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Abstract. The determination of various parameters or control input
signals satisfying particular performance criteria is often addressed with
optimization techniques where one aims at minimizing certain quan-
tity, which may be implicitly dependent on the dynamic response of
a system. Such an approach requires an efficient and reliable method
of gradient calculation. The adjoint method is an effective procedure
specifically designed for such calculations. This paper presents a dis-
crete Hamiltonian–based adjoint method which allows one to find the
gradient of the performance index in multibody systems’ optimization.
Hamilton’s equations of motion are discretized by means of trapezoidal
rule and incorporated into a discrete system of adjoint equations. Explicit
formula for the gradient of the cost functional is derived and exploited
in an exemplary optimal control problem.

1 Introduction

Optimization methods are commonly exploited in the field of multibody dynam-
ics in various aspects, e.g. in the early design stage or in the problems associated
with an inverse dynamics task, which is especially important in the robotics field.
A broad class of engineering problems involves the determination of input signals
which must be supplied to the system [2]. Optimal control methods associated
with a direct optimization approach tend to generate a large number of design
variables which have to be treated by optimization procedure [1]. The adjoint
method allows the computation of the gradient of the performance measure and
exhibits a significantly lower computational overhead when compared to other
gradient calculation techniques, especially when the number of design variables
(or input signals) is large.

In general, the adjoint method requires a solution of a system of differential–
algebraic equations (DAEs) backwards in time starting from a prescribed bound-
ary condition in order to obtain a set of adjoint variables which are necessary
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to determine the gradient [4,8]. Such an approach is based on continuous cost
functional as well as a time integration of equations of motion (EOM). On the
other hand, one can derive the discrete system of adjoint equations based on the
discretized cost functional and EOM [3,7]. Therefore, the mathematical models
of both dynamic and adjoint systems display certain similar features, which can
be exploited to improve numerical efficiency.

On the other hand, the performance of the optimization algorithm may
strongly depend on robustness of the formulation of EOM. Herein, Hamilton’s
canonical equations of motion are employed to evaluate the dynamic response of
a multibody system (MBS). This method possesses many appealing numerical
features [5], such as reduced differential index of the resultant DAEs, that ought
to be exploited in the development of an efficient and reliable adjoint–based
method.

This paper presents an introductory work that demonstrates an effort to
develop an adjoint method for the gradient calculation when a multibody system
is modeled by using constrained Hamilton’s canonical equations. The primary
importance of the paper is to look carefully at the advantages such a connection
may provide in the context of efficiency and stability of calculations.

2 Discrete Hamilton’s Equations of Motion

The starting point for the analysis of MBS is a set of Hamilton’s equations of
motion, where the system Lagrangian has been modified in order to impose the
constraint equations directly at the velocity level:

p∗ = M(q) q̇ + ΦT
qσ, (1a)

ṗ∗ = Q(q, q̇,u) + Φ̇
T

qσ, (1b)

Φ̇(q, q̇) = Φq q̇ = 0. (1c)

Here, q ∈ Rn is a vector of generalized coordinates, Φ ∈ Rm indicates a vector
of nonlinear holonomic constraints imposed on the system, Φq ∈ Rm×n denotes
a constraint Jacobian matrix, Q ∈ Rn indicates a vector of external forces, u ∈
Rk describes input control signals, M ∈ Rn×n is a mass matrix, and the quantity
σ ∈ Rm denotes constraint impulsive forces. The vector of generalized momenta
is defined as p = Mq̇, whereas Eq. (1) is based on augmented momenta p∗ ∈
Rn which incorporate impulsive forces distributed along constrained directions
indicated by the Jacobian matrix (see Eq. (1a)).

Equation (1) constitutes a set of 2n + m nonlinear DAEs which will be dis-
cretized in order to obtain unknown variables, i.e. p∗

i ,qi,σi at all time instances
i = {1, 2, · · · N}. The trapezoidal method, which is known to be an A-stable
integrator, can be employed to tackle a large class of problems arising in MBS
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dynamics. In the cases of highly stiff problems, this property may be to weak,
however, it has been observed to reliably address the solution of DAEs for the
systems presented herein. The trapezoidal rule reads as:

q̇i − 2
Δt

qi + ˆ̇qi−1 = 0, ˆ̇qi−1 = − 2
Δt

qi−1 − q̇i−1,

ṗ∗
i − 2

Δt
p∗

i + ˆ̇pi−1 = 0, ˆ̇pi−1 = − 2
Δt

p∗
i−1 − ṗ∗

i−1.

(2)

This approximation converts the original DAE (1) into a set of nonlinear alge-
braic equations expressed at ith time instance:

−p∗
i +

2
Δt

Miqi + Mi
ˆ̇qi−1 + ΦT

qi
σi = 0,

− 2
Δt

p∗
i − ˆ̇pi−1 + Qi +

2
Δt

(
Φqi

qi

)T

qi
σi +

(
Φqi

ˆ̇qi−1

)T

qi
σi = 0,

2
Δt

Φqi
qi + Φqi

ˆ̇qi−1 = 0.

(3)

A combined set of equations (2) and (3) may be expressed succinctly in the
following form: f(yi,yi−1,ui) = fi = 0. Given the initial condition q(0) =
q,p∗(0) = p∗

0, Eq. (3) can be propagated forward in time with the aid of, e.g.,
Newton method. This approach requires the definition of a tangent matrix to
the Eq. (3), i.e. ∂fi

∂yi
= f i

yi
, where yi = [q̇T

i , (ṗ∗)T
i ,qT

i , (p∗)T
i ,σT

i ]T . An iterative
scheme must be established at every time–step, which will yield an update to
the next time instance of unknown variables yi+1:

[ f i
yi

]jΔyj+1
i+1 = −[ fi ]j . (4)

Thus, yi+1 may be successively updated as yj+1
i+1 = yj

i+1 = Δyj+1
i+1 , where j refers

to the iterator of Newton–Raphson procedure.

3 Discrete Hamiltonian-Based Adjoint Method

Let us consider an optimal control problem in which the aim is to find a sequence
of control inputs [u0, u1 · · · uN ] that minimize the following performance mea-
sure:

J =
N−1∑

i=0

hi

(
yi,ui

)
+ S

(
yN

)
, (5)

where hi is a value of discretized cost function at ith time–step, and S denotes a
terminal cost used to prescribe particular configuration of the state at the final
time. Provided that Eq. (3) is fulfilled by all state and control variables, one can
premultiply its LHS by a vector of arbitrary adjoint variables wi ∈ R4n+m and
add it to Eq. (5) without introducing any quantitative changes:

Ĵ = h0 + w0f0 +
N−1∑

i=1

(
hi

(
yi,ui

)
+ wT

i fi
)

+ wT
N fN + S

(
yN

)
. (6)
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The variation of Eq. (6) with respect to state variables and control input signals
at each time instant reads as:

δĴ = h0
y0

δy0 + h0
u0

δu0 +
(
wT

N f N
yN

+ SyN

)
δyN + wT

N f N
uN

δuN

+
N−1∑

i=1

(
hi
yi

δyi + hi
ui

δui + wT
i f i

yi
δyi + wT

i f i
yi−1

δyi−1 + wT
i f i

ui
δui

)
,

(7)

where the following abbreviation is used: ai
bj

= ∂ai

∂bj
(a, b denote a pair of

arbitrary vectors). By performing a simple index shift, Eq. (7) can be rewritten
in a more favorable form:

δĴ =
(
h0
y0

+ wT
1 f i

y0

)
δy0 + h0

u0
δu0 +

(
wT

N f N
yN

+ SyN

)
δyN + wT

N f N
uN

δuN

+
N−1∑

i=1

((
hi
yi

+ wT
i f i

yi
+ wT

i+1f
i+1

yi

)
δyi +

(
hi
ui

+ wT
i f i

ui

)
δui

)
.

(8)

Equation (8) presents a relation between the variation of the performance mea-
sure and the variations of all variables expressed at each time instance. Since
the adjoint variables are at this point arbitrary, one can equate the expressions
staying next to the state variations to zero. This condition uniquely defines all
adjoint variables and generates the following sets of algebraic equations:

(
f i
yi

)T
wi = −(

hi
yi

)T − (
f i+1
yi

)T
wi+1,

(
f N
yN

)T
wN = −(

SyN

)T
. (9)

Jacobi matrices that appear in Eq. (9) have the following explicit form:

f i
yi

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I 0 −γ I 0 0
0 I 0 −γ I 0
0 0 [ f i

3 ]qi
−I ΦT

qi

0 0 [ f i
4 ]qi

−γ I Φ̇
T

qi

0 0 Φ̇
i

qi
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, f i+1
yi

=

⎡

⎢
⎢
⎢
⎢
⎣

I 0 γ I 0 0
0 I 0 γ I 0

−Mi 0 −γ Mi 0 0
[f i+1
4 ]q̇i

I [f i+1
4 ]qi

γ I 0
−Φqi

0 −γ Φqi
0 0

⎤

⎥
⎥
⎥
⎥
⎦

, (10)

where I ∈ Rn×n is the identity matrix, and the abbreviated entries read as:

[ f i
3 ]qi

= γ Mi +
(
ΦT

qσi

)

qi

, [ f i
4 ]qi

= Qi
qi

+ γ Qi
q̇i

+
[
[Φ̇

i

qi
]T σi

]
qi

,

[f i+1
4 ]q̇i

= −S − Qi
q̇i

, [f i+1
4 ]qi

= −γ (S + Qi
q̇i

),

Φ̇
i

qi
= γ

(
Φqi

qi

)
qi

+
(
Φqi

ˆ̇qi−1

)
qi

, γ =
2

Δt
=

∂q̇i

∂qi
,

S =
[
(Φqi+1qi)T σi+1

]
qi

=
[
(Φqi+1 q̇i)T σi+1

]
q̇i

.

The adjoint variables obtained by solving Eq. (9) significantly simplify the
expression (8). The gradient of the performance measure (5) can thus be evalu-
ated as follows:

∇J(ui) =
(
hi
ui

+ wT
i f i

ui

)
Δt, ∇J(uN ) = wT

N f N
uN

Δt, (11)
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where i = {0, 1, · · · N − 1}. Let us note, that this procedure allows solving prob-
lems associated with optimal design as well. If we consider u as a vector of static
design parameters instead of a control sequence explicitly dependent on time,
the formula for a gradient becomes:

∇J(u) = h0
u0

+
N−1∑

i=0

(
hi
ui

+ wT
i f i

ui

)
Δt. (12)

4 Numerical Example

An optimal control problem of an underactuated system is presented as an illus-
trative example to demonstrate the performance of the developed method [9].
The goal is to identify a control input force u = F (t) acting on a cart, which
allows a swing–up maneuver of a triple pendulum attached to the cart. The
layout of the system is presented in Fig. 1. The mass of a cart is mc = 0.8 kg
and its moment of inertia about z axis (perpendicular to the plane of motion)
is Jc = 0.034 kg m2. Three identical bodies are attached sequentially to the cart
via revolute joints. The mass of each link is equal to mp = 0.4 kg and moment
of inertia about z axis is Jp = 0.083 kg m2. Additionally, a linear frictional force
is introduced into translational and one of revolute joints, where ctrans = 0.5 Ns

m

and crot = 0.2 Nsm
rad . Let us note, that in this simple case, friction is included

in the EOM in the form of generalized force. The system is initially at rest in
a lower equilibrium configuration, i.e. ϕ1 = ϕ2 = ϕ3 = −π

2 rad.
The optimization procedure has been supplied with a constant initial

sequence of input control variables equal to F0(t) = 10N . Since the trajec-
tory of the links is not provided in any form, the cost function can be reduced
to a terminal term from Eq. (5), which reads as: J = 0.5 · [

(ϕ1 − ϕv)2 + (ϕ2 −
ϕv)2 + (ϕ3 − ϕv)2

]
tf

, where ϕv = π
2 rad can be associated with vertical orien-

tation of each link. The steepest descent method is employed for the optimiza-
tion, along with a backtracking algorithm as a line–search procedure defining
an optimal step size [10]. The gradient obtained with the adjoint method is
exploited as a search direction, i.e. the following control inputs are determined
as ui+1 = −αi+1∇J(ui), where αi+1 is a step size obtained via the backtrack-
ing procedure. Figure 2 presents four snapshots of the system’s motion (marked
with red color) at consequent time–steps. For better readability, initial and final
position of the bodies are added as a reference. The cart in the first frame (i.e.
when t = 1.26 s) is at its right–most position from which it moves left–wards in
the following frames.

Figure 3 depicts a history of iterations of the optimization procedure: blue cir-
cles show the value of a cost functional with respect to the number of iterations,
whereas red x-shaped markers present first–order optimality ||∇J ||inf on a log-
arithmic scale. The procedure keeps the cost close to zero after 300 iterations.
Figure 4 shows the time–histories of position (Φ(q)), velocity (Φ̇(q, q̇)), and
acceleration–level algebraic constraints (Φ̈(q, q̇, q̈)). The dynamic response is
recorded for the starting iteration. Since velocity–level constraints are explicitly
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included in the EOM, Φ̇ is very close to zero, i.e. up to 10−14. Some constraint
violation errors arise at the position level, however, their value generally lies
between 10−5 and 10−4, which does not introduce significant numerical errors.
During the optimization process, the shape of the input force acting on the cart
is determined. Figure 5 presents the snapshots of the identified force throughout
the process: initial, two intermediate ones, and the one obtained at the final
iteration.

Fig. 1. Layout of the MBS Fig. 2. Consequent snapshots of the system
acting under the identified control input

0 100 200 300
0
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10

15

10-4

10-3

10-2

Fig. 3. The progress of the optimization
process
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10-15

10-10

10-5

100

Fig. 4. Holonomic constraints

The accuracy of the adjoint method can be compared with a rather reliable,
yet remarkably inefficient method of finite differencing. Figure 6 presents a time
variant functions of the gradient calculated with both complex finite differences
and adjoint method. Both plots are recorded for the initial point of the optimiza-
tion procedure. The maximum relative error between the gradients, which occurs



The Discrete Hamiltonian-Based Adjoint Method 365

0 0.5 1 1.5 2
-50

0

50

Fig. 5. Identified force acting on the cart
recorded at following iterations
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Fig. 6. Time variant functions of
the gradient calculated with different
methods

at t = 0.52 s is equal to 0.5%. Let us compare the time required to calculate the
gradient from t0 = 0 s to tf = 2 s with a constant step size equal to Δt = 0.02 s.
Here, a standard PC has been used, which yielded the following execution times:
Tadjoint = 0.35 s and Tcomplex = 150 s. This significant discrepancy comes from
the fact, that the adjoint method solves 4n + m Eq. (9) for all design variables.
On the other hand, finite differences method requires to perform a forward solu-
tion of dynamic equations (1) for each design parameter, which is by far more
time–consuming task compared to the execution of the adjoint method.

5 Conclusions

This paper presents an introductory effort to elaborate systematic methods of
efficient gradient calculation for a multibody system. The forward dynamics
problem is addressed with an efficient solution strategy based on Hamilton’s
canonical equations. A trapezoidal integration rule is incorporated into the equa-
tions of motion in order to get its discretized version. Furthermore, the solution
of a discrete adjoint system is used to efficiently and reliably compute a gradi-
ent vector. A representative optimal control problem is considered in the text,
that illustrates an application of the method developed here. The sample test
case is an underactuated multi–link pendulum on a cart. Numerical results are
compared against the finite differences method. The proposed formulation is
amenable to parallelization according to the Hamiltonian based divide and con-
quer scheme [5,6]. These areas are of ongoing research for the authors.

Acknowledgments. This work has been supported by National Science Center under
grant No. 2018/29/B/ST8/00374. The first author would also like to acknowledge the
support of the Institute of Aeronautics and Applied Mechanics funds for scientific
research.



366 P. Maci ↪ag et al.

References

1. Agrawal, S.K., Fabien, B.C.: Optimization of Dynamic Systems, vol. 70. Springer,
Dordrecht (2013)

2. Bestle, D., Eberhard, P.: Analyzing and optimizing multibody systems. Mech.
Struct. Mach. 20, 67–92 (1992)

3. Callejo, A., Sonneville, V., Bauchau, O.A.: Discrete adjoint method for the sen-
sitivity analysis of flexible multibody systems. J. Comput. Nonlinear Dyn. 14(2),
021001 (2019)

4. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential-
algebraic equations: the adjoint DAE system and its numerical solution. SIAM J.
Sci. Comput. 24(3), 1076–1089 (2003)

5. Chadaj, K., Malczyk, P., Fr ↪aczek, J.: A parallel Hamiltonian formulation for for-
ward dynamics of closed-loop multibody systems. Multibody Syst. Dyn. 39(1)
(2017). https://doi.org/10.1007/s11044-016-9531-x

6. Chadaj, K., Malczyk, P., Fr ↪aczek, J.: A parallel recursive Hamiltonian algorithm
for forward dynamics of serial kinematic chains. IEEE Trans. Robot. 33(3), 647–
660 (2017). https://doi.org/10.1109/TRO.2017.2654507

7. Lauß, T., Oberpeilsteiner, S., Steiner, W., Nachbagauer, K.: The discrete adjoint
gradient computation for optimization problems in multibody dynamics. J. Com-
put. Nonlinear Dyn. 12(3), 031016 (2017)

8. Maci ↪ag, P., Malczyk, P., Fr ↪aczek, J.: Optimal design of multibody systems using
the adjoint method. In: Dynamical Systems Theory and Applications, pp. 241–253.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-96601-4 22

9. Nachbagauer, K., Oberpeilsteiner, S., Sherif, K., Steiner, W.: The use of the adjoint
method for solving typical optimization problems in multibody dynamics. J. Com-
put. Nonlinear Dyn. 10(6) (2015). https://doi.org/10.1115/1.4028417

10. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2006)

https://doi.org/10.1007/s11044-016-9531-x
https://doi.org/10.1109/TRO.2017.2654507
https://doi.org/10.1007/978-3-319-96601-4_22
https://doi.org/10.1115/1.4028417

	The Discrete Hamiltonian-Based Adjoint Method for Some Optimization Problems in Multibody Dynamics
	1 Introduction
	2 Discrete Hamilton's Equations of Motion
	3 Discrete Hamiltonian-Based Adjoint Method
	4 Numerical Example
	5 Conclusions
	References




