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Abstract The atherosclerotic plaques are surgically removed by endarterectomy of
the common and internal carotid artery wall, removal of lesions, and suturing the
artery again. To avoid arterial lumen stenosis, sewing a patch in the incision area
is indicated, which will cause a slight expansion of the flow lumen. The channel
expansion causes a positive tension gradient, enhancing separation of the parietal
layer and occurrence of whirlpools. The latter may cause plaque redeposition. The
selection of the patch size is not described in detail in the literature and is based on
the surgeon’s experience and intuition. The purpose of the studies is to determine
the maximum patch width per surgical incision at which no flow separation will
occur. To determine the geometry of the channel with a patch sewn in, an equation
was determined to reflect the course of the arterial wall curves by math functions.
The artery radius, the maximum expansion radius, and the length of the patch sewn
in have been assumed as the input parameters that define the boundary conditions
necessary for the determination of polynomial coefficients. By a gradual increase
of the maximum radius, a geometry group was determined, which was the starting
point for numerical simulations. The simulations were made with the use of Fluent.
The increasing of the maximum radius was continued until the separation of the
parietal layer was detected and whirlpools occurred. The results showed that when
themaximum radius is 30% greater in relation to the arterial radius, whirlpools occur,
which in consequence may lead to plaque redeposition.
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1 Introduction

Atherosclerotic plaques very often deposit at the points of carotid artery bifurcation,
which might result in a closure of the arterial lumen. According to the experimental
research [1, 2, 3], when the stenosis level in the arterial lumen reaches ca. 60–75%,
it is necessary to remove the arterial lesions surgically. This operation is a generally
accepted formof primaryor secondary ischemic strokeprophylactics [4]. Theplaques
are most frequently removed by means of lengthwise incision of the artery wall,
removal of the adhering plaque and resuturing of the artery. It is also possible to
cut off the internal carotid artery, extract of the atherosclerotic plaque and reconnect
the cutoff artery. This procedure, however, is less frequent. Direct suturing of the
membrane (Fig. 1a) causes artery lumen stenosis. This is a negative phenomenon as
it reduces the arterial flow capacity and may cause disorders. Both factors mentioned
above cause an increased restenosis probability. Considering the said prerequisites,
experienced surgeons recommend insertion at the point of the artery incision of a
patch (Fig. 1b) made of plastic (usually dacron or polytetrafluoroethylene—PTFE)
or tissue taken from the patient (most frequently a vein). Dacron, however, is themost
commonly usedmaterial. The application of a patch reduces the risk of a stroke, death,
or restenosis as compared to the primary suturing of the wound after the arteriotomy
[5, 6]. It eliminates the risk of arterial lumen stenosis, but in turn, causes its expansion.
The patch width is selected directly on the operating table when the surgeon adjusts
the appropriate patchgeometry basedonhis/her ownexperience.There is no scientific
justification of the selected patch geometry—its width is fixed intuitively in most
cases. This paper presents an attempt of an analytic and mathematical determination
of the geometry of the patches that minimize the risk of restenosis.

From the mechanical point of view, the flow through the divergent canal enhances
the separation of the layer adhering to the wall and a formation of a reverse flow
near the walls. The occurring whirlpools may cause ‘suction’ of solid particles into

Fig. 1 Plague removal surgery: a with a patch b without a patch
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Fig. 2 Schematics of the basic concept of boundary layer separation

the center, which in consequence, may lead to plaque redeposition near the wall.
Figure 2 presents the concept of this phenomenon.

Upon respective expansion of the arterial canal, whirlpools occur in the blood
flow, which in consequence may lead to plaque redeposition on the walls.

The purpose of the studies is to determine the geometry of a patch that would
not cause flow turbulization when inserted in the carotid artery. The research works
considered analytical and numerical computation. The developed geometric models
were based on the analytical results and represented a basis for the numerical compu-
tation. A series of simulations was carried out to show the impact of the geometry on
the parameters characterizing the flow. The analysis results showed that whirlpools
begin to appear near the walls when the artery diameter is expanded by more than
30%, compared to its original dimension. This corresponds to the maximum patch
width of 10–14 mm, depending on the arterial diameter. The geometry of the patch
that would not lead to restenosis has been developed based on the obtained results.
The research results represent the first fully documented analysis concerning the
geometry of the inserted patches. They may constitute the foundations for the selec-
tion of a specific patch width, customized to the geometry of a patient’s artery.

2 Methods

2.1 Mathematical Analysis

The patch geometry was determined by means of three functions: fourth-degree
polynomial, a spline function composed of two cubic polynomials and the ellipsis
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Fig. 3 Patch geometry

function. The numerical tests showed that the ellipsis is the least favorable function.
Both polynomial functions under analysis yielded similar results.

2.1.1 Fourth-Degree Polynomial

The following fourth-degree polynomial was used to describe the expanded artery
(Fig. 3):

y(x) = a0+a1
x − x0
x1−x0

+ a2

(
x − x0
x1− x0

)2

+ a3

(
x − x0
x1− x0

)3

+ a4

(
x − x0
x1− x0

)4

(1)

Introduction of a dimensionless variable ξ = (x − x0)/(x1 − x0) results in the fol-
lowing function:

y(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4ξ
4 (2)

To determine the polynomial coefficients, the following boundary conditions have
been applied:

• smooth connection of the part of unvaried diameter with the expanded part:

y(ξ = 0) = y(ξ = 1) = r0 (3)

• equality of tangents:

y′(ξ = 0) = y′(ξ = 1) = 0 (4)

• maximum artery expansion radius:
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y

(
ξ = 1

2

)
= rmax (5)

After implementing above boundary conditions, polynomial coefficients values are
equal:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a0 = r0
a1 = 0
a2 = 16(rmax − r0)
a3 = −32(rmax − r0)
a4 = 16(rmax − r0)

(6)

Upon determination of the polynomial coefficients, function assumes the following
form:

y(ξ) = r0 + 16 · (rmax − r0) · ξ2 · (l − ξ)2, ξ = x − x0
x1 − x0

= x − x0
l

, x = x0 + l · ξ

(7)

The angle of inclination of the variable edge to the x-axis is

tgα(ξ) = dy

dx
= dy

dξ
· dξ
dx

= dy

ldξ
= 1

1
· 32(rmax − r0)ξ(1 − ξ) · (1 − 2ξ) (8)

while the extreme inclination angle results from zeroing of I derivative, namely

(tgα(ξ))
′ = 32(rmax − r0)

(
1 − 6ξ + 6ξ2

)
/l = 0 (9)

which occurs for

ξ∗
1 = 1

2
− 1

2
· 1√

3
= 1

2

(
1 − 1√

3

)
≈ 0.211 (10)

ξ∗
2 = 1

2

(
1 + 1√

3

)
≈ 0.789 (11)

whereas

(
tgα
(
ξ∗
1

))′′ = −192(rmax − r0) · (1 − 2ξ∗
1

)
/l < 0 (12)

therefore angle α
(
ξ∗
1

)
reaches its maximum value.

For ξ = ξ∗
2, the tangent function drops to its minimum value, because angle α is

an obtuse angle.
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Fig. 4 Function of the maximum angle of inclination for different value of artery radius (r0) and
the constant value of patch width l = 40 mm

Parameter r/rmax is related to angle αmax = α
(
ξ = ξ∗

1

) = α
(
ξ = 1

2

(
1 − 1√

3

))

tgαmax = 32
rmax − r0

l
· ξ(1 − ξ)(1 − 2ξ) (13)

tgαmax = 32
rmax − r0

l

1

2

(
1 − 1√

3

)
1

2

(
1 + 1√

3

)
1√
3

= 16

3
√
3

· rmax − r0
l

(14)

αmax = arc tg
16

3
√
3

· rmax − r0
l

= arc tg
16

3
√
3

· r0
l

(
rmax
r0

− 1

)
(15)

or

rmax = r0 + 3
√
3

16
· l · tgαmax (16)

Angle αmax for the outline described by function (Eq. 15) will result from a flow
without separation, being the Reynolds number function. As initial value for further
calculation there will be assumed αmax = 10° then

rmax = r0 + 3
√
3 · 16−1 · 0.003046 · l = r0 + 0.00099 · l (17)

for αmax = 45° l = 40 mm, r0 = 5 mm

rmax = r0 + 3
√
3

16
· 1 · l = r0 + 0.3248 1

rmax = 5 + 13 = 18 mm, rmax
/
r0 = 1 + 2.6 = 3.6,

which is an unreal result. In Figs. 4, 5, 6, 7 charts αmax = f(rmax) and rmax =
f(r0, αmax) are presented.

Patch width
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Fig. 5 Function of the maximum angle of inclination for different value of patch length (l) and the
unchanged value of artery diameter (r0 = 5 mm)
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Fig. 6 Function of the maximum radius in the widening part of artery for different values of artery
radius (r0) and the patch length l = 40 mm
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Fig. 7 Function of the maximum radius in the widening part of artery for different values of patch
length (l) and the artery radius r0 = 5 mm
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The perimeter patch width is the result of the relation

s(ξ) = 2π · y(ξ) − 2πr0 = 32π(rmax − r0)ξ
2(1 − ξ)2 (18)

and reaches its maximum in the center ξ = 0.5

smax = 2π(rmax − r0) (19)

or

smax
2πr0

= rmax
r0

− 1 (20)

The parameter ζ = rmax/r0 was introduced to the numerical computation, then

y(ξ) = r0 ·
[
1 + 16

(
rmax
r0

− 1

)
ξ2(1 − ξ)2

]
= r0 · [1 + 16(ζ − 1)ξ2(1 − ξ)2

]
(21)

or in the dimensionless form

y(ξ)

r0
= 1 + 16(ζ − 1)ξ2(1 − ξ)2 (22)

αmax = arc tg

(
16

3
√
3

· r0
l
(ζ − 1)

)
(23)

smax
2π

= r0(ζ − 1) → smax
2πr0

= ζ − 1 (24)

value smax/2π expresses the artery radius increase at the widest point of the patch
insertion, while smax/2πr0 is the dimensionless growth of the radius.

Assuming that r0 = 5 mm, l = 40 mm, ζ ≤ 1.3 the argument of function (21) is

16

3
√
3

· 5

40
· (1.3 − 1) = 0.11547 ⇒ arc tg 0.11547 = 0.1149 rd = 6.587◦,

on the other hand

arc tg x = x − x3

3
+ x5

5
= 0.11547 − 0.00051 = 0.11493 rd

while the omission of higher exponents leads to expression

arc tg x = x · · · = 0.11547 rd = 6.616◦

which produces the relative error
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Fig. 8 Analytical description of the spline function

δ = 6.587◦ − 6.616◦

6.587◦ · 100% ≈ 0.44%

So, in the interval αmax ≤ 6, 5◦, we obtain a simple dependency between the
maximum radius and the corresponding maximum inclination angle of the tangent
to the artery outline

αmax = 16

3
√
3

· 1
8

( rmax
5

− 1
)

→ rmax = 5

(
1 + 3

√
3

2
αmax

)
(25)

The patch width in the widest part of the artery (for r0 = 5 mm and ζ = 1.3)

smax = 2πr0(ζ − 1) = 2π · 5(1, 3 − 1) = 9.42 mm

2.1.2 Third-Degree Polynomial Spline

Patch, in this case, is described by two third-degree polynomial functions (Fig. 8):

y1(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 (26)

y2(ξ) = b0 + b1ξ + b2ξ
2 + b3ξ

3 (27)

Conditions on the curve ends

y1(0) = a0 = 0 (28)

y′
1(0) = a1 = 0 (29)

y2(1) = b0 + b1 + b2 + b3 = 0 (30)
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y′
2(1) = b1 + 2b2 + 3b3 = 0 (31)

y1

(
ξ = 1

2

)
= y2

(
ξ = 1

2

)
= rmax (32)

which leads to

y1(ξ) = a2ξ
2 + a3ξ

3 (33)

y′
1(ξ) = 2a2ξ + 3a3ξ

2 (34)

Convergence conditions at center point ξ = 1/2:

y1

(
1

2

)
= 1

4
a2 + 1

8
a3 = ymax (35)

y1

(
1

2

)
= y2

(
1

2

)
⇒ 1

4
a2 + 1

8
a3 = b0 + 1

2
b1 + 1

4
b2 + 1

8
b3 (36)

y
′
1

(
1

2

)
= y

′
2

(
1

2

)
⇒ a2 + 3

4
a3 = b1 + b2 + 3

4
b3 (37)

y′′
1

(
1

2

)
= y′′

2

(
1

2

)
⇒ 2a2 + 6a3 · 1

2
= 2b2 + 3b3 (38)

We have 8 equations with 8 unknowns (a0 = a1 = 0).

b0 + b1 + b2 + b3 = 0
b1 + 2b2 + 3b3 = 0
1
4a2 + 1

8 a3 = ymax
1
4a2 + 1

8 a3 = b0 + 1
2b1 + 1

4b2 + 1
8b3

a2 + 3
4 a3 = b1 + b2 + 3

4b3
2a2 + 3a3 = 2b2 + 3b3

(39)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
4

1
8 0 0 0 0

1
4

1
8 −1 − 1

2 − 1
4 − 1

8
1 3

4 0 −1 −1 − 3
4

2 3 0 0 −2 −3
0 0 1 1 1 1
0 0 0 1 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a2
a3
b0
b1
b2
b3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0
...

0
...

0
...

0
...

0 · · · · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ymax
0
...
...
...

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The solution of the system of equations is as follows:
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Fig. 9 Function of patch geometry composed of two third-polynomial functions described by
Eqs. 41, 42

a0 = a1 = 0 a2 = 12 · ymax a3 = −16 · ymax
b0 = −4 · ymax b1 = 24 · ymax b2 = −36 · ymax b3 = 16 · ymax

(40)

Third-degree curves that fulfil the conditions of zeroing the I derivative in ξ = 0 and
ξ = 1 are described by functions:

y1(ξ) = 12ymaxξ2 − 16ymaxξ3 = 4ymaxξ2(3 − 4ξ) (41)

y2(ξ) = −4ymax + 24ymaxξ − 36ymaxξ2 + 16ymaxξ3 (42)

In Fig. 9, the curve composed of Eqs. 41, 42 and for ymax = 1 is presented.
The maximum curve y1 inclination angle is at the point where the first derivative

of the tangent’s tangent is zeroed.

dy1
dξ

= tgα(ξ) = 0 (43)

The inclination angle reach the maximum value 2nd derivative of function y1 is equal
to 0.

d

dξ

(
dy1
dξ

)
= d

dξ

(
d

dξ

(
1

2
ξ2 − 16ξ3

)
ymax

)
= 96ymax

(
1

4
− ξ

)
= 0 (44)

The maximum takes place at point ξ∗
1 = 0.25, because tgα

(
ξ∗
1

)′′
< 0.

For the function y2:

d

dξ

(
dy2
dξ

)
= (−4 + 24ξ − 26ξ2 + 16ξ3

)′′ · ymax = (−72 + 96ξ) · ymax = 0

(45)
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Therefore ξ∗
2 = 0.75.

For interval ξ ∈〈0, 1
2

〉
and ymax = rmax based on Eq. 40

y(ξ) = 16 ·
(
3

4
− ξ

)
· ξ2 · rmax (46)

while for ξ ∈〈 12 , 1〉

y(ξ) = (−4 + 24ξ − 36ξ2 + 16ξ3
) · rmax (47)

therefore

• interval ξ ∈〈0, 1/2〉

dy

dx
= dy

dξ
· dξ

dx
= dy

dξ
· d

dx

(
x − x0

l

)
= ζ · 1

l
· tgα(ξ), ζ = rmax

r0
(48)

• interval ξ ∈〈1/2, 1〉

dy

dx
= 1

l
· dy
dξ

= ζ · r0
l

· tgα(ξ), ζ = rmax

r0
(49)

The patch width

• interval ξ ∈〈0, 1
2

〉

s(ξ) = 2πy(ξ) − 2πr0 = 2π(y(ξ) − r0) = 2π

[
16ξ2

(
3

4
− ξ

)
rmax − r0

]

= 2πr0 ·
[
16ξ2

(
3

4
− ξ

)
rmax
r0

− 1

]
= 2πr0

[
16ξ2

(
3

4
− ξ

)
· ζ − 1

]
, ζ = rmax

r0
(50)

• interval ξ ∈〈 12 , 1〉

s(ξ) = 2πy(ξ) − 2πr0 = 2π · 4(−1 + 6ξ − 9ξ2 + 4ξ3
) · rmax − 2πr0

= 2πr0

[
4
(−1 + 6ξ − 9ξ2 + 4ξ3

) rmax
r0

− 1

]

= 2πr0
[
4
(−1 + 6ξ − 9ξ2 + 4ξ3

)
ζ − 1

]
(51)
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Fig. 10 Elliptical patch
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Fig. 11 Comparison of patch geometries

2.1.3 Elliptical Patch

The elliptical equation takes the following form Figs. 10, 11:

(
x − a

a

)2

+
(y
b

)2 = 1 (52)

Upon introduction of a dimensionless coordinate ξ = x
1 → x = ξ · l Eq. (1) takes

the form

(
ξ · l − a

a

)2

+
(y
b

)2 = 1 (53)

therefore

y = ±b

√
1 −

(
l

a
ξ − 1

)2

(54)

The perimeter of artery (with radius r0) with inserted elliptical path is (l = 2a)
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p(ξ) = 2πr0 + 2y = 2πr0 + 2b
√
1 − (2ξ − 1)2 (55)

therefore, the variable artery radius

r(ξ) = p(ξ)

2π
= r0 + b

π

√
1 − (2ξ − 1)2 (56)

and for ξ = 1/2

rmax = r

(
1

2

)
= r0 + b

π
(55)

For the model case r0 = 5 mm, b = 4 m, l = 40 mm

rmax = 5 + 4

π
≈ 6, 27 ≈ 6, 3mm (56)

whereas b = rmax – r0, therefore

y(ξ) = r0 + (rmax − r0)
√
1 − (2ξ − 1)2, ξ = x

l
→ dξ = 1

l
dx (57)

dy

dx
= dy

dξ
· dξ
dx

= 1

l

dy

dξ
= rmax − r0

l
· d

dξ

√
1(2ξ − 1)2

= r0
l

(
rmax

r0
− 1

)
· −2(2ξ − 1)√

1 − (2ξ − 1)2
= tgα(ξ), ξ ∈ 〈0, 1〉 (58)

It is conspicuous that for ξ = 1 α = 90°. The angle of the tangent to curve y(ξ)
decreases from 90° to 0° in the interval ξ ∈〈0, 1

2

〉
and further grows to 90° for ξ = 1.

Patch width
The perimeter width of the patch is

s(ξ) = 2πy(ξ) − 2πr0 = 2πr0(ζ − 1)
√
1 − (2ζ − 1)2, ζ = rmax

r0
(59)

or in the dimensionless form

s(ξ)

2πr0
= (ζ − 1) ·

√
1 − (2ξ − 1)2, ξ ∈〈0, 1〉 (60)

2.2 Summary

Figure 6 presents a comparison of the patch width curve determined by the function:
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• polynomial:

y(ξ) = 16ξ2(1 − ξ)2, ξ ∈〈0, 1〉 (61)

• spline:

y(ξ) = 12ξ2 − 16ξ3, ξ ∈
〈
0,

1

2

〉
(62)

y(ξ) = −4 + 24ξ − 36ξ2 + 16ξ3, ξ ∈
〈
1

2
, 1

〉
(63)

• elliptical:

y(ξ) =
√
1 − (2ξ − 1)2, ξ ∈〈0, 1〉 (64)

2.3 Numerical Analysis

To obtain a full description of fluid flow kinematics, a system of equations is solved
describing the principles of conservation of momentum and mass, which form the
basis to calculate velocity, pressure, density and temperature. No analytical solution
of the general Navier–Stokes equation has been found, therefore the determination
of an accurate solution is impossible from the analytical point of view. However,
satisfactory solutions are obtainable approximating the solution of the equation by
numerical methods. In the case of the research carried out herein, this was the finite
volume method [7, 8, 9].

To describe a variation of any physical value in space and time, transport equations
are used, also referred to as the conservation equations. To describe blood flow in
the arteries, two equations are used:

• momentum transport equation:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xi

)
= − ∂p

∂xi
+ μ

∂2ui
∂xj∂xj

(65)

• mass transport equation:

∂ui
∂xi

= 0 (66)
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Fig. 12 Inlet velocity profile (one pulse duration = 0.5 s)

After the numerical solution of the above equations, the components of velocity
and pressure are obtained, which enables the acquisition of full knowledge of the
flow nature. The system of equations described above, due to the assumption of aver-
aged velocity value (Reynolds distribution), must be supplemented with additional
equations considering the velocity fluctuations. The additional system of equations
is called the turbulence model. The k-ω SST model was selected for the research,
due to its versatility and efficient detection of separations of the wall layer [9, 10]. An
additional parameter determined by the said equations is the kinetic energy of turbu-
lence defining the energy of whirlpools occurring in the flow. The larger and stronger
the whirlpools, the higher the value of the kinetic energy of turbulence. Thanks to this
property, this parameter is the foundation for the arterial flow assessment in terms of
turbulence.

Anonstationary, pulsating velocity profilewas applied at the artery inlet. Figure 12
presents the course of one cycle, which takes 0.5 s. The selected velocity profile was
prepared based on ultrasound test results and data found in relevant literature [11,
12]. The maximum velocity is 0.4 m/s. The curve presenting velocity was shown
in Fig. 12. The curve is described by the polynomial function. At the outlets, the
zero-pressure boundary condition was applied [12, 13]. This is determined by the
fact that the primary purpose of the study is to define the impact of the geometry on
the flow. The introduction of the pulsating outlet pressure profile could have caused
some additional disorders, physically unrelated to the purpose of this study. In order
to examine the impact of the velocity on the flow, a series of simulations were made
for the pulsating velocity profile of the maximum value of 1 m/s. Its curve is identical
and the only difference is the amplitude.

Blood is a liquid of a viscosity highly dependent on the velocity of the flow. This
dependency is not linear, therefore blood is classified in the non-Newtonian group of
fluids. At low velocities the viscosity value is very high. It enhances the proneness
of the wall layer to separate as well as the occurrence of whirlpools compared to the
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Fig. 13 Carreau function

Newtonian fluids such as water [14, 15]. In the course of the research, the Carreau
model [16, 17, 18, 12]. The Carreau formula is presented by Eq. 67. In Fig. 13,
change of dynamic viscosity as a function of shear rate is presented. The coefficients
in Eq. 67 were selected based on the experimental tests [17].

μeff(γ̇) = μ∞ + (μ0 − μ∞)
(
1 + (λγ̇)2

) n−1
2 (67)

of which:
γ̇
[
s−1
]
—deformation of velocity given by the formula:

γ̇ = ∂ui
∂xi

τ−1 (68)

λ = 3.13 s—fluid relaxation time
n = 0.3568—exponent
μ∞ = 0.00345 kg/m·s—viscosity value at indefinitely high coagulation velocity

(in the flow core),
μ0 = 0.056 kg/m·s—viscosity value at zero coagulation velocity (near the walls).

3 Results

Based on the equations obtained in the analytical parts, several geometries have been
produced. The obtained models can be divided into three groups, differing by artery
diameters. In each group, the artery expansions from 10% of the original dimension
to 50% were examined. The examinations were made for unilateral expansion of
the patch. Figure 14 presents the results of the simulation for the same expansion
level, with a symmetrical expansion in the first case and unilateral in the second. It
is noticeable that in the nonsymmetrical case the created whirlpool is larger, which
makes the plaque deposition more probable. With the symmetrical expansion, the
whirlpools are smaller, because they occur in two locations. The conclusion of such



18 M. Ciałkowski et al.

Fig. 14 Dilation of the artery: a symmetric b asymmetric

a comparison is that cases of unilateral expansion are worse in terms of the flow.
They also occur more frequently in practice, particularly when the patch is inserted
near the carotid artery bifurcation area, which is the major object of the study.

Figure 15 presents the curve of the current line for the patch described by grade 4
polynomial and the patch described by the function composed of grade 3 polynomials
(spline). It can be observed that the curve of the current line is practically the same.
Therefore, only one geometry was examined (function composed of third-grade
polynomials—due to its higher accuracy).

The geometry defined by the elliptical function is the most approximate to the
patches inserted presently. Figure 16a presents the current lines for the elliptical case.
The graphical presentation Fig. 16b shows the results for the polynomial patch with
the same maximum expansion radius. The conclusion of the drawing can be that the
flow through the elliptical geometry causes whirlpools already at a 20% expansion,
while no whirlpools occur in the elliptical patch. This is the main reason for the
application of polynomial patches.

Based on the above preliminary studies, the authors chose to carry out a detailed
examination of unilateral expansions occurring upon the insertion of the patch defined
by a polynomial function. For each group of geometries, the value of the coefficient of
stenosis was determined defined by the ratio of the maximum radius of an expanded
artery to the radius of a normal artery, thanks to which the parameter examined
can be described in a dimensionless way. Figure 17 presents the streamlines in the
diastolic phasewhere the negative velocity gradient impacting the highest probability
of boundary layer separation.

A similar analysis was made for the other groups. All the results have been
included in Table 1. It is noticeable that for lower velocities, the use of a narrower
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Fig. 15 Comparison of geometries: a fourth-degree polynomial b third-degree polynomial spline

Fig. 16 Comparison of the artery geometry with the patch sewn in in the shape of a ellipse b poly-
nomial

patch is required. This is due to the fact that slower blood flow enhances the growth
of the viscosity forces. The higher viscosity forces in the fluid, the higher the tensions
coagulating the fluid layers, which causes higher inclination of the fluid to separa-
tions and whirlpools. The final results assumed in the studies comprised the patch
widths of lower velocity values, because they constitute a higher safety limit. The
blood flow velocity, most of all, depends on the patient’s pulse, artery diameter, and
the difference in the value of the systolic and diastolic blood pressure. This value is
variable, therefore the worst-case scenario method was applied (Fig. 18).
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Fig. 17 The course of streamlines depending on the width of the patch [mm]

Table 1 Numerical results

Artery diameter (mm) Velocity
(m/s)

4th
polynomial

3rd polynomial spine Ellipse

8 0.4 10.6 10.6 12

1 10.1 9.6

10 0.4 12.6 11.3

1 11.3 10.1

12 0.4 14.3 13.6

1 12.8 12.1
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4th polynomial 0.4 m/s

4th polynomial 1 m/s

3rd polynomial spline
0.4 m/s

3rd polynomial spline 1
m/s

ellipse

Fig. 18 Limit width of the patch depending on the diameter of the artery (velocity 0.4 m/s; 1 m/s)



The Impact of Patches on Blood Flow Disorders ... 21

-5

-3

-1

1

3

5

-5 10 25 40
cutting line [mm]

Fig. 19 Patch outline with overlap on the stitching (external profile) and without overlap on the
stitching (internal profile), for the cutting length l = 40 mm, the width of the overlap on the suture
s = 1 mm

The obtained values represent the starting points with a view to continuing and
expanding the research. The final result will be the development of a complete patch
geometry (Fig. 19), the insertion of which in the patient’s artery would minimize the
risk of plaque redeposition. The finished patch will be increased by 1 mm regarding
the suturing technique. It will be customized to each individual patient. The studies
carried out enabled the authors to determine the first input parameter: the patient’s
artery diameter. Finally, therewill bemore input parameters and theywill consider the
following: blood composition, carotid artery bifurcation angle, diameters of adjacent
arteries (usually the main CCA and external ECA).

4 Conclusions

The performed analysis has shown that the most favorable geometry in terms of
the flow is the artery expanded according to a polynomial function. Thanks to the
appropriate formation of the walls, the lumen expands so gradually that the boundary
layer increases slowly.While increasing the patchwidth, the risk of larger separations
and reverse flow occurs. The larger the diameter of the patient’s artery, in which
the patch will be inserted, the larger the width that can be used (not exceeding
15 mm). Theoretically, the smaller the patch the better, since the artery geometry is
not significantly changed. If, however, the patch sutured in is too small as a result
of the patch shrinking, it may lead to a reduction of the arterial lumen. It is a more
negative phenomenon than the expansion, because it restricts the blood flow. If plaque
redeposition occurs in such an artery, it could be closed much sooner than with an
expanded artery. Therefore, the information related to the width of the patch that can
be applied is very important to the surgeons. The research allowed the authors to
obtain widths that are justified analytically and mechanically.

The patches inserted thus far were similar to an ellipse or were of an irregular
shape. They met their purpose, however, significantly affected the blood flow, which
in some cases led to the necessity of subsequent surgery. The patches suggested in
this paper have two basic advantages. The first is that the geometry of the patches
has been described analytically, which enables their easy recovery with the use of
simple aids. The other, more important aspect is the standardization of the geometry
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of the inserted patches. The patches can be divided into several types adapted to the
majority of patients and to the most commonly occurring diameters. Thanks to such
a solution, the patches can be mass-produced in several variants. During the medical
procedure, the surgeon would select a finished, ready-cut patch, depending on the
patient’s geometry. Hence, there would be no need to cut the patches while operating,
which would reduce the time of the procedure and, most importantly, minimize the
risk of restenosis.
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