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Chapter 6
Role of HSP90 Inhibitors in the Treatment 
of Cancer

Geraldine O’Sullivan Coyne, Cecilia Monge, and Alice P. Chen

Abstract  The 90-kDa heat shock protein HSP90 is a member of a highly evolu-
tionarily conserved class of molecular chaperone proteins indispensable for the 
development of cancer; when activated by cellular stress, HSP90 stabilizes onco-
genic substrate “client” proteins involved in cellular processes that promote tumori-
genesis. HSP90 inhibition attenuates this stabilization of aberrant client proteins in 
tumor cells, allowing for simultaneous targeting of multiple pathways involved in 
cancer cell survival. HSP90 inhibitors have been assessed as potential oncologic 
therapies in several preclinical and clinical studies. Although preclinically promis-
ing results have been measured, these results have not translated yet into major 
clinical efficacy. Combinations of HSP90 inhibitors with approved and investiga-
tional oncology drugs may represent further opportunities for the use of these agents 
in patients with cancer. This chapter reviews some of the important early clinical 
milestones observed in studies of first- and second-generation HSP90 inhibitors 
used as single agents and in combination. In the conclusion, possible reasons for the 
lack of therapeutic benefit in clinical studies are considered.
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Abbreviations

AE	 Adverse event
ALK	 Anaplastic lymphoma kinase
BRAF	 Serine/threonine-protein kinases B-Raf
CDK	 Cyclin-dependent kinase
CRAF	 Serine/threonine-protein kinases C-Raf
CRC	 Colorectal carcinoma
DLT	 Dose-limiting toxicity
EGFR	 Epidermal growth factor receptor
EMT	 Epithelial-to-mesenchymal transition
GDNF	 Glial cell line-derived neurotrophic factor
HER2	 Human epidermal growth factor receptor 2
HGF	 Hepatocyte growth factor
HSP	 Heat shock protein
HSP90	 Heat shock protein 90
MBC	 Metastatic breast cancer
MTD	 Maximum tolerated dose
NSCLC	 Non-small cell lung cancer
ORR	 Overall response rate
TNBC	 Triple-negative breast cancer

6.1  �Introduction

The development of malignancy in humans is a stepwise process involving both 
genetic and epigenetic events that drive the transformation of normal cells. Apart 
from late detection, other factors such as immune evasion and drug resistance also 
contribute to the lack of effective treatment for many patients with advanced dis-
ease, making cancer a leading cause of mortality, with an estimated 9.6 million 
deaths projected worldwide for 2018 (Bray et al. 2018). Despite significant efforts 
and advances from the research community to discover and develop new anti-cancer 
drugs, there continues to be a need for novel, effective oncologic treatments.

6.2  �HSP Deregulation and Cancer Development

Heat shock proteins (HSP) are highly conserved, ATP-dependent chaperone mole-
cules that stabilize key proteins (or “client proteins”) involved in cellular signal 
transduction and homeostasis, enabling cells to survive diverse stressors and death 
stimuli (Soga et  al. 2013, Chatterjee and Burns 2017). Mammalian heat shock 
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proteins are classified into six families based on their molecular sizes; well-studied 
HSP family members include HSP90, HSP70, and HSP27 (Wang et  al. 2014). 
HSP90 modulates hundreds of protein substrates, making it a key regulator of 
diverse cellular processes such as protein folding, immune regulation, stress 
response, and DNA repair (Graner 2016; Wu et al. 2017). Approximately 60% of 
the human kinome is reported to be associated with HSP90, and 30% of E3 ubiqui-
tin ligases and a small fraction of human transcription factors also depend on HSP90 
for activity (Taipale et al. 2012). It has been a challenge to precisely define HSP90 
client proteins, however, as the binary classification of intracellular proteins as cli-
ents or nonclients has been questioned in light of the outcomes of sophisticated 
high-throughput HSP90 interactome studies demonstrating a continuous distribu-
tion for HSP90 binding affinity (Taipale et al. 2012).

For cancer cells within a rapidly proliferating cellular environment, metabolic 
need and proteolytic stress create a unique dependence on heat shock proteins such 
as HSP90, as many client proteins are involved in cellular processes (such as cell 
survival and proliferation) that can promote tumorigenesis if dysregulated (Rappa 
et al. 2012). HSP90 is overexpressed in many types of cancers (Yufu et al. 1992; 
McCarthy et al. 2008; Patel et al. 2014) and has been shown to be a negative prog-
nostic factor in some malignancies (Burrows et al. 2004; Pick et al. 2007; Shi et al. 
2014). Furthermore, several HSP90 client proteins are known oncoproteins, includ-
ing BCR-ABL, human epidermal growth factor receptors 1 and 2 (EGFR and HER2, 
respectively), cyclin-dependent kinase 4 (CDK4), the serine/threonine-protein 
kinases B-Raf and C-Raf (BRAF and CRAF, respectively), the hepatocyte growth 
factor (HGF) receptor MET, the glial cell line–derived neurotrophic factor (GDNF) 
receptor RET, and protein kinase B/AKT (Jhaveri et al. 2014b).

Dysregulation of other heat shock proteins has also been implicated in the devel-
opment of cancer and other diseases. For example, HSP70 is strongly associated 
with carcinogenesis, cancer progression, and poor cancer outcomes for various 
tumor types (Rerole et al. 2011; Wu et al. 2017). Considered a co-chaperone, HSP70 
delivers client proteins such as HER2, CRAF, AKT, and CDK4 to HSP90, thereby 
promoting survival through the inhibition of both cell senescence and apoptotic 
pathways (Wu et  al. 2017). Indeed, the interaction between HSP70 and HSP90 
forms the core of the “epichaperome” complex, consisting of numerous chaperone 
and co-chaperone proteins, that promotes tumor survival and is found in over half of 
cancer cell lines (Rodina et al. 2016). This interplay between HSP70 and HSP90 
also renders HSP70-expressing cancer cells more sensitive to HSP90 inhibition 
(Ghosh et al. 2008; Rodina et al. 2016). However, though strategies targeting vari-
ous heat shock proteins have been explored, HSP90 inhibition has demonstrably 
resulted in ubiquitination and proteasomal degradation of client proteins (Whitesell 
and Lindquist 2005; Zuehlke and Johnson 2010), supporting the premise that onco-
genic transformation and progression is deeply linked to HSP90. Thus, targeted 
inhibition of HSP90 has emerged as a novel anti-cancer therapeutic strategy.
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6.2.1  �Development of HSP90 Inhibitors as Anti-cancer Agents

HPS90 and its inhibition have been studied extensively over the past two decades. 
This has led to the development of several clinically viable inhibitors that disrupt 
the interaction between HSP90 and its client proteins, which occurs via the 
N-terminal ATPase domain (Soga et al. 2013). These N-terminal domain–binding 
molecules are denoted as ‘classical inhibitors,’ though none of these have received 
regulatory approval to date. HSP90 inhibitors have several advantageous character-
istics as potential oncology therapeutic agents. First, the distribution of HSP90 cli-
ent proteins across several different cell signaling pathways potentially enables 
simultaneous modulation of multiple pathways by HSP90 inhibitors. Additionally, 
tumor cells are reportedly more sensitive to HSP90 inhibition than normal cells 
(Kamal et al. 2003; Chiosis and Neckers 2006). Finally, the unusual pharmacoki-
netic profile of these agents—i.e., rapid clearance from plasma and normal tissues, 
together with prolonged, selective retention in tumor cells (Eiseman et  al. 2005, 
Daozhen et al. 2007)—may contribute to an exploitable therapeutic index (Straume 
et al. 2012).

Upregulation of other heat shock response proteins, in particular HSP70 and 
HSP27, occurs in response to HSP90 inhibition (Biamonte et al. 2010) and has been 
postulated as a mechanism of resistance to these inhibitors. While small-molecule 
inhibitors of HSP70 have also been investigated preclinically (Radons 2016), as of 
yet, none have progressed to a clinical trial. However, given that the interplay 
between HSP70 and HSP90 contributes substantially to the role of these proteins in 
malignancy, the combination of HSP70 and HSP90 inhibitors has been proposed as 
a strategy for achieving enhanced antitumor effects.

6.2.1.1  �Preclinical Assessments of HSP90 Inhibitors

Molecular studies of HSP90 inhibitors in cancer cell lines have shed light on key 
mechanisms of action, while subsequent testing in human tumor xenograft models 
has provided some confirmation of this mechanism of action and has also estab-
lished the antitumor activity of these agents across several tumor types. The enor-
mous number of HSP90 client proteins implies that the key client proteins driving 
malignancy may differ across different tumor types, rendering it difficult to deter-
mine the precise molecular underpinnings of HSP inhibitor activity in various can-
cers; indeed, it has been suggested that nearly every oncogenesis-associated protein 
is an HSP90 client (Chiosis and Neckers 2006; Vartholomaiou et al. 2016).

Despite this complexity, preclinical studies have identified several key oncogenic 
client proteins for which expression is modulated by HSP90 inhibition, and which 
therefore may serve as potential selection markers for HSP90 inhibitor therapy. 
These key client proteins include a number of receptor tyrosine kinases, such as 
HER2 (Mimnaugh et al. 1996), EGFR (Ahsan et al. 2012), FLT3 (Yao et al. 2003), 
IGF-1R (Breinig et al. 2011), RET (Alfano et al. 2010), and MET (Miyajima et al. 
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2013). Several receptor tyrosine kinase fusion proteins that are drivers of oncogen-
esis are also stabilized by HSP90 and therefore sensitive to HSP90 inhibition, 
including ALK (anaplastic lymphoma kinase) (Bonvini et al. 2002; Sang et al. 2013) 
and fibroblast growth factor receptor 2 (FGFR2) fusion proteins (Lamberti et  al. 
2018). In addition, other signaling kinases, such as RAF-1, BRAF, and AKT, and 
transcriptional regulators such as NF-κB, HIF-1α, and p53, are also key oncogenic 
HSP90 client proteins, as is the cell cycle regulator CDK4 (Wu et al. 2017). Just as 
HSP90 enhances stability of fusion proteins, it can also prolong the half-life of pro-
teins with other types of destabilizing mutations, as is the case for p53 variants with 
oncogenic point mutations (Whitesell et al. 1998).

In response to HSP90 inhibition, compensatory upregulation of HSP70, and its 
consequent anti-apoptotic signaling, has been implicated as a mechanism of thera-
peutic resistance (Garrido et al. 2003; Garrido et al. 2006). HSP70 has been shown 
to block recruitment of procaspase-9 to the Apaf-1 apoptosome (Beere et al. 2000; 
Saleh et  al. 2000) and to directly antagonize apoptosis-inducing factor (AIF) 
(Ravagnan et  al. 2001). Several in  vitro studies have shown that attenuation of 
HSP70 activity enhances HSP90 inhibitor-mediated cell death (Guo et  al. 2005; 
Powers et al. 2008). Such studies indicate that HSP70 may serve as an important 
biomarker of HSP90 inhibition, and highlight the potential therapeutic value of 
HSP70/HSP90 inhibitor combinations. HSP90 inhibitors have demonstrated antitu-
mor activity in several human tumor xenograft models, including those carrying 
aberrations in the oncogenic client proteins described above. For example, gane-
tespib and other second-generation HSP90 inhibitors have yielded antitumor activ-
ity (ranging from tumor growth inhibition to tumor regression) in multiple breast 
cancer models, including both HER2-positive and triple-negative breast cancer 
(TNBC) models (Jensen et  al. 2008; Caldas-Lopes et  al. 2009; Friedland et  al. 
2014). HSP90 inhibitors have likewise shown promising single-agent in vivo activ-
ity in models of non-small cell lung cancer (NSCLC) driven by ALK fusion proteins 
or EGFR mutations (Chen et al. 2010; Normant et al. 2011; Graham et al. 2012; 
Sang et al. 2013) and in melanoma models driven by BRAF mutations (Acquaviva 
et al. 2014). Such studies have also established in vivo proof-of-concept for HSP90 
inhibition, demonstrating decreased levels of various oncogenic HSP90 client pro-
teins (e.g., HER2, BRAF, AKT, EGFR) coincident with antitumor activity in these 
models. Unfortunately, the impressive preclinical activity of HSP90 inhibitors has 
not been observed in clinical testing, which has more recently focused on HSP90 
inhibitor combination therapies, as described below.

6.2.1.2  �Clinical Development of HSP90 Inhibitors

Two natural products prompted the identification and testing of the first generation 
of N-terminal HSP90 inhibitors: geldanamycin, a benzoquinone ansamycin antibi-
otic derived from Streptomyces hygroscopicus, and radicicol, a macrocyclic lactone 
antibiotic derived from Monosporidum bonorden (Soga et al. 2013; Chatterjee and 
Burns 2017). However, novel drug development strategies have continued to 
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identify new HSP90-targeting agents, including C-terminal–binding inhibitors. As 
these agents have progressed through clinical testing, newer agents have been devel-
oped to improve upon target binding, efficacy, and toxicity, as discussed below.

6.2.2  �First-Generation HSP90 Inhibitors

Despite several encouraging preclinical studies, use of geldanamycin was hampered 
by unacceptable clinical toxicity and structural volatility, particularly from a qui-
none ring moiety that contributes to its hepatotoxicity (Supko et al. 1995). The C-17 
methoxy group of geldanamycin was eventually replaced by an amine group, result-
ing in various synthetic analogues created to mitigate these early drug design issues 
(Table 6.1).

17-N-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin; 
Kosan Biosciences), was the first of the geldanamycin analogs to undergo clinical 
evaluation in the 1990s. Though it demonstrated a better adverse event (AE) profile 
than geldanamycin (Yuno et  al. 2018), it had poor solubility and bioavailability 
(Banerji et al. 2005) and did not demonstrate substantial activity as a single agent in 
multiple phase I and II trials (Goetz et al. 2005; Ronnen et al. 2006; Solit et  al. 
2008). Tanespimycin did demonstrate modest activity when combined with other 
antineoplastic agents. A combination with the HER2-targeted antibody trastuzumab 
in patients with metastatic HER2-positive breast cancer showed an overall response 
rate (ORR) of 22% and an overall survival (OS) of 17 months (Modi et al. 2011). In 
a phase I/II study of tanespimycin and bortezomib, an ORR of 27% was reported in 

Table 6.1  Classification of HSP90 inhibitors

Inhibitor Class Administration Route

First generation
Geldanamycin – Intravenous
Radicicol – –
17-AAG (tanespimycin) GM Intravenous
17-DMAG (alvespimycin) GM Intravenous, oral
IPI-504 (retaspimycin) GM Intravenous
Second generation
AUY922 (luminespib) RD Intravenous
STA-9090 (ganetespib) RD Intravenous
AT13387 (onalespib) RD Intravenous, oral
BIIB021 Purine scaffold Intravenous
PU-H71 Purine scaffold Oral
XL888 Aminoterphthalamide Oral
TAS-116 Pyrazolopyridine Intravenous
NVP-HSP990 Aminopyrimidine Oral

GM geldanamycin-based, RD radicicol-based
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bortezomib-naïve patients with refractory multiple myeloma (Richardson et  al. 
2011). Though a phase III trial of this combination versus bortezomib alone was 
initiated in patients with multiple myeloma, this trial was subsequently closed; for-
mulation issues may have been a consideration. Interestingly, Triolimus®—a triplet 
agent containing tanespimycin together with the microtubule-disrupting chemo-
therapeutic paclitaxel and the mTOR inhibitor rapamycin—has been formulated 
using a polymeric micelle drug delivery platform to improve solubility, and is 
reported to have preclinical activity without the toxicity associated with the previ-
ous tanespimycin formulation (Hasenstein et al. 2012).

17-demethoxy-17-N,N-dimethylaminoethylamino-geldanamycin (17-DMAG, 
alvespimycin; Bristol-Myers Squibb) is another semi-synthetic derivative of gel-
danamycin, with significant antitumor activity, improved water solubility, and oral 
bioavailability (Hollingshead et al. 2005; Georgakis et al. 2006). This agent was 
advanced to clinical trials with both intravenous (IV) and oral (PO) formulations in 
both solid tumor and hematological malignancies (Hollingshead et  al. 2005; 
Kummar et al. 2010; Lancet et al. 2010). However, significant dose-limiting AEs 
were reported, including fatigue, nausea, and diarrhea, as well as cardiac, liver, 
lung, and ocular toxicities (Pacey et al. 2011).

IPI-504 (retaspimycin, Infinity Pharmaceuticals) is a reduced formulation of 
tanespimycin that showed promise given its improved water solubility (Chatterjee 
et al. 2016). Retaspimycin hydrochloride has shown single-agent antitumor activity 
in early-phase trials of patients with soft tissue sarcomas/gastrointestinal stromal 
tumors, as well as in ALK-rearranged NSCLC; however, significant hepatic toxicity 
was noted in these studies (Sequist et al. 2010; Wagner et al. 2013). Retaspimycin 
has also been evaluated together trastuzumab in patients with HER2-positive meta-
static breast cancer (MBC) refractory to HER2 targeted therapy; although the com-
bination showed modest activity, it did not meet predefined criteria to expand the 
trial (Modi et al. 2013).

6.2.3  �Second-Generation HSP90 Inhibitors

Second-generation HSP90 inhibitors are improved small molecule classes; the first 
of these are derivatives of radicicol, as they contain an ATP-binding resorcinol moi-
ety (Neckers and Workman 2012), while molecules in the second class utilize a 
purine scaffold (Jhaveri et  al. 2012). Radicicol itself was deemed unsuitable for 
clinical development because of little or no activity in animals secondary to chemi-
cal instability (Soga et al. 2003).

NVP-AUY922 (luminespib, Novartis) was identified via a high-throughput 
screen and demonstrated activity in multiple human cancer cell lines and tumor 
xenograft models (Eccles et al. 2008). Phase II trials have noted activity in both 
EGFR-mutated and ALK-rearranged NSCLC as well as in refractory HER2-positive 
breast cancer, with response rates between 10% and 25% (Schroder et  al. 2011; 
Garon et al. 2012). Recently, promising antitumor activity has also been observed in 
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NSCLC patients with a rare subtype of EGFR exon 20 insertions that are typically 
refractory to EGFR-specific tyrosine kinase inhibitors (NCT01854034), though 
results for this study are pending. Dose-limiting toxicities (DLTs) reported in vari-
ous trials include darkening of vision, atrial flutter, diarrhea, and fatigue. Results for 
various other ongoing trials are awaited, including combination studies with both 
chemotherapy and targeted agents (Table 6.2).

AT-13387 (onalespib, Astex Therapeutics), is another second-generation inhibi-
tor that has gone through early-phase clinical testing, with a notable difference 
(relative to other HSP90 inhibitors) of exhibiting prolonged duration of activity in 
the preclinical setting (Graham et  al. 2012). Single-agent trials (Do et  al. 2015; 
Shapiro et al. 2015) as well as combination trials with imatinib (Wagner et al. 2016) 
or docetaxel (Ramalingam et al. 2015) have been reported. Other combination stud-
ies, including with abiraterone (NCT01685268) or crizotinib (NCT01712217), are 
awaiting results. The agent is currently being studied in a phase I trial in combina-
tion with AT7519M, a small molecule inhibitor of CDKs 1, 2, 4, 5, and 9 
(NCT02503709; Table 6.2).

STA-9090 (ganetespib, Madrigal Pharmaceuticals), a radicicol-derived com-
pound, has been considered one of the most promising HSP90 inhibitors (Chatterjee 
and Burns 2017), yielding objective responses in phase II studies of MBC (in both 
patients with HER2-positive tumors and those with TNBC) and NSCLC (in patients 
with EML4-ALK rearrangements) (Socinski et  al. 2013; Jhaveri et  al. 2014). No 
objective responses were observed in early-phase studies of ganetespib in patients 
with hematological malignancies (Lancet et al. 2010b; Padmanabhan et al. 2010). 
With regard to combination therapies, a phase I study of ganetespib together with 
paclitaxel and trastuzumab in HER2-positive MBC patients refractory to trastu-
zumab yielded an ORR of 22% (Jhaveri et al. 2017), and a phase II study of gane-
tespib in MBC patients was expanded to also examine the combination with 
paclitaxel following progression on single-agent ganetespib (Cameron et al. 2014). 
In NSCLC, a significant survival benefit was observed in a phase II study of gane-
tespib combined with docetaxel in a small subset of patients who had progressed on 
chemotherapy (Ramalingam et al. 2015); the corresponding phase III study of this 
combination is ongoing (Ramalingam et al. 2014). However, toxicities have also 
been problematic for ganetespib combination therapies; in a phase I study of gane-
tespib combined with the anti-angiogenic agent ziv-aflibercept, the combination 
resulted in serious adverse events, including small intestinal perforation and one 
sudden death (a potential gastrointestinal hemorrhage), prompting discontinuation 
of the trial (Meehan et al. 2018).

PU-H71 (Samus Therapeutics) was developed following implementation of 
structural biology techniques to identify new HSP90 inhibitors. High-resolution 
x-ray crystal structures of the HSP90 N-terminal domain, with and without ATP or 
ATP analogs (Obermann et al. 1998; Li et al. 2012), have enabled the rational design 
of new HSP90 inhibitors using purine or pyrimidine scaffolds. PU-H71 was the first 
synthesized second-generation HSP90 inhibitor of this class. A first-in-human study 
in solid tumors demonstrated that PU-H71 was well tolerated, though no objective 
responses were reported (Speranza et al. 2018); however, determination of the max-
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imum tolerated dose (MTD) was not achieved, and the trial was stopped because of 
drug supply issues.

CNF2024/BIIB021 (Biogen) has been tested in phase I clinical studies in 
patients with solid tumors as well as hematologic malignancies; DLTs included 
hypoglycemia, hyponatremia, liver abnormalities, fatigue, dizziness, and syncope 
(Saif et al. 2014). Evaluation in phase II trials included patients with gastrointestinal 
stromal tumors, in which the agent was well tolerated but did not result in signifi-
cant responses (Shapiro et al. 2015). The combination of BIIB021 with trastuzumab 
in a phase I study of HER2-positive MBC patients resulted in DLTs including par-
tial seizures, headache, dizziness, fatigue, and rash (Jhaveri et al. 2012).

A number of new HSP90 inhibitors have entered clinical trials in the past few 
years. XL888 (Exelixis) is an orally administered small molecule with selective 
inhibition for both HSP90α and β isoforms (Table 6.1). Both in vitro and in vivo, 
this agent inhibited growth and induced cell death and tumor regression of mela-
noma cell lines harboring the oncogenic BRAF V600E mutation and resistant to the 
BRAF inhibitor vemurafenib, through a variety of mechanisms (Paraiso et al. 2012). 
In a phase I study of XL888 in patients with refractory solid tumors, the MTD of 
XL888 was reported to be 135 mg twice weekly, and diarrhea was noted as a DLT 
(Eroglu et al. 2018). Given these findings, a trial of this agent has been initiated in 
patients with advanced melanoma harboring the BRAF V600E mutation, and the 
results are awaited (Table 6.2). TAS-116, another oral agent, has shown good bio-
availability and antitumor activity in several xenograft models, as well as reportedly 
reduced ocular toxicity in various animal species (Ohkubo et al. 2015; Chatterjee 
and Burns 2017); a phase I study of this agent in pre-defined solid tumor molecular 
cohorts is ongoing (NCT02965885, Table 6.2). Finally, several radioactive isotopes 
and clinical imaging agents targeting HSP90 have also been developed (Barrott 
et al. 2013). One of these, HS-196, is an imaging agent containing an HSP90 inhibi-
tor covalently linked to a near-infrared fluorescent dye (Table 6.2). HS-196 selec-
tively and competitively binds to HSP90  in cells following intravenous 
administration; given that HSP90 is upregulated in a variety of tumor cells, accumu-
lation of this fluorescent dye–tethered agent allows for in vivo detection of these 
cells due to enhanced uptake of HS-196.

6.2.3.1  �Common Toxicities Associated with HSP90 Inhibitors

Clinical development of several HSP90 inhibitors has been halted due to ocular and 
liver toxicities. Ocular symptoms have been reported as a characteristic toxicity 
across all classes of HSP90 inhibitors, though, as noted above, not all second-
generation inhibitors have resulted in severe ocular toxicity (Jhaveri et al. 2014). 
Rodent modeling would suggest that prolonged retinal inhibition of HSP90 induces 
photoreceptor cell death, and that this is dependent on the retina/plasma exposure 
ratio and retinal elimination rate for each individual inhibitor, rather than their 
chemical class (Zhou et al. 2013). In the case of elevated liver transaminase toxici-
ties, results from studies of second-generation HSP90 inhibitors suggest that the 
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severe hepatotoxicity that halted development of several first-generation compounds 
was class-specific (i.e., associated with the quinone ring moiety) rather than target-
driven (Jhaveri et al. 2014). Thus, there is evidence that existing and forthcoming 
second-generation HSP90 inhibitors may avoid both the hepatic and ocular toxici-
ties that have plagued development of previous agents targeting HSP90.

6.2.4  �Novel Perspectives and Targets

An entirely new structural class of HSP90 inhibitors has been identified in the past 
few years. Though they are less well characterized than inhibitors that target the 
N-terminal ATP binding domain, their interruption of HSP90 chaperone activity is 
reported to occur in a similar manner to that of the classic inhibitors (Marcu et al. 
2000). Compounds that target the C-terminal domain of HSP90 include novobiocin, 
coumermycin, and ‘novologues’ such as KU-32 and KU596 (Lancet et al. 2010). 
These agents were found to have neuroprotective properties when a biarylamide 
side chain modification was introduced, causing HSP90 client degradation without 
induction of the heat shock response, prompting clinical evaluation of these agents 
in neurodegenerative diseases such as diabetic neuropathy (Zhao et  al. 2014). 
Further chemical modifications—specifically, the inclusion of a benzamide side 
chain—have resulted in compounds with marked anti-proliferative activity against 
a variety of cancer cell lines (Zhao et al. 2014; Forsberg et al. 2017). These agents 
have not yet reached the clinic.

Recognition of the importance of T-cells in anti-tumor immunity has led to very 
promising results in a subset of cancer patients. Multiple clinical trials evaluating 
several immune checkpoint inhibitor antibodies, cytokines, and engineered T-cell 
approaches are ongoing, with a view to informing rational combination strategies. 
HSP90 inhibitors have been identified as compounds that can synergistically poten-
tiate anti-tumor responses when combined with checkpoint immunotherapy 
(Mbofung et al. 2016), and can sensitize tumors to client protein–specific T-cells 
(Raveendran et al. 2014). A number of novel clinical combination trials are under-
way, including XL888 together with the immune checkpoint inhibitor pembroli-
zumab (NCT03095781, Table 6.2), which will evaluate the hypothesis (informed by 
preclinical data) that HSP90 has a central role in modulating the tumor microenvi-
ronment as well as inflammatory signaling pathways associated with tumor immu-
nosuppression (Akce et al. 2018). Immunotherapy combinations are not only limited 
to HSP90 inhibitors. Preclinically, HSP70-positive tumors were recognized by nat-
ural killer (NK) cells when the NK cells were activated by preincubation with 
HSP70 peptides and low-dose interleukin-2 (Multhoff et al. 2001); this strategy is 
currently undergoing testing in a randomized phase II study in patients with stage 
III/IV NSCLC after chemoradiotherapy (NCT02118415), though no results have 
been reported to date (Specht et al. 2015).
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6.3  �Conclusions

HSP90 plays an important role in the biology of human cancer, making it a potential 
target for therapy that may result in the inhibition of tumor development. Although 
the combination of HSP90 inhibitors and other oncologic clinical agents may herald 
exciting future outcomes, the clinical activity of pharmacological inhibition of 
HSP90 with small molecules (as single agents or in combination with other onco-
logic agents) has been limited up to now. Even though HSP90 modulates various 
oncogenic substrate proteins involved in crucial pathways that allow malignant 
tumors to thrive, the effectiveness of HSP90 inhibitors in the treatment of cancer has 
not been overwhelmingly successful to date. In current times, when oncology treat-
ment is often decided based on multiomic molecular profiling, the ability to dis-
cover a biomarker predictive of response to HSP90 inhibitors is an area worth 
investigating. Developing the ability to better recognize which tumors are more 
likely to respond to this type of inhibition may be the door to a more promising 
future for research and development of novel HSP90 inhibitors in the oncology 
treatment arena—bringing a more prominent role to HSP90 inhibitors. Over the 
past 20 years, promising preclinical and clinical results have come from early-phase 
studies of HSP90 inhibitor agents, but this has not resulted in these agents being 
incorporated as standard-of-care for any malignancy.

Acknowledgements  Special thanks to Sarah Miller, PhD.
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