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Chapter 8
Molecular Breeding Strategies for Genetic 
Improvement in Rice (Oryza sativa L.)

Ritu Mahajan and Nisha Kapoor

Abstract  The current progress in crop research has provided a useful benchmark 
to evaluate crop-breeding improvement using genomics and molecular breeding 
techniques. The generation of huge amounts of molecular-genetic data has provided 
several ways to utilize the available genetic resources and to find solutions to the 
demanding goals of plant breeding. Rice being a staple food is consumed as an 
essential part of the dietary requirement by most of the developing countries. With 
the increase in population growth, traditional breeding methods cannot find a viable 
solution for sustainable crop production and food security. Since genetics and 
breeding are closely associated, combining these two has resulted in remarkable 
progress in rice-breeding programs. The presence of genetic diversity within culti-
vated crops and their wild relatives provides a platform for gene discovery of the 
agronomical important traits yet to be sufficiently discovered and utilized. This 
progress of developing new rice varieties with specific agronomic characters was 
made by using marker-assisted selection that opened new avenues for basic plant 
research. Combining conventional methods with molecular genetics will help in 
understanding the inheritance pattern of targeted traits in plant breeding and thus 
will lead to crop improvement in the future. This in turn can open new ways of 
improving the efficiency of breeding programs. Next-generation sequencing is the 
largest advancement and a boon for gene identification and variations in the genome. 
Recent techniques like CRISPR/Cas9 system are creating a major revolution in 
genome editing by adding or removing the genetic material at particular locations in 
the genome. Hence, molecular techniques are influencing the breeding process from 
selection to introgression of known genes/traits and thus sustaining the world’s food 
productivity.
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8.1  �Introduction

Rice (Oryza sativa L.) is the staple food in many developing countries of the world, 
especially in Asia. It is a model cereal crop due to its small genome size, complete 
genome sequencing and high transformation frequency (Li et al. 2018a, b). Increase 
in global population up to 9 billion by 2050, along with water scarcity, diminishing 
arable land, adverse impacts of climate change, biotic and abiotic stresses present 
great challenges for rice breeders and agriculturists (Collard et al. 2008; Phillips 
et al. 2017). The crop yield per unit area needs to be increased by 50% by 2030 
(Cheng and Hu 2008) to assure global food security. Hence, breeders are under 
increasing pressure to use new breeding strategies and enhance food production.

However, significant progress in recent years has been made by plant breeders to 
cope up with food shortages by combining breeding and molecular approaches. 
DNA-based markers have been developed for the construction of genetic maps and 
the accessibility to complete genome sequences have eased the work of breeders to 
introduce new crop varieties in a short time (Ashkani et al. 2015).

With the completion of whole-genome sequencing in rice, and low genotyping 
costs, various functional genomics platforms that include collection of germplasm 
resources, generation of mutant libraries, specific gene markers, QTLs, full-length 
cDNA libraries, gene expression microarrays and RNA-sequencing techniques for 
expression analysis have been developed in rice (Li et al. 2018a, b; Sun et al. 2015, 
2018). Both genetics and genomics have contributed to crop breeding strategies for 
quality and quantity improvement (Fig. 8.1). Nowadays, nutritionally-rich rice vari-
eties with favorable traits are available for human consumption (Gande et al. 2014; 
Hiwasa-Tanase and Ezura 2016).

8.2  �Genetic Diversity

Large number of rice varieties are released every year to meet the increasing 
demands of enhanced productivity. All rice varieties have a different genetic com-
position, which is highly influenced by environmental conditions to which the 
plants are adapted. This variation in genetic diversity helps the plant to survive in 
nature. The advent of PCR (polymerase chain reaction) based molecular markers 
has increased the potential of discovering and tagging new genes in plants with 
diverse genetic makeups.

Wunna et al. (2016) observed high genetic diversity in landraces and rice variet-
ies from upland and lowland ecosystems of Myanmar and, based on the extent of 
variations, the rice accessions were divided into two cluster groups, I and II, related 
to indica and japonica groups. Reig-Valiente et al. (2016) elucidated the genetic 
relationship in rice varieties consisting of modern elite and old cultivars and tradi-
tional landraces, cultivated in temperate regions. Whole genome sequencing and 
SNP (single nucleotide polymorphism) results revealed a strong substructure in 
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temperate rice populations which was based on grain type and the origin of the cul-
tivars. A dendrogram also supported the population structure results. Aljumaili et al. 
(2018) studied the genetic diversity among aromatic rice accessions collected from 
Peninsular Malaysia, Sabah and Sarawak using SSR (simple sequence repeat) 
markers to quantify their genetic divergence. The presence of high genetic diversity 
could help in recognition of those accessions that can be used for introgression into 
the existing rice-breeding programs.

Indian rice varieties harbor huge amounts of genetic diversity but the trait-based 
improvement programs in recent decades have forced the breeders to rely on a few 
parents for crossing. As a result, there was a huge loss of gene diversity. Singh et al. 
(2016) studied the genetic diversity in 729 Indian varieties using HvSSR markers 
and divided them into two populations on the basis of cluster analysis. Anupam 
et al. (2017) genotyped germplasm of Tripura’s local landraces, for genetic diversity 
and QTLs related to drought and blast resistance genes. However, a low level of 
genetic diversity was observed in contrast to high levels of genetic diversity among 
rice varieties in northeast India.

Genetic diversity is necessary for the survival of plant species under extreme 
climatic conditions or natural disasters. It acts as a natural defense system as it 
includes all the beneficial alleles for the plant species to thrive. With changing 
environmental conditions, only the best alleles are able to cope and adapt to new 
environments thereby playing an important role in evolution.

Fig. 8.1  Classical and molecular breeding approaches in rice: Continued improvement in rice 
involves the integration of different breeding approaches. Classical approaches involve hybridiza-
tion followed by selection, while molecular approaches exploit rice genetics powered by func-
tional genomics to meet the breeding challenges and safeguard food production
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8.3  �QTL Mapping

Molecular breeding in rice has played an important role in improving breeding effi-
ciency. Many agronomic traits in rice are controlled by minor-effect genetic loci 
called quantitative traits, controlled by quantitative trait loci (QTLs) (McCouch and 
Doerge 1995). Hu et al. (2008) established a candidate gene strategy for the isola-
tion of QTLs against bacterial blight and fungal blast. They observed that by com-
bining different approaches like integrated linkage maps, expression profile and 
functional complementation analysis, a single minor QTL can be used in rice 
improvement. Zhou et  al. (2014) studied in rice the inheritance of resistance to 
white tip disease in a segregating population derived from across between highly-
resistant and susceptible cultivars. Six QTLs were detected after plotting on a 
genetic map which can be used for breeding resistant cultivars against white tip 
disease in rice.

Zeng et al. (2015) studied QTLs against sheath blight (SB) disease in a doubled 
haploid population from a cross between a japonica variety CJ06 and indica variety 
TN1, under 3 different environments. Based on SB resistance field data, a genetic 
map was constructed with 214 markers and it lead to the identification of 8 QTLs 
each against lesion height and disease rating, under 3 different environmental condi-
tions. In addition, they also detected 12 QTLs for plant height, but observed that 
none of the plant height QTLs were co-located with the sheath blight QTL. Fiyaz 
et al. (2016) developed a population of 168 recombinant inbred lines from a highly 
resistant and a highly susceptible indica rice cultivar and mapped 3 QTLs against 
bakanae disease. Yao et al. (2016) identified QTLs associated with African rice gall 
mildew resistance in 3 independent bi-parental rice populations; 28 QTLs associ-
ated with pest incidence and pest severity were uncovered using composite interval 
mapping. A range of 1.3–34.1% of the phenotypic variance was observed with each 
of the individual QTLs.

High-throughput SNP genotyping has been used for various QTL mapping stud-
ies in rice (Chen et al. 2016). They performed high-resolution QTL mapping for 
grain appearance traits in indica rice. Duan et  al. (2013) used high-throughput 
sequencing in the QTL mapping of a giant panicle rice accession, R1128, which has 
multiple major genes for good traits and detected 49 QTLs for 5 yield traits. For 
multiplexed samples, restriction-site associated DNA sequencing (RAD-seq) is a 
useful and cost-effective tool for genetic mapping that focuses only on short frag-
ments of DNA adjacent to a particular restriction enzyme in the genome and allows 
efficient genotyping and high-density SNP discovery. Zhu et al. (2017) made a cross 
between japonica inbred Francis and indica restorer R998 and constructed a set of 
recombinant inbred lines so as to understand the genetic basis of rice yield traits in 
an elite restorer. A high density bin map was generated for QTL mapping of 6 yield-
related traits.

Liu et  al. (2006) analyzed QTLs against rice biomass yield, straw yield and 
grain yield in a population of 125 double-haploid lines from an inter-sub-specific 
cross of IR64/Azucena. A total of 12 QTLs were detected with additive main 
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effects, 27 involved in dysgenics interaction and 18 affected by the environmental 
conditions. Singh et al. (2017) mapped 38 and 46 QTLs on rice chromosomes 3 and 
5 associated with tolerance to stagnant and irrigated conditions using a F7 mapping 
population. Gichuhi et al. (2016) identified 36 QTLs for yield-related traits from 
wild rice relative Oryza longistaminata for improving agronomic traits. Solis et al. 
(2018) identified QTLs associated with drought resistant traits by constructing a 
linkage map between two japonica cultivars with 213 markers. Composite interval 
mapping identified 6 QTLS associated with grain yield during drought conditions. 
Annotating candidate genes within QTLs suggested the role of genes and transcrip-
tion factors that are involved in drought tolerance mechanism thus contributing to 
yield.

8.4  �Assembling Multiple Desirable Genes by Pyramiding

Gene pyramiding has led to the development of genetic stocks and resulted in the 
improvement of plant breeding. Pyramiding involves stacking of multiple genes to 
develop durable resistance expression which further depends upon the number of 
genes to be transferred and the distance between the target genes and flanking mark-
ers (Joshi and Nayak 2010). Since traditional breeding is a time-consuming process, 
parent plants with desirable genes are crossed and the recombinants are selected 
from the progeny. As a result all the desirable genes are combined in a single breed-
ing cycle, resulting in production of near recombinant lines (NILs) that contain 
homozygous alleles for the gene (s) of interest using fewer breeding cycles at lower 
cost. However, to track the presence or absence of a particular gene is slow. Although 
conventional breeding methods allow the transfer of desired genes between related 
species, genetic engineering balances and accelerates plant breeding programs by 
introducing genes from diverse sources. A large number of transgenic crops with 
durable resistance against biotic and abiotic stresses have been developed. Thus, it 
is possible to presume that genetic engineering is another useful method to pyramid 
novel genes into crop plants. However, efficient transformation and regeneration 
protocols need to be developed as a single gene transformation results in narrow 
spectrum disease resistance.

Huang et al. (1997) transferred 4 bacterial blight resistance genes (Xa-4, xa-5, 
xa-13, Xa-21) in rice and the pyramid lines showed a wider spectrum of resistance 
than lines with a single gene. They also developed PCR markers against 2 recessive 
genes (xa-5, xa-13) to screen a range of rice germplasm for the selection of parents 
in breeding programs. Pradhan et al. (2015) developed resistant cultivars in Jalmagna 
(an elite deepwater rice variety), against bacterial blight by transferring 3 resistance 
genes (xa5 + xa13 + Xa21) from the Swarna cultivar to develop a BB-susceptible 
cultivar, Jalmagna.

Fukuoka et al. (2015) developed near-isogenic experimental lines with 4 differ-
ent QTL alleles and the lines were environmentally stable and resistant to blast 
disease. Similarly, Arunakumari et  al. (2016) introgressed two  bacterial blight 
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resistance genes (Xa21, xa13) and a major blast resistance (Pi54) gene into an 
Indian rice variety, MTU1010 through marker-assisted backcross breeding. Donor 
parents used were Samba Mahsuri (possessing Xa21, xa13) and NLR145 (possess-
ing Pi54). The resultant lines had a high level of resistance against BB and blast, 
along with good yield, grain quality and plant type. Ji  et al. (2016) developed 10 
restorer lines by pyramiding genes resistant to blast, bacterial blight and brown 
plant hopper.

Gene pyramiding has played an important role in conferring strong and stable 
integration of alleles against resistance to various pests and pathogens. Yet, assem-
bling large numbers of favorable alleles to provide stable agronomic performance is 
still time-consuming due to lack of molecular-marker information in certain plant 
systems. However, progress made in genome analysis by the use of high-throughput 
genotyping has contributed substantially to global food security.

8.5  �Double Haploidy

Production of doubled haploids (DH) using anther or microspore culture under in 
vitro conditions is a successful and rapid approach to develop new rice cultivars, 
which otherwise requires at least 6–7 generations through conventional methods. 
The technique maintains the homozygosity that has wide uses in genetic studies, 
including gene and QTL mapping. In this method, the immature pollen grains or 
anthers (which are haploid) are cultivated in solid medium and induced to divide, to 
double their chromosome number so that the plants regenerated from them have two 
sets of chromosomes and hence double haploids.

Reiffers and Freire (1990) established a relation between the morphology of the 
panicle and the microspore stage. They observed that a cold-pretreatment of anthers 
at 4 °C for 8 days increased the regeneration frequency from 0 to 144.4%, while a 
few plants underwent spontaneous chromosome doubling. Chromium contamina-
tion in soil has become a severe threat to crop production and food safety. Qiu et al. 
(2011) detected 17 putative QTLs associated with Cr tolerance and Zn concentra-
tion using a rice DH population. Most of QTLs controlling Zn concentration had 
small genotypic variance and qSRZ4 related to Zn translocation showed growth 
condition-dependent expression. Fazaa et  al. (2016) developed some DH lines 
through anther culture and evaluated them for yield and yield-related traits. 
Correlation analysis revealed grain yield to be positively correlated with panicle 
length. Grewal et al. (2011) produced double haploid lines through anther culture 
involving indica and japonica rice. They observed low anther culturability in the 
indica cultivars, as compared to japonica cultivars, and also variation regarding the 
Zn content in DH lines. A linkage map was constructed using SSR markers which 
revealed that the genes for anther culturability are partially dominant in indica cul-
tivars and some DH lines had indica traits for high Zn content in polished rice.

Nguyen et al. (2016) created a DH population from the hybrid of japonica and 
indica rice, as earlier studies by Ikehashi and Araki (1986) indicated the presence of 
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a reproductive barrier between the two subspecies which was conditioned by the S5 
locus located on chromosome 6. Furthermore, it was observed that a neutral allele 
(S5n) can overcome this barrier because hybrids of either indica or japonica rice 
crossed to rice carrying S5n were fertile. Further genotyping of the S5 locus, with 
allele-specific markers for ORF3, ORF4 and ORF5, recorded a potential recombi-
nation hot spot in the ORF3-ORF4 region. Haplotyping analysis revealed segre-
gated distortion in the DH population, with a few lines having very low or very 
high indica alleles, with little effect of the S5 allele. However, no effect of the S5n 
allele was observed on the agronomic traits studied.

Pauk et al. (2009) combined tissue-culture methods with conventional breeding 
to produce new rice varieties which are resilient than traditional ones. Risabell vari-
ety produced via anther culture was resistance to blast disease, high milling and 
cooking quality and long-grain type. Similarly for Janka variety, haploid cell cul-
tures were developed and their vigorous regenerants were colchicine treated and the 
progeny has vigorous seedling growth, drought tolerance and good grain quality. 
However, for variety Ábel, the improvement was done through somatic tissue-
culture regeneration followed by anther culture. Gueye and Ndir (2010) studied the 
response of anther culture of eight genotypes of Oryza sativa and O. glaberrima for 
callus induction and frequency of plant regeneration. They recorded more callus 
induction in O. glaberrima genotypes compared to O. sativa genotypes. Many 
albino plants were obtained while one O. glaberrima genotype (6202 Tog) pro-
duced green plants and thus it was concluded that the anther culture response is 
species and genotype dependent.

DH lines play an important role in inducing mutations thereby increasing selec-
tion efficiency. The technique is helpful to express popular recessive traits intro-
duced through mutation or hybridization and hence enriching the germplasm. Even 
the double haploids govern major agronomic traits in cultivated rice that are influ-
enced by QTLs. Also, double haploids overcome the problems of inbreeding by 
improving the selection efficiency in cross-pollinated species. The generation of 
DH lines plays an integral part in creating homozygosity as the purity of parental 
lines used in developing a hybrid/cultivar is reduced over the span of time due to 
gene drift, mutations, artificial breeding and exposure to various abiotic and biotic 
factors.

8.6  �Increasing Nutritional Value with Biofortification

Rice is a major source of energy and micronutrients does not provide enough zinc 
to meet human nutritional requirements (Cakmak et al. 1999). This is due to the 
removal of large quantities of soil Zn by modern high-yielding varieties at each 
harvest, thereby lowering the residual concentration of soil Zn which further results 
in lower future grain Zn concentration (De Steur et al. 2014). Production of high-
yielding rice varieties along with improved Zn concentration can be achieved when 
genetic and agronomic strategies are combined (Nakandalage et al. 2016). Screening 
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the germplasm, old landraces, traditional varieties and wild species using agro-
nomic, breeding and genomic tools can increase Zn concentration in rice grain 
(Zaman et  al. 2018). Further conventional plant breeding followed by marker-
assisted selection has resulted in rice with enhanced level of micronutrients.

Several QTLs have been identified for high Zn in rice grain, which are used as a 
potential source for marker-assisted breeding (Chandel et al. 2011; Ishikawa et al. 
2017). Identification of several candidate genes involved in Fe and Zn uptake and 
their accumulation in rice has led to their successful use in developing high Zn 
transgenic lines (Anuradha et al. 2012). Swamy et al. (2016) did a fine association 
of several gene specific markers with rice grain Zn. Similarly, several SSR markers 
and grain Zn trait associations identified in different populations and in  a germ-
plasm panel of rice can be further used in MAS (Brara et al. 2015; Khanin et al. 
2016; Susanto 2008; Zhang et al. 2014).

Trijatmiko et al. (2016) reported Fe and Zn biofortification nutrition targets in 
rice under field conditions. The genes were introduced in IR64, an indica cultivar, 
and the trait was further bred into other popular rice cultivars deficient in Fe and Zn 
collected from South and Southeast Asia. An international initiative, The HarvestPlus 
program, aims to improve the micronutrient content of staple foods and reduce hun-
ger. This program has increased Zn levels in brown and polished rice by 30 and 
28 mg/kg, respectively (Johnson-Beebout et al. 2009). Trials are under way to iden-
tify and test certain sensitive biomarkers for Zn intake. However, experiments need 
to be carried out to evaluate the genotypes under Zn sufficient and deficient condi-
tions at different stages of growth and development. Similarly, the interaction of 
environmental and genetic factors on Zn homeostasis needs to be established along 
with promoters and inhibitors of Zn bioavailability in rice grain (Nakandalage et al. 
2016). Also, special attention should be given to the amount of antinutrients like 
phytate, as they significantly influence Zn bioavailability (Swamy et al. 2016).

Total Zn present in the aleurone layer, the outermost layer of the endosperm, is 
lost during processing, while that present in the inner endosperm (60–75%) is 
retained even after polishing (Hansen et al. 2009). This has been reported in large 
collections of rice germplasm at the International Rice Research Institute, Philippines 
(Boonchuay et al. 2013). The world’s first Zn-enriched rice variety (BRRI dhan 62) 
was released in 2013 by the Bangladesh Rice Research Institute that  contains 
20–22 mg Zn per kg of brown rice.

Crops naturally lacking essential nutrients can use the transgenic plant breeding 
approaches to produce biofortified crops with desired nutrients and agronomic 
traits, and reduced antinurients (Bouis and Saltzman 2017). The expression of cer-
tain genes encoding enzymes involved in the synthesis or sequestration of IP6, have 
successfully reduced phytate concentrations in rice seed (White and Martin 2009). 
Golden Rice, rich in beta carotene, provides more than 50% increased vitamin 
A. However, the irony is that the Golden Rice has been available as a prototype 
since the early 2000s, but to date has been not introduced in any country due to the 
regulatory approval processes. Although transgenic varieties have great nutritional 
potential, their release to farmers will take several years, depending upon their 
approval through national biosafety and regulatory processes.
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8.7  �Induced Variations and TILLING

One of the efficient ways to study gene function is to create variations and then 
identify mutants that establish a link between genotype and phenotype. A potential 
approach to identify genes affecting trait variation is the use of induced mutants 
because they provide a clear understanding of molecular mechanisms involved in 
the plants (Sikora et al. 2011). Ethyl methyl sulfonate (EMS), is the most common 
mutagenic agent that induces chemical modification of nucleotides. The most com-
mon point mutations being GC to AT transitions. Once a gene structure is disrupted, 
the gene expression changes, resulting in changes in the phenotype which can be 
directly correlated to a gene responsible for it. However, knockout mutations are not 
always effective in functional analysis of the redundant genes because loss of func-
tion may not always lead to an obvious morphological variation, but also to the criti-
cal genes involved in plant growth and development (Wang et al. 2013). Induced 
mutants have been extensively used to identify gene(s) involved in various 
agronomically-important traits in rice. In India, six research institutes have collab-
oratively worked on an upland rice variety, Nagina 22, and identified mutants related 
to various important traits like plant growth and architecture, flowering, maturity, 
yield, grain number, shape and size, resistance to blast and bacterial leaf blight dis-
eases and tolerance to drought and salinity (Mohapatra et al. 2014). The generated 
mutants, after registration, will be made available for various rice genetics and 
breeding programs.

Insertional mutagenesis, such as T-DNA insertions and transposon tagging, have 
been widely used in creating rice mutant libraries. Jeong et  al. (2002) generated 
13,450 T-DNA insertional lines using a new vector pGA2715 and suggested that the 
enhancer sequence present in the T-DNA improves the GUS-tagging efficiency. A 
reverse activation-tagging further identified the activation-tagged gene and enhancer 
effects.

Chen et al. (2003) characterized 1000 T-DNA tags in rice which were not spread 
randomly throughout the genome, but were inserted in gene rich areas. However, a 
few insertions, about 2.4%, were observed in repetitive regions. Good correlation 
was also observed in T-DNA insertions present in genic and intergenic regions with 
respect to size distribution. Krishnan et al. (2009) recorded the presence of insertion 
tags in 32,459 rice genes and also in 50% of predicted protein-coding genes with 
insertional mutagenesis. Chang et al. (2012) observed that out of a total of 372,346 
mutant lines generated, 58,226 T-DNA or Tos17 flanking sequence tags have been 
isolated which have potential applications for more than 40 genes involved in stress 
responses, nutrient metabolism and plant architecture.

Characterization of the T-DNA insertion mutants resulted in identification of the 
biological functions of several genes. Wu et al. (2008) reported that there was no 
flowering in rid1 mutant in rice while the RID1 mutant was identified as a master 
switch that induces flowering. This was due to a regulatory gene JMJ706 that 
resulted in H3K9 demethylation, a key step for development of rice floral tissues. 
Mutations in gene JMJ706 carrying a T-DNA insertion resulted in altered floral 
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morphology and organ number due to increased di- and trimethylations (Sun and 
Zhou 2008). ILA1, a key factor for regulating the tissue formation at the rice leaf 
lamina, also showed abnormal mechanical tissue and cell wall composition in 
T-DNA mutant lines (Ning et al. 2011).

Targeting induced local lesions in genomes (TILLING) is a reverse genetic strat-
egy developed to identify induced point mutations in a plant species, while the dis-
covery and cataloguing of natural nucleotide variation present in populations is 
known as Ecotilling (Cooper et al. 2013). Till et al. (2007) developed two muta-
genized rice populations on treatment with ethyl methane sulfonate (EMS), and 
sodium azide plus methyl-nitrosourea (Az-MNU) followed by further amplification 
of target regions of 0.7–1.5 kilobases using gene specific primers. They identified 
27 nucleotide changes in the EMS-treated population and 30 in the Az-MNU popu-
lation. Similarly, Cho et al. (2010) developed TILLING lines via the application of 
gamma-ray irradiation to rice seeds. The genetic diversity based on AFLP (ampli-
fied fragment length polymorphism) markers was assessed and changes in the cod-
ing regions of genes were observed with four loci exhibiting mis-sense mutations 
and two loci exhibiting silent mutations in the rice pseudomolecules.

8.8  �Gene Discover by Next-Generation Sequencing

The dawn of next generation sequencing (NGS) has significantly revolutionized 
studies on rice functional genomics. With the release of genome sequences of indica 
and japonica rice, huge quantities of information and data are available and the 
variations in them can be identified by NGS efficiently and in a cost-effective man-
ner. These variations are further used to identify the unique sequences for marker-
assisted selection (MAS) in rice improvement programs (Spindel et al. 2016).

Rathinasabapathi et al. (2015) mapped the whole genome sequence of cultivar 
Swarna on the Nipponbare reference genome with high glycemic index (GI), and 
identified SNPs that could have a deleterious effect on protein functions. The 
changes in the position of SNPs in the granule bound starch synthase I gene and 
glucose-6-phosphate translocator gene contributed to a low GI.  Similar variants 
were also observed in the genome of another indica rice variety collected from 
Columbia with low GI.  Kharabian-Masouleh et  al. (2011) observed SNPs and 
InDels in both coding and non-coding regions in candidate genes involved in starch 
synthesis. The SSIIa gene affected the starch quality and the amylopectin structure 
of starch present in the rice endosperm (Morell et al. 2003). The effect of this gene 
on cooking quality and starch content in the rice was studied by Umemoto and Aoki 
(2005) and further 31 SNPs and one InDel were detected in this gene.

NGS techniques could reveal the genetic basis of different phenotypes on the 
basis of DNA polymorphism under stress response conditions, even among closely-
related cultivars. A contrasting response to drought and salinity stress in three culti-
vars of rice was studied by Jain et al. (2014). They observed that the distribution of 
SNPs and InDels was found to be uneven across and within the rice chromosomes. 
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These variations could be used as functional markers and to identify promising tar-
get genes for salinity and drought tolerance for molecular breeding programs.

NGS has enhanced the sensitivity of detecting mutations, thereby improving the 
screening efficiency by targeted gene amplification of pooled DNAs. Burkart-Waco 
et al. (2017) quantified and pooled DNA from a mutant rice population and ampli-
fied the target genes from these DNA pools. The amplicons were further combined 
to increase the probability of detecting mutations during sequencing. This approach 
can easily detect rare mutations. Ryohei et al. (2015) utilized the MutMap method, 
and its derivatives (MutMap+ and MutMap-Gap), to identify genes/QTLs of agro-
nomic importance in rice (Abe et al. 2012; Fekih et al. 2013; Takagi et al. 2013).

8.9  �Gene Introgression from Wild Relatives

Maintaining genetic integrity is essential for crops to sustain themselves in a chang-
ing environment. Alleles, introgressed for some beneficial traits, may result in 
genetic diversity. This changing diversity can satisfy the food needs of growing 
human population by delivering foods with high nutritional value and health bene-
fits. All plants are domesticated from wild species, which are great reservoirs of 
genetic diversity due to stress and domestication traits, therefore the phylogenetic 
relationship between closely-related wild species is revealed by molecular analysis 
(Cheema et al. 2008; Dillon et al. 2007) that also gives an idea of their evolution 
under natural selection and their adaptation to the surrounding environment. Hence, 
conservation of wild relatives in the form of seed banks, or in situ and ex situ con-
servation is important for crop improvement (Brozynska et al. 2015).

Climate changes are harshly affecting food productivity, so it is of utmost impor-
tance to create crops which are genetically more diverse and resistant to biotic and 
abiotic stresses. Hence, there is an urgent need for the conservation of wild relatives 
from the available natural resources to ensure continuous food sustainability (Zhang 
et al. 2016). The consequences of 1.5 and 3.0 °C global temperature rise was studied 
for the coming years and then compared to the present climate. The results indicated 
an increase in taxa turnover and in the numbers of threatened taxa (Phillips et al. 
2017). Thomas et al. (2017) studied the negative effect of climate on the distribution 
of genetic diversity in four wild relatives of rice and assessed a significant overlap 
between present and wild rice species. They observed that these species have a good 
opportunity to expand their distribution ranges in the near future to where rice is 
unlikely to be cultivated.

The distribution of genetic diversity within and among populations of the wild 
rice species Oryza glumaepatula in Costa Rica were observed by Fuchs et  al. 
(2016). They evaluated that, how the incorporation of alleles from domesticated 
species may change the genetic makeup of wild species. A high level of genetic 
diversity was observed in O. glumaepatula populations in Costa Rica as compared 
to those present in South American populations, thus suggesting that the gene flow 
from cultivated O. sativa populations may have occurred in the recent past. This 
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could lead to the increase in likelihood of local extinction of pure O. glumaepatula 
populations, by the transfer of commercial traits from cultivated rice species.

Jin et al. (2018) determined crop-wild introgression from cultivated rice and its 
consequences in six Oryza rufipogon populations. Principal coordinates and cluster 
analyses indicated that the differentiation of wild rice populations that resulted in 
their altered genetic diversity is mainly associated with their spatial distances to 
cultivated rice fields. The level of overall genetic diversity detected with 34 SRRs 
and 34 In Dels recorded large wild-specific alleles in wild populations. Because 
crop-wild introgression can alter the genetic integrity of wild populations, appropri-
ate measures need to be taken immediately for effective in situ conservation of pure 
wild relatives of crop cultivars.

8.10  �Comparative Genomics

Comparative genomics is essential to study the minimal functions required by a 
plant for its normal growth, development and metabolism. It also explains the source 
of plant diversity and the molecular basis for its adaptation (Sasaki and Sederoff 
2003). Rice has been used as a model crop for monocots to study its detailed struc-
tural and functional genomics due to the availability of its complete genome 
sequence, ESTs, transposons and production of transgenic plants (Shimamoto and 
Kyozuka 2002). However, previous studies revealed that the majority of rice genes 
are structurally and functionally homologous to major cereals, so the information 
obtained from rice genes can be easily utilized in studying their presence in other 
cereals (Hill and Li 2016; Wang et al. 2015). Comparative studies on the evolution 
of intergeneric regions in cereals has revealed that the large genome size in most 
crop plants is because of the presence of mobile elements rather than the functional 
genes.

Since Arabidopsis is a reference crop for dicots, the collinearity between the 
genomes of rice and Arabidopsis was studied by Liu et al. (2001) to compare and 
map rice BAC sequences with the Arabidopsis genome. Several regions were identi-
fied with preserved gene order but interrupted by non-collinear genes. Dodeweerd 
et al. (1999) investigated collinearity between rice and Arabidopsis by examining 
rice EST clones homologous to Arabidopsis genomic DNA sequences. A total of 24 
homologous pairs, 5 with conserved order and a single inversion were observed. 
However, no conservation of gene order in rice and Arabidopsis across a 3-cM 
region in Chromosome 1 was identified by Devos et al. (1999).

Two genes Hd1 and Hd6 determining the flowering time were isolated by fine-
scale, high-resolution mapping, corresponding to QTLs controlling the heading 
date of rice. It was observed that Hd1 encodes a homolog of CONSTANS (CO) that 
functions in the photoperiodic control of flowering in Arabidopsis (Yano et  al. 
2000). Nelson et al. (2004) used sequence information from both the indica and 
japonica rice strains and identified 356 Cytochrome P450 genes and 99 related 
pseudogenes in the rice genome. When these rice genes were compared to P450 
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genes and pseudogenes in Arabidopsis, it was observed that many of the already-
known plant P450 gene families existed before the divergence of monocot-dicot 
lineages took place. This study also highlighted the maintenance of certain lineage-
specific families like Ranunculaceae and loss of lineage-specific families in 
Arabidopsis during the course of evolution.

Comparative genomics uses cross-genome comparisons of structure and func-
tion to estimate similarity of biological organization across species and genera (Wei 
et al. 2002). Sorrells et al. (2003) studied comparative sequence analysis of rice and 
wheat genomes and observed that wheat, a polyploid with a genome size 40 times 
larger than that of rice, has over 80% repeated DNA.  Yan et  al. (2003) studied 
microcollinearity in some regions between barley, wheat and rice. Analysis of the 
Sh2/A1 orthologous region in rice, sorghum, maize and in some species of the 
Triticeae tribe revealed that this region was highly collinear with few differences 
(Bennetzen and Ramakrishna 2002; Li and Gill 2002)

Mayer et  al. (2011) used the comparative genomics approach to unlock the 
genome of barley using a conserved synteny model with a model of grasses and 
assembled 21,766 barley genes in a putative linear order. It was observed that the 
barley genome exhibited a medley of structural similarity with hexaploid bread 
wheat. Thus the availability of the genomic resources for Triticeae plants after their 
genome sequencing have aided in the discovery of new genes using comparative 
genomics approach and in future this could further help in discovering alleles for 
adaptive traits to different agronomic environments (Mochida and Shinozaki 2013).

A centralized infrastructure, PLAZA (http://bioinformatics.psb.ugent.be/plaza/) 
is an online platform provides comprehensible and current research in the explora-
tion of genome information (Proost et  al. 2009). Here, all the data generated by 
different sequencing programs has been incorporated and combined and is further 
used for plant comparative genomics. This resource compiles structural and func-
tional annotation of sequenced and published data and also maintains a large set of 
tools and softwares to study the function of genes and their evolution

8.11  �Microarray and Gene Expression

High-throughput, genome-wide expression analysis in rice is facilitated by microar-
ray technologies. The availability of complete genome sequences provides the nec-
essary information required to design a microarray containing either all known or 
predicted gene models in the rice genome. A number of analytical tools have been 
developed to study gene relationships and functions from microarray data and the 
information obtained after analysis has been used in genetic dissection, drug discov-
ery and disease diagnostics. Ma et al. (2005) analyzed the transcriptional activity of 
gene models and detected the expression of 41,754 known and predicted gene mod-
els. In addition, the expression patterns of best-matched homologous genes of rice 
and Arabidopsis indicated notable differences in the degree of conservation between 
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these two species. However, this lesser degree of conservation could be due to the 
diverged transposons and retrotransposons (Jiang et al. 2004).

Most of the genes, along with gibberellic acid (GA3) and jasmonic acid (JA) play 
an important role in anther development and pollen fertility in rice. GA3 controls the 
formation of pollen grains while JA signaling is required for pollen development 
and anther dehiscence. Wang et al. (2005) detected the expression level change of 
2155 genes in anthers as compared to the seedlings using a cDNA microarray, with 
probes derived from meiotic anthers, mature anthers and treated suspension culture 
cells. A total of 314 genes responded to either GA3 or JA treatment while 24 GA3- 
and 82 JA-responsive genes were revealed. Furthermore, a significant difference 
was observed in the expression of GA3 or JA treated genes at different developmen-
tal stages of anthers.

Microarray technologies facilitate high-throughput gene expression analysis but 
recent databases and softwares resulted in efficient expression analysis. There are 
different rice microarray platforms that can integrate microarray data for functional 
analysis and then can be effectively used in characterizing and differentiating the 
gene expression profiles from different rice tissues, organs, cell types, biotic and 
abiotic treatments, and miRNAs (De Abreu Neto and Frei 2016; Jung et al. 2015; 
Xue et al. 2009). The Rice Expression Profile Database (RiceXPro, http://ricexpro.
dna.affrc.go.jp/), is a storehouse of different gene expression profiles of diverse 
organs and tissues at different developmental stages and environmental conditions 
(Sato et al. 2011). The Gene Chip rice genome array, designed by Affymetrix, con-
tains 57,381 probe sets covering about 48,564 and 1260 transcripts from the japon-
ica and indica cultivars, respectively (Cao et  al. 2012), while the Oryza sativa 
Genome Oligo Set based on the draft indica and japonica sequences, was designed 
by the Beijing Genomics Institute and Yale University. Some other databases useful 
for expression pattern analysis of rice genes are OryzaExpress (Hamada et al. 2011), 
RicePLEX (Dash et  al. 2012), Bio-Array Resource for Plant Biology (BAR) 
(Toufighi et al. 2005) and RiceArrayNet (Lee et al. 2009).

Another database Rice Oligonucleotide Array Database (ROAD, http://www.
ricearray.org) is used for the exploration of gene expression based on rice microar-
ray hybridizations. The database is user-friendly with a variety of tools that facilitate 
the study of gene expression profiles. ROAD supports analysis of genes expressed 
in different tissues, developmental stages and stress (both abiotic and biotic) condi-
tions. Also, certain tools like Gene Ontology and KEGG (Kyoto Encyclopedia of 
Genes and Genomes) Orthology are fixed in the ROAD (Cao et al. 2012).

8.12  �CRISPR for Targeted Genome Editing

Once sequencing of rice genome was completed, several tools became available for 
the functional characterization of genes. One of the most powerful and efficient 
tools which emerged recently for genome editing is CRISPR (clustered regularly 
interspaced short palindromic repeats). CRISPR has replaced the RNA interference 
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(RNAi) gene silencing technology for efficient and precise gene knock down by 
overcoming its limitations, like incomplete loss-of-function analysis and extensive 
off-target activities (Arora and Narula 2017). In rice, genes were modified for the 
traits related to biotic and abiotic stress, herbicidal resistance and yield, as well as 
genetic improvement of agricultural crops using CRISPR/Cas9 (Minkenberg et al. 
2017; Xu et  al. 2017) (Fig.  8.2). Efficient multiplex genome editing could be 
achieved by a synthetic gene that encodes for Cas9 protein with an intron containing 
polycistronic tRNA-gRNA in rice. Once a hybrid gene is formed, it could be 
expressed using one polymerase II promoter (Ding et al. 2018).

Rice seedlings are susceptible to low temperature, so a cold-tolerant transcrip-
tion factor TIFY1b, involving genes was discovered in rice by Huang et al. (2017). 
They employed the CRISPR/Cas9 technique to edit this gene and also its homology 
gene in Nipponbare rice. High mutation rates due to insertion and deletion of one 
nucleotide were observed in transgenic lines. Thus CRISPR/Cas9 changed the DNA 
sequences at targeted sites and generated a variety of TIFY1 mutant lines in rice 
which were cold resistant.

Rice blast is one of the most destructive diseases affecting rice globally. Wang 
et  al. (2016) reported the improvement of rice blast resistance by engineering a 
CRISPR/Cas9 and targeting the OsERF922 gene for enhancing blast resistance. In 
addition, the number of blast lesions formed after pathogen infection was consider-
ably decreased in all 6 mutant lines (identified from transgenic plants) both at the 
seedling and tillering stages. Also, no significant differences were observed between 
mutant lines and the wild-type plants with regard to the agronomic traits tested.

Fig. 8.2  CRISPR/Cas9, a RNA guided genome editing tool. CRISPR is a stretch of DNA while 
Cas9 is a molecular scissor that unwinds the DNA duplex and cleaves both the strands once the 
target sequence is recognized by the guide RNA
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CRISPR/Cas system has been successful in rice protoplast cells with Cas9/
sgRNA constructs targeting the promoter region of the bacterial blight susceptibility 
genes (Jiang et al. 2013). Genome editing generated the plants that were resistant to 
bacterial leaf blight, by down regulating the transcription of S-genes by the effector. 
Thus, the edited plants were resistant to certain bacterial strains because the effector 
was incapable of triggering the transcription of its target (Li et al. 2012). Similarly, 
multiple herbicide-resistant rice plants have been successfully achieved by CRISPR/
Cas9-mediated in planta substitutions (Sun et al. 2016).

Cereals rich in amylose content offer potential health benefits. Previous studies 
using chemical mutagenesis have demonstrated that the fine structure and physical 
properties of starch is due to the starch branching enzyme (SBE) (Butardo et al. 
2011). The targeted mutagenesis of rice OsWaxy gene by CRISPR/Cas9 resulted in 
high reduction in amylase content (14.6 to 2.6%) that resembles a natural glutinous 
rice variety (Ma et al. 2015). Sun et al. (2017) used CRISPR/Cas9 technology to 
generate targeted mutagenesis with In Dels in SBEI and SBEIIb in rice. Mutations 
were stably transmitted to the T1 generation. Wild type, sbeII mutants showed the 
presence of high amounts of long chains in debranched amylopectin in wild mutants 
that increased the amylase content by 25% in rice. The CRISPR/Cas9 technique has 
also been proved to be capable of editing and developing rice, photo-sensitive and 
thermo-sensitive male sterile lines to speed up breeding and exploit heterosis in rice 
(Li et al. 2016; Zhou et al. 2016).

Mutations resulting in complete knockouts and loss-of-function are very impor-
tant to study gene functions, but their use becomes limited in many crop plants 
where gene expression is conferred due to point mutations. Multiple discrete point 
mutations in rice resulted from the introduction of the ALS gene using CRISPR/
Cas9-mediated homologous recombination, which generated homozygous 
herbicide-resistant rice plants in one generation (Sun et al. 2016). Butt et al. (2017) 
applied CRISPR/Cas9 to generate targeted double-strand breaks and to deliver a 
RNA repair template for homology-directed repair in rice. For this, chimeric single-
guide RNA molecules carrying sequences for target site specificity and repair tem-
plate sequences flanked by regions of homology to the target were used. They 
concluded that this gene editing technology is very efficient in rice protoplasts to 
develop herbicide-resistant plants.

8.13  �Conclusions and Prospects

This chapter emphasizes the recent advances and successful examples of molecular 
plant breeding that have led to significant improvement in  rice. The adoption of 
molecular tools by breeders and researchers has helped them better understanding 
of the relationship between genotype and phenotype for complex traits, and the 
recent introduction of high-throughput genotyping platforms have increased the 
resources for plant breeding.
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Similarly, the information extracted from genomics research has generated and 
added a wealth of information about gene structure and their functions, along with 
large numbers of molecular markers linked to QTLs. These generated resources will 
remain under exploited until breeding programs incorporate knowledge of pedi-
grees, phenotypes and marker genotypes during selection, and then combine them 
further with molecular approaches to discover new genes and their functions, which 
will further open innovative avenues for basic plant biology research.

In addition to the contributions made by breeders and researchers in adopting 
molecular approaches to meet certain plant breeding goals, the private sector should 
also participate by making investments to provide an appropriate training environ-
ment for agriculturists and scientists entering the molecular breeding workforce. 
This support can further bridge the gap between the latest techniques and the knowl-
edge of plant molecular breeding research between the public and private sectors, 
and can help to meet the goals of sustainable increase in agricultural productivity.
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�Appendices

�Appendix I: Research Institutes Relevant to Rice Genetic 
Improvement

Country Institution
Specialization and 
research activities Contact information and website

Africa Africa Rice 
Centre

Conserving rice 
genetic resources, rice 
breeding, rice 
processing

01 BP 4029, Abidjan 01, Côte d’Ivoire
Tel: +225 22 48 09 10
Email: AfricaRice@cgiar.org

America University of 
California

Breeding and genetics G. S. Khush
39399 Blackhawk Place, Davis, CA 
95616, USA
Tel: (+1-530) 750-2440
Email: gurdev@khush.org

Arizona The Arizona 
Genomics 
Institute

Facilitate the high 
throughput movement 
of genomic resources

1657 E Helen St,Tucson, AZ 85705, 
USA
Phone: +1 520-626-9596

Brazil Agronomic 
Institute of 
Paraná (IAPAR)

Improvement of 
agronomic traits

Lutécia Beatriz Canalli
InstitutoAgronômico 
do Paraná – IAPAR
Rodovia Celso Garcia Cid, km 375. 
Londrina-PR 86047-902, Brazil.
Tel: (+55) 42 3219 9712
Email: lutecia@iapar.br

(continued)
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Country Institution
Specialization and 
research activities Contact information and website

China China National 
Rice Research 
Institute

Identification of 
genetic resources, 
investigation of new 
genes, functional 
genomic research

359 Tiyuchang Road, Hangzhou City, 
Zhejiang Province310006, P.R. China
Tel: +86-571-63370212
Email: icoffice_cnrri@126.com

Huazhong 
Agricultural 
University

Plant protection Chao-Xi Luo
Huazhong Agricultural University, 
College of Plant Science and 
Technology, Shizishan, Hongshan 
District, Wuhan City, Hubei Province, 
China 430070
Tel: (27)-87281242
Email: cxluo@mail.hzau.edu.cn

Germany University of 
Freiburg

Coordinator of Golden 
Rice – Project

Peter Beyer
Institute of Biology II (Cell Biology), 
Fahnenbergplatz, 79085 Freiburg im 
Breisgau, Germany
Tel: +49 761 203 2529
Email: peter.beyer@biologie.
uni-freiburg.de

India Indian Institute of 
Rice Research

Genetic diversity, 
better rice varieties

V. Ravindra Babu
Rajendranagar, Hyderabad, Telangana 
500030
Email: director.iirr@icar.gov.in
Tel: +91-40-24591218; Fax: 
+91-40-24591217

National 
Research Centre 
on Plant 
Biotechnology

Genome sequencing 
and annotation of crop 
plants

N. K. Singh
Indian Council of Agricultural 
Research, Pusa Road, New Delhi
Tel: 011-25860186
Email: nksingh@nrcpb.org

Nigeria National Cereals 
Research Institute

Yield enhancement 
and grain quality

DanbabaNahemiahBadeggi, Nigeria
Tel: +234 806 931 4862

Philippines The International 
Rice Research 
Institute

Plant breeder, Project 
leader for Green 
Super Rice

Jauhar Ali
International Rice Research Institute, 
Los Baños, Laguna, Philippines
Tel: +63 2 580 5600 ext 2541
Email:j.ali@irri.org

Taiwan Institute of 
Molecular 
Biology

Rice transformation Su-May Yu
Institute of Molecular Biology, 
Academia Sinica, Nankang, Taipei 115, 
Taiwan
Tel: 886-2-2788-2695
Email: sumay@imb.sinica.edu.tw
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�Appendix II: Rice Genetic Resources

Cultivation location Cultivar Important traits

Thailand Dinalaga Drought resistant
Africa IRAT106 Drought resistant
Australia Doongara High amylase content

Kyeema Long grain and fragrant
Bangladesh IR64-Sub1 Submerged

BRRI dhan69 Saline, irrigated
BRRI Dhan72 High Zn content

Brazil Tre Smeses Drought resistant
China Yunlu 99 Drought resistant

Huhan3 Drought resistant
Ghana CRI-Emopa –

CRI Aunty Jane –
India Pusa Sugandh 2 Lodging tolerance, resistant to BB

Ambemohar Fragrant variety
Pusa Sugandh 2 Lodging and shattering tolerance
DRR-Dhan 45 Drought resistant
Sampada Low glycemic index
CR Dhan10 Protein rich

Kenya Komboka –
Nepal Sookha dhan4 Rainfed, drought

Sookha dhan1 Drought
Sookha dhan2 Drought

Nigeria IAC47 Drought resistant
Ofada Highlyaromatic

Nigeria UPIA1 Irrigated, rainfed, tolerance to toxicity
Philippines NSIC Rc25 Upland

NSIC Rc352 Irrigated, inbred
NSIC Rc390 Saline

Thailand Dinalaga Drought resistant
Tanzania Tai Rainfed, irrigated
Uganda Okile –
Vietnam 08Fan10 Rainfed, lowland
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