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Abstract. This paper reports on the significance of warping deformation on the
stability analysis of a flexible cross-hinge mechanism, which consists of two
leaf springs with rectangular cross-section. The effect of misalignments in this
mechanism is studied analytically, numerically and experimentally. An analytical
buckling analysis is carried out to determine the theoretical critical load of a gen-
eralized cross-hinge mechanism on the basis of first principles. A geometrically
nonlinear beam finite element with a non-uniform torsion description is used to
model the leaf springs numerically. The change in natural mode frequencies and
stiffness as a function of the misalignment is determined by a multibody program.
Measurements from a dedicated experimental set-up confirm that the inclusion of
warping effects is crucial, even for narrow rectangular cross-sections: it is found
that the effects of warping increase the analytical critical buckling load of the
system by 55%.

1 Introduction

In precision manipulation mechanisms, the risk of indeterministic behavior is mitigated
by the use flexure joints. Such joints consist of elastically deforming elements, instead
of traditional hysteresis-inducing rolling or sliding components. Since the only motion
is due to elastic deformation, flexure mechanisms operate without friction, backlash,
stick-slip, and wear, resulting in low hysteresis and highly repeatable motion. It also
means that the static performance of such mechanisms is characterized by their stiff-
ness properties: in certain directions (typically associated with actuation) low stiffness is
desired, whereas especially in load-bearing directions high stiffness is desired. Assem-
blies of beams with narrow rectangular cross-sections are commonly used to this end.

c© Springer Nature Switzerland AG 2020
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In pursuit of higher performance (i.e. higher load-bearing stiffness), we are explor-
ing flexure mechanisms that are termed overconstrained. This class of designs is typi-
cally avoided altogether because its stiffness properties depend strongly on the correct
alignment of components (e.g. due to assembly and manufacturing tolerances). It has
been shown that a flexible multibody model can predict this dependency accurately,
and actually quantify the mechanism’s limit of operation in terms of the allowable
misalignment by means of a buckling analysis [3,4]. In this paper, we show that the
effects of constrained warping have a marked influence on the critical load and there-
fore the allowable misalignement. An analytical lateral buckling analysis provides the
theoretical critical load of the system on the basis of first principles and corroborates
the measurements and simulations.

2 Experimental Set-Up

To study the phenomenon, the flexible cross-hinge in Fig. 1 serves as a case study.
It consists of two leaf springs (80mm length) with narrow rectangular cross-sections
(30mmwidth, 0.35mm thickness) and a shuttle. The shuttle guides motion with respect
to the base about the indicated rotation axis; in the other directions, it constrains motion.
The overconstrained nature of this particular design manifests itself as a relatively high
stress that occurs due to misalignment displacement v0 (compared to misalignments
in the other directions). This stress affects the stiffness properties of the mechanism,
therefore its performance, and can even cause bifurcation buckling. The measurement
set-up is depicted in Fig. 2.

Fig. 1. Simplified illustration of the flex-
ible cross-hinge mechanism. The Von
Mises stress distribution due to misalign-
ment displacement v0 is indicated.
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Fig. 2. Photograph of the measure-
ment set-up of the cross-hinge mech-
anism. The guidance stage serves to
apply a controllable misalignment to
the cross-hinge mechanism. There are
several design characteristics for limit-
ing hysteresis and enabling repeatable
measurements [4]. The set-up is used
for measuring the mechanism’s natu-
ral mode frequencies as a function of
the misalignment. The natural mode
frequencies serve as stiffness measures
that are easier to determine experimen-
tally.

3 Analytical Analysis

When the misalignment displacement v0 or force F0 exceeds a critical value, buckling
occurs, support stiffness is lost and the mechanism no longer functions. To investigate
the effects that warping has on the critical load of the system, an analytical buckling
analysis is performed. The analysis follows the same steps and notation as Nijenhuis
et al. [4], with the addition of a warping model and a change in solution procedure.

The equilibrium conditions of the system are derived using the potential energy of
the system, given by

Ptot = P l
leaf + P r

leaf − F0v
l(0) +

[
Dx Dy Dz

]
⎡

⎣
Kx

Ky

Kz

⎤

⎦ +
[
Rχ Rψ Rφ

]
⎡

⎣
Kχ

Kψ

Kφ

⎤

⎦ . (1)

It consists of strain energy terms, external work F0v
l(0) and Lagrange multipliers

Dx,y,z and Rχ,ψ,φ to account for the kinematic constraints that the shuttle imposes
on the leaf spring ends. The multipliers can be interpreted as the forces and moments
needed to enforce the kinematic constraints. Superscripts l and r are used to denote the
left and right leaf spring. Shuttle elasticity and gravity are ignored. Using beam theory
to describe the leaf springs of length L, width w and thickness t, their contribution to
Ptot is given by

Pleaf =
1

2

∫ L

0

[
Sbκ

2
y + Stκ

2
z + Sw

(
κ′
z

)2]
ds +

∫ L

0

(Nuγx + Nvγy + Nwγz + Mκx) ds.

(2)
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We choose to account for the strain energy only due to deformation modes with rel-
atively low stiffness, i.e. bending in the plane of lowest rigidity (stiffness Sb), torsion
(stiffness St) and warping (stiffness Sw). The deformation modes of relatively high
stiffness are modeled as zero-deformation constraints by means of additional Lagrange
multipliers Nu,v,w and M for respectively zero transverse shear strain γx and γy , zero
elongation strain γz and zero bending curvature κx in the plane of highest rigidity.
Figure 3 shows a schematic overview of the system. The deformed leaf spring configu-
ration is described with respect to the initial coordinate frames x, y, z. Resolved in these
frames, the position of the elastic lines is given by

r(s) =
[
u(s) v(s) s + w(s)

]
. (3)

Fig. 3. For treating a wider variety of
cross-hinge designs, angle α, shuttle
length dx and shuttle width dy are free
parameters in this analysis. Crossing
length b = L − (dx/2) cscα is posi-
tive when the point of intersection lies
on the leaf springs; negative when it lies
beyond (as depicted). For the demon-
strator set-up, b = L/2. The position
vector and orientation triads are only
drawn for the left leaf spring.

Also, the orientation of the orthonormal triad attached to the deformed beam cross-
section [mx my mz] is described by the rotation

[
mx my mz

]
=

⎡

⎣
1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎤

⎦

⎡

⎣
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤

⎦

⎡

⎣
cosχ 0 sinχ
0 1 0

− sinχ 0 cosχ

⎤

⎦
[
ix iy iz

]

(4)
with respect to the undeformed cross-section triad [ix iy iz]. Then, the shuttle con-
straints for the rotations are given by

Kχ = χl − χr = 0,

Kψ = ψl − ψr cos 2α + φr sin 2α = 0,

Kφ = φl − φr cos 2α − ψr sin 2α = 0,

(5)

and for the translations by

Kx =
(
−ul + ur + dyψl

)
cosα +

(
wl + wr + dyφl

)
sinα = 0,

Ky = −vl + vr −
(
ψl + χlφl

)
dx cosα −

(
φl − χlψl

)
dx sinα + dy

(
φl2 + ψl2

)
/2 = 0,

Kz = dxχl +
(
−wl + wr − dyφl

)
cosα −

(
ul + ur − dyψl

)
sinα = 0

(6)
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at s = L. Reissner’s relations for the nonlinear beam strains and curvatures energeti-
cally dual to the stress resultants are given by [5]

κx = φ′ − ψ′χ,

κy = χ′,
κz = ψ′,

γx = u′ − χ,

γy = v′ + φ(1 + w′) − ψu′,
γz = w′,

(7)

where the prime denotes differentiation with respect to the independent coordinate s.
The kinematic boundary conditions, not included in the total potential energy, are given
by

s = 0 : ul = ur = vr = wl = wr = χl = χr = ψl = ψr = φl = φr = 0 (8)

and
s = 0 : ψ′l = ψ′r = ψ′l = ψ′r = 0 (9)

for the constraints on the warping deformation imposed by the mounting fillets at both
ends of the leaf springs.

Application of the principle of minimum potential energy yields the equilibrium
conditions for the system in terms of the configuration functions and undetermined
multipliers. The fundamental solution branch is given by a zero value for all quantities,
except for

Dy = −F0,

Rφ = dxF0 cosα cot 2α,

Rψ = −dxF0 cosα,

N l
v = −F0,

M l = −F0 (s − b) ,

N r
v = F0,

M r = F0 (s − b) ,
(10)

indicating that load F0 does not cause deformation in the fundamental solution, but
only a “reaction” from the multipliers that enforce the idealized zero-deformation con-
straints. Bifurcation equilibrium conditions are obtained by requiring that the first vari-
ation of Ptot with respect to the fundamental solution vanishes. This means that only
the second-order terms of Ptot need to be taken into account (on the basis of which the
nonlinear expressions of Eqs. (5)–(7) were already truncated). The ODEs and natural
boundary conditions obtained this way can be solved partially, yielding

φl = φr = vl = vr = wl = wr = 0. (11)

The addition of the warping term in Pleaf leads to coupled variable-coefficient linear
ODEs for ψl,r and χl,r that seem to admit no closed-form solution, unlike the original
analysis without a warping model [4]. The remaining boundary conditions, assuming
that 0 < α < π/2, are

s = L :

ψl = ψr = 0,

χl = χr,

ul = ur,

dxχl =
(
ul + ur

)
sinα,

Sb

(
χ′l + χ′r) = (b − L)

(
N l

u + N r
u

)
.

(12)
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To obtain a solution, we reduce the complexity by splitting the solution into a symmetric
part, for which χl = −χr, ψl = ψr, ul = −ur, and an anti-symmetric part, for which
χl = χr, ψl = −ψr, ul = ur. For the symmetric solution, the kinematic boundary
conditions and Eq. (12) together become

ψ(0) = ψ(L) = ψ′(0) = ψ′(L) = 0, u(0) = u(L) = u′(0) = u′(L) = 0. (13)

An approximate solution can be obtained by choosing a set of shape functions that
satisfy the boundary conditions. For the symmetric solution, these can be

ψ(s) =
n∑

k=0

gk sin (πs/L) sin (kπs/L) , u(s) =
n∑

k=0

hk sin (πs/L) sin (kπs/L) ,

(14)
and χ(s) = u′(s). Substituting in Ptot and taking variations now yields a system of 2n
linear algebraic equations for the undetermined coefficients gk and hk, whose deter-
minant has to be zero in order to have nontrivial solutions. The smallest positive root
corresponds to the critical load of the system, given by

F0,cr = β

(
b

L
, λ

) √
SbSt

L2
, λ =

√
StL2

Sw
≈

√
24

1 + ν

L

w
, (15)

where β is a dimensionless function of the crossing ratio b/L and the spatial decay
rate λ, which is a measure of the warping stiffness relative to the torsion stiffness and
largely dependent on the w/L ratio of the leaf springs. The structure of F0,cr is similar
to the critical load expression in the original analysis without warping, the difference
being the dependency of the geometric factor β on λ as well. Due to the length of the
closed-form expression of β, numeric values of β for the symmetric buckling mode are
provided in Table 1 for practically relevant values of b/L and λ.

Table 1. Values of the geometric factor β for the symmetric bucking load for n = 15.

b/L w = L/10 w = L/4 w = L/2 w = 3L/4 w = L

(λ = 42.6) (λ = 17.2) (λ = 8.61) (λ = 5.74) (λ = 4.31)

1/2 28.61 31.41 38.32 46.84 56.41

3/4 18.02 19.49 23.34 28.33 34.01

1 11.26 12.02 14.16 17.06 20.41

5/4 7.985 8.471 9.919 11.91 14.23

3/2 6.137 6.493 7.581 9.093 10.86
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4 Numerical Analysis

For simulation, a geometrically nonlinear beam finite element has been implemented
in the software package SPACAR [2]. This element is based on Timoshenko’s bending
theory and Reissner’s torsion theory in order to capture non-uniform torsion (in addi-
tion to bending, shear and elongation) of thin-walled beams with closed, symmetric
cross-sections. The element is formulated in the generalized strain beam framework, in
which deformation modes are defined to describe both elastic deformations and rigid-
body motion of the element. This formulation has the advantages of the co-rotational
formulation, while avoiding interpolation of finite rotations. The inertia properties are
described with a consistent and lumped mass formulation; the latter is used to model
the warping inertia of the beam cross-section [1].

5 Results and Discussion

The idealized analytical buckling analysis for the mechanism at hand (b = L/2) pre-
dicts β = 34.62 and a buckling load of 90.63 N, compared to a critical load of 58.25N
in the earlier analysis without warping [4].

In SPACAR, the same idealized conditions can be simulated by excluding the defor-
mation modes of elongation and bending in the plane of highest rigidity, and disabling
shear, gravity and shuttle elasticity. Figure 4 (left) shows that the behavior is the same:
the critical buckling load of the idealized system increases by 55% from a converged
value of 58.60N to 90.63 N when warping is included in the SPACAR element. A qual-
itative explanation for the observed behavior is that the warping constraints at the ends
of the leaf springs increase the torsional stiffness near the ends, effectively reducing
the length over which the leaf spring twists; since the buckling mode exhibits torsion
deformation, the buckling load increases.
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Fig. 4. Left: convergence of the critical buckling load. Right: measurement and simulation of the
first natural frequency f1.
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It is observed that generally the first buckling mode is an anti-symmetric one, in
which the shuttle moves and the twist angle of both leaf springs is reversed. The second
mode is a symmetric one, in which the shuttle remains stationary, the bending angle of
both leaf springs has the same sign and the twist angle is reversed. However, only for
the case of the common doubly-symmetric embodiment of the mechanism (b = L/2),
under the idealized conditions, and with the warping effects included, we see that the
anti-symmetric mode stiffens considerably and becomes the second mode. The first
mode, which now has multiplicity two, is a symmetric one in which an individual leaf
spring buckles and the shuttle remains stationary. For this mode, the analytical buckling
load is provided by Eq. (15) and Table 1.

A refined numerical model is obtained by including all flexible deformation modes
and the effects due to the leaf spring thickness variations, shuttle elasticity, the guid-
ance stage and gravity. Figure 4 (right) shows the first natural frequency (in a mode that
is a rotation about the rotation axis) as a function of the misalignment. With increas-
ing misalignment, the rotation stiffness and the natural frequency decrease, and buck-
ling (mechanism failure) is observed at around 0.11mm misalignment. The numerical
SPACAR results with the effects of warping match well with the measurements (the
error in critical misalignment is 5.9%) and ANSYS (with solid elements). Unexpect-
edly, it also shows that the effects of warping play a significant role: with warping the
critical misalignment is 35µm (i.e. 40%) larger.

6 Conclusions

An analytical buckling analysis is presented for generalized overconstrained flexible
cross-hinge mechanisms. The critical load matches with simulations from a geometri-
cally nonlinear beam finite element. It is found that the inclusion of warping deforma-
tion of beams with narrow rectangular cross-section is crucial. The results are in good
agreement with measurements from a demonstrator set-up.
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