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Chapter 10
Targeting Hsp-90 Related Disease Entities 
for Therapeutic Development

Timothy Westlake, Mitchell Sun, Brandon C. Rosenblum, 
Zhengping Zhuang, and Jared S. Rosenblum

Abstract Heat shock protein 90 (HSP-90) has been identified in many disease pro-
cesses including cancer, neurodegeneration, autoimmune diseases, and cancers. 
Great effort has been expended in the development of specific inhibitors of the 
N-terminal and C-terminal domains. Inhibitors of post-translational modification 
have also been developed. Herein, we explore the available inhibitors and those in 
development, discuss the relevant disease processes, and examine the pitfalls and 
promises of targeting HSP-90 for therapeutic intervention.
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Abbreviations

17-AAG Tanespimycin
ADME absorption, distribution, metabolism, excretion
AKT protein kinase B
b-RAF B-Raf proto-oncogene
c-RAF RAF proto-oncogene serine/threonine-protein kinase
CTD C-terminal domain
DMAG 17-dimethylaminoethylamino-17-demethoxygeldanamycin
ER endoplasmic reticulum
FKBP FK506 binding protein
FLT Fms-like tyrosine kinase
GBase glucocerebrosidase
HDAC histone deacetylase
HDACI HDAC inhibitor
HER human epidermal growth factor receptor
HIF hypoxia inducible factor
HOP HSP70-HSP90 organizaing protein
HSF heat shock factor
HSP heat shock protein
HTT huntington protein
IKK IkB kinase
JAK Janus kinase
JNK c-Jun N-terminal kinases
NF-kB nuclear factor kappa light-chain enhancer of activated B cells
Nrf nuclear factor erythroid 2-related factor
NTD N-terminal domain
RAF rapidly accelerated fibrosarcoma
RASGRP RAS guanyl-releasing protein
SAHA suberoyl anilide hydroxamic acid
STAT signal transducer and activators of transcription
TPR tetraotricopeptide repeat
VEGFR vascular endothelial growth factor receptor

10.1  Introduction

Heat-shock protein 90 (HSP-90) regulates the stability, activation, and degradation 
of a diverse array of proteins associated with growth, proliferation, and survival 
(Burlison et al. 2006; Neckers and Ivy 2003; Schopf et al. 2017; Schwock et al. 
2008). Thus, it is core to regulation of protein stability and protein-degradation 
pathways and modulating transcription factors, signaling transduction networks, 
and kinases (Schopf et  al. 2017). It facilitates the survival of cells during stress 
response and exhibits a pronounced anti-apoptotic and stabilization effect. Thus, 
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HSP-90 has been associated with development and progression of a wide range of 
pathological conditions including cancers, diabetes, Gaucher disease, neurodegen-
erative diseases, and autoimmune dysfunction (Hoter et  al. 2018; Kasperkiewicz 
et al. 2011; Lackie et al. 2017; Luo et al. 2010; Rice et al. 2008; Russo et al. 2006; 
Trepel et al. 2010; Tukaj et al. 2015; Whitesell and Linquist 2005; Yang et al. 2013).

10.1.1  Cancer

A commonality in many human cancers is the overexpression of HSP-90; the dras-
tic two-to-three-fold induction of HSP90 seen in several cancers results in increase 
stabilization of client proteins (Barrott and Haystead 2013). The pronounced 
increase of HSP-90  in stress conditions can reach up to 6% of total protein 
(Prodromou 2016; Taipale et  al. 2010). As consequence of increase HSP-90, the 
stabilization of its client protein results in the protects mutated or up-regulated 
oncoproteins. The aberrant protection of pro-survival and proliferation-related pro-
teins such as telomerases, B-Raf, Akt, p53, VEGFR, HIF1α, HER-2, tyrosine 
kinases, steroid hormone receptors contribute to tumorigenesis, metastasis, and 
invasiveness (Banerji 2009; Beliakoff and Whitesell 2004; Hoter et al. 2018; Jhaveri 
and Modi 2012; Whitesell and Linquist 2005). As HSP90 acts as a regulator of 
HSF-1, the major hub of HSF transcriptional expression, HSP90 production causes 
dysregulation of HSF-1 transcriptional activity which leads to alterations in chaper-
one expression (Duerfeldt and Blagg 2010).

10.1.2  Neurodegenerative Diseases

HSP-90 works in concert with other chaperone machinery to refold misfolded pro-
teins to prevent toxic accumulation. However, as in the case in various cancers, the 
stabilization of HSP-90 client proteins can have deleterious consequences outside 
of the context of normal physiological conditions. The stabilization of proteins 
associated with diseases results in manifestation of various neurodegenerative dis-
ease (Lackie et al. 2017; Luo et al. 2010). The HSP-90 client protein stabilization is 
a major facilitator for the accumulation of intrinsically disordered proteins (Karagoz 
et al. 2014; Luo et al. 2010). HSP-90 interacts with and stabilizes Tau, (Dickey et al. 
2007; Hoter et al. 2018; Karagoz et al. 2014) a microtubule associated protein that 
mediates axonal transport. Tau hyperphosphorylation and aggregation is a classical 
hallmark of Alzheimer’s disease; the accumulation is also associated with other 
neurodegenerative disease such as progressive supranuclear palsy and Pick’s dis-
ease (Gong and Igbal 2008; Guo et al. 2017; Lee et al. 2001; Shelton et al. 2017). 
The HSP-90/Tau interface is associated with the neurodegenerative pathologic state 
and is well explained by enhanced stabilization of hyperphosphorylated Tau, which 
exacerbates aberrant neural activity seen in tauopathies (Shelton et al. 2017).
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The aggregation of intrinsically disordered factors is also associated with 
Huntington’s disease and Parkinson’s disease (Lackie et al. 2017; Luo et al. 2010). 
HSP-90 interacts with Huntington protein (HTT) and leucine-rich repeat kinase 2 
(Baldo et al. 2012; Wang et al. 2008). Interestingly, as HSP-90 is an established 
regulator of HSF-1, evidence suggests that, through the repression of HSP-90, 
other molecular chaperones systems such as HSP-70 can be enhanced and can 
facilitate increase neuroprotective function in otherwise pathogenic conditions 
(Luo et al. 2010).

10.1.3  Gaucher Disease

Gaucher disease is a rare autosomal recessive lysosomal disorder driven by genetic 
mutations in GBA gene encoding the lysosomal enzyme glucocerebrosidase 
(GCase); the mutations result in metabolic dysfunction and wide-spread organ dys-
function due to effects of the drastic accumulation of GCase substrate (Brady et al. 
1966; Hruska et al. 2008; Stirnemann et al. 2017; Yang et al. 2013). The diminished 
amount of GCase results in the toxic accumulation of the GCase substrate, glucosyl-
ceramide (Stirnemann et al. 2017). GBA mutations cause protein misfolding and 
diminished protein instability resulting in increased retention of GCase in the endo-
plasmic reticulum (Ron and Horowitz 2005; Stirnemann et  al. 2017; Yang et  al. 
2013). The intrinsic changes in the conformation of mutant GCase results in prema-
ture degradation and increased GCase turnover (Yang et al. 2013). HSP-90 is criti-
cal for targeting misfolded GCase for proteasomal degradation and directly interacts 
with GCase to direct the misfolded GCase to cellular ER and proteasomal degrada-
tion pathway (Yang et  al. 2013). The increase degradation of GCase results in 
enhanced disease severity. This paradigm is in contrast with other diseases associ-
ated with HSP-90, as the interaction does not enhance the accumulation of its client 
protein but rather directs the client protein for degradation.

10.1.4  Diabetes and Associated Complications

Several of the key players mentioned above constitute a regulatory pathway for 
insulin sensitivity. Transcription of HSP-70 is regulated by HSF-1, which in turn is 
activated by inhibition of HSP-90 (Lee et al. 2013). Further, inhibition of HSP-90 
leads to inhibition of JNK1 and thus improved insulin signaling; in the mouse model 
in this study, HSP-90 inhibition reversed hyperglycemia (Lee et al. 2013). In another 
study of diabetic mice, inhibition of HSP-90 with 17-dimethylaminoethylamino- 
17-demethoxygeldanamycin (DMAG) lessened renal damage and atherosclerosis 
incurred by hyperglycemia and hyperlipidemia as evidenced by decrease in albu-
minuria, renal lesions, and proinflammatory genes (Lazaro et  al. 2015). Further 
study of diabetic atheroprotection with DMAG in a diabetic mouse model found 
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HSP-90 inhibition to be protective by induction of nuclear factor erythroid-derived 
2-like (Nrf2) (Lazaro et al. 2017). Hypercoagulability in diabetes was found to be 
dependent on a glucose-regulated interaction between HSP-90α and annexin II, 
which promotes the generation of plasmin (Lei et al. 2004).

10.1.5  Autoimmune Disease

HSP-90 machinery is involved in adaptive and innate immune responses via mediat-
ing the activation of immune cells (Srivastava 2002; Taipale et al. 2010). It is instru-
mental in the function of natural killer cells, macrophages, lymphocytes, dendritic 
cell maturation, neutrophils (Kasperkiewicz et al. 2011; Srivastava 2002). The chap-
erone has been implicated in inflammation, antigen presentation, and immune cell 
activation (Srivastava 2002; Taipale et al. 2010). Client proteins of HSP-90 include 
inflammation regulating kinases IKK and JAK (Madrigal-Matute et  al. 2010; 
Prodromou 2016; Zhang and Burrows 2004). These kinases modulate transcrip-
tional regulators STAT and NF-kB which in turn dictate the expression of many 
pro-inflammation factors (Madrigal-Matute et  al. 2010; Prodromou 2016). Thus, 
mounting evidence has demonstrated the importance of HSP-90 in regulating pro- 
inflammation responses and immune cell leading to the hypothesis that HSP-90 
plays a critical function in auto-immune disease (DeBoer et  al. 1970; Madrigal- 
Matute et al. 2010; Ron and Horowitz 2005; Stebbins et al. 1997). In support of this 
hypothesis, studies have implicated HSP90  in autoimmune diseases such as sys-
temic lupus erythematosus, rheumatoid arthritis, allergic rhinitis, and other autoim-
mune diseases such as bullous skin diseases (Kasperkiewicz et al. 2011; Rice et al. 
2008; Russo et al. 2006; Srivastava 2002).

10.2  Targeting HSP-90

10.2.1  Modulating HSP90 Function by Perturbation of PTMs

The post-translational modifications of HSP-90 alter the chaperone dynamics and 
perturbs the interaction with co-chaperones, substrates, and can influence enzyme 
activity (Jackson 2012; Kekapure et al. 2009; Scroggins et al. 2007). Acetylation of 
HSP-90 at the middle domain results in a marked decrease in its function by imped-
ing the ability to interact with co-chaperones and client proteins, changing the 
dynamic conformation cycles (Aoyagi and Archer 2005; Kovacs et  al. 2005; 
Mollapour and Neckers 2012; Scroggins et al. 2007). Targeting acetylation presents 
an avenue to modulate the activity of HSP-90. Reversible protein acetylation regu-
lates a wide range of biochemical processes involving HSP-90 (Kovacs et al. 2005; 
Yu et  al. 2002). The inhibition of histone deacetylase induces hyperacetylation 
HSP-90; the acetylated form of the chaperone has decreased affinity for ATP and 
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target proteins (Bali et al. 2004). HDAC, while traditionally defined by their role in 
deacetylation of histones, have been found to act on a larger range of substrates 
including HSP-90 (Bali et al. 2004; Fiskus et al. 2007). Additionally, HDAC have 
been found to influence drug resistance to chemotherapeutics and diverse HSP90 
inhibitors (Chai et al. 2017; Wang et al. n.d.). Interestingly, HDAC proteins such as 
HDAC6 also regulate the interactions with HSP90 and HSF master regulator, 
thereby affecting the transcriptional network of other HSP systems (Boyault et al. 
2007; de Zoeten et al. 2011; Prodromou 2016).

Inhibiting deacetylation through HDAC inhibitors (HDACI) presents a promis-
ing avenue in which HSP90 chaperone cycling and function can be impeded. 
Ultimately, HDAC influences the stability of a plethora of downstream targets of 
HSP-90. HDACI have anti-tumorigenic properties correlating with diminished 
accumulation of HSP-90 target proteins related to pro-survival and pro-growth 
(Bali et  al. 2004; Ding et  al. 2017; Park et  al. 2008). The inhibition of HSP-90 
chaperone function by HDACIs results in degradation of oncoproteins such as 
AKT, FLT-3, BCR-ABL, RAF-1, VEGFR1, VEGFR2, JAK2, RASGRP1 and 
CRAF (Bali et al. 2004; Ding et al. 2017; Park et al. 2008). The resulting degrada-
tion of the oncoproteins by HSP-90 stabilization leads to dramatic changes in cell 
cycle control and proliferation. Modulating HDAC6 and HSP90, through HDACI 
has been studied in the context of ameliorating autoimmunity by affecting 
T-regulatory cells (Chiosis et al. 2001). Additionally, NF-κB function is impaired 
by HDACI inhibition of HDAC6. It is thought that the increase in the acetylation of 
HSP90 results in reduced stability and degradation of IKK. The reduced stability 
of IKK in turn causes aberrant NF-κB function (Kovacs et al. 2005; Regna et al. 
2015; Trepel et al. 2010). Thus, the HDAC/HSP-90 interface presents a promising 
target to impede autoimmunity. While initial findings in autoimmunity have shown 
that targeting HDAC6 show some diminished HSP90 function, further studies are 
needed (Regna et al. 2015).

HDACI can also promote the stability of HSP90 proteins. In the case of 
Gaucher’s disease, the production of mutated GCase results reduced of accumula-
tion of the enzyme through HSP-90-directed degradation (Wang et  al. 2008). 
HDACI, such as LB-205 and SAHA, results in increase acetylated form of HSP-90 
and impairs the binding of HSP-90 to GCase (Yang et al. 2013). The increase in the 
accumulation of the mutated GCase in part increases the functional activity of the 
GCase thereby limiting toxic accumulation of the GCase substrate, glucosylce-
ramide (Yang et al. 2013).

10.2.2  Targeting HSP-90 C-terminus

While traditional targeting of HSP-90 for therapeutics have predominantly devel-
oped to target the N-terminal domain (NTD) of the protein, novel approaches act to 
impede the C-terminal function of HSP-90. Inhibition of HSP-90 activity through 
the NTD perturbs the repressive effect of HSP-90 on HSF-1 which subsequently 
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activates heat shock response. The activation of the heat shock response is thought 
to facilitate resistance which dampens the effect of HSP90 inhibitors (Yang et al. 
2013). Therefore, a major driving force of targeting C-terminus is that prior trials 
with N-terminal targeting small molecules result in rapid development of resistance 
to the inhibitory molecules (Donnelly and Blagg 2008; Solárová et al. 2015).

The C-terminal inhibitors are subdivided into two categories; inhibitors that 
directly target the C-terminus and inhibitors that disrupt the binding of HSP90 to 
co-chaperones at the C-terminus (Koay et al. 2016). Similar to the NTD, the CTD 
contains a nucleotide binding site, however, lacks ATPase activity (Schopf et  al. 
2017). While the nucleotide binding site differs in terms of binding affinity and 
binding specificity, selective targeting of the nucleotide binding site has shown 
promising applications in inhibiting chaperone function (Donnelly and Blagg 2008; 
Solárová et al. 2015). Coumarin-based antibiotics were among the first inhibitors 
found to target the CTD (Solárová et al. 2015). Initially, this class of small mole-
cules were found to inhibit the ATPase activity of ATP-gyrases; further biochemical 
classification has shown weak affinity towards the nucleotide binding site of CTD 
(Burlison et al. 2006; Donnelly and Blagg 2008; Solárová et al. 2015). The binding 
of novobiocin, coumarin-antibiotic, indeed affects the stability of HSP-90 client 
proteins and prompted the development of synthetic derivatives of the substrate. 
These nucleotide binding inhibitors induce conformational changes thought to 
impede and release protein-interaction by disrupting the dimerization of HSP-90 
(Allan et al. 2006; Gormley et al. 1996; Solárová et al. 2015).

Novobiocin exerted anti-tumorigenic properties towards certain cancer lines; 
however, it lacked the efficacy that N-terminal inhibitors showed. Development of 
synthetic novobiocin derivatives sought to amend the poor efficacy by improving 
HSP90 inhibition. KU174, and KU675 analogues of novobiocin have shown strong 
anti-proliferation activity towards prostate cancer lines (Eskew et al. 2011; Liu et al. 
2015; Solárová et  al. 2015). Other novobiocin analogues developed have shown 
potential neuroprotective properties and provide an avenue in which HSP-90 inhibi-
tors can be studied in the context of neurodegeneration (Donnelly and Blagg 2008).

Additional molecules have been tested and developed to target the nucleotide 
binding site of the CTD.  These small molecules include the recent discovery of 
dihydropyrimidinone and analogs of bisphenol A such as NSC145366 as novel 
classes of CTD binding compounds (Goode et al. 2017; Terracciano et al. 2018). 
While, their therapeutic potential has not been fully explored, the continual devel-
opment of CTD inhibiting agents provides an avenue in which HSP-90 can be inhib-
ited without the potential drawback of driving drug resistance. Current research is 
focused on the neuroprotective properties of dihydropyridine derivatives and may 
be candidate therapeutic molecule for Alzheimer’s disease (Roe et  al. 2018). 
Recently, a novel C-terminal targeting hexapeptide, amioxyrone, was found to bind 
to specifically target CTD and inhibit dimerization (Bhatia et al. 2018). The target-
ing of CTD results in the reduced stabilization, downregulation, and degradation of 
HSP-90 client oncoproteins without the induction of the heat shock response (Bhatia 
et al. 2018). The hexapeptide showed effectiveness in leukemic cell lines and leuke-
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mia stem cells which demonstrated a novel approach in targeting chronic myeloid 
leukemia (Bhatia et al. 2018).

The alternative strategy of affecting the C-terminal function is by utilizing small 
molecules that disrupt the binding of HSP90 to co-chaperones. The C-terminal 
domain of HSP-90 possess MEEVD residue that regulates the interactions with 
TPR domain containing co-chaperones (Buchner 1999; Wandinger et  al. 2008). 
TPR co-chaperones have tremendous importance in HSP-90 regulation (Schopf 
et al. 2017). These chaperones modulate the conformation of HSP-90 and interac-
tions with co-chaperones; therefore the HSP90 chaperone machinery is affected 
(Schopf et al. 2017). While no natural inhibitors have been discovered to target the 
MEEVD region, exploration of the TPR-domain binding interface has led to the 
development of synthetic molecules to target the HSP-90-TPR binding interface 
(Sidera and Patsavoudi 2014). Recently, C-terminal modulators including modified 
variants of SM molecules: SM122, SM145, SM253, and SM258, have been devel-
oped to interact with Hsp90 and block the binding of TRR-domain containing co- 
chaperones (Koay et  al. 2016). These SM molecules disrupt TRR-containing 
proteins, FKBP52 and HOP (Koay et al. 2016).

10.2.3  Targeting HSP90 N-Terminus

The inhibition of HSP-90 at the N-terminus can be divided into geldanamycin/ gel-
danamycin derivatives and purine-based inhibitors. The classic targeting of HSP-90 
began with the natural analogs geldanamycin, herbimycin, and macbecin (DeBoer 
et al. 1970). Out of these three, geldanamycin was the most potent inhibitor due to 
its ability to more effectively bind to the NTD of HSP-90 and prevent ATP binding 
to the pocket; it also functioned to inhibit HSP-90 dimerization with heat shock fac-
tor 1 (HSF-1) which lead to heat shock response through transcriptional activation 
of factors such as HSP27, HSP40, HSP70, and HSP90 (Zou et al. 1998). The carba-
mate group of geldanamycin represents one of its core interacting domains with 
HSP-90 as it may form a hydrogen bonding network within the pocket and elimina-
tion of which abolished geldanamycin function (Stebbins et al. 1997).

The major weaknesses of geldanamycin, however, is its low solubility, difficulty 
in crossing the blood-brain barrier, and most important of all, its induction of the 
heat shock response from inhibiting HSP-90. This response is comprised of the cells 
upregulating transcription of heat-shock proteins to properly compensate for the 
disruption of protein folding (Sittler et al. 2001). To account for the problems asso-
ciated with geldanamycin, a semi-synthetic derivative of geldanamycin called tane-
spimycin (17-AAG) was created that improved the ADME activity while decreasing 
the toxicity and heat shock response generated by geldanamycin (Goetz et al. 2003). 
As a result, 17-AAG provided a stronger candidate for HSP-90 inhibition. Despite 
the improvements made by 17-AAG, induction of the heat shock response and 
resulting toxicity lead to the computer screening of multiple compounds targeting 
the NTD to develop new compounds that limited the harmful effects of the previous 
generation of NTD- targeting inhibitors (Table 10.1).
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Purine-based inhibitors were a completely synthetic class of HSP-90 inhibitors 
designed to target the ATP-binding pocket of the NTD created from the complete 
crystal structure of HSP90 ATP/ADP complex (Prodromou et  al. 1997). These 
inhibitors have increased potency so that side effects associated with the geldana-
mycin analogs would be minimized at therapeutic doses. Through screening pro-
cesses, many derivatives of these purine-based inhibitors were created, the first of 
which was PU3. This derivative mimicked the binding of ATP in the NTD pocket in 
its closed conformation (Chiosis et al. 2001). The discovery of PU3 opened the door 
for a HSP90 NTD inhibitors that could potentially be brought through clinical trials 
due to the decreased toxicity.

Currently, couple of these purine and purine-like inhibitors are undergoing clini-
cal trials. BIIB021 is a member of the purine inhibitors being used to treat chronic 
lymphocytic leukemia and in a combination trial to treat HER2 (+) metastatic breast 
cancer (Table 10.1). Frequent grade 3 and 4 toxicities are associated with its use in 
chronic lymphocytic leukemia such as fatigue and hyponatremia while diarrhea, 
partial seizure, and nausea have been associated with its use in metastatic breast 
cancer (Elfiky et  al. 2008). Subsequently, this lead to the use of BIIB021 use in 
gastrointestinal stromal tumor treatment refractory to imatinib and sunitinib where 
it was well-tolerated and showed metabolic changes in the patients that primarily 
lead to the stabilization of the tumors (Dickson et al. 2012).

Another major compound of interest is PU-H71, another purine class inhibitor 
shown in preclinical studies to be effective against breast cancer, hepatocellular 
carcinoma, and Bcl-6-dependenet diffuse B-cell lymphoma cell lines. Human stud-
ies focused on patients with advanced refractory cancers revealed that PU-H71 was 
well-tolerated, but its discontinuation of supply did not allow a strong therapeutic 
index to be determined; Evidence suggested stability of disease as the average 
response (Speranza et al. 2018).

10.3  Conclusions

Herein, we have examined the role of HSP-90  in several disease entities and the 
routes that have been examined for therapeutic development. Historically, the 
C-terminal domain and PTM inhibitors have shown the most promise. Future direc-
tions will likely focus on combining these inhibitory steps and perhaps developing 
conjugated inhibitors to bolster delivery and efficacy.
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