 0
A -> C 1 0.33 0.33 0
B -> A 1 0.33 0.33 0
B -> B 1 0.33 0.33 0
B -> C 1 0.33 0.33 0
C -> A 1 0.33 0.33 0
C -> B 1 0.33 0.33 0
C -> C 1 0.33 0.33 0
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Finally, we obtain.

L A ! Bð Þ ¼ 0:5� 0:33
1� 0:33

¼ 0:25

This value is obtained for all six possible transitions. As we see in Table 2, when all
affective states allowed are equally likely as the next state, L = 0.25, not 0. Since self-
transitions are excluded, a given state can only transition to the other two states as
opposed to the three states in total. This contrasts with the claim that P(next | prev) = P
(next) [D’Mello, p. 7] and increases the conditional probability (i.e., P(next | prev)) to
one out of two while the expected probability (i.e., P(next)) remains at two out of three.
Thus, for a state space with three states, the chance value of L is at 0.25 instead of 0.

3.2 Redefining Chance L Value

We now generalize our observations above for a state space with n affective states
(n > 2) and determine what L value would be expected at chance. Such a state space
would have n2 unique transitions if we include self-transitions, but only has n2 � n
unique transitions if we exclude self-transitions. Thus, at chance, the expected prob-
ability is

P nextð Þ ¼ n
n2 ¼ 1

n if self-transitions are included

P nextð Þ ¼ n�1
n2�n ¼ 1

n if self-transitions are excluded

However, at chance, the conditional probability is

P next j prevð Þ ¼ 1
n if self-transitions are included

P next j prevð Þ ¼ 1
n�1 if self-transitions are excluded

Plugging these into the original equation of L (Eq. 1), the value of L at chance is

L ¼ 0 if self-transitions are included

L ¼ 1
n�1ð Þ2 if self-transitions are excluded

Table 2. L statistics calculation for an example sequence of ABBCAACCBA when self-
transitions are excluded

Transition Count P(next | prev) P(next) L

A -> B 1 0.5 0.33 0.25
A -> C 1 0.5 0.33 0.25
B -> A 1 0.5 0.33 0.25
B -> C 1 0.5 0.33 0.25
C -> A 1 0.5 0.33 0.25
C -> B 1 0.5 0.33 0.25
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Generally, affect dynamics is studied in terms of the four academic emotions of
confusion, frustration, boredom and engaged concentration (emotions like delight and
surprise are also sometimes considered, somewhat more rarely). The otherwise unla-
beled data segment in the timeline, which occurs when the primary states being
investigated are not found, are sometimes given the label NA and considered in the
analyses. In such a setup (n = 5), the L value at chance is L = 0.0625. For the smallest
reasonable state space with n = 3, the L value at chance is at its maximum, 0.25. As the
number of affective states observed increases, the impact of the difference between
including and excluding self-transitions decreases (Table 3).

4 Implications

The primary implication of this new finding is on the interpretation of the L value. If an
affective dynamics study excludes self-transitions, the threshold to understand the
direction of the transition must be set based on the number of affective states studied
(see Table 3). For instance, for a study with four affective states, the transitions with
L value less than 0.11 should be interpreted as being less likely than chance. Impor-
tantly, the test for significance of these transitions must set the null hypothesis at the
appropriate chance levels and not zero.

This finding, thus, has implications on past published studies as well. In past studies
which excluded self-transitions [3–5, 8–11, 17], we need to reconsider the results in
terms of what the correct chance value was. Since these papers conducted hypothesis
tests with L = 0 as the null hypothesis, they are likely to have overstated their possible
effects, possibly finding positive results where negative results would have been more
accurate. As such, these results need to be reanalyzed with the appropriate chance
values for L (given in Table 3) to get the new significance values. For instance, in [5],
the transition from boredom to frustration is reported to have an L = 0.036 and is
significant with p < 0.001 – indicating that the transition from boredom to frustration is
more likely than chance. But, with n = 5, the reported L value actually denotes a
negative transition as the reported L value is less than the L value at chance (0.0625, as
shown in Table 3). As such, it becomes essential to rerun the t-test on the original data
with the null hypothesis of L = 0.0625 to confirm if this transition is actually signifi-
cantly less likely than chance.

It is important to once again note that not all past publications using L are affected
by this finding. Over half of the past studies using this metric included self-transitions
[1, 2, 13, 14, 19–21, 23–25] and are therefore unchanged by this finding. The choice of
whether or not one ought to include self-transitions in an affect dynamics analysis
depends on the research goals and questions of the study. As [17] suggests, excluding

Table 3. The value of L that represents chance, for varying state space

n 3 4 5 6 7 8

Chance L 0.25 0.11 0.0625 0.04 0.0277 0.0204
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self-transitions reveals a larger number of affective patterns that might otherwise be
suppressed by the presence of persistent affective states. Including self-transitions in
analysis helps us to better understand each state’s persistence, but dilutes the transitions
between different affective states. Better understanding transitions is likely important in
theoretical models, but understanding true persistence might be particularly useful for
algorithms being used to trigger interventions, for example.

5 Conclusion

In this paper, we demonstrate that commonly-used metric in affect dynamics research
has been incorrectly interpreted when a common pre-processing step is also taken. The
past 18 studies in this area can be divided into two groups - 10 studies that includes
self-transitions [1, 2, 13, 14, 19–21, 23–25] and 8 that excludes self-transitions [3–5, 8–
11, 17]. The studies that excluded self-transitions did so in order to concentrate on the
transitions between states rather than on the persistence of each state [4]. While this
focus can be justified, this paper demonstrates that doing so changes the interpretation
of a key metric, and that the previous papers that excluded self-transitions did not
account for this, invalidating many of their results.

Specifically, we find that when self-transitions are excluded, the value for L that
represents chance shifts from 0 to 1= n� 1ð Þ2, where n is the number of affective states
studied. This is because the exclusion of self-transitions leads to a violation of the
assumption of independence in the equations used to calculate L. This new finding has
a direct impact on the validity of the claims made by the 8 studies that excluded self-
transitions as all the t-tests conducted in these studies have used L = 0 in their null
hypothesis. As illustrated in Sect. 4, the t-tests in these studies should be re-run and re-
examined for effects that switch from significantly more likely than chance to null
effects or even effects that are significantly less likely than chance.

In conclusion, this paper illustrates the impact of a seemingly subtle data prepro-
cessing step in the interpretation of the results of an analysis. As the use of data mining
and automation becomes widespread in areas like education, we need to be more
cautious about the impact of all the changes we do to the data processing pipeline -
however independent the stages of the pipeline may look like. In some cases, as
illustrated in this paper, a simple preprocessing step could potentially imply that you
are attempting to answer a different research question. It is also necessary to be mindful
of the underlying reasons and assumptions behind each step in the data mining pipe-
line. Only by carefully considering the validity of our complete processes can we
ensure that our findings are valid, and that the adaptive systems we develop using those
findings are optimally effective for learners.
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Abstract. When using simulation modeling to explore pedagogical phenom-
ena, there are several issues a designer/practitioner should consider. One of the
most important decisions has to do with determining how many runs of a
simulation to perform in order to be confident in the results produced by the
simulation [1]. With a deterministic model, a single simulation run is adequate.
This issue becomes more challenging when part of the simulation model is
based on stochastic elements. One of the solutions that has been used to address
this challenge in other research communities is the use of Monte Carlo simu-
lation [2]. Within the AIED research community, however, this question of how
many times should a pedagogical simulation model be run to produce predic-
tions in which the designer can have confidence has received surprisingly little
attention. The aim of this paper is to explore this issue using a pedagogical
simulation model, SimDoc, designed to explore longer term mentoring issues
[3]. In particular, we demonstrate how to run this simulation model over many
iterations until the accumulated results of the iteration runs reach a statistically
stable level that matches real world performance but also has appropriate
variability among the runs. We believe this approach generalizes beyond our
simulation environment and could be applied to other pedagogical simulations
and would be especially useful for medium and high fidelity simulations where
each run may take a long time.

Keywords: Simulation � Simulated learners � Longer-term mentoring �
Lifelong learning

1 Introduction

In this paper, we will explore an important aspect of pedagogical system evaluation
when using simulation to help in the creation of environments to support longer-term
learning. More specifically, we are interested in shedding light on the following
question: how many runs of a simulation does it take for a practitioner to have con-
fidence in the simulation model’s output? As AIED researchers explore longer-term
learning and mentoring contexts [4], the use of simulation to evaluate the functionality
of pedagogical systems designed and built to support longer-term learning is important,
given the high time and financial cost it would otherwise take to perform human studies
[5]. Simulation offers a cheaper and quicker alternative to human studies and can be
used to quickly accept and reject various hypotheses concerning the pedagogical
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system being developed. Using simulation also enables practitioners to evaluate dif-
ferent aspects of a pedagogical system without exposing learners and their mentors to
unfavorable learning conditions.

Simulated pedagogical agents have been part of AIED research for more than a
quarter century [6]. Recently, there has been a growing trend towards the use of
simulation to support several aspects of the design, development and evaluation life-
cycles of a pedagogical system especially when considering longer-term learning [3],
testing and validating adaptive educational systems [7], and using simulated students to
overcome experimental complexity and unreliable student availability [8]. The simu-
lations used come with varying degrees of model fidelity to the real world, including
low fidelity [9], medium fidelity [10], and high fidelity [11].

Stochastic modeling is often an important part of these simulations, thus necessi-
tating many iterations of a simulation in order to produce meaningful predictions.
However, for system practitioners/designers to fully gain the benefits that simulation
offers, they need to know how many times it is necessary to run a simulation model.
Knowing this would allow practitioners to not only effectively explore and test various
hypotheses but to also accept or reject them with confidence.

The main question in this paper is thus how many runs of a simulation are enough?
We will propose several statistical measures to be used to determine the answer to this
question. We will illustrate our discussion by drawing on the results of simulation runs
we performed while evaluating a simulation model, SimDoc, that we have built of a
longer-term mentoring environment, a doctoral program [5].

2 Related Work

2.1 Simulation Runs Within Simulation Research

Generally, the answer to the question of the number runs to make in a simulation
depends on the question at hand and project-specific constraints. The number may range
from 25 to 800 when using Monte Carlo approximation [2, 12]. Monte Carlo methods
are used to explore behavior of statistical measures under controlled situations. Usually
in any simulation study, a summary statistic is calculated after a finite number of
iterations of a simulation have been performed. Often there is a between-run variability
within the simulation results that depends on experimental settings and the number of
iterations performed. Thus, determining the number of iterations required is critical.

One approach uses standard deviation and the confidence interval convergence rate
to determine the stopping point as described in [1]. This approach has the advantage of
minimizing the waste of simulation runs that would otherwise have been performed if
too many iterations were specified a priori. A similar approach that recalculates sample
standard deviation and mean when a new iteration is added until a stopping condition is
achieved is proposed by Truong, Sarvi, Currie, and Garoni in [13]. Yet other methods
may consider confidence intervals of measures of performance [13]. The domains for
which these methods have been explored tend to be simpler and more predictable than
in AIED, where simulation often involves many more variables, a range of statistical
sub-models, and pedagogical agents.
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2.2 Simulation Runs in AIED Research

In AIED there is no clear guidance on how to determine the number of runs a prac-
titioner should use to evaluate their simulation model output. Unfortunately, the
number of runs practitioners have used is rarely reported, with more general descrip-
tions of the model and/or results being the focus of discussion (as in [14, 15] and [16]
for example). In the few papers that have reported on the number of iteration runs used,
the number varies greatly, ranging from as low as 2 (see [17]) to as high as 1000 (see
[18]).

Sometimes the number of simulation runs is justified based on pedagogical or
theoretical grounds. So, in an experiment to determine how students learn composite
concepts, Liu in [17] used Bayesian Networks to represent student models since they
are a popular way of capturing the relationship between students’ competence and their
performance. Liu indicates that the simulation needed at least two runs given that the
number of concepts being explored is also two. Desmarais and Pu in [19] used
Bayesian methods to model a new approach to Computer Adaptive Testing
(CAT) based on a theory of knowledge spaces and item graphs with no hidden nodes
called POKS (Partial Order Knowledge Structure). CAT systems are used to administer
adaptive tests that are used to determine if the examinee is a master or a non-master
using the least number of test items. In evaluating the performance of POKS, an
average of 9 simulation runs were used.

Most often, though, the number of runs seem to have been arbitrarily chosen.
A simulation based physics tutor, BEETLE II [18], was developed to encourage
effective self-explanation using adaptive feedback. The BEETLE II tutor expected
students to provide explanations for experiments using natural language in the form of
sentences as input. An important statistical significance test that can be done is the
F-Score [20]. The F-Score for BEETLE II was evaluated using the approximate ran-
domization significance test with 1000 simulation runs. The evaluation was used to
determine whether the system made a correct decision on either accepting or rejecting a
student answer. In a proof of concept study exploring a medium fidelity simulation of a
multi-agent pedagogical environment, Erickson, Frost, Bateman, and McCalla [21]
chose 100 iterations to determine which learning condition is most desirable between
unstructured, semi-structured, and structured approaches to assigning learning objects.
In a study to explore the impact of an instructional planner that employed collaborative
filtering based on learning sequences, Frost and McCalla [9] used 25 simulation runs to
show how different groups of learners would perform. In another study, StudyWise
[22], researchers used simulated learners to test an application meant to help students
memorize collections of basic techniques required for an effective scheduling algo-
rithm. The researchers performed 100 simulation runs to evaluate the pedagogical
effectiveness of their system.

The goal of this paper is to explore this issue of how many simulation runs are
adequate so that the designer of a pedagogical system can be confident in the results.
We draw from a simulation of a doctoral program to illustrate our discussion.

184 D. E. K. Lelei and G. McCalla



3 SimDoc: Simulated Doctoral Program

In this section we will briefly introduce a simulation model of a doctoral program [3],
SimDoc, complete with simulated students, simulated supervisors, and a simulated
doctoral environment. Its conceptual model is illustrated in Fig. 1, below. SimDoc is
based on the University of Saskatchewan doctoral program. We will use SimDoc to
explore the issue of determining how many simulation runs are adequate for exploring
issues with pedagogical simulations.

The normative model captures important features that affect doctoral students’
progress towards their degree. We model two doctoral stakeholders in the form of
agents: supervisors and learners (i.e. doctoral students). We use the milestone element
to represent important goals a doctoral student must accomplish to complete their
doctoral program. To trigger expected and other events that occur in doctoral studies
we use the event model.

SimDoc is a medium fidelity simulation model, drawing on data from a real-world
doctoral program (at the University of Saskatchewan) and, where such data is not
available, from data derived from relevant studies on doctoral student-supervisor
relationships [23] and supervisory styles [24]. In an initial phase, we ran the SimDoc
model, tuning various parameters run by run with the goal that its outputs match a real-
world doctoral program. 500 simulation runs were used in this phase. The best version
of SimDoc resulted in a 93% similarity between the simulation’s outputs and com-
parable data from the real world program. In the next phase we used this best version of

Fig. 1. SimDoc conceptual framework - element types and their interaction patterns
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the simulation to explore various pedagogical issues. It is in this experimental phase
that we wish to determine when we have made enough simulation runs to be confident
in the results.

4 Examining the Simulation Runs

We argue in this section that we can have confidence in the number of iterations when
two conditions are met: (i) the simulation is stable, that is, the average of the simulation
runs’ outputs statistically match comparable real world attributes and (ii) the simulation
outputs of the various runs have enough statistical variability from run to run that
important implications of the pedagogical issue(s) being explored have come to light
and that the model has not been overfitted to the data.

4.1 Testing for an Adequate Number of Simulation Runs

Using SimDoc as a case study, we determine the number of runs of a simulation
necessary to generate stable outputs with appropriate variability. As shown in Algo-
rithm 1, the approach is to run the simulation iteratively making run after run. After
each iteration we compare the simulation outputs generated against real-world data
using Chi-Square, Levene, and ANOVA testing methods. We stop when these tests
indicate that appropriate stability and variability has been achieved over the accumu-
lated runs. The number of iterations at this point is the required number of runs.
Since ANOVA requires at least three groups of data (2 sets of simulation data and the
real world data), we start with two runs before we begin iterating.

Algorithm 1 - Pseudocode for an Algorithm that Determines the Number of Simulation Runs

run simulation twice generating two sets of simulation data
create consolidated dataset containing outputs of simulation runs to date
iteration = 2 
compare consolidated dataset against the real-world dataset
until p-values of Chi-Square & Levene’s Test are>.05, & p-value of ANOVA is < .05 

iteration = iteration + 1
run simulation generating the next set of simulation data
consolidate simulation runs outputs
compare consolidated dataset against the real-world dataset

end until
output iteration

We implemented and ran this algorithm with the best version of SimDoc described
above, and the iteration stopping conditions were met on iteration 100. The results from
runs 91–100 are summarized in Table 1. We can observe that the Chi-Square p-value
for each run is greater than 0.05. Similarly, the Levene Test’s p-value for each run is
also greater than 0.05. However, the ANOVA p-value does not become less than 0.05
until the 100th iteration. Therefore, the number of runs required for experiments with
this best version of SimDoc is 100. More runs are not necessary, since we have the
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appropriate statistical significance on the relevant measures at 100 runs, and fewer runs
won’t be enough to give us this significance. Next, we explain in detail our measures of
stability and variability, and show how and why we used the Chi-Square, Levene, and
Anova methods that are central to this algorithm.

4.2 Test of Stability in Simulation Output

In this section we go into more detail to explain how we confirm the stability of the
model using the output from 100 runs of our simulation. For simplicity we will con-
sider only one output from the simulation: the pedagogically important output of a
student’s “time-in-program”. We compare the time-in-program for simulated students
in these simulation runs to the observed time-in-program for students in the real world
dataset. A stable model should have simulation results that are statistically similar to
the real world scenario. Table 2 shows the time-in-program frequency counts of real
world students and the time-in-program frequency counts of simulated students aver-
aged over 100 runs of the simulation (divided into students who graduated, those who
withdrew, and the cumulative total of these two figures).

Table 1. P-values for Levene, Chi-Square, and ANOVA tests for the simulation runs (runs 91 to
100)

Run Levene Chi-Square ANOVA Run Levene Chi-Square ANOVA

100 0.17 0.28 0.04 95 0.15 0.28 0.08
99 0.2 0.28 0.06 94 0.17 0.28 0.07
98 0.18 0.28 0.06 93 0.16 0.28 0.08
97 0.18 0.28 0.05 92 0.16 0.28 0.12
96 0.16 0.28 0.06 91 0.15 0.28 0.11

Table 2. Frequency counts of time-in-program between simulated and real world students

Time Graduated Withdrew Total per year
(years) UofS SimDoc UofS SimDoc UofS SimDoc

0 0 0 9 10 9 10
1 0 0 6 2 6 2
2 0 0 1 2 1 2
3 6 6 4 6 10 12
4 16 21 3 3 19 24
5 35 29 1 5 36 34
6 27 27 3 8 30 35
7 22 19 4 4 26 23
8 11 7 1 0 12 7
9 1 0 4 5 5 5
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To determine whether these frequencies are distributed in a statistically similar
manner, we conducted a Chi-Square test of homogeneity to check for consistency
among the yearly distributions, separately for each column: Total per Year, Graduated,
and Withdrew. Since the SimDoc model was tuned based on the real world dataset, we
expect that SimDoc results are statistically like the real world data. Therefore, our null
hypothesis is that the frequency counts of real world dataset and simulated dataset are
equally distributed. Thus, the alternative hypothesis is that there is a difference between
the distributions of the frequency counts. For this analysis, the significance level we use
is 0.05. We then apply the Chi-Square test of homogeneity to the cumulative contin-
gency table and compute the degree of freedom, the Chi-Square test statistic, and p-
value. The results of the Chi-Square test show that the p-value is more than the
significance level (0.05); therefore, we accept the null hypothesis that the frequency
counts are statistically consistent between the real world dataset and simulated dataset,
v2 (df = 9) = 5.0904, p = 0.8264.

The second analysis is to determine if the distribution of frequency counts in time-
in-program among the graduated learners were similar between the simulated and real
world datasets. Given that the distributions of the cumulative frequencies were sta-
tistically similar, we expect that the real world graduated frequency counts are similar
to the simulated graduated frequency counts per year. Thus, our null hypothesis is that
the frequency counts of real world (graduated) dataset and simulated (graduated)
dataset are equally distributed. As such, the alternative hypothesis is that there is a
difference between the frequency counts between these distributions. As in the first
analysis, we choose a significance level at 0.05. We then conduct the Chi-Square test
for homogeneity and the results show that we can accept the null hypothesis since the
p-value is greater than the significance level, frequency counts are statistically con-
sistent between the real world (graduated) dataset and simulated (graduated) dataset,
v2 (df = 6) = 2.9945, p = 0.8095.

The third analysis is to assess whether the distribution of frequency counts in time-
in-program among the learners who withdrew were similar between the real world
dataset and simulated dataset. Given that the distributions of the cumulative datasets
were statistically similar, our null hypothesis is that the real world withdrawal fre-
quency counts are similar to the simulation withdrawal frequency counts per year. As
such, the alternative hypothesis is that there is a difference between the frequency
counts between these distributions. As in the first analysis, we choose a significance
level at 0.05. We then conduct the Chi-Square test for homogeneity and the results
show that there is no significant difference in the distribution of frequency counts per
year between the real world (withdrew) dataset and simulated (withdrew) dataset, since
the p-value is greater than the significant level, v2 (df = 9) = 7.9344, p = 0.5408.

Table 3 shows the overall total frequency count per outcome for the real world and
SimDoc datasets. Since the resulting contingency table is small (2 � 2), to test whether
the proportions for one nominal variable are different from another nominal variable,
the Chi-Square test of homogeneity is not recommended but instead it is advisable to
use a Fisher’s exact test. In this analysis we are exploring if the frequency counts per
outcome between the real world and the simulation datasets differ. Our null hypothesis
is that the proportions of the outcome variables are not the same between the real world
and the simulation datasets. Therefore, the alternative hypothesis is that there is no
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difference in the proportion of the frequency counts in the outcome variables. We then
conduct a Fisher’s exact test which yields a result with p-value = 0.3005, indicating
that we can accept the null hypothesis that there is no significant difference in fre-
quency counts per outcome between the real world and the simulation datasets.

The overall outcome of this analysis is that best version of the SimDoc model that
came out of the tuning process in the initial 500 runs of the simulation turned out to be
stable over 100 runs in producing overall results similar to the real world dataset. Next,
we would like to look at the variability within the 100 runs.

4.3 Test of Variability Among Simulation Runs

In this section we go into more detail as to how we tested for appropriate variability in
the simulation output, important to ensure that the tuning process has not gone too far
and overfitted the simulation to the particular dataset. As in Sect. 4.2, we examine the
characteristics of the results for the variable time-in-program, produced by the 100
iteration runs of the simulation discussed in Sect. 4.1. First, we randomly select 12 out
of the 100 runs to examine graphically for insight into the variance among them.
Figure 2 (Top) depicts density plots of the results for the 12 randomly selected runs.
This figure shows that there is evidence of variation in the graduation and withdrawal
rates between the runs.

A box plot sheds more insight into the nature of the simulation results as shown in
Fig. 2 (Bottom). This box plot shows that indeed there are variations among the
different runs, and, in fact, a few outliers exist. However, are these variations statis-
tically significant? Are there any significant differences among the 100 iterations of the
simulation? To answer these questions, we use one-way analysis of variance
(ANOVA). ANOVA is an extension of the independent two-samples t-test that is used
to analyze data organized in groups. With ANOVA we explore the variance in means
of each of the runs between the distribution of student counts in the program per year in
the real world dataset and the simulation’s output (averaged over the 100 runs). In this
case, there are 101 groups: 100 groups representing the 100 runs of the simulation and
1 group representing the student graduation and withdrawal counts gleaned from the
real world dataset.

We are interested in exploring if there are any significant differences in the average
mean time students were in the program either leading to completion of their degree or
withdrawal from the program among the simulation’s 100 runs and the real world
dataset. Before performing the ANOVA, we establish that the three main ANOVA
assumptions are met: independence of observations, homogeneity of variance, and
dependent variable is normally distributed. To do this we perform a Chi-Square test of

Table 3. Summary of frequency count by outcome and data source

UofS SimDoc baseline

Graduated 118 109
Withdrew 36 45
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independence (see previous section), a normality check and a Levene test. Given that
the p-value (0.1707) > 0.05, equal variance can be assumed. With these three tests, the
ANOVA assumptions are met. To show that there is variability among the results of the
100 simulation runs, we make the null hypothesis that there is no difference in the
means among the 100 simulation iterations and the real world dataset.

Fig. 2. Top: density plots of 12 randomly selected runs of the simulation. Bottom: variation in
the graduation and attrition rates in the 12 simulation runs
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We conduct a one-factor ANOVA to compare the difference in learners’ time-in-
program among the simulation’s 100 runs and the real world dataset. The ANOVA
results show that there is a statistically significant difference in the average time-in-
program [F(100,15453) = 1.272, p = 0.0352] among the 100 iterations of the simu-
lation and the real world dataset. Therefore, we reject the null hypothesis and thus
accept the hypothesis that there is statistical evidence to suggest that there is a dif-
ference in the means among the 100 runs and the real world dataset. This result shows
that there is a difference between at least one or more pairings. Whenever the null
hypothesis is rejected in ANOVA, then all that is known is that at least 2 groups differ
from each other. ANOVA cannot tell us which of these groups are different. Therefore,
to explore how the mean for each of the 100 iterations compared to that of the real
world dataset, we perform a post hoc test using the Tukey’s Honest Significant Dif-
ference test at p < .05. The results show that there is no significant difference between
the real world data when compared to each of the 100 iterations. The difference exists
within the 100 iterations, thus ensuring appropriate variability among the simulation
runs.

5 Conclusion

To the best of our knowledge, this paper is the first attempt to explore the appropriate
number of runs there needs to be of a simulation model to get results about which the
experimenter can be confident. As identified by Ritter et al. [25], many authors fail to
report the number of runs used in testing a simulation model. Even when the number is
included, the reason behind choosing a given number of runs is barely mentioned. Our
approach is based on defining characteristics necessary of the simulation output,
namely that the simulation runs, collectively, meet statistical standards of stability and
variability when measured against comparable real world data. We provide a pseudo-
algorithm that can be used to determine when the number of runs has reached this
point, and therefore can determine that the simulation has an appropriate number of
runs. We demonstrated this using data generated by our SimDoc simulation of a long
term mentoring environment, a doctoral program, when compared with data from a real
world doctoral program (at the University of Saskatchewan). The methods, though, are
not specific to the particular doctoral program simulation, and should generalize to any
simulation. Knowing when the simulation has been run an appropriate number of times
should allow system designers to be confident in their results and should avoid them
having to needlessly make extra simulation runs. This is especially important for
medium and high fidelity simulations that can take a long time to run.
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Abstract. Recent scandals arising from the use of algorithms for user profiling
to further political and marketing gain have popularized the debate over the
ethical and legal implications of using such ‘artificial intelligence’ in social
media. The need for a legal framework to protect the general public’s data is not
new, yet it is not clear whether recent changes in data protection law in Europe,
with the introduction of the GDPR, have highlighted the importance of privacy
and led to a healthy concern from the general public over online user tracking
and use of data. Like search engines, social media and online shopping plat-
forms, intelligent tutoring systems aim to personalize learning and thus also rely
on algorithms that automatically profile individual learner traits. A number of
studies have been published on user perceptions of trust in robots and computer
agents. Unsurprisingly, studies of AI in education have focused on efficacy, so
the extent of learner awareness, and acceptance, of tracking and profiling
algorithms remains unexplored. This paper discusses the ethical and legal
considerations for, and presents a case study examining the general public’s
views of, AI in education. A survey was recently taken of attendees at a national
science festival event highlighting state-of-the-art AI technologies in education.
Whilst most participants (77%) were worried about the use of their data, in
learning systems fewer than 8% of adults were ‘not happy’ being tracked, as
opposed to nearly two-thirds (63%) of children surveyed.

Keywords: Ethics � Trust � GDPR

1 Introduction

Although discussions of the ethics of Artificial Intelligence (AI) have been commonly
found in popular writing and science fiction for decades, it is only relatively recently
that the field of AI has become sufficiently advanced to bring the issues of an ethical
and legal framework to the fore. The mainstream use of apps and search engines has led
to the collection of large amounts of user interaction data, from which an increasing
number of attributes can be inferred about the individual. Whilst for companies this has
led to more efficient, highly targeted advertising campaigns, the question of whether
this offers a benefit to the user, in terms of filtering information, or holds the risk of
unwitting persuasion, hangs in the balance. Since 2011 Eli Pariser has campaigned to
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raise awareness of the dangers of algorithmic personalization by search engines such as
Google, warning that “the Internet is showing us what it thinks we want to see, but not
necessarily what we need to see” [1]. Zuboff argues that knowledge and power are now
asymmetrical in the business of ‘surveillance capitalism’, a major part of which is
personalized communication, and that people’s belief that they get something in return
for their data is misled [2]. A major study of youth behavior online concluded that an
important reason why most youths appear unconcerned about profiling by digital
technology was a “lack of knowledge” rather than a “cavalier attitude toward privacy”
[3]. Recent scandals involving the use of algorithms for user profiling to further
political and marketing gain (e.g. Cambridge Analytica’s alleged use of personal
information to profile individual US voters for targeted political advertising [4]) have
resulted in much publicity about the dangers of big data and algorithmic decision
making in everyday lives. However, whether this additional publicity has translated
into public awareness is still a subject for debate.

In education, research into the application of AI techniques to learning systems for
the benefit of the learner has been an active field for several decades. The benefits of
personalized, adaptive learning have long been argued and supported by results that
show that learners can learn more efficiently and effectively with the inclusion of AI
techniques as opposed to without [5, 6]. However, it is open to debate how many
members of the general public have actually had access to learning systems that use AI
techniques, or even if they have, whether they are aware of the use of AI profiling.
With the popular use of apps that adapt to make our lives more convenient, AI tech-
niques have moved into the mainstream and user expectations have shifted accordingly,
so that many people would not categorize features such as predictive text or recom-
mendation systems as using AI at all.

In order to benefit from the personalization of learning using AI techniques,
learners must accept the trade-off of the system gathering personal data and tracking
their learning experience. In fact, just like the Facebook/Cambridge Analytica scandal,
learning systems use an individual’s behavior within a system to infer information
about personality, mood, learning styles and comprehension [7–11]. The question
arises “How many learners are aware and understand that in order to personalize,
learning systems gather user data in order to profile their personal traits?”.

Whilst there have been a few studies investigating the public’s perception of AI in
everyday lives [12, 13], none have yet been published that specifically explore the issue
of AI in education – and whether the perceived benefit of the educational context has
any impact on views of AI generally. This pilot study aims to fill this gap by gathering
views of AI in the Educational context. Its results will be of interest to AIED
researchers, educators, and researchers with an interest in the legal and ethical aspects
of AI.

This paper describes a survey of the general public’s feelings on the use of AI in
education. The survey involved collecting anonymous questionnaires completed
voluntarily by some attendees at a free National Science Festival event held at
Manchester Science Museum, called ‘Me versus Machine’. The event included a
number of activities designed to introduce people of different ages to Computer Sci-
ence. One stand was dedicated to Artificial Intelligence in Education, where recent
research in Conversational Intelligent Tutoring Systems was demonstrated and
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discussed. Interested attendees were asked to participate in a study of views on AI in
Education, and completed a questionnaire.

The rest of the paper is organized as follows: Sect. 2 considers the legal and ethical
context of AI and its use in education. Section 3 outlines profiling in education sys-
tems, with Sect. 4 presenting a case study of the general public’s views on AI in
education, followed by the conclusion in Sect. 5.

2 Legal and Ethical Considerations of AI in Education

2.1 Ethical Issues of AI in Education

The discussion of ethics in AIED is not new. In 2000, Aiken and Epstein published an
article in the International Journal of Artificial Intelligence in Education titled ‘Ethical
Guidelines for AI in Education: Starting a Conversation’ [14]. While the cited pre-
dictions for the future of AIED for 2010 are somewhat premature, most will agree that
this is what we are expecting today, 20 years later, for 2025: “The teacher of 2010 will
rarely spend a day lecturing…The artificial-intelligence tutor will become a valuable
assistant, providing the individualized instruction that a teacher with 20 or more pupils
does not have the time for. Learning can take place at the student’s pace” [15].

Following Shneiderman’s [16] quote from Mumford [17]: “The real question
before us lies here: do these instruments further life and enhance its value, or not?”,
Aiken and Epstein propose two fundamental meta-principles as a basic philosophical
underpinning for any discussion of AIED systems: (1) “The Negative Meta-Principle
for AIED – AIED technology should not diminish the student along any of the fun-
damental dimensions of human being; and (2) The Positive Meta-Principle for AIED –

AIED technology should augment the student along at least one of the fundamental
dimensions of human being” [14].

Fast forward 20 years, and Nichols and Holmes propose eight principles consti-
tuting “an open ethical framework for implementing AI in educational setting in ways
that empower students and provide transparency” [18]. These principles are required
since while data is supposed to be applied in objective ways by AI, source data is not
immune from bias and there is no such thing as “raw data” [19].

It is already established that algorithms designed by engineers to process data carry
in them inherent bias with ethical consequences as was illustrated by sexist, racist and
discriminatory consequences by AI systems [20]. The recent Cambridge Analytica
scandal [21] further illustrates that even small amounts of personal data can be com-
bined through AI algorithms with the potential to undermine democracy. The ethical
issues faced by data analytics are shared with AI since they both draw on data [22].

While there is a consensus that ethical principles of AI are mandatory and urgent
[23], and while multiple organizations are exploring this realm [21, 24–27], there is
over representation to AI developers (e.g., DeepMind Ethics and Society) and the
corporate perspective (e.g., OpenAI) raising questions whether they will be thinking
broadly and critically enough [28].

With advances in AIED like the Ada [29] and Jill Watson [30] bots, the absence of
a definite reference point for AI ethics is crucial to AIED ethics. Holmes argues that
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“around the world, virtually no research has been undertaken, no guidelines have been
provided, no policies have been developed, and no regulations have been enacted to
address the specific ethical issues raised by AIED” [31].

2.2 The Impact of GDPR

The General Data Protection Regulation (GDPR) was approved by the EU parliament
on April 14, 2016 and came into force on May 25, 2018 (EUGDPR.org). According to
the EUGDPR website, “The aim of the GDPR is to protect all EU citizens from privacy
and data breaches in today’s data-driven world” [32].

Certain aspects of the GDPR are particularly relevant to Artificial Intelligence. One
of these is the principle of “accountability,” which is an implicit requirement under the
current law but has been explicitly introduced in the GDPR [33]. This principle
requires organizations to demonstrate compliance with all the other principles in the
GDPR, and several further provisions of the GDPR also promote accountability.

Another aspect relevant to AI is the tightened requirements for consent in the
GDPR. The use of AI techniques by its nature (i.e., the collection and processing of
massive amounts of data) stipulates that it would be challenging to obtain explicit
consent from the individuals involved. This is especially relevant to AIED as the users
are often minors, thus requiring both their own and their parents’ explicit consent.

A further relevant challenge is the GDPR right to receive an explanation by a
natural person of decisions based on automated processing. This right’s scope and
eligibility is not without doubts [34]. Nonetheless, even if we assume the right for
explanation exists, AI decisions are made by complex and technical processes many
times not even clear to their developers (e.g., neural networks). In addition, the algo-
rithm structure and operation method may be proprietary information and considered a
trade secret. Finally, it would be challenging to explain complex AI systems to a
layperson, moreover to a minor.

To manage these challenges raised by AI and the GDPR regulations, the Ministers
of the European Parliament (MEPs) asked the European Commission in February 2017,
to propose EU-wide rules on robotics and AI. Following this request, a public con-
sultation was held in October 2017. Interestingly, the consultation results showed that
European public opinion appears to be much more positive towards automation
technologies than U.S. public opinion, based on the results of a recently-release report
by the Pew Research Centre [35].

Furthermore, in December 2018, the European Commission’s High-Level Expert
Group on Artificial Intelligence (AI HLEG) published its draft of the AI Ethics
Guidelines for comments from the public with the aim to have a final version in March
2019 [36]. The group have adopted EU treaties and legislation on human rights as their
ethical principles for AI. This has led to the following assertion: “It should also be
noted that, in particular situations, tensions may arise between the principles when
considered from the point of view of an individual compared with the point of view of
society, and vice versa. There is no set way to deal with such trade-offs”. In the context
of AIED, the potential for such tension is high.

While the global (and mainly the Western) discussion around general ethical
guidelines for AI is vibrant, there is yet to be a consensus around an established set of
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principles that would be easily applied to the different fields in which AI is applied.
Moreover, as in many cases of challenging regulatory spheres in the past, the surplus of
sources and mix of laws (e.g., privacy), regulation (e.g., GDPR), codes (The Asilo-
mar AI Principles [37]) and standards (e.g., IEEE [38]) that apply to AI seems to
complicate the problem and make compliance ever more challenging, rather than
promoting its solution.

3 Profiling in Learning Systems

3.1 Intelligent Tutoring System Approaches

Intelligent Tutoring Systems (ITS) personalize learning based on traits of the individual
learner held in a student model. Traditionally, student models were based on outcomes
from ITS-designed assessment and self-reported affective information such as mood,
motivation and learning style [39, 40]. More recently, construction of student models
has been automated with ITS profiling learner behaviors, such as user interface
interactions, to predict the affective state of a learner [8–11]. Most automated profiling
techniques map tracked learner behaviors to typical behaviors described in psycho-
logical models (e.g. personality and learning styles [10]) to infer learner traits and
preferences. Some ITS profile learner affect using physical indicators gathered from
sensors worn by learners [41, 42].

Conversational Intelligent Tutoring Systems (CITS) are ITS with a conversational
agent interface, enabling them to conduct tutoring via a mixed initiative conversation.
Their advantage is that the learner does not have to self-motivate as the CITS leads the
tutoring conversation, yet learners can ask questions and explore answers using natural
language conversation. CITS capture rich interaction information from the conversa-
tion, that adds depth to the student model [6, 10, 11].

3.2 Oscar CITS

Oscar CITS aims to mimic a human tutor by delivering a personalized tutoring con-
versation based on an individual learner’s knowledge and preferred learning style [10,
43]. Oscar CITS incorporates intelligent techniques to provide realtime problem
solving support (hints), intelligent solution analysis (feedback) and curriculum
sequencing. Learners are automatically profiled using 41 variables tracked based on
behavior, preferences and language during the tutorial conversation [43]. Oscar CITS
adapts to learner knowledge and learning style, by changing the style of conversation
and support material presented, such as giving step-by-step help, giving examples or
showing movies [10, 44]. Oscar CITS is used in a live learning/teaching environment at
Manchester Metropolitan University to help higher education students learn the data-
base language SQL1.

1 Video demonstrations of Oscar CITS and Hendrix CITS intelligent techniques can be found at www.
AnnabelLatham.co.uk.
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3.3 Hendrix CITS

Hendrix CITS is a new generation of CITS that can profile a learner in near-realtime
using images from a webcam [11]. Hendrix CITS automatically profiles learners by
analyzing images from a webcam to determine whether or not the learner is demon-
strating comprehension. This enables Hendrix to intervene in the tutoring conversation
if it detects that the learner may need help, thus helping to maintain learner motivation
and improve learning. Hendrix CITS tracks a learner’s micro expressions, and uses a
classification model built from an array of neural networks to determine whether there
is a state of non-comprehension, and if so, the level of non-comprehension. Unlike
other image-based approaches to profiling affective states, Hendrix does not require lab
conditions or high specification cameras to capture sufficient information to profile
learner comprehension (see footnote 1).

4 Case Study – Manchester Science Festival

4.1 Overview

The Manchester Science Festival is one of the largest in the UK. The week-long series
of events attracts over 130,000 visitors each year. On Saturday 20 October 2018, the
‘Platform for Investigation: Me versus Machine’ event enabled the public to explore
Artificial Intelligence through eight innovative activities designed to engage all ages in
computer science and debate its place in our shared future. Organised by computer
scientists from Manchester Metropolitan University (MMU), the all-day event took
place at Manchester Science and Industry Museum and included hands-on activities, a
live experiment, coding challenges and demonstrations of cutting-edge research.

One activity was called ‘I, Teacher’, an exhibit to introduce families to the use of AI
methods in education and learning systems. The exhibit included posters showing
which different AI technologies have been included in Intelligent Tutoring Systems to
help learners, a conversational agent research timeline and an introduction to automatic
learner profiling. A large HDTV continuously ran video demonstrations (see footnote 1)
of two different Conversational Intelligent Tutoring Systems, Oscar CITS and Hendrix
(see Sect. 3), annotated to show the AI techniques being used. The posters and
demonstration videos allowed attendees to read and watch by themselves, or to engage
in discussion with researchers about the use of AI in education. Questionnaires were
placed on a table at the exhibit, and interested members of the public were asked if they
would like to record their opinions of AI in education, anonymously and voluntarily.

4.2 Methods

A questionnaire was designed to elicit opinions from the general public on their
Internet use, use of their online data, and their views on the use of AI in education.
The questionnaire was designed to fit on a single side of A4 and used a Likert scale to
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facilitate ease and speed of completion (see Table 1). The only demographic infor-
mation collected was age group and gender, and the questionnaire was completely
anonymous. A second version of the questionnaire was developed for children (minors
aged 5–18), which included age-appropriate language (scoring a Flesch-Kincaid Grade
Level of 5.0 [45]) and three questions with fewer/different choices (Q1, Q5 and Q6 in
Table 1). All other questions were the same in content. For participants aged under 18,
the responsible adult’s consent was indicated by writing their initials on the child’s
questionnaire. This indication of consent was accepted under the research ethics
approval (MMU EthOS reference number: 1181) as the facilities at the event did not
allow for secure storage of personal data recorded on a full consent form.

Participation by members of the public was entirely voluntary. To take part they
approached the ‘I, Teacher’ exhibit, had the process explained and then decided to take
part by completing the anonymous questionnaire.

4.3 Results and Discussion

During the six hour event, 625 visitors (415 adults, 210 children) passed through the
‘Platform for Investigation’ exhibition. No data was recorded on how many people
visited the ‘I, Teacher’ exhibit and engaged in discussions with researchers, although
the exhibit was very busy all day. It was found through conversation that most people
knew the term Artificial Intelligence, but did not necessarily understand its meaning in
detail and were mostly not aware that AI had been applied to learning systems. There
was much interest in the new research, and in discussing the future possibilities for
education, but unsurprisingly most visitors to the stand were reluctant to spend time
completing a questionnaire.

38 members of the public decided to complete the questionnaire, however six
questionnaires were either largely incomplete or no parental consent had been recorded,
so were destroyed. In total there were 32 completed questionnaires, 24 from adults and
8 from minors. There were slightly more male adults (14) than female (9), with one
participant not recording gender, and a gender balance of minors. The distribution
across age groups is as follows: 5–10 (3); 11–14 (3); 15–18 (2); 19–25 (5); 26–40 (9);
41–60 (10); 61+ (0). Table 1 shows the combined results.

My Data. Interestingly, participants are most comfortable being automatically tracked
by online shopping and learning systems (Q2: 62% and 60% respectively). This may
indicate that the benefit and convenience of such profiling is seen to outweigh any
perceived threat. This stands in contrast to search engines like Google and social media
where most participants (62% and 59% respectively) were not comfortable with
tracking, despite the daily use of these applications being high (84% and 72%). 75% of
participants are concerned about the use of their data (Q3) and no participants believe
that their Internet use is ‘Very’ private (Q4). This suggests that safety messages from
media and schools have been understood, although it may also be a result of visiting
other exhibits at which data privacy issues were discussed.

AI in Education. There was a very positive response to the use of AI in education,
with most participants believing such tools to be useful in all scenarios (Q5).
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Table 1. Combined questionnaire results. (n = 32; n(children) = 8; n(adults) = 24)

My internet use

1. How often do you use Daily Weekly Monthly Rarely Never
Social media 72% 13% 0% 0% 15%
Google, or similar search engines 84% 3% 3% 6% 4%
YouTube (children) 86% 0% 0% 14% 0%
Online shopping (children) 29% 14% 0% 0% 57%
Online games (children) 50% 17% 0% 17% 16%
Amazon (adults) 29% 33% 13% 17% 8%
Online supermarkets (adults) 0% 32% 20% 40% 8%
My data
2. How comfortable are you/would you be with
automatic tracking of your use of

Very Quite Don’t
know

Not very Not
at all

Internet generally 13% 22% 12% 25% 28%
Social media 9% 22% 10% 34% 25%
Google, or similar search engines 19% 13% 6% 31% 31%
Online shopping 34% 28% 10% 6% 22%
Learning systems 44% 16% 18% 0% 22%
3. How concerned are you about the use of your
data?

41% 34% 10% 6% 9%

4. How private do you believe your existing
Internet use is?

0% 22% 15% 25% 38%

Artificial intelligence in education
5. How useful do you think AI tools are for Very Quite Don’t

know
Not very Not

at all
School learning 56% 38% 6% 0% 0%
Supporting homework/revision 50% 41% 3% 6% 0%
Replacing a face-to-face course 25% 19% 12% 31% 13%
Giving extra learning support 59% 31% 7% 3% 0%
Learning new skills (adults) 48% 44% 4% 4% 0%
Work-based training (adults) 36% 48% 4% 12% 0%
6. If an AI learning tool was available, would
you use it for

Yes Maybe Don’t
know

Probably
not

No

Your own learning 66% 25% 3% 6% 0%
Replacing textbooks 31% 31% 6% 19% 13%
Helping with homework/revision (children) 71% 15% 0% 0% 14%
Children’s/grandchildren’s learning (adults) 64% 24% 0% 8% 4%
Replacing face-to-face learning (adults) 16% 24% 12% 36% 12%
Alongside face-to-face learning (adults) 72% 16% 4% 0% 8%
7. Do you think AI will help/could have helped
improve your education/learning?

56% 38% 3% 0% 3%

8. How important do you think humans are (vs
computers) in teaching/learning?

Very

50%

Quite

38%

Don’t
know
3%

Not very

9%

Not
at all
0%
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Surprisingly, even the controversial question about replacing face-to-face learning (Q5)
showed a balance of opinion – 44% for and 44% against, with 40% of adults saying
they may use an AI tool instead of face-to-face learning (Q6). In spite of this, 88% of
participants feel that humans are important in teaching and learning. 94% of partici-
pants believe that an AI tool could improve their learning. This suggests that a blended
approach to learning is most favorable to the general public, which is consistent with
generally accepted practice.

Gender Differences. For adults there were no real differences between genders in the
use of the Internet, although there were differences in opinions on tracking and use of
data, as shown in Fig. 1. A fifth of males (21%) were not concerned about use of their
data (Q3), unlike females (0%), despite there being no difference in opinion on data
privacy (Q4). All males believed AI tools to be useful for work-based learning, versus
two thirds (66%) of females, and 93% of males believed humans important in
teaching/learning versus 66% of women.

Age Differences. As expected, minors and adults differ in Internet use. Despite such
small numbers it was interesting to see in Q2 that all 5–10 year olds were ‘Not at all’
happy with being tracked by any of the suggested applications, which stood apart from
all other groups. Conversely, the only three participants ‘Not at all’ worried about use
of their data (Q3) were minors. One notable disparity between minors and adults was in
automatic tracking by learning systems (Q2) where 63% of minors (all of 5–10 year
olds) were not happy to be tracked, versus only 8% of adults.

In summary, the participants in this study were aware of automated tracking and
data privacy issues. On the whole, females are less comfortable being automatically
tracked than males, suggesting that safety concerns outweigh the convenience offered.
In a learning context, more males than females believe that humans are important.

Fig. 1. ‘How comfortable are you with automatic tracking’: comparison of adult’s opinions by
gender.
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However, most participants believed that AI tools were useful in learning, with 94%
believing they could help improve their own learning.

The limitations of the study were that it was a small set of the general public, all of
whom were attending an event that highlighted the latest research in AI and its asso-
ciated legal, social and ethical issues. It would be interesting to see if a larger, more
targeted study, taken in a different context, noted different views on profiling and the
use of AI in education. A comparison between larger sets of participants in different age
groups would also add depth and may highlight important differences in communi-
cating a balanced view of AI tools to the general public.

5 Conclusion

This paper has explored the current ethical and legal framework within which AI in
Education operates and presented the results of a small study in which the general
public shared their views on the use of AI in education systems. It was apparent that
participants had not previously been exposed to the idea of using AI algorithms in
learning systems, but that in general there was a positive response to the idea, with
most participants believing such tools to be useful and stating that if available, they
would use them to improve their own learning. Most participants were aware of privacy
concerns with their use of the Internet and social media apps, and were not comfortable
with their interactions being tracked (despite using such apps daily), although it was
interesting to note that more than half of participants were comfortable being tracked
by shopping and learning systems. This suggests that the public felt that the benefits
outweighed the threats in these contexts. The sample size was small, so future work
will involve a larger study in a more general public context to further explore the
public’s views on trust regarding the use of AI in education.

The ethical challenges of AI seem to be amplified in an education context due to
several characteristics, for example, the dealing with minors, the sensitive nature of the
personal information involved and the importance of this application along with its
potential benefit to learners. Therefore, it may be beneficial to consider a top-down
approach in which the general principles of AI will be informed by the specific ethical
principles of AIED and not vice versa.
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were in accordance with the ethical standards of the institutional and/or national
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Abstract. The availability of naturally occurring educational discourse
data within educational platforms presents a golden opportunity to make
advances in understanding online learner ecologies and enabling new
kinds of personalized interventions focused on increasing inclusivity and
equity. However, to gain a more substantive view of how peer interaction
is influenced by group composition and gender, learning and computa-
tional sciences require new automated methodological approaches that
will provide a deeper understanding of learners’ communication patterns
and interaction dynamics across digitally-meditated group learning plat-
forms. In the current research, we explore learners’ discourse by employ-
ing Group Communication Analysis (GCA), a computational linguistics
methodology for quantifying and characterizing the discourse sociocog-
nitive processes between learners in online interactions. The aim of this
study is to use GCA to investigate the influence of gender and gender
pairing on students’ intra- and interpersonal discourse processes in online
environments. Students were randomly assigned to one of three groups of
varying gender composition: 75% women, 50% women, or 25% women.
Our results suggest that the sociocognitive discourse patterns, as cap-
tured by the GCA, reveal deeper level patterns in the way individuals
interact within online environments along gender and group composi-
tion lines. The scalability of the methodology opens the door for future
research efforts directed towards understanding, and creating more equi-
table and inclusive online peer-interactions.

Keywords: Group Communication Analysis · Collaborative learning ·
Group processes · Gender difference

1 Introduction

Despite gradual progress, gender and ethnic disparities continue to pervade
the American higher education system and workforce, particularly in science,
technology, engineering and math (STEM) fields (National Science Foundation,
2018). For instance, women and minorities comprise 70% of all college students,
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but less than 45% of STEM degrees [28]. While the causes and consequences of
this are numerous and complex, a sense of belonging [21,40] has consistently been
shown to be a critical factor that contributes to the lack of representation, reten-
tion, and persistence of women and underrepresented racial and ethnic minorities
(URMs) in STEM.

Teamwork, particularly in small, informal collaborative groups, is an essential
aspect of STEM environments, both in courses and the workplace [15,38]. Col-
laborative interactions can increase learning, cultivate positive attitudes towards
science, and enable the development of a social identity as a scientist in STEM
classrooms at all levels, from primary school through university [22,26,38,41].
Simply assigning students to groups, however, does not guarantee effective col-
laborative interactions. In order to reap the rewards of collaborative interactions,
groups must be high functioning and include students that engage in equitable,
effective and respectful interpersonal discourse. Collaborative learning research
has highlighted the importance of group composition and the influence it has on
individual student, and group level processes and outcomes, including peer dis-
course [6,8,13,14,20,23,25,30,39,41]. Given the significant role of group compo-
sition, intelligent and adaptive group assignment could allow educators to lessen
the gender gap [8]. As such, there is a need to gain a deeper understanding of the
relationship between gender group composition and equitable interpersonal dis-
course. In the current research, we explore this topic by investigating the intra-
and interpersonal dynamics of students discourse across different gender group
compositions (female minority, gender parity, and female majority).

1.1 Discourse Dynamics, Gender Differences, and Group
Composition in Online Interactions

The significance of discourse and peer interactions for the learning process
has been consistently highlighted in the Artificial Intelligence in Education
(AIED) community [5,7,17,36,42] and broader educational research and theory
[3,34,35,37], often with the emphasis on individual student and group sociocog-
nitive processes, such as coordination, negotiation, common ground, elaboration
and integration of ideas. Studies across a range of digitally-mediated educa-
tional environments including small group interactions, distance courses, and
online and blended courses have all stressed the need for developing peer to peer
discourse interactions that promote student learning and achievement of course
goals [1,2,9,10,24,29]. While computer-supported collaborative learning (CSCL)
environments hold the potential for creating more equitable and inclusive peer
interactions, they are typically not characterized as such. However, the next-
generation AIED systems could enable the personalized interventions needed to
promote inclusivity and equity in digital collaborative environments.

Initial conceptualizations presumed CSCL and computer-mediated commu-
nication (CMC) environments would mitigate gender equality issues in participa-
tion, communication features, and outcomes due to the lack of contextual cues
[30]. However, evidence to the contrary quickly emerged, making this a more
controversial than definitive claim. While there is research that has found little
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evidence for gender differences in communication or group outcomes [23], they
are outnumbered by the those that have identified inequitable findings between
females and males in group interactions [6,8,13,14,20,23,25,30,32,39,41]. This
research has highlighted the differences that exist in group interaction between
female and male students’ perceptions [30], motivation [6], communication styles
[32], and outcomes [8].

Previous research has shown group composition to have a nontrivial influence
on gender differences in collaboration. For instance, Dasgupta and colleagues [6]
conducted an experiment where female engineering students were assigned to
small groups with varying gender ratios: female-minority, sex-parity and female-
majority. They found that female students exhibit higher confidence and moti-
vation when they are in a group with a higher proportion of the same sex,
regardless of their year in college. Their results also suggest a female-minority
environment may undermine the participation and performance of female stu-
dents who hold implicit masculine bias towards the field. This study provides
evidence that gender composition in small groups can change the dynamics of
interactions and performance of individuals. However, the context in engineering
where women are traditionally underrepresented for this study limit the result
from generalizing to other subjects.

1.2 Research Motivation

While there have been increasing efforts directed toward understanding group
composition and gender differences in language, discourse and communication,
there are some notable concerns, and areas of improvement that should be
addressed in order to move the field forwards towards our common goal of foster-
ing understanding and creating gender equity in the digital learning community.
For instance, many methodological approaches employed have been surface level,
wherein a large proportion of research devoted to examining gender differences
in the patterns of interaction has relied on measuring frequency of messages
and length of texts. Specifically, when investigating discourse during digitally-
meditated interactions, researchers have focused on either the student or group
level (i.e. individual posts or totality of them per person or group). Aggregating
the text of the individual or a group offers a cumulative account of female and
male learners’ discourse, but it provides only coarse-level granularity, and disre-
gards the sociocognitive processes that reside in the interaction between learn-
ers’ discourse contributions. In particular, these practices tend to obscure the
sequential structure, semantic references within group discussion, and situated
methods of interaction through which problem-solving and knowledge acquisi-
tion emerges [4,31,33,37]. As a result, current studies of gender differences in
peer discourse and group composition cannot offer insight on many dimensions
of peer interaction such as coordination, and regulation, among others, and more
nuanced techniques are needed. Unlike aggregated text analysis measurements,
semantic analysis captures a deeper sociocognitive level in communication [12],
and shows greater potential to bring forward novel discoveries in understand-
ing gender differences in collaboration. To gain a more substantive view of how
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peer interaction is influenced by group composition and gender, the learning
and computational sciences require new automated methodological approaches
that will provide deeper understanding of learners’ communication patterns and
interaction dynamics across online educational platforms.

2 Current Study and Group Communication Analysis

Building on the previous efforts, the current study aims to provide a deeper
understanding of the group composition and gender differences in language, dis-
course and communication. Towards this effort, we explore learners’ discourse by
employing Group Communication Analysis (GCA), a methodology for quantify-
ing and characterizing the discourse dynamics between learners in online multi-
party interactions [11]. GCA applies automated computational linguistic analysis
to the sequential interactions of participants in online group communication, and
produces multiple dimensions i.e. participation, internal cohesion, responsivity,
social impact, newness and communication density (described in Table 1). GCA
both captures the structure of the group discussion, and quantifies the complex
semantic cohesion (i.e., using latent semantic analysis) relationships between
learners’ contributions overtime, revealing intra- and interpersonal processes in
group communication. As such, this approach extends beyond previous meth-
ods, which often rely on counting the number of utterances between learners
(e.g., social network analysis). In this work, the GCA framework allows us to
compare interpersonal interactions between participants across different group
compositions (female majority, gender parity and female majority) and analyze
significant differences between such groups.

Table 1. Descriptions of GCA dimensions

GCA Description

Participation Mean participation of an individual relative
to the expected average of the group of its
size

Internal cohesion How consistent an individual is with their
own recent contributions

Responsivity The tendency of an individual to respond,
or not, to the previous contributions of their
collaborative peers

Social impact The tendency of a participant to evoke
corresponding responses from their
collaborative peers

Newness Whether one is likely to provide new
information or to echo existing information

Communication
density

The extent to which participants convey
information in a concise manner
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The goal of the present research was to investigate how intra- and interper-
sonal communication dynamics are influenced by group composition and gender
during group interactions. As such, we focused our analyses on the following
research questions:

– RQ1: What are the emergent differences in the ways male and female students
interact with their peers in groups of different gender compositions?

– RQ2: How does the collaborative dynamic change across group compositions
for each gender?

2.1 Semantic-Based GCA Measures

Five of the GCA measures are semantic-based metrics (i.e., all but participa-
tion). The GCA relies on Latent Semantic Analysis (LSA) to infer the seman-
tic relationship among the individual contributions. LSA, an automated high-
dimensional associative analysis of semantic structure in discourse, can be used
to model and quantify the quality of coherence by measuring the semantic sim-
ilarity of one section of text to the next. LSA represents the semantic and con-
ceptual meanings of individual words, utterances, texts, and larger stretches
of discourse based on the statistical regularities between words in a large cor-
pus of natural language [18,19]. When used to model discourse cohesion, LSA
tracks the overlap and transitions of meaning of text segments throughout the
discourse. Conversations, including online collaborative discussions, commonly
follow a statement-response structure, in which new statements are made in
response to previous statements (Responsivity), and subsequently trigger fur-
ther statements in response (Social Impact). Learners may, in a single contribu-
tion, refer to concepts and content presented in multiple previous contributions,
made throughout the conversation either by themselves or other students. Thus,
a single contribution may be in response, to varying degrees, to many previous
contributions, and it may in turn trigger, to varying degrees, multiple subsequent
responses.

The analytical approach of the GCA was inspired by analogy to the cross-
and autocorrelation measures from time-series analysis. Cross-correlation simi-
larly measures the relatedness between two variables, but with a given interval
of time (or lag) between them. That is, for variables x and y, and a lag of T ,
the cross-correlation would be the correlation of x(t) with y(t + τ), across all
applicable times, t, in the time-series. Such cross-correlation plots are commonly
used in the qualitative exploration of time series data. While we might apply
standard auto- and cross-correlation to examine temporal patterns in when par-
ticipants contribute, we are primarily interested in understanding the temporal
dynamics of what they contribute, and what the evolution of the conversa-
tion’s semantics can teach us about the gender composition in peer-interaction.
With this in mind, the GCA provides a fine-grained measure of the similarity
of participants’ contributions to capture the multi-responsive and social impact
dynamics that may be present in online interactions. That is, the semantic cohe-
sion of contributions at fixed lags in conversations can be computed much in the
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same way that cross-correlation evaluates correlation between lagged variables.
Various measures of this auto- and cross-cohesion form the basis of the GCA’s
semantic-based measures.

3 Method

3.1 Participant

The participants were enrolled in an introductory-level STEM course taught at
a university in the American midwest. The sample consisted of 840 students.
In this paper, we excluded responses such as prefer not to answer and N/A
on gender and ethnicity to reduce ambiguity. Further, in line with Dasgupta
and colleagues analyses [6], we included only individuals that participated in
groups of 4 students to reduce the influence of group size on the analyses. The
remaining sample of 132 students included N = 79 female (59.80) and N =
53 male (40.20) students, and a total of 33 groups. Group composition was
determined by splitting groups based on female minority (groups having only 1
female student), gender parity (2 female, 2 male) and female majority (3 female,
1 male).

3.2 Procedure

Students were asked to participate in an assignment that involved a collabora-
tive discussion on a course topic, as well as several quizzes. Students were told
that their assignment was to log onto an online educational platform specific to
the University at a specified time. Students were also instructed that, prior to
logging onto the educational platform, they should read specific material on the
assigned topic. After logging onto the system, students took a ten-item, multiple
choice pretest quiz. After completing the quiz, they were randomly assigned to a
chatroom with four classmates, also chosen at random, and instructed to engage
in a discussion of the assigned material. The group chat began as soon as some-
one typed the first message and lasted for exactly 20 min, when the chat window
closed automatically. Then students took a second set of ten multiple-choice
question post-test quiz.

There are two unique designs that are worth noting in this study. First of
all, each of the participants in our study were assigned with a randomized ID
and appeared to be anonymous to other group members. This allows us to focus
on the pattern of interaction affected by gender composition in groups, with
limited confounding influence from other group dynamics such as gender stereo-
typing. Since learners had little idea who they are paired to, the chance that
they change the way they interact based on their perception of gender, ethnicity
and other characteristics on other group members was reduced. Flanagin (2002)
investigated the interaction of sex and anonymity in computer-mediated group
environments. By reducing or eliminating static cues (e.g., cues such as appear-
ance, gesticulation, and facial expression), CMC ostensibly enables individuals
to interact more fully and equally.
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3.3 Data Analysis

Descriptive statistics were generated to determine group gender composition
(majority, parity, minority) and mean GCA measures for each of the six dimen-
sions for males and females separately as well as overall. Subsequently, MANOVA
was conducted to examine multivariate relationships between male and female
GCA dimensions overall and within the genders separately. After very little sig-
nificance was found, MANCOVA was used to control for ethnicity and reexamine
the multivariate relationships with the same group separation. After controlling
for ethnicity, greater significance was found for some of the dimensions within
specific groups.

4 Result

For our first research question, we compared in-group differences between male
and female students’ interactive behavior. In female minority groups, the anal-
ysis indicated significant differences between female and male students in mean
participation (F = 3.451, p = .051), social impact (F = 7.068, p = .004) and
internal cohesion (F = 4.37, p = .026). In gender-parity groups, although there
were observable gender gaps across participation, internal cohesion, and overall
responsivity, the lack of significance in our analysis suggests that there was less
difference between female and male students across six GCA fields. In female
majority groups, female students were found to have significantly higher social
impact (F = 4.517, p = .015), internal cohesion (F = 5.414, p = .007) and
overall responsivity (F = 4.23, p = .019). With these results, we can see that
females contribute significantly more meaningful input to productive discourse
that is more likely to generate responses from other group members and stays on
topic, even when they are the minorities in groups. By contrast, male students’
remained relatively less conducive to the collaborative discourse.

The second research question that we asked is how the interaction dynamics
change differently across groups for each gender. For female students, as we can
see in Fig. 1, their participation increased as the number of female students in
groups increased. This supports previous research findings that the proportion
of same gender positively correlates with students participation. However, this is
only true for surface level participation, as communication effectiveness captured
by social impact, internal cohesion and overall responsivity varied to different
degrees across groups.

For both male and female participants, gender-parity groups resulted in the
lowest average across these three dimensions. This contradicts the common asser-
tion that gender parity could facilitate productive discourse and collaborative
performance. For male students, again we see a positive correlation between
participation and same-gender ratio (Fig. 2). With regards to social impact and
overall responsively, however, it appears that male students were more socially
engaged in interpersonal discourse as the number of female students in group
increased. One potential explanation to this is that the presence of female
students, who exhibited greater social and cognitive engagement, enhances the
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overall inclusivity and connectedness in the collaborative discourse that in turn,
influences male students’ communication patterns.

It is interesting to note that regardless of gender, when students were minori-
ties in groups they participated less yet were more socially engaged, which was
reflected through social impact and responsivity. In addition, in gender parity
groups, neither male nor female deviates much from the group average. This
might indicate that students appeared to regulate their natural tendency in
interaction to accommodate the style of their partners. Our results, although
not significant, suggest a different perspective that gender parity may actually
hinder students innate interactive style in small group collaboration.

Fig. 1. Mean measures for female students only in each of the six GCA dimensions
across the three group composition types (female majority, gender parity and female
minority).

5 Discussion

The goal of the current research was to provide a deeper understanding of the
influence group composition and gender on discourse in digitally-meditated col-
laborative environments. Towards this effort, we employed a novel approach,
which allowed us to characterize and quantify learners’ discourse dynamics in
these online learner environments along gender and group composition dimen-
sions. The findings present some methodological, theoretical, and practical impli-
cations for the AIED community. First, as a methodological contribution, we
have highlighted the rich contextual information that can be gleaned from
employing deeper level linguistic analysis. In particular, GCA lets us view dis-
course as a dynamic and evolving sociocognitive process that resides in the inter-
action between learner’s communicative contributions. Our results suggest that
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Fig. 2. Mean measures for male students only in each of the six GCA dimensions
across the three group composition types (female majority, gender parity and female
minority).

these sociocognitive discourse patterns, as captured by the GCA, reveal deeper
level structures in the way individuals interact within CSCL environments along
gender and group composition lines. The study presents an initial investigation
of this methodology. Further, Kreijns et al., [26] discuss the pitfalls for social
interaction in CSCL and points out that the lack of social interaction would neg-
atively impact the effectiveness of collaborative learning. They suggest that the
design of functional CSCL environments should focus on the cognitive aspects
of learning. GCA allows us to delve into both the social and cognitive aspects of
peer interaction, which provides beneficial information in constructing adaptive
and intelligent learning design that support and guide social interaction towards
critical thinking, argumentation, and socially constructing meaning. However,
additional validation of these findings is needed including triangulating qualita-
tive analysis of individual learner discourses, as well as replicating the results in
other contexts, and understanding the behaviors and learning outcomes associ-
ated with different patterns of interaction across the group compositions.

With these new findings, it is easier to see that online environments are not
necessarily promoting equity or inclusivity in higher education. Even in anony-
mous settings, group gender composition still plays a key role in determining how
students will engage with their peers. In order to improve the current state of
such environments, we have explored implications in artificial intelligence tech-
nology that could be utilized to provide students with live feedback which can be
helpful in increasing social competencies through real-time monitoring of GCA
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dimensions. For example, prompts could be generated which would inform users
of certain entries which they might be able to respond to given previous entries
on their part. If students utilized these prompts, group interaction in environ-
ments of lower participation (e.g. male majority groups) could be improved by
getting higher rates of response by both male and female participants as well as
greater responsivity and social impact in male participants specifically.

6 Conclusion

The availability of naturally occurring educational discourse data within these
online educational group interaction platforms presents a golden opportunity for
the AIED community to make advances in understanding online learner ecolo-
gies and enabling new kinds of personalized interventions focused in increasing
inclusivity and equity [16]. However, three key barriers facing broader educa-
tional community are (i) a lack of analytical infrastructures capable of dealing
with the scale of online interaction data produced by these platforms [27], (ii)
providing a quantitative understanding of the regular patterns and mechanisms
in human dynamics, (iii) and cultivating an equitable, respectful, and diverse
environment that meaningfully engages learners at all levels.

The current research attempts to address these three barriers by combining
theory, computational linguistics, and educational technologies. We anticipate
this marriage will provide a unique understanding of the barriers facing groups
who have been historically underrepresented in STEM. Educational technologies
and artificial intelligence, when leveraged appropriately, have the potential to
develop the social competencies that learners need for a successful future. In
particular, we may be able to better understand and enable the participation
of underrepresented groups, including women and racial minorities. Ideally, the
findings from our future research will transform STEM higher education by
providing data-driven insights and scalable intervention strategies that promote
inclusivity in online collaborative learning environments.
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Abstract. Reflective writing is widely acknowledged to be one of the most
effective learning activities for promoting students’ self-reflection and critical
thinking. However, manually assessing and giving feedback on reflective
writing is time consuming, and known to be challenging for educators. There is
little work investigating the potential of automated analysis of reflective writing,
and even less on machine learning approaches which offer potential advantages
over rule-based approaches. This study reports progress in developing a machine
learning approach for the binary classification of pharmacy students’ reflective
statements about their work placements. Four common statistical classifiers were
trained on a corpus of 301 statements, using emotional, cognitive and linguistic
features from the Linguistic Inquiry and Word Count (LIWC) analysis, in
combination with affective and rhetorical features from the Academic Writing
Analytics (AWA) platform. The results showed that the Random-forest algo-
rithm performed well (F-score = 0.799) and that AWA features, such as emo-
tional and reflective rhetorical moves, improved performance.

Keywords: Reflective writing � Automated feedback � Learning analytics

1 Introduction

“We do not learn from experience… we learn from reflecting on experience” is a well-
known adage that summarizes Dewey’s [1] foundational work on teaching and
learning. Critical self-reflection has been increasingly recognized as central to the
development of agentic, self-regulated learners. Moreover, finding ways to scaffold
quality reflection becomes all the more important as we seek to provide learners with
more authentic tasks and assessments, that are distinctive because of the rich, complex,
social, psychological and embodied experiences they provide [2]. When students
engage effectively in reflective learning activities, this can provide evidence of self-
critical insight, identify challenging issues, connect academic with experiential
knowledge, acknowledge emotions and feelings, and reflect on how they can apply
such insights in the future [3, 4]. Reflective processes in learning have most impact
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when they are formative and future-oriented [5]. In addition, reflection is important for
meta-cognitive adaptation, when students connect their thinking to the wider world [6].

Reflection can be a purely internal form of contemplation, but making it explicit
can help clarify one’s own thinking, benefit fellow learners, and help a student narrate
(e.g. in a job interview) succinct evidence of their personal and academic development.
Moreover, if it is to serve as a form of evidence in a formal learning context, students
must learn to express their insights. However, whatever medium is used (e.g. speech;
video; writing), the student must be literate enough that they can effectively use that
medium to do justice to themselves. Reflective writing is one of the most common
approaches used, but teaching, learning, and grading reflective writing presents chal-
lenges, since it is often an unfamiliar genre for educators and students.

The evaluation of student reflective writing is traditionally accomplished by
researchers using manual content-analysis methods to assess student reflective writings
[7], and by educators by grading against a rubric. It is of course extremely labor-
intensive to grade or otherwise code writing, and it is here that automated approaches
have potential roles to play. Natural language processing could assist if student texts
can be analyzed, automatically coded (classified) according to a scheme, and in a
learning context, helpful feedback given. However, there is very little work in this field
to date, with research, and products, in Automated Writing Evaluation (AWE) domi-
nated by more common genres of writing such as persuasive essays, literature review or
research proposals [8–11]. The work in reflective writing to date uses either a rule-
based [12] or machine learning approach to classify reflective sentences [13], reflective
passages [14], forum posts [15], with only one example of automated feedback
deployed with students [3].

This present study contributes new empirical results, investigating the use of auto-
mated text analytics methods for evaluating the reflective statements written by pharmacy
students on experiential work placements. Section 2 reviews the literature of reflective
writing analytics, before Sect. 3 describes the evaluation method and Sect. 4 presents the
results. Section 5 discusses the results and identifies directions for future work.

2 Reflective Writing Analytics

With the advancement of text analytics, researchers are able to develop novel reflective
writing analytics by using rule-base or machine learning approaches with rich textual
features extracted from computer tools (e.g. LIWC [16] and Coh-Metrix [17]). Ullmann
conducted some of the earliest work on reflective writing sentence classification (i.e.
differentiating reflective and non-reflective sentences) by using both rule-based and
machine learning approach [13, 18, 19]. Chen et al. [20] adapted topic modelling to
analyze pre-service teachers’ reflection journals, but topic models focus on the content
rather than quality and depth of reflection. Extending the work of Buckingham Shum
et al. [4], Gibson et al. [3] proposed a concept-matching rhetorical analysis framework
[21] to automatically detect sentences performing three key reflective rhetorical func-
tions summarized as Context, Challenge and Change. Kovanovic et al. [15] developed
a random forest classifier using features extracted from the LIWC and Coh-Metrix for
arts students’ reflective statements (observation, motive and goal). In only one case did
the system generate actionable feedback to students [3].
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Similar to previous studies [3, 13, 15], this study focuses on binary classification of
reflective statements. The contribution of this study includes the exploration of machine
learning approach for classifying reflective statements written by pharmacy students,
extensive evaluation of different machine learning algorithms with features extracted
from theoretically-sound reflective rhetorical moves features and LIWCs, and the
analysis of how these features affect the classification results.

3 Method

This section describes the dataset (see Sect. 3.1) used for training and evaluating four
different classifiers described in Sect. 3.4 and the 101 features extracted by the LIWC
and Academic Writing Analytic tool (see Sect. 3.2). In addition, the imbalance class
distribution problem is addressed in Sect. 3.3.

3.1 Dataset Description

The dataset comes from 43 pharmacy students enrolled in year 2 of the Master of
Pharmacy degree at Cardiff University, United Kingdom. As part of a professional
development module that needs to be passed to ensure progression, all students were
required to complete two different experiential placements. The first placement com-
prised of a week in a community pharmacy, and the second involved a visit in a non-
traditional setting such as an optician or a care home [22, 23]. All students completed a
pre-placement workshop whereby emphasis was given on reflective skills and reflective
writing, and a post-placement workshop where students exchanged experiences from
their placements with the support of a pharmacy academic facilitator. Following this,
students were asked to complete a reflective account based on prompts to facilitate
reflection provided in template; all students were required to submit this reflective
account in order to successfully pass the module. Examples of prompt template
questions to facilitate student reflections included: “Thinking about your professional
development, what went well during placements? What was the highlight? What have
you learned? How was this different to what you thought/expected? Please tell us about
something that happened in your placements that made you reflect on your role as a
pharmacist in patient care and/or the role of other health and social care professionals?”
The template had previously been developed by the authors after multiple cycles of
action research involving placement supervisor and student input [24].

All student reflective accounts were assessed against a reflective rubric [25, 26],
developed by integrating Mezirow’s [27] and Gibbs’ models of reflection, and related
to different stages of reflection [24]: 1. attending to feelings; 2. relating new knowledge
with previous knowledge; 3. integrating prior with new knowledge; 4. feelings or
attitudes; 5. self-assessing beliefs, approaches and assumptions; 6. internalizing the
knowledge or experience; 7. personally applied.

Replicating a validated approach, four human experts assessed the same set of
reflective accounts [25, 26]. Reflective accounts were assigned a score for each of these
stages of reflection: a score of 0 was assigned where the student had not demonstrated
any reflective skills in the writing (non-reflective), a score of 0.5 when an attempt was
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made to relate experiences or feelings with prior knowledge and identify learning
(reflective), and a score of 1 when clear links were made between experiences, feelings,
learning and a change of behaviour was demonstrated (critically reflective).

Human experts reached moderate to substantial agreement (Intra-class correlation
coefficient = 0.55–0.69, p < 0.001) on rating these reflective elements. In our study,
the human ratings are transformed into categorical values, reflective (average rat-
ing >= 0.5) and non-reflective statement (average rating < 0.5). Collapsing the
reflective and critically reflective categories to create this binary classification was a
measure introduced in light of the relatively small dataset available for this preliminary
experiment (301 statements), recognizing that future work will need to differentiate, to
enable more effective feedback, which is our ultimate objective. Table 1 shows the
description of the dataset used for training and evaluating statistical models. Some
stages of reflection, such as stage 5 (Validation) and stage 6 (Appropriation), are harder
than others because they require students to delve deeper and reflect on why their belief
system is what it is (for example as a result of their upbringing and cultural
background).

3.2 Feature Extraction and Selection

In order to develop a statistical classifier for student reflections, we extracted several
different types of features. The extracted features were inspired by existing work in
reflective writing [3, 15]. Linguistic Inquiry and Word Count (LIWC) is a linguistic
analysis product [16] which extracts approximately 90 linguistic measures indicative of
a large set of psychological processes (e.g., affect, cognition, biological process,
drives), personal concerns (e.g., work, home, leisure activities) and linguistic categories
(e.g., nouns, verbs, adjectives). The psychological process categories consist of social
(e.g. family, friend and humans), affective (e.g. positive and negative emotions, anxiety,
anger and sadness), cognitive (e.g. insight, causation, discrepancy, tentative, certainty
and inclusive), perceptual (e.g. heard, see, hear and feel), biological (e.g. body, blood
and health) and relativity (e.g. before, space, motion and time) subcategories. Previous
work [16] indicated that LIWC measures, including perceptual words (punctuation,
causal words, past-oriented words, passive voice, and connectives) were among the
most important classification features. Thus, a total number of 94 features were
extracted by using LIWC.

Table 1. Reflective and Non-reflective categories in training and test datasets.

Rating type N Reflective Non-reflective

All stages 301 243 58
Stage 1 43 34 9
Stage 2 43 42 1
Stage 3 43 42 1
Stage 4 43 42 1
Stage 5 43 32 11
Stage 6 43 10 33
Stage 7 43 41 2
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Academic Writing Analytics (AWA) is an open source software platform (heta.io)
focusing on providing actionable feedback to support academic writing, such as ana-
lytical writing [11] and reflective writing [3]. Gibson et al. [3] used the concept-
matching rhetorical analysis framework [21] to automatically detect sentences indi-
cating three key reflective rhetorical moves: Context (initial thoughts and feelings about
a significant experience), Challenge (the challenge of new surprising or unfamiliar
ideas, problems or learning experience) and Change (potential solution and learning
opportunities). Overlaid on these moves there may be further classification to indicate
deeper reflection which references oneself, and three expression types, Emotive (ex-
presses emotions and feelings), Epistemic (expresses beliefs, learning or knowledge)
and Critique (expresses self-critique). As detailed in [3], these features were based on a
model distilling a wide range of scholarship into reflective writing. Emotive expressions
are detected based on lexical comparisons with a corpus based on a model of arousal,
valence and dominance [28], while the Critique and Epistemic expressions are derived
using techniques for identifying metacognition in reflective writing [6]. In addition, a
metrics feature is used to indicate if sentences appear to be excessively long (more than
25 words). Therefore, a total number of eight reflective writing features is used based
on Gibson et al.’s work [3].

To avoid over-fitting, feature selection is an important data pre-processing stage in
machine learning since the dataset is relatively small (Table 3) and the feature size is
moderate (N = 102 features). In this study, correlation-based feature selection [29], one
of the most popular feature selection methods, is used to rank the features so that top
ranked features are highly correlated to the class label.

3.3 Addressing the Problem of Class Imbalance

As shown in Table 1, the dataset has the problem of class imbalance, containing more
reflective statements (N = 243) than non-reflective statements (N = 58). Moreover,
from the application perspective, high recall in the non-reflective category is very
important in order to generate feedback for non-reflectors. Therefore, we used Meta-
Cost [30], a popular method for addressing the class imbalance problem, which makes
an arbitrary classifier cost-sensitive by wrapping a cost-minimizing procedure around
it. In other words, the misclassification cost on non-reflective instances is higher than
the cost on reflective instances. In this case, a misclassification cost ratio of 10 to 1 was
chosen, based on Weiss et al’s work [31], presented in Table 2. Research has shown
this approach can improve the classification accuracy of the high cost category [32].

Table 2. Cost matrix (after Weiss et al. [31])

Predict
Non-reflection Reflection

Actual Non-reflection 0 10
Reflection 1 0
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3.4 Model Selection and Evaluation

Following previous research in reflective text classification [15, 19], four common
statistical classifiers were evaluated: Random Forests (high performance model),
Support Vector Machine (high performance model), PART (rule-based model) and
Naïve Bayes (high performance model). Random forests, one of the most popular
ensemble classification techniques, combine a large number of decision-trees and
bootstrap sampling to provide a low-bias, low-variance classification method [33].
PART generates accurate rule sets from partial decision trees [34]. Support Vector
Machine aims at finding the optimal hyperplane to separate classes. By adjusting their
kernel function, SVMs can be extended to classify patterns that are not linear [35].
Naïve Bayes is an algorithm based on Bayes’ rule [36]. It is “naïve” because it assumes
that all features are independent from each other. This has the benefit of rapid pro-
cessing while producing good performance in many cases.

In this study, the implementation of these classifiers was performed in the Weka
tool with the default settings [37]. Ten-fold cross validation method was used to
evaluate the performance of each classifier.

4 Results and Discussion

4.1 Classification Results and Discussion

Figure 1 illustrates that the random forest classifier outperforms others, and the feature
sets influence the performance of these classifiers, which have similarly sharp curves.
The feature selection/ranking step (described in Sect. 3.2) is performed before the 10-
fold cross-validation. Initially, the performance of each classifier increases when the
number of ranked features used in the classification model rises over the top 22 fea-
tures, before plateauing. Then, the performance of PART and SVM becomes unstable
as the number of features increases in their models. These results are consistent with
Ullmann’s findings that showed random forest outperforming other classifiers, such as
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Fig. 1. The effects of ranked feature sets on the performance of different reflective writing
classifiers in the combined element dataset
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PART and Naïve Bayes in reflective statement classification, because the random forest
constructs multiple decision trees and aggregates them together to get a more accurate
and stable prediction [13].

Table 3 shows that the random forest classifier reached higher scores in all stages
combined and stage 1 than others. Since other datasets (Stage 2, 3 and 4) had a serious
class-imbalanced distribution problem and only contained a single instance of non-
reflective writing in each stage, it was difficult to train the model to correctly classify
non-reflective instances. The model failed to detect these instances causing the division
by zero problem undefined issues (N/A) when calculating the precision. However,
these results indicate that the classifier performed well in the combined 7 stages dataset,
F-score = .799.

4.2 Feature Importance Analysis and Discussion

Next, we examine the correlations between features and human-graded reflective
writing scores. Table 4 shows the Spearman correlation between the top 10 features
and reflective writing scores.

It can be seen that the top ten features include LIWC linguistic features (LIWC.
Quant/Compare/Adj), emotional features, cognitive features (AWA.Self-Critique and
LIWC.Differ), reflective rhetorical moves (AWA.Context/Self-Critique), authentic
(LIWC.Authentic) and space features (LIWC.Space). These results confirm earlier
reports that LIWC provides good classification indicators of reflective writing [15, 20].
Some of these features are significantly correlated to the level of reflection (the average
rating scores of our human experts, as described in Sect. 3.1). The expression of
emotion and the presence of rhetorical moves (context) are positively significantly
correlated to the level of reflection, while the number of quantifiers, comparative and
adjective used are negatively significantly correlated to the level of reflection.

These correlation analysis results fit the reflective cycle model of Gibbs [38], who
points to the importance of cognition-oriented elements (e.g. AWA.Self-Critique) of
evaluation, analysis, conclusion and future plan in addition to the description of
experience (AWA.Context) and emotions (AWA.Emotive). However, some study results
have not reported a strong correlation between the emotional features provided by
LIWC and the reflective writing grade [20].

Table 3. Random forest classification results among different datasets.

Dataset N Precision Recall F-score

All stages 301 .831 .784 .799
Stage 1 43 .874 .860 .865
Stage 2 43 N/A .977 N/A
Stage 3 43 N/A .953 N/A
Stage 4 43 N/A .977 N/A
Stage 5 43 .593 .395 .413
Stage 6 43 N/A .767 N/A
Stage 7 43 N/A .953 N/A
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There is no significant correlation between LIWC.WordCount and the writing
grade, which indicates that the quality of reflection is more important than the length of
writing in reflective writing. In addition, we find that non-reflectors tended to use many
relative (LIWC.Space), adjectival and differentiation words. We have not yet fully
understood this, although a possible account for the latter is that non-reflective students
made heavy use of rather general words (e.g. “Different pharmacists had different
attitudes and different processes in place to achieve this.” or The whole experience went
well I really liked working there and definitely learnt a lot of new things.), rather than
provide more specific details (e.g. about how exactly pharmacists differed from each
other, and how these differences connected to their personal learning experiences).

5 Conclusion and Future Work

Manually analyzing reflective writing is time consuming, but a small number of
researchers have proposed computational approaches to automatically detect the dis-
tinctive features of this genre [13, 15, 20]. This study presents a machine learning
approach that is distinctive in two respects: (i) a training model based on a validated,
graded corpus of reflective writing from authentic work-placements (specifically,
pharmacy students), and (ii) using features extracted from the combination of a generic
linguistic analysis (LIWC) and a rule-based parser developed specifically for academic
reflective writing (AWA). The study results are promising (F-score = .799 using the
Random-Forest classifier), and we are interested to note that of the ten most powerful

Table 4. Top ten feature analysis ranked by their correlation (note both positive and negative) to
human-graded reflective writing.

Top ranked
features

Description r
* p < .05
**p < .001

1. AWA.
Context

A personal response to a learning context .193**

2. AWA.
Emotive

Indicating affective elements and emotive expressions .183**

3. LIWC.Quant Quantifiers (e.g. few, many, much) −.148*

4. LIWC.Adj Common adjectives: free, happy, long −.123*

5. LIWC.
Compare

Comparative words. e.g. Greater, best, after −.117*

6. AWA.Self-
Critique

Learners criticize their pre-existing knowledge based
on new information

−.095

7. LIWC.Differ Differentiation (e.g. different, hasn’t, but) −.085
8. LIWC.WC Word count .066
9. LIWC.
Authentic

Truthful words .037

10. LIWC.
Space

Space words (e.g. down, in) .001
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features, while the top features and two others are AWA’s rhetorical features, the
remainder are LIWC features which we have discussed.

However, this initial study has some limitations. Firstly, using different parameters
of the classifiers may influence the evaluation results. Kovanovic et al. [15] showed that
by tuning the random forest parameters, such as the number of decision trees, the
classifier performed better. Secondly, the dataset included only pharmacy students’
reflective statements about their placement experiences, so more training and test sets
are needed to evaluate the generalizability of the classifier. Despite these limitations,
we have argued that our evaluation is sound and the dataset is authentic, annotated by
four human experts.

Future work will focus on more nuanced automatic detection of the depth of
reflective states, based on the two dimensional depth/breadth reflection model proposed
by Gibson et al. [3], in which the depth of reflection includes non-reflection, reflection
and deep reflection, and the breadth of reflection contains initial thoughts, feelings
(context), challenges, self-critique, potential solution and learning opportunities
(changes). Following Milligan and Griffin’s learner development progression model
[39], the two dimensional reflection model will be used to locate the writing more
precisely on a scale that reflects their progression towards critically reflective writing,
in order to generate feedback based not only on the current reflective state, but on how
they have improved, which is known to be a powerful motivator in feedback design.
We also plan to draw on work that generates questions for reflection based on the depth
of reflective state. For example, following the different questions identified in Gibson,
et al.’s synthesis of the literature, if the system classifies the writing as non-reflective,
containing only statements of knowledge and belief (and no affect), formative feedback
could generate a question such as, “Did this incident evoke any strong feelings?” to
move the student forward in the depth/breadth reflection space. Or, in the absence of
any reflection about the future, the student might be asked, “Do you think you would
handle this differently next time this arises?” Thus, regardless of whether the writing
progresses (or regresses) within the depth/breadth reflection space, questions could be
generated to provoke deeper reflection, and help move the student the next step
forward.
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Abstract. Teachable agents are pedagogical agents that employ the ‘learning-
by-teaching’ strategy, which facilitates learning by encouraging students to
construct explanations, reflect on misconceptions, and elaborate on what they
know. Teachable agents present unique opportunities to maximize the benefits
of a ‘learning-by-teaching’ experience. For example, teachable agents can
provide socio-emotional support to learners, influencing learner self-efficacy and
motivation, and increasing learning. Prior work has found that a teachable agent
which engages learners socially through social dialogue and paraverbal adap-
tation on pitch can have positive effects on rapport and learning. In this work,
we introduce Emma, a teachable robotic agent that can speak socially and adapt
on both pitch and loudness. Based on the phenomenon of entrainment, multi-
feature adaptation on tone and loudness has been found in human-human
interactions to be highly correlated to learning and social engagement. In a study
with 48 middle school participants, we performed a novel exploration of how
multi-feature adaptation can influence learner rapport and learning as an inde-
pendent social behavior and combined with social dialogue. We found signifi-
cantly more rapport for Emma when the robot both adapted and spoke socially
than when Emma only adapted and indications of a similar trend for learning.
Additionally, it appears that an individual’s initial comfort level with robots may
influence how they respond to such behavior, suggesting that for individuals
who are more comfortable interacting with robots, social behavior may have a
more positive influence.
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1 Introduction

When teaching others, learners attend more to the problem, reflect on misconceptions
when correcting their peers’ errors, and elaborate on their knowledge to construct
explanations, leading to enhanced learning [1]. We are interested in exploring how a
pedagogical agent can be used to help learners have successful “learning-by-teaching”
experiences. Some research has shown that when learners feel more rapport for their
agent, they are more likely to benefit [2]. We focus on how an agent’s social behavior
can promote rapport and potentially influence engagement and learning.

Social behaviors that can enhance rapport include facial expressions, movement,
and social dialogue. Social dialogue in particular has been found to influence
engagement, motivation, and learning [3, 4]. In this work, we are interested in a
relatively novel area of social behavior which is complementary to social dialogue:
paraverbal behavior (i.e. loudness and tone of voice). Some early work on paraverbal
behavior has shown that learners respond more positively to pedagogical agents which
utilize dynamic paraverbal expressions [5, 6]. We explore paraverbal behavior based on
the conversational phenomenon of entrainment. Entrainment occurs when speakers
adapt their behavior, including paraverbal features such as tone and loudness, to one
another, becoming more similar over time. In human-human interactions, entrainment
has been found to be related to rapport, agreement, engagement, and communicative
effectiveness [7–10]. In human-computer interactions, we found that a teachable robot
that entrained on pitch and utilized social dialogue increased learning significantly [11].

It is an open question whether entrainment can have a positive effect on rapport and
learning on its own or if it is more powerful in the presence of other social behavior.
Implementing paraverbal entrainment in agents and robots is still in the early stages,
and explorations of entrainment as an independent social behavior are limited. On the
one hand, the Communication Accommodation Theory (CAT) suggests that individ-
uals entrain to achieve social approval [12]; an individual on the receiving end of a high
level of entrainment is likely to feel more rapport for their partner than if they were a
receiver of low entrainment. This would suggest that entrainment as an independent
social behavior (i.e., in the absence of social dialogue) might enhance rapport. On the
other hand, fine-grained analyses of human-human entrainment suggest that people
entrain differently depending on dialogue content, such as entraining more on pitch
when speaking socially [13, 14]. Entrainment might play a stronger role in building
rapport when it is accompanied by other social behavior like social dialogue.

In this work, we explore how paraverbal entrainment influences rapport and
learning with a pedagogical agent by comparing three versions of the agent: a non-
social version, a version which introduces paraverbal entrainment, and a version which
combines paraverbal entrainment with social dialogue. To implement entrainment, we
adapt paraverbal features over time. Prior work automating entrainment has generally
focused on static approaches, where adaptation is relatively constant. Our previous
implementation was one of the first to explore adaptation over time, called convergence
[11]. In that prior work, we implemented convergence on one feature, pitch. However,
entrainment on both pitch and loudness is more common in human interactions and is
highly correlated with task-success and learning [15, 16]. For this work, we explore
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convergence on both pitch and loudness. This approach more closely mirrors obser-
vations of human conversation and may have stronger effects on rapport.

Another open question regarding the social effects of paraverbal entrainment is the
role of individual differences. Prior work has indicated individual differences influence
responses to social behavior [17–19], and these differences have largely been defined
by gender. However, positioning different responses as broad gender differences might
not appropriately represent the characteristics, experiences, and expectations that create
these distinctions [20]. In human-human interaction, the dynamic judgements people
make about their partners are based on their behavioral expectations of their partner,
and these judgements form the basis for how rapport is built [21, 22]. In human-
computer interactions, comfort level might better reflect the expectations and prior
experiences that influence social responses to social behavior. Liete and colleagues
found that as children got more comfortable with the iCat robot over multiple inter-
actions, they began talking to the robot more off-task [23], and Huttenrauch and col-
leagues found higher engagement when individuals interacted with a robot that they
were more comfortable with [24]. Individuals who are more comfortable interacting
with a pedagogical agent might have higher expectations of the agent’s ability to be
social. Individuals with low comfort might be more cautious, more prone to anxiety
and stress, with no expectations regarding an agent’s social behavior. Depending on
how expectations are met, low-comfort and high-comfort individuals might have dif-
ferent responses to social behavior. We therefore include an analysis on how comfort
level influences feelings of rapport and learning in our exploration of a social,
entraining pedagogical agent.

To examine paraverbal entrainment, social dialogue, and the effects of comfort-
level, we utilize a type of pedagogical agent known as a teachable robot. Teachable
robots have demonstrated potential in learning scenarios, including the ability to pro-
mote motivation, self-confidence, social engagement, and learning [25–27]. Teaching
an agent can be beneficial due to the protégé effect, where learners can both feel more
responsible for their agent and believe the onus of failure belongs to the agent, easing
the negative repercussions of failure [28]. Influencing social responses may help
enhance this protégé effect. Our teachable robot is a Nao robot named Emma. Emma
engages learners using spoken dialogue, and learners teach Emma how to solve math
problems. With Emma, we conducted a study with 48 middle school participants where
learners taught Emma in one of three conditions: (1) an entraining condition where
Emma converged on pitch and loudness, (2) a social + entraining condition where
Emma spoke socially and converged (3) a non-social control. In the next section, we
describe Emma, the implementation of paraverbal entrainment, and social dialogue. We
then describe the study and the results of the three conditions in Sects. 3 and 4, and we
discuss these results in Sect. 5.

2 Teachable Robot System

Emma is a Nao robot that 7th and 8th grade learners teach how to solve proportions,
equations, and ratios; an example problem is given in Fig. 1. We describe the system in
the next section, followed by the entrainment and social dialogue design.
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2.1 System

Learners taught Emma how to solve the math problems using spoken language and a
touch-screen interface on a tablet computer (Microsoft Surface Pro). For each problem,
Emma and the learner were given partial information, such as the second row in the
table in Fig. 1. Emma initiated dialogue requesting the learner’s guidance on how to
solve for the missing information. To speak to Emma, the learner pressed and held a
button on the interface while they spoke. The speech interaction was real-time. After
the learner spoke, an image would appear on the screen to indicate that Emma was
‘thinking’ during which time a response was generated. The dialogue system consisted
of an automatic speech recognizer (ASR), a dialogue manager, a paraverbal feature
extractor, and a module for paraverbal manipulation and text-to-speech (TTS).

For the ASR, we utilized the HTML5 Speech API available in Chrome. For the
paraverbal feature extraction, we utilized Praat [29]. For the paraverbal manipulation
and TTS generation, we utilized the Nao robot’s TTS system. For the dialogue manager
we utilized a rule-based chatbot system with the AIML framework, making use of the
PandoraBots tool for AIML [30]. The AIML framework implements a rule-based
process of linking keywords to pattern/transform rules and has shown promise as a
means of dialogue management [3]. We utilized this process to develop responses
suited to the domain content of Emma by identifying potential keywords in the
learners’ utterances and designing the rules and transforms to create Emma’s responses.

To facilitate the dialogue flow and reduce the effects of ASR errors, we incorpo-
rated several additional pieces of functionality. Keywords were mapped to potential
explanation paths for each problem which could kick off short dialogue trees when
matched, helping to provide context for identifying appropriate responses. State
information such as the current problem and step was also used to provide additional
context. If a learner’s speech could not be matched, a response was selected from a set
of ‘generic’ utterances which included requests for clarification (i.e. “can you please
repeat that?”). Finally, we enabled “autonomous life”. This is a default capability that
comes with the Nao robot and introduces a slight swaying and listening behavior
indicating awareness.

Fig. 1. Example of a problem, and an image of a learner interacting with Emma.
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2.2 Multi-feature Paraverbal Entrainment as Convergence

We implemented a form of multi-feature entrainment based on the single feature
approach in our previous work. Previously, we implemented a form of convergence in
which pitch was adapted over a series of turns. We mirrored this approach to adapt
pitch and loudness over time. Using the learner’s mean pitch and mean loudness, we
adjusted the robot’s pitch first and then the robot’s loudness such that both features
converged or grew closer to the learner’s features. We used the text-to-speech
(TTS) system which accompanies the Nao robot to generate and modify the responses.

The manipulation of Emma’s prosody was designed to incrementally converge
toward the learner over the course of five dialogue turns as shown in Fig. 2. The degree
to which a single utterance was adjusted was calculated as a percentage of the dif-
ference between the learner’s mean and Emma’s prior mean, modulated by the number
of exchanges that had passed (one exchange = learner speaks, Emma speaks) and five,
the number of exchanges allowed to pass before maximum convergence. Five was
chosen as the number of exchanges prior to maximum convergence based on the
average number of exchanges per step found to occur in four pilot evaluations. At the
beginning of the conversation before the dialogue has begun, Emma’s speech is gen-
erated at the specified baseline values for Emma (i.e. 230 Hz, 68 db). With the max-
imum number of exchanges prior to convergence set to five, Emma’s speech is adapted
in the direction of the user by 20% after one exchange, 40% after two exchanges by,
60% after three, and so on. At five exchanges and beyond until a reset is indicated,

Fig. 2. Pitch and loudness both converge to the learner over time.
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Emma’s TTS will be generated at a mean approximated based on the estimated mean of
the learner. When manipulating multiple features, it is necessary to consider how the
features interact [31]. With the Nao TTS system, we found the effects of manipulating
pitch on loudness were lower, with an average 0.5 dB change. We concluded that
manipulating pitch in this way should have minimal effects on loudness.

2.3 Social Dialogue

In addition to multi-feature entrainment, Emma can speak socially. Emma’s social
dialogue consisted of the same exact social strategies as designed and explored in our
own prior work [11, 32] and includes behaviors such as name usage, inclusive lan-
guage, praise, and off-task dialogue. Emma introduces one to two of these behaviors in
every utterance. These behaviors are based on observations of social dialogue during
peer tutoring [33] and theories of rapport, which suggest that individuals manage
rapport through positivity, attention, and linguistic politeness [21, 22, 34]. Prior work
has shown that these social dialogue strategies can moderately enhance learning when
introduced on their own, and that combining these social dialogue behaviors with
entrainment on pitch significantly enhanced learning [11]. Examples of the social
dialogue from this study can be found in Table 1.

Table 1. Example of social and non-social dialogue between Emma and learner

Non-social dialogue Social dialogue

Emma: Before I go to the store, can you help
me figure out how much of my battery
I will use over time?

Sweet! Before I go to the store, can we
figure out how much of my battery I
will use over time?

Learner: And we need-we need to figure out
how much for one hour. So, let’s
multiply…

Yes, I can!

Emma: So, I know I use 1/20th of the battery
in 2/3rds of an hour. I need to figure
out how much I use in one hour. So, I
multiply?

Yay! Thank you! You are awesome.
Where do we start?

Learner: Yeah we multiply two thirds by three
over two.

Do you see that the time is one hour?
So, we must try and s-either times or
divide it by the, um, battery usage

Emma: I think I get it. But can you explain
your thoughts about why I multiply?

Oh right! You’re so smart! So, we
know I use 1/20th of the battery in
2/3rds of an hour. To figure out how
much I use in one hour, we multiply?
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3 Study

We conducted a between-subjects experiment in which learners taught Emma in one of
three conditions: (1) non-social: Emma exhibited dialogue to foster learning (no social
dialogue, no entrainment), (2) entraining: Emma entrained to the learner on pitch and
loudness, and (3) social + entraining: Emma entrained on pitch and loudness and
spoke socially. Across all conditions, the instructions and the content were held
constant.

Participants were 48 middle-school students from a public middle school in the
United States with a mean age of 13.1 (SD = 0.75) (see Table 2). Sessions lasted
60 min and took place at the school. As in Fig. 1, participants sat a desk with the tablet
in front of them. Emma stood on the desk to the right of the participant. Two partic-
ipants experienced technical issues and were excluded. Thus, 15 participants were in
the non-social condition, 15 in the entraining, and 16 in the social-entraining.

Participants began with a short pre-survey and then completed a 10-min pretest.
After completing the pretest, they were given a few minutes to review the worked-out
solutions to the problems pertaining to Emma. They watched a short video on how to
interact with Emma and then taught her for 30 min. Afterwards, they completed a 10-
min posttest and a short survey on self-efficacy, rapport, and their goals. For this
analysis, we were interested in the effects of rapport, learning, and comfort. We did not
explore effects of self-efficacy or goals here.

To measure rapport, we asked 12 questions on attention, positivity, and coordi-
nation [34] averaged to create a single construct (Cronbach’s a = 0.81). To assess
learning, we utilized a pretest-posttest design with two isomorphic tests counter-
balanced within condition. The tests contained conceptual and procedural questions on
ratios, proportions, and word problems, and were iterated on with four pilot studies.
The scores were used in statistical analyses to assess learning. We measured comfort
level towards robots with two questions on a Likert scale of 1 to 5: “I feel comfortable
interacting with human-looking robots” and “I feel comfortable interacting with
robots.” We designed these questions based on work on comfort level in other domains
[35–37]. We averaged the two questions (Cronbach’s a = 0.79) and then split the result
into a high/low comfort categorical variable where scores less than three were low
comfort (n = 23) and scores greater than three were high (n = 25).

Table 2. Gender breakdown and dialogue statistics per session

Females Males Turns Words per turn

Non-social 8 8 116 (24) 7.1 (2.5)
Entraining 9 7 125 (26) 9.2 (3.2)
Social-entraining 9 7 119 (21) 8.9 (3.3)
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4 Results

We were interested in two open questions regarding paraverbal entrainment: (1) how
paraverbal entrainment influences rapport and learning and (2) the role of comfort level
in influencing rapport responses to entrainment. In particular, we were interested in
how entrainment performs as an independent social behavior. We explored these
questions with the teachable robot Emma where learners taught Emma in one of three
conditions: a social-entraining condition, an entraining only condition, and a non-social
condition. The descriptive statistics for comfort level, rapport, and learning are given in
Table 3. Despite random assignment to conditions, the pretest scores for the non-social
condition were significantly higher than the social-entraining (p = .02) and the
entrainment-only conditions (p = .02). Therefore, in all the analyses reported, we
controlled for pre-test. We also evaluated whether comfort level interacting with robots
differed across conditions prior to analyzing how this factor influenced responses; we
did not observe any significant differences, v2(2, 46) = .61, p = .74.

A power analysis conducted beforehand using the effect size for rapport (d = .41)
from our previous work would suggest a sample size of 222 to obtain statistical power
at the recommended .80 level [38]. However, it was infeasible to collect that amount of
data. Therefore, we interpret significance at p < .005, which has been suggested as a
method for handling underpowered studies [39]. In addition, we report the raw Bayes
factor which has been suggested as an alternative to assessing statistical significance in
data [40–42]. With the Bayes Factor, we have additional insight into whether the data
favors the null hypothesis over the alternative. We calculate the Bayes Factor using the
approach suggested by Rouder and colleagues [43].

4.1 Rapport

We utilized an ANCOVA to explore how rapport responses differed by condition and
how comfort level influenced these responses. We treated rapport as the dependent
variable, condition and comfort level as independent variables, and pre-test as a
covariate. Condition was significant, F (2, 40) = 6.6, p = 0.003, η2 = 0.20, as was
comfort level, F (1, 40) = 11.5, p < 0.002, η2 = 0.20. We found a slight interaction
between comfort level and condition F (2, 40) = 3.2, p = .05, η2 = 0.07 though not

Table 3. Descriptive statistics for rapport, learning, comfort, and speech recognition errors.

Non-social Entraining Social-entraining

Pretest .48 (.18) .28 (.19) .29 (.19)
Posttest .63 (.16) .36 (.25) .53 (.22)
Rapport 4.1 (.47) 3.9 (.54) 4.4 (.47)
Comfort level 4.1 (.24) 4.0 (.20) 4.2 (.17)
Speech errors 17.5 (6) 16.4 (9) 18.7 (9)
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significant at p < 0.005. We explored differences in rapport for individuals with high-
comfort versus low-comfort. Individuals with low-comfort did not differ in their rapport
between the social-entraining (M = 4.1, SD = .51), entraining (M = 3.8, .73), and non-
social (M = 3.8, SD = .41) conditions, F (2, 19) = .86, p = .4, η2 = 0.12. However,
individuals who expressed high comfort interacting with robots were significantly
influenced by the robot’s social behavior, F (2, 21) = 6.65, p = .005, η2 = 0.31, with
individuals in the social-entraining condition feeling significantly more rapport
(M = 4.64, SD = .3) than individuals in the entraining-only condition (M = 4.0,
SD = .31). The estimated Bayes factor suggested that the data were 6.1 to 1 in favor of
the alternative hypothesis, supporting the significant difference between the social-
entraining and entraining conditions. The difference between the social-entraining and
the non-social condition was not significant.

4.2 Learning

We then explored whether learning differed across conditions with a repeated measures
ANOVA. We treated pretest and posttest as the dependent variables and condition as the
independent variable. Overall, learning was significant, F (1, 43) = 47.9, p < .001,
η2 = 0.53, and there was a suggestion of an effect of condition, F (2, 43) = 3.91, p = .03,
η2 = 0.12. Tukey post-hoc analyses suggest that the difference is due to the social-
entraining condition compared to the entraining-only (p = .03). The nonsocial condition
did not have significantly higher gain than the entraining-only (p = .08), nor did the
social-entraining condition over the non-social condition, (p = .8). Potentially, learners
who felt more rapport for Emma may have been more willing to teach her, address
misconceptions, and learn. We analyzed this with a partial correlation between rapport
and post-test, controlling for pretest. The correlation was not significant, r (41) = .29,
p = .05 and the Bayes factor was 1.0 with the data equally likely under either hypothesis.

Finally, we explored the role of comfort level with respect to learning. Adding
comfort level to the repeated measures ANOVA, we did not observe significant dif-
ferences on learning for individuals with high versus low comfort, F (2, 40) = 2.5,
p = .12, η2 = 0.02. Condition and comfort level suggested a potential interaction on
learning, F (2, 40) = 2.54, p = .09, η2 = 0.02. Exploring post hoc analyses, individuals
with a high comfort around robots approached significantly less learning in the
entraining-only condition compared to the social-entraining (p = .006). However, the
estimated Bayes factor was 1.0. The entraining-only and non-social was not significant
(p = .04).

5 Discussion

We were interested in the effects of paraverbal entrainment on feelings of rapport and
learning, and the role of comfort level in understanding those effects. Exploring the
responses of 48 middle school learners as they interacted with the teachable robot
Emma, we found a significant difference in how much rapport learners felt when Emma
entrained and spoke socially compared to when Emma only entrained. This difference
appears to have been driven by the individuals who felt more comfortable interacting
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with robots. We also observed significant learning overall and a slight trend of
increased learning in the social-entraining condition. We did not observe significant
differences between the social-entraining condition and the non-social control.

Unlike prior work, we explored multi-feature paraverbal entrainment as an inde-
pendent social behavior in its own condition. We found the social behavior of
entrainment performed poorly on its own. One possible explanation is that automatic
speech recognition errors (ASR) may have contributed to the dip in social responses.
We calculated the number of ASR errors (Table 3). However, ASR errors did not differ
across conditions, F (2, 43) = .31, p = .74, and did not appear to influence the results.

People build rapport with multiple social behaviors, and the combination of social
behaviors in agents and robots has been found to be significantly more effective on
some occasions than a single behavior [6, 44]. Our results indicate social behaviors
may interact with one another, where the presence of one behavior can enhance the
perception of the other. We utilized the same exact social dialogue here as presented in
our prior work. In that prior work, social dialogue alone had a moderate effect on
learning, but, when combined with pitch entrainment, social dialogue significantly
enhanced learning over the non-social control. Here, when that same social dialogue is
combined with an entrainment behavior that performed poorly on its own, rapport
responses were enhanced. The social-entraining condition performed well, and even
better than expected if we consider the prior mediocre performance of social dialogue
as an independent social behavior and the poor performance of entrainment. This
suggests that social behaviors can interact with one another in potentially positive yet
complex relationships, while social behaviors when used alone may not have the
desired effects.

We also found that individuals with a higher comfort level interacting with robots
drove the difference in rapport responses. It is possible that individuals who were more
comfortable had higher expectations regarding Emma’s ability to be social. In human-
human analyses of entrainment, higher entrainment can occur when individuals are
speaking socially [14]. For high-comfort individuals, entrainment in the absence of
social dialogue may have been less appealing than no social behavior at all. We did not
observe significant differences across conditions for individuals who were less com-
fortable. This suggests that for individuals who were less comfortable, the robot’s social
behavior neither positively nor negatively violated their expectations of how the robot
should behave. Low-comfort individuals may have been more stressed or anxious due to
being less comfortable; for the robot’s social behavior to have a positive effect, these
factors may need to be addressed first. Interestingly, comfort level was not related to an
individual’s prior experience with robots or their gender, v2 (1, 46) = .49, p = .48.

6 Conclusion

We explored the potential of paraverbal entrainment for enhancing rapport and learning
with the teachable robot Emma. We found that individuals felt more rapport for Emma
when the robot both adapted and spoke socially than when Emma only adapted and
indications of a similar trend for learning. This appeared to be driven by individuals
who were more comfortable around robots. These findings suggest several directions
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for future work. First, in designing entrainment, there are alternative approaches based
on how people adapt; exploring these additional patterns and combinations with social
behavior is an important area of future work. Secondly, the social plus entraining
condition was more appealing to individuals highly comfortable interacting with
robots. Future work should explore whether increasing how comfortable individuals
are around robots is needed before social behavior can have positive effects on rapport.
Overall, paraverbal entrainment is a complex phenomenon and responses to it are
influenced by individual differences; understanding these differences is vital for use of
social behavior to enhance rapport and learning.
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Abstract. Typical standard Semantic Textual Similarity (STS) solu-
tions assess free student answers without considering context. Further-
more, they do not provide an explanation for why student answers are
similar, related or unrelated to a benchmark answer. We propose a
concept map based approach that incorporates contextual information
resulting in a solution that can both better assess and interpret stu-
dent responses. The approach relies on a novel tuple extraction method
to automatically map student responses to concept maps. Using tuples
as the unit of learning (learning components) allows us to track stu-
dents’ knowledge at a finer grain level. We can thus better assess student
answers beyond the binary decision of correct and incorrect as we can
also identify partially-correct student answers. Moreover, our approach
can easily detect missing learning components in student answers. We
present experiments with data collected from dialogue-based intelligent
tutoring systems and discuss the added benefit of the proposed method
to adaptive interactive learning systems such as the capability of pro-
viding relevant targeted feedback to students which could significantly
improve the effectiveness of such intelligent tutoring systems.

Keywords: Concept map · Student answer assessment ·
Tutorial dialogues · Intelligent tutoring system ·
Student knowledge representation · semantic textual similarity ·
Interpretable similarity

1 Introduction

In general, standard semantic textual similarity methods (STSs) [1,2,13,20,38]
just assign a similarity score for measuring how similar a given pair of short texts
are. Following the 0..5 similarity score scale proposed by Agirre and colleagues
[1] in the recent STS shared task, a score of 5 indicates the text pairs are seman-
tically equivalent while a score of 0 means that the two texts are completely
unrelated whereas a score of 3 means that they differ in some important details
or concepts. However, these STS systems do not explain why the two texts are
similar, related or unrelated. For example, consider the student answer to a
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question asked by DeepTutor [34,36], an Intelligent Tutoring System (ITS) for
Newtonian Physics, and the corresponding ideal answer as shown in Table 1. A
typical STS method would fail to explain that the student is missing information
about direction.

Table 1. A student answer to a computer tutor question with the expectation i.e. ideal
expected answer for the question.

Question: Because it is a vector, acceleration provides what two types of information?

Student Answer: Acceleration gives magnitude

Expectation: Acceleration provides magnitude and direction

One approach towards providing an explanatory layer is to align the chunks
in a given pair of texts and label them with semantic relation types and scores.
Such interpretable Semantic Textual Similarity tasks (iSTS) were proposed in
2015 and 2016 [1,3] in which the top performing systems were proposed by
Banjade et al. [10,11]. However, iSTS capabilities are added layers on the top of
standard STS methods for interpreting the similarity score.

Another drawback of an STS system is that they typically ignore contextual
information when computing a similarity score. In dialogue-based ITSs, it has
been shown, based on an analysis of conversational tutorial logs, that contextual
information is important to assess student responses [28]. They reported that
68% of pronouns in student responses were referring to entities in the previous
dialogue turn or the problem description. For instance, the student answer to
the tutor question in the Table 1 might be elliptical: “magnitude and direction”
or containing a pronoun referring to entities mentioned earlier in the previous
dialogue turn: “it gives magnitude and direction.” A typical STS system might
fail to deem such student answers as correct.

To address these issues, we propose a novel concept map based approach to
both better assess and interpret student free-response answers. A concept map
is a graphical representation of knowledge where concepts are labeled nodes and
relationships between the concepts are the directed labeled edges of the graph. A
concept map can be hierarchical [30] where the most general concepts are at the
top. A concept map can also be associative with no hierarchy, i.e., the concept
map is a semantic network of concepts and their interrelations [14]. Since the
concept map derived from student free responses in the domain of Newtonian
Physics, where our experimental data comes from, is typically associative, we
consider associative concept maps in our work.

Using concepts maps for assessment leads to an important shift in the gran-
ularity of assessment. That is, breaking down an expectation into one or more
tuples (a triplet consisting of two concepts and their relationship) essentially
means that the unit of analysis shifts from a full sentence, i.e., an expecta-
tion, to tuples. Ideally, a concept map with a single tuple, (acceleration, gives,
magnitude), is extracted from the student response in Table 1. For assessment
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purpose, we consider a tuple to be either neutral or learning depending upon its
pedagogical value. For example, the Expectation in Table 1 is represented by two
learning tuples (acceleration, provides, magnitude) and (acceleration, provides,
direction). We may also have a composite tuple (acceleration, provides, magni-
tude and direction) that covers both learning tuples. Similarly, the equivalent
expectation: “Because it is a vector, acceleration provides magnitude and direc-
tion” can be represented by the above two learning tuples and one neutral tuple
(acceleration, is, a vector). The notion of neutral and learning tuple is useful
when assessing correct student responses that have extra information/concepts
relative to the expert provided ideal answers. In fact, a good portion of stu-
dent responses may contain such extra information. Banjade and colleagues [9]
found that 11% of student answers contain such additional, learning-neutral
information.

The advantages of using finer grain learning components in the form of tuples
are many. First, we can track students’ knowledge at a finer grain level leading
to more subtle differences among different knowledge states. Unlike in binary
assessment, the concept map approach allows tracking how much of a given
expectation is covered by student response. For example, if we assess the student
answer against the ideal answer in Table 1, we can conclude that the student
has mastered 50% of the expectation. Second, we can give proper credit to
student answers based on the percentage of the learning tuples covered. Lastly,
by comparing the two maps (student’s vs. expert’s), we can determine missing
or incorrect tuples from student answers. This finer grain assessment enables
adaptive interactive learning systems to provide better feedback and to better
plan the next move, e.g., providing hints about the missing learning components.
In summary, we propose a novel concept map-based approach which accounts
for context and jointly functions as an STS and iSTS system.

2 Related Work

Concept maps were first proposed by Novak and Musonda [30] to represent
knowledge of science for identifying learning specific changes in children. The
concept maps were developed based on the learning psychology of Asubel [7]
whose fundamental idea was that people learn new concepts and propositions by
asking questions and getting clarification of relationships between old concepts
and new concepts and between old propositions and new propositions.

Concept maps have been used for many purposes. They have been used for
checking students’ knowledge on a topic (CMap Tools; Canas et al. [12]) and
for collaborative learning of a topic [24]. Also, they have been used as instruc-
tional tools for meaningful learning, i.e., linking new information with already
known information [4,18,29,37,39]. Some ITSs use them as instructional tools
to scaffold the learning process [31].

Concept maps have also been used for assessment. For example, students
might be asked to fill in a skeleton map [5], to construct a concept map [32,
40], or to write an essay [19]. Recently, Wu et al. [40] developed a method
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that evaluates student concept maps on-the-fly and provides real-time feedback
by comparing them with the expert’s concept map. Also, the COMPASS [17]
system provides individualized feedback based on the diagnostic assessment of
the learner’s concept map against an ideal concept map.

From a task perspective, our assessment approach is similar to the concept
map-based assessment approach of Lomask and colleagues [19], with some dif-
ferences. In their work, students wrote essays on two central topics in biology
and then trained teachers derived concept maps from the essays. No hierar-
chical structure was assumed. Similarly, in our approach, we do not assume
any hierarchy. However, we automatically extract concepts maps from student-
generated responses during problem-solving tutorial interactions with a dialogue-
based intelligent tutoring system. In our case, the target domain is conceptual
Newtonian Physics. Finally, we assess their correctness by comparing against
the corresponding ideal concept maps.

We also incorporate context when using concept maps for assessment. There
have been recent attempts that consider contextual information for assessing two
short text pairs. Bailey et al. [8] resolved pronouns implicitly by distinguishing
between new and given concepts based on the context, i.e., a previous question.
On the other hand, Banjade and colleagues [9] accounted for context by giving
less weights to words already mentioned in the context. Maharjan et al. [21]
handled context by using context-based count features and word-weighted simi-
larity scores. Recently, an LSTM model has been proposed for assessing student
answers in context [22]. We combine the approaches of both Bailey et al. [8] and
Banjade et al. [9] for implicitly resolving pronouns and ellipsis at the tuple level.

Fig. 1. A comparison of an ideal concept map (a) and computer generated concept map
(b) for the ideal answer: “When velocity is constant, the acceleration is zero; therefore
the sum of the forces will equal zero”.

3 Concept Map Based Approach

Using concept maps for knowledge representation is grounded on a key assump-
tion in most cognitive theories: “the knowledge within a content domain is
well structured and organized around central concepts”. Glaser and Bassok [16]
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defined competence in a domain as “well-structured knowledge”. Therefore, as
students acquire expertise in a domain, their knowledge becomes increasingly
interconnected and resembles the subject-matter expert’s representation of the
domain [16,33]. Our approach is based on those theories. In our approach to
assessing students’ natural language responses, we build an ideal concept map
to represent an instructional task, say a Physics problem, based on the set of
ideal steps (expectations) in the solution provided by domain experts. We then
extract from the expectations the concepts and relationships between them. Sec-
ond, we create a concept map for a student based on their responses to the task
related questions. The concept map thus created can be considered a represen-
tation of the student’s mental model. The student answers may be either right
or wrong which implies that parts of their concept map or graph may be correct
and parts of it may be incorrect. For example, in Table 1, the concept map for
the expectation would be a part of an ideal concept map for the task whereas the
concept map derived for the corresponding student answer would be part of a
student concept map (knowledge graph) for the task. By comparing the two, we
can determine which tuples are matched or unmatched. Our approach consists
of three steps which we describe next.

3.1 Creation of Ideal Concept Maps

Currently, in dialogue-based ITSs, the subject-matter experts (SMEs) create
ideal answers in the form of a set of logical steps or expectations for each instruc-
tional tasks. In our method, ideal concept maps must be created. To generate
the ideal maps, we used a syntactic pattern based method [15] to map ideal
solutions from sets of expectations to concepts maps and then asked the SMEs
to curate those automatically generated concept maps. An annotation guidelines
manual was created for this purpose which experts used to correct the concept
maps. We describe the step in detail in Sect. 4.1.

3.2 Automated Extraction of Student Concept Maps

This step extracts concept maps from student-generated answers automatically.
There are several existing open information extraction (IE) tools that could
be used including the state-of-the-art Ollie [25] and Stanford systems (Stanford-
OpenIE; [6]). However, these systems focus on solving the Knowledge Base Prob-
lem (KBP) and as such tuples produced by these systems are not suited for the
task of student answer assessment.

The Stanford-OpenIE tool ignores shorter clauses not entailed from the orig-
inal text. For example, given the text: “If the acceleration of a system is zero,
the net force is zero.”, no tuples are extracted. Another issue with the tool is
that its natural logic inference system tends to over-produce tuples from the
text. For example, for the text “the frictional force cancels normal force”, the
desirable tuple output is (frictional force, cancels, normal force); however, the
tool also generates (frictional force, cancels, force), (force, cancels, normal force)
and (force, cancels, force) which are all misleading for assessment. On the other
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hand, the Ollie system might retrieve false tuples sometimes. For example, the
system retrieves the incorrect tuple (the desk, increase its speed as, the net force)
and misses (net force, is anymore, not zero) when processing the following text:
“The desk increases its speed as the net force is not zero anymore”. Also, it fails
to extract any tuple from the simpler text “Mover’s push equals friction”.

To address these concerns, we developed a new extraction method which
exploits the strengths of these two systems called DT-OpenIE [23]. Our extrac-
tion system first extracts shorter clauses from them and then, generates tuples
from the shorter clauses by using Ollie extraction system [25] and a list of
manually-crafted patterns. Figure 1(b) shows a concept map generated by our
extraction system.

3.3 Assessment System

The Assessment System consists of two steps, namely, (i) tuple filtering and (ii)
tuple assessment.

Tuple Filtering: Bailey and Meurers [8] implicitly resolved co-references by
ignoring words that are already known, i.e., words already mentioned in the
context. However, if a student answer repeats known words/concepts, it doesn’t
necessarily mean that they are repeating the same information because they may
use the same concepts for making different propositions. However, if a tuple in a
student concept map is repeated, we can assert that the student is simply repeat-
ing the given information with high confidence because a tuple is a higher level
construct that itself represents a proposition showing the relationship between
two or more concepts. We exploit this inherent characteristic of the tuple to
filter out redundant or known tuples such that the resulting student concept
map contains only tuples which are most likely to carry new information or
propositions.

In our approach, we deem the tuples coming from the problem description
(global context) and tutor question (local context) as externally known informa-
tion. We consider neutral tuples in the ideal concept map to be redundant as
they don’t cover pedagogical aspects of the target ideal answer. Therefore, if a
tuple in a student concept map matches with a tuple from any of these sources,
we filter out the matching tuple. For filtering purpose, we match tuples using
the M1 and M2 tuple matching methods described below without incorporating
context.

Contradictory Tuple: We consider two tuples as contradictory if they are
opposite or contrasting to each other. For example, we consider (tension, is
equal to, gravity) and (tension, is greater than, gravity) as contradictory tuples.
However, we don’t consider (Newton’s first law, is, relevant) and (Newton’s sec-
ond law, is, relevant) as contradictory. They are related, but in the context of
answer evaluation, we consider such tuples as disjoint tuples. In our work, if two
words are in an antonymy relation in WordNet [26] or they match any of the
sixteen rules for antonym pairs [27], we consider them contradictory. We also
created a domain specific antonym lookup table to address certain contrasting



250 N. Maharjan and V. Rus

concepts. For example, we consider “equal”, “less” and “greater” to be contra-
dictory to each other. Similarly, we created a domain disjoint lookup list where
we consider concepts such as “first” and “second” to be disjoint. We also filter
out contradictory and disjoint tuples from the student concept maps.

Tuple Assessment: We assess the filtered student concept maps against corre-
sponding ideal concept maps. We only assess if the learning tuples (correspond-
ing to learning components) in the ideal concept map are covered/matched by
tuples in the student concept map. We describe our tuple matching approach
below.

Given a pair of tuples, (T1, T2), where T1 = (e1, r1, e2), T2 = (e1′ , r1′ , e2′), T1

is a tuple from ideal concept map and T2 is a tuple from student concept map,
we consider T1 is semantically equivalent to T2 using following three methods.

1. Matching by element-by-element (M1): If e1 matches e1′ , r1 matches r1′ and
e2 matches e2′ . We consider e1 matches e1′ if the set of words formed from e1
is equal to the set of words formed from e1′ . Similarly, we define the matches
function for element pairs (r1, r1′) and (e2, e2′).

2. Matching by bag-of-words (M2): If the set of words formed from T1 is equal
to the set of words formed from T2.

3. Matching by best similarity score (M3): If similarity score sim(T1, T2) > 0.55,
where T2 is the tuple in the student concept map that has the maximum
similarity score with T1. 0.55 is empirically set threshold.

Incorporating Context: The filtering step discards tuples in the student
answers which are deprived of new information. However, the remaining tuples
with new information might also need context to match them properly. For exam-
ple, we need context to accurately assess elliptical student response: “magnitude
and direction” or student response containing pronoun: “it gives magnitude and
direction” with the expectation in Table 1. In such cases, we attempt to match
the tuples by incorporating context using the following two strategies. For the
M1 and M2 methods, we account for context by considering only new concepts in
student answers that were not mentioned in the previous context [8]. That is, if
the student response repeats concepts mentioned in the tutor question, we ignore
those concepts. We do the same for repeated concepts in the ideal answer. Specif-
ically, we use the set of words Q from the tutor question as context for matching
element pairs (E1, E2), where (E1, E2) ∈ {(e1, e1′), (r1, r1′), (e2, e2′), (T1, T2)}.
We consider E1 to be semantically equivalent to E2 under the following two
cases.

1. if the set of words formed from E1 is a proper subset of the set of words
formed from E2 and the set of unmatched words from E2 −E1 is a subset of
set Q.

2. if the set of words formed from E2 is a proper subset of the set of words
formed from E1 and the set of unmatched words from E1 −E2 is a subset of
set Q.
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On the other hand, in the case of the M3 matching method, we follow a
word weighting approach based on context where we don’t completely discard
the words in the student tuple or ideal answer tuple that are also present in
context. Instead, we give less weight to such words [9]. Specifically, we give full
weight of 1 to new concepts/words and 0.4 (empirically set) to repeated concepts.
Subsequently, we compute an alignment based similarity score between the two
tuples as:

sim(T1, T2) = 2 ∗
∑

(r,a)∈OA wrwasim(r, a)
∑

r∈T1
wr +

∑
a∈T2

wa
, (1)

where OA is optimal alignment of words between T1 and T2 such that a ∈ T2

and r ∈ T1, using Hungarian algorithm as described in Rus and Lintean [35].
The 0 ≤ wr ≤ 1 and 0 ≤ wa ≤ 1 refer to weight of the words in T1 and T2

respectively.
The strictness of matching relaxes as we go from the M1 to the M3 method.

Therefore, we preferentially match learning tuples in the ideal concept map
against the student concept in the following order: M1, M2 and M3.

4 Experiment and Results

4.1 Data

We used student answer data from logged interactions of 41 high school students
with the DeepTutor ITS [36]. During the summer of 2014, students participated
in an experiment on which they were given 9 different Physics problems to
solve. The experiment produced 370 tutorial interactions in total (one student
performed a task twice).

Ideal Concept Maps: Two subject-matter-experts (SMEs) manually created
ideal concept maps for all 9 tasks. They were provided with a reference guide
for creating the ideal concept map. For each instructional task, annotators were
provided with an XML file containing a skeletal concept map that needed to be
checked. The map was automatically generated by using syntactic patterns [15].
The annotators updated the concept maps by deleting invalid tuples, modifying
tuples and by adding missing tuples.

While creating concept maps, the annotators also annotated the tuples with
a rich set of attributes. For example, we assigned tuples covering identical con-
cepts with same id (synsetId). We also differentiated between learning and neu-
tral tuples depending on their pedagogical importance. We assign a weight 0 to
neutral tuples. In case of learning tuples, if the expected answer has n unique
learning tuples, we assign each of these tuples weight of 1/n (we consider only
tuples with different ids as unique). These annotations are useful to handle vari-
ations in student answers as described in Sect. 3.3. Figure 1(a) shows a final
human generated ideal concept map for one expectation. The annotators also
set the watch attribute in their comments to flag their tuples for review later.
After creating three concept maps, the SMEs met and compared their maps
to resolve any discrepancies. A refined annotation guide was created which was
then followed for the whole data annotation.
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Fig. 2. Annotating data for binary classification. TupleIds 2 6 and 2 7 consist of expec-
tation id 2 concatenated with synsetIds 6 and 7 respectively.

4.2 Experiments

We evaluated the performance of our concept map-based approach against both
binary and multi-level classification tasks.

Binary Classification Task: First, we assessed whether a particular student
answer is correct or incorrect. The 41 student session data were randomly divided
into training (21 sessions, 1296 instances) and test (20 sessions, 1296 instances)
sets.

Figure 2 shows an annotation example for the binary classification task. The
annotators judged which of the targeted learning tuples are covered/uncovered
by the student answer. If a tuple is covered, its tupleId is recorded in the T
group. On the other hand, if it is uncovered, its tupleId is recorded in the F
group. Similarly, judges annotated full expectations as covered or uncovered by
recording its expectationId either under T or F group, respectively. An expec-
tation is covered if its all learning tuples are covered.

We ran our assessment method (Sect. 3.3) with and without context against
both training and test data. For comparison, we also derived results by applying
the word alignment based sentence similarity method with context [9] and with-
out context [35]. Specifically, in the case of the context agnostic method, we first
computed similarity score by giving full weight of 1 to each word in the student
and reference answer using Eq. 1. For the context-based approach, we applied
the same equation such that the words in the student answer or reference answer
that are also present in the context, i.e., problem description and tutor question,
are given lower weights.

Multi-level Classification Task: In this task, we classified the student answers
into one of four correctness classes: correct, correct-but-incomplete, contradictory
or incorrect. We used the DT-Grade data annotated with these four correctness
classes for evaluating our approach. The DT-Grade [9] dataset consists of 900
student responses sampled from logged data recorded during the same experi-
ment with the DeepTutor system as described above.

We adapted our approach for multi-level classification task by using a simple
classification rule as follows. If the student concept map covers all learning tuples,
we classify the student answer as correct. If at least one of the learning tuples is
covered, then student answer is classified as correct-but-incomplete. If no learning
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tuples are covered, and a contradictory tuple is present in the student concept
map, we classify the instance as contradictory. If none of the above conditions
satisfy, we classify the student answer as incorrect.

Table 2. Results of different methods for binary classification. WA-Sim and WA-Sim-C
are optimal word alignment based STS system without context [35] and with context [9]
respectively. The value inside the bracket alongside the accuracy is Cohen’s Kappa.

Training data Test data

System F-score Accuracy F-score Accuracy

WA-Sim 0.739 73.8(0.43) 0.742 74.6(0.39)

WA-Sim-C 0.756 77.2(0.45) 0.752 77.2(0.40)

Concept map (no context) 0.763 75.8(0.49) 0.783 77.7(0.52)

Concept map 0.783 78(0.53) 0.802 79.9(0.55)

Table 3. Performance on Multi-level classification task. Comparison of concept map
approach against Logistic Model [9], GMM Model [21] and LSTM Model [22]. The
value inside the bracket alongside the accuracy is Cohen’s Kappa.

System Logistic model GMM model LSTM model Concept map

F-score - 0.58 0.62 0.59

Accuracy 49.3(0.22) 58.2(0.40) 62.2(0.45) 59.3(0.41)

4.3 Results and Discussions

Table 2 shows the performance of our concept map approach for the binary
classification task. Moreover, we found that our system does a better job at
identifying whether a learning tuple is covered or not by the student concept
map. At the tuple level, our system yielded an accuracy of 76.8% (F-score =
0.769) on the training set (2408 tuple instances), and an accuracy of 77.7% (F-
score = 0.778) on the test set (2360 tuple instances). This result implies that
we can detect most of the missing learning tuples from the student answer.
Therefore, our assessment method, if incorporated in adaptive learning systems,
can enable such systems to provide more targeted relevant feedback to students
and also provide useful information for planning system’s next move targeting
the missing learning components. This targeted, adaptive feedback based on
individual student performance could significantly improve the effectiveness of
adaptive learning systems.

For the multi-level classification task, our approach performed slightly lower
than the state-of-the-art LSTM model [22] but performs better than other mod-
els such as logistic model [9] and the GMM based method [21] as shown in
Table 3. However, LSTM model lacks explanatory capability of our concept map
approach.
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It is evident that improving the quality of extracted student concept maps
would improve performance our system. We note that the desirable student
concept map was not extracted from complex elliptical student response such
as “The force of the man pushing the box and the force of friction acting on
the box” to the tutor question: “What forces balance each other?”. Exploring
machine learning methods with concept maps can also improve student answer
assessment.

Our concept map doesn’t model temporal and conditional relationships. For
example, given the statement “If the net force is zero, the meteor moves with
constant velocity”, (meteor, moves with, constant velocity) is true only if the
net force is zero. In future work, we can augment concept maps with temporal
and conditional dependence information. Many bag of word approaches including
LSA perform very well for semantic assessment. We believe that our simple tuple
representation can capture the meaning of text more strongly since tuples are
higher semantic structures than words.

5 Conclusion

We presented a novel concept map-based approach to assess student answers
in tutorial dialogues. The approach takes context into account and implicitly
handles linguistic phenomena such as ellipsis and pronouns for assessment. We
combined the approaches of both Bailey and Meurers [8] and Bajande et al. [9]
for implicitly resolving pronouns and ellipsis at the tuple level. We use tuples
as the unit of learning to track students’ knowledge at a finer grain level which
enables us to better assess student answers rather than just classifying them as
correct or incorrect. Moreover, our approach can easily detect missing learning
components in student answers which can be used for dynamic and automatic
generation of personalized of next moves such as hints. As such, adaptive tutoring
systems can provide targeted adaptive feedback and scaffolding in the form of
hints to the students based on their individual performance.

Our future work is to improve the concept map-based approach further. Sec-
ond, we plan to study the impact of our approach to improving the effectiveness
of adaptive intelligent tutoring systems.
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Abstract. ALEKS, which stands for “Assessment and LEarning in
Knowledge Spaces”, is a web-based, artificially intelligent, adaptive
learning and assessment system. Previous work has shown that student
knowledge retention within the ALEKS system exhibits the characteris-
tics of the classic Ebbinghaus forgetting curve. In this study, we analyze
in detail the factors affecting the retention and forgetting of knowledge
within ALEKS. From a dataset composed of over 3.3 million ALEKS
assessment questions, we first identify several informative variables for
predicting the knowledge retention of ALEKS problem types (where each
problem type covers a discrete unit of an academic course). Based on
these variables, we use an artificial neural network to build a compre-
hensive model of the retention of knowledge within ALEKS. In order to
interpret the results of this neural network model, we apply a technique
called permutation feature importance to measure the relative impor-
tance of each feature to the model. We find that while the details of a
student’s learning activity are as important as the time that has passed
from the initial learning event, the most important information for our
model resides in the specific problem type under consideration.

Keywords: Forgetting curves · Neural networks ·
Knowledge space theory · Adaptive learning ·
Permutation feature importance

1 Introduction

ALEKS, which stands for “Assessment and LEarning in Knowledge Spaces”, is
a web-based, artificially intelligent, adaptive learning and assessment system [18].
The artificial intelligence of ALEKS is a practical implementation of knowledge
space theory (KST) [5,7,8], a mathematical theory that employs combinatorial
structures to model the knowledge of learners in various academic fields of study
including math [14,22], chemistry [12,26] and even dance education [31].

Understanding the behavior of retention and forgetting within adaptive sys-
tems is an important area of research, as it has been shown that student models
c© Springer Nature Switzerland AG 2019
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can be significantly improved when these aspects of learning are accounted for
[21,27]. Furthermore, some previous results have emphasized the importance of
identifying the variables that affect forgetting [28,29], while others have shown
that personalized interventions and review schedules can improve students’ long-
term retention of knowledge [16,30].

Motivated by these previous works, in this study we analyze in detail the
factors that affect the forgetting and retention of knowledge within the ALEKS
system. Given that the retention of knowledge within ALEKS exhibits the char-
acteristics of the famous Ebbinghaus forgetting curve [1,6,17], we begin with
some exploratory data analysis of the factors affecting this curve. Based on these
results, we then build a comprehensive model of forgetting and retention within
ALEKS using an artificial neural network. Finally, by combining our exploratory
data analysis with an application of permutation feature importance [2,24,25],
we are able to get a clearer understanding of the relative importance of each of
the features to our final neural network model.

2 Background

In KST, an item is a problem type that covers a discrete unit of an academic
course. Each item contains many examples called instances, and these examples
are carefully chosen to be equal in difficulty and to cover the same content.
A knowledge state in KST is a collection of items that, conceivably, a student at
any one time could know how to do.

Another concept important to our study is the inner fringe of a knowledge
state. An item is contained in the inner fringe of a knowledge state when the
item can be removed from the state and the remaining set of items forms another
knowledge state. An inner fringe item can be viewed as being at the edge of a
student’s knowledge, as complete knowledge of the item is not required to know
any of the other items in the knowledge state.

Within the ALEKS system, the student is guided through a course via a
cycle of learning and assessments. In an assessment, a student is presented an
item for which they can attempt to answer, or they can respond “I don’t know”
if they, presumably, have little knowledge of how to solve the problem. If the
student attempts to answer the item, the response is classified as either correct
or incorrect. A course begins with an initial assessment, the goal of which is to
accurately measure the starting knowledge of the student. Then, in the learning
mode, the student is presented items based on her knowledge state, with the sys-
tem tracking the student’s performance and continually updating the student’s
knowledge state. Each subsequent progress assessment is given to a student after
some time has been spent in the learning mode, and the process continues. The
purpose of these progress assessments is to verify the student’s recent learning,
as well as to act as a mechanism for enforcing spaced practice and retrieval.

For the purposes of this study, we define retention as the act of answering
an item correctly on a progress assessment at a point in time after the item is
learned in ALEKS. We can then define the retention rate as the correct answer
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rate to these assessment questions. For our analyses, we gather data from over 3.3
million ALEKS progress assessment questions that are drawn from 10 different
math and chemistry courses. The questions we use are restricted to items that are
contained in the inner fringe of the student’s knowledge state. In looking only at
inner fringe items, we are attempting to reduce any bias from students reinforcing
the core knowledge of an item by working on related content. We partition the
data into a training set of 2, 989, 835 questions, along with validation and test
sets each consisting of 166, 102 questions. In addition to being used to train
our neural network models, we also use the training data to perform all our
exploratory data analysis. The validation set is used to test different neural
network architectures and tune the hyperparameters, while the test set is used
for the final model evaluation.

3 Forgetting Curve

As shown in [17], the retention rate of an inner fringe item in ALEKS changes as
a function of the time since the item was learned (with an item being “learned”
after a certain amount of success on the item has been demonstrated in the
learning mode). To see this, for each assessment question in our training data
we compute the number of days from the time the student learned the item to
the time the item appeared in the progress assessment, and then we group these
questions based on the outcome (correct, incorrect, or “I don’t know”). The
results are shown in Fig. 1, where the solid curve (the proportion of corrects)
can be considered a forgetting curve [1,6]. Note that this curve is analogous to
the curve first shown in [17].

l l

l

l

Fig. 1. Proportions of responses as a function of the time (in days) since the inner
fringe item appearing as a progress assessment question was learned.

At this point it should be emphasized that inner fringe items are at a very
specific, and critical, place in a student’s knowledge state. The overall retention
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rate on these items is relatively modest, with the average correct rate for our
dataset being 0.64. Since an inner fringe item has recently been learned by a
student, without any learning that reinforces the skill(s) contained in the item,
the relatively low correct rate is not unexpected. Thus, predicting the retention
of inner fringe items is a difficult task, as the items that are most likely to be
retained (i.e., the items with highest correct rates) would not generally be found
in the inner fringe. (See Fig. 1 in [4] for an example of how the correct rate
increases for items “deeper” in the knowledge state.) That being said, there are
many factors that can affect the inner fringe correct rate, and it is important
to identify these factors when building models of retention [28,29]. Thus, in the
next section we take a look at these factors in more detail.

4 Exploratory Data Analysis

Now that we have established a baseline forgetting curve, we can look at what
factors, or variables, affect this curve. The first variable we discuss is the knowl-
edge of the student at the beginning of the course, which is measured by what we
call the student’s initial score; this is simply the proportion of the items in the
course that are in the student’s knowledge state at the end of the initial assess-
ment. The results are shown in Fig. 2, which compares the forgetting curves for
students in the first decile (in terms of the initial score) and in the tenth decile.
We can see that there is a relatively large gap between the two correct answer
curves. Additionally, the “I don’t know” curves show an interesting difference,
in that the students in the first decile show an increasing rate of “I don’t know”
answers over time, while the students in the tenth decile have a constant rate
after about a week.

l

l

l

l

Fig. 2. Proportions of responses conditioned on the student being in the first decile
(in terms of initial score) or the tenth decile. The top set of lines (blue) represents the
correct responses, the middle set (green) represents the incorrect responses, and the
bottom set (red) represents the “I don’t know” responses. (Color figure online)
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The next factor we consider is the classification of the learned item after
the student’s initial assessment. An ALEKS assessment finishes with each item
classified into one of three distinct categories.

– Items that are most likely in the student’s knowledge state (in-state)
– Items that are most likely not in the student’s knowledge state (out-of-state)
– The remaining items (uncertain).

The learned items in our dataset are exclusively composed of items classified
as either out-of-state or uncertain after the initial assessment. The out-of-state
items are items that the ALEKS system, at the conclusion of the initial assess-
ment and based on the student’s responses to the assessment questions, strongly
believes the student does not know. On the other hand, the uncertain items are
those for which the system does not have enough information to make a con-
fident classification of either in-state or out-of-state. Thus, it stands to reason
that a good portion of these uncertain items are actually items that the stu-
dent already knows, in which case the forgetting curve and retention may take
a different form. The results in Fig. 3 support this conjecture, where there is a
clear separation between the forgetting curves for the uncertain items and the
out-of-state items, with the uncertain items being retained at a higher rate.

We next look at how retention is affected by a student’s learning sequence,
which is the sequence of events taken by the student when learning an item. The
possible events in a learning sequence are (a) submitting a correct answer, (b)
submitting an incorrect answer, and (c) viewing an explanation of the current
instance. If an item is deemed uncertain, a student can demonstrate mastery
of the item in the learning mode by correctly answering the first two given
instances of the item. Intuitively, if the first two instances of an uncertain item
are answered correctly, this would appear to be strong evidence that the student
does actually know the item, and that the ALEKS system simply lacked the
information to give this classification after the initial assessment (or, at the very
least, it is evidence that the student has a strong grasp of the material in the
item). These learning sequences are labeled as “CC” in Fig. 3, where we can see
that the retention rate is even higher than the rate for the uncertain items. Thus,
by taking into account the specific answer pattern of a student while learning an
item, we can extract even more information about the likelihood that the item
will be retained successfully.

Continuing with our analysis of the learning sequence, we next look at the
length of the learning sequence (i.e., the number of events it contains). A first
guess would be that longer learning sequences give more practice, which would
help to improve the retention rate. However, as shown in Fig. 4, the length of the
learning sequence is actually negatively correlated with the retention of a learned
item. A moment’s thought shows that this is not actually that surprising. Given
that the learning sequence ends when the ALEKS system decides the student has
shown mastery of an item, there is a selection effect when partitioning the items
by the learning sequence length. More specifically, the shorter sequences tend
to involve simpler items for which it is easier to demonstrate mastery (and for
which it is also easier to retain the knowledge), or are from students who have a
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Fig. 3. Proportions of responses conditioned on whether the ALEKS initial assessment
classified the item as out-of-state or uncertain (which are mutually exclusive categories),
or if the item has a CC learning sequence (which is a subset of the uncertain items). The
top three lines (blue) represent the correct responses, the middle three lines (green)
represent the incorrect responses, and the bottom three lines (red) represent the “I
don’t know” responses. (Color figure online)

stronger grasp of the material (again leading to a higher retention rate). On the
other hand, the longer learning sequences either involve noisy and difficult items
(for which we would expect a lower retention rate) or students who are struggling
with the material (in which case we might again expect a lower retention rate).

The last variable we consider is the item itself. While the majority of ALEKS
items have a similar open-ended answer format, the actual content, as well as
the intrinsic difficulty, can vary. To get a sense of these differences, Fig. 5 shows
a histogram of the item correct rates in the training set, restricted to the 1664
items with at least 200 data points each. The mean and median correct rates
are 0.64 and 0.65, respectively, with a standard deviation of 0.11. While the
majority of the items cluster around the mean, there are certain items with
somewhat extreme behavior. For example, the maximum and minimum values
for retention are 0.92 and 0.17, respectively, with 88 items having a rate above
0.8 and 168 having a rate below 0.5. Thus, the specific characteristics of an item
appear to have a significant effect on its retention rate.

5 Retention Models

To make use of the information discussed in the previous section, we next develop
a model of retention using an artificial neural network. This neural network
model takes the form of a classifier that attempts to predict whether or not a
student will give a correct answer when presented an inner fringe item during a
progress assessment. The following features are used to build this model.

– ALEKS course: categorical variable with 10 values
– Item: categorical variable with 2190 values
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Fig. 4. Proportion of correct responses conditioned on the number of events in the
associated learning sequence. Note that, as grouped, the correct rate is a decreasing
function of the number of events.

– Initial score: continuous variable with values in [0, 1]
– Time in days since item was learned: discrete variable with values in [0, 399]
– Learning sequence: responses encoded as a sequence of categorical variables,

each with three values corresponding to the student’s action (correct answer,
incorrect answer, reading the explanation)

The learning sequence variable is fed to a recurrent neural network (RNN), a
type of neural network that is well-suited to handling sequential data [11]. The
output from this RNN is then concatenated with the original set of features,
and this combined set of features is then fed to a multilayer perceptron (MLP).
For the hidden units of our RNN, we evaluate two different recurrent units on
our validation set: gated recurrent units (GRU) [3] and long short-term memory
(LSTM) units [13]. Additionally, the learning rate, number of hidden layers, and
number of units in each hidden layer are also tuned on the validation set. In all
cases we use batch normalization [15] while training, and we also apply early
stopping [20] and dropout [9,23] to help prevent overfitting.

Our best performing model on the validation set, which we evaluate in detail
in the next section, is comprised of an RNN containing four layers of LSTM
units. The output from the last LSTM layer is then combined with the other
features and fed to an MLP. The MLP consists of an initial hidden layer with 800
units and 2 subsequent hidden layers with 400 units each. Lastly, each hidden
unit of the MLP uses a rectified linear unit (ReLU) as the activation function.

6 Model Evaluation and Feature Importance

One use of an accurate model of retention and forgetting would be to optimize
the set of items that are chosen to be tested in an ALEKS progress assessment.
That is, if it is very likely that the student will answer a learned item correctly



Modeling Retention and Forgetting in an Adaptive Learning System 265

Fig. 5. Histogram of average inner fringe retention rate by item.

on a progress assessment, it may be more beneficial to the student’s learning if
a different item, one that the student is struggling to retain, be tested instead.
In this case, the student would gain the benefits of retrieval and spaced practice
focused on the more troublesome items [16]. Under this implementation, an
effective model is one that can correctly identify items that are very likely to be
retained; thus, a natural measure of this ability is precision. Additionally, the
model must also identify a large enough subset of these items to be effective,
which can be measured by the true positive rate or recall. To that end, Fig. 6
shows the precision-recall curve on the data in the test set. For comparison,
we also give the results for a baseline forgetting curve that uses only time as a
parameter and is fit to the correct rate data in Fig. 1 (specifically, we use the
power function model that is discussed at length in [1]).

One common criticism of neural networks is that they are difficult to inter-
pret, and that in some cases a simpler model such as a logistic regression may be
preferable because of this. However, if the goal is to have an idea of the relative
importance of each feature to the model (which is typically the argument for
using a regression model where, in theory, the coefficients can be interpreted),
this can be accomplished using a technique called permutation feature impor-
tance [2,24,25]. The idea behind permutation feature importance is the following.
Given a metric to evaluate the performance of our classification model, we first
compute the score for the classifier on our test set. Then, to determine the rela-
tive importance of a feature (or, set of features), we randomly shuffle the values
for that feature (or, again, set of features) across all the data points in our test
set; importantly, however, while doing this we leave the order of the rest of the
features untouched. We then run this modified test set through our classifier,
extract the predicted probabilities, and then recompute the score of our chosen
metric. Comparing this score to the score on the unshuffled test set gives an
idea of how “important” this feature is to the performance of the model; if the
feature is very important, we can expect a large negative effect on the metric’s
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Fig. 6. Comparison of precision-recall curves for the neural network classifier and the
single-parameter forgetting curve model.

score on the shuffled test set, while a minor change in the score indicates that
the feature is not as crucial to the performance of the model. While some other
measures of feature importance may exhibit a bias towards categorical variables
with many values, permutation feature importance does not suffer from these
same shortcomings [25], and thus is well-suited to our neural network model.

The results from applying permutation feature importance to our classifier
are shown in Table 1, where we display the area under the curve for both the
precision-recall (PR) and receiver operating characteristic (ROC) curves, aver-
aged over 10 trials (i.e., each set of features is randomly shuffled 10 times, and
the average scores over these 10 trials are reported). We can see that the variable
with the greatest effect on the scores is the item categorical variable. Taking the
histogram in Fig. 5 into account, this makes intuitive sense given that some of the
items vary widely in their overall retention rates. Additionally, while not quite
as impactful as the item variable, both the time since the item was learned,
and the information from the learning sequence, are important to the model.
In the latter case, this is supported by Figs. 3 and 4, which show large differ-
ences in retention based on the properties of the learning sequence. On the other
hand, the course variable and the initial score are the least important variables.
Regarding the initial score, while the differences shown in Fig. 2 are significant,
these differences are from a comparison of the most extreme decile groups. The
initial score has less of an effect when looking at other deciles, which most likely
explains the smaller importance of this variable to the final model.
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Table 1. Area under the precision-recall (PR) and receiver operating characteristic
(ROC) curves using permutation feature importance.

Permuted feature PR (change) ROC (change)

None (optimal classifier) 0.781 0.680

ALEKS product 0.765 (−0.016) 0.658 (−0.022)

Item 0.713 (−0.068) 0.591 (−0.089)

Initial score 0.760 (−0.021) 0.653 (−0.027)

Time 0.753 (−0.028) 0.641 (−0.039)

Learning sequence 0.749 (−0.032) 0.634 (−0.046)

7 Discussion and Future Work

In this paper we give a detailed study of how the retention of knowledge works
within the ALEKS system. By aggregating data from a large number of ALEKS
assessments, we are able to look at the effects of several different variables on
this retention. Based on these results, we then build a neural network model of
retention within ALEKS. This neural network combines the sequential data from
the student learning sequences with several other (non-sequential) variables to
make predictions of the likelihood an item will be retained, improving upon the
basic one-dimensional forgetting curve model. Furthermore, to help address a
common criticism that neural network models are difficult to interpret, we show
that an application of permutation feature importance to our neural network
model, combined with our exploratory analysis of the data, gives a coherent
picture of the relative importance of these variables to our model. Both the
learning sequence of the student, and the time since an item was learned, are
more informative to our model; on the other hand, the starting knowledge of the
student and the specific ALEKS course being used have relatively smaller effects.
However, the most influential information came from the categorical variable
representing the items, an indication that being able to differentiate between
the items is important when building an accurate model of retention. This last
result is seemingly consistent with studies that have shown improvements in
Bayesian knowledge tracing (BKT) models when item-specific information is
taken into account [10,19,32].

Given the importance of the item variable when predicting retention, it would
be of interest to explore this topic further. For example, are there certain skills
and content that characterize, or are inherent to, hard or easy to retain items?
Alternatively, it is possible that the outsized influence of the item variable is
due to something specific to ALEKS. As an example, a low retention rate could
be an indication that an item is placed at a suboptimal position within the
ALEKS system, and in such a case a student would benefit from seeing additional
prerequisite material before learning the item. Thus, it is not a stretch to think
that the information contained within the item variable may be due to factors
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such as this. Answering these questions would give an even more complete picture
of how retention works within ALEKS.
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Abstract. This study investigated the effect of incorporating spelling and
grammar checking tools within an automated writing tutoring system, Writing
Pal. High school students (n = 119) wrote and revised six persuasive essays.
After initial drafts, all students received formative feedback about writing
strategies. Half of the participants were also given access to spelling and
grammar checking tools during the writing and revision periods. Linear mixed
effects models revealed that essay quality for students in both conditions
improved from initial draft to revision in terms of all aspects except essay unity.
The availability of spelling and grammar checking yielded added improvements
from initial draft to revision for several aspects of essay quality (i.e., conclusion,
organization, voice, grammar/mechanics, and word choice), but other aspects
were unaffected (i.e., introduction, body, unity, and sentence structure). The
availability of spelling and grammar checking tools had no effect on holistic
essay scores. These results indicate that automated spelling and grammar
feedback contribute to modest, incremental improvements in writing quality that
may complement automated strategy feedback.

Keywords: Automated writing evaluation � Feedback �
Natural language processing � Spelling and grammar checking �
Writing strategies

1 Introduction

National standards report that a majority of students are not proficient writers [1]. One
challenge is that the development of writing skills requires repeated, deliberate practice
with formative feedback [2], yet providing opportunities for students to compose essays
and receive extensive feedback is time-consuming for instructors. Although the U.S.
Department of Education recommends at least one hour of writing each day, writing
instruction is often overlooked compared to other skills [3, 4]. However, sophisticated
natural language processing (NLP) tools have made it possible for automated writing
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evaluation systems (AWEs) to partially address these challenges. AWEs can provide
(a) rapid and accurate evaluations and (b) formative feedback that are otherwise
unfeasible in classroom settings constrained by time and resources. Students who
receive AWE support have also demonstrated improved writing skills [5–9].

As one example, the Writing Pal (W-Pal [10–13]) is an AWE and intelligent
tutoring system (ITS) that targets persuasive writing. Learners are typically given
25 min to write an essay in response to an SAT-like persuasive writing prompt. W-Pal
employs NLP-driven algorithms to evaluate the essays [14]. W-Pal algorithms deliver
both summative feedback (i.e., a holistic score on a 6-point scale) and formative
feedback about writing strategies and improving essay quality. This strategy feedback
is related to eight different aspects of writing: freewriting, planning, introduction, body,
conclusion, unity, paraphrasing, and revision (see [13]). W-Pal lessons and practice
improve students’ writing quality and strategy knowledge, and both students and
teachers find W-Pal instruction to be valuable and informative [13, 15, 16].

1.1 What About Spelling and Grammar?

The development of technologies that deliver valid automated formative feedback has
required innovations in NLP, modeling, and artificial intelligence. Nonetheless, a
common question from educators is “Can it check my students’ spelling and gram-
mar?” Research suggests that classroom teachers devote extensive time and attention to
grammar and mechanics, often at the expense of other writing instruction [17, 18].
Although spelling and grammar checkers have proven useful in ITSs for second lan-
guage learning (e.g., [19]), the benefits of these tools for writing composition may be
questionable. Research suggests that spelling and grammar instruction has little effect
on writing quality after early elementary school [20], and spelling and grammar errors
are only weakly correlated to expert judgments of essay quality [21]. More effective
instruction focuses on writing strategies, such as drafting, organizing, and revising in
combination with individualized feedback to improve these strategies (see [22]).
Indeed, strategy instruction interventions have yielded large effect sizes [23].

Although spelling and grammar instruction alone may be insufficient for improving
students’ overall writing skill, this type of feedback may still be valuable. Struggling
with spelling can exhaust cognitive resources that would be better put toward other
aspects of the writing process [24, 25]. Moreover, in contrast to writing experts, non-
expert readers may base their evaluations of quality on spelling and grammar [26–28].
For instance, non-experts use spelling and grammar mistakes to make judgments about
a writers’ intelligence and other personality traits [29, 30]. Johnson and colleagues [30]
asked college students to read writing samples that contained no errors, low-level errors
(spelling and grammar mistakes), high-level errors (structural and conceptual errors), or
both types of errors. Participants rated the quality of the essays as well as their per-
ceptions of the authors. Low-level errors resulted in more harsh judgments, both in
terms of the essay quality and negative personality traits to the writers. In other words,
spelling and grammar are still important considerations for writing quality, assessment,
and audience perceptions.

Checking It Twice 271



1.2 The Current Study

The current study examines the effect of incorporating spelling and grammar checking
(SGC) tools into an automated writing evaluation and tutoring system for writing (i.e.,
W-Pal). W-Pal already provides strategy training and formative feedback for more
complex aspects of the writing process (e.g., planning, elaboration, and unity). Thus,
this study poses the research question: In an AWE system, what is the added value of
spelling and grammar feedback when combined with higher-level strategy feedback?
In this experiment, all students write essays, receive strategy feedback, and then revise
their essays. However, half of the students are also given access to (and reminders to
use) spelling and grammar checking tools while writing and revising.

Spelling and grammar feedback could benefit students’ overall essay quality by
helping them focus on content and structure-based writing and revision [24, 25].
Alternatively, spelling and grammar information may have no effect on performance.
This prediction is driven by the research that indicates essay quality is a function of
deeper aspects of the content and style (e.g., [21]). Finally, spelling and grammar
feedback could reduce essay quality. This outcome might arise because too much
prompting and feedback can be distracting rather than helpful (e.g., [31]). Students also
often default to “unproductive” superficial revisions [32, 33], and the inclusion of
spelling and grammar feedback may misdirect students away from substantive
revisions.

2 Method

2.1 Participants

High school students (n = 143) were recruited from a large metropolitan area in the
southwestern United States and received financial compensation for their participation.
Twenty-four participants were omitted due to incomplete data as a result of either
technical or experimenter errors, resulting in a total of 119 participants.

One student completed the study but did not provide demographic information.
Thus, the sample (Mage = 17.19, SD = 1.28, Range: 13–19) was 61.3% female and
37.5% male; 53.8% Caucasian, 21% Hispanic (Latin American), 10.1% Asian, 7.6%
African American, and 6.7% reported as other. Finally, 85.7% of participants were
native English speakers.

2.2 Design and Procedure

Students were randomly assigned one of two conditions in which they received either
writing strategy feedback (Strategy Condition, n = 60) or writing strategy feedback
along with spelling and grammar checking tools (Strategy + SGC Condition, n = 59).

The study included four sessions. In the first, session, students provided demo-
graphic information and then completed the Gates-MacGinitie Reading Test (GRMT;
[34]) as a measure of reading skill. In each of the subsequent three sessions, the
students wrote and revised two essays on different persuasive writing prompts
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(Table 1). Each of the prompts had a brief introduction to frame the issue and ended in
a question. For example, the prompt about images and impressions read:

All around us appearances are mistaken for reality. Clever advertisements create favorable
impressions but say little or nothing about the products they promote. In stores, colorful
packages are often better than their contents. In the media, how certain entertainers, politicians,
and other public figures appear is sometimes considered more important than their abilities. All
too often, what we think we see becomes far more important than what really is. Do images and
impressions have a positive or negative effect on people?

Participants were allotted 25 min to write an initial draft. After this time elapsed,
W-Pal assigned a holistic score from “Poor” (1) to “Great” (6) along with individual
strategy feedback aligned with W-Pal strategy lessons (e.g., planning, paragraph
quality, unity, and paraphrasing). After viewing this feedback, participants were given
10 min to revise. Feedback messages provide actionable steps to help the participant
improve their essay. For example, if the algorithm determined that the essay was too
short, the participant might receive the following strategy feedback message:

This essay may not have enough paragraphs to fully support the main argument. If you need
help developing support for future drafts or essays, it may be helpful to freewrite.

• Write down possible arguments that may relate to your thesis
• Brainstorm as many relevant facts and examples as you can
• Try to think of details from school classes, news stories, and your own life that may relate to

the arguments!

For participants in the Strategy + SGC Condition, “Check Spelling” and “Check
Grammar” buttons appeared at the bottom of the interface during the writing and
revision periods (Fig. 1). Participants could access either function at any time while
writing or revising. Errors were detected using the open source API LanguageTool [35,
36]. When these tools were selected, errors were underlined similar to common word
processors. Clicking on the error opened a small pop-up window with potential cor-
rections. A reminder about the SGC tools appeared when there were 5 min remaining
in the writing session, but students were not forced to use the tools.

Table 1. Essay prompt questions in order of presentation

Prompt question

1. Do images and impressions have a positive or negative effect on people?
2. Do people achieve more success by cooperation or by competition?
3. Do people place too much emphasis on winning?
4. Should people always maintain their loyalties, or is it sometimes necessary to switch sides?
5. Is it better for people to act quickly and expect quick responses from others rather than to

wait patiently for what they want?
6. Do personal memories hinder or help people in their effort to learn from their past and

succeed in the present?
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2.3 Writing Assessment and Scoring

In the study, W-Pal algorithms determined immediate scores and feedback. For later
analyses, human raters (following the same criteria underlying the algorithm) assigned
holistic scores and nine subscores (i.e., specific writing traits) on both drafts. Raters
were four graduate students of English. Rater pairs were trained to a high level of
reliability (all kappas > .80) on all metrics. Holistic scores (1–6 scale) were based on
the standard SAT rubric and subscores (1–6 scale) aligned with W-Pal lessons:

• Grammar, Style, & Mechanics: essay conveys strong control of the standard
conventions of writing; avoiding errors in grammar, syntax, and mechanics

• Introduction: writer demonstrates mastery in meeting the goals of an introduction
(e.g., presenting a topic, providing a purpose, clearly stating a thesis, and pre-
viewing arguments)

• Body: writer demonstrates mastery in meeting the goals of body arguments (e.g.,
transition between arguments, using topic sentences, supporting arguments with
evidence, and maintaining a flow throughout the arguments)

• Conclusion: writer demonstrates mastery in meeting the goals of a conclusion (e.g.,
summarizing the essay, re-establishing the significance of discussion, capturing the
reader’s attention, and effectively closing the essay)

• Organization: essay follows a logical structure (e.g., introduction, body arguments
and evidence, conclusion)

• Unity: details support the thesis and do not stray from the prompt and the main
ideas and organizing principles presented in the introduction

• Voice: writer is expressive, engaging, and sincere; a strong sense of audience
• Word Choice: writer is precise and effective in word choice
• Sentence Structure: sentence patterns are varied effectively, enhancing the quality

of the essay

Fig. 1. W-Pal writing window with spelling and grammar checkers
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Note that holistic scores was not calculated from the subscales (e.g., an average)—
holistic scores and subscores were distinct judgments although likely to be correlated.

Each essay (N = 1435) was scored by two raters. Across raters, the reliability of
ratings for scores ranged from ICC = .79 to .90. The final scores for each essay reflect
the average score of the two raters.

3 Results

Table 2 presents average scores as a function of draft and feedback condition. Overall,
participants exhibited modest yet significant increases in average essay scores from
initial draft (M = 3.63, SD = .55) to revision (M = 3.76, SD = .53), F(1, 117) = 25.44,
p < .000, η2 = .18. Holistic writing scores were strongly correlated with all writing
subscores (r = .73 to .93), supporting the concurrent validity of the assessment.
Consistent with existing research [37], reading skill (i.e., GMRT scores) was also
positively correlated with holistic score and subscores (r = .47 to .68).

3.1 Analysis of Essay Improvement and Condition

Linear mixed effects (LME) models were conducted to detect the effects of the spelling
and grammar checker tools on both initial draft and revision while also accounting for
potential influences of the essay prompt or reading skill.

Holistic writing score and all nine writing subscores were fit with the same series of
LME models using the lme4 package [38] in R [39]. Simple slopes were estimated
using the reghelper package [40]. Table 3 shows the variables entered into each model.

Table 2. Means and standard deviations of essay scores as a function of experimental condition
and essay draft

Score (1–6) Strategy condition Strategy + SGC
condition

Initial Revised Initial Revised

Holistic 3.49 (0.66) 3.64 (0.64) 3.38 (0.69) 3.52 (0.70)
Grammar, Mechanics* 3.55 (0.61) 3.57 (0.56) 3.51 (0.60) 3.69 (0.60)
Introduction 3.83 (0.69) 3.93 (0.62) 3.66 (0.65) 3.76 (0.55)
Body 3.77 (0.60) 3.82 (0.55) 3.64 (0.65) 3.75 (0.62)
Conclusion* 3.43 (0.74) 3.52 (0.72) 2.98 (0.83) 3.35 (0.77)
Organization* 3.83 (0.57) 3.93 (0.55) 3.53 (0.60) 3.77 (0.66)
Unity 4.13 (0.52) 4.10 (0.49) 3.94 (0.49) 4.01 (0.50)
Voice* 3.77 (0.54) 3.85 (0.54) 3.61 (0.58) 3.90 (0.53)
Word choice* 3.82 (0.56) 3.89 (0.47) 3.67 (0.54) 3.88 (0.57)
Sentence structure 3.59 (0.54) 3.73 (0.55) 3.53 (0.58) 3.59 (0.60)

Note. An asterisk (*) indicates that the Strategy + SGC condition
demonstrated statistically significant gains from initial to revised whereas
those in the Strategy Condition did not.
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For the Baseline model (M0), only GMRT scores and a prompt factor were included.
Second, a Draft model (M1) included a draft factor (i.e., initial vs. revised draft) to
investigate how scores changes as a function of revising. Finally, a Condition model
(M2) added a condition factor (i.e., Strategy vs. Strategy + SG) along with two
interaction terms to assess the effect of condition. The interaction terms included
“Draft � Condition” and “GMRT � Condition”. Likelihood ratio tests were used to
compare model fit. Significant chi-square (v2) tests indicate that adding the additional
variable(s) improved fit as compared to the previous model (Table 4). These analyses
revealed mixed results for the added value of SGC tools in an AWE. Benefits were
observed for several subscores but not holistic quality.

3.2 Effects on Holistic Writing Quality and Grammar, Style,
and Mechanics

One overarching question was whether the accessibility of SGC tools influenced
overall writing quality. The LME models suggest that this was not the case. With
regards to Holistic Score, the Draft model demonstrated improved model fit compared
to the Baseline model. However, the Condition model did not further improve model
fit. Although students improved their essays through revising, the availability of
spelling and grammar checking tools did not appear to significantly contribute to
holistic gains.

Table 3. Linear mixed effects model design

Model Variables included

Baseline (M0) GMRT + Prompt
Draft (M1) GMRT + Prompt + Draft

Condition (M2) GMRT + Prompt + Draft + Condition + (Draft � Condition) + (GMRT � Condition)

Table 4. Likelihood ratio tests (v2) comparing fit with additional variables

Draft (M1)
v2(1)

Condition (M2)
v2(3)

Holistic 24.15*** ns
Grammar, Mechanics 13.87*** 15.06***
Introduction 24.15*** ns
Body 6.56* ns
Conclusion 26.68*** 14.01***
Organization 20.34*** 7.42+
Unity ns ns
Voice 27.02*** 11.56**
Word choice 26.04*** 9.08*
Sentence structure 9.59** ns

Note. ns = not significant; ***p < .001; **p < .01;
*p < .05; +p < .06.
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If students receive valid and useful feedback and writing mechanics, these benefits
should influence Grammar, Style, and Mechanics subscores, even if holistic quality
was not affected. Indeed, this was the observed pattern. The Draft model exhibited
improved model fit compared to Baseline. Further, the Condition model demonstrated
further improved model fit. Simple slopes revealed that Strategy + SGC Condition
participants improved from initial draft to revision, Estimate = 0.26, SE = 0.04, t
(1283) = 4.86, p < 0.001, whereas participants in the Strategy Condition did not,
Estimate = 0.02, SE = 0.04, t(1283) = 0.50, p = 0.62. The availability of spelling and
grammar feedback had little effect on initial drafts, but facilitated revising with respect
to grammar, style, and mechanics, as should be expected. In broader terms, spelling and
grammar tools contributed to incremental improvements in writing quality that were
not necessarily reflected in holistic essay quality.

3.3 Additional Benefits of Spelling and Grammar Feedback

Several other subscores provided evidence that the availability of spelling and grammar
tools facilitated incremental gains in specific aspects of writing. The quality of Con-
clusion, Organization, Voice, and Word Choice significantly improved from the initial
draft to the revision for students in the Strategy + SGC Condition, whereas there was
no improvement for students in the Strategy Condition. These findings are reflected
within the LME by improved model fit compared to baseline in the Draft model, and
improved fit of the Condition model, specifically driven by the Draft � Condition
interaction term. Simple slopes—with draft as the focal predictor and condition as the
moderator—revealed that participants who had access to spelling and grammar tools
tended to increase in subscores from draft to revision (Conclusion Estimate = 0.38
SE = 0.06, t(1283) = 6.07, p < 0.001; Organization Estimate = 0.23, SE = 0.05, t
(1283) = 4.86, p < 0.001; Voice Estimate = 0.29, SE = 0.05, t(1283) = 5.97,
p < 0.001; Word Choice Estimate = 0.22, SE = 0.04, t(1283) = 5.54, p < 0.001),
whereas there was no observed improvements for those in the Strategy Condition (all
Estimates < .09; t < 2).

3.4 Writing Subscores Unaffected by Spelling and Grammar Feedback

As hinted by the lack of effects on holistic writing quality, the benefits of SGC tools
were not universal—several writing subscores showed no effect of feedback condition.
These included Introduction, Body, and Sentence Structure. Participants improved on
these traits from initial to revised draft (i.e., revising improved the essay) but condition
(i.e., adding spelling and grammar feedback) had no influence (see Table 4).

Finally, contrary to other subscores, participants did not show any change in Essay
Unity scores across drafts; the Draft model did not improve model fit compared to
Baseline. The Condition model also did not improve model fit.
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4 Discussion and Future Work

Computer-based educational tools can provide a wealth of feedback to student writers,
including summative scores on writing quality and individualized, formative feedback
on strategies and ways to improve [41]. Similar to word processing programs, these tools
might also incorporate spelling and grammar checking. However, one question is
whether having access to SGC tools benefits students above and beyond strategy feed-
back. Prior research suggests that an overemphasis on writing mechanics can be useless
or detrimental [21], whereas strategy instruction and feedback are beneficial [22, 23].

To explore these questions, the current study examined how the inclusion of
spelling and grammar feedback in an AWE system affected the quality of essays and
revisions. This study focused on high school students, a critical target population for
writing instruction and intervention. Analyses examined gains in holistic essay scores
and nine subscores (rated by writing experts) as a function of feedback condition.

4.1 Incremental Improvements in Essay Quality

Linear mixed effect models indicated that essay quality improved holistically and along
all subscores (except unity) as a function of revising with feedback. When students
wrote essays in W-Pal, received feedback, and revised, their essays improved. This
finding replicates previous results showing that strategy feedback results in improve-
ments from initial draft to the revision [42–45].

As one might expect, the availability of checking tools improved the grammar and
mechanics in the essays. However, spelling and grammar feedback, in conjunction with
strategy feedback, also improved essays from initial draft to revision on the dimensions
of conclusion paragraphs, organization, voice, and word choice. This finding is
important because it suggests that providing students with tools to check their spelling
and grammar might (a) free up resources to consider other aspects of writing when
writing and/or (b) inspire a greater willingness to revise. Grammar checkers have been
shown to increase students’ motivation and confidence in their writing [46, 47]. Thus,
spelling and grammar checkers may have direct benefits on mechanics that then afford
indirect benefits elsewhere. Future research should consider students’ subjective reac-
tions to these tools, such as whether they indeed perceive writing to be less burdensome
or more engaging when they have a “safety net” of checking tools in an AWE system.

Importantly, these tools did not appear to benefit holistic essay scores. This is
consistent with prior work showing that expert evaluations of essay quality rely on
deeper features of text [21]. Likewise, there were no apparent benefits of spelling and
grammar feedback on introduction quality, body quality, unity, or sentence structure.
Thus, although the tools were moderately useful, they were not universally beneficial.

Finally, it is worth noting that this feedback did not reduce performance on any
subscores. Overall, these findings indicate that adding spelling and grammar checkers
in conjunction with strategy feedback is moderately beneficial for AWEs.
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4.2 Directions for Future Research

In the current study, participants did not improve the unity of their essays, regardless of
feedback or checking tools. One explanation may be that unity requires the writer to step
back and evaluate the connectivity, or cohesion, of the essay as a whole. A 10-minute
window for revision may not provide sufficient time to conceptualize and implement
such revisions. An alternative explanation could be that participants received fewer
messages about essay unity than other feedback topics. Further analyses of the types of
feedback that participants received, and their viewing of that feedback, may shed further
light on how we might help students to improve the unity of their essays.

In addition to assessing the specific feedback messages received and viewed, future
work might also analyze how students approached the revising task (i.e., the frequency
and type of edits made). One possibility is that students in the strategy feedback condition
used their 10 min of revision time to address mechanical errors—a typical bias toward
proofreading over substantive revising. In contrast, because students in the spelling and
grammar condition had already completed this task (at least partially), they spent more
time during revising on substantive edits. Given that spelling and grammar feedback did
not impact the subscores equally, these findings may shed light on which aspects of
writing, or which writing strategies, are prioritized by students. Eliciting students’ self-
reported rationale for revising or using AWE tools could help to understand how they
navigate AWE functions and uptake feedback. For instance, students might focus on the
“easiest” or “fastest” edits, or they may prioritize the most “critical” flaws.

Finally, having these tools available might change the dynamics of the writing
process [48, 49]—students may write more or faster when they feel they can rely on
SGC tools to make the task easier. To explore these plausible changes in writing
production, the use of log-files, key strokes, and similar data may help to elucidate how
students use the spelling and grammar functions, and the extent that tool use—as
opposed to mere availability or accessibility—influences drafting and revising activi-
ties. The benefits of using spelling and grammar tools are likely to be more nuanced
than a simple “more is better” assumption. Students might rely on the tools to
mechanically and mindlessly fix typos instead of reflecting on the meaning of their
writing or the possible reactions of their audience.

4.3 Conclusion

Questions about optimal feedback—including feedback content, timing, methods, and
effects on performance—are among the most critical challenges facing educators,
researchers, or others who develop and implement adaptive educational technologies.
A number of nuanced factors influence feedback quality and students’ feedback uptake.

This study explored feedback in the context of essay writing with AWE support.
Research has previously established that formative feedback on writing strategies is
effective whereas feedback that exclusively targets grammar and mechanics is not
effective. Nonetheless, teachers, students, and writers intuitively crave feedback and
automated corrections on these writing features. This study provides compelling evi-
dence that students benefit from both types of feedback, and that guidance on writing
mechanics does not inhibit writing quality or deter from revising.
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Several questions remain concerning the source, loci, and dynamics of these effects.
Do benefits stem from helping students manage their resources and focus on rhetorical
aspects of writing? Do benefits stem from a sense of writer empowerment? How do
varying feedback tools influence real-time writing and revising behaviors? Ultimately,
the objective is to enhance students’ ability to improve their writing, and automated
feedback affords multiple resources for accomplishing that goal.
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Abstract. Intelligent Tutoring Systems (ITS) have great potential to
change the educational landscape by bringing scientifically tested one-to-
one tutoring to remote and under-served areas. However, effective ITSs
are too complex to perfect. Instead, a practical guiding principle for ITS
development and improvement is to fix what’s most broken. This paper
presents SPOT (Statistical Probe of Tutoring), a tool that mines data
logged by an ITS to identify ‘hot spots’ most detrimental to its effi-
ciency and effectiveness in terms of its software reliability, usability, task
difficulty, student engagement, and other criteria. SPOT uses heuristics
and machine learning to discover, characterize, and prioritize such hot
spots in order to focus ITS refinement on what matters most. We applied
SPOT to data logged by RoboTutor, an ITS that teaches children basic
reading, writing and arithmetic. A panel-of-experts experimental eval-
uation found SPOT’s selected video clips of RoboTutor’s hot spots as
significantly more informative than video clips selected randomly.

1 Introduction

An Intelligent Tutoring System (ITS) is a computer system that enables learning
by providing personalized instruction to learners. Intelligent Tutoring Systems
are becoming increasingly popular for education across a wide variety of subjects
from algebra and geometry to foreign languages. Prior research has demonstrated
that ITSs take extensive time to author, with reported estimates of 200–300 h
of development per hour of instruction [1]. As a result, various authoring tools
have been built to make ITS development more efficient.

But, despite our growing understanding of human cognition and the
tutor authoring process, developing effective tutoring systems with limited
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Fig. 1. Math activity in RoboTutor Fig. 2. Data-driven iterative development

development resources remains hard, due to their massive design space [19]. In
this situation, a practical guiding principle for ITS development and improve-
ment is to fix what is most broken.

The design of RoboTutor [25] (see Fig. 1) was guided by this principle. Robo-
Tutor is a finalist in the Global Learning XPRIZE Competition [27] to develop
an open-source Android tablet application that teaches children aged 7–10 in
developing countries basic reading, writing, and arithmetic. As Fig. 2 illustrates,
RoboTutor’s iterative development process involves designing prototype activ-
ities, deploying them for field testing, collecting data as the children do the
activity, and mining this data to identify and modify what’s most broken.

This paper addresses how to use data from RoboTutor to automate discovery
of design issues pertaining to RoboTutor’s:

– Reliability: How often and under what conditions does RoboTutor crash or
hang? How fast does a child recover from the crash or hang?

– Recognition: How accurately does RoboTutor recognize written and spoken
input?

– Usability: How easily and efficiently can children operate RoboTutor? Which
situations do they find hard to navigate?

– Engagement: When are the children disengaged, and why?

To answer these questions we present Statistical Probe of Tutoring (SPOT),
an educational data mining tool intended to help ITS developers identify “what’s
most broken” - i.e, “hot spots” with respect to design criteria such as software
reliability, recognition accuracy, UI/UX usability, student engagement and task
difficulty. SPOT uses quantitative metrics to evaluate such criteria; for example,
metrics of reliability include the frequency of crashes and hangs.

SPOT uses heuristic metrics to identify undesirable events, and trains a deci-
sion tree to discover hot spots. A hot spot is a subtree with a high proportion
of undesirable events.

The intuitions that inspired this approach are as follows:

– Within a decision tree, undesirable events in the same subtree are likely to
have the same underlying cause.



What’s Most Broken? Design and Evaluation of a Tool 285

– The feature combination associated with a subtree - that is, the sequence of
tests from the root to the subtree - characterizes when the undesirable events
tend to occur and may reflect this underlying cause.

– Screen capture videos undesirable events in the subtree may shed further light
on a certain cause and inspire ideas for how to address it.

SPOT may be especially useful when user-testing in person is impractical,
such as when the users are far away, when children may behave differently
because adults are present, and when hot spots are important to fix but too
rare to observe in person.

Earlier work [16] designed a UI/UX for SPOT and prototyped it using sim-
ulated data. In this paper, we describe an implementation that uses automated
decision tree learning and runs on real data from RoboTutor.

Section 2 discusses prior related work. Section 3 describes how RoboTutor is
organized, the data collection process and the SPOT workflow in detail. Section 4
summarizes SPOT’s discoveries about RoboTutor, Sect. 5 reports an experimen-
tal evaluation of SPOT, and Sect. 6 summarises our contributions and avenues
of future work.

2 Relation to Prior Work

Many Intelligent Tutoring Systems record student interactions in log files [21].
To the best of our knowledge SPOT is the first tool that specifically facilitates
the discovery of hot spots in Reliability, Recognition Accuracy, Usability and
Student Engagement.

2.1 Software Reliability

Intelligent Tutoring Systems must be reliable. Frequent crashes or hangs can dis-
engage learners and negatively impact user experience. Prior studies of software
reliability growth models relied on assumptions about the nature of faults and
the non-deterministic behavior of failures [14]. Connectionist models have also
been used to predict software reliability, as they can generate models automati-
cally from the history of past failures [18]. The version of RoboTutor we analyzed
did not explicitly log crashes, so we could not use reliability models based on
data of past failures. Instead, we used simple heuristics to label likely instances
of a crash or hang, for e.g. successive sessions on the same tablet separated by
only a short hiatus.

2.2 Usability

Usability is concerned with making a system easy to learn and use. Realizing
usable ITSs involves alternating between usability evaluation and re-design until
a satisfactory usable design is achieved. Several approaches have been used to
evaluate ITS usability, including objective performance measures of effectiveness
and efficiency, users’ subjective assessments, walkthrough usability tests, and
memo tests to measure interface memorability [9,10,15].
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2.3 Engagement, Off-Task Behavior and Gaming the System

Children must focus on solving problems and engage with a tutor to effectively
utilize their time and learn. A child is disengaged when he or she is not actively
thinking about the subject material, and/or attempts to “game the system”
by systematically misusing the ITS’s feedback and hints to advance through
the curriculum. Prior work [11] has shown that off-task and gaming behaviors
are associated with poor learning outcomes. There is also extensive literature
on detecting instances of student disengagement and lack of motivation. Beck’s
Engagement Tracing [17] model showed that time on task is an important pre-
dictor of disengagement. Cocea et al. [12] used a rich bag of features from log
files to train a decision tree to assess students’ motivation. Baker et al. [3,4,6]
developed latent response models to classify instances of gaming the system.
Successful detectors of engagement and off-task behavior have often relied on
either a limited set of activities (or questions), for example student performance
on multiple-choice cloze questions [17], or field observations of student affect to
train statistical or machine learning models [11]. In contrast, SPOT does not use
data from observers to ascertain whether a child is off-task while using Robo-
Tutor. Also, SPOT analyzes log data from many different kinds of activities,
including story reading, multiple choice tasks and writing, and uses only on log
files and screen video, unlike previous studies that utilize time intensive field
observations and questionnaire evaluations.

Metrics like number of bailouts in activities, and average duration per
attempt (see Table 2) were inspired by predictors of gaming behavior. Previous
work [5,7,12,13,17] has shown that these predictors are accurate in detecting
disengagement.

3 Methodology

3.1 Organization of RoboTutor

RoboTutor uses a variety of activities to teach basic literacy and numeracy to
children. Figure 1 illustrates a math activity teaching addition of two numbers.
RoboTutor’s hierarchy of events is as follows:

1. Session: The sequence of zero or more activities between launching Robo-
Tutor and exiting or crashing.

2. Activity: A tutor or game that teaches a certain skill, such as addition of
two numbers, by giving assisted practice and feedback on a sequence of items.

3. Item: A stimulus presented visually and/or orally. Depending on the activity,
the child taps, speaks or writes a response. In Fig. 1, the problem of adding
20 and 51 is an item of a math activity. The next item is presented after the
child gets the current item right. An item may require multiple steps.

4. Step: A part of performing an item. For example Fig. 1 is a two-step item.
Adding numbers in the ones’ place is the first step, while adding numbers in
the tens’ place is the second step.
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5. Attempt: A single input by the child within a step. An attempt can be either
correct or incorrect. A step may take more than one attempt. Activities vary
in the number of incorrect attempts allowed before RoboTutor automatically
advances to the next step.

The RoboTutor log data consists of transactions. A transaction is a record of
an attempt at a step of an item, either successful, unsuccessful, or unfinished
if the child quits the activity. We derived three levels of features from logged
transactions:

– Step level: Aggregation over all the attempts at a step, e.g. number of
attempts

– Item level: Aggregation over all steps of an item, e.g. time spent on the item
– Activity level: Aggregation over all items of an activity, e.g. percent of items

correct on the first attempt

Fig. 3. Workflow of SPOT

3.2 Data Collection

The dataset used by SPOT to discover hot spots is derived from the performance
logs from RoboTutor’s beta field testing sites between April and July 2018,
comprising 357,115 student transactions from a total of 198 user IDs (students
aged 7–10), spanning approximately 212 student hours. After data cleaning, we
get the fields listed in Table 1. The dataset also includes screen capture videos
of RoboTutor recorded using AZ Screen Recorder [24].

3.3 Approach

SPOT aims to help ITS developers by focusing their attention on design issues
that hamper effective tutoring. SPOT automates the discovery of these design
issues based on different criteria and quantitative metrics. Figure 3 illustrates
the SPOT work flow.
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Table 1. Features from performance logs

Granularity Features

Attempt Duration (sec), Tutor Name, Tutor Level, Problem Name,
Student Input, Activity Status, Expected Answer, Hiatus,
Content Area, Outcome, Student Repeated Activity
(binary), Student Took Hint (binary), Tablet Name,
Attempt Number

Activity or item Tutor Name, Tutor Level, Tutor Matrix (Category), Tutor
Sequence Session (for Activity), Tutor Sequence User (for
Activity), Problem Name (for Item), # of attempts, # of
items (for Activity), Duration (sec), Avg/min/max
duration of attempt, # of correct attempts, % of correct
attempts, # of bail-outs (activity quit), # of scaffolds (i.e
hints received), # of re-attempts, # of activity repeat,
Activity/Item Hiatus

1. The SPOT user first specifies a design criterion, and picks metric(s) to opera-
tionalize it. A design criterion is any property of an Intelligent Tutor that we
wish to analyze. SPOT currently addresses four design criteria: Reliability,
Recognition, Usability and Engagement. Using pre-defined metrics (heuris-
tics; see Table 2), SPOT approximately labels each row of the data as a
suspicious instance indicating a design issue, or a non-suspicious instance.
For example, the rejection rate of responses in writing activities is a met-
ric of writing recognition, and a suspicious instance is any written response
other than the expected answer. Our labeling is approximate because a met-
ric does not guarantee finding a design issue. We also used metrics when we
did not have ground truth (crash logs for reliability or field observations for
engagement [6]) to label the data. In our example, suspicious instances may
also include genuinely incorrect student responses, not just correct responses
rejected due to mis-recognition. Only correct responses falsely rejected or
accepted are recognition issues; frequent rejected incorrect responses may
indicate a usability issue such as an excessive level of difficulty. Such issues
are informative in their own right, because they may indicate that students
are being given problems beyond their zone of proximal development.

2. SPOT trains a decision tree on the labeled data and selects the top N hot
spots using the F1 score for each subtree. Decision trees have been extensively
used in the past for summarizing and generalizing data [2,22,26] due to their
comprehensibility. We chose decision trees in the interest of discovering sim-
ple, understandable rules in contrast to more opaque learning methods such
as neural networks. Since the focus of this work is not to identify the optimal
learning method but rather to demonstrate the viability of the general app-
roach, we utilised a popular off-the-shelf Decision Tree implementation. We
used scikit-learn’s [23] Decision Tree API that uses an optimised version of
the CART algorithm [8] for constructing the tree.
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Our intuition suggests that suspicious events in the same sub-tree are likely
to have the same underlying cause, and a large cluster of suspicious instances
might suggest an underlying design issue. SPOT uses different combinations
of features such as activity name, student input, expected answer, attempt
duration etc, with different features for attempt, item and activity-level data
(see Table 1). We selected these features to enhance the comprehensibility of
hot spot characterizations. Consequently, we chose categorical features like
Tutor Name and Content Area since they facilitate discovery of hot spots in
activities.
For a subtree to be counted as a hot spot it must balance both purity (concen-
trating suspicious instances) and number of suspicious instances. Thus, leaves
of a decision tree (which don’t have many instances despite being pure) and
the root (which is significantly impure despite including all the logged events)
aren’t hot spots. Figure 4 illustrates a particular hot spot in a portion of the
decision tree. For striking this balance, SPOT uses the F1 score and gets the
score (‘heat’) of every subtree for discovering hot spots:

F1 =
2PC

P + C

where:

P (precision) =
number of suspicious instances in hot spot

total number of instances in hot spot

C(coverage) =
number of suspicious instances in hot spot

total number of suspicious instances in data

The higher this F1 score of a subtree, the hotter it is. SPOT chooses and
prioritizes the top N hottest subtrees as the hot spots.

3. SPOT automatically characterizes each of the hot spots by conjoining every
test on the path from the root node of the tree to the hot spot. This ‘char-
acterisation’ is the possible ‘underlying cause’ mentioned in Point 2. We use
Decision Trees strictly for finding and characterizing hot spots, not for clas-
sifying unseen data.

4. SPOT picks a random sample of suspicious instances of a hot spot, and
presents their characterisation along with their corresponding screen cap-
ture videos (indexed in Google Drive) scrolled to 10 s before the start of the
instances. These screen capture videos may expose the design issue or its
underlying cause, and inspire ideas on how to address it by modifying Robo-
Tutor.

Figure 5 illustrates a screen shot from the screen capture videos for the hot
spot characterized as: “expected answer = 7”. After examining the sample of
screen capture videos from this hot spot, we realized that the writing recognizer
often mis-recognizes 7 in the absence of its middle stick as 1, leading children to
confuse the two.
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Table 2. SPOT metrics and labeling criteria

Criterion SPOT metrics Positive labeling criteria

Reliability Crashes (quick session
changes)

Session ID changes in successive attempts
on the same tablet within a very short
period (indicative of a crash), mark the
first session change attempt as positive

Recognition Rejection rate Rejection (Outcome = INCORRECT)
for spoken and written input

Usability Hiatus: time between
end of previous
attempt/item/activity,
and start of the current
one

Above mean hiatus

Engagement # of bailouts in
activities

Activities with at least one bailout

% correct attempts in
activities

Activities with % correct <0.5 and # of
incorrect attempts ≥2

Average duration per
attempt

Above mean average duration

Number of reattempts
per item

Number of reattempts ≥2

Fig. 4. Hot spot illustration. Nodes in decision tree with high F1 scores are taken as
hot spots. CART uses the Gini Impurity for getting the optimal split at every node in
the tree.

4 Discoveries

We used SPOT to identify hot spots in the criteria previously described. Based
on SPOT’s findings (characterizations and extracted screen video clips), we pro-
posed several design changes to RoboTutor. Table 3 presents some of the findings
and their corresponding design implications.
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Table 3. SPOT findings and implications

Criterion SPOT findings Design implications

Reliability Crashes especially
occur in Counting and
Story Reading
activities

Implement crash logging, Examine
Counting and Story Reading activities
for bugs

Recognition Children confuse 1 with
7 (often forget the
middle dash in 7) and 3
with 5

Bias item sequences for number copying
and dictation to give more practice on
such frequently confused digits

Usability Children spend
unusually long time per
story in Story Reading
activities

Add a timeout for story reading

Engagement Children tend to bail
out of an activity when
given the same
problems to solve
repeatedly

Do not give the same items twice in a row

Fig. 5. Recognizer mis-recognizing 7 as 1 because of absence of middle stick. This
instance and its characterisation and corresponding screen video was provided by SPOT

5 Evaluation

How should SPOT be evaluated? Since its purpose is to guide the improvement
of an intelligent tutor (in particular RoboTutor), an evaluation with unlimited
time and resources might start with the same version of RoboTutor, give some
software developers some period of time to improve it using SPOT, kid-test
the resulting software, and compare it to software produced without SPOT.
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Developers and children vary, so a valid comparison would require multiple ver-
sions developed by statistically comparable teams of developers and tested on
statistically comparable samples of children. Even then the comparison would
be of limited use because the idiosyncrasies of teams and the contexts in which
they operate make software development projects irreproducible by their very
nature.

5.1 Experiment Design

Instead, we conducted an experiment to test SPOT’s impact on the process of
identifying design issues. To evaluate the impact of Steps 2–4 in our approach
(Sect. 3.3), we conducted a panel-of-judges experiment to measure the informa-
tiveness of 8 groups of 2–3 video clips picked by SPOT compared to 4 random
groups of clips. To represent SPOT’s target users, we recruited four judges (a
faculty member, a PhD student, an undergraduate, and a staff programmer)
who were familiar with RoboTutor and knowledgeable about intelligent tutors
and HCI, but did not work on SPOT.

To make the comparison fair, we had to blind the judges to how the video
clips were selected. We therefore showed them only the 12 groups of video clips,
without the hot spot descriptions output by SPOT, because including them
would have revealed which clips were random and which criteria the other clips
illustrated. Instead, the survey listed the criteria and metric(s) to choose from.
For each group of clips, the survey asked the following 3 questions (worded more
completely in the survey introduction):

1. Are the video segments informative – that is, do they collectively reveal a
significant design issue?

– Yes
– No

(we predicted that judges would rate video clips selected by SPOT as more
informative overall, compared to video clips selected at random)

2. Which of the following best describes the design issue revealed by these clips?
– RELIABILITY: RoboTutor crashing
– RECOGNITION: Mis-recognition/false rejection of spoken or written

input
– USABILITY: Long hesitations, time on menus/debugger/irrelevant

screens
– ENGAGEMENT: Repeated bailouts, quitting RoboTutor after multiple

bailouts
– OTHER: None of the above

(we predicted that judges would rate video clips as more informative regarding
the criteria that led SPOT to select them, compared to the other criteria. That
is, SPOT is sensitive to the specified criteria)

3. Briefly describe the specific issue in more detail.
(we used this question to elicit judges’ perceptions of the design issues).
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5.2 Experiment Results

The four judges each rated the same 12 groups of video clips. In deciding which
groups were informative overall, they showed substantial agreement with each
other (Fleiss’ Kappa = 0.71). Unbeknownst to the judges, the 12 groups com-
prised 8 chosen by SPOT, which 97% of their responses rated as informative,
and 4 chosen randomly, which only 3% of their responses rated as informative.

To quantify judges’ agreement as to which of the 12 sets of video clips
revealed which issues, we computed Fleiss’ Kappa for the 5 issues RELIA-
BILITY, RECOGNITION, USABILITY, ENGAGEMENT, and OTHER. Their
agreement was almost perfect (Kappa = 0.86). This higher value may seem
counter-intuitive but reflects the lower probability of chance agreement in choos-
ing among 5 issues than between informative and uninformative. 90% (45/48) of
the judges ratings matched SPOT’s categorization as RELIABILITY, RECOG-
NITION, USABILITY, or ENGAGEMENT or categorization of the randomly
chosen groups as OTHER. The exceptions may have been caused by insuffi-
ciently clear instructions, ambiguity due to overlap between criteria (usability
and engagement), or judges’ incomplete knowledge of RoboTutor, e.g. which of
its activities listen to spoken input and may therefore mis-recognize it.

Finally, the open-ended question was useful in exposing some responses to
the first question as anomalous, i.e., contradicted by judges’ descriptions of the
issues. Correcting their Yes/No responses to match their descriptions yielded
almost perfect agreement among judges as to which groups of videos were infor-
mative (Kappa = 0.90).

The practical significance of these results is the time saved. For the data
set used, SPOT took only 4–5 min to identify hot spots for a given criterion,
generate charactersations of them, and provide links to specific instances of them
in the form of video links scrolled to 10 s before the precise moment where
they occurred. This capability saves an enormous amount of time compared
to finding issues by browsing randomly through screen videos. Issues may be
important to fix yet infrequent to occur. The rarer they are, the more video
one would have to watch in order to discover them. One would have to watch on
average 5 h of random video to encounter an instance of an issue that occurs once
every 10 h. In contrast, SPOT can identify such issues in minutes, characterize
them in terms of features of the hot spot, and immediately locate and present
instances of them in video clips.

The purpose of this evaluation was to test SPOT’s ability to discover phe-
nomena interesting to humans representative of its intended target users, namely
ITS developers. Better heuristics for identifying such phenomena might well be
developed by hand, but at considerable cost. Although SPOT’s methods are
intended to be general, however, we acknowledge that so far they have been
applied only to data logged by various versions of RoboTutor at 28 XPRIZE
sites and two beta sites.
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6 Conclusion and Future Work

In this paper we introduced SPOT, a tool to simplify data driven iterative design
of an Intelligent Tutoring System by focusing on criteria such as reliability, recog-
nition, usability and engagement. SPOT discovers, prioritizes and characterises
design issues (hot spots) in pre-defined design criteria using decision trees and
heuristic metrics. SPOT automatically characterizes hot spots using the features
associated with the item, and presents their corresponding screen-capture videos
to help diagnose the problem. We described some hot spots that SPOT discov-
ered and their design implications. A panel-of-judges experiment demonstrated
that the videos chosen by SPOT are significantly more informative and relevant
to the specified criteria than videos chosen randomly.

As future work, we plan to experiment with other scoring functions. We also
plan to develop SPOT into a web application and integrate it into LearnSphere
[20], one of the world’s largest learning analytics platforms. We believe SPOT
would benefit many tutor designers, help them iteratively improve their tutors,
and in turn save a lot of time.
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Abstract. Mind-wandering is a ubiquitous phenomenon that is negatively
related to learning. The purpose of the current study is to examine mind-
wandering during vicarious learning, where participants observed another stu-
dent engage in a learning session with an intelligent tutoring system (ITS).
Participants (N = 118) watched a prerecorded learning session with GuruTutor,
a dialogue-based ITS for biology. The response accuracy of the student inter-
acting with the tutor (i.e., the firsthand student) was manipulated across three
conditions: Correct (100% accurate responses), Incorrect (0% accurate), and
Mixed (50% accurate). Results indicated that Firsthand Student Expertise
influenced the frequency of mind-wandering in the participants who engaged
vicariously (secondhand students), such that viewing a moderately-skilled
firsthand learner (Mixed correctness) reduced the rate of mind-wandering
(M = 25.4%) compared to the Correct (M = 33.9%) and Incorrect conditions
(M = 35.6%). Firsthand Student Expertise did not impact learning, and we also
found no evidence of an indirect effect of Firsthand Student Expertise on
learning through mind-wandering (Firsthand Student Expertise ! Mind-
wandering ! Learning). Our findings provide evidence that mind-wandering
is a frequent experience during online vicarious learning and offer initial sug-
gestions for the design of vicarious learning experiences that aim to maintain
learners’ attentional focus.

Keywords: Mind-wandering � Vicarious learning �
Intelligent tutoring systems � Attention � Task-unrelated thought

1 Introduction

It is rather fascinating that simply viewing another student engage in an interactive
tutoring session can yield (in the observer) approximately two-thirds of the learning
gains obtained by the student who actually engaged in the session (d = 1.20) [1]. This
observation-based learning method, called vicarious learning (defined as learning
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through observation without overt behaviors [2, 3]), produces robust learning gains in a
number of observational contexts including computer-based instruction and peer-to-
peer interactions [2–9]. The benefits of vicarious learning highlight its potential as an
educational paradigm, particularly given the scalability and cost-effectiveness of
learning vicariously through video compared to, for example, engaging with an
intelligent tutoring system (ITS). Despite its potential, there are many questions about
which features of a vicarious learning session make it effective. This research gap is
especially wide for the assessment of moment-to-moment process variables such as
attention—a gap we address in the current paper.

1.1 Theoretical Background and Motivation for Current Study

Vicarious learning activities provide a more interactive alternative to traditional online
learning (e.g., MOOCs). Here, we are interested in a particular form of vicarious
learning involving observing one-on-one tutoring sessions (e.g., [2, 3, 5]). In this
context, it is necessary for the vicarious learner (i.e., the secondhand student) to ac-
tively process a dialogue between a tutor and another student (i.e., the firsthand stu-
dent). This activity requires the student to engage in a number of complex processes,
such as the integration of multiple perspectives, as well as the evaluation of the
credibility and accuracy of each perspective [6, 8, 10]. This form of active processing
contrasts with more passive learning activities, like monologues (e.g., video lectures),
which remain a popular method of information delivery in online learning contexts
(e.g., MOOCs and online courses).

Dialogue-based vicarious learning activities are an effective educational tool that
promote active learning, particularly in comparison to similar monologue-based
activities [1, 3, 4, 6, 8, 10]. The effectiveness of such vicarious tasks can be explained
through the ICAP framework [11] (Interactive > Constructive > Active > Passive),
which suggests that while interactive tasks are the most effective for learning, followed
by construct, active, and passive tasks. Olney et al. [12] recently extended ICAP to
highlight the role of attention. According to their ICAP-A framework, students’
attentional processes (i.e. mind-wandering, or off-task thought) would follow the same
general ICAP pattern, such that students would be least likely to mind wander during
an interactive learning activity, followed by constructive, active, and passive activities.
In line with their framework, mind-wandering tends to occur most often during
monologues (i.e. video lectures, (*43% of the time [12, 13]) and least often during
interactions with a dialogic intelligent tutoring system (*23% of the time [14–16]),
although these results are correlational.

Notably absent from the literature are studies exploring the frequency and influence
of mind-wandering during vicarious learning tasks. Watching a video of a learning
session is similar to viewing a video of a lecture; yet, mind-wandering may be less
frequent during vicarious learning due to the active processing required by perspective-
taking when viewing a dialogue. The current study addresses this gap by asking
participants (i.e. secondhand learners) to watch a short video of prerecorded interactive
intelligent tutoring sessions to assess the frequency of mind-wandering during vicari-
ous learning.
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Two decades ago, Cox et al. originally posed the question, “What are good models
for the vicarious learner - experts or novices?” [6] (p. 432). Three hypothetical
explanations were laid out for the “best” type of firsthand student: (1) experts can
model perfect behavior, which may be preferable because the learning session is
“uncluttered” or without error; (2) moderately-skilled learners can make the learning
session more student-centered since the secondhand learners may better identify with
such learners; (3) unskilled firsthand learners may be effective because the secondhand
learner would learn what to avoid, and would be motivated to do so after witnessing
any negative feedback.

Some prior work may be in support of the effectiveness of viewing unskilled an
firsthand student. For example, viewing erroneous examples can help promote more
critical evaluation and deeper learning [17, 18]. However, a study by Chi et al. [5]
provided tentative evidence in support of the expert firsthand student. In their study,
students learned more from “good” firsthand students (five students were retroactively
assigned to be “good” students based on their pretest scores) when secondhand students
collaboratively observed a one-on-one human tutoring session. However, the authors
acknowledged their small sample size (N = 20 secondhand students) and solely
focused on learning outcomes. Thus, we also examined whether the expertise of the
firsthand student would have an effect on the mind-wandering rates and subsequent
learning of the secondhand learner.

1.2 Current Study

We take the first steps toward understanding mind-wandering in the context of
vicarious learning from an interactive ITS. We address three research questions: First,
what is the overall rate of mind-wandering during vicarious learning from an ITS? This
is an important consideration given the overwhelming discrepancy between
monologue-based learning activities – which have the highest rates of mind-wandering
[19] – and vicarious learning from dialogues, both of which can be disseminated via
short videos online.

Second, does the expertise of the firsthand student influence mind-wandering and
learning? We operationally defined expertise as correctness of the firsthand student’s
responses, which we manipulated across three conditions: 100% correct condition, to
correspond with Cox et al.’s expert level; 0% correct (Incorrect condition), to corre-
spond with the unskilled student; and 50% correct (Mixed condition), corresponding to
the moderately-skilled student. Exploring the impact of the firsthand student’s expertise
can help inform strategies on how to design effective vicarious dialogues.

Third, we investigated if any main effects of Firsthand Student Expertise on
learning are mediated by mind-wandering (Firsthand Student Expertise ! Mind-
wandering ! Learning).
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2 Methods

2.1 GuruTutor Overview

Participants viewed a video of a firsthand student interacting with GuruTutor, an ITS
modeled after expert human tutors [20]. GuruTutor is designed to teach biology
topics through collaborative conversations in natural language. Throughout the con-
versation, an animated tutor agent references (using gestures) a multimedia work-
space that displays content relevant to the conversation (see Fig. 1). GuruTutor
analyzes learners’ typed responses via natural language processing techniques and the
tutor’s responses are tailored to each learner’s conversational turns. For a more detailed
description of GuruTutor, see [20–22]. Participants viewed the firsthand student
interacting with the two sections of GuruTutor that involve collaborative dialogue:
(1) Common Ground Building Instruction and (2) Scaffolded Dialogue. The Common
Ground Building Instruction section—sometimes called collaborative lecture [23]—is
where basic information and terminology are covered. This section is critical because
many biology topics involve specialized terminology (e.g., thermoregulation, meta-
bolism) that need to be introduced before scaffolding can occur. In the Scaffolded
Dialogue section, the tutor prompts the learner to answer questions about key concepts
using a Prompt ! Feedback ! Verification Question ! Feedback ! Elaboration
cycle. Importantly, the tutor elaborates the correct answer after every response.

2.2 Participants and Design

Participants (N = 118) were recruited from Amazon’s Mechanical Turk, a platform for
crowdsourcing and online data collection [24–26]. Participants had to be at least 18
years of age (M = 35.3 years, SD = 20.1) and their location was limited to the United
States. Each participant received $2.75 for completing the study.

Fig. 1. Screenshot of learning session with GuruTutor.
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Participants were randomly assigned to watch a video of a Guru tutoring session
recorded in one of three conditions that varied in terms of the frequency of correct
responses provided by the firsthand student (here a simulated student) during the
Common Ground Building Instruction and 2) Scaffolded Dialogue phases: 100%
correct (Correct Condition), 100% incorrect (Incorrect Condition), and 50% correct
(Mixed Condition). Participants in the Mixed Condition were randomly assigned to
watch one of two videos that were counterbalanced with respect to which specific
questions were answered correctly versus incorrectly. For example, whenever an
answer was correct in version A, it was incorrect in version B, and vice versa (see
Table 1 for examples). There were no differences in mind-wandering rates (p = .759),
pretest (p = .935), and posttest scores (p = .338) as a function of counterbalance.

2.3 Materials and Procedure

Videos of GuruTutor Session. All videos were prerecorded with a screen capture
program (Camtasia) while a researcher interacted with GuruTutor using a predeter-
mined script for firsthand student responses. The topic pertained to how animals
maintain body temperature. Answer length and video length were consistent across
conditions with an average video length of approximately 16-min. with all videos being
within 45 s in length from the others. Each video had the same number (n = 142) of
dialogue turns, with the firsthand student’s responses comprising 18% (answering 21
questions) of the dialogue turns; the remaining were tutor turns.
Order of answer correctness in the Mixed condition was pseudo-randomly determined
so that vicarious learners could not detect a pattern. In both the Incorrect and Mixed
Conditions, incorrect answers were thematically-related to the content but incorrect
with respect to the specific tutor question. Regardless of whether the firsthand student
response was correct or incorrect, the tutor provided feedback about answer correctness
and repeated the correct answer via elaborated feedback. This was done as a guard
against false information being retained (see Table 1 for an example of the dialogue
across the three conditions).

Thought Probes. Mind-wandering was measured using a probe-caught method during
the video. Participants were presented with the following description, which was
adapted from previous studies [6, 21]: “Sometimes when you are watching the video,
you may suddenly realize that you are not thinking about what it is that you are
watching. We call this “zoning out” or mind wandering about thoughts unrelated to the
content of what it is that we are reading. So, we would like you to tell us when you are
zoning out. During the presentation of the video, you will hear a “beep” and the video
will stop. We would like to know if you are thinking about the video or if you are
thinking about something else (e.g., what you will be eating for dinner, your plans for
the week). When you hear the tone and you are zoning out, please indicate “Yes” by
pressing the “Y” key on your keyboard. If you hear the tone and you are not zoning
out, please indicate “No” by pressing the “N” key on your keyboard.”

The instructions also emphasized that participants should be as honest as possible
when reporting mind-wandering and that their responses would have no influence on
their progress and compensation. There were nine probes per video with probe timings

300 C. Mills et al.



approximately evenly interspersed and set to align with the same events across con-
ditions (e.g., after the tutor completed a specific turn).

Learning Measures. We used 16 four-foil multiple-choice questions to assess
learning. The questions were derived from previously administered standardized test
items or from researcher-created items (see [27]). The questions targeted specific
concepts mentioned during the session, such as: Which of the following is true about
blood temperature?: a. it is cooled as it is pumped near the brain: b. it is heated as it is
pumped near the extremities: c. it is heated as it is pumped near the core (correct
answer): d. blood temperature generally stays about the same. Two parallel versions of
the test were created (8 items each) by randomly dividing the questions, which were
counterbalanced as pre- and posttest.

Procedure. After providing electronic consent, participants completed a pretest to
gauge prior knowledge. They then received instructions for the thought probes and
were informed they would watch a prerecorded video of a student interacting with a
computer tutor called GuruTutor. They were instructed that their task was to watch the
video in order to understand the concepts being taught and that they would be sub-
sequently assessed on their learning. At this point, the video was presented along with
the thought probes. Finally, participants completed the posttest and were debriefed.

Table 1. Example dialogue across the three conditions.

Correct Incorrect Mixed A Mixed B

Example from collaborative lecture section
Tutor Our bodies inevitably get too hot
Tutor They release a watery substance onto its surface which serves to cool skin

down during evaporation processes
Tutor Hint. Recollected that when you are hot it occurs

Do you foresee what this substance is called?
Firsthand
Student*

Sweat Blood Sweat Blood

Tutor* OK, Good That’s not it OK, Good That’s not it
Tutor It’s sweat It’s sweat It’s sweat It’s sweat
Example from scaffolding section
Tutor The brain changes the body’s metabolism in order to change the body’s

temperature. Here is a related question
Tutor What is metabolism?
Firsthand
Student*

Rate of chemical
reactions

Energy used to
pump blood

Energy used to
pump blood

Rate of chemical
reactions

Tutor* Very good Nope Nope Very good
Tutor Metabolism is the rate of chemical reactions in the body. It can be slowing

down or speeding up

Notes. Italics * = manipulated dialogue. Mixed 1 and 2 represent the two different
counterbalanced videos in the Mixed condition.
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3 Results and Discussion

Table 2 presents descriptive statistics for key variables. An analysis of variance
(ANOVA) revealed no differences across conditions with respect to prior knowledge,
F(2,115) = 2.29, p = .106, thereby confirming successful random assignment.

3.1 How Often Did Participants’ Mind-Wander?

We first explored the frequency of mind-wandering during the vicarious learning
session. Participants reported mind-wandering 31.7% of the time (SD = 31.9; or 2.9
mind-wandering episodes on average during the session). This finding parallels the
rates found in other active online learning activities, such as reading [12, 19, 28].

3.2 Did Firsthand Student Expertise Influence Mind-Wandering
in Secondhand Learners (Participants in Current Study)?

Mind-wandering rates were analyzed using a Poisson regression which is suitable for
count data (i.e. the count of the number of probes with positive mind-wandering
responses). We first assessed the main effect of Firsthand Student Expertise by
including it as the only independent variable. A significant omnibus test indicated that
model fit improved after including Firsthand Student Expertise in comparison to the
intercept-only model, v2(2) = 6.69, p = .035. Comparisons of parameter estimates
revealed that participants in the Mixed condition reported significantly less mind-
wandering compared to both the Incorrect (B = .335, SE = .139, Wald v2(1) = 5.81,
p = .016) and Correct conditions (B = .287, SE = .140, Wald v2(1) = 4.18, p = .041).
Rates of mind-wandering across the Correct and Incorrect conditions were on par
with one another, p = .704, yielding the following pattern of results (Mixed <
[Correct = Incorrect]).

We tested whether the main effect of Firsthand Student Expertise was robust after
adding prior knowledge as a covariate. The omnibus test was significant, v2(3) = 8.95,
p = .030. The tests of model effects indicated that pretest was not a significant predictor
of mind-wandering, B = -.445, SE = .299, Wald v2(1) = 2.22, p = .137. The effect of
Firsthand Student Expertise was still significant after including the covariate, Wald
v2(2) = 7.32, p = .026, with the same pattern of effects: Participants reported less
mind-wandering in the Mixed condition compared to the Correct (p = .040) and
Incorrect (p = .009) conditions, which were on par with one another (p = .524).

Table 2. Means and standard deviation (in parentheses) for key variables across the conditions.

Correct Incorrect Mixed
M (SD) M (SD) M (SD)

n participants 40 40 38
Mind-wandering proportion .339 (.325) .356 (.340) .254 (.288)
Pretest scores .278 (.207) .353 (.189) .272 (.163)
Posttest scores .605 (.274) .574 (.223) .554 (.274)
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3.3 Did Firsthand Student Expertise Influence Learning?

We first assessed participants learned from the vicarious learning session using a paired
samples t-test. There was a significant increase from pre- to posttest, t(117) = 9.99,
p < .001, d = 1.22 after pooling across conditions, suggesting that vicarious learning
was effective in our context. We then tested whether Firsthand Student Expertise
predicted post-test scores after controlling for pre-test in an ANCOVA, but found no
main effect of Firsthand Student Expertise, F(2,114) = .434, p = .649.

3.4 Did Firsthand Student Expertise Influence Learning Through Mind-
Wandering?

Although there was no evidence for a main effect, it is possible that Firsthand Student
Expertise may influence learning indirectly through mind-wandering (Firsthand Stu-
dent Expertise ! mind-wandering ! learning) [29] – particularly given that mind-
wandering was negatively related to posttest scores, rho = −.173, p = .061. We tested
indirect effects using the ‘mediation’ package in R [30]. We specified two models: (1) a
mediator model, which was a Poisson model regressing mind-wandering on Firsthand
Student Expertise, controlling for pretest scores; and (2) an outcome variable model,
which was a linear model regressing posttest scores on mind-wandering and Firsthand
Student Expertise including the same covariate. We obtained causal estimates for the
indirect effect over 10,000 quasi-Bayesian Monte Carlo simulations; however, there
was no evidence of mediation, p = .190, 95% CI = −.005, .014.

4 General Discussion and Conclusion

Until now, mind-wandering had not been explored in the context of vicarious learning
from an ITS—an important context given the effectiveness of vicariously observing
dialogues [3, 4] combined with the cost-effectiveness of delivering vicarious learning
sessions online. The current study addressed this gap while also examining whether
Firsthand Student Expertise influenced the rate of mind-wandering, learning, including
both direct and indirect effects.

4.1 Main Findings

Participants reported mind-wandering approximately 32% of the time, underscoring its
frequency during vicarious learning activities [19]. These rates are considerably lower
than those typically observed by students viewing a monologue – e.g., recorded
classroom lectures (rates around 40% [13, 31]). At the same time, these rates are
slightly higher in comparison to rates produced by interacting with an ITS (23%
reported in [14]), perhaps because ITSs afford a more interactive experience. These
general patterns are in line with predictions made by ICAP-A [12] in that participants
may be more likely to mind wander in passive contexts compared to active (e.g.,
vicariously listening to a dialogue or interactive (e.g., engaging with an ITS) contexts.
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We also examined how the expertise of the firsthand student influenced mind-
wandering rates. Secondhand learners reported mind-wandering less often when the
firsthand student’s answers included amix of both incorrect and correct answers (i.e. Cox
et al.’s [6] version of a moderately-skilled student). This pattern is consistent with
Cox et al.’s prediction that secondhand learners may identify with a moderately-skilled
student and therefore attend more closely to both perspectives in the dialogue. Another
plausible explanation is that uncertainty about the firsthand student’s answers held
participants’ attention in the Mixed condition, whereas correctness was predictable in the
other two conditions. Future work, however, will be needed to determine which of these
accounts explains why participants were on task more often in the Mixed condition.

All three conditions performed equally well on the posttest and Firsthand Student
Expertise did not indirectly influence learning through mind-wandering. This may
indicate that participants in condition adopted a different strategy for processing the
dialogue – by paying attention more overall (Mixed condition), or perhaps only to
certain parts of the dialogue (Incorrect/Correct conditions). For example, once partici-
pants understood the firsthand student’s level expertise, they may have guessed which
pieces of information required more focused. Recent evidence from a sustained attention
task suggests that participants indeed develop strategies to alter off-task behaviors based
on motivation to perform well on the task [32], but future studies should assess the
specific strategies employed in vicarious dialog-based learning contexts.

4.2 Limitations and Future Directions

It is important to note the limitations of this study. First, this study was conducted
online, so we had no control over the participants’ environment. However, this may
also be reflective of vicarious learning in ecologically valid scenarios during online
learning. Further, although the use of Mechanical Turk has been validated as a reliable
source of data [24], replication with actual students is warranted. Second, our sample
size was limited to 118 participants. It is therefore possible that we did not have
adequate power to detect an indirect effect of mind-wandering (see Sect. 3.4). Third, in
contrast to prior work on vicarious learning [7], we used experimenter-generated
learning sessions instead of authentic learning sessions to implement the key manip-
ulation with high internal validity. Future work should, therefore, attempt to use
authentic learning sessions by first having an actual student interacting with the ITS,
then assigning a second participant to watch their video. This method could provide a
broader range of student expertise rather than two extremes used here (100% and 0%
accuracy). Fourth, we only explored one topic (maintaining body temperature) in a
single ITS; therefore, follow up studies are needed to determine if results generalize
more broadly.

Finally, some people may object to the intentional use of incorrect responses. We
acknowledge this limitation, but we feel that they are less of a concern in the current
study for the following reasons: (1) all incorrect responses were corrected immediately
after the firsthand student’s response; (2) all three conditions performed equally well on
the posttest; (3) all protocols were approved by the appropriate ethics board; (4) sec-
ondhand learners were consenting participants instead of actual students.
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Our findings can help inform the design of vicarious learning systems that aim to
promote engagement and learning. For example, GuruTutor could be strategically
modified so that the firsthand student introduces and resolves specific misconceptions
[33] or asks deep-reasoning questions [7]—both of which have been shown to be
effective for learning. Additional characteristics of the firsthand student can be
manipulated, including factors like affective tone, length of responses, or amount of
turn-taking in the dialogue. It is also possible to build detectors of mind-wandering
(e.g., using eye-gaze [15, 34, 35]) during vicarious learning so that real-time inter-
ventions can be deployed to steer participants back on task. Such systems could
dynamically adjust the correctness of firsthand student answers depending on mind-
wandering, while also ensuring that correct answers are repeated after a mind-
wandering episode.

4.3 Conclusion

This study provides a foundation for examining the role of attention in vicarious
learning contexts. Although online vicarious learning sessions are a time- and cost-
effective learning method [2], mind-wandering still occurs with some regularity (ap-
proximately 30% of the time) during vicarious learning. The current study sheds light
on how the expertise of the firsthand student can influence mind-wandering. However,
more work is needed to explore ways to design and optimize online vicarious learning
tasks to promote attention and learning.
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Abstract. Recent studies of student problem-solving behavior have
shown stable behavior patterns within student groups. In this work, we
study patterns of student behavior in a richer self-organized practice
context where student worked with a combination of problems to solve
and worked examples to study. We model student behavior in the form
of vectors of micro-patterns and examine student behavior stability in
various ways via these vectors. To discover and examine global behavior
patterns associated with groups of students, we cluster students accord-
ing to their behavior patterns and evaluate these clusters in accordance
with student performance.

Keywords: Student sequence analysis · Frequent pattern mining

1 Introduction

With the improvement of online learning systems, students are provided with
more opportunities for learning. In modern learning systems, students are usually
free to choose to access multiple learning material types. While some systems
provide restrictions on order of accessing learning content, in many systems,
there are no predefined activity sequences and students are free to choose to
work with any learning materials in any order. This choice provides students with
more freedom to learn according to their own pace and background knowledge,
and to repeat their past activities as they seem fit. For example, students can
skip some learning materials and work on the more advanced ones if they believe
that they have already mastered the prerequisite concepts. Similarly, they can
go back and repeat some learning materials.

Despite these advantages, this freedom could lead to some inefficient and non-
productive behavior. For example, past research on students’ problem-solving
behavior has found that students tend to practice the same set of concepts, well
after mastering them, instead of moving to new concepts and more difficult prob-
lems [7,10,19]. While past research on behavior patterns has mainly focused on
problem-solving behavior, student behavior can get more complex as other types
c© Springer Nature Switzerland AG 2019
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of learning materials are introduced. For example, consider a learning system that
includes both reading materials and self-assessment problems. Here, a student can
spend a significant amount of time persisting in reading on an advanced concept
and failing in related problems, without having the prerequisites.

Ideally, a learning system should be able to detect inefficient behavior and guide
the students towards efficient ones. To do this, the main challenge is to under-
stand the relationship between students’ behavior and performance. This chal-
lenge, translates into two main questions: (1) could we discover stable student
behavior patterns which could be recognized in-time to react? are them persistent,
or they happen at random; and (2) could we recognize efficient and inefficient stu-
dent behavioral patterns by associating it with their learning performance?

Past research in the area of student problem-solving behavior indicated that
stable patterns of student behavior do exist, however, theses patterns might not
be directly related to their performance [7]. Instead, different patterns charac-
terize students’ individual ways to learn and approach a problem. To find stable
patterns of student behavior, Guerra et al. [7] built student “problem-solving
genomes” from micro-patterns (“genes”) and grouped the students based on
their “genomes” into clusters. While students belonging to the same cluster tend
to show the same behavior patterns, these clusters included both high and low
performing students. However, there was an indication that within each cluster,
the “genomes” could help to discover efficient and inefficient behaviors.

In this paper, we attempt to apply the sequence mining-approach suggested
in [7] to a more complex case, where students are working with two types of
learning material, and are repeating their attempts within the same topics. The
two learning material types we focus on are: parameterized problems and anno-
tated examples. Our research questions within this more complex context are
still the same: (1) do individual students exhibit stable behavioral patterns in
their work with learning content, or their approach to learn vary by factors,
such as time in the semester or learning material difficulty? (2) to what extent
student behavioral patterns are associated with their learning performance?

2 Related Work

Online educational systems collect increasing volumes of information from stu-
dents’ interactions with various kinds of learning content. The process of data
collection has been followed by a rapid increase in research, which focused on
using this data to better understand and improve the learning process. Among
the explored topics was the early prediction of student success or failure [2],
which could be helpful to identify and support students-at-risk [20]. While early
work focused mostly on cumulative factors such as frequency of watching videos
or using discussion forums [18], recent work attempted to build more complex
models of student behavior and identify various kinds of behavior patterns to
help students make progress and improve education outcomes. Analyzing stu-
dents’ sequences and trajectories have been of increased interest recently.

Since student behavior is commonly considered as a sequence of students’
actions or interactions with the system, various kind of sequence-oriented Markov
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models were explored for behavior analysis. For example, Hansen et al. [8] ana-
lyzed log data of an online education system, and modeled student behavior as
interpretable Markov chains. The model compares action sequences across differ-
ent lengths, focusing on the flow of actions. A two-layer Hidden Markov Model is
used in [5] to automatically detect student behavior patterns from logged data of
a MOOC platform. They have shown that the extracted patterns are meaningful
and have a correlation with students’ learning outcome. In such works, all of the
students’ activities are observed to generate latent states.

Another popular group of approaches used matrix factorization to transform
a student learning traces to a smaller number of “soft clusters”. For example, Gel-
man et al. [6] segmented student use of content and assessment, into weeks. Then,
they used non-negative matrix factorization (NMF) to distill five basic behaviors
of students (“Deep”, “Consistent”, “Bursty”, “Performance”, and “Response”)
and built vectors specifying how much each student shows each behavior. Similar
approaches were used successfully with different kind of data in [13,15] that can
be incorporated with ranking techniques from social networks [3].

Some work in the literature focused on student trajectories [11,21]. For exam-
ple, Boubekki et al. [1] compared the navigation behavior of students in reading
textbooks and discovered student clusters that were indicators of student per-
formance. Sawyer et al. [17] proposed a time-series representation of student
problem-solving trajectories in a learning game. They used Euclidean distance
and trajectory slope to measure students’ distance with “expert paths”, which
was correlated with students’ learning gain.

The least explored, but potentially very powerful group of approaches focused
on using sequence mining to identify behavior patterns. In [14], authors have
extracted frequent action sequences in a collaborative learning environment to
distinguish high achieving student from low achieving students. The analysis in
this work is on interaction with resources on a tabletop. Students’ actions on the
tabletop are logged and coded into events to create sequences. Then, frequent
sub-sequence sequential patterns are extracted using n-grams. The patterns are
clustered to build higher-level patterns and students are compared based on
them. In [7] patterns of student work with parameterized exercises are modeled
and analyzed. In this work, micro-patterns are extracted using a sequential pat-
tern mining algorithm and used to build student behavior profiles (“genomes”).
Then, students with similar genomes are clustered into behavior groups.

3 System and Dataset

In our experiments, we use the student interaction data with learning materials
in the “Introduction to object-oriented programming” course using Progressor+
interface [9]. The system includes parameterized exercises and worked-out code
examples as two different types of learning material. The learning material in the
practice system were grouped into topics. For each topic, multiple problems and
examples are available. Although the order of topics was shown to the students,
they could choose any topic, problem, or example to practice at any time in
any preferred order. The parameterized exercises are small problems focused
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on program behavior prediction. Each exercise is a template with a parameter,
which is generated randomly every time a student chooses to work on them.
Consequently, students can use the same exercise template for practice multiple
times with different parameters. Worked-out annotated code examples are small
complete programs annotated with short explanations for each line of code.
Students can click on the lines of code in any order to read the explanation. The
dataset includes three semesters of student activities in Java classes in a large
public US university. After data cleaning, the dataset contains 83 students. There
are 103 parameterized problems and 42 annotated examples in the dataset. The
number of correct attempts to solve problems is 13796, the number of incorrect
attempts is 6233, and the number of clicks on examples is 12713. In addition
to the student behavior log, the dataset includes pre-test and post-test scores
for each student. The pre- and post-tests included the same set of program
behavior prediction questions administered at the beginning and at the end of
each semester correspondingly. The minimum and maximum score in pre-test
are 0 and 14 and in post-test are 5 and 24 respectively. To measure students’
improvement over the course of the semester, learning gain is calculated for each
student as the normalized difference between post-test and pre-test.

4 Modeling Student Behavior

To extract micro-patterns from student logs, we code them into sequences and
analyze them using a frequent pattern mining algorithm. We build macro-pattern
vectors or genome as a representation of each individual student’s behavior.

4.1 Coding Student Behavior

To discover behavioral patterns of students, we first label student attempts.
Inspired by [7], we focus on two aspects when labeling student problem solving
attempts: whether the student succeeds (or fails) in solving the problem, and
whether the student spent shorter or longer time to answer a problem, com-
pared to a median answering time. The median answering time is calculated
separately for each problem, considering all attempts on it1. If a student solves
a problem correctly in less time than the median, the attempt is labeled as ‘s’
(short success). Likewise, if a student’s successful attempt takes longer than the
median it will be labeled as ‘S’ (long success). Similarly, if the student solves a
problem incorrectly in a short time (vs. long time), her attempt will be labeled
as ‘f’ (vs. ‘F’). In total, the dataset included 760 short successes, 6030 long
successes, 2242 short failures, and 3991 long failures.

In addition to students’ problem-solving,we code their example-reading behav-
ior. Unlike the problem-solving attempts, working on annotated examples is not
associated with correctness. Thus, we only measure the time spent by each student
1 The median split can be calculated within each students also. Since we are inter-

ested in capturing content access differences between students, and since time-spent
variance among problems is larger than among students, we chose to split the data
according to problem-answering medians.



312 M. Mirzaei et al.

on each annotated example. To do this, we sum up all sequential student clicks
on example lines of one annotated example, as the time spent on that example.
We first calculate the median time spent on each annotated example by all stu-
dents. For each example-reading activity of a student, if the time spent on the anno-
tated example is less than its median, it is labeled ‘e’, otherwise as ‘E’. The dataset
included 6348 short example attempts and 6365 long attempts.

The students continue to work in the system during the whole semester. To
chunk the large sequence of student actions into smaller comparable sequences,
we define a “session” as a consecutive set of student activities within one topic.
In other words, a session is a sequence of attempts on parameterized problems
and annotated examples inside the same topic. An attempt on an example or
problem from another topic starts another session. To indicate session borders
within each student’s sequence, we insert ‘ ’ between two consecutive sessions.
For instance, the sequence ‘ ffSsee ’ means that the student has a long success
after two short failures, then a short success and finally is quickly examined two
annotated examples within the same session.

4.2 Sequential Pattern Mining

To discover the most frequent micro patterns of student behavior, we use CM-
SPAM [4] sequential pattern mining algorithm. We set the minimum support
to 1% (i.e., we are interested in patterns that could be found in at least 1%
of sequences) and require no gap between encoded attempts. Besides that, we
only consider the patterns with more than one sequential attempts. In total,
111 frequent patterns are discovered using this approach. The top 30 frequent
patterns are illustrated in Table 1.

Interestingly, we can see that the top frequent patterns are either problem-
solving micro-patterns or example-reading micro-patterns. In other words, there
are no mixed activity patterns (such as ‘eF’) among the top frequent ones. From
this, we conclude that switching from one type of activity to another was con-
siderably more rare than continuing with the same kind of activity.

Table 1. Top 30 extracted patterns ordered by support

Pattern Support Pattern Support Pattern Support

1 ss 1516 11 Fs 680 21 FF 486

2 Ss 1456 12 Ff 680 22 Sss 449

3 ss 1378 13 sss 668 23 FS 449

4 Fs 1153 14 Sss 663 24 Ss 443

5 Ss 974 15 FS 630 25 ee 431

6 Fs 901 16 ee 593 26 fs 393

7 FS 828 17 ee 552 27 ssss 373

8 fs 788 18 FF 546 28 ff 367

9 sss 735 19 Fs 539 29 Fss 361

10 Ss 692 20 Ff 515 30 FS 351
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4.3 Building Pattern Vectors

The top frequency patterns found in Sect. 4.2 represent a variety of patterns
used by all students. Each student could use each micro-pattern with different
frequency or not at all. To model the behavior of an individual student, we build
a behavioral pattern vector for each student. We use the top 60 of frequent pat-
terns to build this vector. This pattern vector includes normalized frequencies of
observing each of the top frequent patterns in the behavior log of the modeled
student. To build it, we first count the number of times each frequent pattern
occurred in the student’s sequence. These absolute frequencies, however, could
vary depending on the total length of student behavior sequence, i.e., how much
the modeled student interacted with the system. To capture the relative impor-
tance of each micro-pattern regardless of total sequence length, we normalized
the count vectors (i.e., the frequency of patterns are summing to one for each
vector). These vectors represent the behavior of individual students and are used
to discover macro-patterns by clustering student vectors.

5 Behavior Stability Analysis

Before establishing a relationship between students’ micro-patterns and their
performance, we should make sure that the patterns are representative of stu-
dents’ behavioral traits, and not other environmental factors. To do this, we
analyze the stability of student patterns in three different setups: randomized,
longitudinal, and complexity-based. In each of these setups, we split student
sequences into two equal sets. Then, we independently build a pair of two pat-
tern vectors for each student: one for each set. If our model of student behavior is
stable, the vectors in each pair should be more similar to each other than to vec-
tors form other pairs. Thus, in each of the setups, we test whether the students’
behavior vector built from the first set is significantly more similar to their own
behavior vector in the second set than to the behavior vectors of the rest of the
students. To measure the similarity, we use Jensen-Shannon divergence [12].

Table 2. Comparing average of students’ pattern vector distances with themselves vs.
other students according to various splits

Self distance Distance to others

Mean SE Mean SE t Stat P-value

Random split 0.2082 0.0207 0.4639 0.0105 −16.0279 <0.0001

First half/second half 0.2995 0.0211 0.5207 0.0113 −12.3501 <0.0001

Random split (Easy) 0.3644 0.0258 0.5769 0.0110 −9.9099 <0.0001

Random split (Medium) 0.3266 0.0246 0.5465 0.0092 −11.1404 <0.0001

Random split (Hard) 0.4219 0.0266 0.5703 0.0106 −6.4266 <0.0001
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5.1 Randomized Analysis

In the randomized analysis, our goal is to examine whether a student’s pattern
vector is stable across all sessions, if we split them randomly. It is to test if we
can distinguish a student from other students according to their pattern vectors.
To do this, we randomly split student sequences into two halves and build a
pattern vector for each half. If a student’s pattern vector from the first half is
significantly more similar to her own pattern vector in the second half – compared
to being similar to other students – then, we conclude that the student’s patterns
are stable and do not change randomly. To test the significance, we run paired
sample t-test. The results are shown in Table 2. As we can see, the distance
between the two pattern halves for the same student (0.2082 on average) is
significantly smaller than the distance to other students (0.4639).

5.2 Longitudinal Analysis

Here, we are interested to see if the student patterns change as the semester
advances. To study this, we split each student’s activity sequence according to
a mid-semester point: we build pattern vectors for the first half and the second
half of the semester. Similar to randomized analysis, we compare the distance
between halves within each student’s vector and between student vectors. As
shown in Table 2, we see that the distance between first half and second half of
one student is significantly smaller than the distance to other students. Individual
student behavior pattern changes slightly over the semester, yet this change is
by far not sufficient to cross the difference from other students.

5.3 Complexity Analysis

Another factor that can affect students’ behavior is activity complexity. Each
learning material is labeled with “easy”, “medium” or “hard” in our dataset.
Accordingly, we build separate pattern vectors for each group of learning activ-
ities for each student. E.g., in each topic and session, we separate the “easy”
problems and examples as one “easy” session. We assess pattern vector sta-
bilities by comparing the difference within a student (comparing according to
complexity) and between students. Table 2 represents the distances and statis-
tical tests that show student pattern vectors are stable across learning material
complexities.

6 Behavior Cluster Analysis

Having stable student pattern vectors, we aim to distinguish efficient patterns.
To do this, we study if student behavioral patterns are associated with stu-
dent performance. Namely, we would like to understand if students with similar
behavior have a similar performance. First, we cluster the students based on their
behavior patterns to have students with similar patterns together. Afterward,
we analyze the patterns to recognize useful patterns in each cluster.
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Fig. 1. Top 30 patterns and their frequencies in 3 clusters. Patterns are ordered by the
maximum difference of frequencies between three clusters.

6.1 Pattern Analysis

Fig. 2. High, medium, and low-
performance student frequencies in
three clusters generated based on
student patterns

We apply Spectral clustering [16] on stu-
dent pattern vectors. Our cluster and inter-
pretation analysis showed that 3 clusters
will provide the best results with 23, 28,
and 33 students in each cluster. To under-
stand the student differences in each cluster,
we compare their average pattern frequen-
cies in the top 30 micro-patterns. Figure 1
shows these top 30 frequent patterns and
their average frequencies in each cluster. The
error bars show 95% confidence interval for
each micro-pattern. The micro-patterns are
ordered based on the maximum frequency
difference in three clusters. As we can see in the figure, in cluster 1, patterns like
‘ss’, ‘Ss’ and ‘sss’ are significantly more frequent than the other two clusters. We
can say, students in this cluster tend to repeat practicing an exercise within a
topic even if they succeed in it. Significantly frequent patterns in cluster 2 are
‘ FS ’, ‘FS’ and ‘FS ’ that demonstrate longer failures and longer successes after-
wards. We can conclude that the students in this cluster tend to spend more time
on solving a problem, and then succeed afterwards. They do not attempt the
problems randomly and do not answer them by chance. Students in cluster 3 read
more examples since patterns such as ‘ee’ and ‘ee ’ are frequent in this cluster.
In [7] students were grouped into “confirmers” and “non-confirmers” according
to their patterns. “confirmers” were the students who preferred to confirm their
success by repeating it. “non-confirmers” were the ones who ended their session
right after having a short success. Here, we see a “confirmers” type of pattern in
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cluster 1. However, in cluster 2 students are mostly “thinkers” rather than “non-
confirmers”. They fail and then succeed, but with thinking and spending time on
the activity. Cluster 3 students are mostly “readers”. They tend to spend more
time on reading the annotated examples. Therefore, we can recognize 3 types of
behaviors with the extracted patterns. We should mention that these labels are
provided to distinguish the discovered clusters, rather than exactly describing
student behaviors in them.

6.2 Performance Analysis

Here we examine the clusters to detect whether we can associate the macro-
behavioral patterns represented by each cluster with students’ learning perfor-
mance, measured by normalized learning gain. Figure 2 shows the number of
students with low, medium and high performance (learning gain) in each cluster.
As we can see (also by our statistical tests) the clusters do not show a signif-
icant difference in the number of high, medium, or low performance students.
The similar conclusion holds for pre-test and post-test performance of students.
We can conclude that the macro-patterns represented by the clusters are nei-
ther related to students’ past performance nor to their course-level performance.
In other words, the patterns do not separate weak students from strong ones.
Instead, they represent students’ different approaches to work with learning con-
tent. Within the group of students using the same approach, however, we can
find both strong and week students. The results are similar to the observation
in the original paper [7].

Fig. 3. Patterns with significant differ-
ence of frequency for low performance
and high performance (learning gain)
students in Cluster 1

Next, we study the differences in behav-
ioral micro-patterns of high and low-
performance students within each cluster.
By this, we hope to uncover the efficient
and inefficient micro-patterns that hap-
pens within students with the same study-
ing traits. To achieve this, we examine the
average frequencies of micro-patterns for
low and high performance students in each
cluster and select the ones with a signifi-
cant difference. The results are shown in
Figs. 3, 4 and 5. As presented in Fig. 3, in
cluster 1 (“confirmers”), patterns such as
‘fssss’ and ‘eE’ are found to be significantly more in high performance students.
On the other hand, patterns ‘Fss ’, ‘Fs ’, and ‘ ss’ appear more in low perfor-
mance students. According to this, we can conclude that, the “confirmer” group
students do repeat their success. But their approach to this repetition deter-
mines their performance in the course: (1) repeat after an initial success (‘ ss’)
is associated with weaker students; (2) more repetition after an initial failure
(‘fssss’) is associated with stronger students, as short repetitions and quitting
after failure (‘Fss ’ and ‘Fs ’) is associated with weaker students; and (3) repeat
reading examples is associated with stronger students. We can see that in cluster
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2 (“thinkers”, Fig. 4), high performance students have patterns such as ‘ FF’,
‘FF’, and ‘Sss’, while low performance ones have higher rate of patterns with
short failure (‘f’) in them. This shows that high-performance thinkers think
each time they try a problem, until it is sufficiently understood. In contrast,
weaker students frequently try to guess and fail in solving problems. Interest-
ingly, low-performance thinkers also have a high frequency of ‘Fff’ pattern. It
can be concluded that they start with serious intentions, but then start to guess
the answers.

Fig. 4. Patterns with significant difference of fre-
quency for low performance and high performance
(learning gain) students in Cluster 2

For the “reader” students
(cluster 3, Fig. 5), we see longer
attempts (e.g., ‘EE’, ‘ FS ’,
and ‘FS’) for high-performance
students, compared to shorter
attempts (e.g., ‘ffs’ and ‘Fs’) for
low-performance ones. We can
see that (1) high-performance
students work with examples
more carefully; (2) they do not
rush after failure, but think and
most always get it right; and
(3) in contrast, low-performance
students do not spend enough time on their attempts, whether it is a success
or failure. In general, having patterns that include long attempts among high
performance students and short attempts in low-performance ones demonstrate
the impact of spending time on the performance.

Fig. 5. Patterns with significant difference of frequency for low performance and high
performance (learning gain) students in Cluster 3
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7 Conclusions

In this paper we analyzed students’ behavior patterns in working with parame-
terized exercises and annotated examples. Using frequent pattern mining, we dis-
covered frequent micro-patterns of student behavior and used them to construct
macro-pattern behavior vectors for students. Using data driven approaches, we
analyzed the stability of these macro-patterns and showed that these are results
of students’ behavioral traits. Clustering students according to these macro-
patterns, we discovered three groups of students, which we nicknamed as “con-
firmers”, “thinkers”, and “readers”. Among these groups, we identified students’
efficient and inefficient micro-patterns by comparing frequent patterns of high
and low-performing students. Our results suggested that for “confirmer” stu-
dents, it is beneficial to encourage repetitions after they fail in solving a problem.
But, repetitions after success is redundant and inefficient. For “thinkers”, it is
useful to encourage them to continue to think deeper each problem, even after
failure. For “readers”, working more carefully with examples and spending more
time to think is beneficial. Being able to discover a few behavioral clusters that
represent different ways of learning is a promising step towards personalization:
if learning behavior diversity among students is not that large, we can nudge dif-
ferent student groups towards the optimal behavior in different ways. In future,
these results can be extended to be used as encouragements or recommendations
to help students of each group to take on more efficient behaviors.
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Abstract. In order for videos to be a powerful medium for learning, it is crucial
that learners engage in constructive learning. Historic interactions of previous
learners can provide a rich resource to enhance interaction and promote
engagement fostering constructive learning. This paper proposes such a novel
approach of adding nudges to AVW-Space, a platform for video-based learning.
We present the enhancements implemented in AVW-Space in the form of
interactive visualizations and personalized prompts. A study focusing on pre-
sentation skills was conducted in a large first-year engineering course, in which
AVW-Space provided an online resource for the students to use as they wish.
The students were randomly divided into the control and experimental groups,
which had access to the original and enhanced version of AVW-Space
respectively. Our findings show that nudging is effective in fostering con-
structive learning: there was a significant difference in the percentage of con-
structive students in the two groups. The experimental group students wrote
more comments, found AVW-Space easier to use, reported less frustration when
commenting, and had higher confidence in their performance on commenting.

Keywords: Video-Based Learning � Intelligent support � Personalized nudges �
Experimental study � Soft skill learning � Engagement

1 Introduction

Videos have become the predominant delivery method in both formal and informal
online learning. However, research shows that watching videos can be a passive
activity and result in limited learning [4, 5, 15, 22, 30]. A number of problems have
been identified with Video-Based Learning (VBL), including limited interactivity with
videos, the lack of human interaction, personalization, assessment and feedback [4].
New research strands related to VBL have appeared. There is established work on
developing guidelines for producing effective videos (e.g. [10, 21]). Significant work
has been done on increasing engagement with videos, by adding annotation tools,
quizzes, examples and interactive exercises [8, 9, 14–16, 28, 30]. Data-driven
approaches using interaction traces from VBL have been proposed to improve tech-
niques for video navigation, such as visualizations of collective navigation traces,
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dynamic timeline scrubbing and enhanced in-video searches [3, 4, 13, 17]. There are
also approaches using students’ ratings, annotations and forum contributions to support
social navigation and collaborative learning [2, 4, 25, 29]. While efforts on augmenting
the interaction to enhance VBL exist, there is no research that explicitly considers
personalization, i.e. tailoring the interaction to the engagement profile of the learner.

Our approach is to encourage engagement during VBL via interactive note taking,
tapping into learners’ familiarity with commenting on videos in social networking sites.
In previous work [7, 18, 19], we developed AVW-Space, a VBL platform, which
supports reflection during interactive note taking, and also supports social learning
through rating of comments. We categorized participants in previous studies into
inactive, passive and constructive learners, based on the ICAP framework [5]. Our
previous studies [7, 18, 19] show that only constructive learners, who wrote comments
on videos and rated comments written by their peers, improved their conceptual
knowledge.

To promote engagement with videos that leads to better learning, while at the same
time preserving the learners’ freedom to interact with videos in a way they prefer, we
proposed the use of nudges [7, 19]. Nudges were introduced in decision support [27] as
a form of interventions which influence people’s behavior to make choices that lead to
better lives (paternalism), but in a non-compulsory manner (libertarian). Behavior
change is complex and so are the corresponding interventions. Choice architecture,
which defines the ways to select and present choices that can lead to better behavior, is
the core when designing nudges [20, 27]. To the best of our knowledge, our research is
the first attempt to evaluate a choice architecture for personalized nudges in VBL.

In this paper, we describe how we implemented two types of nudges we previously
proposed [19]: signposting through interactive visualizations and personalized prompts.
The closest to our approach is the work by Shin et al. [26] who proposed in-video
prompts as a way to assess students’ comprehension and information about their
learning experience. Such prompts are given to all students, at the pre-defined times
during videos [26]. Our personalized prompts differ because they are adaptive: prompts
given to a particular student depend on the student’s interactions with the current video.

This paper also presents the study we conducted in a large first-year engineering
course, in which students were required to give presentations but received no formal
training on presentation skills. AVW-Space provided an online resource for the stu-
dents to use as they wish. The students were randomly divided into the control and
experimental groups, which had access to the original and enhanced version of AVW-
Space respectively. The goal of our study was to investigate the effect of the nudges on
students’ engagement, learning and subjective impressions of the platform.

2 Previous Work on AVW-Space

AVW-Space is a controlled video-watching environment designed for self-study,
which supports interactive notetaking and rating of comments written by peers, tapping
into students’ familiarity with social networking sites. We developed AVW-Space with
transferable skills in mind, but the platform is general purpose and can be used for other
types of skills. The environment supports engagement by providing micro-scaffolds to
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facilitate the commenting on videos and the reviewing of comments made by others. In
order to create a learning space, the teacher needs to select a set of publicly available
YouTube videos for students to watch, and specify micro-scaffolds.

Learning starts with students
watching and commenting on the
videos individually. In our studies [7,
18, 19] we used eight short videos, four
of which were tutorials on how to give
presentations, while the remaining four
videos were example presentations.
The student can enter a comment at any
time during the video, and needs to
select an aspect, which indicates the
intention of the comment (Fig. 1). For
the tutorials, aspects aimed at stimu-
lating reflection included: “I didn’t
realize I wasn’t doing it”, “I am rather
good at this”, and “I did/saw this in the

past”. There was one additional aspect, “I like this point”, to encourage the learner to
externalize relevant learning points. For the example videos, the aspects corresponded
to presentation skills covered in the tutorials, which included “Delivery”, “Speech”,
“Structure”, and “Visual aids”.

In the second phase, the teacher selects the comments that will be open to the whole
class, so that students can review and rate each other’s anonymized comments. As this
second phase is not relevant for the research presented in this paper, we refer the
interested reader to [7, 19] for further details.

We operationalized the ICAP framework [5] in the context of AVW-Space as
follows [7, 19]. Passive Learners are those who watched videos, but had minimal
other interactions with them. On the other hand, Constructive Learners show higher
levels of engagement by commenting on videos. Comments contain remarks on
important events in videos, and contain statements showing reflection and self-
explanation. As AVW-Space does not currently support collaboration between stu-
dents, we do not consider the Interactive mode of ICAP. In addition to passive and
constructive learners, we have also added another mode to characterize students who
do not engage in learning at all, i.e. do not watch videos; we refer to them as Inactive
Learners (IL).

The findings from our previous studies showed that only constructive students
improved their knowledge when interacting with AVW-Space [7, 18, 19]. We pre-
sented a set of requirements for fostering constructive behavior in [19]. In this paper,
we focus on adding intelligent nudging to the platform.

Fig. 1. The commenting interface
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3 Adding Nudging to AVW-Space

As a first step towards more intelligent support for active video watching, we imple-
mented nudging in the form of signposting through interactive visualisations and
personalized prompts to AVW-Space.

3.1 Interactive Visualizations

Interactive visualisations (shown below the video in Fig. 2) are used to support social
learning. The top visualization is the comment timeline; it provides signposts in terms
of comments written by previous learners. Each comment is represented as a coloured
dot, representing the time when the comment was made. The colour of the dot depends
on the aspect used, with the legend shown on the side. We selected the best comments
from previous studies to use in the comment timeline [24]. The comment timeline also
allows the learner to inspect comments written by previous learners. When the mouse is
positioned over a particular dot, the student can see the comment (as in Fig. 2). Dots
are slightly transparent, so that comments made in temporal proximity to each other can
be differentiated. Clicking on a dot begins playing the video from that point.

The bottom visualization is the comment histogram, representing the number of
comments written for various segments of the video. This visualization allows the
student to quickly identify important parts of a video, where other students have made
many comments. The two visualizations meet two identified needs: (1) providing social
reference points so that students can observe others’ comments, and (2) indicating
important parts of a video and what kind of content can be expected in those parts,
differentiated by aspect colours.

Fig. 2. Interactive visualizations and a prompt. The interactive visualizations are modified to
show only comments written with the “I didn’t realize I wasn’t doing this” aspect.
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3.2 Personalized Prompts

Personalized prompts are designed to encourage students to write comments. An
example of a personalized prompt is shown in Fig. 2, to the right of the video. AVW-
Space maintains a profile for each student, and uses it to select prompts adaptively.

Prompts are provided when the student is in a high-attention interval, which is a
part of a video during which previous students wrote many comments. To identify high
attention intervals for the videos, we used interaction traces collected previously, and
identified parts of videos with high user interest and relevant comments [7]. We
designed four types of prompts:

1. No comment reminder is a prompt encouraging the student to make a comment.
This prompt is offered when the student has watched at least 30% of the video
without making any comments, and is currently in a high-attention interval.

2. No comment reference point prompt reminds the student to make a comment, and
offers an example as stimulus. The prompt is only shown if the No comment
reminder prompt has not resulted in a comment. Such prompts are provided when
the student has watched at least 70% of the video without comments, the student is
in a high-attention interval, and this type of prompt has not been issued on the
current video. The comments used as stimuli have been manually selected for each
video from comments gathered in previous studies.

3. Aspect under-utilized: a prompt to make a comment using a particular aspect that
the student has used least often (Fig. 2). This type of prompt is provided when the
student has made at least one comment on the current video, has watched at least
30% of it and is currently in a high-attention interval. When the prompt is issued,
the visualizations change to only show comments made using the under-utilized
aspect referred to in the prompt. For each aspect, the text of the nudge changes. For
example, for the ‘I am rather good at this’ aspect, the title of the nudge is “Are you
good at this”, and the description is “Are there any techniques in the tutorial that
you feel you have already mastered?”

4. Diverse Aspects: this prompt provides positive reinforcement, displayed when the
student has used all relevant aspects on the current video. The title of the prompt is
“Well done!” with the explanatory message “Great job using all aspects to comment
on the video!”

4 Experimental Design

The study was conducted in a first-year course mandatory for all engineering students
at the University of Canterbury. The students worked on a group project and gave a
presentation, during which each student presented for one minute. Due to an already
full curriculum, students received no formal training on giving presentations. Instead,
they were invited to use AVW-Space for online training. The students who watched at
least one video in AVW-Space received 1% of the final course grade. Ethical approval
was obtained from the University of Canterbury.
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The goal of our study was to evaluate the impact of intelligent nudging. The
students were randomly allocated to the control or experimental group. The control
group interacted with the original version of AVW-Space (Fig. 1), while the experi-
mental group interacted with the enhanced version (Fig. 2). We defined three research
questions:

RQ1. Are nudges effective in fostering constructive behavior? We expect to see a
higher proportion of students from the experimental group engaging in constructive
behavior in comparison to the control group (Hypothesis H1).

RQ2. What features of AVW-Space influence learning? Can we infer causal rela-
tionships between the use of AVW-Space’s features and learning? Our previous studies
showed that only constructive students improved their knowledge after interacting with
AVW-Space. We anticipate that intelligent nudging will have a positive effect on the
number of comments written, which will in turn have a positive effect on learning (H2).

RQ3. Do students in control/experimental group have different opinions about the
usefulness of AVW-Space and cognitive load? We expect that the students in the
experimental group would find the environment more useful and report smaller cog-
nitive load (H3).

Materials. The videos used in the study were the same ones as those described in
Sect. 3. We designed two surveys, similar to those used in the previous studies [7, 18,
19]. Survey 1 collected participant’s profile (demographic information, background
experiences, Motivated Strategies for Learning Questionnaire (MSLQ) [23]). The
survey also contained three questions on the participants’ knowledge of presentations
(we refer to those questions as conceptual knowledge questions). The student was
asked to list as many concepts related to (1) Structure, (2) Delivery and Speech, and
(3) Visual Aids. For each of those three questions, students had one minute to write
responses. Survey 2 included the same conceptual knowledge questions; NASA-TLX
instrument [11] to check participants’ perception of cognitive load; Technology
Acceptance Model (TAM) [6] to check participants’ perceived usefulness of AVW-
Space. Additionally, Survey 2 contained questions on usability related to commenting
on videos and rating of comments. The experimental group also received questions
related to interactive visualizations and personalized nudges.

Procedure. The students were invited to participate in the study on 3 May 2018. After
completing Survey 1, the participants were instructed to log on to AVW-Space, watch
the four tutorial videos first and then to proceed to critique the example videos. The
rating of comments was enabled on May 16. Invitations to complete Survey 2 were
emailed on May 24, and the survey was closed on 3 June 2018.
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5 Results

Table 1 presents the number of participants from the two groups who completed
various parts of the study. Out of 1039 students enrolled in the course, 449 completed
Survey 1. Of those, 347 have used AVW-Space, while the remaining 102 participants
were inactive learners. We received 263 responses for Survey 2, but that number
included some inactive students. After removing those responses, we had 119 students
from the control and 102 responses from the experimental group who completed both
surveys and interacted with AVW-Space.

Table 2 presents the demographic data for the 347 students who interacted with
AVW-Space. As typical for engineering courses, there were more males than females.
The majority of participants (79.83%) were native English speakers. Most participants
(95.39%) were aged between 18 and 23. The questions related to training on giving
presentations, experience in giving presentations, using YouTube and using YouTube
for learning were based on the Likert scale from 1 (Low) to 5 (High). There were no
significant differences between the two groups on these features, as well as on MSLQ
scales, with the exclusion of Task Value (U = 15,066.5, p = .043).

5.1 Do Nudges Foster Constructive Behavior?

We divided the students (post-hoc) into Constructive and Passive, using the median
number of comments written by the class (median = 1). We expected to see a higher
number of constructive students in the experimental group. The numbers of con-
structive and passive students in the two groups are given in Table 3 (for all students

Table 1. Number of participants who completed various parts of the study.

Group Survey 1 Inactive AVW-Space Survey 2 (all) Survey 2 (excl. IL)

Control 234 54 180 138 119
Experim. 215 48 167 125 102

Table 2. Demographic data for the participants who completed Survey 1. Apart from the first
three rows, the remaining rows present the mean and standard deviation in parentheses.

Control (180) Experimental (167)

Gender 124 males, 55 females, 1 other 118 males, 49 females
Aged 18–23 175 156
Native English speakers 135 142
Training 1.64 (.76) 1.66 (.82)
Experience 2.17 (.81) 2.19 (.79)
YouTube 4.22 (1.08) 4.22 (1.03)
YouTube for learning 3.36 (1.14) 3.28 (1.12)
Task value 5.47 (.85) 5.22 (.79)
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who completed Survey 1). A chi-square test of homogeneity between group and
behavior type (i.e. Constructive or Passive) revealed a significant difference (Chi-
square = 4.463, p = .035), with the effect size of (Phi) of .142. Therefore, hypothesis H1
is confirmed.

It is also interesting to compare constructive and passive students in the experi-
mental group (Table 4). Both subsets received nudges – why did only some partici-
pants respond to nudges? The only significant difference between passive/constructive
students in the experimental group on the variables from Survey 1 is on Training (U =
2,906.5, p = .042). During interaction with AVW-Space, in addition to a significant
difference on the number of comments written, these two subgroups differed signifi-
cantly on the number of videos watched (t = 4.61, p < .001) and prompts received (t =
2.33, p = .022). Please note that some students watched the same video multiple times,
so the average number of videos watched can be higher than 8.

5.2 What Features of AVW-Space Improve Students’ Knowledge?

There were no significant differences between the two groups on either the number of
sessions with AVW-Space (control: mean = 2.58, sd = 2.05; experimental: mean =
2.53, sd = 2.56), or the number of videos watched (control: mean = 7.03, sd = 4.34;

experimental: mean = 7.03, sd =
4.22). The only significant differ-
ence (U = 17,608, p = .004) was on
the number of comments written
(control: mean = 4.31, sd = 7.76;
experimental: mean = 6.34, sd =
9.60). We used the Mann-Whitney
test as the number of comments is
not normally distributed. Figure 3
shows the number of comments per
video for the two groups. The dis-
tributions of comments are

Table 3. Numbers of constructive and passive students in the two groups

Passive (187) Constructive (160)

Control (180) 107 (59.44%) 73 (40.56%)
Experimental (167) 80 (47.90%) 87 (52.10%)

Table 4. Differences between passive and constructive students from the experimental group.

Training Videos Prompts

Passive (80) 1.53 (.71) 5.60 (3.50) 8.21 (5.329)
Constructive (87) 1.78 (.88) 8.41 (4.37) 12.44(8.21)
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Fig. 3. Number of comments per video
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significantly different for the two groups (U = 51.5, p = .038).
In Surveys 1 and 2, the participants had one minute to list all concepts they knew

related to the structure, visual aids, and delivery and speech. The students’ replies were
marked automatically, using the ontology of presentation skills we developed in pre-
vious work [1, 7, 24]. Table 5 presents the resulting conceptual knowledge scores from
Surveys 1 and 2 (CK1 and CK2 respectively) for constructive/passive students in the
two groups. A two-way ANCOVA found no significant interaction between group and
category (i.e. Constructive vs Passive), but there was a significant main effect of
Category, F(1, 216) = 3.872, p = .05, partial η2 = .018. As in previous studies, con-
structive students improved their knowledge of presentation skills significantly.

We used IBM SPSS Amos to infer the causal relationships between CK1, CK2 and
variables showing how students used AVW-Space, such as the number videos watched,
the number of comments made, the number of prompts received (for the experimental
group) and the number of ratings made. All these variables are observed and measured
without errors. We were unable to find any well-fitting path models for the control
group, except the simplest one, which shows the correlation between CK1 and CK2
(.60, p < .001).

Figure 4 illustrates the best fitting model for the experimental group. The chi-
square test (2.55) for this model (df = 2) shows that the model’s predictions are not
statistically significantly different from the data (p = .279). The Comparative Fit Index
(CFI) was .988, and the Root Mean Square Error of Approximation (RMSEA) was
.052. Therefore the model is acceptable: CFI is greater than .9 and RMSEA is less than
.06 [12]. The model indicates that the higher CK1 score directly causes a higher CK2
score (coefficient = .44, p < .001). Therefore, the effect of the number of comments on
CK2 is adjusted for and above and beyond this influence (.2, p = .024). The number of
nudges affects the number of comments (.41, p < .001). Therefore, hypothesis H2 is
confirmed.

Table 5. Conceptual knowledge scores for the two groups.

Group CK1 CK2

Control (119) Constructive (59) 13.56 (5.65) 15.76 (5.66)
Passive (60) 12.25 (4.16) 12.88 (5.95)
All (119) 12.28 (5.51) 14.31 (5.96)

Experimental (102) Constructive (65) 14.00 (5.66) 14.98 (6.36)
Passive (37) 13.35 (5.29) 13.89 (6.00)
All 13.12 (5.50) 14.59 (6.22)

All (221) Constructive (124) 13.79 (5.63) 15.35 (6.03)
Passive (102) 12.67 (4.63) 13.27 (5.95)
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5.3 Do Students in the Two Conditions Differ in Their Opinions About
the Usefulness of AVW-Space and Cognitive Load?

The participants replied to the TAM questionnaire [6] using the Likert scale from 1
(highest) to 7 (lowest). We analyzed the replies using the two factor ANOVA (group
and category), and found no significant interaction of the two factors. For question 8
(My interaction with AVW-Space would be clear and understandable), there was a
main effect of category, F(1,211) = 7.19, p = .008, partial η2 = .033. The average score
of the 92 passive students was 3.67 (1.73), while the average score of the 123 con-
structive students was better, 3.05 (1.43). There was also a significant main effect of
group for question 9 (I would find AVW-Space easy to use), F = 4.86, p = .029, partial
η2 = .023. The average score of the 115 control group students was 3.30 (sd = 1.68),
while the average score of the 100 students from the experimental group was better,
2.78 (sd = 1.20).

Table 6 reports the scores on the TLX-NASA questions related to writing com-
ments. Constructive students reported significantly lower frustration (F(1,220) = 8.62,
p = .004, partial η2 = .038), and significantly higher performance on commenting
(F(1,220) = 7.99, p = .005, partial η2 = .035). These analyses provide evidence sup-
porting hypothesis H3.

The experimental group received two additional questions in Survey 2, the first of
which asked for feedback on the usefulness of interactive visualizations. We received
100 responses, 85 of whom were positive, such as “See which parts of the video other
people find useful” and “To compare yourself with the rest of the class.” One student
wrote “I didn’t understand them till id finished most of the videos.”

Fig. 4. Path diagram for the experimental group.

Table 6. TLX-NASA scores on commenting. Effort and Demand: Likert scale 1 (very easy) to
20 (very hard); Frustration and Performance: 1 (not at all) to 20 (very much)

Demand Effort Frustration Performance

Passive (98) 8.96 (4.64) 8.10 (4.44) 8.76 (6.02) 10.61 (5.27)
Constructive (124) 8.13 (4.33) 7.38 (4.42) 6.54 (5.21) 12.40 (4.13)
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The other question was related to the usefulness of personalized prompts. We
received 91 responses, 62 were positive, and 21 negative. Eight participants have not
noticed nudges. Two examples of positive opinions were: “Help me to be engaged”,
“To give me a little push in the right direction of what to comment on”. Some par-
ticipant did not find the prompts useful: “It created subtle pressure to make comments
which wasn’t really useful at all” and “They were always the same so not hugely
useful.”

6 Conclusions

We proposed the use of nudges (signposting through interactive visualizations and
personalized prompts) to encourage constructive behavior during VBL. We found that
nudging was effective in fostering constructive behavior and resulted in the students in
the experimental condition making more comments, found AVW-Space easier to use,
reported less frustration when commenting, and had higher confidence in their per-
formance on commenting. No differences between passive/constructive students in the
experimental group suggests that nudging seems to work all types of students.

The work presented here is part of a larger research stream on adding intelligent
features to augment interaction with videos for informal learning. In our future work we
plan to implement more types of nudges, following the formal framework defined in [7,
19]. This will take into account not just the engagement with videos but individual
profiles (e.g. MSLQ scores or previous experience). Future work also includes
extending the support for the rating phase.

Our research opens a new avenue in developing intelligent learning environments
which adapt established interventions for behavior change in the form of nudges. This
can be applied in a range of domains to foster informal learning where one can learn
from their experience and that of others.
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Abstract. We describe a machine-learning system for supporting teach-
ers through the selection of homework assignments. Our system uses
behavioural cloning of teacher activity to generate personalised home-
work assignments for students. Classroom use is then supported through
additional mechanisms to combine these predictions into group assign-
ments. We train and evaluate our system against 50,065 homework
assignments collected over two years by the Isaac Physics platform. We
use baseline policies incorporating expert curriculum knowledge for eval-
uation and find that our technique improves on the strongest baseline
policy by 18.5% in Year 1 and by 13.3% in Year 2.

Keywords: Homework selection · Behavioural cloning · Deep learning

1 Introduction

Tutoring by human teachers is known to produce large learning gains for stu-
dents, whether one-to-one or in groups [5]. For larger groups, a teacher’s attention
must inevitably be spread more thinly across their students. We seek to develop
learning technologies which can support teachers in this scenario.

We focus on setting homework assignments. The setting of good-quality
homework is of recognised pedagogical importance [14,30], but how work should
be chosen is less clear: human teachers have been shown to adopt varied strate-
gies of teaching even for very simple lessons [16]. In light of this we developed a
system, HWGen that learns from expert actions using behavioural cloning.

HWGen generates homework assignments at both the individual and group
level which we compare to assignments derived from a selection of naive and
curriculum-aware baseline policies.

We trained our system with two years of student data from Isaac Physics,
a major online teaching platform and find that our model is able to suggest
assignments that are closely aligned with the choices made by human teachers.
At the individual level, HWGen improves on the strongest baseline policy by 17.8%
in Year 1 and by 12.9% in Year 2. Making homework selections per group, HWGen
improves on the strongest baseline policy by 18.5% in Year 1 and by 13.3% in
c© Springer Nature Switzerland AG 2019
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Year 2. These results reflect the way that human teachers make group-level
homework decisions based on class progress as a whole, but also that setting
personalised assignments stays fairly close to teacher decisions while also taking
into account individual factors.

In this paper we make the following contributions: (1) we give a neural-
network architecture for suggesting personalised homework assignments; (2) we
propose mechanisms to combine personalised predictions in order to generate
group assignments; (3) we use data on student and teacher behaviour from the
Isaac Physics platform to show that our technique significantly outperforms a
variety of baseline policies.

2 Related Work

Personalisation in educational technology is an exciting prospect since learn-
ers are known to progress at different rates and in different styles [4,8,28] and
personalised tutoring has been shown to have beneficial effects on student learn-
ing [27]. Lindsey and colleagues found that a personalised review system for
course content yielded a 16.5% boost in retention rates over standard prac-
tice (massed study) and a 10% improvement over a one-size-fits-all strategy for
spaced study [18]. Advancing personalised learning is recognised as one of the
National Academy of Engineering’s Grand Challenges for the 21st Century.1

Such systems traditionally involve considerable effort and pedagogical knowl-
edge to design, author, and structure content [10,20,33]. One example is the use
of concept maps [22] to represent the structure of skills and knowledge: these
can help guide learning [2] and are used in tutoring systems [12] but they require
expert knowledge and careful design.

There has been work on intelligent tutoring systems to imitate teachers and
widen educational access since the 1960’s [34], but successful autonomous selec-
tion of the right homework task at the right time remains elusive. Rather than
developing an analytical solution, we hope instead to learn from the usage data
logged by education platforms.

Teaching data combined with student data provide an appropriate setting for
imitation learning. In imitation learning, a system learns appropriate responses
to its environment from a human actor. The archetypal scenario is the self-
driving car (in which the vehicle controller learns from a human driver) [25], but
it has broader applications, and it has recently been used to provide personalised
navigation for web-based learners [23].

In particular behavioural cloning is a simple but widely used form of imi-
tation learning [6], useful in situations where non-interactive data is available
for training, where actions are judged immediately (i.e. no long term reward
information is available), and where imperfect actions are unlikely to lead to
cascading errors. In a classroom setting there is no risk of physical mishap, and
teachers are able to exercise expert judgement with respect to any suggestions
a system might make: this makes behavioural cloning a viable candidate as an
approach.
1 http://www.engineeringchallenges.org/challenges/learning.aspx.
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3 Experiments

This work is based on user data from Isaac Physics,2 a UK government funded
project aimed at pre-university students. Launched in 2015, Isaac serves physics
and mathematics exercises to over 120,000 registered users globally. As well as for
private study, the platform is designed for use by school classes with homework
assignments set by their teachers. It is the homework-setting actions of these
teachers that we aim to imitate.

There are two related sub-tasks in this work: (1) the task of setting home-
work for an individual, and (2) of setting homework for a group. The homework
selection should be available ‘on demand’, so that a teacher setting work for a
class could use the software as a teaching aid, or so that a student can obtain
personalised suggestions for independent study.

3.1 Data

This work uses a dataset from Isaac activity logs collected from March 2015 to
March 2018, from non-affiliated UK secondary schools. These general-purpose
logs record when users visit a page, answer a question (correctly or otherwise),
view a hint, and so on. The logs also track when teachers assign homework to
their class (a SET ASSIGNMENT actions) and it is this behaviour we aim to
clone.

Questions on Isaac are organised into pages: a page being the smallest teach-
ing unit which may be assigned as homework. Students are organised into groups,
which can be thought of as virtual classes. A teacher’s SET ASSIGNMENT
action points a group of students to one or more question pages.

The Isaac project publishes a number of textbooks that accompany the plat-
form3. Of these, the earliest book Mastering Essential Pre-University Physics
(‘the textbook’), currently accounts for around 80% of the homework set on
the platform, with material across 73 pages forming the curriculum from which
HWGen selects work. There are hundreds more question pages in Isaac but they
are not all ordered for difficulty. By using only the textbook questions we have
a controlled experiment in which the questions have an implicit canonical order-
ing – the order of page numbers from 1 to 73 – which we can use for baseline
selection policies. If HWGen proves to be successful at this task, it can then be
extended to the wider unordered curriculum.

Data was filtered to students in the 16–18 year age range (the target range
for the textbook). We wanted to imitate teachers who are engaged and who
know their students well, so we removed teachers who rarely set work (< 5
assignments) and excluded large groups (≥ 30 students). We ranked teachers by
activity, choosing the most prolific first. We measure each student’s time on the
platform from the date of their first assignment, and we split the students into
a Year 1 group and Year 2 group at 365 days of use.

2 https://isaacphysics.org.
3 https://www.isaacbooks.org.
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After filtering, 6672 instances of group-level assignments (50,065 assignments
to individual students) were available for training and validation. For testing,
970 group-level assignments (6028 individual assignments) were chosen from a
separate held-out set of teachers. A box-and-whisker plot of the training data
is given in Fig. 1, showing a noisy upward trend between students’ time on the
platform in days and the position of homework assignments in the textbook in
pages. From this we can see that although there is evidence of the curriculum
being followed, we should not expect a linear predictor to perform well due
to noise, especially in the tail of the data where homework level becomes less
consistent.

Fig. 1. The training dataset summarised in two dimensions: student duration on plat-
form (days) is on the x-axis, position in textbook of homework selected (page number)
is on the y-axis. The boxes show the range between first and third quartiles, the hori-
zontal stripe indicates the median, the whiskers represent 1.5 ∗ IQR where IQR is the
inter-quartile range (third minus first quartile); other points beyond the whiskers are
outliers. There are 12,489 features in the full dataset.

3.2 Student Features

The student is represented as a combination of four vectors: x for practice, u for
success, a for previously assigned work, and a small set of real-valued features
s. There are 2605 elements in x and a, one for each page on Isaac, and 7274 in
u (for each page sub-part) and these take binary values depending on whether
a page is attempted/assigned, or a sub-part is completed. Note that although
we only set homework from the textbook, we track students’ encounters with
all pages on the platform: many of the pages outside the book are more difficult
(or more involved) and so a student who has attempted such questions may be
ready for more advanced material.
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The s vector contains the following statistics about the student: age (in years,
rounded to 1 decimal place), days on platform, number of distinct questions
attempted, number of attempts at all questions, number of questions passed.

Other features were measured but not included in the model as they pro-
vided no benefit to performance, including: questions passed per day, question
pass-rates, and the number of attempts the student had taken at each question
(effectively this was clipped to binary in the x vector). Finer grained break-
downs of attempts, and ‘recent history’ versions of these features also made no
improvement. Several of the profile features were tried in combination (e.g. ques-
tion attempts per day as a proxy for motivation) but these were less successful
than allowing the neural network to learn its own internal representations.

3.3 Implementation

The homework-selection task was formulated as a multiclass classification prob-
lem, using a feed-forward neural network (Fig. 2). Hidden layers are all recti-
fied linear units (ReLU), except for a concatenation layer to merge encodings.
These are followed by two more ReLU layers each suffixed by a dropout layer
(rate = 0.2). Layer structure, dropout, learning rate and batch size, were found
by randomised parameter search.

The network output is passed through a softmax activation function (1) to
convert internal scores into a probability distribution. The function transforms
the jth element of the raw neural network output, z, into a probability con-
ditioned on the input (s,x,u,a), Pr(y = j | (s,x,u,a)). The output of the
network consists of 73 units, one for each possible homework choice.

softmax(z)j =
exp(zj)

∑K
k=1 exp(zk)

(1)

The software used in this work was implemented in Python 3.6 using Keras
[11] with a TensorFlow [1] back-end, and scikit-learn [24].

The network was trained with a categorical cross-entropy loss function using
the Adam optimiser [17] with best results at the default α = 0.001, batch = 32.
Real-valued inputs were centred and scaled to have unit variance and zero mean.
Binary inputs were not transformed. From the 50,065 samples in the training
data, 10,013 (20%) were used for validation and to trigger early-stopping.

3.4 Setting Individual Work

The homework-setting decision is treated as an action-selection task, modelled
as multiclass classification. The neural network outputs a softmax vector, the jth

element of which is the probability of taking the jth action as determined from
training. We choose the action given the highest probability by the network.
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Fig. 2. Outline of the neural architecture. Input layers are at the top. Cross-hatched
areas denote densely connected layers.

3.5 Modifications to Set Group Work

For setting homework at the group level, two alternative methods were applied
to select a page for the group’s next assignment:

– Softmax averaging : the softmax vectors for all students in the group are
summed, and normalised by the group size. This produces a new softmax
vector, and the top-scoring element is selected.

– Voting : the top-scoring candidates are chosen from each student’s softmax
vector. These are then counted, and the candidate that receives the most
‘votes’ is selected.

Both approaches can be implemented with simple control logic.

3.6 Baseline Policies

The performance of HWGen (in both individual and group modes) was judged
against three baseline policies: a random policy and two oracle policies. The
random policy randomly chooses an assignment from those that the student has
not yet attempted.

The two oracle policies are ‘curriculum aware’—they have access to ordering
knowledge about the material that is not available to HWGen. The ordering was
developed by the authors of the textbook as the logical progression of content.
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The linear oracle policy selects the material in book order at isochronal
intervals; the step oracle policy selects the next item from the book that has not
yet been attempted by the student.

3.7 Evaluation

Our investigation into the Isaac data (Fig. 1) showed that teachers only broadly
adhere to the curriculum order in the textbook (as captured by the oracle poli-
cies). We therefore hypothesise that HWGen should outperform these policies by
capturing the context of each assignment choice.

We are interested to know how closely a homework selection policy will match
a human teacher in a given situation. Using the textbook page numbers to give
an ordering, the policy is a map π : (s,x,u,a) → ŷ from the student’s vectors
onto the index of the page of the assignment to be set. The true index, y, giving
the choice actually made by the human teacher in this situation, is not known
to the policies and is only discovered during testing.

Each ŷ is evaluated against the real selection y, by taking (ŷ − y). This gives
an integer score in the range [−72, 72], where zero is the target. Having values
in a range allows partial credit to be assigned. Note that a negative or positive
score indicates a policy that lags or leads the human teacher, respectively.

The above steps are repeated for every ((s,x,u,a), y) pairing in the test
data. The policy is summarised by a standard metric, root mean squared error,
which provides interpretable performance measures in terms of number of pages
deviated (see Fig. 3).

RMSE =
1
N

N

i=1

(ŷi − yi)2

Fig. 3. Root mean squared error (RMSE) of a predicted set of target values, {ŷ}N
1 ,

from their true values, {y}N
1 .

4 Results

Results from the experiment are presented in Table 1. In Year 1, HWGen with
group voting has the highest accuracy in terms of the proportion of matches with
teacher selections. The other HWGen policies perform similarly on this measure,
as does oracle-step. However, oracle-step is on average slightly ahead of the
teacher’s point in the textbook (a positive lead/lag value) whereas the HWGen
policies all lag slightly behind (negative values). However, all HWGen policies have
lower RMSE than oracle-step, indicative of a tighter fit around the gold-standard
teacher selections.
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Table 1. Accuracy (prop. exact matches), mean lead (+) or lag (-) compared to teacher
selections, and root mean squared error for HWGen and baseline homework-setting poli-
cies (*significantly different to best baseline, p < 0.001; †significantly different to HWGen

for individuals, p < 0.001).

Year 1 (n = 6111) Year 2 (n = 572)

Policy Acc. Lead/Lag RMSE Acc. Lead/Lag RMSE

Human teacher (target) 1 0 0 1 0 0

Random .015 +17.2 31.4 .009 +.091 25.4

Oracle linear .095 −6.24 20.2 0 +42.3 48.6

Oracle step .137 +1.18 17.4 .094 +2.49 12.5

HWGen .132 −2.37 14.3* .017 −4.98 10.9*

HWGen group vote .141 −2.81 14.4† .019 −5.06 10.8†

HWGen group softmax ave. .133 −2.82 14.2† .014 −5.51 11.2

The same is true for Year 2, though in this case the policy with the high-
est proportion of exact matches is oracle-step, likely because as the choice of
outstanding items in the curriculum narrows, a policy which draws from those
remaining items in sequence will tend towards the ground truth. Note that HWGen
is allowed to select from all textbook pages and so does not have this advantage
of a narrowing pool. Being able to re-select items as revision work is a desirable
mechanism however. Again, we see that oracle-step stays slightly ahead of the
teacher while HWGen lags behind. The random baseline has the best lead/lag
score (closest to zero), but this masks the high variance in its choices, shown by
an RMSE much higher than HWGen.

In both Year 1 and Year 2, the lowest RMSE (our primary evaluation metric)
is one of the HWGen group policies – softmax averaging in the first year, voting
in the second year. This is expected, as we train on group level decisions made
by the teachers. What is encouraging though is that HWGen for individuals out-
performs all baseline policies too, indicating that it will serve individual users of
intelligent tutoring systems as well as class groups.

In Fig. 4 we show a density plot of the different spreads of HWGen and the
baseline policies in terms of number of pages difference from the teacher’s choices
(x = 0). We see that in Year 1 HWGen closely mimics teacher behaviour, with the
tallest peak around zero on the x-axis, while in Year 2 it still clusters around
ground-truth but much of its decisions lag behind zero. In contrast, oracle step,
while also grouped close to zero, tends to lead the teacher by a few pages.

We find HWGen and oracle step homework differences (true.homework −
predicted.homework) are statistically separable by paired sample t-tests both
for Year 1 (t = 21.4, df = 6110, p < 2.2e−16) and Year 2 (t = 14.8, df = 571, p <
2.2e−16). Meanwhile the same is true of HWGen versus HWGen group vote in
(t = 5.79, df = 6110, p = 7.6e−09) and HWGen group softmax average in Year 1
(t = 5.78, df = 6110, p = 7.94e−09), and of HWGen versus HWGen group softmax
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average in Year 2 (t = 4.74, df = 571, p = 2.61e−06). However, HWGen and HWGen
group vote were not found to be significantly different in Year 2, therefore we
infer the order of performance to be HWGen group vote < HWGen < HWGen softmax
averaging in Year 1, and HWGen softmax ave. < HWGen & HWGen group vote in
Year 2.

Year 1 Year 2

−60 −40 −20 0 20 40 60 80 100 −60 −40 −20 0 20 40 60 80 100

0.00

0.02

0.04

0.06

N.pages difference from true teacher selection

HWGen

Random

Oracle.Linear

Oracle.Step

Fig. 4. Density plot of differences for each homework selection by HWGen and base-
lines: difference from the true selection on the x-axis (n.pages), density on the y-axis
(sums to 1 for each curve).

5 Discussion

In its various modes, HWGen was able to more closely approximate the homework-
setting actions of teachers in the test dataset, when compared to the other poli-
cies tested here. This is despite the fact that both oracle policies have access
to expert knowledge through the book ordering of material. In particular, the
oracle-step policy makes use of both this ordering data and of user history to
inform its selections. In contrast, for the HWGen policy, the neural network knows
very little in advance. Instead it learns the ordering and pace of delivery from
observations in training. Nonetheless the policy outperforms both oracles. This
gives the approach considerable flexibility to be fitted to systems where a canon-
ical ordering is not specified, since it can learn a suitable ordering itself.

In all, these results suggest that even when material is ordered linearly, an
automated homework selection system like HWGen could be used to set homework
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in a more human-like way, both for individual students and for class groups. Thus
our work may be viewed as a type of recommender system – concerned with
selecting items for an individual based on their history in relation to others’
histories [7,15,29] in a manner which will be familiar to users of many online
services [9,13,19]. For online retailers the item bank in need of filtering is a set
of products, for streaming services it is a library of movies and programmes, and
for social networks it is user-generated content. In our case the item bank is a
curated pool of physics and mathematics tasks aimed at school-children.

The recommender system approach has some precedent in educational tech-
nology. Early systems used heuristics, social networks and ontologies [3,26,32]
before data-driven collaborative filtering techniques were introduced [21,31,35].
Here we show that deep behavioural cloning of teacher decisions is a viable
method for homework selection in the educational domain. In future work we
plan to implement HWGen as a live recommender system for the Isaac Physics
tutoring platform.

6 Conclusion

In this work we introduced a method of automatic homework selection (HWGen),
based on a deep neural network and trained on the behaviour of human teachers.
We showed that HWGen was able to track the behaviour of previously unseen
human teachers more closely (in RMSE terms) than baseline heuristic policies,
including those with knowledge of the curriculum – despite HWGen having no
access to such knowledge. We suggest this allows HWGen to be fitted to pre-
existing systems, where historical data is available for training. Furthermore,
with simple modification the HWGen approach can also set homework for groups
of students, making it suitable for private study and classroom-based use.

It remains to be seen whether HWGen, either in individual or group mode,
leads to improved learning for students. We will seek to address this question in
future work with reward-based models.

Acknowledgements. This paper reports on research supported by Cambridge
Assessment, University of Cambridge. We thank members of the Isaac Physics team,
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valuable feedback.
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Abstract. In this paper, we investigated how students’ behavioral sig-
nals and incoming profiles can be integrated to describe and predict stu-
dent success in a higher education’s STEM course. The results include
three major findings. First, we found behavioral signals like the num-
ber of correct responses to in-class questions, the number of confusing
slides, and the number of viewed slides and videos are stable predictors
of student success across different periods of a semester. Second, from the
mixed-effect modeling results, we could identify significant gender gaps
between mid-level incoming GPA student groups. We also showed some
possible course advising scenarios based on the interaction between stu-
dent behaviors and incoming profile factors. Third, using both behavioral
signals and incoming profiles, our weekly forecast model on student suc-
cess achieved a 72% prediction accuracy. We believe these findings can set
the stage for subsequent early warning system studies that use different
types of student data. Further investigations on the causal relationships
for suggested results and developing other novel predictive features for
student success would be beneficial for designing a better early warning
system.

Keywords: Early warning system · Behavioral logs ·
Incoming profile · Grade prediction · Mixed effect model

1 Introduction

Several Early Warning Systems (EWSs) have been developed that harness the
predictive power of Learning Management System (LMS) and Student Infor-
mation System (SIS) data to identify at-risk students and allow for more timely
pedagogical interventions [1,4,15,16]. For example, data on student online activ-
ity in a web-based LMS may provide an early indicator of students’ academic
performance [28]. Other studies also found that there is a strong relationship
between LMS usage patterns and student exam scores [7,10].

Recent studies suggest that EWSs can benefit from using relevant signals
from LMS data, such as access to course resources [25], the usage patterns of
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a digital coaching application [6], and students’ incoming prior academic per-
formance [6,25]. Similarly, studies like [8,11] showed applications for identifying
at-risk students for dropping out from higher education institutes, using student
activity data collected from a software lecture environment [11] or incorporating
the incoming data with semester-wise enrollment information [8]. Although many
studies claimed that students’ behavioral signals and incoming academic profile
are important predictors of academic outcome, not many of them addressed how
these different types of signals are related to each other.

In this paper, we explored how students’ behavioral signals and incoming
profiles can be integrated to describe and predict student success in a higher
education STEM course. First, we identified the list of significant behavioral
variables collected from a lecture software to describe students’ academic suc-
cess from a course. Second, we compared the different likelihood of succeed in
a course between student groups. We also investigated how behavioral patterns
are different in each student group. Third, we compared the predictive perfor-
mance of statistical models with weekly accumulated training data, including
each model’s day-one performance and how the performance changes by adding
students’ weekly behavioral data. The findings of this paper can set the ground
for integrating different types of behavioral signals and incoming academic pro-
files for building an EWS. Detailed investigation of these signals can also provide
data-driven evidence for developing customized course-taking strategies.

2 Related Works

2.1 Predicting Student Performance

In many studies, behavioral signals are significant predictors of the student’s
academic outcome [2,22]. In a higher education context, studies used behavioral
data to predict the student’s performance in a course. Studies like [27,28,30]
suggested how different behavioral signals observed in LMS, such as frequency
or length of interactions, can be significant predictors of student success in higher
education courses. Studies from Waddington et al. [25,26] specifically focused on
using different types of course resources accesses to predict student success in
entry-level STEM courses. They showed that course resources related to exam
preparations and lecture materials are more significantly related to the course
grade than other resource types, such as course information or assignments. Real-
time stream data from courses can illustrate more details of student behaviors
during learning. Studies like [5] showed behavioral signals, such as the number
of interactions with video, exercise, or assignment, can be useful predictors of
student engagement in MOOC courses. Other studies on MOOC suggested the
use of implicit signals, such as click patterns or use of language in the forum group
[23,29], and interaction with video lectures or timely completion of assignments
[20,21] to predict different cognitive states of students.

Behavioral signals contain rich information on how students interact with the
learning materials. However, other factors, such as students’ incoming academic
profile [17] and temporal conditions [18], can add more contextual information
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about students’ learning. Many studies included non-behavioral factors, such
as demographic information, in their models to control the effect of behavioral
variables with student learning [6,25]. The non-behavioral factors also can be
used to capture more complex patterns in student behaviors. Studies showed
that interaction with peers [9] or intervention from the course [13] need to be
designed differently by students’ cultural background or the learning style that
they are accustomed to [12]. To provide customized advice for each student’s
learning, identifying interactions between non-behavioral factors and behavioral
variables would be important. In our study, we will investigate how different
types of information, such as students’ behavioral interactions with the lecture
software and their incoming profile factors, can be used to describe and predict
student success in a higher education course.

2.2 Early Warning Systems

EWS is a computerized system that focuses on identifying at-risk students early
and providing data-driven evidence for developing strategies that can maximize
students’ academic success [1,15]. Many existing studies on early warning sys-
tems are designed to predict the student’s retention in a course. Studies like
[11,24] evaluated the quality of signals from earlier weeks and model’s perfor-
mance by making a prediction on the later weeks. More broadly, [8] modeled
students’ dropout from an institution in a semester level. The authors used var-
ious types of data. They used semester-level variables like GPA, credit hour, or
enrolled year, along with incoming academic profiles like demographic factors
and entrance exam information. Earlier identification of at-risk students can
help institutions to improve students’ course retention [11] and degree comple-
tion rates [8]. However, it can also benefit high achieving students to keep their
success in a course. In our study, we will suggest an EWS that can be used in
higher education institutions where the retention rate can be a lesser problem,
and focus on the earlier prediction of students’ success in a course.

2.3 Overview of the Current Study

Based on previous studies, we formulated the following research questions:

RQ1: Can we identify significant behavioral predictors of student success in a
course across different weekly ranges? Answering the first research question will
examine the significance and stability of behavioral predictors collected from
a lecture software for describing and predicting student success in a course.
Selected behavioral variables will also be used to answer later research questions.

RQ2: What is the benefit of including incoming profile factors in models to
describe student success? The second research question will compare the model
developed from RQ1 with a mixed-effect model, which can address variances
between student groups for describing student success in a course.
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Fig. 1. A screenshot of Active Learning Platform. Students could attend or review the
lecture by seeing the lecture video and slides simultaneously. Also, they could take
notes or ask questions related to the lecture.

RQ3: Can we identify distinctive behavioral patterns between student groups in
terms of success in a course? The third research question will aim to expand the
model from RQ2 by adding random slope structures. The results will identify if
there are significantly different behavioral patterns exist between student groups.

RQ4: Can we predict student success at a weekly level by using the findings
from RQ1-3? The last research question will investigate the predictive power of
models suggested in RQ1-3, especially in a weekly-level early warning scenario.

3 Methods

3.1 Data Source

Behavioral Signals. For this study, we collected students’ behavioral signals
from lecture software. Data were collected across seven semesters, from the year
2015 to 2018. Students were enrolled in an entry-level STEM course, CLIM 999.
CLIM 999 was a survey course, and part of ‘science distribution’ requirement
at the university. The course covered the physics of extreme weather events and
potential relationships with a changing climate.

CLIM 999 was a blended learning course [30] using Echo 360 ’s Active Learn-
ing Platform (ALP) software1. By using ALP, students could access the physi-
cal classroom session through a web browser. It included video recordings and
1 One of the authors, Dr. Samson, is a consultant to Echo360 Inc. and uses the Echo360

Active Learning Platform in his class.
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Table 1. Distribution of students’ incoming GPA and gender profiles. None represents
the students without incoming GPA information (e.g., the first semester Freshmen or
transfer students).

Incoming GPA Female Male All

None 50 (3.9%) 83 (6.5%) 133 (10.4%)

(0.0,2.5] 21 (1.6%) 59 (4.6%) 80 (6.2%)

(2.5,3.0] 75 (5.8%) 157 (12.3%) 232 (18.1%)

(3.0,3.5] 180 (14.1%) 279 (21.7%) 459 (35.8%)

(3.5,4.0] 153 (11.9%) 226 (17.6%) 379 (29.5%)

All 479 (37.3%) 804 (62.7%) 1283 (100.0%)

slides of the lecture. It also provided a virtual learning environment, where stu-
dents could answer in-class activity questions, take notes, ask questions to other
students and instructors, and mark where they felt confused from the lecture
(Fig. 1). ALP recorded students’ interactions with the system. In this study, we
used frequencies of different behavioral signals as predictors (Table 2). Follow-
ing the previous studies [25,26], we normalized recorded frequencies from ALP
by using a percentile rank method for each semester. We expected this would
normalize the outlier data-points, and make behavioral signals collected from
multiple semesters easily comparable.

Academic Profiles. For the study, we also collected students’ incoming pro-
file factors to represent their different academic profiles. To do this, we used a
combination of incoming GPA and gender information, retrieved from the univer-
sity’s data-warehouse. To help with better convergence of mixed-effect modeling
results, we filtered out data from 63 students since they did not have gender
information. As results, we used data from 1283 students for the analysis. These
students’ profiles were represented by the combination of 5-level incoming GPA
labels and 2-level gender labels (Table 1).

Student Success. We labeled the student’s performance as successful if she
achieved 80% or better on the average of three exams from the course. As results,
we labeled 53.4% (685) of students as successful2.

The threshold for successful label was decided based on the nature of our
dataset and previous studies. Our data were collected from students who enrolled
in the R1 university of the U.S.3. Students in these institutions may aim higher
than just passing the course. For example, in our dataset, only 4.53% of students
2 The distribution of grades were: 178 students with A (90 or higher, 13.87%), 507

with B (80–90, 39.52%), 373 with C (70–80, 29.07%), 167 with D (60–70, 13.02%),
and 58 with F (60 or lower, 4.52%).

3 We follow the definition of R1 university in here: https://en.wikipedia.org/wiki/List
of research universities in the United States.

https://en.wikipedia.org/wiki/List_of_research_universities_in_the_United_States
https://en.wikipedia.org/wiki/List_of_research_universities_in_the_United_States
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Table 2. List of behavioral variables (Beh.) and student profile factors (Aca.). Num-
bers in parentheses represent the number of times each behavioral variable was selected
from the step-wise process.

Type Name Description

Beh. ActivitiesParticipation(9) Activities they submitted
an answer to

ActivitiesCorrect(10) Students get score for
correct answer on quiz

Attendance(0) Students entered the SW
interface during classtime

NotesCount(0) Notes word count

NotesInteraction(0) Number of times user
interacted/edited notes

QnA(3) Each time they created a
question or response

SlideDeckView(10) Viewed over 5% of a
presentation

SlideConfused(10) Marked confusing in slide

VideoView(10) Viewed over 5% of a video

VideoConfused(0) Marked a scene confusing
in video

Aca. GPA Students’ average GPA
from previous semesters

Gender Binary label (female or
male) for students’ gender.

achieved the 60 or less average score (F). Previous works also specified that
academic advisers in these institutions consider getting B (i.e., 80% of total
grade) or better is an important goal for their students, to pursue entering
graduate schools or getting a job easily in the STEM field [17,25,26]. We realize
that the results of our study may not be generalized for preventing students
from failing the course or degree [8,11]. However, we believe our findings can
provide unique insights on designing an EWS for high achieving students to
keep succeeding in their institution, and sets the stage for subsequent work that
includes the analysis on other types of higher education courses.

3.2 Building Models

Selecting Behavioral Predictors. To answer the first research question
(RQ1), we used a cross-validation method to identify more meaningful behavioral
predictors. In each cross-validation fold, a generalized linear regression model
(GLM) model was initially fitted using all 10 behavioral predictors from the
data excluding the held-outs. Then the backward and forward step-wise process



Int. Students’ Beh. Signals and Academic Profiles in EWS 351

was applied to the model, using Akaike Information Criterion (AIC) with R’s
[19] step function. After the cross-validation process is finished, we counted the
number of times that each variable was selected in individual folds (Table 2).

Descriptive and Predictive Models. Using selected behavioral predictors
as fixed-effect predictors, we firstly built descriptive models using the whole
dataset without cross-validation. The GLM descriptive model expected to show
how the entire dataset can be described solely using behavioral signals (RQ1).
We also built generalized linear mixed-effect regression models (GLMER) to
address variances across incoming profile factors, incoming GPA and gender
(RQ2), and different behavioral patterns between these student groups (RQ3).
We used glmer function with nAGQ=0 argument from lme4 [3] to fit GLMER
models. Like the GLM model, GLMER descriptive models were also fitted with
the whole dataset.

We also developed prediction models that can provide a weekly forecast of
student success in the course (RQ4). The structure of predictive models fol-
lowed GLM and GLMER models that used for the previous research questions
(RQ1-3). The performance of predictive models was evaluated with held-out
sets from 10-fold cross-validation. Average scores of evaluation metrics, such as
prediction accuracy, area under the curve scores of receiver operation character-
istics (ROCAUC) and precision-recall curve (PRAUC), were used to compare
the prediction performance of each model. The evaluation included how early
the model can effectively predict student success in the course. For example,
testing models’ performance with Week 0 subset was considered as a day-one
scenario, which allowed models to predict student success without any behav-
ioral signals. Testing with Week 1-5 subset used behavioral signals accumulated
until the fifth week of the semester. Similarly, Week 1-15 subset included all
students’ behavioral data recorded across the entire semester.

4 Results

4.1 Selecting Behavioral Variables

In Table 2, we noted how many times each fixed-effect variable were selected
from the variable selection process. It shows that behavioral variables like
ActivitiesCorrect, SlideDeckView, SlideConfused, and VideoView were sig-
nificant predictors across all cross-validation folds. We call these variables as
Unanimous set. Another variable set is MoreOnce set, which contains additional
variables of ActivitiesParticipation and QnA that were selected more than
once from the variable selection process.

From the ANOVA analysis using residual deviance scores with the GLM
descriptive model setting, we found that the model trained with MoreOnce vari-
able set (1570.8) show similar performance from the model using all 10 behavioral
variables (1568.8, p = 0.738). This model also showed significantly better per-
formance than the model using Unanimous variable set (1577.5, p < 0.05). Thus,
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we used MoreOnce variable set for further analyses, keeping the model structure
simpler but minimizing the performance sacrifice.

To answer the first research question (RQ1), we built descriptive GLM and
GLMER models, using MoreOnce variable set, and see how coefficients change
across different week ranges. Figure 2 shows that coefficients for variables in
MoreOnce set were most significant in different week and model conditions,
except QnA and ActivitiesParticipation variables.

Fig. 2. Coefficients for behavioral variables were relatively consistent across different
models and weekly accumulation ranges. Error bars indicate the 95% confidence interval
of coefficient estimates. (∗ : p < 0.05, ∗∗ : p < 0.01, ∗∗∗ : p < 0.001)

4.2 Integrating Student Profile Information

To answer RQ2 and RQ3, we built GLMER models that include additional
random intercepts from incoming profile factors (GLMER i) and random slopes
from behavioral variables (GLMER s). From each GLMER model, we expected to
see if the model captures different starting points (RQ2) and some behavioral
pattern differences (RQ3) between different student groups.

Figure 3 shows variances between different student groups (random inter-
cepts) and behavioral patterns (random slopes) from the GLMER s model4. First,
in the most left panel for random intercepts, we could find significant gender
differences among mid-level incoming GPA groups. While there were positive
relationships between students’ success in incoming GPA levels, the estimated
random intercept for female students in the (3.0,3.5] incoming GPA group
was almost as similar as the intercept of lower incoming GPA male students
((2.5,3.0]). This pattern was also observed between female students in the
(2.5,3.0] incoming GPA group and male students in the (0.0,2.5] group.
These gender gaps were not observed in the highest ((3.5,4.0]) or the low-
est ((0.0,2.5]) incoming GPA groups, or the first semester students without
incoming GPA information (none).

Second, other panels in Fig. 3 provide some potential customized advising sce-
narios. For example, we could see some significant random slope coefficients. For
students with the highest incoming GPA group ((3.5,4.0]), providing correct
4 The results for random intercepts were similar between GLMER i and GLMER s models.
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answers to in-class activity questions (ActivitiesCorrect) and more reviewing
of the slides (SlideDeckView) were less important for predicting their success in
the course. Additionally, in the highest incoming GPA group of female students,
marking confusion (SlideDeckConfused) was more significantly related to their
success. These results show that different student groups may need different
study strategies to succeed in a course.

Fig. 3. Random effect results from the GLMER s model, using Week 1–15 accumu-
lated data. Significant gender gaps in random intercepts were observed in (3.0,3.5]

and (2.5,3.0] incoming GPA groups. Also, some random slope coefficients for
ActivitiesCorrect, SlideDeckView, and SlideDeckConfused showed significantly dif-
ferent patterns by incoming profiles.

4.3 Predictive Modeling: Weekly Performance

Lastly, we examined the prediction performance of GLM and GLMER models
(RQ4)5. Figure 4 shows that all models reach better performances when training
data is accumulated through more weeks. All models quickly achieved mean-
ingful ROCAUC scores of grater than 0.5 (maximum scores were 0.724 (GLM),
0.791 (GLMER i), and 0.789 (GLMER s)). PRAUC results were similar to ROCAUC
results. Across the semester weeks, both GLMER models using random effect
structures achieved the maximum accuracy near 72%. Both models performed
consistently better than the GLM model, which used behavioral predictors only
(66.3% maximum accuracy; 8.7% relative worse than GLMER models).

To measure the day-one performance in Week 0, models predicted the major-
ity label (GLM model) or relied on the incoming profile information only (GLMER
models). For the GLM model, the average accuracy was 53.33%, which is equiva-
lent to the likelihood of students achieving an average of 80 or better in exams.
However, GLMER models could predict students’ success in the course with
70% accuracy using incoming profiles alone (Fig. 4). The GLM model showed
maximum accuracy in week 11 and 12. For both GLMER models, the maximum
accuracy scores were achieved in week 15. However, adding behavioral predic-
tors to GLMER models did not provide meaningful gains to their predictive
performances.
5 Detailed prediction results can be found at http://bit.ly/nam-EWSpreds.

http://bit.ly/nam-EWSpreds


354 S. Nam and P. Samson

We also examined a prediction performance for models with a single impor-
tant behavioral variable (ActivitiesCorrect) from Sect. 4.2. A GLM model
only achieved 59.1% accuracy and 0.67 ROCAUC scores. Both GLMER mod-
els showed around 70% accuracy and 0.77 ROCAUC scores, which are not so
different from the day-one performance. All these best performing scores were
observed in week 12 or 13.

Fig. 4. Weekly prediction performance of GLM and GLMER models. All models’ per-
formed increasingly better with more training data. While both GLMER models per-
formed better than the GLM model, the differences between the two were insignificant.

5 Conclusion and Discussion

In this paper, we identified significant behavioral predictors of student success
from a lecture software. We also found gender gaps in the mid-level incoming
GPA groups, and differences in behavioral patterns between student groups.
By combining behavioral signals and incoming profile factors, our early warning
prediction model achieved up to a 72% accuracy for predicting student success in
an entry-level STEM course. We believe these findings can provide more contexts
to student behaviors in higher education settings. Practically, it can give data-
driven evidence for developing more personalized course-taking strategies, which
would be helpful for academic advisers, instructors, and students.

Based on our findings, we have a few discussion points for future studies.
First, like other studies in entry-level STEM courses [14], we could observe the
gender gap between students. As specified in Sect. 4.2, it was surprising that
the gender gap existed even among students that share similar GPAs from the
previous semesters. However, in this study, we were not able to provide further
explanations of what are the relevant causes of this gap. Including additional
demographic or enrollment information to the analysis, or comparing student
behaviors between multiple STEM courses may provide deeper contexts for our
current findings. Second, further investigation on why different behavioral pat-
terns were observed between student groups would be interesting. For the results
in Sect. 4.2, we only suspect that higher incoming GPA students might have
explored more on incorrect answers with in-class questions, or spent lesser time
on lecture slides because they tend to have their own study notes. Using qual-
itative methodologies, such as interviewing students or observing them during
class, may provide more detailed insights on these behavioral differences between
students. Lastly, developing more effective predictive features would improve
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the models’ prediction performances. As we saw in Sect. 4.3, adding behavioral
signals to GLMER models provided only marginal increases to the prediction
performances from Week 0. Adding multiple behavioral variables to the model
was more effective than adding a single important behavioral variable. However,
since the improvement was not very significant, we may need to explore other
exogenous features that can provide additional information to the model that are
not addressed with current incoming profile factors. Developing non-frequency
based variables, such as a semantic representation of student notes or predicted
student engagement states during the lecture, can be also helpful options for
developing more sophisticated and accurate predictive models.
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Abstract. Theories of discourse comprehension assume that understanding is a
process of making connections between new information (e.g., in a text) and
prior knowledge, and that the quality of comprehension is a function of the
coherence of the mental representation. When readers are exposed to multiple
sources of information, they must make connections both within and between
the texts. One challenge is how to represent this coherence and in turn how to
predict readers’ levels of comprehension. In this study, we represent coherence
using Cohesion Network Analysis (CNA) in which we model a global cohesion
graph that semantically links reference texts to different student verbal pro-
ductions. Our aim is to create an automated model of comprehension prediction
based on features extracted from the CNA graph. We examine the cohesion
links between the four texts read by 146 students and their (a) self-explanations
generated on target sentences and (b) responses to open-ended questions. We
analyze the degree to which features derived from the cohesive links from the
extended CNA graph are predictive of students’ comprehension scores (on a [0
to 12] scale) using either (a) students’ self-explanations, (b) responses to com-
prehension questions, or (c) both. We compared the use of Linear Regression,
Extra Trees Regressor, Support Vector Regression, and Multi-Layer Perceptron.
Our best model used Linear Regression, obtaining a 1.29 mean absolute error
when predicting comprehension scores using both sources of verbal responses
(i.e., self-explanations and question answers).
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1 Introduction

Comprehension is challenging. The process involves understanding the words and
sentences within the text (or discourse), connecting the ideas within the text, and
linking the ideas to prior knowledge, in order to generate a coherent mental repre-
sentation of the content. Comprehension processes are further challenged when faced
with multiple sources of information. Multiple document comprehension adds on the
need to make connections both within and between texts to generate a coherent mental
representation of the disparate sources of information. We are faced with these chal-
lenges on a regular basis, when reading separate documents, papers, news, blogs,
emails, and so on.

One question is how to simulate the coherence of a reader’smental representation and
in turn, the extent to which that coherence predicts comprehension. In this study, we
examine that extent towhich the semantic connections (i.e., coherence) between a text and
a reader’s constructed responses while reading and after reading multiple documents
predict comprehension. Similar modeling and linguistic techniques have been applied in
the context of single text comprehension [1, 2]. Techniques evaluating reading com-
prehension for multiple document scenarios were previously researched by Hastings,
Hughes, Magliano, Goldman and Lawless [3]; however, there is a dearth of research
attempting tomodel how individuals integrate information across texts to form a coherent
representation of information from separate sources. Cohesion Network Analysis
(CNA) [2] is a technique that combines Social Network Analysis (SNA) [4] and Natural
Language Processing (NLP) [5] techniques to identify semantic similarities between
various sources of discourse and the levels of semantic cohesion within and between
networks. This paper applies CNA to multiple document discourse to predict compre-
hension as well as to better understand the underlying cognitive processes of integrating
information from multiple texts. Students’ self-explanations and their responses to open-
ended questions after reading multiple documents are analyzed in order to evaluate
semantic connections between the documents and the students’ productions.

1.1 Comprehension of Multiple Documents

Reading comprehension is a difficult and complex task that requires connecting ideas in
a text in order to produce a coherent mental representation of the information [6]. Such
a task not only requires understanding the semantic relations between words and
sentences, but also necessitates connecting ideas from various sentences throughout a
text in order to produce a coherent understanding [7]. Thus, successful comprehension
of single texts requires an ability to comprehend textbase content (explicit information
derived from a single sentence) as well as develop intra-textual inferences that connect
adjacent or distal textbase content from that same text.

This is a dynamic process between the reader and the text requiring the integration
of information from the immediate sentence with previous sections of the text as well
as the reader’s own prior knowledge [6]. This continuous construction of a mental
representation of textual materials can be enhanced by a reader’s ability to integrate
information across texts, thus developing a coherent knowledge base about a specific
topic [8]. This can in turn aid in developing mental representations of future texts on
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related topics. However, comprehension becomes increasingly challenging when
readers are expected to combine information from disparate sources.

Each text generally adheres to a consistent style, however, texts from different
sources are highly variable in these characteristics and are not typically presented as a
set [9]. These features can vary across genres and individual texts potentially creating
an additional obstacle for integration. Individual texts contain discourse markers of
cohesion that signal relations between ideas, whereas these features are not available
between texts thus complicating the integration task for readers [10, 11]. Without these
connectors to help guide inferencing, the integration of concepts relies on the reader’s
prior knowledge. This diversity and lack of clear connections may impose additional
challenges for comprehension and integration of multiple texts.

1.2 Assessing and Evaluating Comprehension

Writing tasks during online and offline comprehension have been employed as a means
of aiding students in making textual inferences. Both online and offline tasks enhance a
reader’s ability to process information and potentially integrate ideas across texts.

Offline comprehension tasks, such as essays, recall tasks, and comprehension ques-
tions, are often used to assess comprehension. However, they can also be used to support
comprehension through the reactivation of relevant concepts. In particular, the recall-cues
present in the questions combined with generating responses to convey understanding
prompts readers to reactivate concepts, in turn aiding comprehension [12].

Online tasks, such as self-explanations and think-alouds, prompt readers to actively
process text information. Self-explanation, the process of explaining information to
oneself while employing reading comprehension strategies, is a valuable reading
strategy that encourages deeper comprehension throughout the reading process, thus
facilitating the construction of a more coherent mental model [13, 14].

Self-explanations also provide insights into a reader’s cognitive processing of the
text. When students generate responses to sequential text sections as they do in self-
explanation tasks, their aggregated responses reveal semantic overlap across sections as
well as connectives and other signaling devices that indicate specific connections of
causal events. The cohesive devices expressed within reader’s self-explanations pro-
vide insight into their coherence building processes because they can inform on the
reader’s depth of comprehension. For example, surface level processing is associated
with the overlap of specific words across sentences or the amount of semantic infor-
mation that can be traced back to previous portions of the text. Deeper comprehension
processes also contain semantic overlap, but also have greater lexical diversity of the
content relating to the text, suggesting the use of external information such as prior
knowledge [1].

This study includes both students’ self-explanations during reading and their
responses to open-ended questions after reading multiple documents. Our objective
here is to examine the semantic connections between the documents and (a) students’
self-explanations, and (b) students’ responses to questions. These semantic connections
are assumed to represent the coherence of students’ mental representations of the
content. Students’ constructed responses provide a glimpse into their processing of text,
and thus a potential means of predicting students’ comprehension. Here, we represent
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comprehension via students’ score on the comprehension questions (i.e., expert rat-
ings), and we assess the coherence of students’ comprehension via semantic links
between the documents and students’ responses during and after reading. We do so by
combining computational linguistics and SNA using CNA.

1.3 Cohesion Network Analysis

Cohesion Network Analysis (CNA) [2] was first introduced to assess participation in
Computer Supported Collaborative Learning, but its underlying representation is
suitable for any type of discourse. CNA relies on cohesion that is estimated using
multiple semantic similarity metrics [15], combines advanced NLP techniques, and
integrates SNA measurements applied on the resulting cohesion graph [16, 17]. The
cohesion graph can be perceived as a proxy for the underlying semantic content of
discourse within a document. It is represented as a multi-layered graph that considers
both macro-level and micro-level constituents present at different levels (i.e., sentences,
paragraphs, or the entire text). A document is decomposed into its paragraphs and,
subsequently, into the underlying sentences and words. Cohesive links are defined
between different layers of the hierarchy in order to measure the strength of the
inclusion, represented as the relevance of a sentence with regards to the entire docu-
ment or the impact of a word within each sentence. Cohesive links are also introduced
between adjacent sentences and paragraphs in order to model the information flow
throughout the discourse; these links are also indicative of cohesion gaps that are often
caused by changes in topics. In addition, cohesive links are introduced between highly
related discourse constituents in order to better reflect both high local or global text
cohesion.

2 Method

We propose a method that extends CNA [2] for performing multi-document evalua-
tions in order to predict students’ comprehension of information presented in multiple
texts. CNA considers text content and discourse structure in terms of cohesive links
that are defined between multiple levels (i.e., sentences, paragraphs and the entire text).
CNA can be used to quantify both local and global cohesion while relying on multiple
semantic similarity models.

2.1 Dataset

Undergraduate students (n = 146) from a southwestern university in the United States
participated in the study. Students first completed a demographics survey followed by a
reading task composed of four texts about green living (i.e., lifestyle centered on
balancing the usage, as well as preserving Earth’s natural resources). As they read, each
student wrote 30 self-explanations on specific target sentences distributed throughout
the four texts. Target sentences were presented every two to four sentences and were
selected on the basis that self-explanations could support inference generation of the
content. After reading all of the texts, students answered 12 open-ended comprehension
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questions covering information from one or multiple texts followed by a reading skill
test and a prior knowledge test. The questions are categorized under three types
(textbase, intra-textual, and inter-textual) with four questions per category so as to
cover the different comprehension and inferencing tasks in which readers engage. Each
of the 12 questions were assigned a score of 0 to 1.0 and then summed to provide an
assessment of the overall performance on a [0 to 12] scale. The final dataset consists of
four independent texts (labeled A, B, C and D), 30 self-explanations, and 12 question
responses per student (labeled from 1 to 12).

2.2 Multi-document Cohesion Network Analysis

Figure 1 introduces an extension for CNA that considers multiple texts and student
responses. Our aim is to build an overarching undirected cohesion graph for each
student that semantically links the initial texts as a whole, or specific paragraphs or
sequences from them, to individual representations of students’ self-explanations or
their question responses. This CNA network graph addresses coherence by building a
global cohesion map in which we semantically link reference texts to different student
constructed responses. Thus, the extended CNA network graph contains as nodes
individual cohesion graphs generated for each target text level, as well as for each
student response. The cohesive links within the extended graph are established based
on the instructional setup and denote semantic relatedness between nodes of interest.
For example, textbase and intra-textual questions are related to a specific text, whereas
inter-textual questions are related to all four texts. Self-explanations are linked to
sequences from the corresponding text (e.g., all prior text, adjacent text). The semantic
distances were computed using the ReaderBench framework [18], which allowed us to
experiment with several semantic models (i.e., LSA, LDA, and word2vec) and
semantic distances in WordNet [19].

We extracted features describing the semantic relatedness between the reference
texts and students’ self-explanations or question responses to provide comparisons on
what information most accurately predicts students’ comprehension. Our feature
extraction approach has slight differences in the way we process the self-explanations
and the question answers based on the generated cohesive links, namely the granularity
of the reference texts, as well as the consideration of one versus all texts.

In addition, we group together the cohesive links between a question answer/self-
explanation and the corresponding paragraphs, and compute aggregate statistical
metrics such as mean, median, max, and standard deviation when analyzing the links in
the extended CNA graph. In the case of inter-textual questions, we also compute an
average of the semantic distances between the question answer and all of the existing

Table 1. Question identifiers (Questions 1 to 12) as a function of question type

Question type Number of questions Question identifiers

Text-base 4 Q4, Q7, Q8, Q10
Intra-textual 4 Q1, Q2, Q5, Q11
Inter-textual 43 Q3, Q6, Q9, Q12
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texts. For a given student, we obtained 42 sets of features (30 self-explanations and 12
question responses). These features were then grouped into question-related and self-
explanation-related features, together with their corresponding aggregated statistical
metrics.

2.3 Classification Methods

In order to predict the comprehension scores, we used regressor models which are
statistical models aimed at making predictions based on a set of features. The models
chosen for this experiment are the ones which are known to fare well on a dataset with
a small number of examples. We used standard implementations, present in the Python
library Scikit-learn [20], for the following models: Linear Regression, Extra Trees
Regressor, Support Vector Regression (SVR), and Multi-Layer Perceptron (MLP). The
four models were chosen in order to have a varied set of prediction tools, ranging from
the least-sophisticated (Linear Regression) to the most complex (Extra Trees Regressor,
or SVR). Existing neural network models are unsuited for a regression task with so few
data points; thus, from that family of models we opted to solely examine the accuracy
of an MLP model.

3 Results

The ReaderBench framework offers several semantic distances, which are related to
one another. For each of those, around 300 possible features could be extracted from
the CNA graph, meaning that the set of possible features could easily be of the order of
thousands. This is why a multiple-step approach was required in order to keep only the

Fig. 1. The CNA multi-document graph.
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most useful features. First, we determined the most suitable semantic distance for our
dataset. Afterwards, we filtered the features to retain only the most relevant ones. Third,
once we settled on a metric and a restricted group of features; we trained multiple
models to observe their predictive accuracy with regards to student comprehension
scores.

3.1 Selecting the Best Semantic Measures

In alignment with previous studies on CNA [21], we calculated cohesion using a
variety of NLP techniques: vector space models (Latent Semantic Analysis (LSA) [22]
and word2vec [23]), topic distributions (Latent Dirichlet Allocation (LDA) [24]), and
non-latent word-based semantic distances (i.e., Wu-Palmer ontology-based semantic
similarity) [25]. We created CNA graphs limited to using only the question
answers/self-explanations and the referred texts, and we computed the semantic dis-
tances with each of the metrics, for each user. We then computed mean scores for all
self-explanations and question responses. Table 1 presents the correlations between the
mean semantic similarity scores and students’ comprehension scores. Overall, the most
relevant semantic metric for predicting the reading comprehension was provided by
word2vec, followed by LSA. Interestingly, LDA performed worst with negative
relatedness scores, which means that the topic distributions were considerably different.
Moreover, students’ responses to the questions provided a better predictor for esti-
mating comprehension score than self-explanations. This was expected, given that the
comprehension score was directly based on the responses to the questions. Nonethe-
less, this indicates that the semantic connections estimated using CNA correlated
highly with scores.

3.2 Features Filtering

By employing all the strategies presented in Sect. 2.3, we computed a total of 362
features based on word2vec semantic distances, 272 covering self-explanations, and 90
covering question answers. To reduce multicollinearity, a baseline filtering step
removed indices with inter-correlations above .9, leaving 126 features (34 for question
answers and 92 for the self-explanations). A second filtering step consisted in elim-
inating all the features that had a correlation lower than 0.4 with the comprehension
score. The resulting set consisted of 20 features (13 for question answers and 7 for self-
explanations). After the second filtering step, the features relating to question answers

Table 2. Pearson correlations between comprehension scores and SE/QA average semantic
similarities.

Score and SE average Score and QA average

WU-Palmer .014 .529
LSA .034 .591
LDA –.033 .433
word2vec .019 .675
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were almost twice as many as those relating to self-explanation, despite being drawn
from a much smaller pool of features. One reason for this is the fact that the questions
cover an entire text or a group of texts, while the self-explanations are always centered
on a small set of paragraphs.

As displayed in Table 2, six of these features were aggregated features over all
exercises in a specific task (question answering or self-explanation), and 13 features
were related to the student’s performance on a particular task. The notation
SE_X_Py considers the cohesive link between the first y paragraphs from text X to the
self-explanation (denoted as SE), where as SE_X_Py_z reflects the cohesive link
between paragraphs y to z from text X and the SE. The most highly correlated feature
score is the mean of the averaged distances between each question and all texts. The
best particular task feature is the median over the distances between the answer to
question 10 which required intra-textual integration (“Explain how and why these
claims might be misleading”) and all the paragraphs from the referred text.

Table 3. Correlation between the best features and the comprehension scores.

Aggregated features r

Links between Qs and all texts (M) .672
Links between Qs and primary text targeted (SD) .557
Links between SEs and the median of their links to target paragraphs (M) .527
Links between Qs and the max of their links to target paragraphs (Med) .515
Links between SEs and target sentence (SD) .470
Links between SEs for current and prior targeted sentences (Med) .418
Particular task features r
Links between Q11 and target paragraphs (Med) .560
Links between Q6 and all texts (M) .531
Links between Q2 and target paragraphs (Maximum) .521
Links between Q4 and target paragraphs (Med) .504
Links between Q6 and target paragraphs (M) .462
Links between SE_A_P1_3 and target paragraphs (M) .451
Links between SE_B_P3_4 and target paragraphs (Med) .448
Links between Q3 and all texts (M) .432
Link between Q2 and target text .430
Link between Q7 and target text .425
Links between Q8 and target paragraphs (Maximum) .412
Links between Q10 and target paragraphs (M) .410
Links between SE_B_P4_6 and target paragraphs (Med) .410
Links between SE_A_P4_7 and target paragraphs (Maximum) .403

Note: Q = question; SE = self-explanation; M = mean; Med = median; SD = standard
deviation.
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When analyzing the most important feature for a question in relation to the question
type (textbase, intra-textual, inter-textual), we observed that the feature type depends
on the question type. The best predicting features for 2 out of 3 inter-textual questions
(Q3, Q6) evaluated the semantic similarity between the answer and all the texts. This is
in line with how those questions were constructed (as queries for information appearing
throughout the 4 texts). In the case of textbase and intra-textual questions which
considered information found in a single text, the main features are the aggregating
ones (mean, median, or max) applied on the semantic similarity between the answers
and all the paragraphs of the text. A second observation is that some question answers
are much better predictors for the overall comprehension task than others. The main
features for Q11, Q6, Q2, Q4 have a correlation coefficient with the final score above
.5, while the main features for Q1, Q5, Q9, and Q12 have a correlation coefficient of
around .35 or slightly below. This result is likely due to the complexity of the task, as
the four latter questions required inter-textual or intra-textual inferences, which are
more complex than textbase questions.

3.3 Predicting Reading Comprehension

We used 5-fold cross-validation as our dataset only has 146 examples. For each model,
we trained and tested 5 independent models and report the average and minimum
values for mean absolute error (i.e., the measure of difference between the predicted
and observed comprehension scores). We examined the models based on the baseline
filter (filtering based on multicollinearity) and models using features correlated above
.4 with the comprehension score. Table 3 indicates that models using fewer and more
highly correlated features were more predictive. This is notably circular given that our
ultimate objective is to provide predictions without having the score. Nonetheless, this
provides some evidence that the CNA provides good estimates of comprehension
scores (Table 4).

Table 4. Prediction performance for the chosen models.

Classifier Filtered Filtered over 0.4
MAE average MAE min MAE average MAE min

SE Linear regression 3.230 2.907 1.612 1.317
Extra trees 1.679 1.525 1.664 1.361
SVR 1.828 1.497 1.701 1.359
MLP 1.813 1.401 1.771 1.426

QA Linear regression 1.551 1.302 1.434 1.096
Extra trees 1.466 1.142 1.508 1.228
SVR 1.569 1.333 1.435 1.163
MLP 1.668 1.357 1.600 1.280

Both Linear regression 5.335 4.372 1.298 0.886
Extra trees 1.480 1.221 1.446 1.133
SVR 1.721 1.425 1.415 1.097
MLP 1.853 1.425 1.632 1.259
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In addition, results indicate that question-related features are overall more predic-
tive than the self-explanation ones, which was expected, given that the comprehension
scores were based on the question answering task. The large discrepancy between
question answers and self-explanations that was identified in the first analysis (see
Table 2) was considerably lower for comprehension predictions (i.e., a 0.2 MAE dif-
ference between the best models for self-explanations and questions answers). This is
normal taking into account that self-explanations relate only to one text and they
provide a reduced contextualization in contrast to a more detailed question answer.
Overall, the best results are obtained using a Linear Regression model on the most
highly filtered set of features from both question answers and self-explanations. This
shows that even though the question response features are more predictive, self-
explanations provide extra information that improves model performance.

Regarding the regressor models, we observed that Extra Trees obtained the best
results when trained using a large set of features. However, when switching to the small
feature set, the linear regression model narrowly outmatched Extra Trees in all three
cases (question answers, self-explanations, and both), despite the fact that its poor
performance without filtering based on correlations above .4.

4 Conclusions and Future Work

In this paper, we represent coherence using Cohesion Network Analysis (CNA) in
which we model a global cohesion graph that semantically links reference texts to
different student constructed responses in order to predict comprehension. We modeled
performance using a dataset containing four documents for which students provided
self-explanations and answers to open-ended comprehension questions addressing both
individual documents as well as aggregated information from multiple sources. Several
features were extracted and then filtered by eliminating those that were highly corre-
lated among themselves, or those with weak correlations with the comprehension
scores. Four regressor models were trained based on these features, side-by-side
comparisons were made in order to highlight which models displayed the lowest MAEs
for scores between 1 and 12. The best model without filtering based on correlations
with the score was the Extra Trees model, providing between 1.1 and 1.7 MAE. The
best model using the added correlation-based filter was Linear Regression, providing
between 0.9 and 1.6 MAE. Both outcomes are encouraging - demonstrating that the
features extracted from an extended CNA cohesion graph are capable of estimating
student’s comprehension scores within acceptable margins of error.

Our results showed that answers to some questions may be more suitable predictors
than others and question complexity decreased performance. For example, three
questions for which the answers were not good predictors of comprehension required
inter-textual or intra-textual inferences. Self-explanations also offered valuable insights
regarding the students’ comprehension. When training a model with self-explanation-
related features, the model without filtering provided a close proximation to compre-
hension scores (i.e., 1.5 MAE). This means that even without having students answer
comprehension questions, we can estimate comprehension with relatively good
accuracy.
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As future developments, this experiment needs to be replicated on various datasets
with different text sets and populations. Ultimately, our objective is to twofold:
(a) simulate comprehension of multiple documents on line, thus providing the means
for feedback, and (b) model the coherence of students’ comprehension of multiple
documents. The current study is our initial foray toward reaching these objectives.
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Abstract. We present a prediction model to detect delayed gradua-
tion cases based on student network analysis. In the U.S. only 60% of
undergraduate students finish their bachelors’ degrees in 6 years [1]. We
present many features based on student networks and activity records. To
our knowledge, our feature design, which includes conventional academic
performance features, student network features, and fix-point features,
is one of the most comprehensive ones. We achieved the F-1 score of 0.85
and AUCROC of 0.86.

Keywords: Network analysis · Student data · Risk prediction

1 Introduction

One of major strategic challenges that the U.S. higher education faces is timely
completion of degree for college students [2]. Recent data from the National Cen-
ter for Education Statistics shows that the majority (60%) of full-time under-
graduate students take 6 years to earn a bachelor’s degree [1]. As a result, higher
education is under increasing pressure to demonstrate institutional effectiveness
across a range of complicated factors [3]. According to [4], for instance, the U.S.
government emphasizes the need of producing successful Science, Technology,
Engineering, and Mathematics (STEM) graduates in a timely manner.

We propose a novel network analytic approach to predict at-risk students
who fail to complete their degrees on time. Our approach is distinct from others
due to the following two features: (1) We predict at-risk students early after
5-th semester; (2) In addition to classical academic features such as GPA and
earned credits, we use various data from students’ (extracurricular) activities
to calculate student network features. We also define another type of features
based on the same data, called fix-point features in our paper (see Fig. 1(a)).
Throughout the analysis process, we have some interesting observations. At-
risk students tend to have many weak connections, rather than a selected small
c© Springer Nature Switzerland AG 2019
S. Isotani et al. (Eds.): AIED 2019, LNAI 11625, pp. 370–382, 2019.
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Fig. 1. (a) The overall work-flow of our presented framework. (b) Edge-colored student
network after filtering out weak (i.e., edge weight <90th percentile) connections. Note
that many at-risk students inside the dotted red circle do not have strong connections
with successful students. (Color figure online)

number of strong connections so their network features (such as degree centrality,
ego-network density and so forth) are distinctly different from that of successful
students. In the future, we plan to intervene by strategically selecting at-risk
students to consolidate their connections with successful students and to enhance
their network features. We answer the following research questions in this paper:

1. Does including students’ network features help predict at-risk students?
2. Does including students’ network features help predict at-risk students in an

earlier stage?
3. To what extent are the student network connections of successful students

different from those of at-risks students over time?
4. Who are active participants of student communities & who are peripheral

participants? How differently do successful and at-risk students behave in
communities?

2 Related Work

During the past five years there has been an increase in research for improv-
ing learning and educational environments by leveraging analytics and the vast
amount of data collected about the interaction of students with learning manage-
ment systems (LMS). Course Signals [5–8] is an example of a learning analytic
tool that not only classifies and identifies students at-risk but also provides
interventions to improve student learning based on the analyzed data. This
system processes student data from the Blackboard LMS to provide an early
warning for students at-risk. Latest trends in learning analytics and knowledge
(LAK) also shows a move towards sense-making from broad and general pre-
dictive models [9,10]. The LAK community is expanding and including broader
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interdisciplinary research to scale up “from big data to meaningful data” [11].
Typical models to better understand student performance and risk are based
on classical academic features such as GPA, course withdraw rate, high school
GPA, standardized test scores, and so forth [5–8,12,13]. However, models of
retention and risk/success analysis often neglect to lead to actionable knowl-
edge [14] whereas some approaches have more focus on analytics that generate
actionable knowledge rather than predictions of GPAs, assignment grades, etc.

There are also reports on how to incorporate network analysis to better
understand student behavior and interactions [13,15–21]. Conventional network
analytic research has generally focused on the deliberate behavior of each indi-
vidual or groups but neglected the interlinked information between or among
individuals or groups [22]. These network models are based on students’ LMS or
social media logs, e.g., who responds to whom in LMS tools or who likes whom in
social media. The purpose of the network analyses includes identifying student
groups and social networking behaviors that lead to risk or success [15,18]. For
example, Romero [13] investigated interaction patterns among students in their
LMS tools and created an unsupervised clustering method to detect course fail-
ures. In [18], they analyzed participation patterns in online discussions in order to
reveal student clusters with leaders and peripherals. Authors of [21] presented
that students’ social involvement accumulated through academic activities is
positively related to their academic performance. In [23], it was shown that stu-
dents’ co-enrollment networks follow power-law degree distributions and they
predict course grades with simple network features whereas we predict a longer-
term success with more comprehensive network features. The related works have
clearly laid out the functionality of social network analysis and provided guid-
ance for our study.

Our approach is distinct in two aspects: (i) We construct student networks
using student records other than interactions recorded in the LMS or social
media logs, and (ii) Our success measure is on-time graduation whereas some
existing models focus only on course success and GPA.

3 Our Dataset

We collected data from a 13-year period and limited our analysis to undergrad-
uate students who spent 8 or more semesters in our school and have selected
computer science as their major at some point in their academic career. We
chose on-time graduation as the measure of success, and built predictive models
to identify students being at-risk of not graduating in six years. After excluding
on-going students who enrolled in the past six years, the total number of students
in our analysis is 2,552 where approximately 30% are at risk. We did not use self-
reported data such as social media data and LMS logs. The benefit of not using
LMS data is that not all Professors use the LMS in the same way so the analysis
for all students in a major will not have consistent data. We collected student
background information such as demographics and tests taken before admission;
academic information such as major, courses taken, transferred courses, and
advisers; extracurricular activities and participation in student organizations.
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4 Proposed Prediction Method

We design and extract three types of features: academic features, student net-
work features, and fix-point features. The first type is already widely used in the
field of learning analytics, but to our knowledge, there are few works using the
second and third types. Our main contributions lie in the feature engineering
based on student networks and academic activities.

4.1 Academic Features

Academic features such as grade-point average (GPA) are very effective to iden-
tify at-risk students and had been used very widely in many works [5–8,12,13].
We adopted features related to personal information (age, citizenship, gender,
primary ethnicity, etc.), high-school record (school rank, percentile, etc.), and
academic progress (GPA, success rate in earning credits, the number of course
withdraws, etc.).

4.2 Student Network Features

How to Build Student Network. We build a weighted student network in
each semester. Edge weight value between two students represents the cumulative
intensity of the connection by the time point we draw the network. Because it is
cumulative, their intensity will increase as time goes by. We calculate the edge
weight, denoted as w(x, y, t) hereinafter, between two students x and y at a
certain semester t as follows:

w(x, y, t) = exp
( ∑

i

rescale(normalize(wi(x, y, t)))
)
,

w1(x, y, t) =
∑
t′≤t

C(x, t′) ∩ C(y, t′)
C(x, t′) ∪ C(y, t′)

, w2(x, y, t) =
∑
t′≤t

same activity(x, y, t′),

w3(x, y, t) =
∑
t′≤t

same advisor(x, y, t′), w4(x, y, t) = same dept(x, y),

w5(x, y, t) = same major(x, y), w6(x, y, t) = same age high school(x, y),

(1)

where C(x, t) is a set of courses taken by student x at semester t, wi(x, y, t) in
the left-hand side means a cumulative value by t between two students x and y,
and same(x, y) or same(x, y, t) in the right-hand side is an indicator function
that returns 1 if two students x and y have the same (i) activity, (ii) advisor, (iii)
department, (iv) major, or (v) high school with the same age and otherwise 0.
Note that we do not consider time for high school record. Others do depend on
time. For instance, w1(x, y, t), inspired from the Jaccard index1, is to calculate
the sum of the common course ratio between x and y until t. After normaliza-
tion, wi ranges in [0, 1] and after re-scaling, the mean of wi at t becomes 0.5.

1 The Jaccard index is a popular node similarity metric in networks based on the
number of common neighbors divided by the sum of all neighbors.
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Some weights have larger scales than others and may dominate the final weight
value without the normalization and re-scaling. We prevent it by standardiz-
ing edge weights. In our definitions, thus, each wi becomes equally important2.
Activity describes most student-focused extracurricular clubs, sports, and pro-
grams at the college. The exponential function makes strong (i.e., large final
weight) connections stronger. Therefore, a student network at t may consist of
many edges that have relatively small weights and a small number of edges that
have large weights. We draw a student network for each semester t and there are
more than 40 networks created from 13 years of student records. In Fig. 1(b), we
draw a student network using three edge colors: orange (among successful) and
blue (among at-risks) between the same classes and dark green between differ-
ent classes. Note that many at-risk students do not maintain strong connections
with other successful students.

Basic Network Features. In network analysis, centrality comprises meth-
ods to measure the relative importance of nodes (i.e., students in our case).
There exist many different centrality concepts such as degree centrality, close-
ness centrality [24], clustering coefficient [25,26], betweenness centrality [27,28],
PageRank [29], and so forth. Among many, we select centrality measures that
have enough discriminatory information to identify at-risk students after some
statistical analyses, such as t-test and histograms. For almost all centrality con-
cepts, there exist both unweighted and weighted versions. All centrality metrics
used in this paper are weighted, unless otherwise stated.

Community-Based Features. Community detection is a long-standing
research topic in network analysis. Sometimes it is used as a subroutine to
solve other problems similar to our case [30–33]. We use overlapping commu-
nity detection methods because one student can join multiple communities. We
choose SLPA [34] as our base community detection method, considering its accu-
racy and popularity. After finding many overlapping communities in each Nt,
we calculate the following features:

1. Let Com(x) = {Com1, Com2, · · · } be a set of communities that student x
belongs to. Finally, we do MIN/MAX/AVG aggregations over the communi-
ties in Com(x) for each type of network features(x).

2. In each Nt, a giant component means the biggest community. In many cases,
the giant component is one of the most influential student groups and we
check if a student is its member. After that, we calculate the ratio of such
cases over time. The ratio of 1 for a student means that the student is a stable
member of the giant components for his or her entire academic period.

2 This is a very important fact about our network dentition. We do not focus on only
courses but also many other aspects of academic life.
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Ego-Network-Based Features. Ego-network(also called node-centric net-
work) means an induced sub-network by one node and its neighbors [35]. From
each node’s (student’s) ego-network, we extract its ego-network density and clus-
tering coefficient [25,26] as network features. The density is formally defined as
follows:

Density(x, t) =
2

∑
(a,b)∈Ego(x,t) w(a, b, t)

|Nei(x, t)| · (|Nei(x, t)| − 1)
, (2)

where Ego(., t) returns an edge set of one’s ego-network in Nt and Nei(., t)
means a set of one’s neighbors in Nt.

4.3 Fix-Point Features

Given a function f(·), a fix-point x means x = f(x). fix-point calculation is used
in various domains. One representative example is the stationary distribution
of Markov chain, i.e., π = πP, where P is transition matrix. In [29,36–41],
authors defined a mutually recursive complex system of variables and their fix-
point values are used to understand vertices. Defining a complex variable system
requires domain dependent knowledge. We first introduce domain knowledge we
gain from our educational experience and available data:

1. We think that courses/activities/undergraduate advisors simultaneously
taken by many students share common characteristics. Suppose that course
A and course B have many overlapping students in a semester. Those two
courses may have some common characteristics.

2. A student’s characteristic can be described by courses/activities/advisors that
she/he had taken [42–44]. In the network features, we analyzed the interac-
tions among students. Our fix-point features describe students from their
course/activity/advisor records without considering other students.

Based on those intuitions, we define several variables that are mutually recursive
as follows:

val(ci, t) =
∑

cj

#stu(ci, cj , t)∑
ck

#stu(ck, cj , t)
val(cj , t),

val(ai, t) =
∑

aj

#stu(ai, aj , t)∑
ak

#stu(ak, aj , t)
val(aj , t),

val(vi, t) =
∑

vj

#stu(vi, vj , t)∑
vk

#stu(vk, vj , t)
val(vj , t),

val(si, t) =
∑

cj

take(cj , si, t)
1

#stu(cj , t)
val(cj , t)

+
∑

aj

take(aj , si, t)
1

#stu(aj , t)
val(aj , t)

+
∑

adj

take(vj , si, t)
1

#stu(vj , t)
val(vj , t),

where ci, ai, vi, and si represent course, activity, adviser, and student, respec-
tively. #stu(x, y, t) returns the number of students who took two courses, activ-
ities, or advisers x and y together at semester t and take(x, s, t) ∈ {0, 1} is an
indicator variable to denote if course, activity, or adviser x is taken by student
s at semester t. Thus, val(x, t) means an influence value each entity x has at
semester t. As we construct a network Nt in each semester, these variables are
defined for each semester too. We ignore department, major, degree information
because they are too broad to be used in the variable definition.
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If two courses, activities, or advisers have largely overlapping students, their
values will be very similar because of the coefficient based on normalization. A
student value is an aggregation of all the course/activity/advisor values so it will
be solely decided by the courses/activities/advisers taken by the student (See
Algorithm 1). It is an iterative method to update values. We check the conver-
gence only for the student variables because they are what we are interested in.
The converged student values are used as additional features. The proof of its
convergence is removed in this paper due to space reasons.

4.4 Experiments

The time point of the data is Spring 2004 and the time point is Fall 2016. All
students who graduated on or before Spring 2013 are in the train set and others
are in the test set. The ratio of train:test is 77:23. We perform the grid search
with 10-fold cross validation to find the best model. Many classifiers (including
SVM, Random Forest, Decision Tree, AdaBoost, RBM, Bagging, Multi-Layer
Perceptron, etc.) are tested. In the training set, two classes are slightly imbal-
anced, i.e., 63% successful and 37% at-risk, so we apply under/oversampling
techniques [45] to make them balanced. In general, Random Forest works very
well and all of the reported values were produced by it.

Input: Student network Nt = (V,E), Course and Activity Records
Output: val(si, t) for each student

1 Initialize val(x, t) = 1
n where n is the total number of courses, activities, advisers, or

students depending on the type of x.
2 while until the convergence of val(si, t) do
3 Update val(ci, t); Update val(ai, t); Update val(vi, t); Update val(si, t)
4 return val(si, t)

Algorithm 1: Fix-point calculation algorithm for our complex variable system

Table 1. Prediction results

F-1

Overall

AUCROC Recall of

At-risk

Recall of

Successful

F-1 of

Successful

All students

Academic Features 0.78 0.76 0.56 0.67 0.78

Network Features (w1 only) 0.76 0.72 0.62 0.77 0.83

Network Features (w2 only) 0.73 0.66 0.51 0.70 0.81

Network Features (w3 only) 0.74 0.70 0.61 0.75 0.81

Network Features (w) 0.81 0.8 0.64 0.85 0.87

Academic + Network Features 0.84 0.86 0.69 0.87 0.89

Academic + Network + fix-point

Features

0.85 0.86 0.70 0.90 0.89

Early phase students

Academic Features 0.8 0.75 0.5 0.89 0.8

Network Features (w1 only) 0.8 0.71 0.54 0.85 0.86

Network Features (w2 only) 0.75 0.66 0.51 0.84 0.82

Network Features (w3 only) 0.76 0.68 0.55 0.87 0.83

Network Features (w) 0.8 0.77 0.55 0.79 0.79

Academic + Network Features 0.84 0.85 0.56 0.86 0.9

Academic + Network + fix-point

Features

0.85 0.85 0.58 0.88 0.9
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Prediction Results. We calculated our network features in various types of
student networks whose edge weights are calculated with wi only or with the
combined weight w marked with “(wi only)” or “(w)” as shown in Table 1,
respectively. Note that some wi is omitted in the table due to their performance
inferior to others. Network features based on the combined weight w shows
the best performance among them. Using only the academic features, we could
recall 56% and 50% of at-risk students among all and early phase students. After
adding network features, we could achieve the recall of 69% and 56% for the at-
risk student class and after using all available features, they are improved to
70% and 58%. For other measures such as F-1 and AUCROC, our predictive
model including all academic, network, and fix-point features outperform others
in non-trivial margins. These results strongly teach us answers on our research
questions 1 and 2. That is, network features improve the overall prediction and
in particular, during earlier periods.

Network Analysis. The degree centrality of a student in Nt is the sum of the
edge weights to neighbors. At the beginning, we expected that successful stu-
dents have more friends, thereby higher degree values. However, our observations
disprove the hypothesis. In Table 2, we show degrees in various perspectives. We
calculate average values for the top 50% and bottom 50% students in terms of
avg degree(·) in each prediction class. Their average values are quite different,
i.e., 2522.4 for successful v.s. 5258.1 for at-risk students (with p-value < 0.01).

Table 2. Average centrality,average community-based features and of two student
classes. For space reasons, we list selected values. P-values are smaller than 0.01 only
except the cases marked in boldface.

Successful

(entire period)

At-risk (entire

period)

Successful (at 5th

sem.)

At-risk (at 5th

sem.)

Degree All 2522.4 5258.1 3106.5 2856.6

Top 50% 4487.3 10143.0 5575.5 5392.7

Bottom 50% 557.4 373.1 634.8 311.7

Page Rank All 0.00075 0.00202 0.00072 0.00193

Top 50% 0.00118 0.00365 0.0011 0.00346

Bottom 50% 0.00031 0.00038 0.00032 0.00038

Eigen. All 0.0068 0.02212 0.0058 0.02323

Betw. All 0.00079 0.00456 0.0006 0.00391

Close. All 0.4357 0.4281 0.4372 0.4214

Min Degree All 553.3 498.8 568.8 423.1

Min Eigen. All 0.5348 0.5145 0.5419 0.4719

Giant. All 0.0674 0.087 0.0665 0.0929

Top 50% 0.1268 0.1606 0.122 0.1713

Bottom 50% 0.0074 0.0131 0.0077 0.0137

Fix Point All 0.000601 0.000722 0.001303 0.001793

Top 50% 0.00115 0.00178 0.002344 0.00541

Bottom 50% 2.144450e-81 1.561194e-81 2.511162e-131 1.818025e-131
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Some at-risk students are exposed to more interactions than the majority of
successful students. This can be interpreted in multiple ways, e.g., some at-risk
students have too many student activities. At the same time, the bottom 50%
at-risk students have much lower degrees than the bottom 50% successful stu-
dents, i.e. 557.4 v.s. 373.1 (with p-value <0.01). This means that there also
exist many at-risk students who do not interact with other students as much.

In the top 50% and bottom 50% cases of early phase students, successful
students have higher average values than at-risk students but their significance
level is low (p-value >0.01). However, successful students’ average degree at 5th
semester is larger than that of the entire period, i.e., 3106.5 v.s. 2522.4. This is
possible when successful students (i) quickly stabilize their connections during
their early academic periods and (ii) do not make many new connections in their
late academic periods. However, at risk students need to take some courses many
times in order to pass the course, and this shows up in our network as having
many more connections because they take the same course more times than the
successful student. At 5th semester, the average degree of the top 50% at-risk
students is 5392.7 but it is improved to 10143 when considering their entire
academic periods. This means that they interacted with many new students
even in their late academic periods for student activities, courses, and advisers.
Interestingly the bottom 50% of the at-risk students’ average degree does not
change significantly over time, i.e., 311.7 at 5th semester v.s. 373.1 during entire
academic periods. They are consistently isolated from others. All these findings
support research question 3, that successful and at-risk student show different
behavior over time. For other network features, we also hypothesized before
calculating them that successful students have better values. However, our results
show counter-evidences in some features. Because some at-risk students (e.g.,
the top 50% at-risk students in the previous degree centrality analysis) keep
making new connections (rather than staying in a community), they are bridges
over communities and as a result, their PageRank, betweenness, and eigenvector
centrality values will be higher than other successful students. In the bottom
50% case, we could not observe significant differences.

We also tested many other centrality metrics such as closeness centrality [24],
leverage centrality [46], clustering coefficient [25], and so on. For some of them,
we did not observe significant differences between the two student classes. In
Table 2, the higher average values of community features for successful students
implies they play more important roles in communities than at-risk students.
This is also well matched with the at-risk students’ high betweenness centrality
results which means that they are bridges over communities rather than core
members. Moreover, they are more likely to be members of the giant components
than successful students since they interact with many communities and thus end
up with peripheral positions in the communities. Interestingly, for the bottom
50% at-risk cases, their average degree centrality is lower than that of the bottom
50% successful students but their average percentage of the membership to giant
components is higher. This implies that those at-risk students may visit many
communities but do not make many connections in the communities.
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The ego-network density and clustering coefficient are complementary to each
other. Ego-network density can be high if some edge weights are large. For clus-
tering coefficient, however, some large edge weights cannot solely lead to the
clustering coefficient of 1. Only when ego-network is a complete network, its clus-
tering coefficient becomes 1. Because of this property, we expected larger clus-
tering coefficients from successful than at-risk students. Successful students’ ego-
networks tend to be more complete than that of at-risk students. Ego-network
density will be small if one does not maintain long-term connections in vari-
ous activities. Thus, we hypothesized that successful students may have dense
ego-networks. In all cases, successful students have better ego-network density
than at-risk students, i.e., 3.634 vs. 3.073 and 3.707 vs. 2.706. This observation
is well aligned with all the previous analyses because the ego-network density
results also imply that successful students and their neighbors maintain strong
connections. These evidences provide support for our research question 3 and 4.

Our result also shows that at-risk students have higher fix-point values in
general. We think that it is because of the same reason that at-risk students
make many short-term connections with others. In early phase, the pattern is
unique (supporting research question 3). In the degree centrality, for instance,
successful students’ degree values are higher than that of at-risk students in
the early period. However, for fix-point values at-risk students already show
higher values. This means that we can catch students exposed to too many early
connections. In all cases, p-values are smaller than 0.01.

5 Key Observations, Future Work and Conclusions

We start by building a network that represents the connections between students
and a mutually recursive variable system using data collected by the university to
solve a problem in higher education. The network is constructed using the data
stored in the University student management system and does not rely on access
to social media data or consistent use of LMS data. Our prediction of success
or risk achieves F-1 = 0.85 and AUCROC = 0.86. Our student network analysis
teaches us two very important insights, that is (i) At-risk students establish dis-
orderly connections while successful students keep strengthening their existing
connections, (ii) Successful students have high GPA neighbors and their ties are
strong. The density of successful students’ ego-networks are stable regardless of
time period. Our degree centrality results say that some at-risk students keep
making new connections and their ego-networks do not become dense or com-
plete. Our community-based features also support that successful students are
core community members where at-risks students reside in periphery.

We think that this network model of students can identify effective inter-
vention points at an early stage for at-risk students. It might be their natural
characteristics to make connections in such a way. But by helping them maintain
long-term and stable connections, we believe that at-risk students can improve
their success probabilities. Moreover, considering aspects of gender, race, ethnic-
ity, generational social class, student body demographics, geographic location of
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institution, and socio-economic status of students, are also large factors when
determining how long it takes a student to graduate. We are in process of col-
lecting these data and also the data from our LMS logs. We think that it is
essential to consider those factors when setting up intervention plans and creat-
ing compact student networks.
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Abstract. Intelligent tutors that emulate one-on-one tutoring with a
human have been shown to effectively support student learning, but these
systems are often challenging to build. Most methods for implementing
tutors focus on generating intelligent explanations, rather than generat-
ing practice problems and problem progressions. In this work, we explore
the possibility of using a single model of a learning domain to support the
generation of both practice problems and intelligent explanations. In the
domain of algebra, we show how problem generation can be supported
by modeling if-then production rules in the logic programming language
answer set programming. We also show how this model can be authored
such that explanations can be generated directly from the rules, facili-
tating both worked examples and real-time feedback during independent
problem-solving. We evaluate this approach through a proof-of-concept
implementation and two formative user studies, showing that our gen-
erated content is of appropriate quality. We believe this approach to
modeling learning domains has many exciting advantages.

Keywords: ITS · Problem generation · Answer set programming

1 Introduction

Over the past fifty years, researchers have developed robust artificial intelligence
systems that can emulate one-on-one tutoring with a human [3,6,8,29]. These
intelligent tutoring systems provide adaptive problem progressions and person-
alized feedback in a variety of domains, and have been shown to produce strong
learning gains in classroom studies [10,30]. However, these systems are often
challenging and time-consuming to build. Researchers have explored a variety of
approaches for modeling learning domains, resulting in the development of cogni-
tive tutors [3,6], constraint-based tutors [16,18], example-tracing tutors [9], and
ASSISTments [8]. However, these approaches all focus on optimizing the model-
ing and authoring of intelligent feedback, rather than of problems and problem
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progressions, an area which has been highlighted as interesting for future devel-
opment [11]. While a variety of problem-generation approaches have been devel-
oped and studied [14,19,26], most depend on models of the learning domain that
are very different than those used to generate intelligent explanations, making
it difficult to integrate them into existing tutoring systems.

In this work, we explore the possibility of using a single underlying model to
generate both practice problems and intelligent explanations. We build on prior
work in problem generation [2,5,19,28] by using the logic programming language
answer set programming (ASP) to model if-then production rules similar to
those used by cognitive tutors in the domain of algebra. We show how this
model can be used to generate algebra problems and all valid solutions to those
problems. We also present a new method for automatically generating step-by-
step explanations directly from the ASP model. We show how our explanation
content can be used to create worked examples, feedback during tutored problem-
solving, and a progression that gradually fades between the two.

We evaluate our approach through a proof-of-concept implementation and
two formative user studies. First, we developed an application called the Alge-
bra Notepad that embeds the problems, solutions, and explanations generated
from our model, demonstrating how our content can be used to implement an
intelligent tutor. Next, we evaluated the application through two user studies.
In a study with 57 Mechanical Turk workers, we found that participants solve
problems more accurately and efficiently after practicing with our tutor, demon-
strating that the generated solutions and explanations are understandable. In a
study with seven eighth-grade students, we found that the tutor helps learners in
our target population solve problems successfully. This approach for generating
problems and explanations from a single domain model has many advantages,
and could support robust content generation for tutoring systems in the future.

2 Background

2.1 Modeling Learning Domains

A variety of approaches for designing and implementing intelligent tutoring sys-
tems (ITS) have been explored. Cognitive tutors provide the most sophisticated
form of intelligent feedback. They represent knowledge using production rules
that define if-then relationships which capture all knowledge needed to solve
problems in a target learning domain, allowing the computer to solve problems
step-by-step along with the student [3,6]. Cognitive tutors detect errors when
the student’s action does not match any production rule in the model, and most
include explicitly programmed “buggy” production rules that match common
mistakes and misconceptions so that these can be explained [3]. Cognitive tutors
are complex, and typically include as many as 500 production rules [4].

Constraint-based tutors are another type of system designed to help stu-
dents identify and learn from mistakes [18]. These tutors model learning domains
as sets of pedagogically important constraints [14,16,17]. Rather than tracing
student actions, constraint-based tutors analyze the student’s current state to



Automatic Content Generation for an Intelligent Algebra Tutor 385

identify violations of model constraints [17]. These tutors typically require less
authoring effort than cognitive tutors, but can only provide feedback about con-
straint violations rather than also providing goal-oriented feedback [16].

Finally, peudo tutors exhibit many of the behaviors of ITS without requiring
complex modeling. Example-tracing tutors are created by demonstrating correct
solutions and common mistakes for specific types of problems. These demon-
strations are used to create a behavior graph that can trace learner behavior
and provide feedback [9]. A downside of this approach is that content must be
demonstrated or authored for each problem type; in contrast, a cognitive tutor’s
production rules can generalize across many different problem types [9].

2.2 Explanation Generation

Most tutors use hand-authored templates to generate explanations. Cognitive
tutors produce next-step hints and feedback by associating an explanation tem-
plate with each correct and buggy production rule in the model [3,4,29]. To fill
the templates with appropriate problem-specific content, each problem must also
be labeled to indicate which phrases should be inserted into the template [4].
The Cognitive Tutor Authoring Tools (CTAT) were developed to support effi-
cient authoring of both model-tracing cognitive tutors [12] and example-tracing
tutors [9]. Example-tracing tutor authors can annotate hints and feedback mes-
sages for specific problems in the system [9]. In constraint-based tutors, hand-
authored feedback messages are attached directly to the constraints [17], and
can either be given after each student action or at the end of the problem [16].
In contrast to cognitive tutors, these explanations are problem-independent.

2.3 Problem Generation

Researchers have explored problem generation for a variety of domains including
word problems [19], natural deduction [1], procedural problems [2], and embed-
ded systems [23]. Most approaches are template-based; given a general template
for a type of problem, they generate more problems that fit the template. These
templates can be generated automatically [1], semi-automatically [2], or manu-
ally [23]. While many of these approaches use exhaustive search or logical rea-
soning to generate problems, others use logic programming languages to model
domains and generate problems. For example, Andersen et al. use the code cover-
age toolkit Pex, built on the Z3 SMT solver, to generate problems for procedural
mathematics (e.g., long division) [2]. Others use ASP directly for domains such
as word problems [19] or educational math puzzles [5,28].

Despite this extensive research on problem generation, most intelligent tutor-
ing systems still rely on hand-authored problems. In a recent paper discussing
areas for ITS improvement, Koedinger et al. highlight automated problem gen-
eration as an interesting area for future development [11]. In the domain of
constraint-based tutors, Martin and Mitrovic developed an algorithm that can
generate problems from a set of target constraints [13,14]. However, since the
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domain models used to generate problems are different than those used to gen-
erate explanations, integrating problem generation into tutors is non-trivial.

3 Implementation Approach

In this work, we explore using a single underlying model to generate both prob-
lems and explanations for an intelligent tutor in the domain of algebra. Our core
approach is to model valid algebraic operations using answer set programming
(ASP), which facilitates generating both new problems and all valid solutions
to those problems. During the modeling process, we structure the ASP program
such that explanations for each solution step can be generated directly from the
code itself. We note that if a tutoring system has access to all valid solutions to
a target problem, it can trace a learner’s steps and compare them to those in
the solutions to detect errors. Furthermore, given step-by-step explanations of
each solution, a tutor can provide worked examples and also use explanations of
specific steps to provide feedback in response to learner mistakes. In this section,
we first describe our approach for modeling algebra in ASP, then discuss how
we generate problems, solutions, and explanations from this model. Finally, we
describe how we can use the ASP program to automatically detect and explain
a class of misconceptions related to applying algebraic operators incorrectly.

3.1 Modeling Algebra in ASP

ASP programs define facts and rules that are represented in first-order logic.
Answer set solvers search the space of truth assignments for each logical state-
ment in an ASP program to produce satisfying solutions called answer sets,
which define a set of self-consistent statements that identify a valid state of the
world. ASP programs typically include three types of rules: choice rules that
allow the solver to guess facts that might be true, deductive rules that allow the
solver to deduce new facts from established or guessed facts, and finally integrity
constraints that forbid certain solutions.

To solve an algebraic equation, a learner must isolate a variable on one side by
applying a sequence of operators, such as combining terms or dividing both sides
by a constant. In ASP, we model operators using deductive rules and integrity
constraints. Then, we use event calculus [25], a logical formulation that can rep-
resent the state of the world at multiple time steps, to model the problem-solving
process. For each operator, we use deductive rules to define a set of precondi-
tion predicates that must hold for that operator to applicable at a given time
step. Then, we use additional deductive rules to describe how the equation will
change on the next time step if that operator is applied. For example, consider
the operator for adding two like terms on the same side of the equation. This
operator is only applicable when a set of preconditions hold: two terms must
be on the same side of the equation, they must be added, and they must be
monomial terms of the same degree. If these hold, the operator can be applied
by adding the coefficients of the two monomial terms to produce a single term.
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Most algebra problems have many valid solutions. In general, textbooks rec-
ommend first simplifying by canceling and combining terms, and then rearrang-
ing terms to isolate a variable on one side of the equation. We therefore group
operators into five classes ordered by precedence – cancel, combine, rearrange,
move, and expand – and define integrity constraints that force the program to
explore the classes of operators in this priority order. Finally, integrity con-
straints are used to ensure that the final step is a valid solution.

3.2 Problem and Solution Generation

To generate new problems and their solutions from the ASP program, we define
choice rules that set the initial problem configuration, the operators used in
the solution, and predicates describing which operator is chosen at which time.
Answer set solves also require that you define a finite search space, so we con-
strain both the size of the equations and the number of steps in the solution. In
practice, novices focus on relatively simple problems, so we constrained genera-
tion to equations with a maximum of six terms per side and a maximum solution
length of four steps. An answer set calculated on our ASP program produces both
a problem and a sequence of valid operators that solves the problem.

This allows us to generate problem-solution pairs, but we want to generate all
valid solutions to each problem. This requires some subtlety because generating
all solutions is in a higher complexity class than generating a single solution.
ASP is capable of solving this class of problem, and previous work has explored
the specific challenge of generating math puzzles with all solutions [27], but
implementing this type of model is technically challenging. Since we do not need
to enforce any constraints over all problem solutions, we can take a simpler two-
step approach. First, we generate a set of problem-solution pairs, and then we
use a second ASP program to generate all shortest solutions for each problem.

3.3 Explanation Generation

Our approach for generating step-by-step explanations for each problem is to
name the rules and predicates in the ASP program in such a way that expla-
nations can be generated directly from the program itself. This allows us to
produce explanations without having to write any problem- or solution-specific
content, but requires structuring the ASP program differently than we would if
we were not generating explanations from the code. Our explanations have two
parts: we describe each operator that is applied to the equation, and we also
provide strategy explanations that describe the priority of operator classes.

For operators, we first describe why an operator can be applied to the equa-
tion at this step, and then describe how to modify the equation to apply the
operator. We generate explanation text from the declarative rules defined for
each operator the ASP program. The precondition predicates in the operator
rule define precisely why the operator can be applied, but we typically do not
want to explain all predicates to the learner. For example, a predicate that states
that a term cannot be added to itself is necessary for the solver, but not for the
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Algorithm 1. ASP rules used to define the add two terms operator. The precon-
ditions are separated into two tiers, one used to generate a high-level description
of the precondition and a second used to provide a more detailed description.
The second tier is also used to generate explanations for rules that almost apply.
applicable(T, weCanSimplifyByAddingTheseTwoTermsTogether(L, R))

:- weAreAddingTwoTermsWithVariablesThatHaveTheSameDegree(T, L, R).

weAreAddingTwoTermsWithVariablesThatHaveTheSameDegree(T, L, R)

:- _areDistinctNodes(L, R), isMonomial(T, L), isMonomial(T, R),

areOnTheSameSideOfTheEquation(L, R),

areBeingAdded(T, L, R), haveEqualDegrees(T, L, R),

_isNotZero(T, L), _isNotZero(T, R).

learner. To handle these cases, we add an underscore to the beginning of pred-
icate names that should not be explained. More importantly, we may want to
describe multiple predicates through one high-level explanation. To handle these
cases, we define our rules in ASP using a tiered approach that defines multiple
levels of explanation detail for each operator. The first level produces a general
explanation of why the rule applies, while the second level describes each of the
predicates that must hold for the rule to apply. Algorithm 1 shows the ASP code
that we used to model the add like terms operator in our system, which includes
multiple rule definitions that provide different levels of explanation.

We also wanted to explain the problem-solving strategy of first simplifying the
equation and then rearranging terms, which is represented through the priority
of the five operator classes. We designed a dialog that presents these classes
through a sequence of question-answer pairs, which start by asking whether an
operator in each class can be applied (e.g. “can we combine?”). This question is
answer either no (“no we cannot combine”) or yes (“yes we can combine these
terms”). In cases where an operator class can be applied multiple times, we note
this in the response (“we can combine multiple terms”). This text is generated
from five templates, one for the question and one for each possible response. The
templates are populated with the current operator class and the ids of the terms
to which the operator is applied. Figure 1 shows the sequence of explanations
generated for applying the combine like terms operator to an example equation.

Our approach for automatically generating explanations requires authoring
the ASP program with these explanations in mind, by abstracting predicates into
multiple levels and naming the rules and predicates such that they will produce
clear and understandable descriptions. While this requires significant up-front
authoring effort, once the program is written explanations can be automatically
generated for any problem and solution generated by the model.



Automatic Content Generation for an Intelligent Algebra Tutor 389

Fig. 1. An explanation sequence generated for the add like terms operator that
describes problem-solving strategy and how and why the operator can be applied.

3.4 Misapplied Rules

One potential benefit of this modeling approach is that it provides an opportu-
nity to automatically generate rules that describe learner misconceptions. Many
intelligent tutors detect and respond to common misconceptions, typically using
hand-authored “buggy” production rules [3,17]. One class of misconceptions is
misapplied rules. For example, given the equation 2x∗5x = 100, a student could
mistakenly think the add-like-terms operator applies to 2x and 5x, since they
are monomials of the same degree on the same side of the equation. However,
they are being multiplied, not added, so the operation is not valid. Modeling
algebraic operators in ASP allows us to automatically detect and reason about
a subset of such misapplied rules. Each operator has several predicates which
make up the precondition. If nearly all the predicates hold (e.g., there are two
terms, both monomials of same degree) but one such predicate is missing (e.g.,
terms are not being added), then such a rule almost applies.

Given the set of predicates that define when an operator is applicable, we
can produce an exhaustive list of all rules that almost apply for a given equation
by searching for those that apply when a single predicate is omitted from the
rule body. As with correctly applied operators, we can automatically generate
explanations for operators that almost apply from the rules themselves. We take
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the name of the omitted predicate and negate it (e.g., “are being added” in
Algorithm 1 becomes “are not being added”). The structure and consistency
of our rule names makes this negation straightforward, placing “not” after the
first “is” or “are” that appears in the rule name. To explain a rule that almost
applies, the system generates the text “it looks like we can 〈operator name〉, but
we cannot because 〈negated predicate that was omitted〉” using a template.

Traditionally, buggy production rules are hand-authored. In contrast, our
modeling approach allows us to automatically detect a wide set of misapplied
rules. While these only cover a subclass of potential misconceptions, they can
be generated fully automatically. We hypothesize that, with data from learners,
it would be possible to determine which of the generated misapplied rules are
likely to occur in practice. Then, such rules could be used to preemptively explain
common misconceptions or provide feedback in response to learner mistakes.

4 Formative Evaluation

The central contribution of this work is our approach for generating prob-
lems, solutions, and step-by-step explanations from a single model of a learning
domain. To evaluate the content that can be produced using this approach,
we first developed a proof-of-concept implementation in the domain of algebra.
We modeled algebraic problem solving in ASP as described above, and then
developed an interactive algebra tutor on top of the content generated by this
model. We show that our tutor can provide step-by-step worked examples, can
give real-time feedback during independent problem solving, and can support a
problem progression that gradually fades between the two types of scaffolding.
To evaluate the proof-of-concept tutor and its content, we conducted formative
user studies with Mechanical Turk workers and eighth-grade students.

4.1 Proof-of-Concept Implementation

Many design decisions go into the development of any tutoring system [29]. Our
goal in this work is not to study any particular instructional approach, but
rather to show the variety of scaffolds that can be implemented with our gen-
erated content. We developed an interactive tutor we call the Algebra Notepad
that uses a gesture-based interface to emulate solving equations on paper (see
Fig. 2). The application uses problems, solutions, and explanations that were gen-
erated by our ASP model offline. We implemented a scaffolded problem progres-
sion that gradually fades between step-by-step demonstrations of correct solu-
tions [7,15,20] and independent problem solving with mistake feedback [3,6,29],
a pedagogical approach known as faded worked examples [21,22,24]. Our fading
policy has five levels. In Level 1, learners walk through example solutions step-by-
step, viewing our generated strategy and operator explanations (see Fig. 1). In
Level 5, learners solve problems independently while the system compares their
steps to the correct solutions. The system displays sparkly stars in response to
correctly applied operators, and gives tiered feedback messages when steps are
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incorrect. The remaining three levels blend these extremes, for example showing
explanations but requiring the learner to perform the operations on their own.

4.2 Mechanical Turk Study

First, we conducted study on Mechanical Turk with the goal of recruiting a rela-
tively large number of users to try the Algebra Notepad application. We used this
study to evaluate whether our scaffolds helped participants solve problems, and
whether the generated explanations are understandable. We generated a static
progression of nine problems for this study, six of which required a minimum of
four steps to reach a solution and three of which required three steps. We used
the fading policy described in the previous section; the progression started with
one worked example at Level 1, followed by two problems each at Level 2, 3, 4
and 5. Participants took a three-problem test before and after using the Algebra
Notepad, and completed a short survey about the experience at the very end.

We collected data from 57 Mechanical Turk workers, who provided informed
consent and were paid for their time. First, we measured whether their problem-
solving performance improved after practicing with the Algebra Notepad. A
repeated measures ANOVA showed that participants performed better on the
post-test (F (1, 56) = 8.02, p < 0.01), with a mean score of 2.4 out of three cor-
rect on the pre and 2.6 on the post. We also counted the number of steps used in
correct solutions, and found that participants used fewer steps on the post-test
(F (1, 50) = 80.06, p < 0.0001), with a mean of 5.1 steps per problem on the
pre and 4.3 steps on the post. These findings suggest that practicing with the
algebra tutor improved the correctness and efficiency of participant’s solutions.

We also analyzed log data from the Algebra Notepad to measure how par-
ticipants performed during independent problem solving (fading Level 5 ). We
found that participants applied the correct operator on the first try in 84.5%

(a) (b)

Fig. 2. Screenshots of the Algebra Notepad application. The interface displays each
step on a separate line, and learners manipulate equations using gestures, as shown in
the actions bar in (a). (b) shows a replace gesture.
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of cases. Using tiered feedback, they applied the correct operator on the sec-
ond or third try in 10.3% of cases, and only needed the system to perform the
operation for them in 5.1% of cases. This shows that the generated feedback
helped participants reach correct solutions most of the time. On the final survey,
participants agreed that the explanations “were clear and understandable” and
“helped me solve problems”, rating these statements an average of 4.8 and 4.7 on
a six-point Likert scale respectively. When responding to a question asking what
they thought of the explanations, one participant said “I thought they were great.
It has been years since I’ve done algebra and the explanations on the notepad
refreshed by memory and improved my ability to solve problems correctly.”

4.3 Student Study

Since adults are not the target population of our Algebra Notepad, we conducted
a second informal user study with seven eighth-grade students at a local Boys
& Girls club to confirm that learners can successfully interact with the con-
tent generated with our model. In this study, students used the Algebra Notepad
application to complete a static progression of 20 problems. The first nine prob-
lems in the progression were identical to those used in the Mechanical Turk
study, and the same fading policy was used. However, we added an additional
11 problems at Level 5, where students worked on problems independently and
were given feedback in response to mistakes as needed. The seven students all
completed the progression of 20 problems. We analyzed their log data, and saw
that for the 13 problems in Level 5 that required independent problem-solving,
students applied the correct operator on the first try in 81.4% of cases. The
applied the correct operator on the second or third try, with the help of the
tiered feedback, in 16.3% of cases. They only needed the system to apply the
correct operator in 2.3% of cases. This suggests that most students were able
to use the explanations and corrective feedback generated through our model to
identify and apply the correct operators while solving algebra problems.

5 Discussion and Conclusion

In this work, we contribute a new approach for using a single underlying model
of a learning domain to generate problems, step-by-step solutions, and explana-
tions. We describe our process for modeling algebra in answer set programming,
and show how the model can be used to generate new problems and all solutions
to those problems. We also introduce a new method for automatically generating
explanations directly from the model, and show how this content can be used to
support step-by-step worked examples, feedback in response to mistakes during
independent problem solving, and a progression that gradually fades between
the two. We evaluated our approach by developing a proof-of-concept imple-
mentation of an intelligent tutor that uses content generated by our model, and
we show that both adult users and eighth-grade students can interact with our
explanations to successfully solve algebra problems.
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We believe this modeling approach has exciting potential for supporting
robust automated content generation for intelligent tutoring systems in the
future. While this work focuses on the domain of algebra, ASP can be used to
model any domain that can be represented through if-then relationships, where
learners determine when rules or conditions apply and take actions in response.
Logic programming languages have already been used to model diverse learn-
ing domains such as math procedures [2], word problems [19], and game puz-
zles [5,28]. While this work takes an important first step towards understanding
how to construct an intelligent tutor around an ASP model, it has a number of
limitations. We hope future research can continue this line of work, in particular
expanding on our formative evaluation to determine whether content generated
using this approach can effectively support student learning in real-world con-
texts.

References

1. Ahmed, U.Z., Gulwani, S., Karkare, A.: Automatically generating problems and
solutions for natural deduction. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 1968–1975. AAAI Press
(2013). http://dl.acm.org/citation.cfm?id=2540128.2540411
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pp. 388–398. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47987-
2 42

14. Martin, B.I.: Intelligent tutoring systems: the practical implementation of
constraint-based modelling. Ph.D. thesis, University of Canterbury (2001)

15. McLaren, B.M., Lim, S.J., Koedinger, K.R.: When and how often should worked
examples be given to students? New results and a summary of the current state
of research. In: Love, B.C., McRae, K., Sloutsky, V.M. (eds.) Cognitive Science
Society, pp. 2176–2181. Cognitive Science Society, Austin (2008)

16. Mitrovic, A.: Fifteen years of constraint-based tutors: what we have achieved and
where we are going. User Model. User-Adapt. Interact. 22(1–2), 39–72 (2012).
https://doi.org/10.1007/s11257-011-9105-9

17. Mitrovic, A., Koedinger, K.R., Martin, B.: A comparative analysis of cognitive
tutoring and constraint-based modeling. In: Brusilovsky, P., Corbett, A., de Rosis,
F. (eds.) UM 2003. LNCS (LNAI), vol. 2702, pp. 313–322. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-44963-9 42

18. Ohlsson, S.: Constraint-based student modeling. In: Greer, J.E., McCalla, G.I.
(eds.) Student Modelling: The Key to Individualized Knowledge-Based Instruction,
vol. 125, pp. 167–189. Springer, Heidelberg (1994). https://doi.org/10.1007/978-
3-662-03037-0 7

19. Polozov, O., O’Rourke, E., Smith, A., Zettlemoyer, L., Gulwani, S., Popović, Z.:
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Abstract. Identifying the mathematical skills or knowledge components
needed to solve a math problem is a laborious task. In our preliminary
work, we had two expert teachers identified knowledge components of a
state-wide math test and they only agreed only on 35% of the items. Pre-
vious research showed that machine learning could be used to correctly
tag math problems with knowledge components at about 90% accuracy
over more than 100 different skills with five-fold cross-validation. In this
work, we first attempted to replicate that result with a similar dataset
and were able to achieve a similar cross-validation classification accuracy.
We applied the learned model to our test set, which contains problems in
the same set of knowledge component definitions, but are from different
sources. To our surprise, the classification accuracy dropped drastically
from near-perfect to near-chance. We identified two major issues that
cause of the original model to overfit to the training set. After address-
ing the issues, we were able to significantly improve the test accuracy.
However, the classification accuracy is still far from being usable in a
real-world application.

Keywords: Natural language processing · Knowledge component ·
Multiclass classification · Generalizability

1 Introduction

One of the most important skills teachers need to have is the ability to recognize
which sets of skills are needed to solve specific problems. While teaching, many
teachers solve practice problems as an example. Those problems are also often
used as homework practices to help students learn and to allow teachers to be
able to measure student knowledge. For students who are unable to reach satis-
factory level of knowledge, it is also common for teachers to give a student a few
more problems as a chance to show their improvements [9]. Thus, it is impor-
tant for teachers, educators, content providers, publishers, and researchers to use
the same categorization of skills, also known as knowledge components (KCs), as
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vocabularies for their communication and interaction. Common Core State Stan-
dard (CCSS, www.corestandards.org) is one of the most common categorizations
of knowledge components skills in English language arts and mathematics from
kindergarten to high school in United States. CCSS provides both broad and in-
depth specific descriptions of skills, which is often accompanied by an example
problem belonging to the skill. Figure 1 shows Common Core definitions of two
8th grade skills in expressions and equations.

Fig. 1. An example of Common Core definitions from 8th grade skills in expressions
and equations.

In recent years, there has been a significant increase of digital devices in the
classroom. Such devices enable teachers and students to use learning manage-
ment systems (LMSs), such as Google Classroom (classroom.google.com) and
Schoology (www.schoology.com). These LMS tools are designed to help teachers
organize their classrooms and classwork, improve communication between teach-
ers and students, and provide students with help such as instant feedback for
their homework. In addition, LMSs allow teachers to easily access course materi-
als provided by other teachers, content creators, or publishers through Learning
Tools Interoperability (LTI). As such, skill standards such as Common Core are
now more important than ever, as they reduce miscommunication and ensures
that teachers can navigate to the right materials, especially through content
sharing such as LTI.

Tagging problems with their associated skills or knowledge components are
usually done manually, often by experienced teachers and experts in the fields of
learning. Identifying knowledge components is also hard, even for experts. In our
preliminary study, we had two expert teachers identify knowledge components
of a 37-item state-wide math test called TerraNova and they only agreed only
on 13 items (35%). In addition, skill tagging is a very tedious and time con-
suming task [5]. With the growing pools of content created and shared through
online systems, there is a need for a method that can identify knowledge com-
ponents quickly and accurately, using the only information that is consistent
across problems from different systems: the content of problems. In the field of
machine learning, techniques used to extract information from text are called

www.corestandards.org
www.schoology.com
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text mining and natural language processing (NLP). With the interactions of
many systems through LTI, generalizability of models is the top priority since
the input problems in real applications may be from different sources, authored
for different intents, and come in different formats. Generalizability will be the
main focus of this work.

In the field of education, there have been multiple usages of text mining
and NLP to help automate laborious tasks. Zhao et al. applied several types of
neural network-based models to automatically grade English essays [10]. Their
best model, with Kappa of 0.78, was a variant of a neural network called a
memory-augmented network, which can outperform state-of-the-art models like
long short-term memory network (LSTM). Decision rules and Bayesian classifiers
were shown to be able to automatically assign topics to news stories correctly
[1,6].

Another example of text mining in education is a work by Pardos and Dadu
in 2017. The model they presented could accurately assign problems to their
associated knowledge components [7]. With five-fold cross validation and 198
different Common Core knowledge components, their best model was able to
identify knowledge components with an impressive accuracy of 90%. Their best
model was a combination of using skip-gram on the sequence of problem IDs as
they are encountered by students, and a neural network on bag of words of the
problem text.

In this work, we replicated the methodology presented in [7] on a similar set
of problems from the same source they used. In addition, as our work is driven by
the need for the models to be accurate both problems within the same system
and problems from other sources, i.e. problems created by different teachers,
textbooks and publishers. Thus, the main focus of this work is applying the
trained models to different sets of problems, and find the best hyper-parameters
and preprocessing that allow the model to generalize effectively.

2 Replicability

Our first step to replicate the results from [7] was to obtain a dataset. We chose
to use problems from a web-based LMS called ASSISTments (www.assistments.
org). We decided to use only certified Skill Builder problems for K-12 math-
ematics as our training sets because these problems are officially curated and
maintained by experts from the ASSISTments system. In addition, each ASSIST-
ments Skill Builder is problem set of a large number of similar problems specif-
ically created to help students learn a specific Common Core State Standard.
Thus, these problems match ground truth labels of KCs. The dataset used in [7]
also came from ASSISTments, which led us to expect results similar to theirs.
Our final dataset includes 65,120 problems from 336 problem sets belonging to
173 different skill standards. The minimum number of problems belonging to
a single skill standard is 14 problems and the maximum is 6,480 problems. All
problems are formatted using HTML, which is a standard markup for text dis-
play in web pages. An example of a problem formatted using html is shown in
Fig. 2.

www.assistments.org
www.assistments.org
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2.1 Text Representation and Preprocessing

For text representation, we used the bag-of-word technique similarly to [7]. Bag-
of-word is a technique that converts text into a vector representation of the size
of the vocabulary. Each element of the vector represents how many times each
word in appears in the text. After we get the bag-of-word representation of each
problem text, we divide each element of the vector by the sum of all elements.
This process is also called L1 normalization.

We decided to keep all html tags and entities in our bag of words. However,
unlike in [7] where html elements are used directly as input to the models, we
transformed html tags and many symbols that are often used in mathematical
problems such as less than (<), greater than (>), and equal (=) into special
“words” that corresponds to each html tag and entity. For instance, <img>
&pi; are encoded as htmltag img and htmlentity pi. All html attributes (such as
links, text colors, and text sizes) and html syntax elements (such as closing tags)
are removed. The main idea of this text replacement is to keep relevant special
formatting and symbols, such as superscript and subscript, with discarding other
information that are not directly related to math knowledge such as text colors
and font sizes. In addition, some content sources may use different schemes to
format their contents other than html. This transformation would allow models
to be used on problems with equivalent formatting.

2.2 Replicated Model

After preprocessing the dataset, we applied various machine learning models.
We evaluated each model by calculating its prediction accuracy with five-fold
cross-validation. We explored using three different common machine learning
models: artificial neural networks, decision trees, and random forests. Artificial
neural networks, or ANNs, are models that are inspired by how human nerve
cells (neurons) connect and communicate. ANNs have been shown to work very
well on text processing, including in [7].

Decision trees are another type of model that have been shown in [1] and [6]
to be able to do well in text classification tasks. The main benefit of decision trees
are simplicity and interpretability of the models. Since in our dataset, certain
skill contains only one sample, we chose to train all decision trees with minimum
leaf size of 1.

Random forests are tree-based, ensemble machine learning models [2]. Ran-
dom forests utilize feature bagging and bootstrapping to achieve both flexibility
and prediction powers, while being resistant to overfitting. Random forests have
been widely used in many fields from biology [4], text mining [8], and UMAP [3].
We chose the minimum leaf size of 1, similarly to decision trees, with 10 random
trees in a random forest.

2.3 Replicability Result

We were able to successfully replicate the results from [7] using the method-
ology they described. For each method, only the model with the best 5-fold
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Fig. 2. An example of a problem formatted using html

cross-validation accuracy is included. Our best model, which is shown in Table 1,
which uses all the html information of all the problems in the dataset, was able to
achieve 92.47% accuracy with five-fold cross-validation in our dataset. Removing
html markups reduces the 5-fold cross-validation. While Random Forest is the
best model, the 5-fold cross-validation accuracy for the other two models are
only 1%–2% lower than that of the Random Forest.

Table 1. Results from using bag-of-word approach with different models using all
problems and transformed html markups.

Preprocessing Model 5-Fold
cross-validation
accuracy

Illustrative math.
problem accuracy

Keep all html markups Decision tree 92.47% 12.14%

Keep all html markups Neural network 92.07% 13.67%

Keep all html markups Random forest 92.74% 6.98%

2.4 Does It Generalize?

Since our goal is to develop a model that can identify knowledge components of
problems from different sources and authors, we chose to obtain a second dataset
for our generalizability test. We chose problems from Illustrative Mathematics
as our test set. Illustrative Mathematics (www.illustrativemathematics.org) is
an open and free mathematics curriculum. We chose problems from Illustrative
Mathematics because (1) the problems are created with Common Core State
Standard in mind, meaning we have the ground truth KCs, (2) it is an open
and free educational resource widely used by teachers across the United States,
and (3) all problems from Illustrative Mathematics we compiled are in html
format similar to the training set. We compiled together 1,581 problems from
grade 7 and 8, belonging to 114 different skill standards. The number of problem
per skill standard ranged from 4 to 71. We removed all problems belonging to
skills outside of our training set. Our final test set contains 392 problems from
23 skills. Afterward, we retrained the model using all training data, and uses
on the problems from Illustrative Mathematics. To our surprise, the accuracy

www.illustrativemathematics.org
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dropped drastically as shown in Table 1. While the performance of all models is
still better than chance, it is far from usable in a real-world application.

2.5 Causes of Overfitting

We investigated what could have caused such a massive overfitting by looking
through our dataset and models. We found two potential causes of the overfit-
ting. The first cause stems from a large number of near-identical problems. In
order to create a large number of math problems, it is common for content cre-
ators to create a few templates and substitute different numbers and keywords
in the problems and answers. For instance, a teacher might create “Train A
from New Mexico to Nevada leaves at TIME A at SPEED A mph. Train B from
Nevada to New Mexico leaves at TIME B at SPEED B mph. The two stations
are 900 miles apart. What time will the two trains meet each other?” With this
template, the teacher can substitute TIME A, SPEED A, TIME B, SPEED B
with different numbers to create a massive number of practice problems. Specif-
ically, Out of 65,120 problems in our dataset, only 2,523 problems are created
without using templates. For the other 62,597 problems, there are at least 1,193
different templates, each of which has been used for more than 10 problems.

Using cross-validation without regard of templates could potentially mislead
models to remember the specific words in templates rather than to learn the
terminologies of skills, causing their cross-validation accuracy to inflate. In our
train example, the model may choose to remember the word “New Mexico”
and “Nevada”, instead of “mph”, “miles”, and “time”. Pardos and Dadu were
aware of this issue of their best model and attempted to solve it by doing cross-
validation in such a way that all problems from the same problem set were in
the same fold, which significantly reduced their accuracy to around 70%. This
approach did not resolve all the issue with templates, since problems created
using the same template also exist outside of the problem sets.

The second cause of overfitting stems from the html elements and formatting
included in the models. While the html elements are shown to improve cross-
validation accuracy in [7], we found that it causes the decision trees to over-
prioritize the formatting in the decision. In addition, templates also contribute
to overfitting here since the formatting is also copied over to each problem from
the same template. This causes the models to be unable to identify the knowledge
components once the formatting “styles” have been changed.

3 Towards Generalizability

After we have identified potential causes of overfitting, we came up with multiple
ways to address the two issues.

3.1 Near-Identical Problems

In order to address the issue with templates, we removed all but one problems
that are created using the same templates. Luckily, the problems inside our
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dataset also contain the information on creation, specifically if it is a (modified)
copy of another problem. We used that information to remove all but one prob-
lem derived from each template. As a result, the size of our dataset is significantly
reduced to 2,474 problems. The number of problem sets and skills remain the
same (336 problem sets, 173 different skills). The number of problems per skill
standard is also reduced to a minimum of 1 and a maximum of 198 problems
per skill.

3.2 HTML Element and Formatting

In order to address the html formatting issue, we introduced two approaches
to process the html elements. The first approach is to remove all html tags
and entities. The goal of this approach is that some formatting schemes may
not be equivalent or convertible to html, rendering our first approach unusable.
In fact, for some math topics, problems can be written entirely in plain text
(i.e. no formatting). This approach is advantageous because the model will be
usable on problems of any formats (or no format), albeit often with some loss of
information.

The second approach is keep only important html elements. The goal of this
approach is to have certain html elements act as keywords which, when combined
with other words, can be indicative of the knowledge components. For instance,
the words “read” and “graph” together with an image could indicate that in
this problem, the student needs to be able to extract information from a visual
representation of a graph. In this work, we only include tables and graphs as
important keywords.

Table 2. Results from using bag-of-word approach with different preprocessing and
models using only non-template problems.

Preprocessing Model 5-Fold cross-
validation
accuracy

Illustrative
math. problem
accuracy

Keep all html markups Decision tree 62.53% 10.85%

Keep all html markups Neural network 68.23% 16.26%

Keep all html markups Random forest 65.24% 12.91%

Keep only image and table Decision tree 59.71% 12.67%

Keep only image and table Neural network 63.62% 22.19%

Keep only image and table Random forest 60.97% 9.56%

Remove all html markups Decision tree 58.73% 10.33%

Remove all html markups Neural network 63.80% 22.47%

Remove all html markups Random forest 61.22% 4.92%
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4 Results

In order to compare with the models we have in the replication section, we fol-
lowed the same methodology we used there on each of the different preprocessing
approaches to the dataset. The results are shown in Table 2. In general, the 5-fold
cross-validation accuracy is much lower than that of the replication, which is to be
expected since a large number of near-identical problems are removed. The best
model for both training set and test set is a neural network model trained on no
html markup at all. The best test accuracy is 22.47%, which almost that of the
best replication model. This confirms our suspicion that the near-identical prob-
lems and the excessive/irrelevant formatting markups cause the model to overfit.

We also investigated what caused our model to fail. Figure 3 shows the con-
fusion matrix of the our best model (no html markup, neural network) on the
training set during 5-fold cross-validation prediction. The green dots indicate
where the model correctly classified the problems, the red dots indicate where
the model is wrong, and the intensity of the colors is proportional to the percent
of correct/incorrect classification. A large number of strong green dots indicates

Fig. 3. Confusion Matrix from 5-fold cross validation of models using only non-
template problems. Green denotes true positive. Red denotes false positive/negative.
The intensity of color is the magnitude of correct/incorrect classification. (Color figure
online)



404 T. Patikorn et al.

that our models are able recognize the large number different KCs. There are
also a large number of red dots, indicating that the model is unable to recognize
some KCs, many of which are because there are not enough samples (e.g. only
1 non-template sample from that KC). Interestingly, not many red dots fall on
the same columns. This implies that the model is not quite biased toward any
specific KCs. The codes we used in this work can be found here: https://drive.
google.com/open?id=1yyJgJavBdAyPbKsFSuhI6TRN cDRcRM7.

5 Conclusion

While cross-validation has been regarded as a gold-standard technique to inves-
tigate generalizability of models, in this work we showed that it is also important
to investigate generalizability using a separated test dataset that will emulate
input data from real application. There are three main contributions of this
paper.

The first contribution is the replication of the result from [7]. We were able
to successfully replicate their work using the methodology presented. However,
after further investigation, we found that the model, while being internally valid
and consistent, was unable to generalize well to problems of different sources. We
highly recommend future models to not rely solely on cross-validation accuracy
for this problem. Instead, researchers should use problem texts obtained through
different sources to ensure generalizability. This insight is also applicable to other
domains as well.

Our second contribution is the investigation on potential causes of overfitting
of models for imputing KCs using only the problem text. We found that near-
identical data in the training set as well as html formatting can cause the model
to over fit to the “styles” of the training set, reducing its generalizability. We
also found that including just the indicators for images and tables do no increase
generalizability as we have hypothesized.

The third contribution is an improvement of models for imputing knowledge
components using only problem texts. Our best model is a neural network model
trained using non-template problems without formatting markups. Our best
model was able to correctly identify KCs about 1/4 of the problems in our test
set, almost doubled the test accuracy of the model from our replication of [7]. It
is important to note that this model is still far from being usable in a real world
application.

6 Future Work

There are several areas that we chose not to investigate in this project. For
instance, math problems can require multiple skills. In this work, we only choose
one of the skills. With conjunctive skill representation, the models can be sig-
nificantly improved. In this work, we did not individually tune each model. So,
it is possible that the models, one finely tuned, may be able to generalize even
better than the result presented in this work.

https://drive.google.com/open?id=1yyJgJavBdAyPbKsFSuhI6TRN_cDRcRM7
https://drive.google.com/open?id=1yyJgJavBdAyPbKsFSuhI6TRN_cDRcRM7
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In this work, we did not use any information that Common Core State Stan-
dards provided with the skills. For instance, in Fig. 1, we treated 8.EE.A.1 and
8.EE.A.2 are two totally different KCs. However, we believe that a model that
can utilize the information on the skill domains and their hierarchies, will per-
form much better. For instance, a human would be able to recognize that both
of those skills are 8th grade Expressions and Equations, and they’re also a part
of “Expression and Equations Work with radicals and integer exponents”.

In addition to improvements to models, another area of future work is to
apply the trained models to real applications. One such application that we
are currently is a module for ASSISTments that automatically detects the skill
standard of problems inside a problem set teachers assigned to students. Then,
the system suggests a list of problems belonging to the same set of skill standards
as next-day review problems.
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Abstract. Most STEM domains use multiple visual representations to illustrate
complex concepts. While much research has focused on helping students make
sense of visuals, students also have to become perceptually fluent at translating
among visuals fast and effortlessly. Because perceptual fluency is acquired via
implicit, nonverbal processes, perceptual fluency trainings provide simple
classification tasks that vary visual features across numerous examples. Prior
research shows that learning from such trainings is strongly affected by the
sequence of the examples. Further, prior research shows that perceptual fluency
trainings are most effective for high-performing students but may confuse low-
performing students. We propose that a lack of benefits for low-performing
students may result from a perceptual expert blind spot of instructors who
typically develop perceptual fluency trainings: expert instructors may be unable
to anticipate the needs of students who do not see meaningful information in the
visuals. In prior work, we used a machine-learning approach to develop a
sequence of example visuals of chemical molecules for low-performing stu-
dents. This study tested the effectiveness of this sequence in comparison to an
expert-generated sequence in a randomized experiment as part of an under-
graduate chemistry course. We determined students’ performance based on log
data from an educational technology they used in the course. Results show that
the machine-learned sequence was more effective for low-performing students.
The expert sequence was more effective for high-performing students. Our
results can inform the development of perceptual-fluency trainings for adaptive
educational technologies.

Keywords: Multiple visuals � Perceptual fluency � Sequencing �
Machine learning

1 Introduction

Visual representations are often used to illustrate concepts in science, technology,
engineering, and math (STEM) instruction [1–3]. For example, chemistry instruction on
bonding typically uses visuals such as Lewis structures and space-filling models of
molecules (see Fig. 1) [4]. Multiple visual representations can enhance learning because
they provide complementary information about the to-be-learned concepts [5–7]
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(e.g., the Lewis structure shows how many electrons form bonds, the space-filling model
shows the geometry of the molecule). However, multiple visual representations can
impede learning if students are unable to make such connections among them [7, 8].

Most prior research on connection making among visuals has focused on helping
students make sense of the connections by prompting them to explain differences and
similarities between visuals [5, 9, 10]. For example, a student has to explain similarities
in how the visuals in Fig. 1 show atoms: the H’s in the Lewis structure in Fig. 1a
correspond to the white spheres in the space-filling model in Fig. 1b because both show
hydrogen atoms. They have to explain differences, for example that the dots in the
Lewis structure show electrons that are not shown in the space-filling model.

By contrast, little research has focused on the role of perceptual fluency in students’
learning: that is, the ability to quickly and effortlessly integrate information from
multiple visuals [7, 11]. For example, students need to immediately see that the visuals
in Fig. 1 show the same molecule and translate between them as fluently as bilinguals
translate between languages [7, 12, 13]. Perceptual fluency frees cognitive resources for
future learning and effortful conceptual reasoning [13, 14]. Because perceptual fluency
is acquired via implicit, inductive, nonverbal processes [15, 16], instructional trainings
enhance perceptual fluency by exposing students to a sequence of many simple
problems that ask them to quickly judge what a visual shows [7, 11]. Perceptual-
fluency training sequences make use of the contrasting cases principle, so that con-
secutive examples vary visual features so they draw students’ attention to relevant
features [7, 11]. However, while such trainings have proven effective for high-
performing students, they are often ineffective for low-performing students [17, 18].

It is possible that the ineffectiveness of perceptual-fluency trainings for low-
performing students is due to a perceptual expert blind spot on the part of the designers
of instructional sequences. Sequences that present contrasting cases may be appropriate
for high-performing students who already have a preliminary understanding of which
visual features are meaningful. However, such sequences may be ineffective for low-
performing students who have little prior knowledge about these features. For an
instructional designer who is an expert in processing the visuals, it may be difficult to
empathize with students who do not “see” meaning in the visuals [3, 7, 19].

Fig. 1. (a) Lewis structure and (b) space-filling model of ammonia.

Using Machine Learning to Overcome the Expert Blind Spot 407



In prior work [38], we used a machine-learning algorithm to develop a sequence of
visuals for low-performing students. The machine-learned sequence was more effective
than an expert sequence for participants from Amazon’s Mechanical Turk (MTurk)
service. However, it is unclear whether the machine-learned sequence is more effective
than an expert sequence in a realistic learning context. To this end, we conducted an
experiment with undergraduate students in a chemistry course.

2 Theoretical Background

In the following, we briefly review prior research on perceptual fluency as well as our
own prior work on developing an instructional sequence of visual representations for
students who lack prior knowledge about the visual representations.

2.1 Inductive Learning of Perceptual Fluency

In contrast to a large body of research on verbally mediated explanation-based sense
making of visuals (see [5, 7] for overviews), research on the role of perceptual fluency in
education is still relatively novel. This line of research builds on the expert-novice
literature, which shows that experts see meaningful connections among visuals like the
ones in Fig. 1 quickly and almost automatically [15, 16, 20, 21]. Experts are able to “at a
glance” see meaning in visuals because translating and combining information from
them takes little or no cognitive effort [11, 22]. This highlevel of efficiency at translating
among visuals results from perceptual chunking: visual features of the representations
serve to retrieve schemas that describe conceptual information from long-term memory
[23, 24]. This high efficiency frees cognitive resources for higher-order thinking [12, 23]
and is considered an important learning goal in many STEM domains [3].

Cognitive learning theories suggest that students acquire perceptual fluency via
inductive processes involved in pattern learning [21, 25]. These processes involve both
bottom-up mechanisms (e.g., a visual feature cues the retrieval of a conceptual schema)
and top-down processes (e.g., conceptual schemas direct a student’s visual attention to
relevant visual features). Such inductive processes are considered to be non-verbal [23,
25] because verbal reasoning is not necessary [11, 13] and may even interfere with the
acquisition of perceptual fluency [19, 26]. Consequently, students do not require direct
instruction to become perceptually fluent, but rather acquire perceptual fluency through
experience-based instructional sequences that expose them to many visuals [11, 21].

2.2 Perceptual-Fluency Trainings

In line with cognitive learning theories, perceptual-fluency trainings typically expose
students to many examples, for instance in classification problems that ask students to
quickly translate between visuals while providing simple feedback on whether the clas-
sification is correct or incorrect [27–30]. Because perceptual learning is strongly influ-
enced by the order in which visuals are presented [7], perceptual-fluency trainings
purposefully sequence visuals so that consecutive problems vary irrelevant visual features
but repeatedly expose students to relevant features [11]. Through experience with many
examples, students inductively learn to attend to relevant visual features [11].
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The effectiveness of perceptual-fluency trainings has been demonstrated in many
STEM domains, including math [31, 32] and chemistry [17, 33]. For example, Fig. 2
shows a perceptual-fluency problem from a training we developed for chemistry stu-
dents. Each problem asks students to judge whether two visual representations show
the same molecule or not. They receive many such problems in a row, sequenced
according to the principles just described.

However, positive effects of such perceptual-fluency trainings have been confined
to students who have substantial prior knowledge about the visual representations and
the concepts they show [17, 18]. Indeed, much of the pioneering work on perceptual-
fluency trainings in STEM was conducted with students after they had received con-
siderable conceptual instruction and problem-solving practice with the visual repre-
sentations [32, 34]. Further, recent research shows that students benefit from
perceptual-fluency trainings only after they have acquired conceptual knowledge
about connections among the visual representations [17, 18].

It is possible that students need to acquire conceptual knowledge about the visual
representations before they can become perceptually fluent with them, as proposed by
prior research [18]. An alternative explanation is that the lack of effectiveness of
perceptual-fluency trainings for students with low prior knowledge may result from an
expert blind spot on the part of instructional designers. The expert blind spot is a
known phenomenon in the literature on conceptual learning because it can interfere
with instructors’ anticipation of student difficulties, which may hamper their ability to
develop effective instruction [35]. However, we are not aware of any research on
perceptual fluency in education that addressed this phenomenon. Specifically, while it
is well documented that experts are unaware of why or how they perceive information
in a certain way [19, 23, 36], knowledge of this lack of awareness has not informed the

Fig. 2. Example perceptual-fluency problems in the expert-generated training sequence.
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instructional design of perceptual-fluency trainings. For example, it is possible that
instructors create sequences of visuals that inadvertently assume that students pay
attention to specific visual features. In our prior work, which we review next, we used a
machine-learning approach that is not subject to expert blind spot biases to create
sequences for perceptual trainings for novice students.

2.3 Machine-Learned Sequences for Perceptual-Fluency Trainings

In prior work, we drew on Zhu’s machine-teaching paradigm [37], which inverses
typical machine-learning approaches to reverse-engineer optimal training sequences
(for a detailed report see [38]). Given a cognitive model of a student learning to
translate between pairs of visuals, the machine-teaching algorithm identifies a sequence
of pairs that is most effective for training the cognitive model. To this end, the algo-
rithm draws possible perceptual-fluency problems (e.g., Figure 2) from an underlying
training distribution (not necessarily independently and identically distributed) to form
a training sequence. Then, the cognitive model is trained with this sequence. Specifi-
cally, we used a feed-forward artificial neural network (ANN) as our learning algo-
rithm. The inputs to the ANN were two feature vectors that corresponded to the visual
features of the two visuals in a given perceptual-fluency problem. The ANN had
mapped each of the two feature vectors to an embedding that corresponds to a space
where visuals of similar molecules are close and visuals of dissimilar molecules are
distant. The output was a probability that the two visuals showed the same molecule.

For training, we used back propagation with a history window and multiple back
propagation passes, so as to emulate the fact that humans remember past consecutive
problems and that humans update their internal models by reviewing the current
problem along with the latest problem several times. Then, the effectiveness of the
sequence is evaluated based on how well the cognitive model performs on a perceptual-
fluency test, which is composed of a sample of perceptual-fluency problems drawn
from a separate distribution of problems (i.e., training and test sequences contain
different molecules). We use separate test and training distributions to ensure that we
optimize the training sequence for learning of mappings among the visual features of
the representations, rather than for memorization of translations for specific molecules.

In our prior work [38], we used data from novice undergraduate students in a
chemistry course to develop the cognitive model. We then used a modified hill climb
search algorithm to find an appropriate training sequence for thatmodel. Next, we
compared this sequence to an expert-generated sequence in an experiment with par-
ticipants from MTurk. Results showed that the machine-learned sequence yielded
significantly higher gains in perceptual fluency than the expert-generated sequence.

3 Research Questions

While our prior work showed promising findings for MTurk participants, it remains an
open question whether these benefits generalize to low-performing chemistry students.
The MTurk participants in our prior study matched our target population because they
had low prior knowledge about chemistry and little or no experience with the visual
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representations. However, their main motivation for participating in the study was to
earn money, rather than to learn chemistry. Further, the MTurk study was not con-
ducted in an educational setting. Hence, we address the following open questions:

Research question 1: Does the machine-learned sequence yield higher gains in per-
ceptual fluency than an expert-generated sequence for chemistry students when
embedded in instructional materials used in an undergraduate course?

Research question 2: Does the effectiveness of the machine-learned sequence depend
on students’ prior knowledge?

4 Methods

We address these questions in an experiment that compared the machine-learned
sequence to an expert-generated sequence with chemistry undergraduate students with
varying levels of prior knowledge enrolled in a chemistry course.

4.1 Participants

We conducted the experiment in a 300-level introductory chemistry course for
undergraduates. While the course is open to freshmen and has a prerequisite of students
having completed at least one 100-level chemistry course, many students enroll as
seniors and have not taken chemistry since their freshman year. Hence, students have
highly variable prior knowledge levels. Students received the perceptual-fluency
training as a homework assignment with an intelligent tutoring system (ITS) (see
Sect. 4.2). Forty students completed the assignment. Two students were excluded
because they were statistical outliers on a pretest or posttest (see Sect. 4.4), yielding
N = 38 students.

4.2 Chem Tutor: An ITS for Undergraduate Chemistry

The chemistry course used the Chem Tutor system for homework. Chem Tutor is an
ITS that provides complex problems with individualized step-by-step guidance [4, 39].
Chem Tutor provides interactive instruction that introduces students to how visuals
show chemistry concepts (see Fig. 3). In the assignment we used for this experiment,
students received four instructional activities prior to the perceptual-fluency training.

The perceptual-fluency training of the assignment was structured as follows. First,
students watched a 3-min video explaining that they would receive a large number of
single-step problems in a row. The video explained that these problems served to train
their perceptual fluency in quickly translating among visuals. Students were instructed
not to overthink their answer but to intuitively decide if the two visuals showed the
same molecule or not. Further, they were instructed that they would first receive a
sequence of problems without feedback (i.e., pretest), then a sequence of problems with
feedback (i.e., training), and finally problems without feedback (i.e., posttest).
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4.3 Experimental Design

Students were randomly assigned to an expert-generated sequence or a machine-
learned sequence that we used in the MTurk study [38]. Each sequence had sixty
problems. To control for potential response biases that could affect learning, the
number of problems that showed visuals of the same molecules was the same for both
sequences.

The expert-generated sequence was created by a researcher with a decade of
experience with perceptual-fluency trainings, using the principles that have been
established by prior research on perceptual-fluency trainings we reviewed above.
Specifically, problems were sequenced so they would draw attention to relevant visual
features. To this end, consecutive problems often repeated one visual while changing
the second visual. For example, if one problem presented visuals that showed different
molecules (e.g., in the left of Fig. 2, the Lewis structure has more carbon atoms and the
wrong bond order), the next problem might present visuals that showed the same
molecules (e.g., the right of Fig. 2). To create such sequences, we randomly set the
length of the subsequence that retained one visual to be 1–4 problems (i.e., either the
first, second, third, or fourth problem would present visuals showing the same mole-
cule). Then, we systematically varied visual features that play a role in chemistry
learning, as determined by our prior research with novice students and chemistry
experts [4, 40].

The machine-learned sequence was constructed using the machine-teaching
approach described above. A qualitative inspection of the sequence reveals several
differences to the expert-generated sequence that are worth highlighting. First, it does
not repeat visuals across consecutive problems. Second, it contains problems that can
be solved purely based on knowing which atoms the letters and colors in Lewis
structures and space-filling models stand for; which is not one of the visual features the
expert-generated sequence systematically varied. Third, it contains problems that can
be solved by simply counting the number of atoms in the visuals; which is also not a
visual feature that the expert-generated sequence aimed to draw attention to.

Fig. 3. Example sense-making activity in Chem Tutor.
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4.4 Measures

To assess students’ gains in perceptual fluency, we used the same pretest and posttest as
in our prior MTurk study [38]. As mentioned, pretest, training, and posttest problems
were drawn from separate distributions to ensure that we assess learning of mappings
among the visual features of the representations and not of memorization of translations
between visuals of specific molecules. For brevity, the pretest contained only 20
problems; the posttest contained 40 problems. Students received no feedback on the test
problems. Because perceptual fluency describes students’ efficiency in seeing mean-
ingful information in visuals, we computed efficiency scores for each test. Following
prior work on efficiency measures [41], we computed perceptual-fluency scores as:

perceptual - fluency score =
Z average correct responsesð Þ � Z average time per problemð Þp

2
ð1Þ

Further, to test if the effect of sequence depends on students’ prior knowledge, we
used the logs from the four interactive instruction activities that students completed
prior to the perceptual-fluency problems. We computed prior-knowledge scores as the
number of steps students answered correctly on the first attempt. Because the
instruction activities ask students to answer questions about chemistry concepts based
on the visuals, this measure assesses students’ knowledge about how the visuals show
concepts. We treated prior knowledge as a continuous variable in all analyses.

4.5 Procedure

Students were assigned to the Chem Tutor activities as homework in the second week
of the semester, including the interactive instruction, pretest, perceptual-fluency
training, and posttest. Students were given seven days to complete the assignment
online.

5 Results

In the following analyses, we report p. η2 effect sizes. Following Cohen [42], we
consider p. η2 of .01 to be a small effect, .06 a medium, and .14 a large effect.

5.1 Prior Checks

First, we checked for learning gains using repeated measures ANOVAs with pretest and
posttest as dependent measures. Results showed large significant gains in perceptual
fluency from the pretest to the posttest, F(1,36) = 8.762, p = .005, p. η2 = .196.

Second, a multivariate ANOVA showed no significant differences between condi-
tions on the perceptual-fluency pretest or prior knowledge on Chem Tutor’s interactive
instruction activities (Fs < 1). Further, there were no differences between conditions in
terms of how much time students spent on the perceptual-fluency training (F < 1).
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5.2 Effects of Sequence

To test if the machine-learned sequence yielded higher gains in perceptual fluency than
an expert-generated sequence (research question 1), we used an ANCOVA model with
condition as independent factor, perceptual-fluency pretest and prior knowledge as
covariates, and perceptual-fluency posttest as dependent measure. To test if the effects
depend on students’ prior knowledge (research question 2), we added an interaction
between condition and prior knowledge to the model. In line with prior research on
aptitude-treatment interactions [43], we did not dichotomize prior knowledge but
modeled the interaction between condition and the continuous prior-knowledge
variable.

Results showed a medium-sized significant main effect of condition, F
(1,33) = 4.699, p = .037, p. η2 = .125, such that the machine-learned sequence yielded
higher gains in perceptual fluency than the expert-generated sequence. The main effect
was qualified by a medium-sized significant interaction of condition with prior
knowledge, F(1, 33) = 4.788, p = .036, p. η2 = .127. As shown in Fig. 4, the machine-
generated sequence was more effective for students with lower prior knowledge, but the
expert-generated sequence was more effective for students with higher prior
knowledge.

Fig. 4. Effect of machine-learned (red-solid) vs expert-generated (blue-dashed) sequence. The
y-axis shows pre-post gains in perceptual-fluency scores based on the efficiency measure in
Eq. (1). The x-axis shows prior knowledge. Error bars show standard errors of the mean. (Color
figure online)
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6 Discussion

Our goal was to investigate if a machine-learning approach enhances the effectiveness
of perceptual-fluency trainings for low-performing students in a realistic educational
context. We drew on our prior work on a machine-learning approach that was not
subject to a potential blind spot bias due to experts’ perceptual fluency in seeing
meaning in visuals. Instead, it used a bottom-up approach to machine-learn a sequence
of visuals based on data from novice chemistry students. Our prior work had estab-
lished the effectiveness of this sequence for MTurk participants, who were not repre-
sentative of students in a realistic educational context. The present findings replicate
this effect in an undergraduate chemistry course and make several novel contributions.

First, our results show that the machine-learned sequence yield higher gains in
perceptual fluency than an expert-generated sequence for students with lower prior
knowledge. This finding shows that our machine-learning approach is an effective
method for developing perceptual-fluency trainings that are attuned to the needs of
students whose needs may not be obvious to instructional designers.

Second, our experiment makes new contributions to the perceptual fluency litera-
ture. In contrast to prior research, our findings suggest that perceptual-fluency trainings
can be effective for students with low prior knowledge, but that these students require
different types of such trainings. Our qualitative comparison of the machine-learned
and expert-generated sequences suggests that students with low prior knowledge may
benefit from sequences that draw attention to visual features that may seem obvious to
experts, such as the mapping between letters and colors. Given that students in our
experiment likely had some exposure to the visuals in prior chemistry courses, we think
it is unlikely that they did not know that these features are important. Rather, they may
not have been efficient at perceiving these features. Further, the machine-learned
sequence did not repeat visuals across consecutive problems, whereas the expert-
generated sequence did. Such repetitions assume that students recall the visuals from
previous problems, which is cognitively demanding. Hence, students with low prior
knowledge may benefit more from sequences that reduce cognitive load.

Third, we found that the expert-generated sequence is more effective for students
with high prior knowledge. This finding replicates prior research on the effectiveness of
expert-generated sequences for advanced students. Anew contribution of our findings is
that we found that students’ performance on prior instructional activities with visuals
predicts if they have the prerequisite knowledge to benefit from an expert-generated
sequence or if they should receive a sequence that was machine-learned based on data
from novice students to prevent expert blind spot biases.

Our findings should be interpreted in the context of the following limitations. First,
we focused on a specific set of visuals in chemistry. While we believe that the role of
perceptual fluency in chemistry is representative of other STEM domains that rely
heavily on visuals, future research should test if our findings generalize to other
domains. Second, we did not contrast the characteristics of machine-learned and expert-
generated sequences that may account for our results. For example, we did not test if
the repetition of visual representations across problems is effective for students with
high vs. low prior knowledge. Yet, our findings provide first indications that these
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characteristics may affect the acquisition of perceptual fluency, which can be system-
ically tested in future research. Third, because our sample size was relatively small, it is
possible that additional smaller effects remained undetected. Finally, we assessed gains
of perceptual fluency but not learning of content knowledge. Hence, future research
should test whether gains in perceptual fluency for low-performing students translates
into an enhanced ability to use the visual representations to learn content knowledge.

In sum, our experiment shows that a bottom-up approach to learn a sequence of
visuals for perceptual-fluency trainings can help overcome potential biases resulting
from an expert blind spot on the part of instructional designers. Such sequences are
particularly effective for students with low prior knowledge. Further, our research
provides new directions for future research to systematically investigate which char-
acteristics enhance the acquisition of perceptual fluency for students with low prior
knowledge.
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Abstract. Blended educational technologies offer new opportunities for stu-
dents to interact with physical representations. However, it is not always clear
that physical representations yield higher learning gains than virtual ones.
Separate lines of prior research yield competing hypotheses about how repre-
sentation modes affect learning via mechanisms of conceptual salience,
embodied schemas, embodied encoding, cognitive load, and physical engage-
ment. To test which representation modes are most effective if they differ in
terms of these mechanisms, we conducted a lab experiment on chemistry
learning with 119 undergraduate students. We compared four versions of energy
diagrams that varied the mode and the actions students used to manipulate the
representation. We tested effects on students’ learning of three concepts. Rep-
resentations that induce helpful embodied schemas seem to enhance reproduc-
tion. Representations that allow for embodied encoding of haptic cues or makes
concepts more salient seem to enhance transfer. Given the high costs of inte-
grating physical representations into blended technologies, these findings may
help developers focus on those learning experiences that could most be
enhanced by physical interactions.

Keywords: Physical/Virtual modes � Conceptual salience �
Embodied cognition

1 Introduction

Educational technologies increasingly blend virtual and physical experiences [1–3]. For
instance, problem solving in many STEM domains involves virtual and physical rep-
resentations [4–6]. Virtual representations appear on a screen and are manipulated via
mouse or keyboard. For example, chemistry students may construct a virtual energy
diagram by clicking to add arrows that show electrons (Fig. 1(left)). By contrast,
physical representations are tangible objects that can be manipulated by hand. For
example, students may construct a physical energy diagram by hanging arrows on a
board (Fig. 1(right)). While much research has compared virtual vs physical repre-
sentation modes [1, 2], different lines of research focus on different learning mecha-
nisms [1, 7] and hence offer competing hypotheses about which representation mode
is more effective. This poses a challenge to developers of blended technologies
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because they are left with little guidance about which learning experiences can be
enhanced by physical interactions.

To our knowledge, no study has systematically contrasted competing hypotheses
about representation modes that emerge from theories on physical engagement, cog-
nitive load, embodied encoding, embodied action schemas, and conceptual salience.
We address this gap with an experiment that compared these mechanisms. Our findings
advance theory by comparing the relative strength of these mechanisms. Our results
yield practical advice for choosing representation modes for blended technologies.

2 Theoretical Background

2.1 Learning with Interactive Visual Representations

Visual representations are powerful tools because they illustrate concepts that are
abstract or cannot be directly observed [8–10]. For example, electrons in atoms cannot
be observed easily. Scientists often iteratively construct visuals to reflect on difficult and
complex phenomena, and then continuously revise them based on their reflections [9].
This iterative representation-reflection process is a key part of STEM practices [11, 12].

Instructional problems with interactive visual representations often mimic iterative
representation-reflection processes [2, 5]. Technologies can support such processes by
prompting students to construct representations [13], to reflect on how they show
concepts [14], and by giving adaptive feedback [15]. While such support is available
for virtual and physical representations, it is unclear how to decide whether an
instructional activity should include virtual or physical representations.

2.2 Virtual vs Physical Representation Modes

Our review of the literature on learning with virtual and physical representations
identified five lines of research that have little overlap and yield competing hypotheses.

Fig. 1. Energy diagram representations: virtual mode (left); physical mode (right).
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Physical Engagement. Proponents of hands-on activities argue that kinesthetic
interactions with physical representations are more motivating than virtual ones [16,
17]. Further, physical experiences are concrete, easier to remember, and more con-
nected to real contexts [18]. Hence, physical representations may generally be more
effective.

Cognitive Load. In contrast, cognitive load theory recommends eliminating distract-
ing features from the design of visual representations [19, 20]. Because physical rep-
resentations have richer features that may be distracting, they may increase cognitive
load. Further, cognitive load theory recommends designing instructional materials so
that students do not have to split their attention between multiple sources of infor-
mation [19, 20]. In blended educational technologies, students often split their attention
between the screen and the physical representation (Fig. 1b). Hence, physical repre-
sentations have a higher risk of inducing split attention effects. Indeed, studies show
that advantages of virtual over physical representations are due to increased cognitive
efficiency and attention to target concepts [21–23]. In sum, virtual representations may
generally be more effective. However, a limitation of this research is that it has not
tested cognitive load effects while systematically varying representation mode.

Embodied Encoding. One line of research on embodied learning proposes that
physical experiences provide haptic cues that students can encode through touch, in
addition to the visual sense that is engaged in virtual experiences [24, 25]. By expe-
riencing the concepts through additional senses, interactions with physical represen-
tations allow for richer, explicit connections between the environment and the concepts
[26, 27]. Indeed, embodied experiences that encode haptic cues can reduce cognitive
load if students are aware of relations between the cues and the concept [27], which
yields higher learning gains than virtual experiences [24, 28]. In sum, physical rep-
resentations may be more effective if students can explicitly connect embodied expe-
riences to the target concept.

Embodied Schemas. Another line of embodied research focuses on implicit processes
that do not require students’ awareness [29, 30]. Body actions implicitly affect cog-
nition via metaphors [31, 32] that result from sensory-motor experiences of body
movements in the world (e.g., upward movements invoke concepts related to increase
[33]). When learning concepts, students form mental simulations that are grounded in
embodied schemas [34, 35]. For example, when learning about concepts related to
increase, students may mentally simulate upward movements. Indeed, moving the body
in ways that are synergistic with mental simulations can enhance learning, even if
students are not aware of this relation [36, 37]. Further, virtual representations that are
manipulated by synergistic movements enhance learning [3, 34, 38]. In sum, it may not
be the representation mode that affects learning. Rather, effects of representation modes
may depend on whether they engage students in actions that activate synergistic
embodied schemas for the concept. However, this research has not systemically
compared modes.

Conceptual Salience. Research on conceptual salience builds on studies that have
compared virtual vs physical representations [4, 7, 22]. This research suggests that the
effectiveness of a representation does not depend on its mode but on its conceptual
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salience: the representation that affords an explicit experience of the concept is more
effective [4, 7, 39]. For example, research on experimentation skills showed that
physical representations make the concept of measurement errors more salient, but
virtual representations make concepts of systematic variation more salient [1]. An
experiment showed that representations that make the target concept more salient are
more effective [1]. However, this research has not tested how effects of conceptual
salience compare to effects of embodied schemas. Yet, as we show next, virtual and
physical representations often have conflicting advantages for conceptual salience and
embodied schemas.

3 Research Questions and Hypotheses

The different theories just reviewed describe mechanisms that may co-occur when
students interact with realistic representations. Hence, we investigate: Which repre-
sentation modes are most effective if they differ in terms of conceptual salience,
embodied schemas, embodied encoding, cognitive load, and physical engagement? To
this end, we tested hypotheses by the five theories about the effects of two virtual and
two physical energy diagrams on learning of three chemistry concepts (see Table 1).

3.1 Concept A: Electrons Randomly Fill Equal-Energy Orbitals

An atom’s properties are related to its electrons’ energy, which is determined by the
electrons’ positions in subatomic regions called orbitals. Energy diagrams sort orbitals
by energy level (bottom to top). Electrons are more likely to fill low-energy orbitals,
but they are equally likely to fill equal-energy orbitals. A common misconception is
that electrons fill equal-energy orbitals from left to right, rather than randomly.

Table 1. Overview of competing hypotheses offered by five theories for the two versions of
virtual (VC/VE) and physical (PC/PE) energy diagrams for each concept.
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To construct physical energy diagram PC, students move cards from the bottom up
to put them in orbitals. PC makes the concept more salient because planning the motor
action involved in the vertical action requires attention to the height of the orbital when
students put a card in an orbital. To construct virtual energy diagram VE, students click
to put electrons in orbitals, moving the mouse horizontally to click in equal-energy
orbitals. VE makes the concept less salient because the horizontal action does not
require attention to the orbital’s height. To test if these effects are due to the action
rather than the mode, we created physical energy diagram PE so that students hold the
cards next to the orbitals and move their hands horizontally to put them in orbitals. This
horizontal action makes the concept less salient. We created virtual energy diagram VC

so that it asks students to click a button at the bottom each time before moving the hand
up to put arrows in orbitals. This vertical action makes the concept more salient.

VE induces beneficial embodied schemas for this concept because horizontal action
induce a metaphor of equality [33]. By contrast, PC induces a suboptimal embodied
schema for this concept because vertical action induce a metaphor of increase [33]. By
contrast, the vertical action in VC invokes a suboptimal embodied schema, and the
horizontal action in PE invokes a beneficial embodied schema.

Both PC and PE allow for embodied encoding of the height of equal-energy orbitals
because they offer haptic cues through features such as the distance from the bottom of
the diagram. Hence, they should be more effective than both VC and VE.

Both VC and VE yield lower cognitive load because they contain fewer distracting
details than the physical diagrams and do not require split attention between screen and
diagram. Hence, they should be more effective than both PC and PE.

Both PC and PE engage students physically and should yield a more motivating
experience than both VC and VE. Hence, they should be more effective than VC and VE.

3.2 Concept B: Up and Down Spins Have Equal Energy

Electrons in the same orbital have opposite spins, shown by up and down arrows. Up
and down spin are equally likely because they do not affect an electron’s energy level.
A common misconception is that an orbital’s first electron always has an up spin.

In VC, students click to add arrows. The first click adds an up arrow, the second click
flips it to a down arrow. VC makes the concept more salient because students have to
purposefully flip the arrows to show that the spins are equally likely, which requires
explicit attention. In PE, students pick up cards from a stack that is not sorted, so that up
and down arrows are random. PE makes the concept less salient because the spin is
already random and does not require attention to a related action. To test if these effects
are due to the action rather than the mode, we modified the other version of the diagrams
to flip the hypotheses: In VE, the first click creates an arrow with random spin. The
second click flips it. This requires no attention to randomness and makes the concept less
salient. For PC, the card stack was sorted so that all cards had an up arrow. Now, students
have to purposefully flip the cards, which makes the concept more salient.

VE and PE induce a beneficial embodied schema because the random spin means that
it takes the same number of actions and hence the same amount of effort to show up or
down spin. VC and PC induce a suboptimal embodied schema because the fixed spin
means it takes two clicks and hence more effort to show a down spin than an up spin.
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PC and PE do not allow for embodied encoding as they do not have haptic cues for
spin states. Hence, this hypothesis does not predict an effect of mode. VC and VE yield
lower cognitive load, whereas both PC and PE yield more physical engagement.

3.3 Concept C: Spins Are Rotational Movements

Electron spins are rotational movements of electrons about their own axis that create a
small electromagnetic field with a moment that points up or down. A common mis-
conception is that spins are an electron’s directional movement towards or away from
the nucleus rather than the rotation around their own axes.

The energy diagram does not explicitly show electron rotations. Hence, no repre-
sentation makes this concept salient. The energy diagram does not require rotational
movements. Hence, no representation invokes related embodied schemas. Also, no
representation offers embodied encoding of rotational movements.

However, VC and VE yield lower cognitive load, but PC and PE yield more physical
engagement. Hence, including this concept allows us to estimate the impact of cog-
nitive load and physical engagement mechanisms on students’ learning.

4 Methods

4.1 Participants

We recruited 120 undergraduates from a large university in the US Midwest via email,
flyers, and posters for monetary compensation. A screening ensured they had not taken
chemistry since high school. One student was excluded because a pretest showed
considerable prior knowledge of the target concepts, yielding a sample of N = 119.

4.2 Experimental Design

Students were randomly assigned to one of four conditions that varied (1) representa-
tion mode and (2) actions required to manipulate the diagrams (see Table 2).

Table 2. Experimental conditions with number of participants (n) that vary representation mode
and actions: both versions of virtual (VC/VE) and physical (PC/PE) energy diagrams.

Conceptually salient action Embodied action

Virtual mode VC: n = 30 Concept A – Vertical VE: n = 30 Concept A – Horizontal
Concept B – Random Concept B – Fixed
Concept C – No action Concept C – No action

Physical mode PC: n = 29 Concept A – Vertical PE: n = 30 Concept A – Horizontal
Concept B – Fixed Concept B – Random
Concept C – No action Concept C – No action
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4.3 Materials

Intelligent Tutoring System (ITS). Students worked with an ITS for undergraduate
chemistry that has proven effective in prior research [40]. The ITS supports iterative
representation-reflection practices by asking students to create energy diagrams to
illustrate target concepts. Further, it prompts students to reflect on how the diagrams
show the concepts by completing fill-in-the-gap sentences. If students make a mistake
on a step, the ITS gives adaptive feedback that targets common misconceptions.

Students worked on eight problems. Each covered all three concepts and asked
students to build an energy diagram of an atom. For the virtual conditions, VC or VE

were embedded in the ITS (Fig. 1a). The ITS gave instruction and feedback on all steps.
For the physical conditions, PC or PE was placed next to the screen (Fig. 1b). The
experimenter gave feedback on the diagrams. The ITS gave all other instruction and
feedback.

Assessments. We assessed students’ learning of each of the three concepts with a
pretest that they completed prior to instruction, an immediate posttest given immedi-
ately after instruction, and a delayed posttest given 3–6 days after instruction. For each
concept, we assessed reproduction (i.e., recall of information given in instruction) and
transfer (i.e., the ability to apply the information to problems not covered in the ITS).
As the instruction in the ITS was self-paced, we also measured instructional time.

4.4 Procedure

The experiment involved two sessions in a research lab, 3–6 days apart. In session 1,
students completed the pretest, the instruction according to their experimental condi-
tion, and the immediate posttest. In session 2, students took the delayed posttest.

5 Results

5.1 Prior Checks

First, we checked for learning gains on each concept using repeated measures ANO-
VAs with pretest, immediate, and delayed posttest as dependent measures. Results
showed significant learning gains for all concepts (ps < .01) with effect sizes ranging
from p. η2 = .11 to p. η2 = .59. Second, a multivariate ANOVA showed no significant
differences between conditions on any of the pretest measures (ps > .10). However,
mode affected instructional time, such that physical representations took significantly
longer, F(1, 118) = 14.45, p < .01, p. η2 = .11. Because instructional time correlated
with the learning outcome measures (r = −.21 to −.25), we included it as covariate in
the analyses below.

5.2 Effects of Representation Mode and Movement

We used a repeated measures ANCOVA model to test the hypotheses in Table 1. The
model included mode and action as independent factors, pretest scores and instructional
time as covariates, and immediate and delayed posttest scores as dependent measures.
Figure 2 shows a summary of the results.
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For reproduction of Concept A, results showed a main effect of action, F(1,
113) = 4.94, p = .03, p. η2 = .04, favoring horizontal over vertical actions. This effect
aligns with the embodied schema hypothesis. There was no main effect of mode, F(1,
113) = 1.65, p = .20, nor an interaction effect (F < 1).

For transfer of Concept A, there was no significant main effect of action, F(1,
113) = 1.14, p = .29. A main effect of mode, F(1, 113) = 6.37, p = .01, p. η2 = .05,
favored physical over virtual representations. This effect aligns with the embodied
encoding and the physical engagement hypotheses. There was no interaction effect
(F < 1).

For reproduction of Concept B, there was a significant main effect of action, F(1,
113) = 5.30, p = .02, p. η2 = .05, favoring a random number of actions over a fixed
number of actions. This aligns with the embodied schema hypothesis. There was no
main effect of mode, F(1, 113) = 1.64, p = .20, nor an interaction effect (F < 1).

For transfer of Concept B, there was a significant effect main of action, F(1,
113) = 4.40, p = .04, p. η2 = .04, such that a fixed number of actions yielded higher
gains than a random number of actions. This effect aligns with the conceptual salience
hypothesis. There was no effect of mode, F(1, 113) = 2.60, p = .11, or an interaction
effect (F < 1).

For reproduction and transfer of Concept C, no effects were significant (Fs < 1).

Fig. 2. Estimated marginal means (EMMs) for reproduction and transfer averaged across
immediate and delayed posttests, controlling for pretest and instructional time.
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6 Discussion and Conclusion

While much prior research has compared virtual vs physical representations, separate
lines of research have focused on different mechanisms that yield competing
hypotheses for their effectiveness. This leaves developers with little guidance for
choosing appropriate representation modes. To address this issue, we investigated
which representation modes are most effective if they differ in terms of conceptual
salience, embodied schemas, embodied encoding, cognitive load, and physical
engagement. Because prior research provides evidence for these mechanisms, it seems
likely that they co-occur when students interact with realistic representations. Hence,
our goal was not to confirm or refute the theories, but rather to examine which
mechanism prevails when students learn abstract concepts. To our knowledge, our
study is the first to integrate these theories by systematically comparing effects of
representation mode and actions.

Altogether, for reproduction of knowledge, our results suggest that the embodied
schema mechanism outweighs the other mechanisms. The embodied schema hypoth-
esis predicted an advantage of horizontal and random actions for Concepts A and B,
and both effects were confirmed for the reproduction scales of these concepts. Hence,
representations that are manipulated via body actions that induce beneficial embodied
schemas seem to enhance students’ ability to recall information covered in instruction.

By contrast, for transfer of knowledge, our results suggest that the embodied
encoding mechanism outweighs the other mechanisms if it applies. The embodied
encoding hypothesis predicted an advantage of both physical representations only for
Concept A, and this effect was confirmed for the transfer scale of this concept. Hence,
physical representations that offer haptic cues for the target concept seem to enhance
students’ ability to apply their knowledge to novel situations. However, if the repre-
sentation does not contain haptic cues for the concept, as in the case of Concept B, the
conceptual salience mechanism appears to outweigh the other mechanisms. This finding
suggests that transfer is more affected by conceptual salience than by embodied schemas.

The complexity of embodied schemas, embodied encoding, and conceptual sal-
ience mechanisms may explain differences between reproduction and transfer. The
embodied schema mechanism describes a simple, implicit process that does not require
awareness [36]. Information recall involves simple knowledge structures that have one-
on-one question-response mappings [41]. Thus, representations that engage students in
simple embodied mechanisms seem to enhance learning of simple knowledge
structures.

By contrast, both the conceptual salience and the embodied encoding mechanisms
describe complex, explicit learning processes. The conceptual salience mechanism
describes how students map visual cues of representations to concepts. Arguably, the
embodied encoding mechanism is yet more complex because it describes how students
connect haptic and visual cues to concepts. Because transfer of knowledge requires
many-to-many mappings between question and response, it assesses complex knowl-
edge structures [41]. Thus, representations that engage students in complex mecha-
nisms seem to enhance learning of complex knowledge structures, especially when the
representations offer opportunities for embodied encoding of haptic cues.
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We found no evidence for the cognitive load and physical engagement hypotheses.
In light of the null effects for Concept C, which were predicted by the other three
hypotheses, we can conclude that cognitive load and physical engagement mechanisms
either were negligible or cancelled each other out. This also allows us to rule out that
cognitive load or physical engagement could have distorted the effects for the other
three mechanisms on Concepts A and B. In fact, the only result in line with the physical
engagement hypothesis was the advantage of physical representations on transfer of
Concept A, but this effect was also predicted by the embodied encoding hypothesis.

In sum, our study suggests that developers may prioritize embodied schema
mechanisms if the goal is to enhance reproduction. To enhance transfer, they may
choose a physical representation if it offers haptic cues for the concept. Otherwise, they
may choose the representation that makes the concept more salient. These considera-
tions should outweigh considerations of cognitive load or physical engagement. Given
that the integration of physical representations into educational technologies is costly,
these findings may help developers of blended technologies focus on learning expe-
riences where physical representations have the highest impact on learning outcomes.

Our results should be interpreted in light of several limitations. First, we focused on
particular concepts, representations, and population. Future research should test if our
findings generalize more broadly. Second, while we purposefully selected concepts for
which the five theories made conflicting predictions, we did not test all possible
conflicts. For example, future research should test cases where conceptual salience and
embodied schemas align but conflict with embodied encoding. Third, our intervention
was relatively short. Over longer learning periods, it is possible that sequence effects
emerge, such that one mechanism prevails at first and another mechanism later.
Specifically, we found that embodied schema mechanisms enhance reproduction but
embodied encoding and conceptual salience mechanisms enhance transfer. Given that
instruction often moves from simple to complex concepts, it is possible that embodied
schema mechanisms should be prioritized early and embodied encoding and conceptual
salience mechanisms later. Testing such effects may yield new insights into embodied
grounding of conceptual knowledge [42] and may provide insights into the concrete-
abstract debate [18], which has not accounted for embodied mechanisms.

In conclusion, blended educational technologies offer new opportunities to combine
virtual and physical modes, for example, by integrating physical representations into
ITSs. However, physical representations are not always more effective than virtual
ones. Our study reveals the relative strength and scope of multiple mechanisms that
have been examined by thus far separate lines of research even though they likely co-
occur when students learn with representations. Further, our results may provide
practical advice for developers to choose representation modes for blended
technologies.
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Abstract. Multiple visual representations can enhance learning in STEM,
provided that students have prerequisite representation skills to make sense of
how the visuals show information and to fluently perceive meaning in the
visuals. Prior research shows that instructional support for sense-making skills
and perceptual fluency enhances STEM learning. This research also shows that
students need different types of support, depending on their prior representation
skills. Hence, instruction may be most effective if it adaptively assigns students
to support for sense-making skills and perceptual fluency. We tested this
hypothesis in an experiment with 45 undergraduates in an introductory chem-
istry course. Students were randomly assigned to a 6-week instructional module
of an intelligent tutoring system (ITS) that (1) provided a static sequence of
activities that supported sense-making skills and perceptual fluency or
(2) adaptively assigned the activities. Results show that the adaptive version
yielded significantly higher gains of chemistry knowledge. Our findings expand
theories of representation skills and yield recommendations for ITSs with
multiple visual representations.

Keywords: Multiple representations � Sense-making skills � Perceptual fluency

1 Introduction

Instruction in most science, technology, engineering, and math (STEM) domains uses
multiple visual representations [1–3]. Compared to a single visual, multiple visuals can
enhance learning of domain knowledge because they allow students to form more
accurate mental models [4–6]. For example, instruction on chemical bonding typically
uses the visuals in Fig. 1 that show complementary concepts of atomic structure [7].

But research also shows that multiple visuals can impede learning if students lack
representation skills to make sense of how multiple visuals show information and to
fluently perceive the information they show [3, 8]. Further, research shows that stu-
dents need different types of instructional support for representation skills at different
times during their learning trajectory [9, 10]. This research suggests that adaptive
representation-skills supports may enhance students’ learning more so than static
supports.
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While it is well known that adaptive support for problem solving enhances learning
[11], this hypothesis has not been tested for representation skills. We address this gap
in an experiment on chemistry learning. Our results show how different representation
skills build on each other and yield guidance for the design of educational technologies.

2 Theoretical Background

Prior research distinguishes two types of representation skills (sense making and per-
ceptual fluency) that are learned via different processes and need different support [6].

2.1 Sense-Making Skills

Students’ learning of domain knowledge from multiple visuals depends on their ability
to make sense of how the different visuals show complementary concepts [6, 12]. To
this end, students map visual features of different representations to the concepts they
show [4, 12]. That means students need to distinguish features that show meaningful
information (e.g., the number of valence electrons shown in a Lewis structure, Fig. 1a)
from incidental features (e.g., the color of electrons in the shell model, Fig. 1b) [13].
Then, students need to compare visuals [4, 14]. That is, they need to understand
similarities between visuals (e.g., both Lewis structure and shell model show that
carbon has four valence electrons, Fig. 1a–b) and differences (e.g., the shell model in
Fig. 1b shows the core electrons, but the Lewis structure in Fig. 1a does not).

According to cognitive theories, students acquire sense-making skills through
learning processes that are verbally mediated because students explain how visuals
show concepts [15, 16]. These processes are explicit because students have to willfully
engage in the explanations [17, 18]. Accordingly, instructional activities that support
sense-making skills engage students in active reasoning about visuals, for example by
asking them to self-explain similarities and differences between visuals [19, 20].

2.2 Perceptual Fluency

A largely separate line of research on expertise has focused on a second type of
representation skills. Experts “see at a glance” what visuals show without perceived

Fig. 1. (a) Lewis structure, (b) shell model, (c) energy diagram, and (d) orbital diagram of
carbon.
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mental effort [21, 22]. They are very efficient at extracting meaning from visuals
because they can effortlessly combine information from multiple visuals and quickly
translate among them [23, 24]. This high efficiency results from perceptual chunking:
visual cues retrieve corresponding schemas from long-term memory that describe
concepts [25, 26].

According to cognitive theories, students acquire perceptual fluency via inductive
processes involved in pattern learning [16, 27] that involve both bottom-up (cuing) and
top-down (selection) mechanisms. Inductive processes are non-verbal [16, 25] because
verbal reasoning is not necessary [24, 28] and may even interfere with pattern learning
[29, 30]. Thus, perceptual induction does not require direct instruction but rather results
from experience [24, 27]. Hence, instructional activities that support perceptual fluency
expose students to many examples, for example in classification tasks [31], interleaved
practice [32, 33], or games that require quick translations among visuals [34].

2.3 Combining Support for Sense-Making Skills and Perceptual Fluency

If students need sense-making skills and perceptual fluency, then combining activities
that support sense-making skills and perceptual fluency should enhance learning of
domain knowledge. Prior studies tested effects of (1) a combination of sense-making and
perceptual-fluency activities, (2) only sense-making activities, (3) only perceptual-
fluency activities, and (4) a control that received multiple visuals without representation-
skills support. Experiments on elementary fractions [35] and undergraduate chemistry
[36, 37] show that only the combination is more effective than the control.

Cross-sectional studies [9, 37] show that the effectiveness of specific sequences of
sense-making and perceptual-fluency activities depends on students’ knowledge about
how the visuals show concepts. Specifically, novice students need to become familiar
with each visual before they benefit from sense-making and perceptual-fluency activ-
ities. Intermediate students benefit from receiving sense-making activities followed by
perceptual-fluency activities because sense-making skills enhance perceptual pattern
learning by helping students attend to relevant visual features. Finally, advanced stu-
dents benefit from receiving perceptual-fluency activities followed by sense-making
activities because this helps them fluently use information from multiple visuals to
make sense of concepts. Thus, the effectiveness of sense-making and perceptual-
fluency activities varies depending on students’ current skill level, which changes as
they learn. Hence, prior research suggests a progression of representation skills [38].

3 Experiment

Based on this prior research, we hypothesize that instruction is most effective if it
adaptively assigns sense-making and perceptual-fluency activities depending on a
student’s current skill level. We tested this hypothesis in an experiment with Chem
Tutor, an in ITS for undergraduate chemistry. We first developed an adaptive version of
Chem Tutor using data from a prior experiment and then compared it to a static version.
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3.1 Chem Tutor: An ITS for Undergraduate Chemistry

Chem Tutor provides complex problems and individualized step-by-step guidance
throughout the problem-solving process [11, 39]. It uses a cognitive model of the
students’ knowledge about how the visuals show chemistry concepts [40]. The model
can detect multiple strategies and provides detailed feedback and hints on how to use
the visuals [41]. Here, we use Chem Tutor’s atomic structure module. It has six units,
each with two of the visuals in Fig. 1 (see Table 1 below). Each unit has three problem
types.

Regular Activities correspond to chemistry instruction that typically uses one
visual at a time [42]. For example, students may be asked to construct an energy
diagram of oxygen (see Fig. 4 below). They are first prompted to identify properties of
the atom to plan the energy diagram. Next, they use an interactive tool to construct the
visual. Students must construct a correct visual before they move on. Finally, they use
the visual to make inferences about the atom. Thus, regular activities provide one visual
at a time but provide no support for representation skills that involve comparing or
translating among multiple visuals. Based on findings that students first have to become
familiar with each visual [4], each unit starts with two regular activities, one for each
visual.

Sense-Making Activities are designed to help students understand connections
among multiple visuals, in line with instructional design principles based on the prior
research on sense-making skills reviewed above [19, 20]. Sense-making activities ask
students to actively compare pairs of visual representations. To this end, students are
given two visuals and receive prompts to self-explain similarities and differences
between the visuals. For example, the activity in Fig. 2 asks students to reflect on
similarities between an energy diagram and a Lewis structure for magnesium. Given
the energy diagram, students construct the Lewis structure of magnesium. Then, they
receive self-explanation prompts to compare the visual representations. This example
focuses on similar conceptual aspects shown by both visuals. Other sense-making
activities focus on differences between visuals. Alternating activities focus on simi-
larities and differences.

Fig. 2. Example sense-making activity in Chem Tutor.
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Perceptual-Fluency Activities embody the principles reviewed in Sect. 2.2 [24,
27]. For example, students may have to select one of four energy diagrams that shows
the same atom as a given Lewis structure (Fig. 4). The choices contrast relevant
features, such as the number of valence electrons versus the total number of electrons.
Each activity has one step, and students solve many of them in a row for a variety of
atoms. Students receive immediate correctness feedback. To engage perceptual pro-
cessing, students are asked to solve the activities fast and intuitively, without fear of
mistakes (Fig. 3).

3.2 Development of the Adaptive Assignment Algorithm

Data. To develop an algorithm that adaptively assigns these activities, we used data
from 129 undergraduate students in an introductory chemistry course at a large uni-
versity in the US Midwest. They completed one Chem Tutor unit per week, for six
weeks.

Students were randomly assigned to one of five versions of Chem Tutor that varied
whether they included sense-making activities and/or perceptual-fluency activities or
not, and the order in which these activities were provided. That is, students received
(1) regular activities only, (2) regular then sense-making, (3) regular then perceptual-
fluency, (4) regular, sense-making then perceptual-fluency, or (5) regular, perceptual-
fluency then sense-making activities. We controlled instructional time by equating the
number of steps across conditions. For example, for unit 1, students in the regular-only
condition received four regular activities with 67 steps in total. Students in the regular-
sense condition received two regular activities and two sense-making activities with 67
steps in total. Pilot testing verified that instructional time did not differ between con-
ditions. All conditions received the same two regular activities at the start of each unit.
The content covered in the remaining activities was identical across conditions.

We assessed learning of the chemistry content with a pretest at the start of each unit
and a posttest at the end of each unit. Each test had multiple-choice and short-answer

Fig. 3. Example perceptual-fluency activity in Chem Tutor.
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items. Tests and grading scheme were developed by a chemist. Agreement between
independent graders on 10% of the responses to the short-answer items was 88.55%.

Further, our goal was to predict benefit from sense-making and perceptual-fluency
activities, so we mined the Chem Tutor logs for predictors. We focused on the first two
regular activities that all conditions received for each unit. For each step, we computed
performance based on whether a student’s first attempt at the step was correct or
incorrect. In sum, we computed performance measures for 134 steps across six units.

Analyses. To identify problem-solving steps that were predictive of students’ benefit
from sense-making and perceptual-fluency activities, we conducted linear regression
analyses with 10-fold cross-validation. The regression models identified steps for
which performance interacted with the experimental factors to predict pre-post gains.
Such effects indicate aptitude-treatment interactions (ATIs) [43], such that low-
performing students benefit from a different intervention than high-performing
students.

We constructed a linear regression model for each unit. In each model, the
dependent variable was pre-post gain. Predictors were the experimental factors (i.e.,
with/without sense-making activities; with/without perceptual-fluency activities, and
the order of the activities), performance on each step in the first two regular activities in
the unit, and the interaction of performance on each step with the experimental factors.
The regression models outputted significance tests and regression coefficients for each
predictor.

Adaptive Algorithm. We selected steps for which the regression analysis revealed
significant ATIs because this means that the step predicts if a student will benefit from
sense-making activities and/or perceptual-fluency activities. For example, a positive
regression coefficient for an ATI between performance on a step and the sense-making
factor indicates that students who get this step right benefit from sense-making activ-
ities. The activity in Fig. 4 shows two example steps for which we found significant
positive interactions with the sense-making factor. This suggests that getting these steps

Fig. 4. Regular activity with two steps for which performance interacts positively with sense-
making activity. Hence, these steps test prerequisites for sense-making activities.
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right indicates prerequisite understanding of how the visual shows the concepts (e.g.,
how the energy diagram shows electron spins), which predicts benefit from sense-
making activities. Hence, if a student gets any of these steps right, then he/she should
receive sense-making activities. By contrast, a negative coefficient suggests that a
student who gets this step wrong benefits from sense-making activities, possibly sense-
making activities could rectify a misconception (e.g., comparing the energy diagram to
another visual may help students interpret the energy diagram). Hence, if the student
gets the step wrong, then he/she should receive sense-making activities. There were no
cases that recommended sense-making and perceptual-fluency activities for the same
unit.

We then formulated if-then rules so that if students exhibited some prerequisite or
misconception that indicated sense-making or perceptual-fluency activities would be
beneficial, then they would be assigned to them. The if-then rules were ordered so that
rules corresponding to higher regression coefficients were prioritized. Table 1 sum-
marizes how many steps tested prerequisites or misconceptions that indicated sense-
making activities and perceptual-fluency activities. For each unit, a Python algorithm
used performance on the first two regular problems to test whether students met
conditions for the prerequisites or misconceptions for sense-making or perceptual-
fluency activities. If they did, they received either sense-making or perceptual-fluency
activities next. If not, they received regular activities on the same content.

3.3 Methods

Participants. We conducted the experiment as part of an introductory chemistry
course for undergraduate students. The course had no prerequisites, but it was adver-
tised to students in 100- and 300-level courses in chemistry and related programs. Fifty
students enrolled, five dropped the course within the first three weeks, yielding N = 45
students.

Table 1. Topics and visuals in the six Chem Tutor units, and rules (in order of priority).

Unit Topics Visuals Rules: If student exhibits at least 1 of…

1 Bohr model,
quantum numbers 1 & 2

Shell models,
orbital diagrams

4 misconceptions then sense-making

2 Quantum numbers
3 & 4, atomic orbitals

Orbital diagrams,
energy diagrams

1 prerequisite then perceptual-fluency
2 prerequisites then sense-making

3 Configurations of
atoms and ions

Energy diagrams,
Lewis structures

2 misconceptions then perceptual-fluency
1 prerequisite then sense-making
4 misconceptions then sense-making

4 Atomic radii of
atoms and ions

Lewis structures,
shell models

1 misconception then sense-making
1 prerequisite then sense-making
2 misconceptions then perceptual-fluency

5 Ionization energies,
electron affinities

Lewis structures,
orbital diagrams

1 prerequisite then perceptual-fluency
1 misconception then perceptual-fluency

6 Energy, ions, and
ionic compounds

Energy diagrams,
shell models

2 prerequisites then sense-making
1 misconception then perceptual-fluency
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Experimental Design. Students were randomly assigned to the static or the adaptive
version of Chem Tutor. For each unit, the static version provided two regular activities,
then two sense-making activities, then 16 perceptual-fluency activities. This corre-
sponds to the most effective version in prior studies [9, 44]. The adaptive version
provided two regular activities for each unit and then selected sense-making activities
and perceptual-fluency activities based on the rules in Table 1. To control instructional
time, we equated the number of problem-solving steps across conditions. For example,
the static version of unit 1 had 67 steps in total. If—after a student completed the two
regular activities—the algorithm indicated they needed more regular activities, the
student received two more regular activities, yielding 67 total steps. If the algorithm
indicated they needed more sense-making activities, the student received four sense-
making activities, yielding 67 total steps. Hence, regardless of what the algorithm
assigned, number of steps and content was identical to the static version. What differed
was whether students received support for sense-making skills and perceptual fluency
for all units (i.e., static version) or only the support that was indicated (i.e., adaptive
version).

Measures. We assessed learning of chemistry content with a pretest and posttest as in
the prior experiment. Students took a pretest at the start of each unit, an immediate
posttest at the end of each unit, and a delayed posttest in the following week before
they completed the pretest for the next unit. Agreement among independent graders of
short-answer items based on 10% of the responses was 85.91%.

Procedure. At the start of each class, the instructor gave a 3-min overview of the
topics. For the next hour, students worked at their own pace on the activities. The
instructor and a teaching assistant circulated the class but gave only minimal help and
directed students to read the Chem Tutor hints. Then, the instructor led a discussion on
the topics. Students who were unable to attend could complete the activities in a lab.

3.4 Results

Prior Checks. First, we checked for learning gains using repeated measures ANOVAs
with pretest, immediate, and delayed posttest as dependent measures. Results showed
significant learning gains across units, F(1, 43) = 50.36, p < .01, p. η2 = .54. Separate
ANOVAs showed significant learning gains for each unit (for units 1, 3–6, ps < .01
with effect sizes ranging from p. η2 = .15 to p. η2 = .54; for unit 2, p = .05,
p. η2 = .07).

Second, a multivariate ANOVA showed no significant differences between con-
ditions on the pretests for units 1–3, 5 (ps > .10). However, students in the static
condition had marginally higher pretest scores for unit 4, F(1, 43) = 3.07, p = .09,
p. η2 = .08, and significantly higher pretest scores for unit 6 F(1, 43) = 4.37, p = .04,
p. η2 = .09.

Effects of Adaptive Assignment. To test if the adaptive version of Chem Tutor was
overall more effective than the static version, we used a repeated measures ANCOVA
model. The model included condition as independent factor, pretest scores across units
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as covariate, and immediate and delayed posttest scores across units as dependent
measures. Results showed a significant effect of condition, F(1, 42) = 7.52, p < .01,
p. η2 = .15, such that the adaptive version yielded higher gains than the static version.
We also tested if the effects of the adaptive version depended on prior knowledge.
Results showed no significant interaction of condition with pretest, F(1, 41) = 1.74,
p = .19.

Next, we tested effects for each unit (Fig. 5). Separate ANCOVAs showed sig-
nificant advantages of the adaptive version for unit 1, F(1, 42) = 5.72, p = .02,
p. η2 = .12, unit 3, F(1, 42) = 6.27, p = .02, p. η2 = .13, unit 4, F(1, 42) = 7.38,
p = .01, p. η2 = .15, and unit 6, F(1, 42) = 7.37, p = .01, p. η2 = .15. For units 2 and
5, there was no significant effect of condition (ps > .10). For unit 5, we found a
significant interaction of condition with pretest, F(1, 41) = 5.55, p = .02, p. η2 = .12,
such that the adaptive version was more effective for low-performing students, but the
static version was more effective for high-performing students. No other interactions
were significant (ps > .10).

Finally, we qualitatively explored how the adaptive algorithm assigned sense-
making and perceptual-fluency activities. The algorithm assigned regular activities to
65% of the students at unit 1. Among them, 27% of the students received sense-making
activities next, starting at unit 2; 73% received perceptual-fluency activities next,
starting at unit 2 or 3. The algorithm assigned sense-making activities to 35% at unit 1.
Among them, 75% of the students received perceptual-fluency activities next, starting
at unit 2 or 3; 25% received more regular or sense-making activities. Finally, 87% of
students received more sense-making activities after they completed perceptual-fluency
activities for at least one unit, and 13% received more regular or perceptual-fluency
activities.

Fig. 5. Estimated marginal means (EMMs) averaged across immediate and delayed posttests,
controlling for pretest. Error bars show standard errors of the man * show significant differences.
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4 Discussion and Conclusion

Our results show that adaptive support for sense-making skills and perceptual fluency
with visual representations is more effective than static supports for these representation
skills. This finding expands prior research in several ways. First, prior studies show that
students’ benefit from different types of representation-skill supports depends on their
current skill level, and that adapting support to students’ problem-solving skills
enhances learning (e.g., by adapting the choice of problems that practice domain
knowledge to students’ current domain knowledge). Yet, our study is the first to show
that adapting support to students’ representation skills enhances the effectiveness of
problem-solving activities that practice domain knowledge.

Second, our results provide further evidence for a progression of representation
skills that had been based on cross-sectional studies. The inspection of ATI effects in
the prior study and the adaptive assignments in the current study suggest that students
should start with regular activities or sense-making activities before they benefit from
perceptual-fluency activities. Further, our findings confirm earlier cross-sectional
results that students benefit from sense-making activities again after becoming per-
ceptually fluent.

Third, our results may guide the design of educational technologies with multiple
visuals. We used linear regression to identify steps that were predictive of benefit from
sense-making and perceptual-fluency activities because they indicates prerequisite
knowledge about visuals or misconceptions about visuals. We translated results into if-
then rules that assign type of representation-skills support a student needs. This
approach can be applied to any set of technology-based activities where students use
visual representations to solve domain-relevant problems.

Our findings should be interpreted in light of several limitations. First, we found no
advantage of the adaptive over the static version of Chem Tutor for units 2 and 5. For unit
2, this may be due to the lack of learning gains. For unit 5, the adaptive version was more
effective only for low-performing students. It is possible that students in the prior
experiment that was the basis for the algorithm were low-performers on this unit. For
both units, we will use the current data to improve the algorithm. A second set of
limitations relates to the sample. Our study was part of a course that involved other
activities such as class discussions. While these activities may have affected learning, we
do not see why they should have affected differences between conditions. Also, although
students matched the target population of Chem Tutor, they were likely highly motivated
and may have seen the visuals before. Further, our sample was small due to the small
class size of 45 students. Hence, future research should replicate our results in other
contexts, with other populations and larger samples. Third, our study did not compare
adaptive representation-skills support to a control without representation-skills support.
While the effectiveness of static representation-skills support has been established, future
research should verify that adaptive representation-skill support is indeed more effective
than regular activities alone. Finally, because the use of visuals in chemistry is similar to
the use of visuals in other STEM domains, we expect that our findings will generalize
broadly. Yet, future research should test if adaptive representation-skill support indeed
enhances learning in other domains and with other visuals.
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In conclusion, our study is the first to show that adaptive support for representation
skills can significantly enhance learning of domain knowledge. Given that multiple
visuals are widely used and that lack of representation skills is an obstacle in many
STEM domains, such support may significantly enhance STEM learning.
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Abstract. Confrustion, a mix of confusion and frustration sometimes experi-
enced while grappling with instructional materials, is not necessarily detrimental
to learning. Prior research has shown that studying erroneous examples can
increase students’ experiences of confrustion, while at the same time helping
them learn and overcome their misconceptions. In the study reported in this
paper, we examined students’ knowledge and misconceptions about decimal
numbers before and after they interacted with an intelligent tutoring system
presenting either erroneous examples targeting misconceptions (erroneous
example condition) or practice problems targeting the same misconceptions
(problem-solving condition). While students in both conditions significantly
improved their performance from pretest to posttest, students in the problem-
solving condition improved significantly more and experienced significantly less
confrustion. When controlling for confrustion levels, there were no differences
in performance. This study is interesting in that, unlike prior studies, the higher
confrustion that resulted from studying erroneous examples was not associated
with better learning outcomes; instead, it was associated with poorer learning.
We propose several possible explanations for this different outcome and
hypothesize that revisions to the explanation prompts to make them more
expert-like may have also made them – and the erroneous examples that they
targeted – less understandable and less effective. Whether prompted self-
explanation options should be modeled after the shorter, less precise language
students tend to use or the longer, more precise language of experts is an open
question, and an important one both for understanding the mechanisms of self-
explanation and for designing self-explanation options deployed in instructional
materials.
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1 Introduction

Erroneous examples, or examples that illustrate typical student errors and miscon-
ceptions, can support performance, learning, and transfer [1–6]. Researchers have
hypothesized that erroneous examples derive their benefits through multiple processes,
including helping students to recognize errors in their own work [7] and highlighting
the underlying principles necessary for understanding correct solutions [2, 8]. How-
ever, no studies to our knowledge have examined the affective consequences of
erroneous examples. In particular, it is unclear whether students experience confusion
and frustration as they try to identify and understand errors that they might make
themselves. To understand how and when erroneous examples are most effective, we
examined the effects of erroneous examples on the affective state of confrustion – a
combination of confusion and frustration – and its consequences for learning outcomes.

Many previous studies have shown a learning advantage when students are
prompted to compare correct and incorrect examples [9] or explain and fix errors in
incorrect examples [5, 10], in contrast to more typical worked-example study or
problem-solving practice. In particular, studying erroneous examples may highlight for
students the common errors that they are likely to make and discourage them from
underestimating the difficulty of a problem. Erroneous examples have been shown to be
particularly beneficial for supporting long-term learning and transfer [2, 5, 6].

Erroneous examples relate more broadly to research on desirable difficulties [11,
12] and productive failure [13, 14]. Experiencing difficulty on a task can increase
engagement and mental effort and improve long-term learning outcomes [12, 13].
Critically, difficulty should directly relate to the concepts or procedures being taught. In
other words, simply making a task difficult for the sake of difficulty likely will not
improve learning; however, making the task difficult enough to require more effort or
some initial failure can ultimately help the learner. Erroneous examples may operate
through a similar mechanism by presenting students with solutions that they may have
thought were correct, based on their own inaccurate knowledge and misconceptions.

Although emotions likely play a role in learning from difficulty or productive
failure, the learner’s affective experiences while struggling in such contexts has not, to
our knowledge, been explored. The affective states of confusion and frustration are
likely to be especially relevant in these contexts. Although confusion and frustration
are theoretically distinct constructs, both have strong but mixed connections to learning
[15–17]. Confusion is typically viewed as positive if the student believes it can be
resolved [18–20], and it has been related to positive motivational experiences such as
engagement and flow [21]. Frustration can arise when a student cannot resolve their
confusion, and it can lead to disengagement and poor learning outcomes [22].

Despite the differences between confusion and frustration, research on affect
detection has suggested there are predictive benefits to combining the two as a measure
of confrustion. Affect detectors rely on students’ interaction data from a learning system
to determine the students’ affective states. They can examine affect at a grain-size of
about 20-s intervals and can predict immediate performance as well as long-term student
outcomes [23, 24]. To create affect detectors, human coders first label data based on the
absence or presence of an affective state [25–28]. After acceptable inter-rater reliability
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is established, machine learning algorithms identify behaviors in the learning system
that correspond to the affect judgments made by human coders.

Confusion and frustration are often hard for an observer to distinguish based on the
students’ interactions with educational technology [22]. Perhaps for this reason, a study
comparing the predictive value of confrustion assessed through affect detectors against
separate measures of confusion and frustration found that confrustion was a more
accurate predictor of learning [22]. Consequently, in this study we combine these
constructs and calculate a single measure of confrustion.

To explore the role of confrustion in learning from erroneous examples, we
examined students’ log interactions with an educational technology platform that
presents a series of 32 erroneous examples and 16 practice problems targeting common
decimal number misconceptions [29–31]. Previous research with this technology
showed that students who corrected and explained erroneous examples performed
better than students who solved and explained the same problems, but only on a
delayed posttest [1, 5]. This suggests that studying and correcting erroneous examples
might hinder – or at least not benefit – immediate performance but does lead to long-
term learning.

If erroneous examples support learning by creating difficulty, students who are
working through the materials might experience greater confrustion than students
completing similar materials without erroneous examples. To examine this, we created
affect detectors to assess students’ experiences of confrustion [32]. A re-analysis of log
files from the experiments reported in [1, 5] indicated that students did experience
greater confrustion in the erroneous examples condition. However, confrustion was
negatively related to performance. Confrustion thus does not appear to be beneficial on
its own, but it may be a necessary consequence of the cognitively demanding learning
processes supported by erroneous examples. In other words, students studying erro-
neous examples might learn more despite experiencing greater confrustion.

The current study aimed to replicate and build on the previous results in several
ways. First, the data that was reanalyzed with affect detectors was collected more than
six years ago. Use of educational technology has continued to increase in the time since
those data were collected, potentially changing the ways students would view and
interact with the materials. Erroneous examples have also gained prominence among
teachers and instructional designers. As a result, students might be more accustomed to
interacting with erroneous examples. For these reasons, we wanted to replicate both the
learning and confrustion results with a new group of students.

Second, students in the erroneous example condition previously received several
explanation prompts focused on each erroneous example and thus were prompted to do
more self-explanation than students in the problem-solving condition [1, 5]. Self-
explanation is a robust instructional technique [33, 34], and it is possible some of the
benefits experienced by students in the erroneous example condition resulted from
extra self-explanation. Additionally, the extra self-explanation may have contributed to
students in the erroneous example condition spending nearly twice as much time as
students in the problem-solving condition [1, 5]. To reduce the difference in time
between conditions and decrease the chance that benefits were being derived from extra
self-explanation, were moved one of the additional self-explanation prompts, leaving
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only one extra self-explanation prompt focused directly on making sense of the erro-
neous example.

Third, we saw opportunities to revise the self-explanation prompts to improve
precision in the mathematical language used, and we worked with a math education
expert (the seventh author of this paper) to make these changes. For example, the
previous materials referred to the misconception that “longer decimals are larger,”
while it is more mathematically precise to express the idea as “decimal numbers with
more digits to the right of the decimal point are greater in magnitude”. While prior
research has established that self-explanation can still be beneficial when students
select or complete explanations using provided options within a computer-based
learning environment [35, 36], instead of generating the explanations themselves, we
know of no prior research that has explored the question of whether these provided
explanations should be more similar to the less mathematically precise language stu-
dents typically use or the more mathematically precise language of math experts. In the
current study, we investigated whether the same learning benefits would be observed if
students selected self-explanation prompts using more mathematically precise
language.

Fourth, materials were updated to operate in HTML instead of Flash and to con-
form with modern look-and-feel instructional technology. For instance, prompted
explanation boxes, a common interface feature in this educational technology system,
were created with current HTML multiple-choice widgets. Using these revised mate-
rials, we sought to replicate previous results by testing the following hypotheses:

H1: Students in both conditions will improve in performance from pretest to
posttest and from pretest to delayed test. We do not expect any of the changes made
to the materials to disrupt the basic learning benefits of the intervention.
H2: Confrustion will be negatively related to performance, even when controlling
for prior knowledge. We do not expect the changes to the materials to change the
confrustion students experience, which related negatively to learning in prior
studies.
H3: Students in the erroneous example condition will experience greater confrus-
tion than students in the problem-solving condition. We made revisions aimed at
simplifying the appearance of the erroneous example materials (modern look-and-
feel) and to reduce extra text they had to read (elimination of extra self-explanation
prompt text). However, we expect that the greater levels of confrustion come from
the erroneous examples themselves and not from other features of the problem
interface.
H4: Students in the erroneous example condition will perform better than students
in the problem-solving condition on the delayed posttest. We do not expect any of
the changes to disrupt the relative benefits of erroneous examples.

While we had no way of empirically testing the effect of revisions on the amount of
time students required to complete the materials, we expected them to take less time on
the materials overall and to show less of a time difference between conditions.
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2 Methods

2.1 Participants

Participants were recruited from a suburban, public middle school (four teachers) and
an urban, public elementary school (four teachers) in the metropolitan area of a
northeastern U.S. city. Participants’ parents provided written consent to collect and
analyze students’ data. Students completed materials as a part of their regular, in-class
instructional activities. A total of 53 fifth-grade students and 134 sixth-grade students
participated. Six fifth-grade students and seven sixth-grade students were dropped for
failing to complete the materials in the allotted time. The final dataset included 174
students: 47 fifth-graders (30 male, 17 female; mean age 10.4) and 127 sixth graders
(69 male, 58 female; mean age 11.2). Students were randomly assigned to conditions at
the individual level, with 89 students assigned to the problem-solving condition and 85
students assigned to the erroneous example condition.

All students had previously learned about decimal numbers during their regular
math instruction (Common Core standard CCSS.Math.Content.5.NBT.A.3 for fifth
grade; CCSS.Math.Content.6.NS.B.3 for sixth grade). To avoid introducing informa-
tion that could affect students’ performance, teachers were asked to refrain from pro-
viding decimal-number instruction or practice outside of the intervention during the
study.

2.2 Materials

Materials were developed using the Cognitive Tutor Authoring Tool (CTAT) and
delivered through Tutorshop, a learning management system for CTAT tutors that
supports classroom deployment via web delivery [37]. We followed updated look-and-
feel principles to revise the presentation of materials (see Figs. 1 and 2). Materials were
aimed at addressing misconceptions while providing feedback and practice to students
who had basic knowledge of decimal numbers. Both the erroneous example and
problem-solving materials presented the same problems in the same order. Materials
were organized into three-item sets of two erroneous example or problem-solving items
with self-explanation, followed by one practice item without self-explanation. Practice
items were the same across conditions. The materials included a total of 48 problems
targeting different decimal number misconceptions. Tasks included number line
placement, ordering by magnitude, addition, and completing a decimal number
sequence.

Each erroneous example item presented a decimal number word problem with an
incorrect solution from a hypothetical student (Fig. 2). Students worked through the
problem in three steps and could not advance until they completed each step correctly.
First, the student was prompted to explain the error in the example. Second, they
corrected the error by solving the problem. Third, they explained the correct solution or
relevant principles through two self-explanation prompts with multiple-choice solution
options [35, 36]. The tutor provided feedback on all incorrect responses.

Each problem-solving item presented the same decimal number word problem but
without an incorrect solution. Students worked through the problem in two steps and
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could not advance until they completed each step correctly. They solved the problem
and then explained the solution or principle by answering two multiple-choice self-
explanation questions. The tutor provided feedback on all incorrect responses.

The third problem in each set was a practice problem targeting the same miscon-
ception as the previous two erroneous example or problem-solving items. Practice
problems consisted of only one step: solving the problem. Items were identical across
conditions and were included to give students additional practice applying what they
were learning in the materials. Previous research has shown that including practice
problems immediately after example problems can improve learning outcomes [38].

Tests were administered on computers using the same educational technology
platform as the intervention. There were 25 items on the pretest, posttest, and delayed

Fig. 1. A sample erroneous example problem from the original materials used in [1, 5]. This
problem involves an ordering task and targets the “longer decimals are larger” misconception.

Fig. 2. A sample erroneous example problem from the current study, which has the same
decimal content as Fig. 1. Students still received a prompt to explain the error, but the prompt
disappeared from the screen after it was answered.
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posttest, with some items containing multiple parts and points. The tests were worth a
total of 61 points, and test scores were computed as the number of points earned out of
61. We deployed three versions of the test with isomorphic problems, and test version
order was counterbalanced across students. Items targeted the same misconceptions as
the instructional materials and also included some transfer items that did not directly
address a specific misconception. Items included tasks such as adding decimal numbers
(e.g., 2.41 + 0.6 = ___) and identifying the largest or smallest decimal number from a
list (e.g., 5.413, 5.75, 5.6). Transfer items targeted an understanding of decimal number
principles (e.g., “Is a longer decimal number larger than a shorter decimal number?”)
and included new skills not covered in the intervention (e.g., “Select all of the fol-
lowing numbers that are equal to 0.43”).

2.3 Procedure

All materials were deployed during students’ regular math classes over the course of
one week. Members of the research team were present each day to assist in adminis-
tering the materials and ensure the protocol was followed. Students completed the
pretest, instructional materials, and posttest at their own pace and their progress was
saved each day. Students who completed the posttest before the end of the week were
given math assignments by their teachers that did not target decimal number concepts.
One week after the intervention, all students completed a delayed posttest.

2.4 Affect Detection

We developed affect detectors using labels from text replay coding, where segments of
log files are pretty-printed and coded by humans. Those codes are input into machine
learning algorithms to emulate the coders’ judgments, based on prior studies that
showed it was feasible to detect confrustion using this approach [27]. The detectors
were built on log file data from 598 students across five middle schools collected in
previous research with this educational technology platform [1, 5]; data related to the
dropped self-explanation step in the previous version of the erroneous example con-
dition were removed from the dataset before developing automated detectors, but
remained included during text replay coding. Students’ log files were broken down into
individual clips for text replay coding, with each problem corresponding to a single
clip. Two coders manually labeled 1,600 clips for confrustion based on holistic
assessment of confrustion in the current task. For example, for multiple-choice prob-
lems, did the student spend a significant amount of time on a first, incorrect attempt and
then make a subsequent incorrect attempt? For number line problems, did the student
make two substantially distant, incorrect attempts (e.g., 0.3, then 1.1, then 1.8) or
multiple incorrect attempts in both directions on the number line (e.g., 0.7, then 0.81,
then 0.55)? As with most labels, these text replay labels are imperfect – we do not
know if they genuinely capture the affective experience of confusion or frustration in
all cases. As these labels are derived only from log files, unlike work that also considers
facial expressions or posture [e.g. 25], these labels may in some cases capture only
behavior associated with confrustion, rather than true confrustion. Agreement was
computed after two coders separately labeled the same 129 clips, and results indicated
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high agreement (j = .82, p < .001). The remaining 1,471 clips were coded indepen-
dently by one of the two coders. The set of clips coded was stratified to equally
represent both student cohorts, both conditions, and all four problem types.

We built the confrustion detector using the Extreme Gradient Boosting (XGBoost)
classifier based on these labeled clips [39]. The classifier uses an ensemble technique
that trains an initial, weak decision tree and calculates its prediction errors. It then
iteratively trains subsequent decision trees to predict the error of the previous decision
tree, with the final prediction representing the sum of the predictions of all the trees in
the set. We determined that the detector could effectively infer students’ confrustion
(j = .82, AUC = .92) based on 10-fold student-level cross-validation, which involved
repeatedly building the model on some students’ data and testing it on other students’
data. Once effective detection was confirmed, we applied the detector to the new
dataset (9,065 clips across 187 students). A total of 30 features were used to predict
confrustion, and the importance of each feature was calculated as the proportion it
contributed to the final model. The detector reported the probability that a student
experienced confrustion on each problem; overall confrustion scores were computed as
the average probability of confrustion across all problems.

3 Results

We report results in the order of our hypotheses. To examine whether students’ per-
formance improved as a result of the intervention (H1), we conducted a series of
paired-samples t-tests separately by condition. Results indicated that students in the
problem-solving condition improved significantly from pretest to posttest, t(88) = 6.83,
p < .001, d = .44, and from pretest to delayed test, t(88) = 8.18, p < .001, d = .48
(Table 1). Likewise, a paired-samples t-test indicated that students in the erroneous
example condition improved significantly from pretest to posttest, t(84) = 4.26,
p < .001, d = .28, and from pretest to delayed test, t(84) = 5.29, p < .001, d = .37.

To test the relation between confrustion and performance (H2), we examined the
correlation between the variables. Confrustion was negatively correlated with pretest
performance, r = −.64, p < .001, posttest performance, r = −.63, p < .001, and
delayed posttest performance, r = −.62, p < .001. To examine the relation between
confrustion and performance when controlling for prior knowledge (H2), we tested a
multiple regression including pretest and confrustion to predict posttest. The model was
significant, R2 = .70, F(2, 171) = 195.66, p < .001. Both confrustion, b = −.186,

Table 1. Proportional confrustion and test scores by condition.

Measure Problem solving Erroneous example

Confrustion M = .22, SD = .12 M = .33, SD = 12
Pretest M = .53, SD = .22 M = .54, SD = .21
Posttest M = .62, SD = .21 M = .59, SD = .21
Delayed test M = .63, SD = .22 M = .62, SD = .23
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p = .001, and pretest, b = .69, p < .001, were significant predictors of posttest per-
formance when holding the other factor constant. We applied the same multiple
regression model to predict delayed posttest. The model was significant, R2 = .69, F(2,
171) = 188.22, p < .001. Both confrustion, b = −.15, p = .006, and pretest, b = .72,
p < .001, were significant predictors of posttest performance when holding the other
factor constant. These results indicate that confrustion predicted test performance even
when accounting for students’ prior knowledge. In other words, the predictive value of
confrustion was not merely a reflection of students’ prior knowledge.

To examine the effect of condition on confrustion (H3), we conducted a one-way
analysis of variance (ANOVA) that indicated students in the erroneous example con-
dition experienced greater confrustion than students in the problem-solving condition,
F(1, 172) = 41.29, p < .001, d = 0.38. To determine whether the relation of confrus-
tion and test performance differed between conditions, we conducted a moderation
analyses using PROCESS, an SPSS macro that uses 5000 bootstrap estimates to test
mediation and moderation by creating confidence intervals for indirect effects [40]. We
tested a PROCESS 1 model using condition as a moderator of the relation between
confrustion and posttest performance and, separately, delayed test performance. For the
immediate posttest, there was no significant interaction between confrustion and con-
dition, B = .29, 95% CI [−.10, .67], and the inclusion of the interaction term did not
explain significantly more variance in the model, DR2 = .007, F(1, 170) = 2.11,
p = .15. For the delayed posttest, there was also no significant interaction between
confrustion and condition, B = .27, 95% CI [-.14, .68], and the inclusion of the
interaction term did not explain significantly more variance in the model, DR2 = .006,
F(1, 170) = 2.11, p = .19. These results indicate that the relation between confrustion
and performance did not differ between conditions.

To test the effect of condition on performance (H4), we conducted an ANOVA that
revealed no differences between conditions on pretest, F(1, 172) = 0.08, p = .77,
d = 0.04, posttest F(1, 172) = 0.82, p = .37, d = 0.14, or delayed posttest, F(1,
172) = 0.17, p = .68, d = 0.06 (Table 1). When controlling for pretest, an analysis of
co-variance (ANCOVA) indicated that there was a significant effect of condition on
posttest, F(2, 171) = 4.10, p = .045, ηp

2 = .023, with students in the problem-solving
condition performing better. There was no effect of condition on delayed posttest when
controlling for pretest, F(2, 171) = 1.29, p = .26, ηp

2 = .008.In other words, students in
the problem-solving condition improved on the posttest significantly more than stu-
dents in the erroneous example condition, but there were no differences in improve-
ment on the delayed test. To understand the role of confrustion in this effect, we
conducted ANCOVAs testing the effect of condition on test performance controlling
for both confrustion and pretest. Results revealed no effect of condition on posttest, F
(3, 170) = 0.02, p = .90, ηp

2 < .001, or on delayed posttest, F(3, 170) = 0.35, p = .56,
ηp
2 = .002. This indicates that the variance in confrustion between conditions accounted
for the condition effect on posttest improvement.

To understand other potential consequences of the revisions, we examined the
amount of time students spent on the materials. An ANOVA indicated a significant
difference in total time spent on the instructional materials, F(1, 172) = 9.95, p = .002,
d = 0.48, with students in the erroneous example condition (M = 62.90, SD = 23.24)
taking longer to complete the materials than students in the problem-solving condition
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(M = 51.59, SD = 23.99). This suggests that the extra self-explanation prompt that was
eliminated from the erroneous examples was not responsible for the difference in times
across conditions observed in previous studies.

4 Discussion

Unlike prior studies [1, 5], students in the erroneous example condition performed
worse than students in the problem-solving condition on the immediate posttest when
controlling for the pretest, and there were no differences between conditions on the
delayed posttest. While the results are reversed in terms of which condition performed
better, there is a similar trend in the difference between posttest and delayed posttest. In
prior studies, the benefits of erroneous examples emerged only on a delayed posttest,
suggesting that students did not experience initial performance benefits but ultimately
learned and were able to transfer knowledge better [1, 5]. These previous results were
consistent with other research on erroneous examples, which have tended to show the
greatest benefit on delayed or transfer tests [2, 6, 10]. In the current study, students in
the problem-solving condition showed an immediate performance advantage on the
posttest but that advantage did not persist to the delayed posttest, suggesting that
benefits from the problem-solving condition primarily affected performance and not the
lasting, transferrable learning benefits that are typically most valued as an instructional
goal. Thus, while results were inconsistent with prior work in the sense that students in
the erroneous examples condition did not perform better on the delayed posttest, it was
not a full reversal of effects as would have been seen if students in the problem-solving
condition performed better on the delayed posttest.

We predicted that the benefits of erroneous examples would be robust enough to
persist despite several changes made to better align the conditions with one another and
with the more precise mathematical language used by experts. While this prediction
was not upheld, there are several possible explanations for the different outcome. First,
students might be more accustomed to using instructional technology than they were
when the original materials were tested six years ago. While we would not expect this
to change the cognitive benefits of the instructional materials, it might reduce any
confusion or frustration students would experience with the interface, such as under-
standing how to drag numbers to reorder them or select options from a drop-down
menu. However, this idea is not supported by the time students spent on the materials.
Students in the current study spent on average 50 to 60 min across conditions, while
students in the previous studies spent on average 40 to 50 min across conditions [1, 5].

Second, the elimination of the extra self-explanation prompt in the erroneous
example condition might have reduced learning in that condition. We think this is
unlikely, as students in the erroneous example condition still responded to three self-
explanation prompts per question. However, only a direct comparison between versions
with and without the additional prompt could provide conclusive evidence.

Third, and we think most likely, the shift to more mathematically precise language
may have diminished the benefit of studying and explaining erroneous examples.
Students on average spent 10 more minutes on the revised materials compared to the
original ones. No other major changes were made to the content of the problem-solving
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materials, and the other major change to the erroneous examples condition involved
removing materials. Students’ prior knowledge in the current experiment was slightly
lower than in prior studies (.53 current, .57 prior), which could cause an increase in the
amount of time students needed. Nevertheless, the dramatic increase in time spent on
materials supports the idea that students struggled more with reading the new expla-
nation prompts and thus may not have benefitted from them as much. Erroneous
example interventions typically instruct students to engage in an evidence-based
learning activity to study and understand the erroneous examples, such as comparison
[9] or explanation [10]. Without these instructionally robust activities to provide
scaffolding, students may not pay as close attention to the erroneous examples or may
fail to identify the underlying principles they represent. Put another way, if the
mathematically precise language of the new explanation prompts was too difficult for
students to understand, then the effect may have been similar to having no explanation
prompts at all.

Future research should investigate these possible explanations empirically. We plan
to attempt to replicate previous results by randomly assigning students to either the
erroneous example or problem-solving conditions using either the original or revised
materials, which will also permit a more direct comparison of times and perfor-
manceacrossversions. Examination of students’ own self-explanations has suggested
that the act of engaging in self-explanation is beneficial even when explanations are
flawed or mathematically imprecise [41]. Whether provided self-explanation options
should be modeled after the imprecise language students tend to use or the more precise
language of experts is an open question, and an important one both for understanding
the mechanisms of self-explanation and for designing self-explanation options
deployed in instructional materials. Since many instructional technologies use the self-
explanation method of offering options from which students may choose [35, 36], this
is important question to resolve.
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Abstract. Computer Supported Collaborative Learning (CSCL) environments
are frequently employed in various educational scenarios. At the same time,
learning analytics tools are frequently used to quantify active learners’ partici-
pation, collaboration, and evolution over time in CSCL environments. The aim
of this paper is to introduce a novel method to cluster utterances from online
conversations into zones based on different levels of collaboration. This method
depends on time series analyses, grounded in dialogism and focuses on the
underlying semantic chains that are encountered in adjacent contributions. Our
approach uses Cross-Reference Patterns (CRP) applied on the convergence
function between two utterances which captures their semantic relatedness. Two
methods for clustering utterances into convergence regions are tested: clustering
by uniformity and hierarchical clustering. We found that hierarchical clustering
surpasses clustering by uniformity by considering only highly related contri-
butions and providing a more straightforward unification mechanism. A valida-
tion analysis on the hierarchical clustering model was performed on a corpus of
10 chat conversation reporting variance in terms of F1 scores. The model and
encountered problems are discussed in detail.

Keywords: Time series analysis �
Computer Supported Collaborative Learning � Cross-Reference Patterns �
Clustering

1 Introduction

Technology has facilitated the migration of communication to online environments
including simple chat conversation and the exchange of ideas on social platforms. Of
particular interest to this study are communicative tools oriented towards educational
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purposes. These tools have gained increasing usage in the context of Computer Sup-
ported Collaborative Learning (CSCL). A specific trait of CSCL communication is the
presence of multiple discussion threads, which inter-twine with one with another and
may contain direct mapping to the subjects/ideas discussed within the online dialog.
Thus, a large number of threads might emerge in a conversation, demonstrating creative
stimulations and/or the generation of new ideas [1]. Multiple intertwined viewpoints
(i.e., voices) spread across large threads are related to dialogism, which is an important
framework for CSCL conversational analysis [2, 3]. Voices are central concepts in
dialogism, relate to participants’ points of view, and can be operationalized as semantic
chains of related concepts [4]. Starting from their distribution and by examining inter-
actions among voices, we can identify collaboration zones in which participants’
viewpoints converge [4]. Such collaboration zones play a key role in learning by pro-
viding context for elaborating each participant’s reasoning [5], as well as for triggering
extra cognitive mechanisms (e.g., reduced cognitive load due to social interactions, or
knowledge elicitation) [6]. Thus, a crucial element of intelligent tutor systems is to
effectively monitor student’s interactions and the way students collaborate throughout a
conversation or this collaboration allows ideas to converge towards a central topic.

This paper introduces a novel automated method based on time series analyses and
semantic similarity to filter online educational dialog for the purpose of identifying the
principal moments of collaboration between participants. We test the method in a pilot
study using oral language data collected in collaborative educational communication.
Our method is aimed at automatically assessing the degree of collaboration between
individuals in a conversation, and to potentially provide follow-up feedback to enhance
the degree to which participants are involved and collaborate in CSCL environments. Our
work is based on time series analysis applied to dialog organized as a series of utterances
ordered in time. We use cross-recurrence plots (CRP) [7, 8] to capture the semantic links
between all utterance pairs in order to gain an in-depth view of how participants interact
and exchange ideas with one another throughout the dialog. Similar approaches have
been employed in the past to effectively analyze chaotic signals by identifying different
patterns which explain how a dynamic system behaves over time [9].

2 Method

2.1 Corpora

Our experiments are based on the dataset of 10 conversations previously analyzed by
Dascalu, Trausan-Matu, McNamara and Dessus [4]. Each conversation was an assign-
ment in which four to five students in a Human-Computer Interaction course in an
European Computer Science Department had to debate the advantages and disadvan-
tages of specific CSCL technologies. Afterwards, students propose an integrated alter-
native that integrates the advantages of each technology, hopefully leading to a
convergence of viewpoints. Expert raters then assessed collaboration in the group in
terms of ideas exchanged between participants. Moreover, raters were asked to identify
continuous segments of collaboration zones within the conversations that exhibited a
high degree of collaboration between participants. Each collaboration segment
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determined by raters was defined as the start and end indexes of utterances within the
zone of active collaboration. Based on individual rater scores, we created an overarching
histogram of collaboration fromwhich collaboration zones were extracted using a greedy
algorithm that grouped contributions around peak/maximum collaboration values [4].

2.2 Method

Our method to automatically assess collaboration and to identify collaboration zones
was based on semantically related words spanning throughout the conversations. The
three major phases of the method are presented in detail below.

In the first phase, we define the concept of convergence between two utterances as
a function that computes the similarity between contributions based on their underlying
words: f : Utterances � Utterances ! ½0; 1�. As a simple approximation, this function
can be computed as lexical convergence [10] which considers the number of common
n-gram POS/lexemes (i.e., an index considering pairs of corresponding part of speech
tags and stemmed words) identified within pairs of utterances across participants.
Although such a function is easy to compute and might offer promising results in
certain contexts, it suffers from the fact that an idea must be expressed using the same
words, which is seldomly encountered in online conversations. In order to tackle the
previous limitation, we start from the concept of “voices” from polyphonic models [3]
which can be operationalized as semantic chains [4] or an unification of semantically
related lexical chains identified using the method proposed by Galley and McKeown
[11]. Lexical chains represent a series of words distributed in multiple utterances,
unified either by their common stems or by semantic distances and relations in
WordNet (i.e., synonymy, hypernymy, hyponymy and siblings) [11]. A semantic chain
is formed by merging multiple lexical chains that share a high semantic similarity
between the contained words [4] using similarity functions from different semantic
models like vector space models – e.g., Latent Semantic Analysis [12] and word2vec
[13] –, as well as topic models – e.g., Latent Dirichlet Allocation [14]. This approach
represents a more adequate approximation of how related two utterances are while
considering semantically related concepts and their occurrences.

In order to define the semantic convergence between two utterances, we must first
reduce the impact of repetitions for words pertaining to the same semantic chain and
appearing within a given utterance by considering their logarithmic frequency. Thus,
let li : Utterances ! N; for i ¼ 1; 2; . . .; k be the functions that returns the logarithmic
number of words that are contained in the i’th semantic chain, given a set of utterances.
While considering only two utterances, namely ul and um, the semantic convergence
between the two is given by the following formula:

f ðul; umÞ ¼
Pk

i¼1 minðliðulÞ; liðumÞÞ
Pk

i¼1 maxðliðulÞ; liðumÞÞ

This function also emphasizes the difference between strong and weak convergence
while relating to the participants’ degree of collaboration – i.e., two utterances will
have a strong convergence (equal to one) which can lead to intense collaboration zones,
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if they have the same number of words in each semantic chain; otherwise, we consider
the two utterances to be weakly converging and the resulting collaboration zone to be
weaker.

The second phase consists of creating cross-recurrence plots based on the previ-
ously defined function. We build a matrix in which each row and column corresponds
to an utterance, and each cell ði; jÞ is computed as f ði; jÞ. The main diagonal contains
scores of one for all utterances which have content words; the value of one represents
the correlation of the utterance with itself. The CRP offers a useful overview of how
conversation evolves in time, and also allows us to identify specific regions (squares in
the matrix) where there is a high correlation between utterances. Our main idea was to
identify collaboration regions as clustered cells near the main diagonal, and then to
mark the zones that denote a strong convergence marked with red color in Fig. 3.

In the third phase we introduce two methods for clustering utterances into con-
vergence regions, each with its corresponding advantages and drawbacks [15]. The first
method is based on clustering by uniformity (see Fig. 1), as we expect a conversation
to consist of alternative sequences of zones with strong and weak convergence. Thus,
our aim is to find the boundary of such zones. Our algorithm starts with a 2 � 2 matrix
from the first contribution – cell (0, 0) – and it tries to expand this region while the Root
Mean Squared Error (RMSE) does not exceed an imposed threshold. When the
threshold is exceeded, we start again with a 2 � 2 matrix from the current position and
repeat the above steps. The main diagonal is not taken in consideration when com-
puting the RMSE. Using this method, we identified three main types of regions: zones
with weak convergence and a mean near 0, transition zones with a mean near 0.5, and
zones with strong convergence with mean near 1. The main problem with this approach
is its sensitivity to noise, which makes it very difficult to impose an adequate threshold.
In addition, using this method we are faced with a classification problem, namely to
classify each cluster as either a relaxed or an intense collaboration zone based on their
mean convergence values. Although a constant threshold might represent a straight-
forward approach, we identified several situations in which this did not generalize well
as the conversations from our corpora are quite different, and this approach is prob-
lematic even with normalization. Therefore, we applied Expectation Maximization on a
Gaussian Mixture Model because this offers the possibility to partition the data in a
dynamic way, knowing a priori the number of clusters in which we want to split the
utterances. The clustering algorithm produces several zones which are labeled as being
either collaborative or non-collaborative. A direct method to measure whether there is a
strong connection between the utterance from a zone is to compute the mean value of
its cells. Thus, each identified cluster is mapped to a real number for which we applied
the EM algorithm into one dimension.

The best method for classification was based on hierarchical clustering (see Fig. 2).
With this method, we started with a cluster for each utterance, and we tried to unify
them by the mean of their connection area. Therefore, given two consecutive clusters
C1(entry1, size1), C2(entry2, size2), the link between them is the region from the CRP
matrix with the coordinates (entry1, entry2, size1, size2) – i.e., it starts at cell (entry1,
entry2), and has size1 rows and size2 columns. In an iteration, we unify the two clusters
if the mean value of convergence is maximal and it exceeds an imposed threshold. The
algorithm stops when there are no further unifications which can be performed. The
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main advantage of this approach is that no classification is needed after clustering
because only highly correlated cells are clustered. Similar to the previous method, a
drawback is the threshold hyperparameter which needs to be imposed, for example, via
grid search methods that identify the optimal value.

3 Results and Discussions

Figure 3 depicts the result of the hierarchical clustering performed on one of our
conversations in which rows and columns reflect the participant’s pseudonym, the
CSCL technology they focused on, and the corresponding utterance ID. Collaboration
zones are marked in red with circles as delimitating markers.

From an overarching visual point of view, the clustering algorithms performs quite
well by marking squares of interest around the main diagonal. Although student talked
about advantages and disadvantages of particular domain-specific topics, utterance
pairs still exhibited a high semantic similarity as most contributions contain the same
semantic chains centered on the debated technologies. The recurrence of key topics
throughout the conversation is essentials for collaboration and, even if students were
instructed to represent a certain technology, they frequently made side-by-side com-
parisons or continued their peers’ contributions.

The output of the convergence measure between two utterances, f ðul; umÞ, is a
number between 0 and 1, where 1 reflects the strongest correlation. The CRP values are
represented on a gray scale and black scales correspond to a similarity value of 1. Note
that each utterance from the main diagonal is compared to itself, thus the cells are
black. Moreover, white cells denote a lack of semantic overlap and, in some particular
cases, can be generated by contributions that do not contain any content words (e.g., a
simple “ok”). System generated events were automatically disregarded.

Fig. 1. Visual representation of uniformity clustering.

Fig. 2. Visual representation of hierarchical clustering.

462 R.-F. Samoilescu et al.



In order to further exemplify how the convergence function is computed, Table 1
presents two adjacent contributions both containing one semantic chain with the fol-
lowing words marked in grey: “client”, “progress”, and “project”. The values from the

cells (103, 104) and (104, 103) are both equal to lnð1Þþ 1
lnð3Þþ 1 since the CRP is a symmetric

matrix (i.e., a maximum of 3 and a minimum of 1 since utterance 103 contains 3 words
from the chain, whereas utterance 104 contains only the word “project”).

Fig. 3. Cross-recurrence plots after hierarchical clustering (Color figure online).

Table 1. Sample contributions that generate cluster expansion interruptions.

ID Participant Utterance
103 corina-forum well the client must know the progress of a project, no?
104 diana-wiki and also, during the project, in case some major difficulties
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Table 2 introduces samples of two contiguous zones of contributions that generated
interruptions after the first and second clusters from Fig. 3, namely utterances spanning
between IDs 110–112 and 119–123.

Tables 3 and 4 present the accuracy measures for both uniformity and hierarchical
clustering for all 10 conversations in which the hyperparameter for the threshold was
selected using grid search. The selection of the threshold for uniformity clustering
reports lower results for recall and F1 scores and slightly higher results for precision
scores. Although the threshold was fixed for all conversations for evaluation purposes,
this value could be dynamically imposed by the user simply by looking at the CRP of a
new conversation. Thus, we want to emphasize that the selection of an error for RMSE
is more difficult and less intuitive than the selection of a linkage threshold, which can
be approximated visually, as in the case of hierarchical clustering. In addition, the
results of our method are comparable to previously research – average F1 score of .74
for the Voice Pointwise Mutual Information model and .79 for the Social Knowledge
Building model [4]. However, a high variance can be observed in terms of F1 scores
which range from .65 to .79, denoting different problems.

The first problem appears because the manually annotated regions from the chat
corpus tend to be quite large, which induces a high recall (close to .9 in several cases).
This results in a problem for our generative method of collaboration zones based on the
cumulative histogram. The regions that we generate are quite large, which interferes
with the selection of the hyperparameter. In this specific case, the threshold tends to
become smaller in order to generate larger clusters, which in return justifies the large
values for recall.

The second problem exists because the baseline annotated collaboration zones
generated from the histogram of manual annotations have a hard margin, in accordance
to Dascalu, Trausan-Matu, McNamara and Dessus [4]. To be more precise, the original
generative algorithm looks at local maxima from the histogram that are greater than the
mean value. An intense collaboration zone is created if the distance between two local

Table 2. Sample contributions that generate cluster expansion interruptions.

ID Participant Utterance

110 diana-wiki ok :)
111 stefan-blog ok

Mona-chat (disregarded utterance from the
analysis)

joins the room (system generated
event)

112 Mona-chat Sorry, guys….
…

119 stefan-blog ok
120 corina-forum it is a bug in the program :p
121 stefan-blog kill it :P
122 corina-forum ok! Perfect
123 cristi-wave yes… chat is sometimes unreliable
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maxima is smaller than a slack empirically set at 5% of the length of the conversation.
This causes problems because the emerging annotated collaboration zone has both ends
local maxima representing an abrupt start and finish, which is not the case for our
clustering algorithm.

Third, noise in our CRP influences the clustering results and creates additional
segmentations. In Fig. 3 we can observe utterances that do not correlate with others,
introducing some gaps. These utterances have no cross-recurrence as they potentially
contain automated messages generated by the chat server, or they have no contextual
information – e.g., simple replies like “OK”, “Yes”, etc. – which break down the

Table 3. Accuracy of uniformity clustering for the identification of intense collaboration zones.

Conversation ID Uniformity clustering
(Threshold = .18)
Precision Recall F1 score

1 .734 .815 .773
2 .844 .551 .667
3 .697 .901 .786
4 .654 .918 .764
5 .608 .774 .681
6 .714 .842 .773
7 .695 .576 .630
8 .630 .812 .710
9 .656 .606 .630
10 .644 .882 .744
Avg. .687 .767 .715

Table 4. Accuracy of hierarchical clustering for the identification of intense collaboration
zones.

Conversation ID Hierarchical clustering
(Threshold = .2)
Precision Recall F1 score

1 .702 .870 .777
2 .656 .728 .690
3 .716 .866 .784
4 .680 .945 .791
5 .597 .872 .709
6 .752 .829 .789
7 .733 .766 .749
8 .642 .795 .711
9 .638 .667 .652
10 .670 .871 .757
Avg. .679 .821 .741
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connection between two clusters. Ignoring those zones, and cumulating clusters around
them is quite problematic. At least another hyperparameter must be added, as the
maximum size that allows two clusters separated by noise to be merged. However, this
is difficult considering how manual annotations are combined, and the overall tendency
to have larger annotated zones of collaboration, in contrast to more precise smaller
regions.

4 Conclusions and Future Work

In this paper we introduce a novel and flexible method based on time series analysis
that clusters utterances from online conversations into collaboration zones. Based on
the identified principal moments of collaboration between participants, we are able to
evaluate the degree of individuals’ collaboration with peers within CSCL conversa-
tions. Moreover, our analysis can also highlight potential inconsistencies in commu-
nication in terms of zones of contributions that have low semantically relatedness
among adjacent utterances. In line with the studies performed by Jermann et al. [16, 17]
which considered dual eye-tracking, there is a synergy of perspectives in the sense that
collaboration can be identified by evaluating cross-recurrence patterns from diverse
learning traces.

The implications of our method are multifold. First, the method facilitates the
identification and visual separation of zones in which participants exchange semanti-
cally related contributions that create a conversation momentum in which they discuss
more central topics. Second, our approach transcends simple semantic similarity
measures by considering the occurrence patterns of semantic chains spanning
throughout the entire conversation. Third, the clustering algorithm can be also used to
observe divergence or out-of-focus/off-topic zones in the conversation that should be
closely examined. Although creativity is essential, introducing too many unrelated
contributions and points of view may be detrimental to the overall collaboration
indicating that perspectives need to be contained by other participants. Fourth, our
method enables tutors to easily monitor how students are interacting with their peers
while participating in specific CSCL scenarios. This enables tutors to take timely
actions and encourage their students to be more actively involved, while also con-
sidering the points of view of other members.

We must also take into account the limitations of our approach. First, the clustering
algorithm requires proper thresholds that need to be empirically adjusted by the tutors.
Currently, there is no automated manner in which these parameters can be set a priori
as all analyses are tailored to specific requirements (e.g., dense and narrow convergence
regions for targeted conversations versus a wider spread of these regions for longer
discussions). Second, our method is most effective while performing a posteriori
analyses of conversations because the considered semantic chains emerge when con-
sidering concepts from the entire conversation. Although near real-time processing can
be performed, shifts in the conversation topics will not be initially perceived as col-
laboration. Once an automated solution is found to these two problems, our approach
can be extended to larger populations like those found in on-line tutoring systems of
massive open online classes (MOOCs). Our long-term aim is to create a tool that
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provides feedback to students on participating and encourages them to get more
involved in follow-up conversations, as well as potentially applying different strategies
to become better immersed within the conversation, while following the topics intro-
duced by their peers. Such a feedback tool could help learners become more engrained
in the learning community and potentially lead to greater learning gains, motivation,
and entrenchment.

Considering the identified problems, we aim to test our model on different datasets,
with more accurate annotation of collaboration zones in follow up studies. In addition,
further improvements can be performed in the clustering method by reducing CRP’s
noise and considering additional factors when defining the correlation function (for
example, speech acts and certain question-answer patterns).
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Abstract. Dialogue-based tutoring platforms have shown great promise
in helping individual students improve mastery. Short answer grading is
a crucial component of such platforms. However, generative short answer
grading using the same platform for diverse disciplines and titles is a cru-
cial challenge due to data distribution variations across domains and a
frequent occurrence of non-sentential answers. Recent NLP research has
introduced novel deep learning architectures such as the Transformer,
which merely uses self-attention mechanisms. Pre-trained models based
on the Transformer architecture have been used to produce impressive
results across a range of NLP tasks. In this work, we experiment with fine-
tuning a pre-trained self-attention language model, namely Bidirectional
Encoder Representations from Transformers (BERT) applying it to short
answer grading, and show that it produces superior results across multi-
ple domains. On the benchmarking dataset of SemEval-2013, we report
up to 10% absolute improvement in macro-average-F1 over state-of-the-
art results. On our two psychology domain datasets, the fine-tuned model
yields classification almost up to the human-agreement levels. Moreover,
we study the effectiveness of fine-tuning as a function of the size of the
task-specific labeled data, the number of training epochs, and its gener-
alizability to cross-domain and join-domain scenarios.

Keywords: Self-attention · Transfer learning · Student answer scoring

1 Introduction

Dialogue-based tutoring (DBT) platforms such as AutoTutor [6], Rimac [1],
DeepTutor [24] and the Watson Tutor [28] have shown great promise in meeting
individual student’s needs. In such systems, the tutoring platform interacts with
the student by asking questions and provides individual feedback based on all
student answers. To provide appropriate feedback and rectify student mistakes,
accurately understanding student answers is crucial. However, devising a generic
short answer grading system that performs well across different questions and
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domains of study is a challenge due to data distribution variations (differences
in used language, length and depth of answers, use of non-sentential answers,
among other issues).

Various Deep Learning (DL) based techniques have been explored for short
answer grading [2,11,12,17,25]. However, availability of limited labeled data
(reference and student answer pairs) often prohibits meaningful training; fur-
thermore, due to domain discrepancy between the public corpora and short
answer grading corpus, the utilization of the former by augmentation is not effi-
cient. Lately, transfer learning has largely supplanted the use of the older DL
techniques, and have had a substantial impact on the state of Natural Language
Processing (NLP) [16]. The main concept within transfer learning is to apply the
knowledge from one or more source tasks to a target task [18]. Broadly, a target
task can use the knowledge of labeled data from other tasks or from unlabeled
data called self-taught learning [21]. In NLP, word embedding is one of the most
influential transfer models due to its capability of capturing semantic context
of a word by producing vector representations of words from large unlabeled
corpora such as Wikipedia and news articles [13].

As a transition of a robust transfer learning model, Peters et al. introduced
contextualized word representations (called Embeddings from Language Mod-
els or ELMo) [19]. ELMo captured contextual information from word represen-
tations by combining the hidden states of multiple bidirectional LSTMs and
initial embeddings. In 2018, diverse novel fine-tuning language models such as
Universal Language Model Fine-tuning (ULMFiT) [9] and OpenAI′s Genera-
tive Pre-Training (GPT)1 [20] were proposed followed by a robust transfer lan-
guage model called Bidirectional Encoder Representations from Transformers,
or BERT [5]. OpenAI′s GPT and BERT adapted the Transformer architecture
to learn the text representations, a novel and efficient language model architec-
ture based on a self-attention mechanism [27]. However, while OpenAI′s GPT
used an unidirectional attention approach (the decoder in Transformer), BERT
used a bidirectional one (the encoder in Transformer) to better understand the
text context. BERT can be trained in two phases. In the pre-training phase,
deep bidirectional representations inherited by the nature of the Transformer
Encoder can use unlabeled huge corpora. In the fine-tuning phase, task-specific
labeled data and parameter tuning is performed to optimize results for a specific
problem, such as question answering or short answer grading.

In this work, we experiment with fine-tuning a pre-trained BERT language
model and explore the following questions:

• How well do Transformer-based DL approaches (we use BERT as it is the
latest iteration of such models) apply to short answer grading?

• How much does fine-tuning, involving the collection of domain-specific labeled
answers, impact the results obtained?

• What is the amount of training (number of epochs) needed in order to produce
an optimized model using this approach?

• How well does the same fine-tuned Transformer-based model work across
different domains of study for the short answer scoring task?

1 https://blog.openai.com/language-unsupervised/.

https://blog.openai.com/language-unsupervised/
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We begin with an overview of recent approaches in short answer grading, and an
overview of BERT and the BERT model architecture, before presenting details
on our experiments designed to answer these questions.

2 Related Work

Broadly speaking the literature pertaining to the problem of short answer grad-
ing can be categorized into two: (1) earlier approaches that relied heavily on
hand-crafted features, and (2) recent deep learning approaches that require min-
imum, if not none at all, feature engineering.

2.1 Hand-Crafted Features

Mohler and Mihalcea [15] and Mohler et al. [14] are among the earliest research
works towards automatic short answer grading. These approaches relied on vari-
ous word similarity measures, corpus-based measures, and alignment of parses of
reference and student answers. A benchmark in the field was established with the
Student Response Analysis Challenge as part of SemEval-2013 [7]. Participat-
ing approaches relied on a range of hand-crafted features including corpus-based
word similarities, WordNet based word similarities, part-of-speech tags, sentence
parsing, and n-grams; one of the participants also explored domain adaptation.
Broadly, the problem of Student Response Analysis is modeled as a special case
of Textual Entailment or Semantic Textual Similarity. Ramachandran et al. [22]
proposed to extract phrase patterns from reference answers to form basis of scor-
ing approach. The approach improves over earlier approaches in that it explicitly
extracts semantic information at sentence as opposed to earlier word similarity
metrics. Ramachandran and Foltz [23] proposed a short answer grading based
on text summarization.

2.2 Deep Learning Approaches

With the advances in deep learning approaches, various works leveraged these
approaches. Sultan et al. [26] represented a sentence as sum of word embed-
dings [13] of its tokens in conjunction with other features. The approach uses
word embeddings obtained by deep learning on large corpus; however, obtain-
ing feature representations of a sentence as sum of word embeddings ignores
the structural information. Thus, as a logical extension subsequent works have
explored more sophisticated ways to obtain feature representations of answer
sentences. Mueller and Thyagarajan [17] proposed a Long Short-Term Memory
(LSTM) based Siamese network to compare student answer against reference
answer. They observe that one of the major limitations in training LSTM net-
works is the lack of large amount of training data. They generate additional pairs
of answers by replacing words in the original dataset. The extended dataset is
used for training LSTM networks for short answer grading. The data inten-
sive nature of deep learning approaches has emerged as an interesting issue for
research, particularly in data-starved problems such as short answer grading.
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Transfer Learning has evolved into a promising research direction to address
this. It claims that a generic learning of natural language can be obtained from
a data-rich generic task, which can be then transferred to downstream tasks
which may have limited data. Research efforts to learn universal sentence embed-
dings for task-specific transfer have yielded impressive improvements on vari-
ous benchmarks. Notable works include InferSent [4], ELMo [19], ULMFiT [9],
GPT [20], and BERT [5]. Saha et al. [25] explored sentence embedding features
from InferSent in conjunction with traditional token features. In another recent
work, Marvaniya et al. [12] showed that short answer grading based on sen-
tence embedding features can be further improved by leveraging their proposed
scoring rubric approach. The current state of the short answer grading research
has shown that transfer of sentence embeddings is useful, yet non-contextual
approaches encounter their limitations at downstream tasks. In this study, we
aim to demonstrate the ability and various characteristics of BERT (a latest and
robust transfer language model) for short answer grading with limited domain-
specific training data.

3 BERT for Short Answer Grading

The broad premise of BERT [5] is that there is a high-level language model that
needs to be encoded into the network irrespective of the downstream task. The
high-level language model is learned based on two semi-supervised objectives
of (1) Masked Language Model (MLM) for a deep bidirectional representation
and (2) Next Sentence Prediction (NSP) for understanding relationship between
sentences; this training leverages multiple corpora. The resultant model, often
called the pre-trained BERT model, forms the basis for downstream target tasks.
For the task of short answer grading, we perform fine-tuning in the form of
Sentence Pair Classification. This model allows to classify a pair of reference
and student answers into desired categories of correct, incorrect, contradiction,
and so on.

3.1 BERT Model Architecture

As described in Devlin et al. [5], BERT takes a single token sequence from a sin-
gle text sentence for the MLM objective or from a pair of text sentences (adding
[SEP] token between them as a separator) for the NSP objective. The special
classification embedding [CLS] is added in front of each sequence and it is used
as input to the classification-task layer. As shown in Fig. 1, the input repre-
sentations are obtained by combining the token, segment, and learned position
embeddings. The segment embeddings identify which sentence tokens are from
and the position embeddings relative positioning of tokens. This is the input to
the first Transformer Encoder layer and the output of this layer is fed into the
next Transformer layer. BERT may have a stack of multiple Transformer lay-
ers. Each Transformer Encoder is composed of two major parts: a self-attention
layer with multiple attention heads, followed by token-wise feed-forward layers.
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Fig. 1. BERT model architecture for short answer grading. We employed the Sentence
Pair Classification task specific model using BERT. To describe the details of the
model we used the same colors for the same representations as in [5,27].

Each attention head acts akin to a convolution in a convolutional neural network
(ConvNet), except for a weighted average. As part of self-attention mechanism,
BERT computes three vectors from each token (called query, key, and value)
by multiplying three trainable weight matrices (WQ, WK , WV respectively).
The weight matrices emphasize different location values of the input as the role
of kernels in ConvNet and they are adjusted for every head.

qi
j = xjW

Q
i ki

j = xjW
K
i vi

j = xjW
V
i (1)

where, qi
j , ki

j , and vi
j are the query, key, and value vectors (projections) respec-

tively for jth token xj in ith head. Then, with the query and key vectors BERT
calculates attention weights by: (1) the dot product of the query vector of a
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particular token and all the key vectors (ki
1...k

i
n in ith head where n is the num-

ber of tokens), (2) an adjustment of the dot products by 1√
dk

where dk is the
dimension of the key vectors, and (3) a softmax normalization sequentially. The
scaling factor of 1√

dk
helps finely adjust larger vectors to avoid extremely small

gradients from the softmax.
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where awi
jk is kth normalized attention weight for jth token in ith head. The

attention weights capture how much all tokens are related to a particular token in
headi. BERT multiplies each value vector by the corresponding attention weight
and sums up the weighted results. The output vector contains the bi-directional
attention information, the value vectors of related tokens contributing more
than others.
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where zi
j is the output of a self-attention layer for jth token and vi

k is kth value
vector in ith head. There may be multiple zj from multiple attention heads.
To aggregate these results, BERT concatenates all zj vectors, multiplying them
by a weight matrix. The result vector having all attention information along
all heads is summed with the original token representations, followed by layer
normalization [3]. Each of the final vectors (representing a particular token)
discretely goes to the corresponding fully connected feed-forward network. This
full procedure repeats as many as the number of Transformer Encoders and at
the last Transformer Encoder the final output for the [CLS] token is used as
the sequence representation. Up to this point, this is the pre-training model
and BERT can leverage an unlabeled huge corpus of text to construct a high-
level language model. Then, BERT adapts the labeled data for short answer
grading not only for fine tuning the pre-training model but also constructing
a classification model through the feed-forward classification layer on the pre-
training model.

4 Experiments

We evaluated our proposed approach on two datasets:

1. ScientsBank-3way dataset of SemEval-2013 [7]: We used SciEnts-
Bank dataset for the 3-way task in SemEval 2013 challenge. The data con-
sists of questions, reference answers, student answers, and three-way labels
(correct, incorrect, and contradictory or in short co, ic, and cd
respectively) in the science domain. The SemEval 2013 challenge involves
three classification subtasks on three given test sets: unseen answers (UA),
unseen questions (UQ), and unseen domains (UD).
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2. Two psychology domain datasets: The datasets contain a collection
of questions, reference answers, student answers, and three-way labels
(correct, partially-correct, and incorrect or in short co, pc, and
ic respectively). These are based on student answers from two psychology-
related textbooks (one is from behavioral physiology and has a lot of technical
language and the other is from developmental psychology with mostly non-
technical material). Each student response is manually annotated by three
experts. Groundtruth is obtained as majority voting of the three annotations.

As shown in the Table 1, the class distribution of both datasets is highly skewed.
Due to the class imbalance we select a macro-average-F1 method to observe how
our proposed approach preforms overall across the latest other approaches. The
macro-average-F1 computes the F1 score independently for each class and then
takes the average of all F1 scores. Moreover, we report results in terms of accu-
racy and weighted-average-F1, but due to the class-imbalance in the datasets,
these two metrics may provide biased evidences.

Table 1. Details of class distribution and train-test split protocols for SciEntsBank
3-way dataset of SemEval 2013 challenge and our psychology domain 1 and 2 datasets.
The test set of SciEntsBank is divided into three different test sets for the three
subtasks: unseen answers (UA), unseen questions (UQ), and unseen domains (UD).

Dataset Class distribution Train-test split
Training Test

SemEval-2013 [7] 4,459 (co) 5,307 (ic) 1,038 (cd) 4,969 540 (UA)
733 (UQ)
4,562 (UD)

Psychology domain 1 14,460 (co) 3,845 (pc) 1,790 (ic) 16,076 4,019
Psychology domain 2 12,295 (co) 2,495 (pc) 1,090 (ic) 12,704 3,176

4.1 Pre-training Setup

We chose BERTBASE, Uncased2 pre-trained model, which used the concate-
nation of BooksCorpus (800M words) and English Wikipedia (2,500M words)
for pre-training. Uncased means that the text has been converted to lower-case
before tokenization, dropping any accent markers. BERT uses WordPiece embed-
dings [29] using a 30,000 token vocabulary and up to 512 tokens are supported for
the input sequence. The details of the BERTbase model can be found in [5].

4.2 Fine-Tuning Setup

For fine-tuning the pre-trained BERTbase model and a classification layer, we
generated the two datasets in tab-separated values (TSV) files. We changed
the learning rate of Adam optimizer to 2e–5 for SemEval-2013 and 3e–5 for two

2 https://github.com/google-research/bert.

https://github.com/google-research/bert
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psychology domain datasets with the same batch size 32. We have also gradually
reduced the training size up to 20% of the entire set to observe how many labeled
data are required for fine-tuning. We changed the number of epochs from 4 to 12
to observe how many epochs the BERT and classifier are required to complete
fine-tuning. For the fine-tuning process, we used two NVIDIA Tesla P100 GPUs
(Graphics Card RAM 16 GB) and 120-GB memory.

Table 2. Performance on SciEntsBank Dataset of SemEval-2013 [7]. All results of ‡ are
as reported in [25]. MEAD [23], Graph [23] and Marvaniya et al. [12] reported results on
unseen answer protocol only as their approaches are designed for this scenario. Accuracy
(Acc), macro-average-F1 (M-F1), and weighted-average-F1 (W-F1) are reported in
percentage.

Unseen answer Unseen question Unseen domain
Acc M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F1

Baseline [7] 55.6 40.5 52.3 54.0 39.0 52.0 57.7 41.6 55.4

ETS [8] 72.0 64.7 70.8 58.3 39.3 53.7 54.3 33.3 46.1

SOFTCAR [10] 65.9 55.5 64.7 65.2 46.9 63.4 63.7 48.6 62.0

MEAD [23] - 42.9 55.4 -

Graph [23] - 43.8 56.7 -

Sultan et al. [26]‡ 60.4 44.4 57.0 64.3 45.5 61.5 62.7 45.2 60.3

Saha et al. [25] 71.8 66.6 71.4 61.4 49.1 62.8 63.2 47.9 61.2

Marvaniya et al. [12] - 63.6 71.9 -

Proposed BERTBASE 75.9 72.0 75.8 65.3 57.5 64.8 63.8 57.9 63.4

4.3 Results and Analysis

We performed a set of experiments to study various aspects of the proposed
BERTbase model for the problem of short answer grading, including (1) perfor-
mance comparison with published literature and human agreements, (2) suffi-
ciency of fine-tuning in terms of supervised data requirement and the number of
training epochs, (3) applicability of fine-tuned model on different domain, and
(4) ability to jointly fine-tune for multiple domains. Based on the various exper-
iments and their results presented on benchmark SciEntsBank dataset and our
two psychology domain datasets, we make following key observations:

Table 3. Performance comparison of human agreements and the proposed method
on our two psychology (psych.) domain datasets. Accuracy (Acc), macro-average-F1
(M-F1), and weighted-average-F1 (W-F1) are reported in percentage.

Psych. domain 1 Psych. domain 2
Acc M-F1 W-F1 Acc M-F1 W-F1

Majority-vote vs. Human1 86.0 77.4 86.5 91.2 81.8 91.0
Majority-vote vs. Human2 89.4 81.1 89.6 88.9 80.9 89.1
Majority-vote vs. Human3 85.7 78.0 86.0 87.6 79.8 88.4
Proposed BERTBASE 91.8 85.7 91.8 91.0 82.2 91.0
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Effectiveness of Transfer Learning: As shown in Tables 2 and 3, on all the
datasets the fine-tuned model yields impressive results. On SciEntsBank dataset,
we establish state-of-the-art results. Compared to state-of-the-art, Saha et al.
[25], which includes sentence embeddings of InferSent [4] along with token fea-
tures, we report improvements ranging from 6% up to 10% in macro-average-F1.
Note that, unsupervised pre-training of BERT helps to leverage a huge amount
of existing natural language material. This puts the approach at an advantage
over techniques such as InferSent [4] that requires large supervised (and therefore
expensive and limited) corpus for pre-training.

Fig. 2. Macro-average-F1 scores with different size of training sets of two domains,
overlaid human performance. Evaluations are done on a held-out test set of 20%.

On our datasets, we obtain impressive macro-average-F1 of from 80% up to
85%, indicating the robustness of the model’s transferability to the target task
of short answer grading. On our datasets, we report human performance as
a baseline against which the model can be compared. As outlined earlier, each
student response is annotated by three experts. The variability in the annotation
enables us to establish a human performance baseline. Table 3 lists each human
annotation’s comparison against the majority vote (MV) in terms of accuracy
(Acc), macro-averaged-F1 (M-F1), and weighted-average-F1 (W-F1).

Effectiveness for Data-Starved Problems: Task-specific supervised fine-
tuning is possible with small number of samples. On SciEntsBanks dataset, the
training set includes ∼5K samples; which yields results better than task-specific
learning. To further study this property of the model, we design an experiment
to train the model with small portions of training data. Figure 2 shows the per-
formance in terms of macro-average-F1, when the training data is reduced from
80% of the whole set to mere 20%. Evaluation is done on a constant held-out test
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set consisting of 20% samples. Note the decrease in the slope as the training set
expands, suggesting diminishing returns as training data is added. The increase
in M-F1 is about 10% as the training set increases from 20% to 80%. For data-
starved problems, a rather generous trade-off can be made to obtain a reasonably
good performance with limited task-specific fine-tuning data. Interestingly, the
M-F1 with 40% training data is in same range as human performance (shown in
Table 3).

Effectiveness of Training Epoch on Fine-Tuning: We also performed
experiments for fine-tuning BERT with varying number of epochs. We observed
that fine-tuning for 4 and 12 epochs does not yield significantly different results
on macro-average-F1 (85.7 and 85.4 on domain 1, 82.2 and 83.7 on domain 2
respectively), indicating that task-specific transfer takes place within initial few
epochs only.

Table 4. Cross- and joint- domain fine-tuning. Accuracy (Acc), macro-average-F1 (M-
F1), and weighted-average-F1 (W-F1) are reported in percentage.

Training set Test set
Psych. domain 1 Psych. domain 2
Acc M-F1 W-F1 Acc M-F1 W-F1

40% of Psych. domain 1 88.0 79.7 88.1 76.4 51.1 75.5
40% of Psych. domain 2 72.4 48.2 70.0 90.1 79.1 90.0
40% each of domain 1 & 2 86.7 79.1 87.5 88.9 77.0 88.7

Effectiveness in Cross- and Joint- Domain Fine-Tuning: We further eval-
uated the fine-tuned model’s ability to generalize to unseen domains. Table 4
reports the performance of fine-tuned models on both domains. It shows that
the model fine-tuned using domain 1 yields very poor results on domain 2, and
vice versa. This suggests that domain specific supervised data is indeed required
for efficient fine-tuning. As a follow-up, we fine-tuned a model using a combined
set of both domain data; which yields results relatively similar to domain specific
tuning. It provides evidence that the model can be jointly fine-tuned for both
models.

5 Conclusion

This paper conclusively demonstrates that Transformer-based pre-trained mod-
els push the state-of-the-art in short answer grading to a level that may be
approaching the ceiling of what is possible. In comparison with human scorers,
the model learns the “wisdom of the crowd”, surpassing the performance of any
individual human scorer on our datasets. The amount of fine-tuning needed is
reasonable; even with just a few thousand labeled samples, we are able to get
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superior results. We also show that while applying a model fine-tuned on data
associated with one domain cannot directly apply to grading other domains, it
is possible to create a single model fine-tuned using data from multiple domains
that works for each of them. Going forward, we expect to investigate whether
adding an additional domain-specific text corpus to a pre-trained model improves
the ability to process language for that domain. We will continue to experiment
with ways to minimize the amount of fine-tuning (e.g., through characterization
of what types of labeled samples yield the highest marginal improvement during
fine-tuning, thus allowing for more efficient data collection for automated grad-
ing). Finally, work on model management, reuse of models, and devising efficient
methods to add new labeled samples to existing fine-tuned methods will be of
interest so that a model adapts over time.

Acknowledgements. We would like to thank Yoonsuck Choe (Texas A&M Univer-
sity) for helpful comments on an earlier version of this paper.
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Abstract. Computerized adaptive testing (CAT) presents a tradeoff
problem between increasing measurement accuracy and decreasing item
exposure in an item pool. To address this difficulty, we propose a new
CAT that partitions an item pool to numerous uniform item groups using
a maximum clique algorithm and then selects the optimum item with
the highest Fischer information from a uniform item group. Numerical
experiments underscore the effectiveness of the proposed method.
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1 Introduction

Computerized Adaptive Testing (CAT) selects and presents the optimal item that
maximizes the test information (Fisher information measure) at the current esti-
mated ability based on item response theory (IRT) from an item pool. After each
response, the examinee’s ability estimate is updated. Then the subsequent item is
selected to have optimal properties at the new estimate. Adaptive item selection
to each examinee can reduce the number of examined items so as not to decrease
the test accuracy in comparison with the same fixed test. However, in conven-
tional CATs, the same items tend to be presented to examinees who have simi-
lar ability. This property causes bias of the item exposure frequency in an item
pool. Earlier studies [1] demonstrated that frequently exposed items deteriorate
rapidly. To resolve this difficulty, Kingsbury and Zara (1989) proposed partition-
ing of an item pool into several groups of items and then selected the optimal
item that maximizes Fisher information from the group minimizing item exposure
[1]. Furthermore, van der Linden and et al. (1998,2004,2016) proposed a shadow-
test approach that maximizes Fisher information under several constraints (e.g.,
test area and item exposure frequency) using integer programming [2–4]. Earlier
methods mitigated the bias of item exposure frequency from an item pool. How-
ever, they encountered the difficulty that increases bias of measurement accuracy
for examinees. In addition, this problem necessarily engenders a bias of exam-
inees’ required test lengths in CAT. Thus, a tradeoff exists between decreasing
c© Springer Nature Switzerland AG 2019
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item exposure and increasing measurement accuracy. Nevertheless, earlier meth-
ods do not address the tradeoff. To resolve that shortcoming, we propose a new
framework that can control the balance between item exposure and measurement
accuracy. More specifically, we use a state-of-the-art uniform test assembly tech-
nique to divide an item pool into several equivalent groups of items and thereby
adjust the degree of item exposure. Regarding the uniform test forms, each form
consists of a different set of items, but the forms have equivalent measurement
accuracy(i.e., equivalent test information based on item response theory). Recent
studies explored several techniques using AI technologies to generate numerous
uniform test forms from an item pool [5–9]. Especially, among all methods, uni-
form test assembly using the maximum clique algorithm is known to generate the
greatest number of uniform test forms [6–9]. This method formalized the uniform
test assembly with overlapping items conditions as a maximum clique problem
(MCP), where overlapping items represent common items among multiple test
forms. Here it is noteworthy that the determined number of overlapping items
increases the item exposure frequency. Determination of the number of overlap-
ping items for the MCP method can therefore control the degree of item exposure.

The MCP has never been utilized for CATs. Therefore, this study proposes
a new CAT method which reduces the degree of item exposure using the MCP.
The proposed method partitions an item pool into numerous uniform item groups
using the MCP method. Then, from a uniform item group, we select the opti-
mum item with the highest Fischer information, which reflects the measurement
accuracy.

Salient benefits of using the method are the following.

1. The proposed method solves the tradeoff between item exposure and the
measurement accuracy (test length).

2. The proposed method decreases the bias of measurement accuracy (test
length) for examinees, that’s a uniform adaptive testing.

Experiments were conducted to compare the performances of the proposed
method with conventional methods. The results show that the proposed method
dynamically improves the measurement accuracy (reduces test length) with-
out largely increasing item exposure. A particularly surprising finding is that
increasing the item size of the uniform item group does not necessarily improve
the measurement accuracy. Rather, an optimum item size exists for accuracy.
This is the main reason why the proposed partition improves the measurement
accuracy (reduces test length) without greatly increasing item exposure.

2 Computerized Adaptive Testing Based on Item
Response Theory

2.1 Item Response Theory

In CAT, an examinee’s ability parameter is estimated based on Item Response
Theory (IRT) [10] to select the optimum item with the highest information.
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In the two-parameter logistic model (2PLM), the most popular IRT model, the
probability of a correct answer to item i by examinee j with ability θ ∈ (−∞,∞)
is assumed as

p(ui = 1|θ) =
1

1 + exp[−1.7ai(θ − bi)]
. (1)

Therein, ui is 1 when an examinee answers item i correctly, and 0 otherwise.
Furthermore, ai ∈ [0,∞) and bi ∈ (∞,∞) respectively denote the discrimination
parameter of item i and the difficulty parameter of item i.

2.2 Fisher Information

The asymptotic variance of estimated ability based on the item response theory
is known to approach the inverse of Fisher information [10]. Accordingly, item
response theory usually employs Fisher information as an index representing the
accuracy. In 2PLM, the Fisher information is defined when item i provides an
examinee’s ability θ using the following equations.

Ii(θ) =
[p′(ui = 1|θ)]2

p(ui = 1|θ)[1 − p(ui = 1|θ)] (2)

where
p′(ui = 1|θ) =

∂

∂θ
p(ui = 1|θ).

Results imply that the examinee’s ability can be discriminated using an item
with high Fisher information Ii(θ). Accordingly, that ability estimation can be
expected to be implemented by selecting items with the highest amount of Fisher
information given an examinee’s ability estimate θ̂.

The test information function IT (θ) of a test form T is defined as IT (θ) =
∑

i∈T Ii(θ). The asymptotic error of ability estimate θ̂: SE(θ̂) can be obtained
as the inverse of square root of the test information function at a given ability
estimate θ̂ as SET (θ) = 1√

IT (θ)
.

2.3 Computerized Adaptive Testing

In conventional CAT, adaptive items are selected from an item pool using the
following procedures.

1. An examinee’s ability is initialized to θ̂ = 0.
2. An item maximizing Fisher information for given ability is selected from the

item pool. It is presented to the examinee.
3. The examinee’s ability estimate is updated from the correct/wrong response

data to the item.
4. Procedures 2 and 3 are repeated until the update difference of the examinee’s

ability estimate decreases to a constant value ε or less.

Consequently, CAT can reduce the number of items examined so that it does
not reduce the test accuracy in comparison to that of the same fixed test.
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2.4 Constrained CAT with Item Exposure Control

In CAT, it is highly likely that the same set of items will be presented to exam-
inees exhibiting similar abilities. Therefore, conventional CAT cannot be used
practically in situations where the same examinee can take a test multiple times.
Furthermore, because the ability variable follows the standard normal distribu-
tion, items with higher information around θ = 0 tend to be exposed frequently.
Therefore, bias of item exposure frequency occurs in an item pool. An earlier
report [1] described that frequently exposed items tend to deteriorate rapidly.

To resolve this difficulty, Kingsbury and Zara (1989) proposed the partition-
ing of an item pool into several groups of items and then selected the optimal
item maximizing Fisher information from the group minimizing item exposure
[1,2,4]. The item-pool partitioning procedure is the following.

1. An item pool is partitioned into several groups of items.
2. The estimated ability of an examinee is initialized to θ̂ = 0.
3. The group minimizing the number of exposure items is selected from an item

pool.
4. The item maximizing Fischer information is selected from the group and is

presented to the examinee.
5 After each response, the examinee’s ability estimate is updated.
6. Procedures 2, 3, and 4 are repeated until the update difference of the esti-

mated ability decreases to ε or less. ε is set to 0.01, which is used convention-
ally for actual computerized adaptive testing.

The number of groups was ascertained by comparing the respective performances
of several numbers of groups.

Actually, van der Linden and et al. (1998, 2004, 2016) proposed a shadow-
test approach that maximizes Fisher information under several constraints (e.g.,
test area and item exposure frequency) using integer programming [2–4]. The
procedure used for constrained computerized adaptive testing is the following.

1. The estimated ability of an examinee is initialized to θ̂ = 0.
2. The item set (shadow test with I items) maximizing Fischer information is

then assembled using the integer programming shown below.

maximize
I∑

i=1

Ii(θ)xi (3)

subject to
I∑

i=1

xi = n; (test length),

xi = 1 if item i is included in the shadow test, xi = 0 otherwise.
If the exposure count of item i is greater than R, then xi = 0,

where R text is the upper bound of the exposure count by the user.
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3. The item maximizing Fischer information is selected from the shadow test
and is presented to an examinee.

4. After each response, the examinee’s ability estimate is updated.
5. Procedures 2, 3, and 4 are repeated until the update difference of the esti-

mated ability decreases to ε = 0.01 or less.

Earlier methods mitigated the bias of item exposure frequency in an item pool.
However, they led to the important difficulty of increased bias of measurement
accuracies (errors) for examinees. Furthermore, this difficulty necessarily engen-
ders a bias of examinees’ required test lengths in CAT. In fact, a tradeoff exists
between minimizing item exposure and maximizing the measurement accuracy
(test information). Nevertheless, earlier methods do not adjust the tradeoff. For
that reason, we propose a new CAT framework that can control the tradeoff.

3 Uniform Adaptive Testing Using Maximum Clique
Algorithm

The proposed method partitions an item pool to numerous equivalent groups
of items to adjust the degree of item exposure using the MCP method. The
method then selects the optimum item with the highest Fischer information
from a uniform partition of the item pool.

3.1 Uniform Partitioning of the Item Pool

To maximize the number of uniform tests with an overlap condition, Ishii et al.
proposed the maximum clique problem for uniform test assembly [7]. The clique
problem is a combinational optimization problem in graph theory. We apply this
method to uniform partitioning of the item pool as described below.

Letting V be a finite set of vertexes, and letting E be a set of edges, the
graph is represented as a pair G = {V,E}. The maximum clique problem seeks
the clique which has the maximum number of vertexes in the given graph. Letting
G = {V,E} be a finite graph, and letting C ⊆ V be a clique, then the maximum
clique problem is formally defined as shown below:

maximize |C|
subject to

∀v,∀w ∈ C, {v, w} ∈ E
(clique constraint).

(4)

Here, uniform partitioning of item pool has the following specifications:

1. Any item group in the uniform partition satisfies all partition constraints.
2. Any two item groups in a uniform partition comprise a different set of items

(i.e., any two groups have fewer overlapping items than the number allowed
in the overlapping constraint).
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Accordingly, uniform partitioning of the item pool can be described as the max-
imum clique extraction from a graph:

V =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s : s ∈ S,Feasible item-group s
satisfies all constraints
excepting the overlapping
constraint from a given
item pool

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

E =

⎧
⎨

⎩

{s′, s′′} : The pair of s′ and s′′

satisfies the
overlapping constraint

⎫
⎬

⎭
.

The test constraints include a constraint for the number of items, and the test
information of the item group. Letting Lθk

be a lower bound, and letting Uθk

be an upper bound for test information related to IT (θk), then a constraint for
test information function is written as the following equation.

Lθk
≤ IT (θk) ≤ Uθk

(5)

Letting OC be the allowed number in the overlapping constraint and letting
both s and s′ be item groups, then the overlapping constraint is defined as the
following equation:

∀s,∀s′ ∈ V, (6)
|s ∩ s′| ≤ OC (7)

This maximum clique problem seeks the maximum set of feasible item groups
in which any two groups satisfy the overlapping constraint. Therefore, this opti-
mization problem theoretically maximizes the number of equivalent item groups.
We apply the approximated MCP algorithm [9], which is a state-of-the-art algo-
rithm, to obtain numerous uniform item groups.

3.2 Adaptive Item Selection from an Item Group

Using the obtained item groups, the proposed method selects and presents the
optimal items to an examinee as explained below.

1. An arbitrary uniform item group is selected from a set of unused groups.
2. The optimal item maximizing Fischer information is selected from the group

and presented to an examinee in Procedure 1.
3. The examinee’s ability estimate is updated from his/her response.
4. Procedures 2 and 3 are repeated until the update difference of the estimated

ability of the examinee reaches a constant value of ε = 0.01 or less.

If a set of unused groups is empty in Procedure 1, then the algorithm resets it
as a universal set of uniform item groups.
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4 Numerical Evaluation

This section presents a comparison of the performance of the proposed method
(designated as Proposal) to those of other computerized adaptive testing meth-
ods (conventional adaptive testing in 2.3 (designated as CAT), Kingsbury and
Zara (1989) CAT in 2.4 (designated as KZ), and van der Linden’s IP based CAT
in 2.4 (designated as IP). For the proposed method and KZ, we construct item
groups with 50 items (We write Proposal(50) and KZ(50)) and item groups with
100 items (We write Proposal(100) and KZ(100)) to investigate the effects of
item sizes for the measurement accuracy and item exposure. Furthermore, we
use two numbers of overlapping items for the proposed methods OC = 0 and
OC = 10 to investigate the effects of OC for the measurement accuracy and
item exposure. Additionally, we conduct experiments with R = 50, 80, 90, 100,
and 150 as the upper bound exposure counts of IP. Also, Lθk

and Uθk
of the pro-

posed method are determined as described in an earlier report [7]. We conducted
the following two experiments using simulation data and actual data.

4.1 Simulation Experiment

We conducted a simulation experiment as described hereinafter.

1. Item pools with 500 and 1000 items are generated. The true parameters of
each item are generated from ai ∼ U(0, 1) and bi ∼ N(0, 1).

2. The true abilities of examinees are sampled from θ ∼ N(0, 1).
3. Each adaptive testing method is conducted using each item pool. The exam-

inees’ response data are generated from p(ui | θ̂). Correct response data are
generated if p(ui | θ̂) > 0.5. Incorrect response data are generated otherwise.
The convergence (Stopping) criterion is ε = 0.01, which is used conventionally
for actual computerized adaptive testing [14].

4. Procedures 2–3 are repeated 1000 times.

Table 1 presents the results. In Table 1, “overlapping items” represents the num-
ber of overlaps, “No. Item groups” denotes the number of generated (uniform
for the proposal) item groups, “Avg. test length” stands for the average test
length which reflects the measurement accuracy of the test (the standard error
of test lengths in parenthesis), and “S.D. estimates error” expresses the standard
deviation of asymptotic errors of estimates θ̂. When the value of “S.D. estimates
error” approaches to zero, the tests presented to the different examinees by the
CAT have the same estimation accuracy.

Also, “Max. No. exposure item” shows the maximum number of exposure
items. “Avg. exposure item” expresses the average exposure count of an item
(the standard error of numbers of exposure items in parenthesis). For IP results,
Table 1 shows only those results of R with the best accuracy (the smallest value
of “Avg. test length”) because of limitations of space. Consequently, R = 150
for 500 item pool size and R = 80 for 1000 item pool were selected.

Results obtained for “No. item groups” demonstrate that the proposed
method generated numerous uniform item groups. “Avg. test length”, which
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Table 1. Results using simulated data

Item

pool

size

Methods Over

lapping

items

No.

item-

groups

Avg. test

length

S.D.

estimates

error

Max.No.

exposure

item

Avg. exposure

item

500 AT - - 65.1 (7.29) 0.022 1000 130.1 (223.5)

IP - - 73.2 (16.07) 0.588 150 146.4 (19.4)

KZ(50) 0 10 57.6 (9.40) 0.031 649 115.2 (182.5)

KZ(100) 0 5 62.2 (8.51) 0.029 751 124.4 (206.8)

Proposal(50) 0 5 33.9 (7.82) 0.03 200 67.9 (84.7)

10 136 34.3 (8.28) 0.032 227 68.6 (40.1)

Proposal(100) 0 3 39.5 (7.35) 0.047 334 79.1 (123.1)

10 99983 40.2 (6.86) 0.017 326 80.3 (78.5)

1000 AT - - 70.4 (7.11) 0.022 1000 70.4 (158.1)

IP - - 79.5 (26.93) 0.48 80 79.5 (6.2)

KZ(50) 0 20 62.4 (9.94) 0.034 450 62.4 (112.5)

KZ(100) 0 10 66.1 (9.28) 0.031 593 66.1 (133.4)

Proposal(50) 0 9 31.9 (7.13) 0.038 112 31.9 (46.3)

10 8758 35.1 (8.19) 0.025 154 35.1 (21.8)

Proposal(100) 0 4 39.4 (9.44) 0.063 200 39.4 (70.5)

10 100000 42.5 (8.05) 0.015 227 42.9 (41.9)

Table 2. Result using actual data

Item

pool

size

Methods Over

lapping

items

No.

item-

groups

Avg. test

length

S.D.

estimates

error

Max.No.

exposure

item

Avg. exposure

item

978 AT - - 65.5 (10.72) 0.016 1000 67 (163.2)

IP - - 87.9 (18.22) 0.323 90 89.9 (1.2)

KZ(50) 0 20 63.5 (12.30) 0.042 382 45.1 (88.3)

KZ(100) 0 10 61.7 (13.11) 0.044 556 44.66 (108.6)

Proposal(50) 0 7 41.2 (4.51) 0.043 143 42.1 (60.9)

10 8669 40.7 (4.70) 0.043 136 41.6 (19.3)

Proposal(100) 0 2 54.8 (8.84) 0.033 500 56 (139.3)

10 7088 54.3 (7.67) 0.031 179 55.5 (42.6)

reflects the measurement accuracy of the corresponding CAT, is one of the most
important indexes in this study because reducing the number of examined items
so as not to increase item exposure solves the tradeoff between item exposure
and the measurement accuracy. The results of “Avg. test length,” which reflects
the measurement accuracy of CAT, surprisingly show that the proposed method
provides the best performance among all the CATs, although the item alter-
natives were constrained using the uniform item groups. Presenting items with
extremely high information at the early stage of CAT is known to adversely cause
the local solution for ability estimation and to interrupt the convergence to the
true estimate because the estimate at the early stage is often far from the true
one [2]. The proposed method has a uniform distribution of item characteristics
over the whole ability area. It constrains the number of items with the uniform
conditions so as not to select items with extremely high information for a specific
ability area. This property shortens the test length. It is noteworthy that it mit-
igates item exposure because the proposed method presents less non-informative
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items to examinees. Additionally, it is notable that it yields the smallest stan-
dard deviation of test length. Therefore, the proposed method decreases the bias
of measurement accuracy for examinees. No significant differences were found in
the values of “S.D. estimates error” among the methods because all methods
employ the same convergence criterion ε = 0.01. Although the proposed method
did not provide the lowest values of “Max. No. exposure item,” the best values
of IP result from the constraint of the upper bound R. The proposed method
shows the lowest values of “Avg. exposure items” among all methods. Comparing
the performances of the uniform item group sizes 50 and 100 for the proposed
method and KZ, the performances with item size 50 are better than those with
item size 100. The reason is that even the uniform item group is affected by
the local solution problems when the item size is large. This result emphasizes
that partitioning an item pool is effective for CAT. This result also suggests that
there might be an optimal size of the uniform item group. In addition, comparing
the performances of overlapping item sizes OC = 0 and OC = 10 for the proposed
method, the number of generated uniform item groups with OC = 50 is much
larger than that with OC = 0. However, contrary to expectations, performances
with OC= 0 outperform those with OC = 10 for all criteria except for “No. item
groups.” The uniform item groups generated with OC = 0 have higher quality
for uniform measurement accuracy and item exposure than those with OC = 10,
although CAT must repeatedly use the same uniform item groups with OC = 0.
Therefore, a tradeoff must exist between the quality of uniform item groups and
the number of generated uniform item groups. Moreover, as the item pool size
increases, the performances of CATs do not necessarily increase. In fact, the
proposed method increases the performances as the item pool size increases only
when the item group size is 50 because the item-groups can gather high qual-
ity items when the item size is large. From these results, it is recommended to
develop a large size item pool and then assemble uniform item-groups with an
optimum item size.

Conventional CAT shows the lowest values of “Avg. test length” and “S.D.
estimates error” among all CATs because it repeatedly selects and presents the
same items to different examinees. In addition, the values of “Max. No exposure
items” and “Max. No. exposure item” of Conventional CAT have the worst
results among all methods. Particularly “Max. No exposure items” demonstrates
that conventional CAT presented the same item to all examinees.

Although IP decreased the values of “Max. No. exposure item” because of the
upper bound R, it did not provide good performance for other criteria. However,
a naive method, KZ, provided better performance than IP did, except for “Max.
No. exposure item.” The reason is that partitioning the item pool to several
groups is highly effective for the same reason as that for the proposed method,
although it uses naive random sampling.

The results demonstrate that partitioning an item pool to several groups
with an appropriate number of items is highly effective for CAT.
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4.2 Experiment Conducted Using Actual Data

This section presents evaluation of the effectiveness of the proposed method using
actual data. An experiment was conducted using the item pool of real data, with
978 items, and a test constraint used in the synthetic personality inventory (SPI)
examination (actual CAT style), which is a popular aptitude test in Japan [15].

Table 2 presents the results. For IP results, Table 2 presents only the results
of R = 90 with the best accuracy (the smallest value of “Avg. test length”)
because of space limitations. The table shows almost identical results to those
of the simulation experiment. Namely, the proposed method provides the best
performances among all the methods. The generated uniform item groups with
OC = 10 are much more numerous than those with OC = 0. In this case, per-
formances with OC = 10 slightly outperform those with OC = 0 for all criteria.
As described in Sect. 4.1, a tradeoff must exist between the quality of uniform
item groups and the number of generated uniform item groups. In this experi-
ment, the proposed method provides the best performance for item size of 50 and
OC = 10.

5 Conclusions

This paper has demonstrated that CAT has a tradeoff problem between increas-
ing measurement accuracy and decreasing item exposure in an item pool. To
address this difficulty, we proposed a new CAT that partitions an item pool
to numerous uniform item groups using a uniform test assembly based on the
maximum clique algorithm. Then we select the optimum item with the highest
Fischer information from a uniform item group.

Experiments were conducted to compare the performance of the proposed
method with those of conventional methods. Results show that the proposed
method dynamically improves the measurement accuracy (reduces test length)
without greatly increasing item exposure. Contrary to our expectations, the
results did not show that the proposed method using numerous uniform item
groups necessarily outperforms that using a few groups. Results suggest that
a tradeoff for the proposed method must exist between the quality of uniform
item groups and the number of generated uniform item groups. We expect to
investigate the means of solving this tradeoff problem as a subject of future work.

For this study, we used Fischer information measure as an item selection
criterion. Although the Fischer information measure becomes accurate for late
stage of CAT because it is an asymptotic approximation, recent studies have
proposed more accurate information measures and the item selection algorithms
[16–18]. We expect to apply the proposed uniform partition of item pool tech-
nique to the information measure and its applications [19,20] in future studies.
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Abstract. Essay-writing tests are widely used in various assessment
contexts to measure higher-order abilities of learners. However, a persis-
tent difficulty is that ability measurement accuracy strongly depends on
rater characteristics. To resolve this problem, many item response theory
(IRT) models have been proposed that can estimate learners’ abilities in
consideration of rater effects. One remaining difficulty, however, is that
measurement accuracy is reduced when few raters are assigned to each
essay, a common situation in practical testing contexts. To address this
problem, we propose a new rater-effect IRT model integrating a super-
vised topic model that can estimate abilities from raters’ scores and the
textual content of written essays. By reflecting textual content features
in IRT-based ability estimates, the model can improve ability measure-
ment accuracy when there are few raters for each essay. Furthermore,
learners’ abilities can be estimated using essay textual content alone,
without ratings, when model parameters are known. Finally, scores for
unrated essays can be estimated from textual content, so the model can
be used for automated essay scoring. We evaluate the effectiveness of the
proposed model through experiments using actual data.

Keywords: Item response theory · Latent Dirichlet allocation ·
Supervised topic model · Essay writing · Automated essay scoring

1 Introduction

The need to measure practical and higher-order abilities such as logical thinking,
critical reasoning, and creative-thinking skills has recently increased in various
assessment contexts, and essay-writing tests have attracted much attention as a
way to measure such abilities [1,7,26,36,39]. Essay-writing tests evaluate learn-
ers’ abilities from ratings given by multiple raters to essays of learners for some
essay tasks. However, one difficulty is that ability measurement accuracy strongly
depends on rater and task characteristics such as rater severity and task diffi-
culty [7,13,14,23,31,46]. To address this difficulty, many item response theory
(IRT) models that incorporate rater and task characteristic parameters have
been proposed (e.g., [14,47]). These models can estimate learner abilities while
c© Springer Nature Switzerland AG 2019
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considering the effects of those characteristics. They can thereby provide more
accurate ability measurement than either mean or total scores can provide [46].

One remaining difficulty, however, is that ability measurement accuracy falls
when few raters are assigned to each essay, reducing the rating data for each
learner (e.g., [43,45]). This situation is commonly encountered in practical essay-
writing test situations because of the need for lower rater burdens and scoring
costs [14,15].

To address this difficulty, we propose a new IRT model that can estimate
learners’ abilities using both rating data and the textual content of written
essays. The proposed model is an IRT model with rater and task parameters that
integrates latent Dirichlet allocation (LDA) [9], a representative topic model.
Specifically, the model represents the relation between the ability estimate in
IRT and the topic distribution of each essay, which is estimated from LDA,
as a normal regression model. This formulation is inspired by supervised topic
modeling [8], a state-of-the-art method for predicting response variables related
to each text from topic information. The proposed model provides the following
benefits:

1. By reflecting textual content features in IRT-based ability estimates, the
model can improve ability measurement accuracy when there are few raters
for each essay.

2. Learners’ abilities can be estimated using essay textual content alone, without
ratings, when model parameters are known.

3. Scores for unrated essays can be estimated from textual content, so the model
can be used for automated essay scoring (AES).

This study demonstrates the effectiveness of the proposed model through exper-
iments using actual data.

AES methods using machine learning, such as topic models or deep neural
networks, have recently attracted attention in AI fields as another approach to
reduce the burden of essay grading [2,3,10,16,20,41]. The accuracy of such
methods is limited, however. Therefore, grading by raters is still required in
medium-stakes and high-stakes assessments. As we describe below, our proposed
model reduces grading burden while maintaining the accuracy of ability mea-
surements. The proposed model is also unique as an AES method in that it
can estimate essay scores with explicit consideration of the characteristics of
raters and tasks. Furthermore, the proposed approach is expected to be useful
to develop adaptive intelligent learning environments based on IRT because such
environments are often adversely affected by data sparsity.

2 Data

This study assumes that rating data U obtained from an essay-writing test
consist of a score k ∈ K = {1, · · · ,K} assigned by rater r ∈ R = {1, · · · , R}
to an essay of learner j ∈ J = {1, · · · , J} for essay task i ∈ I = {1, · · · , I}.
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Consequently, letting eij be the essay of learner j for task i, and letting Uijr be
the score assigned by rater r to eij , data U are defined as

U = {Uijr ∈ K ∪ {−1} | i ∈ I, j ∈ J , r ∈ R}, (1)

with Uijr = −1 denoting missing data. Although essay grading is not necessarily
categorical, we use categorical grading because it is generally used in medium-
stakes and high-stakes assessments.

Moreover, letting V = {1, · · · , V } be a vocabulary list for essay collection
E = {eij | i ∈ I, j ∈ J }, each essay eij ∈ E is definable as a list of vocabulary
words as

Wij = {Wijn ∈ V | n = {1, · · · , Nij}}, (2)

where Wijn is the n-th word in essay eij , and Nij is the number of words in
essay eij .

This study was designed to measure learner ability accurately from rating
data U and essays E. We use IRT and a topic model for that purpose.

3 Item Response Theory

IRT [27] is a test theory based on mathematical models. IRT represents the
probability of a learner response to a test item as a function of latent learner
ability and item characteristics such as difficulty and discrimination. IRT is
widely used for educational testing because it offers many benefits such as: (1)
It can measure the abilities of learners responding to different test items on the
same scale. (2) It can also estimate learners’ abilities while minimizing the effects
of heterogeneous or aberrant items with low estimation accuracy.

Many IRT models are applicable to ordered categorical data [4,29,30,38] such
as the essay-rating data used in this study. Those IRT models are applicable
to two-way (learner × test item) data, but they are not directly applicable to
rating data, which are usually given as three-way (learner × rater × task) data,
as defined in Sect. 2. IRT models that incorporate rater parameters have been
proposed to resolve this difficulty [32,33,42,46,47]. Note that those models treat
item parameters in traditional IRT models as task parameters.

For those models, this study uses a model proposed in Ref. [48], which is
expected to provide the most robust ability measurement when a large variety
of rater characteristics is assumed to exist. The model defines the probability
that rater r assigns score k to essay eij as

Pijrk =
exp

∑k
m=1 [αrαi(θj − βi − βr − drm)]

∑K
l=1 exp

∑l
m=1 [αrαi(θj − βi − βr − drm)]

, (3)

where θj is the latent ability of learner j, αi is a discrimination parameter for
essay task i, βi is the difficulty of task i, αr is the consistency of rater r, βr

is the severity of rater r, and drk is the severity of rater r within category k.
For model identification, we assume

∑I
i=1 log αi = 0,

∑I
i=1 βi = 0, dr1 = 0, and

∑K
k=2 drk = 0. These parameters can be estimated from rating data U .
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As described in the Introduction, these IRT models provide higher ability
measurement accuracy than do mean or total scores, because they can estimate
learners’ ability while considering various rater effects [46–48]. However, ability
measurement accuracy is reduced when few raters are assigned to each essay,
reducing rating data for each learner. To address this problem, we propose a
method for measuring learners’ ability θj that uses both rating data and textual
information from written essays. This method uses a topic model to process the
essay text.

4 Topic Model

Topic models estimate latent topics in a document from word occurrence fre-
quencies, based on the assumption that certain words will appear depending
on potential topics in the text. Example topic models include latent seman-
tic analysis (LSA) [11], probabilistic latent semantic indexing (PLSI) [21], and
latent Dirichlet allocation (LDA) [9]. We chose LDA for this study for its higher
accuracy in estimating topics.

LDA introduces a latent variable that represents topic allocation for each
word in each document. Specifically, Zijn ∈ T = {1, · · · , T} (where T is the
number of topics) denotes the topic allocation for word Wijn in essay eij . Letting
ψij = {ψij1, · · · ,ψijT } be parameters of a multinomial distribution over the T
topics for eij (where ψijt ∈ ψij is the occurrence probability of the t-th topic
in essay eij), and letting φt = {φt1, · · · , φtV } be parameters of a multinomial
distribution over V vocabulary words for each topic t (where φtv ∈ φt represents
the probability of the v-th vocabulary word in the t-th topic), then LDA models
a generative process for each word Wijn and corresponding topic Zijn as

Zijn ∼ Multi(ψij), Wijn ∼ Multi(φzijn), (4)

where Multi(·) represents a multinomial distribution with the given parameters.
The topic distribution Multi(ψij) shows topics that tend to be generated in each
essay, and word distribution Multi(φt) shows how vocabulary words are used
within each topic.

LDA assumes a Dirichlet prior distribution for each ψij and φt. Letting γ
and η be parameters of the Dirichlet prior distribution for ψij and φt, their
generative processes in LDA are

ψij ∼ Dir(γ), φt ∼ Dir(η), (5)

where Dir(·) denotes the Dirichlet distribution with a given hyperparameter.
LDA parameters can be estimated using a collapsed Gibbs sampler [19] from

a bag-of-words representation of the text data E.
Topic distribution parameters ψij are regarded as representing an underlying

semantic theme in each essay eij using a T -dimensional vector [8,22,50]. Since
the topic information provides useful statistics for text collection, topic models
have become a standard tool in machine learning, with many applications that
transcend their original purpose of modeling textual data [12,22,25,28,44].
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Texts are frequently associated with other variables, such as labels, tags,
or ratings. Supervised topic models have attracted attention as a method for
predicting such extra information using the topic information for texts, and the
model proposed in this study was inspired by the supervised topic modeling app-
roach. The next section introduces supervised LDA (sLDA) [8], a representative
supervised topic model.

5 Supervised Topic Model

Assume a given response variable yij ∈ R associated with each essay eij . In this
case, sLDA models the relation between yij and the topic information corre-
sponding with essay eij as a regression model. When a normal linear model is
used as the regression model, sLDA defines the generative process of yij as

yij ∼ N(ωTZ̄ij , σ
2
0), (6)

where N(μ, σ2) represents a normal distribution with mean μ and standard devi-
ation σ, ω = {ω1, · · · , ωT } denotes topic weighting parameters for the response
variable, and σ2

0 is a hyperparameter representing variance of the response vari-
able. Letting Z̄ij = {Z̄ij1, · · · , Z̄ijT }, Z̄ijt ∈ Z̄ij is defined as

Z̄ijt =
∑Nij

n=1 δ(Zijn, t)
Nij

, (7)

where δ(a, b) is a function returning 1 if a = b and 0 otherwise.
Supervised topic models including sLDA allow prediction of a response vari-

able based on semantic themes in each text. They have thus achieved higher
prediction accuracy than simple regression models that make direct predictions
from word-frequency data [8,22,24,50], and thus have been applied with high
performance to such prediction tasks (e.g., [18,24,25,35,49]). This study employs
this approach to reflect essay topic information on ability measurements by the
IRT model.

6 Proposed Model

The proposed model reflects essay topic information on ability measurement θj
in the IRT model defined as Eq. (3), giving the ability distribution as

θj ∼ N(ωTZ̄j , σ
2
0), (8)

where ω = {ω1, · · · , ωT } denotes topic weighting parameters for the ability
estimates and Z̄j = {Z̄j1, · · · , Z̄jT }. Here, Z̄jt ∈ Z̄j is defined as

Z̄jt =
∑I

i=1

∑Nij

n=1 δ(Zijn, t)
∑I

i=1 Nij

. (9)
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We assume that each learner writes multiple essays for multiple tasks and that
the response variable is one ability value for each learner. Therefore, unlike sLDA
as presented above, the proposed model defines Z̄jt by summing the topic infor-
mation of multiple essays. We furthermore use σ2

0 = 1.0 in Eq. (8), because IRT
generally uses a standard normal distribution as the ability distribution.

The proposed model is expected to provide higher accuracy in ability mea-
surements than is possible from traditional IRT models with rater parameters,
because it can estimate ability using both rating data and the textual character-
istics of essays. Another advantage of the proposed model is that it can estimate
abilities without rating data if the word distribution and parameters for raters,
tasks, and topic weights are known. Furthermore, given these ability estimates,
the model can automatically score unrated essays. Subsection 6.2 describes the
procedures for ability estimation without rating data and for automated scoring
of unrated essays.

6.1 Parameter Estimation Using MCMC

Representative parameter estimation methods in IRT include the marginal max-
imum likelihood estimation method using the EM algorithm and maximum pos-
teriori estimation using the Newton–Raphson method [6]. However, for compli-
cated IRT models such as those used in this study, the expected a posteriori
(EAP) method using the Markov-chain Monte Carlo (MCMC) algorithm gener-
ally provides more accurate parameter estimates [17,46]. In LDA, EAP methods
using a variational Bayesian (VB) inference [9] or using an MCMC algorithm [19]
have been used. MCMC generally provides more robust estimation and is easier
to implement than the VB method, but it entails higher computational costs [5].

MCMC for IRT models is generally conducted as a Metropolis–Hastings-
within-Gibbs sampling method algorithm [33,46], while LDA generally uses a
collapsed Gibbs sampler [19]. A collapsed Gibbs sampler improves the efficiency
of MCMC sampling by marginalizing out certain model variables, and it is appli-
cable to the proposed model. We thus estimate parameters in the proposed
model by a Metropolis–Hastings-within-collapsed-Gibbs sampler algorithm. The
algorithm marginalizes topic distribution parameters ψ = {ψij |i ∈ I, j ∈ J }
and word distribution parameters φ = {φt|t ∈ T }. Then, the topic allo-
cation Z = {Zijn|i ∈ I, j ∈ J , n ∈ {1, · · · , Nij}}, the IRT parameters
ξ = {αi,βi,αr,βr,d,θ}, and weighting parameter ω are sampled from each
marginalized full conditional posterior distribution. Here, αi = {αi|i ∈ I},
βi = {βi|i ∈ I}, αr = {αr|r ∈ R}, βr = {βr|r ∈ R}, d = {drk|r ∈ R, k ∈ K},
and θ = {θj |j ∈ J }. Metropolis–Hastings method is used to draw samples from
these distributions because they cannot be analytically determined. Due to space
limitations, the details of the algorithm have been omitted.
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6.2 Ability Estimation from Text Data and Automated Essay
Scoring

As described above, the proposed model can estimate ability without rating
data if the word distribution and rater, task, and topic weighting parameters
are known. Specifically, they can be estimated by running the MCMC algo-
rithm described above after replacing the sampling distribution of Zijn with
that derived given the word distribution and the rater, task, and topic weighting
parameters. Note that values of the given parameters are not sampled in MCMC.

Furthermore, the model can score unrated essays. Specifically, given abili-
ties estimated from text data using the above procedure and given previously
estimated rater and task parameters, the expected score Ûij for essay eij is
calculable as

Ûij =
R∑

r=1

1
R

K∑

k=1

k · Pijrk. (10)

It is noteworthy that this method estimates the scores considering the charac-
teristics of raters and tasks, unlike traditional AES methods do.

7 Experiments Using Actual Data

We used actual data to evaluate the effectiveness of the proposed model. For the
evaluations, we gathered actual data through the following procedures:

1. 34 university students were recruited as subjects.
2. Subjects were asked to complete four essay-writing tasks created by the

National Assessment of Educational Progress (NAEP) [34,37].
3. After the participants completed all tasks, 10 raters evaluated all the essays

using a rubric with five rating categories that was created based on NAEP
writing assessment criteria for grade 12 [37].

We used the collected rating data and essay texts in the following experi-
ments.

7.1 Evaluation of Ability Measurement Accuracy

We evaluated ability measurement accuracy by the proposed model for a situ-
ation in which there are few raters for each essay. We conducted the following
experiment with varying numbers of topics T in the range [1, 15].

1. We estimated parameters in the proposed model by the MCMC algorithm
using all data. When T = 1, we set ω1 = 0 and omitted the sampling pro-
cedure for ω1, because the topic distribution is meaningless. Prior distribu-
tions and hyperparameters were chosen to be consistent with values reported
in related studies [40,44,48] as log αi ∼ N(0.1, 0.4), log αr ∼ N(0.0, 0.5),
βi, βr, drk, ωt ∼ N(0.0, 1.0) η = 1/T , and γ = 1/V T . For the vocabulary
words, we used nouns, verbs, adverbs, adjectives, and conjunctions extracted
from the essays after removing stop words. Stop words are those appearing in
only one or two essays and those appearing in more than half of the essays.
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2. After randomly assigning n ∈ {1, 2} raters to each essay, we set the ratings
for essays without raters to missing values.

3. From the data with the missing values, we re-estimated learners’ abilities
by the MCMC method described in Subsect. 6.2. Here, we used the word
distribution and the rater, task, and topic weighting parameters obtained in
Step 1.

4 We calculated the root mean square error (RMSE) between the ability esti-
mates obtained in Step 3 and those obtained in Step 1.

5 After repeating Steps 2–4 ten times, we calculated the mean RMSE value.

Figure 1 shows the results. The horizontal axis shows the number of topics
T and the vertical axis shows the mean RMSE. The One Rater and Two Raters
lines show the results for each number of assigned raters. Note that the proposed
model with T = 1 is equivalent to the IRT model defined in Eq. (3).

Comparing the proposed model with the conventional IRT model (T = 1), we
can confirm that the proposed model dynamically reduces the RMSE because it
can use the semantic characteristics of the essays to estimate learners’ abilities.
The proposed model monotonically reduces the RMSE until the number of topics
reaches T = 4 and provides similar performance for T > 4. When T ≥ 4, the
proposed model with n = 1 achieves similar RMSE as that in the conventional
IRT model with n = 2. This suggests that the use of textual information for
ability measurement can improve accuracy to the same extent as adding an
additional rater in the conventional IRT model.

The above experiment shows that the proposed model effectively improves
ability measurement accuracy when only few raters are assigned to each essay.

Fig. 1. Ability estimation errors. Fig. 2. Score prediction errors.

7.2 Ability Measurement Accuracy Without Rating Data

We evaluated ability measurement accuracy by the proposed model for a situa-
tion in which estimations use text data but not rating data. We conducted the
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following experiment while varying the number of topics T in the range [1, 15],
as in the previous experiment.

1. We estimated parameters for the proposed model by the MCMC algorithm
using all data, following the same procedure as in Step 1 in Subsect. 7.1.

2. After changing all ratings to missing values, we re-estimated all learners’
abilities using the MCMC. This estimation was conducted following the pro-
cedures described in Subsect. 6.2, given the word distribution and rater, task,
and topic weighting parameters estimated in Step 1.

3. We calculated RMSE between the ability estimates obtained in Step 1 and
those obtained in Step 2.

The No Raters line in Fig. 1 shows the results, namely that although RMSE
in the conventional IRT model (T = 1) is extremely large because it uses neither
rating data nor textual information, the proposed model dynamically improves
the RMSE. As in the previous experiment, the proposed model monotonically
reduces RMSE until the number of topics reaches T = 4 and provides similar
performance for T > 4. Furthermore, when T ≥ 4, the proposed model with no
raters achieves the lower RMSE than the conventional IRT model with n = 1
does. This suggests that by using only textual information, the proposed model
can estimate learners’ ability with the same or higher accuracy than does the
conventional IRT model with one rater, demonstrating the effectiveness of the
proposed model.

7.3 Accuracy of Automated Essay Scoring

We evaluated the accuracy of automated essay scoring for unrated data using
the proposed model. As in the previous experiments, we conducted the following
experiment while varying the number of topics T in the range [1, 15].

1. We estimated parameters for the proposed model by the MCMC algorithm
using all data, following the same procedure as in Step 1 in Subsect. 7.1.

2. After changing all ratings to missing values, we re-estimated all learner abili-
ties using the MCMC as described in Subsect. 6.2, given the word distribution
and rater, task, and topic weighting parameters estimated in Step 1.

3. We calculated the expected score Ûij for all essays following Eq. (10) given the
abilities estimated in Step 2 and the rater and task parameters estimated in
Step 1. We then calculated RMSE between the expected scores and observed
mean scores Uij =

∑
r Uijr/R, which were computed using all rating data.

4. For comparison, we calculated the observed mean score of each essay using the
ratings from n ∈ {1, · · · , 5} randomly selected raters, and computed RMSE
between these scores and those computed using the full rating data. After
repeating this procedure ten times, we calculated the mean RMSE value.

Figure 2 shows the results. The horizontal axis shows the number of topics T
and the vertical axis shows the mean RMSE. The solid line (Proposed) indicates
RMSEs between the scores predicted by the proposed model and the observed
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mean scores calculated using the full rating data. The other lines (n Rater(s))
show RMSEs between the observed mean scores as calculated using n the ratings
of randomly selected raters and those calculated using the full rating data.

The results confirm a similar tendency with those of the previous experi-
ments. Specifically, prediction error in the conventional IRT model (T = 1) is
extremely large, while the proposed model dynamically improves RMSE, mono-
tonically reducing it until the number of topics reaches T = 4 and providing
similar performance for T > 4.

Comparing prediction error in the proposed model with that from the mean
scores of n raters, the proposed model outperforms the mean score of 3 raters.
This result suggests that the proposed model can appropriately score unrated
essays.

8 Conclusion

We proposed a new IRT model that can use rater scores and essay texts to
estimate learner abilities. The proposed model was formulated as an IRT model
with rater and task parameters integrating supervised LDA. Through experi-
ments using actual data, we demonstrated that the proposed model can provide
higher accuracy of ability measurement than can the conventional IRT model
when there are few raters for each essay because it can estimate abilities using
both rating data and the semantic characteristics of the essays. We also showed
that the proposed model can estimate learners’ ability appropriately from essay
texts without rating data, and that it can perform valid automated scoring for
unrated essays.

Future studies must be conducted to analyze the topics estimated in actual
data experiments and to examine methods to detect the optimal number of
topics for the proposed model. Furthermore, we expect to evaluate the effective-
ness of the proposed model using larger datasets and in comparison with the
accuracy of automated essay scoring in earlier AES methods. We also expect
to consider extensions of the proposed model using other topic models or deep
neural network models in place of sLDA because improved representations of tex-
tual characteristics are anticipated to improve the performance of the proposed
model.
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Abstract. Collaboration is a 21st Century skill as well as an effective method
for learning, so detection of collaboration is important for both assessment and
instruction. Speech-based collaboration detection can be quite accurate but
collecting the speech of students in classrooms can raise privacy issues. An
alternative is to send only whether or not the student is speaking. That is, the
speech signal is processed at the microphone by a voice activity detector before
being transmitted to the collaboration detector. Because the transmitted signal is
binary (1 = speaking, 0 = silence), this method mitigates privacy issues.
However, it may harm the accuracy of collaboration detection. To find out how
much harm is done, this study compared the relative effectiveness of collabo-
ration detectors based either on the binary signal or high-quality audio. Pairs of
students were asked to work together on solving complex math problems. Three
qualitative levels of interactivity was distinguished: Interaction, Cooperation and
Other. Human coders used richer data (several audio and video streams) to
choose the code for each episode. Machine learning was used to induce a
detector to assign a code for every episode based on the features. The binary-
based collaboration detectors delivered only slightly less accuracy than collab-
oration detectors based on the high quality audio signal.

Keywords: Collaborative learning � Machine learning � Learning analytics

1 Introduction

Collaboration is a 21st century skill as well as an effective method for learning [1].
However, learning to collaborate is not straightforward. Students may require feedback
to develop collaboration skills [2]. For scaling up feedback and assessment of col-
laboration, automated methods for collaboration detection are required. Fortunately,
when students interact via speech, collaboration can be differentiated from non-
collaboration using current technology, as reviewed below.

However, monitoring collaboration in spoken conversations between students rai-
ses concerns about privacy. Although teachers are always entitled to hear the speech of
their students, giving third parties access to student conversations may raise significant
privacy concerns. An alternate approach would be to process the audio signal at the
microphone by using a voice activity detector (also called speech activity detector),
which converts the raw audio signal into a binary signal (1 = Speech, 0 = Silence).
Once the audio signal is converted to a binary signal, it can be transmitted or stored for
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collaboration analysis. Because the binary signal is incomprehensible, privacy is pre-
served. However, the loss of information may prevent effective classification of
collaboration.

This paper compares the relative effectiveness of measuring collaboration based on
either a high quality audio signal or its binary version. Since the total amount of
information transmitted by high quality signal is many orders of magnitude greater than
the binary version, we expected a large difference in classifier performance. The high
quality audio signal was collected by headset microphones connected to tablets being
used by small groups of students who were solving problems in a laboratory setting.
Only low level analysis was performed on both signals. Spoken words were not used as
part of the analysis. For analysis of high quality speech data, low level features such as
pitch, shimmer and linear spectral features were used. For the binary signals, time
series features such as absolute energy, approximate entropy and symmetry were used.
All features were extracted by algorithms and no human coders were involved.

In order to create and evaluate collaboration detectors, the judgments of human
coders were used as the ‘gold standard’ classification of the group’s interactions. The
coders had both high quality audio and several videos to aid their judgment. Collab-
oration detectors were then machine-learned from the human judgments. Their accu-
racies were measured using 10 fold cross validation.

2 Prior Work on Speech-Based Collaboration Detection

Many systems have explored automated analyses of interaction among group members
[3]. Instead of speech, most such systems input typed text from students collaborating
via forums, chat or email. Of the projects that used speech-based collaboration
detectors [4–11], only 3 measured the accuracy of the classification. These 3 projects
are the most similar to our project, so they will be reviewed here.

Just as we did for our high quality speech classifier, Gweon et al. [6, 13] used
machine-learned classifiers based on low-level speech features. Although the amount of
speech and silence were included as features, the temporal pattern of speech and silence
were not considered in their analysis. Secondly, whereas collaboration was the focal
code, Gweon et al. two projects chose different non-collaboration codes. This choice
may impact accuracy, so we measured the accuracy of classifiers trained with different
combinations of non-collaboration codes.

Just as we did for our binary-signal classifier, Martinez Maldonado et al. [9] used a
voice activity detector to convert speech into binary. However, they used counting and
proportions in their classifiers; they did not consider temporal patterns. Later, this
group did consider temporal patterns [4, 8]. They used differential sequence mining to
find temporal patterns of speech and silence that would reliably split groups into high
and low collaborators. However they did not convert their findings into a collaboration
detector and measure its accuracy.

Bassiou et al. [11] conducted studies that are quite similar to ours. They found that
collaboration detectors induced from a binary signal were more accurate than collab-
oration detectors induced from low-level acoustic features. They also found that
accuracy could be further improved by combining the two types of features. Their
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studies differed from ours in several ways. Most importantly, they used a coarser
coding scheme for collaboration. The scheme merely indicated how many students in
the group were participating actively in problem solving.

3 Data Collection

This section describes the context in which the data were gathered.

3.1 Task: Collaborative Writing

The subjects collaboratively solved a problem (“Boomerangs”) that was developed by
the Mathematics Assessment Project and appears on their site [14]. Like prior work on
spoken collaboration detection, it is a math problem. However, unlike the prior work,
students are required to write paragraph-long explanations (See Fig. 1). They were
given solutions to an optimization problem done by 4 hypothetical students and were
asked 3 questions about each solution. Thus, this task is actually a collaborative writing
task. It clearly has a different cadence than most mathematical problem solving. In
particular, there can be significant periods of time when one student is writing out an
explanation developed by one or both students. Because collaborative writing is
required in many tasks from outside mathematics, it is important to investigate the
accuracy of speech-based collaboration detection while student are thus engaged.

3.2 Technology, Participants and Duration

Students worked together in pairs. Each student had their own tablet, a Samsung
Galaxy Note 10.1. This tablet had active digitizer technology which allowed students to
write easily and legibly on the tablet screen using a stylus. These tablets are connected
to the Server via a Wireless network. The software used by participants is called FACT
[22]. The FACT user interface mimicked a large poster on which students can write and
draw content. Anything written by one group member was immediately visible to the
other. Both members of the group could scroll and zoom independently of each other
thus allowing them to focus on different parts of the poster.

The study was conducted in a laboratory setting. The participants were 38 graduate
and undergraduate students from our university who were paid for their time. Prior to
doing the collaborative writing task, students solved the optimization problem them-
selves in order to become familiar with it. All students were able to solve it easily. The
overall task, including both problem solving and collaborative writing, took around 45
to 55 min to complete.

3.3 Raw Data Collection

The recording setup generated input streams from two unidirectional headset micro-
phones, one omnidirectional microphone, two tablet screen and two Web cameras.
A desktop screen recorder was used to combine these input signals for easier annotation
by the human coders.
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3.4 Coding Categories

This section describes the collaboration codes assigned by human coders. Because the
coders could see all the input streams, whereas the collaboration detectors could only
hear the audio from the two headset mics, the human coders’ judgements were used as
the “gold standard” against which the collaboration detectors were judged.

Several coding schemes for human judgement of collaboration have been devised
[1, 11, 15–17]. The simplest merely count the number of members of the group that are
actively participating. Thus, if both members of our groups were speaking or writing,
then the group would be coded as collaborating.

However, even if all members of a group are participating, they may be interacting
to varying degrees. On one end of this scale, they have split up the task and each
member is working individually on a different subtask; this end of the scale is often
called cooperation. On the other extreme, the members are essentially pursuing one
line of reasoning or argumentation with all members contributing to it. That is, each
member’s utterance or action refers to and builds upon the prior contributions of other
members. This end of the scale is often called co-construction, transactivity or just
collaboration. The degree of interaction among group members manifests itself in
different ways, so most coding schemes are multi-dimensional, where each dimension
alerts coders to one way in which the cooperation/collaboration distinction can be
observed.

When a collaboration detector is used in a classroom, it should help the teacher
make a binary decision - whether to visit a group or not. Similarly, when it is used in a
tutoring system, it should help the system make a binary decision – to intervene or not.

Fig. 1. Snapshot of students working on shared workspace
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Different teachers and systems might have different concerns, but our sense of the
literature is that most use cases can be covered if the collaboration detector outputs
these three classifications:

1. Interactive: Students are working on the same part of the poster, and they contri-
butions build upon each other. This is often called co-constructive or transactive
behavior.

2. Cooperation: Both students are working, but they are working separately and
independently, usually on different parts of the poster.

3. Other: At least one student is not working or contributes minimally to the task.

When the collaboration detector is used by a teacher who only cares that all students
are participating, then the first two categories can be lumped together as “good” and the
teacher only receives alerts about groups classified into the third category. On the other
hand, if the teacher wants student to interact more intensely, then only the first category
can be treated as “good” and the teacher receives alerts about groups classified into the
second and third category.

This design matches the Chi’s ICAP framework [1], which uses “Interactive” for
category 1 (the I of ICAP). Category 2 means both students are “Constructive” (the C
of ICAP). Category 3 means at least one student is Active, Passive or disengaged. The
framework predicts that I > C > A > P for learning gains, which implies 1 > 2 > 3 for
our categories. We used Chi’s term “interactive” for the first category above.

Thus, we asked human judges to make the 3-way distinction above. However,
during our analysis of accuracy, we considered the 3-way classification accuracy as well
as several binary classifications obtained by lumping together 2 of the 3 categories.

Because our study was conducted in a camera-infused laboratory, we saw very little
disengagement. Thus, the typical behavior of groups classified as “Other” was for one
student to be doing all the work, while the other student watched and occasionally
uttered brief agreements. In earlier work, we termed these categories “collaboration”,
“cooperation” and “asymmetric contribution” [21].

4 Analysis Methods

4.1 Audio Processing and Extraction of Audio Logs

The inputs to the collaboration detectors came only from the headset microphones; the
other audio and video streams were seen only by the human coders. The first step in
processing the headset mic audio was removal of background noise. Signal processing
was carried out as proposed by Rafi et al. [18] along with few modifications. FFT
windows was reduced to 0.25 from 0.5 and a soft mask by Wiener filtering method
instead of a hard filter.

The binary version of the audio signal was obtained from the cleaned-up mic audio
using a standard voice activity detector (WebRTC). The non-speech segments in the
high quality audio signal was removed based on output from the voice activity detector.
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4.2 Segmentation

As students answered the 12 questions, we noticed that they sometimes shifted their
interaction patterns when transitioning from one question to the next. In order to avoid
mixing up two different patterns of interactions, we placed segment boundaries
between subtasks. More specifically, we used these criteria for placing a segment
boundary: First, when there was a switch from one subtask to the other by any par-
ticipant, a segment boundary was placed Second, if the particular activity took more
than 4 min, then a segment boundary was placed immediately after the writing activity
stopped for a brief time (like 5 s). This prevented overly long segments. Third, if a
student went back to a different card and started writing, a segment boundary was
placed. The average length of the segment was 110 s with standard deviation of 83 s.

4.3 Human Coding

Once the segmentation was performed, human annotators classified each segment as
either interactive (I), cooperative (C) or other (O). The annotators used the audio-video
stream obtained by the screen recorder and also used log data to understand various
write events. If characteristics of multiple codes are found in the same segment, then
the category with the greatest amount of time was assigned to the segment. Two human
annotators tagged a sample of 80% of the overall segments. Inter rater agreement was
considered acceptable with Cohen’s kappa K = 0.76. For consistency across the whole
dataset, the classifications of one annotator (the first author) were used in subsequent
analysis.

4.4 Feature Extraction

In order to use standard machine learning algorithms to induce collaboration detectors
for both the audio signal and the binary signal, the signals were represented as features.

The audio signal’s features were from the OpenSMILE [20] audio feature set,
which represents the state of the art in affect and paralinguistic recognition. Features
were generated by a toolkit from the speech signal of each subject. The two individual
subject feature vectors were then concatenated into one single feature vector for every
segment.

The binary speech signal was characterized as a time series signal. This is obtained
one per person. At a segment level, tsfresh [19] computes 794 time series features
based on variations of both these signals with respect to time. The entire set of features
obtained from tsfresh can be found in [19] and for OpenSMILE can be found in [20].

Group level features such as the duration of time when students spoke with each
other (speech time per segment) and the duration of time when they did not speak
(silence time) with each other were also extracted from the signal.

4.5 Feature Selection

Feature selection was performed because the number of features was greater than the
number of observations. Pairwise correlations were performed on features likely to be
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redundant. Sets of highly correlated features (coefficient > 0.9) were reduced to a single
feature chosen arbitrarily from the set.

For the high quality audio signal, recursive feature elimination is used to eliminate
features that have low discriminative power across different classes.

For the binary signals, both the students’ time series characterization along with its
the collaboration class (I, C or O) was fed into tsFresh [19]. For each feature, it used
Chi-square and other statistical tests to determine whether the features’ value was
reliability associated with the collaboration class. Only features whose p-value
exceeded 0.05 were kept.

5 Results

As mentioned earlier, we developed collaboration detectors for several use cases. One
pair of detectors distinguished all three categories (Interaction, Cooperation and Other).
In addition, we generated binary classifiers focused on every single category.

5.1 Binary Classifier Focused on Cooperation

This section reports the accuracy of the binary classifier that was trained to discriminate
Cooperation (C) from Non Cooperation (NC). We built classifiers using both high
quality audio signal and the binary signal. Random Forests yielded the best results
when compared to other algorithms such as logistic regression, bagging and boosting.
The models were validated using tenfold cross validation. As Table 1 shows, the
accuracy of the binary signal classifier (K = 0.53) was similar to the accuracy of the
high quality audio classifier (K = 0.66).

5.2 Binary Classifier Focused on Interaction

This section reports the accuracy of the binary classifier that trained to discriminate
Interaction (I) from Non Interaction (NI). We built classifiers using both the high
quality audio signal and the binary signal. Random Forests yielded the best results
when compared to other algorithms. These models were validated using tenfold cross
validation. As Table 2 shows, the accuracy of the binary signal classifier (K = 0.54)
was similar to the accuracy of the high quality audio classifier (K = 0.62).

Table 1. Confusion matrices for binary classifier focused on cooperation

High Quality Audio (F1= 0.83, K= 0.66) Binary Logs (F1= 0.76, K= 0.53) 

Predictions
NC C

True 
Class

NC 297 16
C 15 38

Predictions
NC C

True 
Class

NC 294 19
C 22 31
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5.3 Binary Classifier Focused on Other Category

This section reports the accuracy of the binary classifier that trained to discriminate
Other (O) from Non Other (NO). We built classifiers using both high quality audio
signal and the binary signal. Random Forests yielded the best results when compared to
other algorithms. The models were validated using tenfold cross validation. As Table 3
shows, the accuracy of the binary signal classifier (K = 0.28) was similar to the
accuracy of the high quality audio classifier (K = 0.36), but neither accuracy was high.

5.4 Ternary Classifier

This section reports the accuracy of the results of ternary classifier that is trained to
discriminate three categories: Interaction (I), Cooperation (C) and Other (O). We built
classifiers using both high quality audio signal and binary signal. Random Forests
yielded the best results when compared to other types of algorithms. The models were
validated using tenfold cross Validation. As Table 4 shows, the accuracy of the binary
signal classifier (K = 0.44) was similar to the accuracy of the high quality audio signal
classifier (K = 0.55).

Table 2. Confusion Matrices of Binary Classifiers focused on Interaction

High Quality Audio (F1= 0.80, K= 0.62)                                     Binary Logs (F1= 0.77, K= 0.54) 

Predictions
I NI

True
Class

I 136 35
NI 36 159

Predictions
I NI

True 
Class

I 129 42
NI 40 155

Table 3. Confusion Matrices for Binary Classifier Focused on Cooperation

High Quality Audio (F1= 0.69, K= 0.36)                                     Binary Logs (F1= 0.64, K= 0.28)

Predictions
O NO

True
Class

O 82 60
NO 50 174

Predictions
O NO

True 
Class

O 95 47
NO 84 140

Table 4. Confusion Matrices of Three way Classifiers

High Quality Audio (F1 = 0.70, k=0.55)                           Binary logs (F1 = 0.63, k=0.44)

Predictions
I O C

True 
Class

I 94 31 17
O 35 135 1
C 17 0 36

Predictions
I O C

True 
Class

I 84 38 20
O 46 123 2
C 20 1 32
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6 Discussion and Conclusion

When this project began, we did not think that detectors based on binary signals would
perform well compared to collaboration detectors based on high quality audio signal.
Against low expectations we got modest kappa scores - 0.53, 0.54, 0.44 except for the
Other-focused binary classifier (0.28). To explain the Other classifier’s inaccuracy, we
can examine the results from the ternary classifier.

The contingency table of the ternary classifier (Table 4) shows that some of
samples from the Interaction category are mistaken as Other category and vice versa.
On the other hand, the Cooperation category was clearly separated from the Other
category. This phenomenon is due to the fact that in some cases, when students worked
alone with their partner watching, they continued to verbalize their writing and hence
the machine learner assumed that they were Interacting with each other.

The binary classifier focused on Other category was minimally reliable since the
classifier has to differentiate Other from Interaction and Cooperation combined together
into one. The reliability was compromised since Interaction and Cooperation have
entirely different audio characteristics and the Other category shares some character-
istics of both. As a result, neither the binary nor full audio features could differentiate
between them reliably. If the use case requires the Other category to be distinguished
from non-Others, the ternary classifier should be used.

Although the collaboration detectors based on the binary signal performed rea-
sonably well, there are a few caveats to consider. The first limitation is that synchro-
nization of different data streams needs to be improved so that significant of manual
labor can be avoided. Until this is achieved, our method cannot be used in classroom in
real-time.

The second limitation is the usage of cards to automatically mark segment
boundaries. This also allowed us to detect a change in subtask when subjects worked
with each other. Although this helped in segmentation and improving reliability, we are
not sure about the performance of the classifier when the boundaries are less salient.

Third, this study did not encounter off task behavior since it was a laboratory study
recorded under a camera. Analysis of the semantic content of the speech may be
necessary to detect off task behavior.

The fourth limitation is that the study was performed in artificial laboratory setting
and it only involved two people at a time. This may have increased the accuracy of the
full-audio classifier because there was no interference from other audio sources. This
would also explain why Bassiou et al. [11] found that their collaboration detector based
on a binary signal was more accurate than their collaboration detector based on a full
audio signal: their speech was collected in a noisy classroom. Thus, their results
combined with ours suggest a bright future for collaboration detection based on binary
signals.

These finding suggest a clear direction for our future work, because they appear to
solve several practical problems.

First, when a collaboration detection system needs high quality audio, the analog
signal from the microphone must be sampled at a high bitrate. Transmitting these
bitstreams wirelessly from 30 students can overload classroom radios, but using wires
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instead invites physical damage to the equipment when students or staff become
entangled. In contrast, binary signals require less bandwidth, so 30 of them can
probably be transmitted wirelessly reliably.

Finally, throat microphones can probably be used instead of headset microphones.
These microphones detect noise only from the speaker and not ambient noise. Thus, the
noise removal we performed prior to voice activity detection may not be necessary.
Affordable throat microphones often produce somewhat distorted audio, so they would
probably not work well for collaboration detection based on acoustic features.
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Abstract. When students are given agency in playing and learning from a
digital learning game, how do their decisions about sequence of gameplay
impact learning and enjoyment? We explored this question in the context of
Decimal Point, a math learning game that teaches decimals to middle-school
students. Our analysis is based on students in a high-agency condition, those
who can choose the order of gameplay, as well as when to stop. By clustering
student mini-game sequences by edit distance – the number of edit operations to
turn one sequence into another – we found that, among students who stopped
early, those who deviated more from a canonical game sequence reported higher
enjoyment than those who did not. However, there were no differences in
learning gains. Our results suggest that students who can self-regulate and
exercise agency will enjoy the game, but the type and number of choices may
also have an impact on enjoyment factors. At the same time, more investigation
into the amount and means of delivering instruction to maximize learning effi-
ciency within the game is necessary. We conclude by discussing digital learning
game design lessons to create a game that more closely aligns with students’
learning needs and affective states.

Keywords: Digital learning game � Decimal number � Edit distance �
Clustering

1 Introduction

An important aspect of digital learning game design is deciding which gameplay
elements the players (i.e., students) can control. In a typical game environment, players
are offered a lot of agency - the capability to make their own decisions about how,
what, and when they play. However, agency, which is often associated with engage-
ment and enjoyment [41], may or may not be helpful to learning. Another nuance
present in digital learning games is whether students should be given instructionally
relevant choices, since young learners often have difficulty in making effective
instructional decisions [33], in many cases resorting to unthoughtful choices [44].

One way to enhance students’ experience and outcomes, while still giving them
control over instructionally relevant aspects of gameplay, is to provide a recommendation
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feature within the game that can suggest the (potentially) optimal next step, without
reducing the students’ sense of agency. To achieve this, an important step is examining
the influences of different problem sequences and identifying those that are most bene-
ficial in terms of learning, enjoyment, or ideally both. We examined this question in
Decimal Point, a digital learning game composed of a variety of mini-games designed to
help middle-school students learn decimals [30]. While the original version of the game
features a canonical sequence of mini-games that aims at interleaving various problem
types and visual themes, it is not designed to be optimal for both learning and enjoyment
for all students. To build a recommender capability as outlined above, we would need to
identify the features of a good sequence while, at the same time, noting that these features
may vary based on individual students.

To tackle this issue, prior studies of Decimal Point have compared learning and
enjoyment between a high- and low-agency condition [23, 34]. The high-agency group
could play the mini-games in any order and also had the option to stop playing early or
play extra games. In contrast, the low-agency group had to play all mini-games in a
fixed order. Expanding on this work, we focused solely on the high-agency students
and explored potential differences among them in our analysis. In other words, given
that high-agency students can make their own choices about mini-game selection, how
would different selection orders (i.e., game sequences) impact their experience? More
specifically, we investigated the following research questions:

RQ1: How do students’ game sequences impact their self-reported enjoyment of
the digital learning game?

RQ2: How do students’ game sequences impact their learning outcomes from the
digital learning game?

2 Background

2.1 The Decimal Point Game

Decimal Point is a single-player game that helps middle-school students learn about
decimal numbers and their operations (e.g., adding, ordering, comparing). The game is
based on an amusement park metaphor (Fig. 1), where students travel to different areas
of the park, each with a theme (e.g., Haunted House, Sports World), and play a variety
of mini-games, each targeting a common decimal misconception [19, 25, 52].

In the original game [30], students were prompted to play the mini-games in a pre-
defined, canonical sequence, according to the dashed line shown in Fig. 1A (starting
from the upper left). This sequence was originally developed to maintain thematic
cohesion and to interleave problem types, which has been shown to improve mathe-
matics learning [37, 38]. However, it is unclear whether a different sequence could be
more or less beneficial to students. A subsequent study by [34] further explored agency
by comparing two versions of Decimal Point: high-agency and low-agency. In the
high-agency condition, students could play the mini-games in any order, could stop
halfway through (i.e., after 12 mini-games) or play extra rounds after finishing all 24
mini-games. In the low-agency condition, students played all mini-games in a fixed
order, without the option to stop early or play more.
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The authors reported no differences in learning or enjoyment between the two
conditions, and had two conjectures regarding the high-agency students. First, they
may have been implicitly guided to follow the canonical sequence by the dashed line
on the map (Fig. 1A), hence their experience was comparable to that of students in the
low-agency condition. Second, high-agency students may not have felt that their
specific mini-game choices were consequential, as they would either stop early or
eventually end up having played all mini-games, same as the low-agency students. In
other words, to these students, different game sequences may have seemed to result in
the same outcome.

The first conjecture was confirmed by post-hoc analyses reported in [34] and in a
follow-up study by [23]. [34] reported that 68% of high-agency students played only 24
mini-games, similar to those in the low-agency condition, in approximately the same
order. The study in [23] introduced a new high-agency condition without the dashed
line (Fig. 1B) and it was observed that students in this condition deviated from the
canonical path significantly more than those in the original high-agency condition.

As the next step, in this paper, we investigate the second conjecture – whether
different game sequences selected by students in the high-agency conditions (with and
without the dashed line) can have an impact on learning and enjoyment.

2.2 Related Work

The high-agency version of Decimal Point has many characteristics of an exploratory
learning environment (ELE) [1], where students are free to explore instructional
materials rather than follow a predefined learning path. Other notable digital learning
games of this type include Physics Playground [49], iSTART-2 [50], Quest Atlantis [5]
and Crystal Island [43]. Among these, Crystal Island has been the subject of an
experimental manipulation similar to that of Decimal Point, with three agency con-
ditions: (1) high-agency, where students could freely explore the game world and
choose which activities to do and in what order, (2) low-agency, where students did the

1A 1B

Fig. 1. The different game maps used in (A) low-agency and high-agency with line, and
(B) high-agency without line. The filled circles denote completed mini-games.
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same activities but had to follow a fixed order, and (3) no-agency, where students only
observed a video of an expert playing the game. Study results from [43] showed that
low-agency students demonstrated the greatest learning gains but also exhibited
undesirable behaviors such as a propensity for guessing, suggesting that some degree of
agency may be beneficial, but too much is not.

An important task in ELEs is modeling students’ learning to provide effective
interventions based on fine-grained interactions with the learning environment [1].
A useful metric that can be derived from these sequential data is the distance - a measure
of how similar two sequences are. Prior research has shown that in digital learning
games, the distances from students’ problem-solving sequences to an expert solution
sequence are correlated with their learning gains [42] and test performance [20]. It is also
possible to compute the distances among students’ own sequences to cluster them.
Analysis of the resulting clusters has been instrumental in several ELE assessment tasks:
identifying player strategies in an algorithmic puzzle-based game [24], distinguishing
between low and high achieving students in a problem-solving tabletop application [29],
exploring the solution space in an open-ended physics game [22], and so on.

Another focus of the current work is student enjoyment and how it may be influ-
enced by gameplay choices. In general, digital learning games are effective at promoting
engagement and enjoyment by giving students control over the learning environment
[45, 50, 51]. However, the effect of student choices is also subject to several nuances.
First, it can vary based on individual students’ self-regulation skills [32]. Second, stu-
dents need to feel that their choices are meaningful and acquire a sense of agency (for a
detailed discussion of agency within Decimal Point, refer to [23] and [34]). Third, the
type and number of choices may affect their utility. In particular, choices that reflect
personal interest will have the greatest effect, yet a large number of choices can become
discouraging [36]. We will elaborate on these nuances in our later discussion.

3 Context

The work reported in this paper is a post-hoc analysis of data collected from two prior
studies of Decimal Point [23, 34]. We briefly introduce the way these studies were
conducted here before describing our analysis approach.

The two prior studies involved a total of 484 students. In this work, we focused on
only 287 of those students in two conditions, high-agency with line (HAL) and high-
agency without line (HANL), since these were the groups of students who could make
their own mini-game selections, as opposed to those in the low-agency condition who
could not make such choices. We further removed students who did not finish all of the
pre- and posttest materials and evaluation surveys, which are used to measure learning
and enjoyment outcomes, reducing the sample to 235 students (110 male, 125 female).
The digital learning game and study materials included the following:

Pretest, Immediate Posttest and Delayed Posttest. The pretest, immediate posttest
and delayed posttest (one week after the posttest), were administered online. The tests
are isomorphic to one another (i.e., the same types of problems in the same order) and
contain decimal items similar to those found in the game (e.g., ordering, comparing,
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and adding decimals). The tests were also counterbalanced across students (e.g., ABC,
ACB, BAC, etc. for pre, post, and delayed). Learning gains from pretest to posttest and
pretest to delayed posttest are used to measure learning outcome.

Intervention. Students playing the high-agency versions of the game were shown a
game map depicted in Fig. 1A (for the HAL group) or B (for the HANL group), where
they could make their mini-game selections. There is also a dashboard that provides
information about the types of game activity, and shows current mini-game completion
progress. After playing half of the mini-games, students would be notified that they
could choose to stop playing at any time from this point. Once students finished all 24
mini-games, the map interface would be reset to allow each game to be played once
more (with the same game mechanics but different question content). Hence, the
number of mini-games played by each student ranges from 12 to 48.

Evaluation Questionnaire and Survey. After finishing the game, students were given
an evaluation questionnaire and post-survey, which asked them to (1) rate their overall
experiences using a 5-point Likert scale, with a variety of game enjoyment questions
(e.g., “I liked doing this lesson”), (2) select their most favorite mini-game, and
(3) reflect on their agency experience (e.g., “if you did this activity again, would you
play fewer, the same, or more number of mini-games? Why?”). The scores from (1) are
averaged to produce a measure of self-reported enjoyment.

4 Results

4.1 Game Sequence Clustering

Since there is no expert sequence in Decimal Point (as we previously mentioned, it is
unclear if the canonical sequence is optimal), we did not measure deviation from expert
solution like other studies [20, 42]. Instead, our goal was to look at trends in learning
and enjoyment among students who played through the mini-games in a similar way.
We took a clustering approach to create groups of students who played a similar
sequence of mini-games and looked for differences between these groups. To be
consistent with prior studies, and because it was shown to be useful for analyzing our
type of sequential data [23, 34], we used the Damerau-Levenshtein edit distance [13] as
a measure of similarity between sequences. This metric counts the minimal operations
required to change one sequence to another using insertions, deletions, substitutions,
and transpositions. The smaller the edit distance, the more similar two sequences are to
one another. If the value is zero, the two sequences are identical; if the value is the sum
of the two sequence lengths, they are completely distinct.

We then applied k-medoids clustering [6] with the pairwise edit distance matrix of
all game sequences as input. In this way, students who played similar game sequences
(i.e., have a smaller edit distance between one another) would be grouped within the
same cluster. We experimented with different values of k (number of clusters) for
k-medoids clustering. After searching from 2 to 20, we selected the optimal k value of
4, based on the best average Silhouette Coefficient [40]. The four cluster medoids are
illustrated in Fig. 2. We named each cluster based on the key mnemonic features of its
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medoid. The first is Canonical Sequence (CS) with a medoid sequence identical to the
canonical, following the dashed line in Fig. 1A. The second is Initial Exploration
(IE) because students played a few mini-games out of order at the beginning of
gameplay before returning to the canonical sequence. The third and fourth are Half on
Top (HT) and Half on Left (HL) respectively because their medoids only span a portion
of the game map (the top half and left half, respectively). Descriptive statistics for all
clusters are included in Table 1.

Fig. 2. Visualizations for the medoid game sequences in four clusters. Here the maps are shown
without the line for clarity.

Table 1. Descriptive statistics for the four clusters.

Cluster # of
Students

# of Mini-
games

Pretest Immediate
posttest

Delayed
posttest

Enjoyment

CS 89 24.9 (4.6) 36.8 (13.1) 42.4 (10.3) 44.3 (10.1) 3.7 (0.8)
IE 14 26.9 (9.2) 37.3 (11.1) 42.4 (8.6) 42.9 (9.2) 3.8 (0.6)
HT 100 17.2 (6.3) 33.9 (12.9) 39.7 (11.7) 40.8 (12.3) 3.4 (1.0)
HL 32 19.6 (6.0) 40.0 (9.8) 43.3 (10.6) 44.3 (10.5) 3.8 (0.8)
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To identify differences in learning and enjoyment across clusters, we conducted the
Kruskal-Wallis test [14]. Kruskal-Wallis was chosen because our data did not satisfy
the normality assumptions of an ANOVA. In the case of a significant difference, we
used Dunn’s post hoc [17] to perform pairwise comparisons between clusters. The
effect size was also considered, following the thresholds of Cliff’s Delta [39]. In this
way, we examined our two research questions:

RQ1: How do students’ game sequences impact their self-reported enjoyment of
the digital learning game? Kruskal-Wallis test revealed a significant difference across
the four clusters (H = 10.248, p = 0.017). Using Dunn’s post hoc test with a
Benjamini-Hochberg correction [8], we observed that Cluster HL had significantly
higher enjoyment scores than HT, with a small effect size (Cliff’s d = 0.310,
p = 0.007), as shown in Table 2.

RQ2: How do students’ game sequences impact their learning outcomes from the
digital learning game? Kruskal-Wallis test showed no significant difference across
clusters in gaining scores from pretest to immediate posttest (H = 3.086, p = 0.378)
and from pretest to delayed posttest (H = 2.585, p = 0.414). Thus, clusters do not have
a significant effect on students’ learning outcomes.

4.2 Post Analysis

Prior studies have established agency as a sense of freedom and control by the student
[54], and in the context of our digital learning game, the amount of deviation from the
canonical path [23]. Given that there is a significant difference in enjoyment scores
between two clusters, we further explored the relationship between game sequence,
agency, and enjoyment through the following two metrics.

Theme Transition Frequency (TTF). We expected that students who exercised
agency would look at the entire map and explore different theme areas, as opposed to
selecting a mini-game nearest to their current location or staying within one theme.
While students could stay within a theme that they liked, we believed they were
unlikely to enjoy every theme; therefore, we still expected to see more exploration. To
measure this behavior, we defined a new metric, called theme transition frequency, as

Table 2. Multiple comparisons for enjoyment scores in different level (** - significant,
p < adjusted a; ^ - small effect size).

Pairwise median of
enjoyment scores for
different clusters

Cliff’s d p-value Adjusted a

IE 3.813 HL 3.813 –0.096 0.731 0.042
IE 3.813 CS 3.750 0.055 0.748 0.050
IE 3.813 HT 3.500 0.257 0.130 0.025^
HL 3.813 CS 3.750 0.115 0.326 0.033
HL 3.813 HT 3.500 0.310 0.007 0.008**^
CS 3.750 HT 3.500 0.195 0.018 0.017^
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the number of transitions between consecutive mini-games with different themes
divided by the total number of transitions, for a given student. A value close to 1 means
that the student tends to alternate between themes; a value close to 0 means that the
student sticks to the same theme until all mini-games in that theme are completed.
Next, we conducted Kruskal-Wallis test and found a significant difference in TTF
across the four clusters (H = 52.421, p < 0.0005). To compare the TTF between pairs
of clusters, we applied Dunn’s post hoc test with Benjamini-Hochberg correction [8].
Cluster IE had significantly higher TTF than cluster CS, with a large effect size (Cliff’s
d = 0.527, p = 0.004). Cluster HL had significantly higher TTF than cluster CS with a
large effect size (Cliff’s d = 0.749, p < 0.0005) and higher than cluster HT with a small
effect size (Cliff’s d = 0.244, p < 0.022). Cluster HT had significantly higher TTF than
cluster CS, with a medium effect size (Cliff’s d = –0.454, p = 0.017) (Table 3).

Mini-game Preference. As the only difference in enjoyment we identified was among
those who stopped early, in the HL and HT clusters, we conjectured that students may
have had a stronger sense of enjoyment earlier in gameplay than towards the end.
However, we did not have a mechanism to detect affective states over time. Therefore,
as a proxy in examining this behavior, for each student, we looked at her self-reported
favorite mini-game on the post-survey and where it occurred in her game sequence.
More specifically, each student was labeled as one of three categories: (1) prefer one of
the first three mini-games played, (2) prefer one of the last three mini-games played,
and (3) prefer one between the first and last three mini-games. We then tested if the
favorite mini-game is equally likely to appear in every part of the sequence. Since there
are 24 mini-games in total, the null hypothesis is that the distribution of the three
groups is 12.5%, 12.5% and 75% of the number of students respectively. We con-
ducted a Chi-Square goodness of fit test [15] and found that this hypothesized distri-
bution differs significantly from the empirical distribution of 30.2%, 59.6%, and 10.2%
respectively (v2 = 67.42, df = 3, p < 0.0005). In particular, the first category, despite
covering only the first three mini-games, accounted for almost one-third of the most
favorite mini-game responses, much higher than its expected portion of 12.5%. This
result implies that students tended to prefer their initial gameplay experience.

Table 3. Multiple comparisons for TTF in different level (** - significant, p < adjusted a; ^ -
small effect size, ^^ - medium effect size, ^^^ - large effect size)

Pairwise Median of
TTF for Different
clusters

Cliff’s d p-value Adjusted a

IE 0.506 HL 0.675 –0.304 0.149 0.042
IE 0.506 CS 0.304 0.527 0.004 0.025**^^^
IE 0.506 HT 0.545 –0.041 0.996 0.050
HL 0.675 CS 0.304 0.749 < 0.0005 0.008**^^^
HL 0.675 HT 0.545 0.244 0.022 0.033**^
CS 0.304 HT 0.545 –0.454 < 0.0005 0.017**^^
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5 Discussion

In this work we explored the question of whether different game sequences lead to
different learning and/or enjoyment outcomes for students in the high-agency condition
who could decide on their mini-game selections. Across the four identified clusters of
game sequences – CS, IE, HT, HL – we found no differences in learning, but Clus-
ter HL had significantly higher enjoyment scores than Cluster HT. We discuss this key
result, as well as our other results, in the following paragraphs.

With respect to learning, we saw that the varied numbers of mini-games played by
students across the clusters did not result in learning differences. This outcome is
consistent with [23], and the authors’ proposed explanations are also applicable in our
case. Students who stopped early may have been able to self-regulate their learning and
learned as much as those who played all mini-games, resulting in more efficient
learning [31]. Alternatively, it is possible that there is more instructional content than
required for mastery in the game, so students who played all of the mini-games
essentially over-practiced rather than being less efficient. There have been debates
about the varying effects of over-practice; some researchers claim that it leads to
decreased learning efficiency [10, 12], while others suggest it yields higher levels of
fluency [27] and better long-term outcomes [16]. In our case, it appears that over-
practice, if present, had a neutral effect, since students who potentially over-practiced
achieved the same learning gains as those who did not. A step toward better under-
standing this would be to construct a knowledge component (KC) model of students’
in-game learning [21] so that learning efficiency and over-practice can be validated
through Bayesian knowledge tracing [12] and learning curve analysis [18, 28, 53].
Such a KC model could also be displayed to students to facilitate awareness of progress
and self-regulation, in the form of an open learner model [9].

With respect to enjoyment, while students in HL and HT both played approxi-
mately half of the mini-games, the former played the most mini-games out of order,
while the latter tended to follow the canonical sequence. This distinction, demonstrated
by our analysis of theme transition frequency, suggests that the HL group exercised
more agency and enjoyed the game more than HT. On the other hand, we expected that
students in CS and IE would have more enjoyment than those in HL and HT, because
the former group also had the option to stop early yet chose to continue playing.
However, we did not observe this difference. One possible explanation is that students
in CS and IE did not stop early because they were not good at self-regulating their
learning, rather than because they were enjoying the game more. This idea is supported
by the observation from Fig. 2 that the game sequences in CS and IE are close to the
canonical sequence, suggesting that students did not exercise agency in mini-game
selection. A second explanation is that the novelty of the game environment may wear
off towards the end, i.e., students may have experienced a “burnout effect” with
diminished feeling of progression [11], which influenced their rating of overall
enjoyment. Survey responses of mini-game preference did in fact show that students
tended to favor the initial mini-games. A potential reason for this phenomenon is the
nature of choices in Decimal Point. According to [7], engaging in choices or self-
control is effortful and draws on limited resources. Therefore, a large number of choices
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can become overwhelming [26, 46], and making several independent choices in a
limited time may result in fatigue or ego-depletion [36]. In the high-agency condition,
students first have to select one of the 24 mini-games, then one of the 23 remaining
mini-games, and so on. Those who played all mini-games had to make 24 such
selections within the timeframe of the study, so they may have experienced ego-
depletion, which resulted in reduced enjoyment. Also, towards the end of gameplay,
students do not have as many options to pick from because the completed mini-games
are blocked from re-selection; however, this lack of choice may instead lead to
decreased sense of agency. [36] suggested that there is an optimum number of choices
that balances between the cognitive load from too many choices and the lack of agency
from too few. Identifying this number for Decimal Point is left for future work.

In summary, we derived the following game design lessons from our analyses. First,
one should aim for just the right amount of instructional content so that students can
master the materials yet not incur the potential negative effects of over-practice. It can be
difficult to initially estimate how much content is sufficient, but educational data mining
techniques (e.g., learning curve analysis [21, 28]) can help revise and improve the
materials in subsequent iterations. In addition, like Decimal Point, a game could allow
students to control how much practice they are given, with proper scaffolding to assist
them in self-regulating (e.g., an open learner model [9]). Second, when providing stu-
dents with instructionally relevant choices, one should take into account factors such as
agency, burnout and ego-depletion in designing the type and number of choices [11, 36].
Third, when collecting data from survey questions, one should note that students tend to
report on their most recent experience, near the end of gameplay, rather than the overall
experience.

Finally, we should point out that in this work, posttest scores and survey responses
were used to measure the impacts of game sequence clusters. While these metrics are
consistent with our prior studies [23, 34], it is possible that more fine-grained measures,
for example those taken after each in-game action or mini-game played, would provide
a better understanding of the influences of game sequences. In particular, we can use
moment-by-moment learning models [3] to understand whether immediate or delayed
learning takes place, and learning curve analysis [12] to track students’ performance
over time. For enjoyment, we will analyze learner affect by integrating automated affect
detectors [2, 4, 35] in our data collection and analysis procedures, which can yield more
reliable results than survey responses alone. This direction is consistent with the view
of digital learning game researchers that students’ learning and enjoyment should be
assessed by in-game data rather than external measures [47, 48].

6 Conclusion

Our work investigated the effects of game sequences in Decimal Point. There were no
differences in learning across sequence clusters, However, among students who chose
to stop playing early, at around half of the mini-games, those who deviated more from
the canonical order and switched between theme areas reported higher enjoyment
scores. These results lead to important questions about the amount of instructional
content, the nature of choices, and the interplay of various engagement factors in the
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context of digital learning games. We intend to investigate these questions in future
work to better understand the dynamics of students’ game experience. This, in turn,
will help us develop better AI techniques to personalize the game for increased
enjoyment and learning.
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Abstract. This paper analyzes students’ design solutions for an NGSS-
aligned earth sciences curriculum, the Playground Design Challenge
(PDC), for upper-elementary school (grade 5 and 6) students. We present
the underlying computational model and the user interface for generat-
ing design solutions for a school playground that has to meet cost, water
runoff, and accessibility constraints. We use data from the pretest and
posttest assessments and activity logs collected from a pilot study run in
an elementary school to evaluate the effectiveness of the curriculum and
investigate the relations between students’ behaviors and their learning
performances. The results show that (1) the students’ scores significantly
increased from pretest to posttest on engineering design assessments, and
(2) students’ solution-generation and testing behaviors were indicative
of the quality of their design solutions as well as their pre-post learning
gains. In the future, tracking such behaviors online will allow us to pro-
vide adaptive scaffolds that help students improve on their engineering
design solutions.

Keywords: Technology-enhanced learning · NGSS ·
Engineering design · Learning analytics

1 Introduction

Design activities provide learners a supportive, authentic, and effective context
to experiment with and develop an understanding of real-world scenarios using
models of scientific processes [12,15]. Design-based learning activities, especially
complex design problems, have shown great potential and promise in benefit-
ing K-12 students’ learning [5,6,15]. The Next Generation Science Standards
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(NGSS) of the United States include engineering disciplinary core ideas and
practices within the three-dimensional performance expectations (PEs) of disci-
plinary core ideas, science and engineering practices, and crosscutting concepts
as early as kindergarten [7]. There are also efforts from the engineering and sci-
ence education community to promote engineering design activities in elementary
classrooms to strengthen science education [15]. However, previous studies have
also highlighted the challenges and barriers to integrating engineering concepts
and practices into elementary school curricular settings [5,9].

This paper reports on the Playground Design Challenge (PDC), an NGSS-
aligned curricular unit for upper elementary school students (age 11 to 12). PDC
integrates the Earth science and engineering domains through (1) scientific inves-
tigations that involve physical experiments on the absorption of different surface
materials, (2) building conceptual models to understand the concepts of water
absorption and runoff after a rainfall; (3) an engineering design challenge, where
students can design playground models that meet specified constraints, and eval-
uate the construction cost and total water runoff of a designed playground [3];
and (4) use of computational models implemented in NetsBlox [1] that enable
students to test different design solutions.

In the rest of this paper, we present the learning environment and the under-
lying computational model used in the PDC. We describe the data collected from
a pilot study to evaluate the effectiveness of the curriculum and investigate the
relations between students’ behaviors and their pre-post learning gains. More
specifically, we investigated the following research questions:

RQ 1: How effective was the intervention in improving students engineering
design proficiency?

RQ 2: How well did the students’ engineering design solutions correlate with
their pre- to posttest learning gains?

RQ 3: How did students’ behaviors of exploring the problem space and gener-
ating their engineering designs align with the performances on the NGSS PEs?

2 Engineering Design and the K-12 Curricula

Engineering design involves complex cognitive processes such as (1) understand-
ing the problem, (2) generating ideas, (3) learning new concepts necessary for
solving problems, (4) developing and testing models, and (5) analyzing and revis-
ing solutions [9]. Design-based instruction is more accessible to elementary school
students as younger learners tend to have “less apprehension toward design chal-
lenges” compared to elder learners [15, p. 515]. In addition, design activities have
great potential and promise to benefit science learning because scientific scenar-
ios can be contextualized into compelling design problems [5,6,15].

Whereas science learning through problem-solving has received a lot of atten-
tion in secondary school curricula e.g., [6] there is much less focus on science-
through-design learning for younger pupils [15] (exceptions are Penner et al.
[12] and Wendell et al.’s [15] work). Penner et al.’s study with third-grade stu-
dents involved designing models of the human elbow. Students engaged in a
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series of design-related activities such as building, testing, and evaluating mod-
els. The students then used the elbow models to explore the biomechanics of
the human body [12]. Wendell et al. implemented a LEGOTM design challenge
for elementary-grade students that created a synergy between science learning
knowledge and engineering design [15]. Both studies demonstrated how students’
problem-solving processes in a problem space [10] could provide engaging teach-
ing and learning strategies.

3 Methods

3.1 The Engineering Design Environment

We created a computational model to simulate the effect of rainfall on water
runoff from a playground to surrounding areas. The total runoff rate is calculated
by the Rational Equation, a widely-applied method in hydraulic engineering to
estimate the peak discharge of a small watershed [14]. The equation for peak
discharge volume is Q = c× i×A, where c is a unit-less runoff ratio, i is the rain
intensity, and A is the drainage area. To make the equation more understandable
to elementary school students, we simplified the equation by assuming that the
playground had a unit area, thereby eliminating the area variable from the model.
As a result, the runoff coefficient is interpreted as the amount of discharge per
unit of rainfall intensity (measured in inches) on the playground.

In this pilot study, students were provided access to a pre-built, interactive
computational model implemented in NetsBlox [1], which they used to construct
and test playground designs1. Students could combine seven surface materials for
constructing their playground: (1) concrete, (2) natural grass, (3) artificial turf,
(4) engineered wood chips, (5) sand, (6) rubber tiles, and (7) poured rubber.
As part of their design task, students chose materials that were appropriate
for the different parts of the playground (this was specified as requirements for
specific play areas, e.g., soccer field, basketball court, swing sets, etc.) and met
the runoff and cost constraints; in addition, they had to make sure that the
field was wheelchair-accessible. The cost, runoff ratio, and accessibility of each
material were provided to the students to help them design the playground.

Students constructed their playground by clicking on the squares and select-
ing from the seven available materials. When students chose a material, the
square’s look reflected the choice of material, and its cost was added to the total
playground cost. The total runoff from the playground for a specified amount of
rainfall was also updated using the Rational Equation.

The left part of Fig. 1 shows a playground design built with materials such
as natural grass, artificial turf, sand, concrete, and rubber tiles to allow for a
soccer field (four squares), a basketball court (two squares), and a play area with
swings and other equipment (two squares). The three icons on the top of the UI
on Fig. 1 represent the control buttons for the simulation. Students could click on

1 Students did not program the computational model in this pilot study, however, we
have added programming activities in NetsBlox for future studies.
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Fig. 1. The user interface of the playground design and a rain plot.

the dark cloud icon to open a dialog box to select the intensity and duration of
the rain. After a simulation run, students could view a plot of the results (rainfall
amount and runoff by the hour), and check the cost of the current playground
under the bank icon.

The system logged five types of actions as students interacted with the com-
putational model: (1) adding/removing the surface material for a square; (2)
resetting all squares on the playground to the initial empty state, and (3–5)
clicking on the 3 control buttons. The values of the model variables (e.g., the
choice of the surface materials, the total cost, and runoff rate) were also logged
for post hoc analyses.

3.2 Playground Design Criteria and Scoring

The students were informed that a satisfying playground design must meet
three criteria: (1) runoff ≤ 0.5 in. after 1.2 in. of total rainfall in 4 h, (2) cost
≤ $200,000 for the playground, and (3) having sufficient accessibility for stu-
dents in wheelchairs. The accessibility criterion was not quantified in the design
specifications, but for our post hoc analysis of the students’ designs, we assigned
scores of 1.0, 2.0, and 3.0 to low, medium, and high accessibility materials.
Because the values associated with the three design criteria had widely different
scales, we applied a simple transformation to each criterion to reduce them to a
value between 1.0 and 5.0 to ensure that each criterion was given equal weight
in our assigned evaluation score for a student’s design. Specifically, because the
playground cost varied between $40,000 and $600,000, we applied an inverse
linear scaling to convert the actual playground cost into a score in the range
[1.0, 5.0], where 1.0 represented $600,000 and 5.0 represented $40,000. Simi-
larly, the runoff values were scaled to the same range with 1.0 representing a
0.96-in. runoff design (the maximum possible) and 5.0 representing a 0.24-in.
runoff (the minimum possible) after the 1.2-in. rainfall.

We then used the mean of the 3 sub-scores as the score of a playground
design. Figure 2 presents a visualization of a baseline design that just meets all
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of the criteria, i.e., a design costing $200,000, resulting in 0.5 in. of runoff after a
1.2-in. rainfall, and having a medium level of accessibility. The score computed
for this baseline design is 3.4 (the mean of the runoff score of 3.35, cost score of
3.85, and accessibility score of 3). The students were not aware of this scoring
system while they worked on their designs. Instead, they directly compared the
cost of the playground and the amount of the runoff for a number of designs and
then selected what they argued was their best solution.

Fig. 2. The scores of the baseline design calculated by post hoc analysis

3.3 Assessment of Integrated Science and Engineering Proficiency

We designed a summative assessment that included 3 tasks measuring stu-
dents’ proficiency with NGSS upper elementary engineering design Performance
Expectations [7]. One task assessed students’ ability to define a design problem
(3-5-ETS1-1). The second and third tasks assessed students’ ability to gener-
ate and compare multiple possible solutions (3-5-ETS1-2) [8]. The assessment
modality included multiple choice and constructed response questions. All three
tasks were designed around the scientific concepts of water runoff. Task rubrics
rewarded the extent to which students could make valid engineering decisions
and whether these decisions were informed by the underlying scientific concept
of water absorption and runoff. Sample questions and more detailed discussions
of the development of the 3-dimensional assessment, its alignment to the NGSS,
and the description of the grading rubrics have been presented in [3,8].

A total of 397 students (123 fifth-graders and 274 sixth-graders) from an
upper-elementary school in the United States participated in the 4-week pilot
study (about 1 h per school day). The study was led by science teachers with
researchers playing the role of observers. The school district’s STEM coordina-
tor and one participating teacher were closely involved in the development and
implementation of the curriculum. However, the teachers had not taught the
PDC curriculum prior to this implementation. The summative assessment was
administered as a pre- and posttest at the beginning and the end of the study.
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4 Results and Discussions

4.1 Learning Gains from the Curriculum Unit

The pre- and posttest scores of a subset of 107 students were graded at the time
of this analysis. We did not include students who missed a pretest or a posttest,
leaving us with 88 students. We confirmed with a Kolmogorov-Smirnov test [4]
that the pre-post scores were not normally distributed, and then used the non-
parametric Wilcoxon rank-sum test [4] to examine if the differences in pre- to
posttest scores were significant. Table 1 reports the test statistics of the overall
scores and their breakdown.

Table 1. Learning gains (N = 88).

Test Points Pre score (std) Post score (std) p-value z-score Effect size

Total 18 4.72 (3.52) 6.50 (3.61) <0.001 4.68 0.35

Def. problem 6 1.44 (1.11) 2.03 (1.33) <0.001 3.77 0.28

Gen. solution 4 1.59 (1.45) 2.02 (1.52) 0.012 2.50 0.19

Comp. solutions 8 1.68 (1.78) 2.44 (1.76) 0.008 2.67 0.20

The students’ learning performance showed statistically significant improve-
ments in all aspects. This helps answer RQ 1, i.e., that there appeared to be
a positive association between the curriculum and the students’ improved pro-
ficiency in engineering design tasks. However, the effect sizes were small, and
there was a considerable gap between the posttest scores students attained the
maximum possible score. Therefore, there is room for students to improve their
engineering design abilities, which we hope to achieve by refining the current
curriculum. This result also matches the literature that engineering design is
challenging for elementary school students [15].

4.2 Playground Design Behaviors and Design Scores

As discussed in Sect. 3.1, the system logs five types of actions as students experi-
ment and design their playgrounds. During the study, it recorded a total of 79,003
actions from 357 students. In this paper, we focus on two types of measures of
the log data that relate to evaluating design solutions: (1) the number of tests
conducted by a student; and (2) the scores assigned to a student-generated play-
ground design. Both measures indicate how the students searched the solution
space [10] and how well the generated solutions met the design criteria.

Table 2 presents the definition and descriptive statistics related to the number
of tests the students conducted and the solution they chose. The relatively large
variance in the number of test actions can be explained by classroom observations
that some students worked in pairs to generate these solutions. This was expected
because students were encouraged to work with each other and discuss their
solutions with others in the classroom.
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Table 2. Descriptive statics of test data.

Variable name Description Mean (std) Range

Num test Number of tested
designs

7.64 (7.19) 1–36

Satisfy designs Number of tested
designs satisfying all
criteria

3.28 (4.53) 0–27

Best score Highest score of all
tested designs

3.86 (0.15) 2.85–4.03

Last score Score of the last
(temporally) tested
design

3.76 (0.17) 2.85–4.03

Submitted score Score of the design
submitted to WISE

3.77 (0.14) 3.42–3.97

Score diff Difference between
submitted and best
scores

0.08 (0.18) −0.30–0.47

Students submitted their final playground design to the Web-based Inquiry
Science Environment (WISE) [13], where they also participated in a number
of instructional activities. The submitted designs were scored by the method
discussed in Sect. 3.2. A negative value for the submitted score difference (the last
row of Table 2) implies that some students submitted a design that was better
than what they tested during their computational modeling experiments. This
discrepancy can be partly explained by the fact that students collaborated for
some of the time and the solution reported may have resulted not from individual
work but the collaboration, which produced better solutions than the individual
efforts. On the other hand, classroom observations and interviews also indicated
that some students arbitrarily reported designs that they thought looked good,
although they did not actually test these solutions. The second situation echoed
reports in the literature that students’ focus during design activities may be
diverted by personal aesthetics [5].

We compared the scores of the students’ submitted designs to the highest
scores of tested designs and found that less than 10% of the students reported
their best design on WISE. A Mann-Whitney U -test [4] showed a significant
difference in the scores. The average submitted score was 3.77 (stdev = 0.14)
and the average best solution score generated in the NetsBlox environment was
3.86 (stdev = 0.15). This difference was significant (p-value < 0.001) with a large
effect size of 3.48. This result indicates that although the students were able to
generate satisfying design solutions, they did not make much of an attempt
to compare the different solutions they had generated. More importantly, the
difference in the reported solution and the best solution provides insight into
students’ understanding and learning to generate optimal playground design
solutions. We discuss the implications in Sect. 4.3.
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4.3 Correlation Analyses

Table 3 reports the correlation coefficients (Spearman’s ρ) of the performance
and behavioral measures from the 88 students whose pretest and posttest scores
were available. Statistically significant correlations are marked with ∗s. We
present a few observations from the correlation analysis and discuss how they
can help answer research questions 2 and 3.

Table 3. Correlation coefficients of measures (∗: p-value < 0.05, ∗∗: p-value < 0.01).

Pre

score

Post

score

Learning

gain

Num

test

Satisfy

designs

Best

score

Last

score

Sbmtd.

score

Post score 0.64∗∗

Learning

gain

−0.25∗ 0.53∗∗

Num test 0.12 0.13 0.05

Satisfy

designs

0.12 0.00 −0.13 0.75∗∗

Best score 0.17 0.06 −0.11 0.80∗∗ 0.81∗∗

Last score 0.06 0.04 −0.10 0.66∗∗ 0.65∗∗ 0.53∗∗

Submitted

score

−0.09 −0.09 0.49∗∗ 0.31∗ 0.17 −0.04 0.23∗

Score diff 0.11 0.04 −0.41∗∗ 0.23∗ 0.06 0.06 0.05 0.18

First, the students’ pre- and posttest scores are highly correlated (ρ = 0.64).
This is an expected result—studies [2,11] suggest that a learner’s prior knowledge
in a domain facilitates further learning in the domain. Surprisingly, the weak
negative correlation between pretest score and learning gains (ρ = −0.25) implies
those who had high prior knowledge did not learn as much from the intervention.
The small negative correlation between learning gains and the playground design
scores (ρ = −0.11) implies that the students learned about design criteria, but
may have not applied them in an effective way to generate their design solutions.
However, the correlation is not significant, implying there may be no true effect
between the two variables.

Second, the learning gain is correlated with the submitted design scores
(ρ = 0.49). We expected such a correlation because we believed that the stu-
dents’ performance in the engineering design activities should contribute to their
improvement of the engineering proficiency (as evaluated by the pre-post assess-
ments). This observation provides insights into RQ 2 that the students’ engi-
neering design solutions are indicative of their learning gains.

Third, the number of tests conducted by the students is correlated with (1)
the number of satisfying designs (ρ = 0.75), (2) the best design scores (ρ = 0.80),
and (3) the submitted design scores (ρ = 0.31). Additionally, the number of
satisfying designs also correlated with the highest design scores (ρ = 0.81). It
suggests that the students who committed more effort on systematically creating
and testing design solutions were more likely to find better playground designs.
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Fourth, the difference between the submitted design scores and the best
design scores is moderately and negatively correlated with the learning gain
(ρ = −0.41). In addition, when we analyzed the correlation of this variable and
the learning gains of each individual assessment items (i.e., defining problem,
generating solutions, and comparing solutions – results not reported in Table 3
due to the space limitations), we found that the learning gains for the comparing
solutions sub-task is strongly and negatively correlated with the score difference
(ρ = −0.72). This evidence suggests that students’ ability to discern better
design solutions in the learning environment is strongly indicative of the NGSS
PE of comparing solutions (3-5-ETS1-2).

Fifth, the submitted scores had a larger correlation to the score of the last
tested design (ρ = 0.23) than the best design (ρ = −0.04). Because the submitted
scores seem to be independent of the best design scores, it is reasonable to
believe that a large number of students simply reported the results of their last
generated design solution rather than the best design solutions. Nonetheless,
these observations provide some evidence to answer RQ 3 that students’ learning
behaviors and performances directly link to the NGSS engineering performance.

4.4 A Case Description

In this subsection, we present a case study using the log data from one student to
illustrate his/her playground design processes. The student was among the most
successful students in the pilot study based on their learning improvement and
design performances. The student tested the designs 29 times (at the 98th per-
centile, abbreviated as % later), and 13 tested designs satisfied all design criteria
(95%). The student had the highest design score of 3.92 (67%), which is also the
design submitted to WISE (85%). The student’s overall pretest score, posttest
score, and standardized learning gain were 5 points, 8 points, and 0.42 (59%,
99%, and 90%, respectively). Figure 3 provides a visualization of the students’
playground design projected onto a 3-dimension space. The three axes of the
figure correspond to the runoff, cost, and accessibility aspects of the design cri-
teria. Each dot on the 3-D plot marks a tested design. The shaded region stands
for a satisfying solution space, i.e., all dots contained in the solution space mark
a satisfying design.

The student’s initial design used poured rubber (the most expensive mate-
rial) on 4 squares and had a total cost of $255,000, failing to satisfy the cost
criterion. On the second try, the student replaced poured rubber on 2 squares
with less expensive materials and made a satisfying design. Despite succeeding
early on, the student continued to explore additional solutions in an apparent
effort to further improve the solution. The student tried other designs using
more concrete, a less absorbent material that caused more runoff, resulting in
a few designs that again failed the runoff criteria (designs 3–7). After address-
ing the runoff problem, the student made the best design at the 10th attempt
and kept experimenting. Later, the student replaced half of the concrete squares
with natural grass, which in turn caused the playground not being accessible
anymore (designs 14–16). Then the student tried a new design with artificial
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Fig. 3. A student’s playground design projected on a 3-dimension space.

turf and concrete, raising the total cost over the limit again (No. 17). Finally,
after exploring a few other inexpensive designs consisting most of natural grass
and concrete, the student created a satisfying final solution. By this time, the
student had experimented with all 7 surface materials.

This case study presents the trajectory of a successful designer who also
achieved high learning gains. More importantly, it shows how we can derive fea-
tures such as (1) the transitions between non-satisfying designs and satisfying
designs and (2) the changes between the designs (visualized as the arrows in
Fig. 3). These features will provide a great opportunity to use data-driven meth-
ods to characterize students’ learning behaviors and provide feedback to help
them improve their design proficiency over time.

5 Conclusions

In this paper, we introduced the computational model and the learning activ-
ities that the students engaged in the Playground Design Challenge. We pre-
sented results from the data collected from a pilot study and discussed how
the students’ behaviors in the design activity could influence the performance
of the design, which in turn linked to their learning performance as evaluated
by NGSS-aligned pre-post assessments. For future work, (1) we have integrated
the computational modeling activities in the latest version of the curriculum
and planned to investigate the synergistic effect between the scientific modeling
activities and engineering design activities. (2) To assist the engineering design
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process, we plan to add a function to record each tested design that can ease
comparing these solutions without memorizing all of them. (3) We are also build-
ing tools to analyze students’ log data online and provide adaptive scaffolding
with methods outlined in our previous work, e.g., [16,17].
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Abstract. In interactive e-learning environments such as Intelligent
Tutoring Systems, there are pedagogical decisions to make at two main
levels of granularity: whole problems and single steps. Recent years have
seen growing interest in data-driven techniques for such pedagogical deci-
sion making, which can dynamically tailor students’ learning experiences.
Most existing data-driven approaches, however, treat these pedagogical
decisions equally, or independently, disregarding the long-term impact
that tutor decisions may have across these two levels of granularity. In
this paper, we propose and apply an offline, off-policy Gaussian Processes
based Hierarchical Reinforcement Learning (HRL) framework to induce
a hierarchical pedagogical policy that makes decisions at both problem
and step levels. In an empirical classroom study with 180 students, our
results show that the HRL policy is significantly more effective than a
Deep Q-Network (DQN) induced policy and a random yet reasonable
baseline policy.

Keywords: Hierarchical Reinforcement Learning · Pedagogical policies

1 Introduction

Interactive e-Learning Environments such as Intelligent Tutoring Systems (ITSs)
and educational games have become increasingly prevalent in educational set-
tings. In domains like math and science, solving a problem often requires pro-
ducing one or multiple steps, each of which is the result of applying a domain
principle or rule. For example, 2x + 5 = 9 can be solved for x in two steps:
(1) subtract the same term 5 from both sides of the equation; and (2) divide
both sides by 2. Tutoring in such domains is thus often structured as a two-loop
procedure [35]: the outer loop makes problem level decisions, such as problem
selection; while the inner loop controls step level decisions, such as whether or
not to give hints or give a feedback. As a result, there are decisions to make
and opportunities to give at different levels of granularity, such as hints, worked
examples, immediate feedback, or suggested subgoals, and some are more impor-
tant or impactful than others. Human decision-makers treat these distinct levels
of granularity differently and are capable of selecting between them [7,12].
c© Springer Nature Switzerland AG 2019
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Data-driven approaches, and especially reinforcement learning (RL), have
been shown to improve the effectiveness of ITSs [4,5,9,10,19,28,29,39]. However,
most prior applications of RL for pedagogical policy induction treat all system
decisions equally or independently and do not account for the long-term impact
of higher-level actions or the interaction of decisions made at different levels. In
this paper, we propose and apply an offline, off-policy Gaussian Processes-based
(GP-based) Hierarchical Reinforcement Learning (HRL) framework to induce a
hierarchical pedagogical policy at two levels of granularity: problem and step.
More specifically, our HRL policy will first make a problem-level decision and
then make step-level decisions based on the problem-level decision. In this study,
for example, our HRL policy first decides whether the next problem should be a
worked example (WE), problem solving (PS), or a faded worked example (FWE).
In WEs, students observe how the tutor solves a problem; in PSs students solve
the problem themselves; in FWEs, the students and the tutor co-construct the
solution. Based on the problem-level decision, the HRL policy then makes step-
level decisions on whether to elicit the next solution step from the student, or to
show it to the student directly. We refer to such decisions as elicit/tell decisions.
If WE is selected, an all-tell step policy will be carried out; if PS is selected,
an all-elicit policy will be executed; finally if FWE is selected, the tutor will
decide whether to elicit or to tell a step based on the corresponding induced
step-level policy. Both WE and PS can be seen as two extreme ends of FWEs.
Therefore, one non-hierarchical way to make decisions would be to focus on
step-level decisions alone.

In a classroom study, we compared the HRL induced hierarchical policy
(HRL) with two step-level policies: a Deep Q-Network induced policy (DQN)
and a random yet reasonable (Random) policy because both elicit and tell are
always considered to be reasonable educational interventions in our learning con-
text. 180 students were randomly assigned to three conditions and our results
showed that the HRL policy was significantly more effective than the DQN and
Random policies, and no significant difference was found between the two latter
policies. For time on task, no significant difference was found between the HRL
condition and Random but the former (HRL) spent significantly more time than
DQN. Finally, the induced HRL policy is more likely to select PS and FWE than
WE, which confirmed our hypothesis that HRL would provide the right balance
to pedagogical decision making, targeting WEs and tells to just those problems
and steps that need them.

2 Background and Related Work

2.1 Previous Research on Applying RL to ITSs

Generally speaking, RL approaches can be classified as online, where the agent
learns a policy in real time by interacting with the environment, or offline,
where the agent learns from pre-collected training data. RL approaches can
also be divided into on-policy vs. off-policy, based on the relationship between
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their behavior and estimation policies [32]. In on-policy RL, the behavior pol-
icy used to control how the agent explores the environment (online), or col-
lects training data (offline), is the same as the estimation policy being learned.
In off-policy methods, these two policies may be unrelated. Both online and
offline RL approaches have been used for pedagogical policy induction in recent
years; among them, prior research mainly took an off-policy RL approach
[3,4,9,10,13,19,28,36,39]. Next, we will describe prior RL work from the online
vs. offline perspective.

Online RL research to induce pedagogical policies has often relied on simu-
lations or simulated students. As a consequence, the success of these approaches
is heavily dependent on the accuracy of the simulations. Beck et al. [3] applied
temporal difference, with off-policy ε-greedy exploration, to induce pedagogical
policies that would minimize the students’ time on task. Iglesias et al. applied
another common online, off-policy approach named Q-learning to induce poli-
cies for efficient learning [9,10]. More recently, Rafferty et al. applied POMDP
with off-policy tree search to induce policies for faster learning [19]. Wang et al.
applied an online, off-policy Deep-RL approach to induce a policy for adaptive
narrative generation in educational game [36]. All of the models described above
were evaluated via simulations or classroom studies, yielding improved student
learning and/or behaviors as compared to baseline policies.

Offline RL approaches, on the other hand, “take advantage of previous col-
lected samples, and generally provide robust convergence guarantees” [25]. The
success of offline RL is thus often heavily dependent on the quality of the train-
ing data. One common convention is to collect an exploratory corpus by training
students on an ITS that makes random yet reasonable decisions and then apply
RL to induce pedagogical policies from that corpus. Shen et al. applied value
iteration and least square policy iteration on a pre-collected training corpus to
induce pedagogical policies aimed at improving students’ learning performance
[27,28]. Chi et al. applied policy iteration to induce a pedagogical policy aimed
at improving students’ learning gains [4]. Mandel et al. [13] applied an offline
POMDP approach to induce a policy which aims to improve student perfor-
mance in an educational game. In classroom studies, most models above were
found to yield certain improved student learning relative to a baseline policy.

Despite these successes, the necessity for accurate simulations (online) or
large training corpora (offline) has limited the wide use of RL for policy induc-
tion. Additionally, prior research on both online RL and offline RL has not taken
the granularity of decisions into account when applying RL techniques for the
induction of pedagogical policies. In the remainder of the paper, we will refer to
these approaches as flat RL to differentiate them from our new HRL approach.

It has been widely shown that HRL can be more effective and data-efficient
than flat RL approaches [6,11,18,22,37]. HRL generally breaks down a large
decision-making problem into a hierarchy of small sub-problems and induces a
policy for each of them. Since the sub-problems are small, they usually require
less data to find the optimal policies. For example, Cuayhuitl et al. induced
navigation policies [6] at 3 levels: buildings, floors, and corridors, showing that



Hierarchical Reinforcement Learning for Pedagogical Policy Induction 547

HRL converged to an optimal policy in much fewer iterations. Peng et al. showed
success using temporal HRL to induce locomotion control policies for path fol-
lowing and soccer dribbling while flat policies could not complete these tasks
[18]. Although promising, the use of hierarchy requires additional information,
such as the transitions and rewards at different levels of granularity, to induce
a policy, and this may be hard to get from pre-collected data. Therefore, most
existing HRL applications have been online, but here, we propose and apply an
offline, off-policy HRL approach. To the best of our knowledge, this is the first
attempt to apply HRL to induce pedagogical policies.

2.2 WE, PS and FWE

Prior research has investigated the effectiveness of WE, PS, FWE, and their
various combinations [14–17,21,23,26,31,33]. When focusing on PS and WE,
Mclaren et al. found no significant difference in learning performance between
studying WE-PS pairs and doing PS-only, but the former spent significantly less
time than the PS-only [16]. In a subsequent study, Mclaren et al. compared three
conditions: WE-only, PS-only and WE-PS pairs [15]. Similarly, no significant
differences were found among them in terms of learning gains, but the WE
condition spent significantly less time than the other two; and no significant
time on task difference was found between PS-only and WE-PS pairs.

Several studies were conducted comparing different combinations of WE, PS,
and FWE. Renkl et al. compared WE-FWE-PS with WE-PS pairs, and the for-
mer significantly outperformed the latter on student learning performance while
no significant difference was found between them on time on task [21]. Sim-
ilarly, Najar et al. compared adaptive WE/FWE/PS with WE-PS pairs [17].
They found that the former significantly outperformed WE-PS pairs in terms
of learning outcomes and the former also spent significantly less time on task
than the latter. For adaptive WE/FWE/PS, they used expert rules to make
decisions based on student learning states. Finally, Salden et al. compared three
conditions: WE-FWE-PS, FWE, and PS-only [23]. Their results showed that
FWE outperformed WE-FWE-PS, which in turn outperformed PS-only, and no
significant time on task difference was found among the three conditions. Note
that in their study, the order of WE, FWE, and PS were fixed in WE-FWE-PS;
while in FWE, the tutor used an adaptive pedagogical policy, expert rules com-
bined with data-driven student models. In short, previous studies have shown
that alternating among WE, PS, and FWEs can be more effective than only
alternating between WE and PS; however, it is not clear whether the former
can be more effective than only using FWEs. On the other hand, prior research
either used a fixed policy (WE-FWE-PS) or hand-coded expert rules combined
with data-driven student models to make decisions. In this work, we applied
an offline, off-policy HRL framework to derive a hierarchical pedagogical pol-
icy directly from empirical data. Its effectiveness is directly compared against
another data-driven FWE policy induced by applying one of the state-of-the-art
flat RL methods: Deep Q-Network.
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3 Policy Induction

In this work, both our proposed HRL framework and DQN are offline, off-policy
in that they induce policies from a historical dataset D collected by training
students on the ITS that makes random yet reasonable decisions. RL focuses on
inducing effective decision making policies for an agent with the goal of max-
imizing the agent’s cumulative rewards. In many domains, RL is applied with
immediate rewards. In an automatic call center system, for example, the agent
can receive an immediate reward for every question it asks because the impact of
each question can be assessed instantaneously [38]. Immediate rewards are gen-
erally more effective than delayed rewards for RL-based policy induction. This
is because it is easier to assign appropriate credit or blame when the feedback
is tied to a single decision. The more we delay the rewards or punishments, the
harder it becomes to assign credit or blame properly. The availability of imme-
diate rewards is especially important for HRL approaches. On the other hand,
the most appropriate reward to use in ITSs is student learning gains, which are
typically unavailable until the entire training process is complete. This is due to
the complex nature of the learning process which makes it difficult to assess stu-
dents’ learning moment by moment and more importantly, many instructional
interventions that boost short-term performance may not be effective over the
long-term. Therefore, we first proposed and applied a Gaussian Processes based
(GP-based) approach to infer “immediate rewards” from the delayed rewards
and then applied HRL and DQN to induce the corresponding hierarchical or
step-level policies based on the inferred immediate rewards. In the following, we
will briefly describe: (1) our proposed GP-based approach to infer immediate
rewards, (2) our offline, off-policy GP-based HRL framework, and (3) DQN. We
now present a few critical details of the process, but many have been omitted to
save space.

3.1 GP-Based Approach for Immediate Reward Inference

Our historical dataset D consists of student-ITS interaction trajectories with
different lengths. Each trajectory d can be viewed as: s1

a1,r1−−−→ s2
a2,r2−−−→

· · · sn an,rn−−−→. Here si
ai,ri−−−→ si+1 indicated that at the ith turn in d, the learning

environment was in state si, agent executed action ai and received reward ri,
and then the learning environment transferred into state si+1. Because our pri-
mary interest is to improve students’ final learning, we used Normalized Learning
Gain (NLG) as the reward because it measures students’ gain irrespective of their
incoming competence. NLG = posttest−pretest√

1−pretest
where pretest and posttest refer

to the students’ test scores before and after the ITS training respectively and 1
is the maximum score. Given that a student’s NLG will not be available until the
entire training is completed, only terminal states have non-zero rewards. Thus
for a trajectory d, r1 · · · , rn−1 are all equal to 0, and only the final reward rn is
equal to the student’s NLG × 100, which is in the range of (−∞, 100].

To infer the immediate rewards from the final delayed reward for each trajec-
tory, we applied Gaussian Processes (GP) to learn a distribution function f for
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the expected values and the standard deviations of all of the immediate rewards.
More specifically, a prior probability is given to each possible function before
observation. Then, higher probabilities are given to the functions where the sum
of the generated immediate rewards is close to the observed delayed reward.
In other words, the immediate rewards inside each trajectory were inferred by
minimizing the mean square error (MMSE) of additive Gaussian distributions
[8]. The immediate rewards were distributed inside each trajectory by assuming
that they follow Gaussian distributions and that these rewards add up to the
delayed reward for each trajectory. Following the Gaussian Process Regression
[1,20] and the shared mutual information existed in the feature representation,
we can thus infer the immediate rewards from delayed rewards.

3.2 An Offline, Off-policy GP-Based HRL for Policy Induction

Most HRL research is based upon an extension of Markov Decision Processes
(MDPs) called Discrete Semi-Markov decision processes (SMDPs) and the cen-
tral idea behind the HRL approach is to transform the problem of inducing
effective pedagogical policies into one of computing an optimal policy for choos-
ing actions in SMDPs. An MDP describes a stochastic control process and for-
mally corresponds to a 4-tuple: <S,A,T,R>. When inducing pedagogical policies,
the states S are vector representations composed of relevant learning environ-
ment features such as the difficulty level of a problem, percentage of the correct
entries a student entered so far and so. In this study, we have a total of 142 state
features to describe the learning environment; the actions A are selected from
{WE,FWE,PS} for problem-level decisions and from {elicit, tell} for steps;
the reward function R is calculated from the system’s success measures: stu-
dents NLG. Once the {S,A,R} has been defined, the transition probabilities T
are estimated from the training corpus, D. Once a complete MDP is constructed,
calculation of an optimal policy via policy iteration is straightforward.

SMDPs extend the existing MDP framework with the addition of a set of
complex activities [2] or options [30], each of which can invoke other activities
recursively, thus allowing for hierarchical policy functions. The complex activities
are distinct from the primitive actions in that a complex activity may contain
multiple primitive actions. In our applications, WE, PS and FWE are complex
activities while elicit and tell are primitive actions. A complex activity consists
of three elements: a policy π that maps states to each available option, a ter-
mination condition, and an initiation set. A solution to the SMDP mentioned
above is an optimal policy (π∗), a mapping from state to complex activities or
primitive actions, that maximizes the expected discounted cumulative reward
for each state.

The complex activities in SMDPs can take a variable number of low-level
activity (or actions) to execute across multiple time steps. This makes it nec-
essary to extend the state-transition function to take into account the activity
length. If an activity a takes t′ time steps to be executed in state s, then the state
transition probability function given s and a is defined by the joint distribution
of the result state s′ and the number of time steps t′ when action a is performed
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in the state s: P (s′, t′|s, a). The expected reward function is also extended to
accumulate over the waiting time in s given action a. More specifically, the Q-
value function Q(s, a) represents the expected discounted reward the agent will
gain if it takes an action a in a state s and follows the policy to the end and for
SMDP, the Bellman equation can be re-written as:

Q(s, a) = R(s, a) +
∑

s′,t′
γt′

P (s′, t′|s, a)max
a′∈A

Q(s′, a′) (1)

0 ≤ γ ≤ 1 is a discount factor. If γ is less than 1, then it will discount rewards
obtained later. For HRL, learning occurs at multiple levels. The global learning
generates a policy for the top level decision and local learning generates a policy
for each complex activity. This process retains the fundamental assumption of
RL: that goals are defined by their association with reward, and thus that the
objective is to discover actions that maximize the long-term cumulative reward.
Local learning focuses not on learning the best policy for the overall task but
the best policy for the corresponding complex activity.

In our offline off-policy HRL framework, both problem- and step-level poli-
cies were learned by recursively using the Gaussian Processes to estimate the
Q-value function in Eq. 1. Using an actor-critic policy iteration framework, we
iteratively update the policy. This process continues until the Q-value function
and the induced policy converged. We assume that the Q-value function fol-
lows a prior distribution and by combining the prior of Q-value function and
the inferred immediate rewards, the Gaussian Process Regression can provide
the posterior distribution of the Q-value function approximation in a tractable
way. In this work, our training corpus contains a total number of 1118 students’
interaction logs collected from a series of seven prior studies which followed the
identical procedure and learning materials as the students in this study described
below. To induce the hierarchical policy, we defined a problem-level semi-MDP
for determining whether the next problem should be WE, PS or FWE and for
each of the training problems, we defined a step-level semi-MDP for inducing a
step-level policy to determine elicit vs. tell if a complex activity FWE is selected
for that training problem.

3.3 DQN for Policy Induction

A Double DQN approach [34] with the prioritized experience replay technique
[24] was applied to induce the DQN step-level policy. A multi-layer perceptron
neural network was used to approximate the Q-function. The inputs to the neural
network were the last 3 step observations of a student and the outputs were
the Q values for each possible step level action (in our case, elicit and tell).
The network consists of two 64-unit layers with the rectified linear unit (ReLU)
activation function (except that the output layer has no activation function). As
a convention for this algorithm, an experience replay buffer and a target network
were used to stabilize the training. The data and immediate rewards used for
DQN policy induction were identical to those used for HRL.
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4 Empirical Experiment

Participants. This study was conducted in the undergraduate Discrete Math-
ematics course at the Department of Computer Science at North Carolina State
University in the Fall of 2018. The study was given as one of the regular home-
work assignments; students had one week to complete it and were graded based
upon their demonstrated effort rather than performance. Students (N = 180)
were randomly assigned into three conditions (60 in each of HRL, DQN, and
Random). Due to preparations for exams and the length of the experiment, 140
students completed the study. 3 students who scored perfectly in the pre-test
were excluded from our subsequent analysis. In addition, 9 students who com-
pleted the study in groups were excluded. The remaining 128 students were
distributed as follows: N = 44 for HRL, N = 45 for DQN, and N = 39 for
Random. A χ2 test shows that the participants’ completion rate did not differ
by condition: χ2 (2) = 1.03, p = 0.598.

Pyrenees is a web-based ITS that teaches students a general problem solv-
ing strategy and 10 major principles of probability, such as the Complement
Theorem and Bayes’ Rule. It provides students with step-by-step instruction,
immediate feedback, and on-demand help. Specifically, the help is provided via
a sequence of increasingly specific hints. The last hint in the sequence, i.e., the
bottom-out hint, tells student exactly what to do. Except for the decision gran-
ularity, the remaining components of the tutor, including the GUI interface, the
training problems, and the tutorial support were identical for all students.

Procedure. All three conditions went through the same four phases: (1) text-
book, (2) pre-test, (3) training on the ITS, and (4) post-test. The only difference
among them was the policy employed by the ITS. During textbook, all students
read a general description of each principle, reviewed some examples, and solved
some training problems. The students then took a pre-test which contained
a total of 14 single- and multiple-principle problems. Students were not given
feedback on their answers, nor were they allowed to go back to earlier ques-
tions (this was also true for the post-test). During training on the ITS, all
three conditions received the same 12 problems in the same order. Each domain
principle was applied at least twice. Finally, all students took the 20-problem
post-test; 14 of the problems were isomorphic to the pre-test. The remainder
were non-isomorphic multiple-principle problems.

Grading Criteria. The pre- and post-test problems required students to derive
an answer by writing and solving one or more equations. We used three scoring
rubrics: binary, partial credit, and one-point-per-principle. Under the binary
rubric, a solution was worth 1 point if it was completely correct or 0 if not. Under
the partial credit rubric, each problem score was defined by the proportion of
correct principle applications evident in the solution. A student who correctly
applied 4 of 5 possible principles would get a score of 0.8. The One-point-per-
principle rubric in turn gave a point for each correct principle application. All of
the tests were graded in a double-blind manner by a single experienced grader.
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Table 1. Learning performance and time on task

Condition Pre Iso post Full post Adj post NLG Time (hours)

HRL(44) 66.4(18.8) 85.8(14.6) 75.3(16.9) 77.7(10.3) 14.3(19.2) 2.19(.64)

DQN(45) 73.9(13.6) 85.2(13.1) 74.2(14.6) 71.2(12.0) −2.2(29.4) 1.81(.58)

Random(39) 66.3(18.9) 80.5(19.5) 69.0(19.6) 71.4(13.8) −0.1(35.0) 1.97(.52)

The results presented below were based upon the partial-credit rubric but the
same results hold for the other two. For comparison purposes, all test scores were
normalized to the range of [0, 100].

5 Results

Despite of random assignment, a one-way ANOVA analysis on the pre-test
score showed a marginally significant difference among the three conditions:
F (2, 125) = 2.805, p = 0.064, η = 0.043. Subsequent contrast analysis showed
that DQN scored significantly higher than HRL: t(125) = 2.06, p = 0.042,
d = 0.46 and Random: t(125) = 2.01, p = 0.046, d = 0.46; but there is no signif-
icant difference between HRL and Random: t(125) = 0.02, p = 0.986, d = 0.00.
The results suggest that while our random assignment indeed balanced the HRL
and Random conditions’ incoming competence, it did not do so for the DQN
condition. Therefore, we mainly focus on comparing learning performances that
consider the pre-test differences, that is, adjusted post-test and NLG especially
the latter because it is the reward we used for policy induction.

Table 1 shows the mean and standard deviation (SD) of students’ learning
performance and total training time results across three conditions. From left to
right, it shows the condition with the number of students in parentheses, pre-
test (Pre), isomorphic post-test (Iso Post), full post-test (Full Post), adjusted
post-test (Adj Post), Normalized Learning Gain (NLG), and the total training
time on the ITS in hours (Time).

Isomorphic Post-test. To measure students’ learning improvement, we com-
pared their isomorphic post-test scores with their pre-test scores. A repeated
measures analysis using test type (pre-test vs. isomorphic post-test) as a factor
and test score as the dependent measure showed a main effect for test type:
F (1, 127) = 158.63, p < 0.0001, η = 0.555 in that students scored significantly
higher in the isomorphic post-test than in the pre-test. More specifically, all
three conditions scored significantly higher in the isomorphic post-test than in
the pre-test: F (1, 43) = 110.74, p < 0.0001, η = 0.720 for HRL, F (1, 44) = 34.73,
p < 0.0001, η = 0.441 for DQN, and F (1, 38) = 38.47, p < 0.0001, η = 0.503 for
Random. This showed that the basic practice and problems, domain exposure,
and interactivity of our ITS effectively help students acquire knowledge, even
when the decisions are made randomly yet reasonably.
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Table 2. Step level tutor decisions

Condition Elicit Tell Pct Tell

HRL 309.0(60.4) 88.7(66.1) 22.025(15.870)

DQN 205.8(51.6) 188.9(53.0) 47.794(12.974)

Random 200.5(15.9) 203.5(17.4) 50.354(2.482)

Adjusted Post-test. To comprehensively evaluate students’ final performance,
we performed analysis on the full post-test score which has an additional six
multiple-principle problems. An ANCOVA analysis on the post-test using the
pre-test score as a covariate showed a significant difference among the three con-
ditions: F (2, 124) = 3.86, p = 0.024, η = 0.030. Subsequent contrast analysis on
the adjusted post-test score showed that the HRL condition scored significantly
higher than the DQN condition: t(125) = 2.53, p = 0.013, d = 0.57 and the
Random condition: t(125) = 2.36, p = 0.020, d = 0.52. No significant difference
was found between DQN and Random. The results suggest that the HRL policy
is significantly more effective than the DQN policy and the Random policy.

NLG. Similarly, a one-way ANOVA analysis on the NLG showed that there is
a significant difference among the three conditions: F (2, 125) = 4.39, p = 0.014,
η = 0.066. Subsequent contrast analysis showed that the HRL condition scored
significantly higher than the DQN condition: t(125) = 2.75, p = 0.007, d = 0.66
and the Random condition: t(125) = 2.30, p = 0.023, d = 0.52. Again, no
significant difference was found between DQN and Random. The results suggest
again that the HRL policy significantly outperformed the DQN policy and the
Random policy.

Time on Task. A one-way ANOVA analysis on time on task showed a significant
difference among the three conditions: F (2, 125) = 4.74, p = 0.010, η = 0.071.
More specifically, the HRL condition spent significantly more time than the DQN
condition: t(125) = 3.07, p = 0.003, d = 0.62 and marginally significantly more
time than the Random condition: t(125) = −1.75, p = 0.082, d = 0.39.

Tutor Decisions. Our preliminary log analysis revealed that for the HRL
condition, the average number of problem-level decisions students received are:
.95(1.16) for WE, 5.07(2.58) for PS and 3.98(2.49) for FWE. Thus the HRL pol-
icy was more likely to choose PS and FWE than WE. Table 2 shows the number of
step-level decisions students received across the three conditions. The first column
shows the condition followed by the number of elicit and tell and finally the per-
centage of tell. Our preliminary step-level log analysis results showed that the HRL
condition received more elicit than tell; while the other two conditions received a
relatively balanced amount. A one-way ANOVA analysis on the percentage of tell
revealed a significant difference among the three conditions: F (2, 125) = 71.47,
p < 0.0001, η = 0.533. Subsequent contrast analysis showed that the HRL con-
dition received significantly less tell than the DQN condition: t(125) = −10.00,
p < 0.0001, d = 1.78 and the Random condition: t(125) = −10.60, p < 0.0001,
d = 2.42. In addition, the HRL and the DQN condition had a much higher SD
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on tell percentage. This suggests that the HRL policy and the DQN policy made
more personalized decisions than the Random policy.

6 Conclusion and Discussion

In this study, we proposed and applied an offline, off-policy GP-based HRL
framework to induce a hierarchical pedagogical policy. The policy makes deci-
sions first at the problem level and then the step level. At the problem level,
it decides whether the next problem should be WE, PS or FWE. If FWE is
selected, a corresponding step-level policy will be activated to decide whether
the next step should be elicit or tell. In an empirical classroom study, we com-
pared the HRL policy with a DQN induced step-level policy and a Random
step-level policy. Our results showed that the HRL policy was significantly more
effective than the DQN policy and the Random policy and no significant dif-
ference was found between the latter two policies. For time on task, there was
no significant difference between the HRL condition and the Random condition,
but the former spent significant more time than the DQN condition. Finally, the
HRL policy was more likely to choose PS and FWE than WE.

The results suggest that HRL can be more effective than flat RL in peda-
gogical policy induction. One possible explanation is that HRL has an explicit
problem-level vision. At the problem level, HRL views a problem as an atomic
action, and this abstraction has two potential advantages: (1) it aggregates the
effects of all steps in a problem and (2) it converts a long step-level sequence into
a short problem-level sequence. The aggregation of steps across a problem may
provide HRL with a better estimation of the effect of taking a series of steps;
while the problem sequence may give HRL a better view of the long-term effects
of each problem. Theoretically, flat RL could learn the impact of a problem by
aggregating step-level information, but there is no guarantee that it would. Our
results confirm the intuition that HRL should outperform flat RL on pedagogical
policy induction because it can simultaneously learn at two levels of granularity
- the problem level outer loop and the step level inner loop.
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