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Abstract This article describes a number of new techniques useful for the
construction of biomechanical and anatomicalmodels, particularly those that employ
combined FEM-multibody simulation. They are being introduced to the ArtiSynth
mechanical modeling system, and include reduced coordinate modeling, in which an
FEMmodel ismademore computationally efficient by reducing it to a low degree-of-
freedom subspace; newmethods for connecting points and coordinate frames directly
to deformable bodies; and the ability to create skin and embedded meshes that are
connected to underlying FEMmodels and other dynamic components. All these tech-
niques are based on the principle of virtual work, and we illustrate their application
with a number of examples, including a reduced FEM tonguemodel, subject-specific
skeletal registration, skinning applied to modeling the human airway, and a detailed
model of the human masseter.

1 Introduction

Effective simulation of human anatomical structure and function can benefit from
combining low-fidelity models with fast computation times and high-fidelity models
that emulate detailed tissue dynamics but have slower computation times. Multibody
methods are typically used for the former, modeling structures such as bones, joints
andpoint-to-pointmuscles,whilefinite elementmethods (FEM)are typically used for
the latter, modeling deformable tissues and capturing internal stress/strain dynamics.
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Combining the two can enable the creation of models with efficient, and possibly
interactive, simulation times while also providing appropriate fidelity in an area of
interest.

In this article, we describe new techniques that are being introduced intoArtiSynth
[12] (www.artisynth.org), an open- source simulation platform that permits
researchers to combinemultibody andFEMtechniques and hence leverage the advan-
tages of both. These new techniques include reduced coordinate modeling, attaching
points and frames to deformable bodies, and skinning and embedded meshes.

2 Reduced Coordinate Modeling

Reduced coordinate modeling is a technique in which a deformable body is mod-
eled using a restricted deformation basis instead of a collection of deformable finite
elements [10]. It spans the gap between FEM methods and rigid bodies (which are
themselves reduced models condensed to purely rigid motions), and can be effective
in speeding up simulation times formodels inwhich the range of typical deformations
is constrained (such as tongue motions in speech production).

To create a reduced coordinate model, it is often convenient to begin with a
standard FEM model. One can then construct a basis U of nodal deformations (with
respect to the nodal rest positions) which spans the set of all possible deformations
for the reduced model. Assume the FEM modal has n nodes (each with 3 degrees
of freedom), and let x, x0 and u denote composite vectors of their positions, rest
positions, and displacements, such that x = x0 + u. Then if q is a vector of the r
reduced coordinates, we have

x = x0 + Uq, (1)

where U ∈ R
3n×r . The basis U does not have to be constant but often is and will be

assumed tobe for the remainder of this article.Determining an appropriate basis is one
of the principal challenges in constructing a reduced model. Automatic techniques
include linearmodal analysis [14] (when the deformation is small), alongwith various
ways to extend a modal basis with additional vectors to handle large deformations,
such as using modal derivatives [3] or applying additional linear transformations to
the basis vectors [22]. In practice, better results are often obtained by creating the
basis via a training method in which a non-reduced FEM model is used to recreate
the deformations that are required for the modeling application [10].

2.1 Reduced Dynamics

Background material for reduced dynamics modeling can be found in [20]. Here, we
provide an overview of reduced dynamics within theArtiSynthmodeling framework.
An FEM model advances in time according to the dynamics

www.artisynth.org
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Mẍ + Dẋ + Kδx = fint(x) + fext, (2)

whereM and D are mass and damping matrices,K is the local stiffness matrix, δx is
the local change in x, and fint and fext are the internal and external forces. Note that
the matrices in (2) are almost always sparse.

ArtiSynth uses (2), in conjunction with a semi-implicit integrator, to solve for the
motion of the FEM model. In order to handle reduced models, it is necessary to find
the equivalent reduced dynamics,

M̃q̈ + D̃q̇ + K̃δq = f̃int(q) + f̃ext, (3)

where M̃, D̃, and K̃ are the reduced mass, damping, and stiffness matrices, and f̃int
and f̃ext are the reduced internal and external forces. Note that all of the matrices in
(3) are dense.

Model reduction implies a linear relationship between the nodal velocities ẋ of
the original FEM model and the velocities q̇ of the reduced model:

ẋ = Uq̇.

Note that even if U were not constant, this would still be true locally. Then from the
principle of virtual work, we know that the work done in nodal coordinates, fT ẋ,
must equal the work done in reduced coordinates, f̃T q̇, and therefore

f̃ = UT f .

This allows us to determine the reduced quantities in (3):

M̃ = UTMU, D̃ = UTDU, K̃ = UTKU, f̃int = UT fint, f̃ext = UT fext. (4)

ArtiSynth normally employs a lumped mass model in which M is constant, and
so M̃ is also constant and can be precomputed. The damping matrix D is also often
constant and so D̃ is also typically easy to determine.However, in anymodel involving
large deformations, K is almost always nonconstant, and must be reevaluated at
each simulation time step by integrating the stress/strain relationships of the model’s
constitutivematerials over a set of integration points within each FEMmodel element
[5]. This process, sometimes known as matrix assembly, has O(n) complexity, with
a proportionality constant depending on the nodal connectivity.

If K̃ is evaluated using (4) directly, the resulting complexity will be O(r2n) (since
K is sparse with O(n) entries). For larger r , however, this can be burdensome. A
more efficient approach is to use a smaller number of integration points, generally
O(r) (such that the number of points is proportional to r and not n). For example,
one can select O(r) elements, use a single integration point in the middle of each,
and then rather than forming K, instead accumulate the local stiffness matrix K j

associated with each integration point directly into K̃:
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K̃ =
∑

j

UTK jU.

Because each K j has O(1) size, the resulting K̃ can be formed in O(r3) [1].
It is also possible to show that for O(r) integration points, f̃int can be determined

in O(r2) time [1]. Other computations involving the reduction of external forces,
and updating of the original FEM nodal positions (such as for graphic display), have
a complexity of O(nr).

2.2 Application to an FEM Tongue Model

As a test case, we applied the above reduction method to a finite element model of
the human tongue [8] for modeling the tongue motions associated with speech pro-
duction. The mesh is hex dominant and contains 4255 elements and 2961 nodes. The
constitutive material is the same as that used for an earlier model [6]: a nearly incom-
pressible Mooney Rivlin material with C10 = 1037, C20 = 486, and bulk modulus
κ = 10370.

Tongue deformation is effected by embedding within the model a number of
fiber fields corresponding to the different tongue muscles. Each field is associated
with an additional anisotropic constitutive law that results in directed stresses along
the fiber directions when the muscle is activated. The work described in this paper
uses five tongue muscles: the hyoglossus (HG), inferior longitudinal (IL), superior
longitudinal (SL), posterior genioglossus (GGP), and the transversalis (TRANS).
Figure 1 shows a cutaway view of the tongue mesh, along with a representation of
the fiber directions for these muscles.

Our study consisted of creating two different reduced models for this tongue,
using two different basis generation techniques, and then examining how well these
were able to recreate three different tongue motions (protrusion, retroflexion, and

Fig. 1 Left: cutaway view of the FEM tongue model, showing the mesh structure; right: fiber
directions for the five muscles (HG, IL, SL, GGP, and TRANS) used in this paper
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Fig. 2 Different tongue motions used in this study. From left to right: rest position, protrusion,
retroflexion, and retraction

Table 1 Maximum muscle excitation levels associated with the different motions

Motion GGP TRANS SL HG IL

Protrusion 0.4 0.4 0.1 – –

Retroflexion – 0.4 0.6 – –

Retraction – – – 0.6 0.4

retraction) as produced by the original model. Figure 2 shows the different motions,
while Table 1 shows the muscle excitations associated with each.

The first basis was generated using modal analysis combined with a linear exten-
sion technique, as described in [22], which provides the extra degrees of freedom
needed to accommodate large deformations. Specifically, six linear modes were
extended by applying nine linearly independent affine transformations, resulting in a
basis with r = 54 vectors. The second basis was determined by a training technique
as described in [10], during which the tongue was exercised through activation of
all muscles, one at a time, and the displacements of all nodes where recorded. The
final reduced basis, consisting of 20 modes, was then determined through a principal
orthogonal decomposition of the recorded data and selection of the most significant
modes.

As mentioned in Sect. 2.1, the solution complexity for the reduced model is
O(r3) only if the number of integration points is O(r). In particular, this means that
the number of integration points must be subsampled in comparison to the original
model. This can be achieved in a couple of ways: (a) by choosing a certain number
of points randomly within the model and (b) by using a training method to select
the integration points, based on [22]. The training approach can be expected to give
better results since it hasmore ability to ensure sufficient coverage of themuscle fiber
fields, without which simulation fidelity may be lost. Results for both approaches
are presented below. Also, to get a better idea of how error varied with the number
of sampled integration points, we computed three different distributions of 600, 300,
and 200 points, respectively.

To compare the effectiveness of the reduced model under each basis, each of the
three tongue motions was executed, using 600 integration points, over a one second
time interval, with the excitations ramped from zero to full strength over the interval
t ∈ [0, 0.5] s and the displacement then being allowed to settle for an additional 0.5 s.
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Fig. 3 Mean average errors (mm) versus time (s) for a reduced model and each of the three tasks,
using both an “extendedmodal” and “trained” basis. The reducedmodel used 600 integration points.
In all cases, the error was less for the trained basis
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Fig. 4 Mean average errors (mm) versus time (s) for a reducedmodel (with a trained basis) and each
of the three tasks, using 600 integration points determined by both training and random selection.
In all cases the error was less for the trained integration points

These motions were then compared with those of the original (unreduced) model,
with the error associated with each node’s position being computed and averaged to
determine a mean average error over time. The results for each motion are shown in
Fig. 3, with mean average errors given in mm. For a sense of scale, the approximate
tongue diameter is around 60 mm. These results show that the trained basis exhibited
somewhat less error for a significantly smaller value of r (20 vs. 54).We also observe
that the reduced model has some dynamic lag with respect to the unreduced model,
as evidenced by the small error overshoot near t = 0.5.

To study how the error was affected by the choice of integration points, the same
testswere performed again (using the trained basis),with different point distributions.
First, we tested the difference between choosing points randomly versus identifying
them with a training method. The results, for 600 points, are shown in Fig. 4. The
training method produces slightly lower errors for two cases and significantly lower
errors for another. This suggests the while training is likely to be preferred, a random
method may work instead if the number of points is sufficiently large. Second, we
tested the effect of using fewer points (200 and 300); results for this are shown in
Fig. 5. To provide a better sense of the worst-case error, static views are shown of the
unreduced and 300 point reduced model at the point of maximum error. In general,
fewer integration points results in a larger error, but not always: for the protrusion
task, 300 integration points give a larger error than 200. The dynamic lag also tends
to increase as the number of points decreases.



New Techniques for Combined FEM-Multibody Anatomical Simulation 81

 0

 1

 2

 3

 4

 0  0.25  0.5  0.75  1

Protrusion

600
300
200

 0

 1

 2

 3

 4

 0  0.25  0.5  0.75  1

Retroflexion

 0

 1

 2

 3

 4

 0  0.25  0.5  0.75  1

Retraction

Fig. 5 Mean average errors (mm) versus time (s) for a reduced model (with a trained basis) and
each of the three tasks, with the number of integration points varying between 600, 300, and 200.
To get a sense of the absolute error, static images are provided of the unreduced model (middle)
and 300-point reduced model (right) at the point of maximum error

Table 2 Average per-step computation times (ms) for each basis with different numbers of inte-
gration points

Basis 600 300 200

Extended modal 53.2 33.0 23.6

Trained 27.7 15.2 12.1

Reducedmodel effectiveness is also illustrated by an online video, showing a side-
by-side comparison of task execution between an unreduced model and a reduced
model with 300 integration points:

www.artisynth.org/videos/CMBBE2018ModelReduction.mp4.
Finally, average per-step computation times were compared for each of the bases,

using 200, 300, and 600 integration points, with the results shown in Table 2. Compu-
tations were performed on an Intel quad core i7-7700 desktop with 16 GB of RAM.
The average per-step computation time for the unreduced model was 188.9 ms, using
the Pardiso [19]multicore direct solver utilizing a hybrid direct/iterative scheme. The
reduced computation times were roughly linear in the number of integration points,
as we would expect from the discussion of Sect. 2.1, while appearing to be roughly

www.artisynth.org/videos/CMBBE2018ModelReduction.mp4
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linear in r . However, that is because of the O(nr) overheads associated with system
assembly and the updating of nodal positions from the reduced coordinates.

Typical maximum absolute errors in the above results are around 3 mm, which for
an approximate tongue diameter of 60 mm corresponds to a relative error of around
5%. Meanwhile, for 300 or 200 integration points, the speed-up with the trained
basis is more than 10 times, and reduces the average per-step computation time to
interactive rates.

2.3 Application to an FEM Foot Model

As an example involving a larger FEM model containing internal rigid structures,
we describe preliminary work on model reduction for the detailed biomechanical
foot model described in [15]. Developed in ArtiSynth, this contains all the bones
of the foot, together with tendons and ligaments, embedded within an FEM model
that emulates the skin and other soft tissues (Fig. 6). The bones are modeled as rigid
bodies, to which nearby FEMnodes are connected using point-to-frame attachments.
The FEM model itself uses a neo-Hookean material and contains 23,298 elements
and 13,087 nodes. Joints between the bones are modeled using unilateral contact,
which provides more realistic joint motions, but, when combined with the FEM
embedding, increases per-step computation times to around 2600 ms on a an Intel
quad-core i7-7700 desktop with 16 GB of RAM. When run by itself without any
embedded structures, the FEM model has an execution speed of around 650 ms.

To help make this model suitable for clinical applications, we are investigating
model reduction to reduce its computation time to the point where it can be run
interactively. We developed a reduced basis for the model by creating a series of
nodal displacements corresponding to various excitement levels of the tibialis anterior
muscle and then applying a principal orthogonal decomposition in a manner similar
to that used for the tongue model (Sect. 2.2). The basis contains 6 vectors, and when
combined with 100 randomly chosen integration points allows the model to be run
at a real-time rate of around 10 ms/step (Fig. 7). Further investigations will consider
other muscle excitations and external loadings such as floor contact.

Fig. 6 The foot model,
showing bones, tendons,
ligaments, and the
embedding FEM mesh
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Fig. 7 The reduced foot model at rest (left) and after muscle excitation (right)

3 Attaching Points and Frames to Deformable Bodies

Biomechanical models are often built using a variety of components and sub-models,
whichmust then be connected together. An illustrative example of this is the FRANK
model [2] (Fig. 8), which provides a reference model of human head and neck
anatomy. Implemented inArtiSynth [12], FRANK is designed to simulate anatomical
functions related to swallowing, chewing and speech, and consists of various compo-
nentsmodeled using finite elements, rigid bodies, point-to-point springs, andmuscles
structures. ArtiSynth provides a number of means for connecting such components
together, including general constraints, joints, and the ability to directly attach points
and coordinate frames directly to other components. This section focuses on the lat-
ter capability, and describes the recently enhanced mechanism for connecting either
points or frames to deformable bodies. This allows, for example, a point-to-point
muscle to be connected directly to an FEM tissue model.

The ArtiSynth attachment mechanismworks by defining the coordinates xa of the
attached component to be a function of the coordinates xm of one or more master
components to which it is attached:

xa = f (xm). (5)

This then implies that the velocities are related by a linear relationship of the form

ẋa = Gam ẋm, Gam ≡ ∇ f (xm). (6)

From the principle of virtual work, discussed above, forces fa on the attached com-
ponents then propagate back to forces fm on the master components via

fm = GT
amfa . (7)
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Fig. 8 The FRANK model
of human head and neck
anatomy, with some
structures (such as the jaw)
not shown to reveal internal
detail

3.1 Point Attachments

For the case of a point attached to an FEMmodel, its position (and velocity) is given
by a weighted sum of nearby nodal positions x j :

xa =
∑

j

w jx j , ẋa =
∑

j

w j ẋ j .

Forces fa applied to the point then propagate back to each node according to

f j = wj fa .

Often the local nodes are chosen to be the ones associatedwith the element containing
the node, but in some cases, it may be desirable to spread the attachment across a
larger set of nodes, in order to better distribute forces imparted by the attached point
across the FEM model (Fig. 9). A good case example of this is shown in Fig. 10,
where the styloglossus muscles of a tongue are modeled as external point-to-point
muscles connected to the main FEM tongue model.

Points can be attached to a reduced model in essentially the same way, only now
the support nodes are themselves controlled by the underlying reduced coordinates:

xa =
∑

j

w j (x j0 + U jq), ẋa =
∑

j

w jU j q̇,

where x j0 andU j are the rest position and the submatrix ofU corresponding to node
j . With respect to (6), Gam takes the form
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Fig. 9 Two examples of a point-to-point muscle attached to an FEMmodel, using 4 support nodes
(top) and 24 support nodes (bottom). The resulting stress/strain pattern is smoother andmore diffuse
with the larger number of support nodes

Fig. 10 A finite element
model of the tongue, with the
styloglossus modeled as
externally connected
point-to-point muscles (red).
It may be desirable to
distribute the
styloglossus/tongue
attachment across the nodes
of multiple elements

Gam =
∑

j

w jU j .

One difference between reduced and FEM model attachments is that for the former
it is often less necessary to be concerned about distributing the stress/strain across
multiple nodes, since the model reduction process tends to do this automatically.

A current open problem is the ability to directly connect two reduced models
together. This is because there is no easy way to guarantee that the reduced motion
of each body would be mutually compatible with the attachment, particularly when
the attachment has spatial extent. Any future implementation of such an attachment
would presumably need to “relax” its constraints to accommodate the motion range
of the reduced models.
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3.2 Frame Attachments

Coordinate frames can also be connected to deformable bodies in much the same
way as for points. The frame origin is attached as a point, and the orientation R can
then be determined in one of two ways:

• Element shape functions: If the nodes are associatedwith an element, then the local
deformation gradient F can be determined using element shape functions in the
standard FEMmanner,withR then determined fromF using a polar decomposition
F = RP.

• Procrustean method: If the nodes are arbitrary, then R can be estimated based on
a Procrustean approach. First we compute a matrix F according to

F =
∑

j

w j (r jrT0 j ),

where wj are the nodal weights and r j and r0 j are the current and rest positions of
the nodes described with respect to the coordinate frame origin. R can then again
be determined from F using a polar decomposition F = RP.

The ability to connect frames means in particular that rigid bodies can be con-
nected directly to deformable models, as shown in Fig. 11, right.

Since frames can be attached to deformable bodies, this also means that joints
(which implement constraints between frames) can also be attached to deformable
bodies. A useful application of this is the subject-specific registration of skeletal
anatomy, as presented in [17] and illustrated in Fig. 12. This involves taking a refer-
ence model of a skeletal structure, including bones and joints, and registering (i.e.,
deforming) it to a specific subject based on medical imaging data (e.g., an CT scan).
To do this, the bones in the reference model must be made deformable (which can
be done by placing them within an embedding mesh, as described in Sect. 4) and
then “attracted” to the subject data using a technique such as iterative closest point

Fig. 11 Attaching frames to deformable bodies. Left: a frame connected directly to the nodes of a
single FEM element. Right: an ellipsoidal rigid body connected to the end of an FEM beam
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Fig. 12 Subject-specific
registration of skeletal
structures. Each bone mesh
of a reference model (top) is
made deformable by
embedding it within a
regular FEM grid (shown
here for the ulna). The
deformable bones are then
connected using FEM joints,
allowing the reference to be
more easily registered to
subject-specific data
(bottom) using ICP or
similar techniques

(ICP) [4]. In order to preserve the structural integrity of the reference model, the
(deformable) bones are connected with joints appropriate to the anatomy, allowing
the model to bend freely at each joint (up to joint limits) and to simultaneously regis-
ter the shape and pose of each bone. If instead the reference was modeled as a single
deformable structure without such joints, it would be necessary to greatly reduce the
stiffness near each joint location, in an anisotropic way that emulated the constraints
of each joint.

4 Skinning and Embedded Meshes

Another useful technique for creating anatomical and biomechanical models are to
attach a passive mesh to an underlying set of dynamically active bodies so that it
deforms in accordancewith themotion of those bodies.ArtiSynth allowsmeshes to be
attached to collections of both rigid bodies and FEMmodels, facilitating the creation
of structures that are either embedded-within, connected-to, or enveloped-by a set
of underlying components. Such mesh embedding approaches are well known in the
computer graphics community and have more recently been applied to biomechanics
[13], and also figure prominently in the SOFA system [7].

It should be noted that mesh embedding provides an alternate way to perform
model reduction, in the sense that the number of dynamic DOFs for the resulting
system is determined by the number of nodes in the embedding mesh. By using a
course embedding mesh, the number DOFs can be significantly reduced.

The underlying method uses the attachment mechanism (Eqs. (5)–(7)), with the
mesh vertices being the “attached components”. Themesh deforms in response to the
attachment configuration,while external forces applied to themesh can be propagated
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back to the dynamic components via (7). This technique is useful in a variety of
applications, as presented below.

4.1 Skinning for Modeling the Human Airway

One application is to create a continuous skin surrounding an underlying set of
anatomical components. For example, formodeling the human airway, a disparate set
of models describing the tongue, jaw, palate and pharynx can be connected together
with a surface skin to form a seamless airtight mesh (Fig. 13), as described in [21].
This then provides a uniformboundary for handling air or fluid interactions associated
with tasks such as speech or swallowing. In [21], each skin mesh vertex is attached
to one or more master components, which can be either an FEM model or a rigid
body. The position qv of each vertex is given by a weighted sum of contributions
from the master components, according to

qv = qv0 +
M∑

i

wi fi (qm,qm0,qv0) (8)

where qv0 is the initial position of the skinned vertex, qm and qm0 give the positions
and rest positions of the M master components, and wi and fi are the skinning
weight and blend function associated with the i th master component. Further details
are given in [21]. The position equation (8) can be differentiated to yield a velocity
relationship

uv = Gum,

Fig. 13 A skin mesh used to delimit the boundary of the human upper airway, connected to various
surrounding structures including the palate, tongue, and jaw [21]
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where uv and um are the velocities of the skin vertex and the master components and
G is a (local) matrix. Then from the principle of virtual work, vertex forces fv can
be propagated back onto the master component forces fm via

fm = GT fv.

In general, this means that forces, pressures, or contact interactions applied to the
skin can be reflected back onto the underlying master components. In the case of the
airway model, these external loads could involve pressures from air, fluid, or food
bolus interactions.

4.2 Mesh Embedding Applied to Modeling the Masseter

Embedding and attachment techniques have recently been applied to the creation of a
finite elementmodel of the humanmasseter [16],which is the principalmuscle used in
chewing (Fig. 14). Thismodel contains detailed information about the internalmuscle
fascicles and aponeuroses, with a primary purpose being to study the importance of
aponeuroses stiffness in the transmission of force within the masseter.

Fascicle and aponeuroses data were obtained using the dissection and digitization
procedure of [9]. Fascicle datawas discretized into a set of line segmentmeshes,while
the aponeuroses (tendon sheets) were discretized into triangular surface meshes. A
muscle volume was then constructed by constructing a wrapping surface around this
fiber and aponeuroses data, in a manner similar to [11]. Originally, this was used
as the surface mesh from which a conforming hex-dominant volumetric mesh was
constructed [18] (Fig. 15, middle). However, creating such a conforming mesh was
both time consuming and also yielded a number of poorly conditioned elements, and
so a mesh embedding approach was adopted instead in which the muscle volume
surface was embedded inside a coarse but highly regular and well-conditioned grid
(Fig. 15, right). Model fidelity was improved using the technique of [13], in which
the mass and stiffness values of the embedding FEM are weighted to account for
regions where the embedded mesh is absent.

Fig. 14 Model of the
masseter connected to the
jaw and mandible
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Fig. 15 Left: raw digitized data for masseter fascicles and aponeuroses. Middle: FEM masseter
model based on a conforming mesh generated from a wrapping surface enclosing the data. Right:
FEM model based on a regular embedding mesh. For both models, fascicles and aponeuroses are
added as embedded structures

Fascicles and aponeuroses were also incorporated within this primary FEMmesh.
Fascicle data was embedded within the primary mesh, hence allowing it to deform
accordingly. The fiber directions were used to determine the direction of muscle con-
traction used by the muscle constitutive law at nearby integration points of the pri-
marymesh. Aponeuroses weremodeled as thinmembrane-like FEMmodels, created
by extruding their triangular surface data using wedge elements. These membrane
FEMswere then attached to the primary FEM by connecting each membrane node to
its containing element within the primary mesh (as described in Sect. 3.1), allowing
the membrane stiffness to be transferred onto the entire structure.

By using embedding and attachment techniques, it is possible to create a masseter
model with far fewer degrees of freedom (and hence a much faster simulation time)
than would otherwise be possible. The embedding technique allows the primary
mesh to be set at a resolution appropriate to the overall deformability of the muscle,
rather than a need to accommodate the surface structure.More importantly, the use of
attachments to connect the aponeuroses allow the primary and aponeuroses meshes
to be nonconforming. Otherwise, it would be necessary to employ meshes with far
higher resolutions, which would be both harder to construct andwould result inmuch
higher simulation times.

5 Conclusion

We have described a number of useful methods for enhancing the construction of
biomechanical models. The first, model reduction, allows applications to implement
complex deformablemodels at reasonable computational cost, andwe are currently in
the process of introducing this into the ArtiSynthmodeling system.Most of the effort



New Techniques for Combined FEM-Multibody Anatomical Simulation 91

associated with model reduction involves determining both the basis and integration
point distribution. Our results suggest that training techniques tend to yield the best
basis results, yielding both a smaller basis and less error. Training is also useful for
selecting integration points, although random point selection may sometimes work
sufficiently well.We have also seen that model reduction has the potential to improve
computational speeds to interactive rates.

The othermethods includeways to attach points and frames to finite elementmod-
els, along with skinning and mesh embedding. All of these are currently available
in ArtiSynth and facilitate the dynamic interconnection of model components and
the introduction of auxiliary mesh structures for both visualization and simulation
purposes. They have already been applied to a number of applications in biome-
chanics; those described here include a large scale reference model of the head and
neck, subject-specific skeletal registration, skinning applied to modeling the human
airway, and a detailed model of the human masseter.

The unifying concept underlying all these techniques is the principle of virtual
work, which explains the force relationship between coordinate systems when the
velocity relationship is known.
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