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Radek Buĺın(B) and Michal Hajžman
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Abstract. This paper deals with the use of quasi-Newton methods for
dynamical simulations of nonlinear flexible multibody systems which are
modelled using absolute nodal coordinate formulation (ANCF). Three
ANCF beam elements are briefly reminded and implemented. The New-
mark integration method for index 3 differential-algebraic equations is
coupled with the iterative quasi-Newton method in order to reduce com-
putational time. The described algorithm is implemented and tested on
the benchmark problem of a flexible pendulum.

1 Introduction

The modelling of flexible bodies as parts of multibody systems is a common
issue that is a point of interest of many researchers. Several suitable methods
for describing the flexibility together with the large displacements and rotations
of flexible bodies were developed [12] and in most cases they lead to nonlinear
formulations of motion equations. Therefore it is appropriate to deal with the
numerical methods to solve these equations in reasonable computational times
and accuracy.

The iterative refinement of the solution in discrete time step may be per-
formed by using the quasi-Newton method. The basic advantage of this method
is its computational effectiveness in comparison to classical the Newton method,
where in most cases the Jacobi matrix needs to be evaluated numerically by
finite differences. The drawback of the quasi-Newton method is the lost of con-
vergence in case of inappropriately large time steps. This paper is dedicated to
the usage of the Newmark integration method together with the quasi-Newton
method for the simulations of flexible bodies modelled by absolute nodal coor-
dinate formulation.

2 Modelling of Flexible Bodies

Since multibody systems may consist of flexible bodies, it is important to have
proper methods to describe their elastic and inertia properties. One of the most
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promising methods in last two decades is the absolute nodal coordinate for-
mulation (ANCF) of finite elements, that was originated in 1996 by Shabana,
see [11]. Compared with the classical formulation of finite elements, ANCF uses
absolute positions of nodes and partial derivatives of these positions with respect
to local element parameters as nodal coordinates. This can be also advantageous
from the viewpoint of possible rigid-flexible bodies connections when the natu-
ral coordinates formulation for describing rigid bodies is used [7]. In this work,
several ANCF beam elements are used for flexible bodies modelling. However,
the ANCF approach has been successfully applied to various types of elements
such as plates, shells [8] or solid bricks [9].

The first tested element implemented in the in-house software in MATLAB
is so called original ANCF beam element [5]. This type of element has two nodes
and each node has 12 degrees of freedom that correspond with four vectors - the
global position vector of the node and three tangential vectors that are obtained
as derivatives of the global position vector of the node with respect to beam
coordinates x (axial beam coordinate), y and z (two cross-sectional coordinates).
Derivation of the elastic forces of the element can be found in [10], specifically
the elastic line approach was used in this work. The resultant nonlinear vector of
elastic forces was obtained by using symbolic operations in MATLAB software.

The second implemented element is the ANCF thin cable element, in [5]
denoted as lower order cable element. It has two nodes and each node has six
degrees of freedom, from which three are the components of the node position
vector and three are the components of the beam center-line tangent (slope)
vector. The ANCF cable element uses axial strain and beam center-line curvature
to define the elastic forces. This type of element is advantageous in terms of
reducing the number of degrees of freedom, but the minor disadvantage is the
inability to describe torsional flexibility. The closed form of nonlinear vector of
elastic forces was not obtainable by symbolic operations in MATLAB, so the
Gaussian quadrature was used to its numerical evaluation.

The last tested element is denoted as L2T2 and was developed in article
[1]. This type of element is a planar version of the ANCF thin cable element,
it has two nodes with four degrees of freedom in each node and it uses several
assumptions that lead to the simplification of the nonlinear vector of elastic
forces.

One of the major advantages of used ANCF beam elements is the formula-
tion of mass matrix which is constant, so it is computed only once before the
numerical simulation. The motion equations of one unconstrained flexible body
described by ANCF elements can be written in the similar form for all three
tested elements

Mq̈ + Q = f , (1)

where M is the mass matrix, q = q(t) is the vector of all nodal coordinates,
Q = Q(q) is the vector of elastic forces that is dependent on the nodal coor-
dinates and f = f(q, q̇, t) is the vector of external forces. Equation (1) can be
extended by damping forces in the form of proportional damping. For this pur-
pose, the vector of elastic forces can be written in the form Q = K(q)q, where
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K(q) is the nonlinear stiffness matrix. In this work, the damping is not consid-
ered.

The common form of motion equations of a multibody system is
{

Mq̈ + ΦT
,qλ = g,
Φ = 0,

(2)

where q now contains all degrees of freedom of all bodies and M is the corre-
sponding mass matrix, Φ = Φ(q, t) represents holonomic constraints, Φ,q is the
Jacobi matrix of the constraints and λ is the vector of Lagrange multipliers. In
case of use of the ANCF approach for describing a flexible body, the right side
of the first equation in (2) is of the form

g(q, q̇, t) = f(q, q̇, t) − Q(q). (3)

3 Numerical Solution of Equations of Motion

There are several publications dedicated to implicit numerical methods suitable
for the solution of Index 3 differential-algebraic equations (DAE I3) of multibody
systems described by Eq. (2) such as [3,6]. For example, paper [6] applies the
Hilbert-Hughes-Taylor (HHT) method on the flexible bodies described by ANCF
approach, but the resultant algebraic equations for the solution corrections are
not further discussed in detail. In this paper, the Newmark integration method
is used to obtain the algebraic equations for the solution corrections and these
equations are solved by quasi-Newton method.

3.1 Newmark Integration Method for DAE I3

Based on [3], the Newmark formulas are used in the form

qn+1 = qn + hq̇n + h2

2 [(1 − 2β)q̈n + 2βq̈n+1] ,
q̇n+1 = q̇n + h [(1 − γ)q̈n + γq̈n+1] ,

(4)

where h is the time step, γ = 1
2 + α, β = 1

4

(
γ + 1

2

)2 and α is the parameter of
numerical damping. The equations of motion with the constraint equations (2)
are formerly adjusted in order to define residuum vector rres as

rres (q, q̇, q̈, λ) = Mq̈ + ΦT
,qλ − g (q, q̇, t) = 0,

Φ(q, t) = 0.
(5)

Equation (5) can be expressed in discrete time step n+1 and after the substitu-
tion of the Newmark formulas (4) inversion, see [3], into (5), following equations
are obtained

rres (qn+1, λn+1) = 0,
Φ(qn+1) = 0.

(6)
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After the linearisation of (6) using Taylor expansion, following equations are
obtained

rres
(
qk+1
n+1, λk+1

n+1

)
= 0 ≈ rres

(
qk
n+1, λk

n+1

)
+ St

(
qk
n+1, λk

n+1

)
Δqk + ΦT

,qΔλk,

Φ(qk+1
n+1) = 0 ≈ Φ(qk

n+1) + Φ,qΔqk,
(7)

where St is the Jacobi matrix of the residuum vector and has a form

St =
∂rres
∂q

=
1

βh2
M +

∂

∂q

(
ΦT

,qλ
)
− ∂g

∂q
− γ

βh

∂g
∂q̇

. (8)

Now the expression (7) can be rewritten in the matrix form
[

St ΦT
,q

Φ,q 0

]
·
[

Δqk

Δλk

]
= −

[
rres

(
qk
n+1, λk

n+1

)
Φ(qk

n+1)

]
. (9)

Expression (9) represents the system of algebraic equations for the corrections
of positions Δq and corrections of Lagrange multipliers Δλ that are then used
for the solution correction as follows

q̈k+1
n+1 = q̈k

n+1 + Δq̈k = q̈k
n+1 +

1
βh2

Δqk,

q̇k+1
n+1 = q̇k

n+1 + Δq̇k = q̇k
n+1 +

γ

βh
Δqk,

qk+1
n+1 = qk

n+1 + Δqk,

λk+1
n+1 = λk

n+1 + Δλk. (10)

The iterative process (10) is started with the prediction of the acceleration vector.
Equation (9) can be rewritten to the simple compact form

Jr(xk)Δxk = −r̃(xk), (11)

where Jr is the iteration matrix, which may differ in each iteration k. The
analytical expression of the iteration matrix is nearly impossible for the most
of nonlinear problems, e.g. in case of a thin cable element, where the beam
centerline curvature is used for the derivation of bending elastic forces, is the
analytical expression very complicated. Therefore, the iteration matrix is often
approximated by using numerical finite differences. Since this operation is very
time consuming, it is not recommended to update the iteration matrix within
every iteration [6]. In this paper, the application of the quasi-Newton method for
direct construction and updating of the approximation of the iteration matrix
inversion is used in order to reduce computational time needed for reaching the
force equilibrium state at time step n.

3.2 Quasi-Newton Method

The quasi-Newton method is based on the approximation of iteration matrix Jr

by a matrix G [4]. For each iteration k, the matrix G is computed based on the
previously evaluated quantities, so the form of this matrix in iteration k + 1 is

Gk+1 = Gk + ΔGk, (12)
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where ΔGk is the increment of the approximation matrix and several quasi-
Newtonian methods are distinguished based on its form, such as Davidon’s,
Broyden’s, DPF or BFGS method. The derivation of the increment ΔGk is
based on the secant equation, for more information see [2]. The algorithm of
quasi-Newton method starts with the first approximation matrix G0, that can
be determined by using numerical finite difference method for Jr(x0) at the very
start of the simulation. For k = 0, 1, 2, . . . , following algorithm is then applied:

1. Calculation of increments Δxk from equation GkΔxk = −r̃(xk).
2. Evaluation of the solution in step k + 1 as xk+1 = xk + Δxk.
3. Determination of the difference between two consecutive residual vectors as

yk = r̃(xk+1) − r̃(xk).
4. Calculation of ΔGk based on the chosen quasi-Newtonian method and the

use of Eq. (12).

One of the benefits of the quasi-Newton method is that after few mathe-
matical operations the approximation of the iteration matrix Jr inversion can
be directly written in the closed form. With the denotion Hk =

(
Gk

)−1, the
vector of increments can be easily evaluated as Δxk = −Hkr̃(xk). Then updated
matrix Hk+1 can be evaluated based on the selected quasi-Newtonian method.
The list of the most used methods follows [4]:

• Broyden’s method

Hk+1 = Hk +

(
Δxk − Hkyk

) (
Δxk

)T
Hk

(Δxk)T Hkyk
, (13)

• Davidon’s method

Hk+1 = Hk +

(
Δxk − Hkyk

) (
Δxk − Hkyk

)T
(Δxk − Hkyk)T yk

, (14)

• Davidon-Powell-Fletcher (DPF) method

Hk+1 = Hk +
Δxk

(
Δxk

)T
(Δxk)T yk

− Hkyk
(
yk

)T
Hk

(yk)T Hkyk
, (15)

• Broyden-Fletcher-Goldfard-Shanno (BFGS) method

Hk+1 =

(
I − Δxk

(
yk

)T
(yk)T Δxk

)
Hk

(
I − yk

(
Δxk

)T
(yk)T Δxk

)
+

Δxk
(
Δxk

)T
(yk)T Δxk

. (16)



Numerical Treatment of Flexible Multibody Systems 337

4 Numerical Simulations

The common benchmark problem of a flexible pendulum was used to compare
proposed numerical method with the functions of ode family methods from
MATLAB software. The pendulum of the 2 m length has a square cross section
with the edge of 0.01 m, material density is 4000 kg·m−3 and the Young’s mod-
ulus is 108 Pa. The rotation joint to the base frame is represented by the con-
straints applied to the end node. For the pendulum model, the original ANCF
beam elements (Thick), ANCF thin cable elements (Thin) and planar L2T2 ele-
ments were used. Ten elements were used to describe the pendulum. The relative
and absolute error of ode functions were left with implicit values (RelTol = 10−3,
AbsTol = 10−6) and the solution of each time step using Newmark method is
considered as converged if |rres| < 10−6 and |Φ| < 10−6. Numerical damping
parameter α was set to zero in order to compare the results with the trapezoidal
rule of the ode23t. The time step of Newmark method was set to h = 0.0005 s.
The snapshots of the pendulum motion in chosen discrete times are shown in
Fig. 1. In Table 1, the resultant computation times for the simulation of two
seconds of the pendulum movement are summarized for various ANCF elements
and numerical methods. Only three fastest MATLAB functions are shown. From
the results it is apparent, that the Thick element is the slowest especially with
the use of ode functions. This may be caused by the implementation of the
Thick elements, because their elastic forces are derived in closed form during
preprocessing by using symbolic operations of MATLAB. The evaluation with
the use of Gaussian quadrature would be faster. The Newmark method with
the quasi-Newton method was faster for all element types, especially Davidon’s
method is significantly faster than classical ode functions.

Fig. 1. Snapshots of the pendulum motion in discrete time steps.

In Fig. 2, the differences in vertical position of the flexible pendulum tip that
were obtained by using various numerical methods are shown. It is apparent, that
the difference between the Davidon’s method and ode23t is in the same order
of magnitude 10−5 as the difference between ode23t and ode23. The difference
between the quasi-Newtonian methods is even smaller - order of magnitude 10−8.
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Table 1. Computation times in [s] of the pendulum motion simulation (2 s) for various
ANCF elements and numerical integration methods.

ANCF MATLAB functions Newmark with quasi-Newton

Element ode23 ode113 ode23t Broyden Davidon DPF BFGS

L2T2 5.3 9.4 10.1 3.69 1.69 3.06 2.96

Thin 7.1 11.9 11.5 7.22 2.96 6.32 6.14

Thick 311.0 221.3 375.6 19.20 10.49 20.24 27.61

Fig. 2. Differences in vertical position of flexible pendulum tip for various numerical
methods.

5 Conclusions

In this paper, the numerical method that is based on the Newmark integra-
tion scheme coupled with the quasi-Newton method was described as a suitable
method for the dynamical simulations of flexible multibody systems modelled
using ANCF approach. The numerical tests were performed on the benchmark
problem of the flexible pendulum and the results are in a good compliance
with the ode family methods of MATLAB software. The main advantage of the
described approach is the direct solution of DAE I3 equations without the need
of stabilization techniques and the faster computation times in comparison with
MATLAB time integration functions. In case of reasonably small time steps, the
quasi-Newton method converged in few steps to the solution. Currently, the pro-
posed methods are being tested on the mechanical system of a rotating cylinder
with a wrapped cable modelled by ANCF and the resultant friction and normal
contact forces are in a very good compliance with the analytical equations. In
future work, the quasi-Newton method will be implemented together with HHT
integration method.
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