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Preface

The 15th International Symposium on Computer Methods in Biomechanics and
Biomedical Engineering and the 3rd Conference on Imaging and Visualization
(CMBBE2018), were run together at Instituto Superior Técnico (IST), Technical
University of Lisbon, Portugal, from March 20 to 26, 2018.

We believe that CMBBE2018 had a strong impact on the development of
computational biomechanics and biomedical imaging and visualization; particu-
larly, by identifying emerging areas of research and promoting the collaboration
and networking between participants. Actually, CMBBE2018 included 176 oral
presentations and 37 poster presentations. In addition, 16 renowned researchers
delivered very interesting plenary keynotes, addressing current challenges in
computational biomechanics and biomedical imaging. This book includes the
extended versions of selected works presented in CMBBE2018.

Briefly, the included 10 chapters address important topics in Biomechanics and
Biomedical Imaging, including Control Theory, Finite Element Method, Fluid
Dynamics, Geometrical Modeling, Image Segmentation, Image Analysis, Monte
Carlo Simulation, Multibody Modeling, and Numerical Methods. Different appli-
cations are addressed and described throughout the book, comprising
Computational Simulation, Flow Analysis, Medical Diagnosis and Rehabilitation,
Numeral Analysis, and Stress and Strain Analysis.

Therefore, this book is of high interest for Researchers, Students, End Users, and
Manufacturers from several multidisciplinary fields, as the ones related with
Bioengineering, Biology, Biomechanics, Computational Mechanics, Computer
Graphics, Computer Sciences, Mathematics, Mechanobiology, Medical Imaging,
Medicine, Physics, Physiological Cybernetics, and Telemetry.
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The editors would like to take this opportunity to thank the authors of the 10
selected contributions for sharing their works, experiences, and knowledge, making
possible their dissemination through this book.

Porto, Portugal João Manuel R. S. Tavares
Lisbon, Portugal Paulo Rui Fernandes

Co-editors and Co-chairs of CMBBE2018

The original version of this book was revised: Volume number has been corrected.
The correction to this book can be found at https://doi.org/10.1007/978-3-030-
23073-9_11
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The Impact of Patches on Blood Flow
Disorders In Carotid Artery

M. Ciałkowski, N. Lewandowska, M. Micker, M. Warot, A. Frąckowiak
and P. Chęciński

Abstract The atherosclerotic plaques are surgically removed by endarterectomy of
the common and internal carotid artery wall, removal of lesions, and suturing the
artery again. To avoid arterial lumen stenosis, sewing a patch in the incision area
is indicated, which will cause a slight expansion of the flow lumen. The channel
expansion causes a positive tension gradient, enhancing separation of the parietal
layer and occurrence of whirlpools. The latter may cause plaque redeposition. The
selection of the patch size is not described in detail in the literature and is based on
the surgeon’s experience and intuition. The purpose of the studies is to determine
the maximum patch width per surgical incision at which no flow separation will
occur. To determine the geometry of the channel with a patch sewn in, an equation
was determined to reflect the course of the arterial wall curves by math functions.
The artery radius, the maximum expansion radius, and the length of the patch sewn
in have been assumed as the input parameters that define the boundary conditions
necessary for the determination of polynomial coefficients. By a gradual increase
of the maximum radius, a geometry group was determined, which was the starting
point for numerical simulations. The simulations were made with the use of Fluent.
The increasing of the maximum radius was continued until the separation of the
parietal layer was detected and whirlpools occurred. The results showed that when
themaximum radius is 30% greater in relation to the arterial radius, whirlpools occur,
which in consequence may lead to plaque redeposition.
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1 Introduction

Atherosclerotic plaques very often deposit at the points of carotid artery bifurcation,
which might result in a closure of the arterial lumen. According to the experimental
research [1, 2, 3], when the stenosis level in the arterial lumen reaches ca. 60–75%,
it is necessary to remove the arterial lesions surgically. This operation is a generally
accepted formof primaryor secondary ischemic strokeprophylactics [4]. Theplaques
are most frequently removed by means of lengthwise incision of the artery wall,
removal of the adhering plaque and resuturing of the artery. It is also possible to
cut off the internal carotid artery, extract of the atherosclerotic plaque and reconnect
the cutoff artery. This procedure, however, is less frequent. Direct suturing of the
membrane (Fig. 1a) causes artery lumen stenosis. This is a negative phenomenon as
it reduces the arterial flow capacity and may cause disorders. Both factors mentioned
above cause an increased restenosis probability. Considering the said prerequisites,
experienced surgeons recommend insertion at the point of the artery incision of a
patch (Fig. 1b) made of plastic (usually dacron or polytetrafluoroethylene—PTFE)
or tissue taken from the patient (most frequently a vein). Dacron, however, is themost
commonly usedmaterial. The application of a patch reduces the risk of a stroke, death,
or restenosis as compared to the primary suturing of the wound after the arteriotomy
[5, 6]. It eliminates the risk of arterial lumen stenosis, but in turn, causes its expansion.
The patch width is selected directly on the operating table when the surgeon adjusts
the appropriate patchgeometry basedonhis/her ownexperience.There is no scientific
justification of the selected patch geometry—its width is fixed intuitively in most
cases. This paper presents an attempt of an analytic and mathematical determination
of the geometry of the patches that minimize the risk of restenosis.

From the mechanical point of view, the flow through the divergent canal enhances
the separation of the layer adhering to the wall and a formation of a reverse flow
near the walls. The occurring whirlpools may cause ‘suction’ of solid particles into

Fig. 1 Plague removal surgery: a with a patch b without a patch
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Fig. 2 Schematics of the basic concept of boundary layer separation

the center, which in consequence, may lead to plaque redeposition near the wall.
Figure 2 presents the concept of this phenomenon.

Upon respective expansion of the arterial canal, whirlpools occur in the blood
flow, which in consequence may lead to plaque redeposition on the walls.

The purpose of the studies is to determine the geometry of a patch that would
not cause flow turbulization when inserted in the carotid artery. The research works
considered analytical and numerical computation. The developed geometric models
were based on the analytical results and represented a basis for the numerical compu-
tation. A series of simulations was carried out to show the impact of the geometry on
the parameters characterizing the flow. The analysis results showed that whirlpools
begin to appear near the walls when the artery diameter is expanded by more than
30%, compared to its original dimension. This corresponds to the maximum patch
width of 10–14 mm, depending on the arterial diameter. The geometry of the patch
that would not lead to restenosis has been developed based on the obtained results.
The research results represent the first fully documented analysis concerning the
geometry of the inserted patches. They may constitute the foundations for the selec-
tion of a specific patch width, customized to the geometry of a patient’s artery.

2 Methods

2.1 Mathematical Analysis

The patch geometry was determined by means of three functions: fourth-degree
polynomial, a spline function composed of two cubic polynomials and the ellipsis
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Fig. 3 Patch geometry

function. The numerical tests showed that the ellipsis is the least favorable function.
Both polynomial functions under analysis yielded similar results.

2.1.1 Fourth-Degree Polynomial

The following fourth-degree polynomial was used to describe the expanded artery
(Fig. 3):

y(x) = a0+a1
x − x0
x1−x0

+ a2

(
x − x0
x1− x0

)2

+ a3

(
x − x0
x1− x0

)3

+ a4

(
x − x0
x1− x0

)4

(1)

Introduction of a dimensionless variable ξ = (x − x0)/(x1 − x0) results in the fol-
lowing function:

y(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4ξ
4 (2)

To determine the polynomial coefficients, the following boundary conditions have
been applied:

• smooth connection of the part of unvaried diameter with the expanded part:

y(ξ = 0) = y(ξ = 1) = r0 (3)

• equality of tangents:

y′(ξ = 0) = y′(ξ = 1) = 0 (4)

• maximum artery expansion radius:
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y

(
ξ = 1

2

)
= rmax (5)

After implementing above boundary conditions, polynomial coefficients values are
equal:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a0 = r0
a1 = 0
a2 = 16(rmax − r0)
a3 = −32(rmax − r0)
a4 = 16(rmax − r0)

(6)

Upon determination of the polynomial coefficients, function assumes the following
form:

y(ξ) = r0 + 16 · (rmax − r0) · ξ2 · (l − ξ)2, ξ = x − x0
x1 − x0

= x − x0
l

, x = x0 + l · ξ

(7)

The angle of inclination of the variable edge to the x-axis is

tgα(ξ) = dy

dx
= dy

dξ
· dξ
dx

= dy

ldξ
= 1

1
· 32(rmax − r0)ξ(1 − ξ) · (1 − 2ξ) (8)

while the extreme inclination angle results from zeroing of I derivative, namely

(tgα(ξ))
′ = 32(rmax − r0)

(
1 − 6ξ + 6ξ2

)
/l = 0 (9)

which occurs for

ξ∗
1 = 1

2
− 1

2
· 1√

3
= 1

2

(
1 − 1√

3

)
≈ 0.211 (10)

ξ∗
2 = 1

2

(
1 + 1√

3

)
≈ 0.789 (11)

whereas

(
tgα
(
ξ∗
1

))′′ = −192(rmax − r0) · (1 − 2ξ∗
1

)
/l < 0 (12)

therefore angle α
(
ξ∗
1

)
reaches its maximum value.

For ξ = ξ∗
2, the tangent function drops to its minimum value, because angle α is

an obtuse angle.
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Fig. 4 Function of the maximum angle of inclination for different value of artery radius (r0) and
the constant value of patch width l = 40 mm

Parameter r/rmax is related to angle αmax = α
(
ξ = ξ∗

1

) = α
(
ξ = 1

2

(
1 − 1√

3

))

tgαmax = 32
rmax − r0

l
· ξ(1 − ξ)(1 − 2ξ) (13)

tgαmax = 32
rmax − r0

l

1

2

(
1 − 1√

3

)
1

2

(
1 + 1√

3

)
1√
3

= 16

3
√
3

· rmax − r0
l

(14)

αmax = arc tg
16

3
√
3

· rmax − r0
l

= arc tg
16

3
√
3

· r0
l

(
rmax
r0

− 1

)
(15)

or

rmax = r0 + 3
√
3

16
· l · tgαmax (16)

Angle αmax for the outline described by function (Eq. 15) will result from a flow
without separation, being the Reynolds number function. As initial value for further
calculation there will be assumed αmax = 10° then

rmax = r0 + 3
√
3 · 16−1 · 0.003046 · l = r0 + 0.00099 · l (17)

for αmax = 45° l = 40 mm, r0 = 5 mm

rmax = r0 + 3
√
3

16
· 1 · l = r0 + 0.3248 1

rmax = 5 + 13 = 18 mm, rmax
/
r0 = 1 + 2.6 = 3.6,

which is an unreal result. In Figs. 4, 5, 6, 7 charts αmax = f(rmax) and rmax =
f(r0, αmax) are presented.

Patch width
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Fig. 5 Function of the maximum angle of inclination for different value of patch length (l) and the
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The perimeter patch width is the result of the relation

s(ξ) = 2π · y(ξ) − 2πr0 = 32π(rmax − r0)ξ
2(1 − ξ)2 (18)

and reaches its maximum in the center ξ = 0.5

smax = 2π(rmax − r0) (19)

or

smax
2πr0

= rmax
r0

− 1 (20)

The parameter ζ = rmax/r0 was introduced to the numerical computation, then

y(ξ) = r0 ·
[
1 + 16

(
rmax
r0

− 1

)
ξ2(1 − ξ)2

]
= r0 · [1 + 16(ζ − 1)ξ2(1 − ξ)2

]
(21)

or in the dimensionless form

y(ξ)

r0
= 1 + 16(ζ − 1)ξ2(1 − ξ)2 (22)

αmax = arc tg

(
16

3
√
3

· r0
l
(ζ − 1)

)
(23)

smax
2π

= r0(ζ − 1) → smax
2πr0

= ζ − 1 (24)

value smax/2π expresses the artery radius increase at the widest point of the patch
insertion, while smax/2πr0 is the dimensionless growth of the radius.

Assuming that r0 = 5 mm, l = 40 mm, ζ ≤ 1.3 the argument of function (21) is

16

3
√
3

· 5

40
· (1.3 − 1) = 0.11547 ⇒ arc tg 0.11547 = 0.1149 rd = 6.587◦,

on the other hand

arc tg x = x − x3

3
+ x5

5
= 0.11547 − 0.00051 = 0.11493 rd

while the omission of higher exponents leads to expression

arc tg x = x · · · = 0.11547 rd = 6.616◦

which produces the relative error
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Fig. 8 Analytical description of the spline function

δ = 6.587◦ − 6.616◦

6.587◦ · 100% ≈ 0.44%

So, in the interval αmax ≤ 6, 5◦, we obtain a simple dependency between the
maximum radius and the corresponding maximum inclination angle of the tangent
to the artery outline

αmax = 16

3
√
3

· 1
8

( rmax
5

− 1
)

→ rmax = 5

(
1 + 3

√
3

2
αmax

)
(25)

The patch width in the widest part of the artery (for r0 = 5 mm and ζ = 1.3)

smax = 2πr0(ζ − 1) = 2π · 5(1, 3 − 1) = 9.42 mm

2.1.2 Third-Degree Polynomial Spline

Patch, in this case, is described by two third-degree polynomial functions (Fig. 8):

y1(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 (26)

y2(ξ) = b0 + b1ξ + b2ξ
2 + b3ξ

3 (27)

Conditions on the curve ends

y1(0) = a0 = 0 (28)

y′
1(0) = a1 = 0 (29)

y2(1) = b0 + b1 + b2 + b3 = 0 (30)
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y′
2(1) = b1 + 2b2 + 3b3 = 0 (31)

y1

(
ξ = 1

2

)
= y2

(
ξ = 1

2

)
= rmax (32)

which leads to

y1(ξ) = a2ξ
2 + a3ξ

3 (33)

y′
1(ξ) = 2a2ξ + 3a3ξ

2 (34)

Convergence conditions at center point ξ = 1/2:

y1

(
1

2

)
= 1

4
a2 + 1

8
a3 = ymax (35)

y1

(
1

2

)
= y2

(
1

2

)
⇒ 1

4
a2 + 1

8
a3 = b0 + 1

2
b1 + 1

4
b2 + 1

8
b3 (36)

y
′
1

(
1

2

)
= y

′
2

(
1

2

)
⇒ a2 + 3

4
a3 = b1 + b2 + 3

4
b3 (37)

y′′
1

(
1

2

)
= y′′

2

(
1

2

)
⇒ 2a2 + 6a3 · 1

2
= 2b2 + 3b3 (38)

We have 8 equations with 8 unknowns (a0 = a1 = 0).

b0 + b1 + b2 + b3 = 0
b1 + 2b2 + 3b3 = 0
1
4a2 + 1

8 a3 = ymax
1
4a2 + 1

8 a3 = b0 + 1
2b1 + 1

4b2 + 1
8b3

a2 + 3
4 a3 = b1 + b2 + 3

4b3
2a2 + 3a3 = 2b2 + 3b3

(39)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
4

1
8 0 0 0 0

1
4

1
8 −1 − 1

2 − 1
4 − 1

8
1 3

4 0 −1 −1 − 3
4

2 3 0 0 −2 −3
0 0 1 1 1 1
0 0 0 1 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a2
a3
b0
b1
b2
b3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0
...

0
...

0
...

0
...

0 · · · · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ymax
0
...
...
...

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The solution of the system of equations is as follows:
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Fig. 9 Function of patch geometry composed of two third-polynomial functions described by
Eqs. 41, 42

a0 = a1 = 0 a2 = 12 · ymax a3 = −16 · ymax
b0 = −4 · ymax b1 = 24 · ymax b2 = −36 · ymax b3 = 16 · ymax

(40)

Third-degree curves that fulfil the conditions of zeroing the I derivative in ξ = 0 and
ξ = 1 are described by functions:

y1(ξ) = 12ymaxξ2 − 16ymaxξ3 = 4ymaxξ2(3 − 4ξ) (41)

y2(ξ) = −4ymax + 24ymaxξ − 36ymaxξ2 + 16ymaxξ3 (42)

In Fig. 9, the curve composed of Eqs. 41, 42 and for ymax = 1 is presented.
The maximum curve y1 inclination angle is at the point where the first derivative

of the tangent’s tangent is zeroed.

dy1
dξ

= tgα(ξ) = 0 (43)

The inclination angle reach the maximum value 2nd derivative of function y1 is equal
to 0.

d

dξ

(
dy1
dξ

)
= d

dξ

(
d

dξ

(
1

2
ξ2 − 16ξ3

)
ymax

)
= 96ymax

(
1

4
− ξ

)
= 0 (44)

The maximum takes place at point ξ∗
1 = 0.25, because tgα

(
ξ∗
1

)′′
< 0.

For the function y2:

d

dξ

(
dy2
dξ

)
= (−4 + 24ξ − 26ξ2 + 16ξ3

)′′ · ymax = (−72 + 96ξ) · ymax = 0

(45)



12 M. Ciałkowski et al.

Therefore ξ∗
2 = 0.75.

For interval ξ ∈〈0, 1
2

〉
and ymax = rmax based on Eq. 40

y(ξ) = 16 ·
(
3

4
− ξ

)
· ξ2 · rmax (46)

while for ξ ∈〈 12 , 1〉

y(ξ) = (−4 + 24ξ − 36ξ2 + 16ξ3
) · rmax (47)

therefore

• interval ξ ∈〈0, 1/2〉

dy

dx
= dy

dξ
· dξ

dx
= dy

dξ
· d

dx

(
x − x0

l

)
= ζ · 1

l
· tgα(ξ), ζ = rmax

r0
(48)

• interval ξ ∈〈1/2, 1〉

dy

dx
= 1

l
· dy
dξ

= ζ · r0
l

· tgα(ξ), ζ = rmax

r0
(49)

The patch width

• interval ξ ∈〈0, 1
2

〉

s(ξ) = 2πy(ξ) − 2πr0 = 2π(y(ξ) − r0) = 2π

[
16ξ2

(
3

4
− ξ

)
rmax − r0

]

= 2πr0 ·
[
16ξ2

(
3

4
− ξ

)
rmax
r0

− 1

]
= 2πr0

[
16ξ2

(
3

4
− ξ

)
· ζ − 1

]
, ζ = rmax

r0
(50)

• interval ξ ∈〈 12 , 1〉

s(ξ) = 2πy(ξ) − 2πr0 = 2π · 4(−1 + 6ξ − 9ξ2 + 4ξ3
) · rmax − 2πr0

= 2πr0

[
4
(−1 + 6ξ − 9ξ2 + 4ξ3

) rmax
r0

− 1

]

= 2πr0
[
4
(−1 + 6ξ − 9ξ2 + 4ξ3

)
ζ − 1

]
(51)
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Fig. 10 Elliptical patch
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Fig. 11 Comparison of patch geometries

2.1.3 Elliptical Patch

The elliptical equation takes the following form Figs. 10, 11:

(
x − a

a

)2

+
(y
b

)2 = 1 (52)

Upon introduction of a dimensionless coordinate ξ = x
1 → x = ξ · l Eq. (1) takes

the form

(
ξ · l − a

a

)2

+
(y
b

)2 = 1 (53)

therefore

y = ±b

√
1 −

(
l

a
ξ − 1

)2

(54)

The perimeter of artery (with radius r0) with inserted elliptical path is (l = 2a)
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p(ξ) = 2πr0 + 2y = 2πr0 + 2b
√
1 − (2ξ − 1)2 (55)

therefore, the variable artery radius

r(ξ) = p(ξ)

2π
= r0 + b

π

√
1 − (2ξ − 1)2 (56)

and for ξ = 1/2

rmax = r

(
1

2

)
= r0 + b

π
(55)

For the model case r0 = 5 mm, b = 4 m, l = 40 mm

rmax = 5 + 4

π
≈ 6, 27 ≈ 6, 3mm (56)

whereas b = rmax – r0, therefore

y(ξ) = r0 + (rmax − r0)
√
1 − (2ξ − 1)2, ξ = x

l
→ dξ = 1

l
dx (57)

dy

dx
= dy

dξ
· dξ
dx

= 1

l

dy

dξ
= rmax − r0

l
· d

dξ

√
1(2ξ − 1)2

= r0
l

(
rmax

r0
− 1

)
· −2(2ξ − 1)√

1 − (2ξ − 1)2
= tgα(ξ), ξ ∈ 〈0, 1〉 (58)

It is conspicuous that for ξ = 1 α = 90°. The angle of the tangent to curve y(ξ)
decreases from 90° to 0° in the interval ξ ∈〈0, 1

2

〉
and further grows to 90° for ξ = 1.

Patch width
The perimeter width of the patch is

s(ξ) = 2πy(ξ) − 2πr0 = 2πr0(ζ − 1)
√
1 − (2ζ − 1)2, ζ = rmax

r0
(59)

or in the dimensionless form

s(ξ)

2πr0
= (ζ − 1) ·

√
1 − (2ξ − 1)2, ξ ∈〈0, 1〉 (60)

2.2 Summary

Figure 6 presents a comparison of the patch width curve determined by the function:



The Impact of Patches on Blood Flow Disorders ... 15

• polynomial:

y(ξ) = 16ξ2(1 − ξ)2, ξ ∈〈0, 1〉 (61)

• spline:

y(ξ) = 12ξ2 − 16ξ3, ξ ∈
〈
0,

1

2

〉
(62)

y(ξ) = −4 + 24ξ − 36ξ2 + 16ξ3, ξ ∈
〈
1

2
, 1

〉
(63)

• elliptical:

y(ξ) =
√
1 − (2ξ − 1)2, ξ ∈〈0, 1〉 (64)

2.3 Numerical Analysis

To obtain a full description of fluid flow kinematics, a system of equations is solved
describing the principles of conservation of momentum and mass, which form the
basis to calculate velocity, pressure, density and temperature. No analytical solution
of the general Navier–Stokes equation has been found, therefore the determination
of an accurate solution is impossible from the analytical point of view. However,
satisfactory solutions are obtainable approximating the solution of the equation by
numerical methods. In the case of the research carried out herein, this was the finite
volume method [7, 8, 9].

To describe a variation of any physical value in space and time, transport equations
are used, also referred to as the conservation equations. To describe blood flow in
the arteries, two equations are used:

• momentum transport equation:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xi

)
= − ∂p

∂xi
+ μ

∂2ui
∂xj∂xj

(65)

• mass transport equation:

∂ui
∂xi

= 0 (66)
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Fig. 12 Inlet velocity profile (one pulse duration = 0.5 s)

After the numerical solution of the above equations, the components of velocity
and pressure are obtained, which enables the acquisition of full knowledge of the
flow nature. The system of equations described above, due to the assumption of aver-
aged velocity value (Reynolds distribution), must be supplemented with additional
equations considering the velocity fluctuations. The additional system of equations
is called the turbulence model. The k-ω SST model was selected for the research,
due to its versatility and efficient detection of separations of the wall layer [9, 10]. An
additional parameter determined by the said equations is the kinetic energy of turbu-
lence defining the energy of whirlpools occurring in the flow. The larger and stronger
the whirlpools, the higher the value of the kinetic energy of turbulence. Thanks to this
property, this parameter is the foundation for the arterial flow assessment in terms of
turbulence.

Anonstationary, pulsating velocity profilewas applied at the artery inlet. Figure 12
presents the course of one cycle, which takes 0.5 s. The selected velocity profile was
prepared based on ultrasound test results and data found in relevant literature [11,
12]. The maximum velocity is 0.4 m/s. The curve presenting velocity was shown
in Fig. 12. The curve is described by the polynomial function. At the outlets, the
zero-pressure boundary condition was applied [12, 13]. This is determined by the
fact that the primary purpose of the study is to define the impact of the geometry on
the flow. The introduction of the pulsating outlet pressure profile could have caused
some additional disorders, physically unrelated to the purpose of this study. In order
to examine the impact of the velocity on the flow, a series of simulations were made
for the pulsating velocity profile of the maximum value of 1 m/s. Its curve is identical
and the only difference is the amplitude.

Blood is a liquid of a viscosity highly dependent on the velocity of the flow. This
dependency is not linear, therefore blood is classified in the non-Newtonian group of
fluids. At low velocities the viscosity value is very high. It enhances the proneness
of the wall layer to separate as well as the occurrence of whirlpools compared to the
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Fig. 13 Carreau function

Newtonian fluids such as water [14, 15]. In the course of the research, the Carreau
model [16, 17, 18, 12]. The Carreau formula is presented by Eq. 67. In Fig. 13,
change of dynamic viscosity as a function of shear rate is presented. The coefficients
in Eq. 67 were selected based on the experimental tests [17].

μeff(γ̇) = μ∞ + (μ0 − μ∞)
(
1 + (λγ̇)2

) n−1
2 (67)

of which:
γ̇
[
s−1
]
—deformation of velocity given by the formula:

γ̇ = ∂ui
∂xi

τ−1 (68)

λ = 3.13 s—fluid relaxation time
n = 0.3568—exponent
μ∞ = 0.00345 kg/m·s—viscosity value at indefinitely high coagulation velocity

(in the flow core),
μ0 = 0.056 kg/m·s—viscosity value at zero coagulation velocity (near the walls).

3 Results

Based on the equations obtained in the analytical parts, several geometries have been
produced. The obtained models can be divided into three groups, differing by artery
diameters. In each group, the artery expansions from 10% of the original dimension
to 50% were examined. The examinations were made for unilateral expansion of
the patch. Figure 14 presents the results of the simulation for the same expansion
level, with a symmetrical expansion in the first case and unilateral in the second. It
is noticeable that in the nonsymmetrical case the created whirlpool is larger, which
makes the plaque deposition more probable. With the symmetrical expansion, the
whirlpools are smaller, because they occur in two locations. The conclusion of such
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Fig. 14 Dilation of the artery: a symmetric b asymmetric

a comparison is that cases of unilateral expansion are worse in terms of the flow.
They also occur more frequently in practice, particularly when the patch is inserted
near the carotid artery bifurcation area, which is the major object of the study.

Figure 15 presents the curve of the current line for the patch described by grade 4
polynomial and the patch described by the function composed of grade 3 polynomials
(spline). It can be observed that the curve of the current line is practically the same.
Therefore, only one geometry was examined (function composed of third-grade
polynomials—due to its higher accuracy).

The geometry defined by the elliptical function is the most approximate to the
patches inserted presently. Figure 16a presents the current lines for the elliptical case.
The graphical presentation Fig. 16b shows the results for the polynomial patch with
the same maximum expansion radius. The conclusion of the drawing can be that the
flow through the elliptical geometry causes whirlpools already at a 20% expansion,
while no whirlpools occur in the elliptical patch. This is the main reason for the
application of polynomial patches.

Based on the above preliminary studies, the authors chose to carry out a detailed
examination of unilateral expansions occurring upon the insertion of the patch defined
by a polynomial function. For each group of geometries, the value of the coefficient of
stenosis was determined defined by the ratio of the maximum radius of an expanded
artery to the radius of a normal artery, thanks to which the parameter examined
can be described in a dimensionless way. Figure 17 presents the streamlines in the
diastolic phasewhere the negative velocity gradient impacting the highest probability
of boundary layer separation.

A similar analysis was made for the other groups. All the results have been
included in Table 1. It is noticeable that for lower velocities, the use of a narrower
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Fig. 15 Comparison of geometries: a fourth-degree polynomial b third-degree polynomial spline

Fig. 16 Comparison of the artery geometry with the patch sewn in in the shape of a ellipse b poly-
nomial

patch is required. This is due to the fact that slower blood flow enhances the growth
of the viscosity forces. The higher viscosity forces in the fluid, the higher the tensions
coagulating the fluid layers, which causes higher inclination of the fluid to separa-
tions and whirlpools. The final results assumed in the studies comprised the patch
widths of lower velocity values, because they constitute a higher safety limit. The
blood flow velocity, most of all, depends on the patient’s pulse, artery diameter, and
the difference in the value of the systolic and diastolic blood pressure. This value is
variable, therefore the worst-case scenario method was applied (Fig. 18).
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Fig. 17 The course of streamlines depending on the width of the patch [mm]

Table 1 Numerical results

Artery diameter (mm) Velocity
(m/s)

4th
polynomial

3rd polynomial spine Ellipse

8 0.4 10.6 10.6 12

1 10.1 9.6

10 0.4 12.6 11.3

1 11.3 10.1

12 0.4 14.3 13.6

1 12.8 12.1

8

9
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13

14

15
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w
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artery diameter [mm]

4th polynomial 0.4 m/s

4th polynomial 1 m/s

3rd polynomial spline
0.4 m/s

3rd polynomial spline 1
m/s

ellipse

Fig. 18 Limit width of the patch depending on the diameter of the artery (velocity 0.4 m/s; 1 m/s)
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Fig. 19 Patch outline with overlap on the stitching (external profile) and without overlap on the
stitching (internal profile), for the cutting length l = 40 mm, the width of the overlap on the suture
s = 1 mm

The obtained values represent the starting points with a view to continuing and
expanding the research. The final result will be the development of a complete patch
geometry (Fig. 19), the insertion of which in the patient’s artery would minimize the
risk of plaque redeposition. The finished patch will be increased by 1 mm regarding
the suturing technique. It will be customized to each individual patient. The studies
carried out enabled the authors to determine the first input parameter: the patient’s
artery diameter. Finally, therewill bemore input parameters and theywill consider the
following: blood composition, carotid artery bifurcation angle, diameters of adjacent
arteries (usually the main CCA and external ECA).

4 Conclusions

The performed analysis has shown that the most favorable geometry in terms of
the flow is the artery expanded according to a polynomial function. Thanks to the
appropriate formation of the walls, the lumen expands so gradually that the boundary
layer increases slowly.While increasing the patchwidth, the risk of larger separations
and reverse flow occurs. The larger the diameter of the patient’s artery, in which
the patch will be inserted, the larger the width that can be used (not exceeding
15 mm). Theoretically, the smaller the patch the better, since the artery geometry is
not significantly changed. If, however, the patch sutured in is too small as a result
of the patch shrinking, it may lead to a reduction of the arterial lumen. It is a more
negative phenomenon than the expansion, because it restricts the blood flow. If plaque
redeposition occurs in such an artery, it could be closed much sooner than with an
expanded artery. Therefore, the information related to the width of the patch that can
be applied is very important to the surgeons. The research allowed the authors to
obtain widths that are justified analytically and mechanically.

The patches inserted thus far were similar to an ellipse or were of an irregular
shape. They met their purpose, however, significantly affected the blood flow, which
in some cases led to the necessity of subsequent surgery. The patches suggested in
this paper have two basic advantages. The first is that the geometry of the patches
has been described analytically, which enables their easy recovery with the use of
simple aids. The other, more important aspect is the standardization of the geometry
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of the inserted patches. The patches can be divided into several types adapted to the
majority of patients and to the most commonly occurring diameters. Thanks to such
a solution, the patches can be mass-produced in several variants. During the medical
procedure, the surgeon would select a finished, ready-cut patch, depending on the
patient’s geometry. Hence, there would be no need to cut the patches while operating,
which would reduce the time of the procedure and, most importantly, minimize the
risk of restenosis.
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Numerical Study of Carotid Bifurcation
Angle Effect on Blood Flow Disorders

N. Lewandowska, M. Micker, M. Ciałkowski, M. Warot, A. Frąckowiak
and P. Chęciński

Abstract The paper presents the study results of the impact of the common carotid
artery bifurcation angle on the flow disorders. The studies were carried out using
numericalmethods. Based on actual images, geometrywasmade of the diffuser chan-
nel with bifurcation and predetermined angle. The flow simulation results showed
that for bifurcation angles exceeding 60° the vortices near the bulb start to occur—at
that time almost a double increase of the parameter values takes place, related to
flow disorders. The vortex becomes increasingly larger and grows proportionally to
the value of the bifurcation angle. Thanks to the studies carried out, three areas have
been shown, in which plaques may deposit, due to disadvantageous geometry. Based
on the simulation results, arteries have been divided into three groups of risk. It has
been proven that bifurcations exceeding 50° significantly disturb the flow and the
points of whirlpool occurrence represent frequent points of plaque depositions.

1 Introduction

This paper presents the study results aimed at the determination of anatomy of carotid
arteries with geometry enhancing plaque deposition. The application of numerical
methods inmedicine becomes increasingly popular. There are vascular surgery issues
that, in addition to biological (physiological), have a mechanical (hemodynamic)
cause. Thanks to the combination of the two fields of science, the phenomena occur-
ring in the artery can be explained more completely. Through analysis of the flow
field in the common carotid artery bulb, the phenomenon of boundary layer separa-
tion and formation of vortexes can be detected. If the vortex occurring in the flow is
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Fig. 1 Deposition of solid
particles following the vortex
formation

sufficiently large and strong, it causes a “suction” of solids present in the blood such
as components of atherosclerotic plaque. As a result, the said particles deposit on the
arterial walls. They will cause a progressive stenosis, which enhances the process of
further formation of vortexes (Fig. 1). This is one of the theories of atherosclerotic
plaque formation in the point of arterial bifurcation.

The literature [1–6] concerning numerical studies of carotid arteries presents stud-
ies mainly focused on carotid artery thicknesses and diameters of the cross-section
of its branches. The analysis was mainly carried out through presentation of the
shearing stress field and the velocity values in the canal. It was shown that arterial
narrowing leads to increased blood flow velocity and, as a consequence, growth of
the shearing stresses, which enhances flow turbulization and affects the formation of
deposits. In addition, weakening of the arterial walls caused by lesions in the patient
causes reduced flexibility of the wall and local expansion of internal carotid artery,
which also causes deposition of atherosclerotic plaques and may also cause their
formation. The deposits most often occur on the side of the internal carotid artery,
which is particularly dangerous, because this artery transports blood to the brain and
its closing very often causes irreversible damage to the cerebral tissue or even death.

The formation of deposits on the side of the internal carotid artery is, most of
all, enhanced by its geometry—the increasing cross-section of the flow causes a
reduction of the blood flow and, as a consequence, its increased viscosity, which has
been explained in detail further in the paper. High viscosity enhances the formation
of deposits, because the separation of the boundary layer occurs near the walls and
vortexes occur more easily. Except for the aspects directly concerning the geometry
of the specific arteries, the parameters correlating the external and internal carotid
artery are also significant.

Bulb is the key region, in which the blood flow is most exposed to disorders—
this is the area where the artery expands and is bifurcated into two smaller arteries
(Fig. 2).

In contrast to the previous analyses in this field, the authors decided to focus on
one though very important parameter, differentiating the carotid arteries. This is the
bifurcation angle of the common carotid artery. This paper will include studies on
the impact of the change of the said angle on the blood flow parameters. It is rarely
considered in blood flow analyses, though it expressly enables the determination of
some groups of carotid arteries with geometry enhancing the formation of deposits.
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Fig. 2 Carotid artery: a real b geometric model c bulb

From the flow point of view, the area distinctly changes such parameters as flow
velocity, pressure and, most importantly, stability. The purpose of the studies was
to check, with the use of numerical methods, whether vortexes would occur with
correspondingly large bifurcation angles, which, as a consequence might lead to
the formation of deposits. The purpose of the study was to determine geometrically
correct arteries. The practical result of the studies is the possibility to apply proactive
measures aimed at the delay or reduction of the risk of deposits formation in patients
with arteries classified within the risk group.

2 Methods

The studieswere carried out using theANSYS software, through numericalmodeling
of the flow. The CFD (Computational Fluid Dynamics) tools enable a very good
reproduction of the flow, if the appropriate number of parameters is included in the
model. Figure 2 presents a general outline of geometry. The CCA (Common Carotid
Artery) was treated as a nonsymmetric diffuser canal. Based on the analysis of MRI
images of arteries and papers treating on carotid artery studies [1–6], it was observed
that the bifurcation of the ICA (Internal Carotid Artery) is by ca. 5°–10° larger
than the bifurcation of the ECA (External Carotid Artery). The ICA and ECA were
also approximated as straight-line canals. The main area of study—the bulb, was
distinguished in Fig. 2c. The increased length of the canals results from the fact that
laminar stabilized inlet and outlet flows were targeted during the simulation.
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Analytical model of the artery is described by a system of three or four equations,
depending on the number of dimensions. Those equations are called momentum
transport equation and continuity equations. The solution of this system gives values
of velocity and pressure in every node of the created mesh.

As a consequence of using Reynolds decomposition in determining the values,
in mathematical models appears Reynolds Stress Tensor (RST). It includes the fluc-
tuation of physical quantities over time. The solution of RST demands direct RST
solving, which adds an extra seven equations to the model [7, 8]. It significantly
increases the time of calculation. Instead of implementing all RST to the analytical
model, two-equation turbulence model was chosen. It gives high accuracy in detect-
ing flow disturbances. In the next paragraph, the selected model will be described
more precisely. Summarizing, analytical model is described by 5 (or 6 for 3D geom-
etry) equations:

• momentum transport equation:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xi

)
= − ∂p

∂xi
+ μ

∂2ui
∂xj∂xj

(1)

• mass transport equation (continuity equation):

∂ui
∂xi

= 0 (2)

• equations connectedwithReynolds stress tensor (depending on turbulencemodel),
in considered case: 2 equations.

Themost important aim of the studies was the watch of the boundary layer separa-
tion and the formation of the vortex. The accuracy of detection of the said phenomena
is determined by the turbulence models. For each case, depending on the flow condi-
tions and parameter values, an individual model should be selected. After a detailed
analysis, the k-ω SST model was selected, which very effectively reproduces the
points of the boundary layer separation [9].

The boundary conditions define the velocity or the pressure values in the artery
flow inlets and outlets. The velocity value was selected based on actual values occur-
ring in the common carotid arteries [5, 10, 11] equaling to 1 m/s. At the arterial flow
outlets, the zero-pressure boundary condition was applied to settle the zero over-
pressure value at the outlets. The condition is particularly often applied in the cases
where the most important study parameter is the nature of the flow [5, 11].

In reality, the arterial blood flow is of a pulsating nature. In the studies, a stationary
flow with constant-velocity profile at the inlet (constant in time) was applied. The
simplification is reasonable because the authors’ main focus was the impact of the
geometry on the nature of the flow.

The blood flowing through the carotid arteries is an untypical fluid, referred to as
the non-Newtonian fluid. It differs from Newtonian fluids by the fact that its viscos-
ity is not a constant value. Viscosity is a physical value included in the description
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of a relation between the shearing stresses occurring in fluid τ and the fluid veloc-
ity gradient u along normal direction to the surface of occurrence of the shearing
stresses xi (referred to as the non-dilatational shear rate) [7]. High viscosity fluids
are characterized with the fact that with low velocities even the boundary layer might
be separated and strong flow disorders might occur. Blood is a pseudo-plastic fluid
and its viscosity reaches high values at low velocity, however, the faster it flows in
the artery the lower the viscosity. The Carreau model [12–15] was used to create the
blood model (Eq. 3). In contrast to other, less complex models, it implements the
value referred to as the fluid relaxation time, which causes a delay of viscosity drop
as a result of the strain velocity growth and is milder, which reflects the nature of the
pseudo-plastic fluid and the viscosity value in the area of low shearing velocities. It
leads to higher effectiveness of detection of the boundary layer separations.

The values of the coefficients in Eq. 3 were selected based on the paper, in which
they were determined following a series of experiments [12]:

μeff(γ̇) = μ∞ + (μ0 − μ∞)
(
1 + (λγ̇)2

) n−1
2 (3)

of which:

γ̇ =
∂ui
∂xi
τ

[
1
s

]
—shear rate

λ = 3.13 s—fluid relaxation time
n = 0.3568—exponent
μ∞ = 0.00345 kg/m·s—viscosity value at infinitely high shearing velocity (in the
flow core),
μ0 = 0.056 kg/m·s—viscosity value at zero shearing velocity (near the walls).

Upon the analysis of the actual images of the arteries, the range of angles between
the external and internal carotid arteries occurring, in reality, was determined. The
value of the smallest bifurcation angle is 15°, while the largest bifurcation detected
was 90°. To analyze the flow at various angles, 9models of the following angle values
have been made: 15°, 30°, 40°, 45°, 50°, 55°, 60°, 75°, and 90°. It was observed that
from 40° to 60° the angle was changed every 5°, because, in this area, the first larger
separations were expected.

For the purpose of comparing 2D results with their equivalent of 3D, three 3D
models were made. The models have the same diameters and lengths as 2D models.
Considered angles of bifurcation in cases of 3D calculations was 25°, 50°, and 75°.
The meshes were made in ICEM. For the 2D geometry, the fully structured mesh
was made. For 3D models, triangular mesh was generated with extra prism-layers
near the walls to improve mesh quality and increase accuracy for boundary layers.
The meshes were shown in Fig. 3.

To assess the flowing nature, the authors considered the following factors while
developing the results:

• boundary layer thickness in the diffuser part and at the outlets δ [mm]: the value
was assessed by determining the areas, in which the fluid velocity was lower than
in the flow core. In Fig. 3, a concept of measurement was presented based on the
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Fig. 3 Computational grid for 3D and 2D geometry

example of one of the outlets. According to the common assumption, the boundary
layer occurs until the flow velocity reaches 99% of the core flow value; (Fig. 4)

• turbulentReynolds numberReturb [-],which defines the turbulent viscosity (defined
by Boussinesq function) to laminar viscosity ratio [9]. The probability of occur-
rence of vortexes and separations grows along with the value of the turbulent
Reynolds number in a specific area;

• kinetic energy of turbulence k [J/kg]—average kinetic energy referred to the mass
unit and related to the vortexes in the turbulent flow. When the flow becomes
turbulent, the share of diffusion in the transport grows. It was assumed that the
turbulent flow structure contains areas of highly nonstationary nature, referred to
as vortexes. The intensification of vortexes increases the transportation of volumes
by diffusion—they can be small or large. The kinetic energy of turbulence is the
energy of vortexes in a turbulent flow—the larger they are the more their kinetic
energy grows. It is “supplied” from the kinetic energy of flow to larger vortexes,
from larger to smaller to dissipate in the end—until the vortexes are so small that
the viscosity forces overcome the inertia forces (correlated with kinetic energy).
When assessing the field of the kinetic energy of turbulence, one can locate the
area of the vortex occurrence and by referring to the value of the said energy to the
kinetic energy of fluid, one can estimate what part of the kinetic energy related to
laminar flow is transformed into turbulence energy.
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Fig. 4 Measurement of the thickness of the boundary layer

3 Results

Three possible areas occur in the artery, in which, due to the reduction of velocity
(i.e., also increase of viscosity) deposits in the form of atherosclerotic plaques may
occur. Figure 5 shows the field of turbulent Reynolds numberReturb, which defines the
ratio of turbulent viscosity (defined by Boussinesq function) to laminar viscosity [7].
The probability of vortexes and separations grows along with the turbulent Reynolds
number in a specific area. The graphical presentation precisely shows that the areas
of high Returb correspond to the locations of deposits. For the smallest angle, the
maximum value of Returb is equal to ca. 3.2. For the angle of 55° maximum value
of Returb significantly increases to 4.5 and the area of high values of Returb starts
to “move” into the walls. For the angle of 75° Returb has the highest value of 7.45.
As we can see in Fig. 5, Returb increases significantly near the walls—it means that
the separation of the boundary layer has begun and flow in this region is severely
disturbed.

Allowing for the kinetic energy of turbulence k in the cases presented in the
analysis, the areas of the highest value of this energy occur in the bulb, in the vicinity
of the walls (Fig. 6). For the smallest angle of 30°, the energy is 0.01537 J

kg , while

for the angle of 75°, it is 0.0237 J
kg , i.e., almost double growth of kinetic energy
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Returb(max)= 3.2 Returb(max)= 4.5 Returb(max)==7.45

Fig. 5 Distribution of turbulent Reynolds number for 30°, 55°, and 75° bifurcation angle

Fig. 6 Turbulence kinetic energy distribution k [J/kg] angle of 30°, 55°, and 75°

of turbulence is detected. In the case of bigger angles, a strong growth around the
external arterywall takes place, because the vortex is formed at this point.Distribution
of kinetic energy of turbulence is more concentrated near the walls for the highest
angle. It is connected with the phenomena of vortex formation—for the high angles,
as it will be shown later, vortex are faster, the centrifugal force which is responsible
for “suction” of particles is actually bigger, so vortex energy has bigger value and is
more focused.

The greatest thickness of the boundary layer occurs in the area, in which the
straight-line artery starts to diverge. The increase of the cross-section, which the
fluid flows through, causes a drop of pressure, which enhances the separation of the
boundary layer. Along with the angle growth, the thickness of the boundary wall
grows. Figure 6 presents the field of velocity for the bifurcation angle of 15°, 50°,
and 90°. It was observed that the angle growth causes the growth of the separation
area, which is the place of the deposit formation, especially on the side of the internal
artery (Fig. 7).

From the angle of 60° in the area of the increase of the cross-section, low-velocity
vortexes appear, which is shown by the curve of the current line (Fig. 8). It was
observed that the vortexes did not occur (or are very small and their velocity is
equal to 0) at the angle of 55° and, upon changing of the bifurcation angle by 10°,
a rapid growth of the kinetic energy of turbulence (from 0.0105 to 0.016 J/kg),
turbulent Reynolds number (from 4.33 to 7.16), and the boundary layer thickness
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Fig. 7 Velocity distribution for the angles of 30°, 55°, and 75°

Fig. 8 Pathlines of flow for angle of 30°, 55°, and 75°

(from 2.5 mm do 3.7 mm) were observed. Such flow retreat, even in the low-velocity
area, is very dangerous, because it enhances the deposition of atherosclerotic plaques
and other solid particles near the walls. The larger the angle, the larger the area of the
formedvortex (Fig. 8), and, as a consequence, theflowstructure becomes increasingly
distorted. In addition, with reduced velocity, the viscosity of blood as a fluid thinned
with shearing is very high, which impedes the laminar flow through the arteries.
These two factors—the boundary layer and the increased viscosity have the greatest
impact on the nature of the flow.

Figure 9 presents the velocity profiles at the outlet from the ICA and ECA and
the profile of velocity distribution in the ICA with the angles of 15° and 90°. The
nonsymmetrical nature right at the outlet from the bulb results from the earlier flow
deceleration at the stagnation point. At the angle of 90°, a separation of the boundary
wall occurs along with a clear impact of the stagnation point on the maximum value
of velocity in the diffuser part of the artery.
3D Results
To support results obtained for 2D geometries, the calculations for three 3D geome-
tries were made. Comparing the 2D results with outcomes for 3D geometry, it can
be observed the same physical regularities. In Fig. 10 distribution of kinetic energy
of turbulence was shown for angles of 25°, 50° and 75° (in the axial plane). In this
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Fig. 9 Velocity profiles
a angle of 15° b angle of 90°

k(max) = 0.0187 J/kg k(max) = 0.0196 J/kg k(max)=0.0232 J/kg

Fig. 10 Turbulence kinetic energy distribution k [J/kg] in the axial plane of 3D artery for angles
of 25°, 50°, and 75°

case, it can also be noted the process of increasing concentration of this energy near
the walls. This energy is more focused for the widest angles, because of the vortex
formation in this part of the artery.

Similarly to 2D geometry, if we consider velocity distribution (Fig. 11) in the
artery, for the angle of 75° a development of boundary layer is very prominent—
in this part of the bulb, the vortexes start to occur. The interesting part is that the
boundary layer in the bulb with a widening angle of 25° and 50° are comparable: the
biggest difference is the velocity profile ECA.

In considered cases, very important issue in the carotid arteries is the tendency to
vortex formation near the wall. In Fig. 12 this situation was shown (bifurcation angle
of 75°). 2D results show with good accuracy the location of vortex formation in the
bulb. But if we compare this with 3D results for geometry with the same angle, it
can be seen that the character of the vortex is very different from this, what it was
obtained from 2D results. The vortex is small and multiplies toward the external part
of the wall of the branched artery. Although the vortex occurring in results for 2D
geometry is not the way it looks like in practice, these results show also correctly
place of vortex formation what is sufficient for the purpose of this research.
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v(max) = 1.36 m/s v(max) = 1.33 m/s v(max)=1.39 m/s

Fig. 11 Velocity field in for the angles of 25°, 50° and 75°

Fig. 12 Comparison of 2D and 3D results in the context of vortex formation

4 Conclusions

The angle between the external carotid artery and the internal artery has the greatest
impact on the following factors and phenomena: the thickness of the boundary layer,
place of inflows of the concentration point and formation of vortexes (separation
and flow retreat). The larger the areas of plaque deposition are, the wider the angle
between the arteries. The following phenomena occur in the said zones:

• the velocity (kinetic energy) decreases;
• the turbulent Reynolds number and the kinetic energy of turbulence reach the
maximum (at the cost of the decrease of the kinetic energy related to laminar
flow);

• separation of the laminar layer and flow whirlpool occur—for angles wider than
60°;

• the viscosity grows (caused by decreased velocity);
• the impact of the concentration point on the velocity profiles at the outlets (thick-
nesses of the boundary layers) grows, because it causes acceleration of the fluid in
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Fig. 14 Kinetic energy of turbulence as a function of the bifurcation angle

the areas behind the stagnation point. This area is additionally beneficial in terms
of plaque deposition.

Based on the above prerequisites, the simulation results were divided into three
principal groups. Figures 13, 14 and 15 present a series of diagrams reflecting the
following relations: boundary layer thicknesses, kinetic energy of turbulence and
turbulent Reynolds number, depending on the carotid artery bifurcation angle. A fast-
growing trend of the above parameters for angles above 50° is particularly distinct.

GROUP I: angles below 50° → carotid arteries of geometries that cause no flow
disorders, the change of value in the angle function is relatively constant.
GROUP II: angles in the range 50°–60° → carotid arteries, inwhich the parameters
related to the flow turbulence grow, but occurring vortexes are very weak.
GROUP III: angles above 60° → carotid arteries of geometries enhancing the
deposition of plaques with a tendency to separation and formation of vortexes.

Numerical results obtained in the 3D and 2D calculations were different. But the
main tendency observed in the studies was preserved. Location of vortex formation
and flow parameters values was very similar. The character of vortex formation was
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Fig. 15 Turbulent Reynolds number as a function of the bifurcation angle

different: in 3D geometry, vortices multiplied along the wall of a branched artery.
Although the main purpose of the research has been achieved. It was possible to
determine the location and the critical angle fromwhich significant flow disturbances
occur.

The results obtained in the studies confirm why patients with larger bifurcation
angle are more susceptible to the occurrence of plaques in the arteries. The investi-
gations disregarded a number of variables, such as incorrect blood work, patient’s
lifestyle, the thickness of the walls or the pulsating nature of the flow. These vari-
ables were disregarded because the authors focused on achieving an independent
impact of bifurcation angle on the flow. Therefore, other parameters of the possible
impact on the flow were omitted or simplified. The presented study results converge
with the cases observed in practice—the largest group of patients with diagnosed
deposits in the artery have the artery of the angle in excess of 50o. The points where
deposits are formed very often occur near the bulb on the side of the internal artery,
which is also confirmed by the performed studies. Based on the above prerequisites,
a mechanically related confirmation was obtained as to why people of large carotid
artery bifurcation angle are more exposed to stenosis.

The performed studies are a starting point for the development of a carotid artery
geometry database planned in the future. The database will include the geometry
groups that increase the probability of deposits. A person exposed to stenosis will
have an opportunity to take proactive measures. Thanks to the combination of engi-
neering practice related to flow modeling and medical practice related to cardiovas-
cular surgery, biochemistry and biomechanics, numerous issues, yet to be solved,
can be explained. The results may significantly contribute to the development of
prophylactics and the improvement of the treatment of cardiovascular disease.
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Evaluating the Effect of Tissue
Anisotropy on Brain Tumor Growth
Using a Mechanically Coupled
Reaction–Diffusion Model

Daniel Abler, Russell C. Rockne and Philippe Büchler

Abstract Glioblastoma (GBM) is the most frequent malignant brain tumor in adults
and presents with different growth phenotypes. We use a mechanically coupled
reaction–diffusion model to study the influence of structural brain tissue anisotropy
on tumor growth. Tumors were seeded at multiple locations in a human MR-DTI
brain atlas and their spatiotemporal evolution was simulated using the Finite Ele-
ment Method. We evaluated the impact of tissue anisotropy on the model’s ability to
reproduce the aspherical shapes of real pathologies by comparing predicted lesions
to publicly available GBM imaging data. The impact of tissue anisotropy on tumor
shape was strongly location dependent and highest for tumors in brain regions with a
single dominating white matter fiber direction, such as the corpus callosum. Despite
strongly anisotropic growth assumptions, all simulated tumors remainedmore spher-
ical than real lesions at the corresponding anatomic location and similar volume.
These findings confirm previous simulation studies, suggesting that cell migration
along WM fiber tracks is not a major determinant of tumor shape in the setting of
reaction–diffusion-based tumor growth models and for most locations across the
brain.
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1 Introduction

Gliomas are the most frequent primary brain tumors in adults (70%) [15]. Glioblas-
toma Multiforme (GBM) is the most malignant subtype of glioma, accounting for
about 50% of diffuse gliomas. GBM infiltrates surrounding healthy tissue, grows
rapidly, and forms a necrotic core of high cell density which is frequently accompa-
nied by compression and displacement of the surrounding tissue. Despite aggressive
treatment, long-term prognosis remains poor with median overall survival below 1.5
years [15].

Invasive growth andmass-effect are themacroscopic hallmarks ofGBM.Variabil-
ity can be observed with regard to these characteristics, ranging from predominantly
invasive tumors without notable mass-effect to strongly displacing ones that induce
higher mechanical stresses and result in healthy tissue deformation, midline shift,
or herniation. These solid stresses play an important role for tumor evolution [9],
which suggests that biomechanical factors have direct implications not only on the
biophysical level, but may affect treatment response and outcome.

We have previously developed a mechanically coupled reaction–diffusion model
of brain tumor growth that accounts for tumor mass-effect [1]. This framework sim-
ulates tumor evolution over time and across different brain regions using literature-
based parameter estimates for tumor cell proliferation, as well as isotropic motil-
ity, and mechanical tissue properties. The model yielded realistic estimates of the
mechanical impact of a growing tumor on intracranial pressure, however, comparison
to imaging data showed that asymmetric shapes could not be reproduced.

To investigate the role of tissue anisotropy on simulated tumor shape, we extended
our simulation framework to take into account tissue structure. White matter con-
sists predominantly of aligned axonal fibers, whose orientation can be inferred from
Magnetic Resonance (MR) Diffusion Tensor Imaging (DTI), which measures water
diffusion along different directions in space. As diffusion is constrained transverse to
fiber direction, MR-DTI provides structural information of brain tissue. Information
from MR-DTI has previously been used to inform tumor cell migration behavior in
mathematical models of brain tumor growth, see [17, table 1] for an overview of
related work.

The few studies that have investigated the effect of tissue anisotropy on larger
patient cohorts found it to have a beneficial, but relatively small effect on theirmodels’
ability to reproduce real tumor shapes. Employing the anisotropic glioma spread
model of [14], [17] investigated the effect of tissue anisotropy without mass-effect.
Their study on 10 cases showed an improved ability to approximate tumor shapes
(average increase in Jaccard score by 0.03 ± 0.03, about 5% relative to the isotropic
case)when including patient-specificDTI information and personalized estimates for
a patient-specific anisotropy parameter that describes the sensitivity of cancer cells
to the underlying brain structure. Only a few studies [3, 5, 6] took into account the
tumor’s mass effect when investigating the effect of tissue anisotropy. Simulation
results of 9 low-grade glioma cases were reported by [6], using patient-specific
DTI information, non-personalized growth parameters and an isotropic viscoelastic
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material model for brain tissue. Using DTI information in their study improved
the Jaccard Score (Dice Index) between simulated and actual tumor by ≤2.40%
(≤1.50%).

In the present study, we investigate the combined effect of anisotropic growth and
mechanical tissue characteristics on tumor shape in amechanically coupled reaction–
diffusion model of invasive glioma growth by comparing simulation results obtained
from isotropic and anisotropic material assumptions.

2 Materials and Methods

Figure1 illustrates the study setup: Virtual tumors were seeded in an atlas of healthy
brain anatomy at representative locations extracted from 10 subjects of the BRATS
20131 [11, 12] training dataset. Figure2 shows the spatial distribution of the selected
lesions in a human brain atlas. Tumor growth evolution was simulated for isotropic
and anisotropic tissue properties and two sets of growth parameter choices, corre-
sponding to diffuse and nodular growth characteristics, respectively. Virtually grown
and real tumors were compared when the simulated tumor had reached the tumor
volume of the corresponding subject from the BRATS dataset.

2.1 Mathematical Model

The mathematical model used in this study captures three interrelated aspects of
macroscopic glioma growth [1]: Cell proliferation, invasion of tumor cells into the
surrounding healthy tissue, and tissue deformation due to the tumor-induced mass-
effect.

We model the invasive growth of glioma phenomenologically as a Reaction–
Diffusion (RD) process [19], representing cell migration by passive diffusion:

∂q

∂t
= ∇ ·

(
D̂ ∇q

)
+ ρ q (1 − q) , (1)

with normalized cancer cell concentration q(r, t) and diffusion tensor D̂ = D̂(r).
Tumor growth is modeled as a logistic growth process with proliferation rate ρ.

Similarly to [3, 5], the tissue-displacing mass-effect of the growing tumor is
represented phenomenologically using a linear-elastic solid mechanics approach.
It relies on the assumption that the creation of new tumor cells leads to volumetric

1https://www.smir.ch/BRATS/Start2013.

https://www.smir.ch/BRATS/Start2013
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Fig. 1 Tumor growth evolution was simulated in a healthy brain atlas for two sets of growth
parameters (D, ρ), and isotropic and anisotropic tissue properties. Simulated tumors were compared
to subjects from the BRATS data set at approximately identical volume

Fig. 2 Tumor center-of-mass positions of 10 selected BRATS cases projected onto central planes
of SRI24 atlas

increase of the tumor and thus results in an expansion of the affected brain tissue. The
volumetric increase is modeled by introducing a growth-induced strain component
ε̂growth(q), so that

ε̂total(u, q) = ε̂elastic(u) + ε̂growth(q) . (2)

where displacements u are obtained from solving the linear-momentum equilibrium
equation with stress σ̂ (u) and strain ε̂total(u) linked by a linear constitutive relation-
ship.

Additionally, we assume a linear coupling between tumor cell concentration and
growth-induced strain

ε̂growth(q) = λ̂ q = λ1 q , (3)

with isotropic coupling strength λ.
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Fig. 3 Projections through seeded SRI24 atlas. An exemplary seed location is shown in the tetra-
hedral mesh used for simulation

2.2 Simulation Domain

We used the SRI242 [16] atlas of normal human brain anatomy to define the simu-
lation geometry with tissue classes. Release 2.0 of the atlas provides separate tissue
labels for White Matter (WM), Grey Matter (GM), and Cerebrospinal Fluid (CSF).
We divided the CSF domain into two compartments to distinguish fluid-filled brain
ventricles from the remaining CSF, surrounding the brain tissue. Additionally, the
map of dominant Diffusion Tensor Imaging (DTI) eigenvectors was obtained from an
earlier release (v0.0) of the atlas. This informationwas interpreted as local orientation
of axon fibers and was used to inform diffusion and mechanical tissue parameters
in the anisotropic simulation scenario. Finally, all relevant components of the atlas
were registered to fit the spatial orientation of the BRATS datasets.

The tumor center-of-mass position was computed for each of the 10 selected
subjects, based on the tumor volume visible on T1-weighted contrast-enhanced (T1c)
MR imaging. For each subject, a spherical tumor seed (2 mm radius) was introduced
in the atlas label map at the corresponding center-of-mass position, and a tetrahedral
mesh was generated (approximately 320 000 elements) using CGAL3 and VTK4

libraries. DTI information from the SRI24 atlas was then interpolated over the seeded
mesh. Figure3 shows coronal, sagittal, and axial views through an exemplary seeded
and meshed simulation domain.

2https://www.nitrc.org/projects/sri24/.
3https://www.cgal.org.
4https://www.vtk.org.

https://www.nitrc.org/projects/sri24/
https://www.cgal.org
https://www.vtk.org
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2.3 Simulation Assumptions

To compare the effect of tissue anisotropy on the evolution of tumor characteris-
tics, two different simulation scenarios were considered, assuming isotropic and
anisotropic material properties, respectively.

In both cases, the brain tissues WM and GM were modeled as linear-elastic
materials. The CSF of the brain ventricles was modeled as compressible to account
for physiological mechanisms that compensate elevated intracranial pressure [21],
whereas the remaining CSF was modeled as nearly incompressible. Simulations
were run with two distinct sets of growth parameters corresponding to nodular and
diffuse growth characteristics with ρ/D ≥ 1.35mm−2 and ρ/D ≤ 0.37mm−2 [2],
respectively. Amaximum tumor-induced strain of 15% [13] was assumed, λ = 0.15,
and an initial condition of q = 1 over the entire volume of the tumor seed was
imposed. Deformation of the brain surface and escape of tumor cells from the brain
were constrained by zero-displacement and zero-flux boundary conditions at surface
nodes. The mathematical model was solved using the Finite Element Method. It
was implemented in Abaqus (Simulia, Dassault Systémes) as fully coupled thermal
stress analysis using 4-node linear elements (C3D4T) with the tumor mass-effect
being represented by volumetric thermal expansion.

Isotropic Scenario

In the isotropic simulation scenario, diffusion and mechanical tissue behavior were
assumed isotropic using the parameter values summarized in Tables1 and 2 for the
considered tissue types. The linear material model was fully characterized by two

Table 1 Reaction–diffusion parameter sets (D,ρ), representing nodular and diffuse growth. Tissue-
specific motility estimates (DWM, DGM) are based on the assumption that Davg was measured in a
tissue volume containing equal portions of GM and WM, and DWM = 5DGM [19]

Growth type ρ Davg Davg/ρ ρ/Davg DGM DWM

[1/d] [mm2/d] [mm2] [mm−2] [mm2/d] [mm2/d]

Nodular 0.082 0.053 0.650 1.540 0.020 0.101

Diffuse 0.037 0.105 2.855 0.350 0.040 0.200

Table 2 Mechanical tissue properties (isotropic case), informed by [21]

Tissue E v

[kPa]

W/G Matter 3.0 0.45

Tumor 6.0 0.45

CSF (Ventricles) 1.0 0.30

CSF (other) 1.0 0.49
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parameters, Poisson ratio ν and Young’s modulus E . Values for Young’s modulus of
brain tissue and tumor were adopted from [21].

Anisotropic Scenario

In the anisotropic simulation scenario, whitematter fiber directionalitywas taken into
account and the tissue was modeled as transversely isotropic material with different
material properties along (‖) and orthogonal to (⊥) the fibers.

Tumor cell motility along fiber direction (WM) was assumed identical to the
isotropic case D‖

W = Diso
W , whereas a significantly lower motility was chosen for the

transverse direction D⊥
W = 0.01Diso

W . Due to reduced fiber alignment, cell motility in
grey matter was modeled as isotropic [3, 5] with the value indicated in Table1. We
chose a very high ratio D‖

W/D⊥
W = 100 to investigate the effect of growth anisotropy.

For comparison, [6] assumed a ratio of 5; [10] varied this ratio between 5 and 100
and found the best “de visu” fit for a ratio of 10.

Linear-elastic mechanical tissue properties of the transversely isotropic situation
can be expressed in terms of seven engineering constants: Two Young’s moduli that
describe the stresses resulting from uniaxial stretch parallel E‖ and perpendicular
E⊥ to the fiber axis. Two shear moduli that describe shear stresses in planes parallel
to (μ‖) and normal to (μ⊥) the fiber axis. Three Poisson ratios ν‖⊥, ν⊥‖, ν⊥⊥ that
describe the strain in one direction (‖ or⊥) that arises from stretch in another orthog-
onal direction (‖ or⊥). Only five of these seven parameters are typically independent
since additionally:

ν‖⊥

E‖ = ν⊥‖

E⊥ (4a)

μ⊥ = E⊥

2(1 + ν⊥⊥)
. (4b)

To estimate parameters of that model, we assume a fiber reinforcement effect
in white matter that increases resistance against stretch along the fiber direction,
E‖
W = 3 · E⊥

W , from observations on lamb corpus callosum E‖/E⊥ ≈ 6.5 [7] and
porcine corona radiata E‖/E⊥ ≈ 2.7 [7, 20]. Based on the material parameters used
for the isotropic cases, we defined the Young’s moduli of white matter so that E‖

WM >

E iso
GM > E⊥

WM. We assume ν‖⊥ = ν iso, so that ν⊥‖ follows from Eq. (4a) and ν⊥⊥ =
1 − ν⊥‖. This allows us to compute μ⊥ from Eq. (4b). We then compute μ‖ =
1.4μ⊥ [7]. Resultingmechanical model parameters for white matter are summarized
in Table3.

2.4 Analysis

Two different tumor detection thresholds were used to evaluate simulation results:
cT1c = 0.80 and cT2 = 0.16 corresponding to tumor features visible on T1-weighted
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contrast enhanced (T1c) and T2-weighted (T2)MRI imaging [18], respectively. Sim-
ulations were run until the simulated tumor had reached the T1c volume of the corre-
sponding BRATS subject. Tumors corresponding to T1c and T2 visibility threshold
were extracted at multiples of 5mm increments in equivalent radius computed from
the simulated T1c volume. For each tumor volume, the following measures were
computed: (a) Tumor aspect ratio, as the ratio between the shortest and longest
axis of the smallest bounding box around the tumor. A value of 1 corresponds to a
spherical tumor shape; values closer to 0 indicate aspherical (elongated, oblate, or
asymmetric) shapes. (b) Tumor nodularity, as the ratio of T1c and T2 tumor volumes.
A value close to 1 corresponds to a very well delineated, nodal tumor, whereas values
closer to 0 indicate diffuse growth.

The same measures were computed from BRATS segmentations by identifying
theT1c tumor volumewith labels {necrotic, non-enhancing tumor, enhancing tumor}
and the T2 volume with labels {necrotic, non-enhancing tumor, enhancing tumor,
edema}. Measures derived from simulated tumors and real pathologies were com-
pared at similar volumes VT1c, sim ≈ VT1, BRATS.

3 Results

Tumor growth evolution and tissue deformation were simulated for all 10 selected
BRATS subjects, growth parameterizations (nodular, diffuse) and tissue structure
scenarios (isotropic, anisotropic).

The anisotropic growth scenario showed an average 4.3 ± 6.2 % reduction of
tumor aspect ratio compared to isotropic growth assumptions. The impact on tumor
shape was similar for diffuse (3.9 ± 7.6%) and nodular (4.7 ± 4.6%) growth param-
eterizations. However, both isotropic and anisotropic growth assumptions resulted
in simulated tumor shapes that were more spherical than the corresponding BRATS
lesions, Fig. 4.

The effect of tissue anisotropy on simulated tumor shape was strongly dependent
on seed location: Tumors grown from seeds located deep in WM (ID-07, ID-27) and
adjacent to the lateral ventricle (ID-08) exhibited a strong effect of tissue anisotropy.

Table 3 Mechanical tissue properties (anisotropic simulation scenario), assuming transverse sym-
metry with directions along (‖) and orthogonal to (⊥) fiber direction. Material properties for GM
and CSF were those from Table2

Tissue E‖ E⊥ μ‖ μ⊥ ν‖⊥ ν⊥‖ ν⊥⊥

[kPa] [kPa] [kPa] [kPa]

White
matter

4.5 1.5 0.56 0.40 0.45 0.15 0.85

Tumor (if
in WM)

9.0 3.0 1.12 0.8 0.45 0.15 0.85
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Fig. 4 Aspect ratio of BRATS T1c lesions and simulated tumors for diffuse/nodular growth param-
eterization and isotropic/anisotropic tissue properties. A value of 1 indicates a spherical shape,
whereas lower values correspond to oblate or elongated shapes

Fig. 5 Relative change in tumor aspect ratio between isotropic and anisotropic configurations. A
negative value corresponds to a decrease in aspect ratio due to anisotropic material properties

Seeds located closer to WM/GM interfaces (ID-11, ID-12, ID-22, ID-24) showed
mixed effects, while those located in GM (ID-01, ID-25, ID-26) experienced only
small effects, Fig. 5. These observations are consistent with our parameterization
which considers GM to be isotropic. The effect of tissue anisotropy on shape was
particularly pronounced for ID-07 located medially in the corpus callosum, a region
of highly aligned axons.

Tumor nodularity extracted from BRATS images (DATA in Fig. 6) differed across
the selected cases. For each simulated BRATS case, the computed nodularity mea-
sure was consistent with growth parameterization: lower for diffuse and higher for
nodal growth. In most cases, the anisotropic growth scenario resulted in more nodu-
lar tumors compared to isotropic growth assumptions, due to reduced overall dif-
fusivity. Despite identical growth parameterization (nodular, diffuse), the computed
nodularity of simulated tumors differed across BRATS subjects. This effect can be
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Fig. 6 Tumor nodularity ofBRATS lesions and simulated tumors for diffuse/nodular growth param-
eterization and isotropic/anisotropic tissue properties. A value close to 1 corresponds to a nodular
tumor, whereas smaller values indicate diffuse growth

attributed to differences in the growth environment (WM,GM, boundary, constrained
by CSF/ventricle) resulting in distinct average growth parameters for each lesion.

4 Discussion

This study explored the effect of tissue anisotropy on glioma growth simulations in
a 3D human brain atlas. In agreement with model parameterization, we found tissue
anisotropy to result in reduced tumor shape symmetry for tumors located in WM
and for some lesions at the WM/GM interface. However, despite choosing strongly
anisotropic diffusion parameters, D‖

W/D⊥
W = 100, all simulated tumors remained

more spherical than real lesions at the corresponding anatomical location and of
similar volume.

Our findings confirm findings of previous simulation studies [6, 17] suggesting
that anisotropic cell migration along WM fiber tracks is not a major determinant
of tumor shape in the setting of reaction–diffusion-based tumor growth models and
for most locations across the brain. Exceptions might apply for tumors located in
brain regions where a single dominant fiber direction prevails throughout a larger
contiguous volume segment. For example, in this study, we observed the highest
relative change in aspect ratio due to tissue anisotropy, 14–20%, for a medially
located GBM in the corpus callosum (ID-07).

Large variability in tumor nodularity for identical growth parameterizations (dif-
fuse/nodular) across different brain locations, Fig. 6, indicates that 3D tumor growth
is strongly affected by the tissue composition of a tumor’s growth domain.Wehypoth-
esize that the interplay between tissue composition, spatial constraints, and resulting
mechanical forces may exceed the effect of tissue anisotropy on tumor growth, pos-
sibly giving rise to location-specific growth archetypes of GBM.
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While our model computed tumor mass-effect and resulting in healthy tissue
deformation, neither this nor similar previous modeling studies for human GBM [6,
17] captured the growth-inhibiting effect of solid stress [8].

The present study has further limitations: (a) Only the tumor seed position was
personalized for each growth model, not the brain anatomy or growth parameters. A
mismatch between patient and atlas anatomy and/or asymmetric growth may have
resulted in the simulated tumor growth process being initialized in a different brain
tissue, which can significantly affect the tumor’s simulated evolution. This may
explain shape discrepancies for some of the BRATS cases, such as ID-25 (ID-26)
which has a very high (low) aspect ratio in the BRATS dataset, but ranges among the
simulated tumor shapes with lowest (highest) aspect ratio. (b) DTI information was
derived from an atlas of the healthy human brain so that possible changes in local
tissue structure due to tumor growth could not be taken into account. We considered
brain tissues to be either isotropic (GM) or anisotropic (WM), not distinguishing
varying degrees of anisotropy within each tissue class. Also, possible differences
in patient-specific sensitivity of cancer cells to the underlying brain structure were
not taken into account. (c) This study relied on a linear-elastic material model with
estimates for mechanical tissue anisotropy derived from animal brain tissue charac-
terization. Recent evidence [4] suggests that an Ogden material model captures the
mechanical response of human brain tissue more accurately.

5 Conclusion

This study investigated the joint impact of tumor mass effect and tissue anisotropy
on simulated tumor shape. In agreement with previous simulation studies, we find
that anisotropic cell migration along WM fiber tracks is not a major determinant of
tumor shape, except for growth locations where a single dominant fiber direction
prevails throughout a larger contiguous volume segment. Further work is needed to
combine the individual contributions of structural anisotropy, tissue composition,
and mechanical growth constraints in a way to best reproduce GBM growth charac-
teristics.
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Prediction of Stress and Strain Patterns
from Load Rearrangement in Human
Osteoarthritic Femur Head: Finite
Element Study with the Integration
of Muscular Forces and Friction Contact

Fabiano Bini, Andrada Pica, Andrea Marinozzi and Franco Marinozzi

Abstract Osteoarthritis (OA) is a degenerative disease that alters the integrity of the
joint. Osteophytes represent abnormal osteocartilaginous outgrowths associatedwith
the evolution of OA. Finite element (FE) analysis was performed on an 3D model
of the proximal half of human femur to determine the relevance of osteophytes on
the stress and strain distributions within the femur head. We assume that the model
includes three linearly elastic, homogeneous and isotropic media representing the
articular cartilage, the cortical and trabecular bone. With the aim of a more accurate
representation of the physiological conditions, we consider in the FE model the
influence of themuscle forces that span the hip joint.We also assume a friction contact
between the cartilage layer and the cortical tissue. Simulations were carried out for
a healthy and three different stages of OA femur. Different load distributions are
considered for the four models due to the alterations of bone structure. The patterns
of stress and strainwithin the trabecular tissue suggest that osteophytesmanifestation
could justify the development of bone cysts (geodes) and the formation of highly
mineralized tissue (eburnation). The FE approach presented in this work could result
useful in predicting bone behaviour towards abnormal mechanical solicitations.

1 Introduction

Osteoarthritis (OA) is a disease that alters the integrity of the tissues that compose
the joint and causes a significant loss of mobility, mainly among the adult population.
It represents a significant and expensive issue in the public health. In fact, with the
increase of ageing population, OA is expected to become the fourth leading cause

F. Bini (B) · A. Pica · F. Marinozzi
Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, via
Eudossiana, 18, 00184 Rome, Italy
e-mail: fabiano.bini@uniroma1.it

A. Marinozzi
Orthopedy and Traumatology Area, Campus Bio-Medico University, via Alvaro del Portillo, 200,
00128 Rome, Italy

© Springer Nature Switzerland AG 2019
J. M. R. S. Tavares and P. R. Fernandes (eds.), New Developments on Computational Methods
and Imaging in Biomechanics and Biomedical Engineering, Lecture Notes in Computational
Vision and Biomechanics 33, https://doi.org/10.1007/978-3-030-23073-9_4

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23073-9_4&domain=pdf
mailto:fabiano.bini@uniroma1.it
https://doi.org/10.1007/978-3-030-23073-9_4


50 F. Bini et al.

of disability by 2020 [1]. Therefore, it emerges the crucial importance to better
understand the disease progression and to predict the structural consequences of the
joint degradation.

Generally, OA is characterized by progressive cartilage degeneration, alteration
of subchondral bone structure, osteophytes formation and synovial fibrosis [2].
Although it is often described as an articular cartilage disease, new evidence high-
lights that changes of the structural and material properties of bone are not secondary
manifestations of OA, but active contributors to the disease progression. Altered load
distributions can accelerate the evolution of OA [3] and lead to the aberrant remod-
elling processes of the joint functional units.

The importance of bone alterations in OA progression is still not properly under-
stood. During the OA development, detectable alterations in the composition and
structure of bone tissue appear prior to the cartilage degeneration [4]. Therefore, it
is worth investigating the bone variations in order to achieve an early identification
of the disease. The OA alterations in bone include increases of subchondral cortical
bone thickness, decreases in subchondral trabecular bone mass, formation of osteo-
phytes and cysts [4]. Osteophytes are osteocartilaginous outgrowths that promote
the creation of contact points between the bony extremes of osteoarthritic joints
and participate in the development of mechanical forces alterations within the dis-
eased articulations [5–7]. Osteophytes are developed by a process of endochondral
ossification, already observed in the primary osteogenesis [4]. This mechanism of
bone formation is characterized by a rapid and unorganized mineralization of the
cartilaginous matrix [8].

Osteophytes develop at sites of tendon insertion or they arise from the periosteum
covering the bone [9]. Radiographic histological study [5] has identified different
distributions of osteophytes, i.e. in the peripheral zone of the femoral head (marginal
osteophytes), on the medial surface of the femoral head (epiarticular osteophytes)
and across the basal layers of the articular cartilage (subarticular osteophytes). In
this study, depending on the OA severity, we analysed the scenarios of marginal,
epiarticular and subarticular osteophytes developed on the human femur head.

Previous studies [10, 11] based on an 2D finite element model of the femur head,
provided insights into the alterations of the strain and stress distribution subsequent
to the development of osteophytes. In the current study, we aim to simulate more
accurate loading conditions for the proximal femur by taking into account the influ-
ence of an ensemble of muscular forces that acts on the great trochanter. We develop
the present analysis assuming that the load associated with the stance phase of gait
is transferred in friction conditions between the cartilage layer and the femur head.
The stress and strain distributions achieved from a healthy femur were compared to
the outcomes of three pathological models characterized by different altered load
distributions on the femur head in order to mimic the presence of osteophytes. The
overall structural variations predicted in the trabecular region are in agreement with
clinical observations [5, 12, 13] and previous FEM studies [14–16].
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2 Methods

An3Dmodel of the proximal half of the femur headwas implemented fromComputer
Tomography images. The image slices of the femur head of a 72-year-old male
were provided by the National Library of Medicine in Maryland (USA). In the 3D
geometric model, the centre of the Cartesian coordinate system coincides with the
centre of the femur head. The femoral Z-axis is vertical, the Y-axis points in the
medial-lateral direction and the X-axis points in the posterior–anterior direction.
The Y- and Z-axes are in the coronal plane of the body, while the X-axis is in the
sagittal plane.

The 3D FEmodel is characterized as a multilayer solid, composed of an inner tra-
becular region, an external cortical zone and a cartilage shellwhich covers the femoral
head [17, 18]. In the present study, cartilage thickness is maintained constantly on the
whole surface of the femoral head. Since it was observed that osteophytes formation
can occur prior to the degeneration of the overlying cartilage [19], we also assume
that the cartilage thickness remains unaltered during OA evolution. For the accurate
estimation of the mechanical response of the femur head model, the geometry was
meshed with tetrahedral elements with an averaged minimum size of 0.1 mm. In
Table 1, we provide the FEM statistics of the FE simulations performed.

Tissue properties were modelled to be constant, linearly elastic, isotropic and
homogeneous. All material properties were chosen in accordance with related litera-
ture. The trabecular tissue is characterized by a Young’s modulus of 1 GPa [20–22], a
Poisson’s ratio of 0.3 [23] and an apparent tissue density of 1000 kg/m3 [24]. For the
cortical bone, a Young’s modulus of 22 GPa [25], a Poisson’s ratio of 0.3 [26] and a
tissue density equal to 2000 kg/m3 [27] is assigned. The articular cartilage is assumed
to have an average value of the Young’s modulus equal to 15 MPa [28], a Poisson’s
ratio of 0.1 [29] and a density of 1000 kg/m3 [3]. The above numerical considerations
remain unchanged for both healthy and pathological models. Appropriate boundary
conditions allow to highlight the evolution of the disease.

FEM simulations are performed for a healthy femur (HF) and for three different
levels of OA severity, i.e. early stage (ES), intermediate stage (IS) and advanced
stage (AS). The early stage condition is characterized by the presence of two groups
of marginal osteophytes (O1 and O2). In the IS model, a foveal group of osteophytes
(O3) is added to the existing peripheral groups. The AS case is represented by four

Table 1 Statistics of FE
simulations

Model Degrees of
freedom

Number of
mesh elements

Minimum
mesh element
(mm)

HF 3342539 615995 0.1

ES 2550538 471405 0.1

IS 2830439 534242 0.1

AS 3223518 604683 0.1
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Fig. 1 3D model of
proximal half of human
femur. The red arrow
indicates the resultant
muscular force due to the
presence of three muscles.
The arrow also illustrates the
attachment location

groups of osteophytes, namely two marginal osteophytes, an epiarticular (O3) and a
subarticular (O4) bony outgrowths.

In order to represent the evolution of the disease in the FEmodel, the variations of
geometrical parameters concerning the acetabular coverage of the femoral head and
different load distributions are taken into account. The load is transferred between
the acetabulum and the femur head by means of the contact surface defined by three
centre-edge angles: the centre-edge angle of Wiberg in the YZ plane, the anterior
(θA-CE) and posterior (θP-CE) centre-edge angles in the sagittal plane, i.e. XZ plane
[30] see Fig. 1 in [14]. The extension of the main contact area (MCA) in the YZ
plane is identified by the functional angle θF. In the healthy femur condition, the
centre-edge angle of Wiberg (θCE) in the YZ plane is assumed to be equal to 30°,
while the angle θF is set to 110°.

Generally, the pathological cases are characterized by values of θCE minor than
20° [31], thus we adopted a value of 10° in the OA models. In the coronal plane,
we assume that the presence of osteophytes acts in detriment of the extension of the
MCA. Thus, we make the hypothesis that in the ES model the functional angle θF is
equal to 50°, in the IS model θF is set to 40° while in the AS case θF is 35°.

Conversely, the surface occupied by each group of osteophytes increases with the
degeneration of the disease. We make the assumption that the osteophytes charac-
terizing an OA stage have the same extension, defined by the angle θOi. Namely, the
ES model is defined by the angle θOi equal to 15°, in the IS model θOi is set to 20°,
while in the AS model θOi is 25°. In the sagittal plane, the extension of the MCA
is maintained constant, both in healthy and pathological conditions. Furthermore,
we assume that the groups of osteophytes have the same extension as the MCA.
According to clinical observation [30], we set both θA-CE and θP-CE to 60°.

We considered that the musculoskeletal loading conditions at the hip are deter-
mined by the joint contact force and the forces of the muscles that span the hip joint.
In the single-legged stance phase of gait, the loading force (H) acting on the hip joint
is determined by the partial body mass (W), obtained as total body mass diminished
by the weight-bearing leg, and the abductor muscle force calculated to be two times
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W [32]. The magnitude of H is approximatively 2.4 timesW, in agreement with [33].
For a subject with a body mass estimated to 65 kg, the loading force H corresponds
to 1554 N.

The resultant force H acting between the acetabulum and the femur head was
directed normally to the contact surface of the femur head. In the healthy femur,
the total force H acts on the contact surface between the acetabulum and the femur
head, i.e. MCA. In pathological conditions, the force is distributed among various
contact regions, namely the reducedMCA and the different groups of osteophytes. In
accordance with [10, 11], in the ES, IS and AS models, the load acting on the MCA
is, respectively, 75, 50 and 25% of the loading force H. The remaining percentages
were equally distributed between the two, three and four groups of osteophytes which
characterize the OA level of severity.

Normal and pathological biomechanical conditions were simulated implementing
different loading patterns in order to obtain contact pressure distribution during the
stance phase of gait. We applied the load profile as a boundary condition on each
domain that composes the contact surface in the FE model of the femur head. In
the coronal plane, we divided the contact surface into circular sectors characterized
by a centre-edge angle of 5°. Globally, the contact pressure (p) integrated over the
articular contact surface (A) is equal to the force H transmitted to the hip joint, as
indicated by the following integral relationship [34]:

∫ p · d A = H (1)

The real hip joint is characterized as a ball and socket configuration. In order to
model the transmission of force across the hip joint, we consider different pressure
patterns in the healthy and OA conditions [35, 36]. In the healthy femur condition,
the pressure distribution within the hip joint in the YZ plane could be described by
a cosine distribution, as indicated by Eq. (2) [34, 37]:

p = pmax · cos γ (2)

where pmax is the maximum contact pressure and γ is the angle between a generic
point on the MCA and the Z-axis, See Fig. 1 in [14].

The maximum pressure is calculated as follows:

pmax = H
∑n

i=1 cos(γi )
· 1

A
(3)

where γi is the value of the angle γ at the distal extremity of each domain of the
MCA from the Z-axis, n is the number of the domains and A is the area of the
contact surface.

In pathological cases, concentrated loads are supposed to be experimented by the
femoral head surface because of the osteophytes appearance and the reduction of the
MCA. In reviewing the literature associated with contact interaction [36, 38, 39], the
pressure pattern due to the load transfer on the femur head via the thin elastic layer
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of the cartilage is modelized with a symmetric parabolic distribution. According to
Johnson [36], the pressure distribution can be described as a function of the distance
r from the centre of the contact area of radius a as expressed by Eq. (4) [36, 38],
where pmax is the maximum contact pressure:

p(r) = pmax ·
[

1 −
( r

a

)2
] 1

2

(4)

The maximum contact pressure is expressed as

pmax = k · H
A

(5)

where the coefficient k indicates the percentage of the total force H which acts on
the contact area A. The latter can be referred to as the reducedMCA or to the contact
surface of the osteophytes.

The pressure distributions acting on the reduced MCA, on the foveal, epiarticular
and subarticular osteophytes are described by the axisymmetrical parabolic profile
described previously. Themaximumpressure value occurs in the centre of the contact
area and null in the peripheral zone, at the maximum distance from the centre.

The marginal osteophytes are characterized as half-spheres impinging on the
acetabular labrum. In order to respect the acetabular coverage conditions, we consid-
ered a half parabolic distribution in theYZplane. Therefore, themaximumpressure is
obtained in correspondence of the acetabular rim in agreement with [40] that indicate
this region as one of the most solicited of the femur head.

In the sagittal plane, for both healthy and pathological models, we adopt a sym-
metric parabolic distribution of the pressure on the femur head. The maximum value
is achieved in the centre of the contact surface, which is assumed to be in correspon-
dence of the Z-axis [39], see Fig. 1 in [14].

The major muscles which act on the proximal human femur during the stance
phase of gait are included in the model, i.e. gluteus minimus, gluteus medius, gluteus
maximus and the tensor fascia latae proximal and distal parts [15]. As a simplifica-
tion, muscle forces were considered by grouping the muscles with similar functions.
Therefore, the gluteal muscles were combined into a single force vector. For each
force, an insertion point is defined at the great trochanter. In this study, the three
forces were assumed to be applied at the same point [41] (Fig. 1). Similarly as in
other studies [42, 43], the magnitude and direction of the muscle forces were taken
from literature, namely from the study of Heller et al. [41], based on the investiga-
tions of Duda et al. [15] and Brand et al. [44]. (Table 2) The magnitude of the forces
corresponding to the stance phase of gait was scaled to the bodyweight, following
the approach presented in [15]. We assume that the muscle forces remain unchanged
during the evolution of the disease.

A further refinement in the modelling approach consists in taking into account
the contribution of the friction contact between the cartilage and the cortical tissue.



Prediction of Stress and Strain Patterns from Load … 55

Table 2 The forces (in percentage of bodyweight) and the coordinates (in millimetres) of the
insertion point are given in the coordinate system of the femur

Muscle name Force magnitude (% BW) Acts at point

X Y Z

Gluteal muscles 4.3 −58 86.5 P1 (12.04, 67.83, −35.45)

Tensor fascia latae proximal part 11.6 −7.2 13.2

Tensor fascia latae distal part −0.7 0.5 −19

In the FE analysis, the frictional force is considered proportional to the normal force
acting on the femoral head with a static coefficient of friction, μ, as in Eq. 6:

Ft = μ · H (6)

In agreement with experimental studies [45], we adopted the static coefficient of
friction of the cartilage equal to 0.2.

The FE analysis is implemented assuming that in the initial position, the cartilage
is in contact with the cortical region. For each domain of the FE model that is
solicited by fractions of the load H, we considered an initial contact pressure equal
to the pressure magnitude determined by the boundary load applied.

To analyse the mechanical behaviour of bone tissue for each model, we evaluate
the normal and shear components of the stress vector, the maximum shear stress, the
principal stress, the normal strain, the shear strain and the principal strain.

We calculated the normal stress as follows (Eq. 7):

σn = n · T · n (7)

where n is the normal unit vector to the plane and T is the traction vector.
The shear stress is achieved as the difference between the traction vector and the

normal stress vector. Its modulus is obtained as in Eq. 8:

τ =
√

(Tx − σx )
2 + (

Ty − σy
)2 + (Tz − σz)

2 (8)

where Ti and σi are the components of the traction vector and normal stress vector,
respectively.

The maximum shear stress is assessed following the Eq. 9:

τmax = σmax − σmin

2
(9)

where σmin and σmax are maximum and minimum principal stresses, respectively.
The normal strain is calculated as in Eq. 10:

εn = εXX + εYY + εZ Z (10)
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where εii are the strain tensor components.
The shear strain is obtained from Eq. 11:

εn = εXY + εY X + εY Z + εZY + εXZ + εZ X (11)

where εii are the strain tensor components.

3 Results and Discussion

In the present study, we developed an FE model of the proximal human femur that
mimics the presence of osteophytes and the evolution of OA by altering the load
distributions on the femur head. We also considered the influence of the friction
phenomenon that occurs at the interface between the cartilage and the cortical tissue.
Moreover, with the aim of amore accurate simulation of the physiological conditions,
we included in the computational model the muscular forces acting on the great
trochanter. The effects of these features on the local mechanical responses of the
bone tissue were evaluated during the stance phase of gait (Fig. 2).

Fig. 2 Shear stress distribution in the coronal plane (YZplane) at the interface between the cartilage
and the cortical tissue of the four models, i.e. healthy case (HF), early stage (ES), intermediate stage
(IS) and advanced stage (AS) of the OA femur
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Fig. 3 Normal stress (a–d) and normal strain (e–h) distribution in the trabecular region of the HF
(a, e), ES (b, f), IS (c, g) and AS (d, h) models of the femoral head. In Fig. a–d, we represent
the parallel slice to the YZ plane (coronal plane) that is analysed in Fig. 5. The dark red arrows
indicate the load distribution that acts on the femoral head. The arrow length is proportional to the
load magnitude

Muscoloskeletal loading influences the stress and the strain within the human
femur as bone tissue adapts its microstructure in response to loading [25]. For all
healthy and pathological conditions, the outcomes analysed include components and
quantities derived from the stress and strain tensors, namely the normal (Fig. 3) and
tangential (Fig. 4) components of the stress and the strain, the pattern of principal
stress and strain (Fig. 5), the maximum shear stress and the shear strain (Fig. 6).
In Figs. 5 and 6, we investigate the quantities of interest in a parallel slice to the
anatomical coronal plane, i.e. YZ plane, localized in correspondence of the most
solicited region. Thus, we report the distributions of the first principal stress and
strain that characterize the coronal slice sited in correspondence to the coordinate
system origin, whilst the patterns of the maximum shear stress and the shear strain
are critical at a distance R = 9 mm on the positive X-axis direction with respect to
the coordinate system origin.

Overall, the outcomes are in close agreement with clinical studies [5] and previous
FEmodels [10, 11, 14, 15]. In all pathological scenarios, anomalies of themechanical
behaviour of bone tissue with respect to the HF condition were found in the areas
directly under the abnormal load and result from compressive solicitations.

As highlighted in literature [46], the major contribution of the friction condition
imposed at the cartilage-cortical bone interface can be assessed by the shear stress
(Fig. 2). Elevated values of stress are observed in correspondence of the MCA for
all models. With the evolution of the disease, a relocation of stress could be noted,
with an increment of the extension of intermediately solicited areas. Generally, the
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Fig. 4 Shear stress (a–d) and shear strain (e–h) distribution in the trabecular region of the HF (a,
e), ES (b, f), IS (c, g) and AS (d, h) models of the femoral head. In Fig. a–d, we represent the
parallel slice to the YZ plane (coronal plane) that is analysed in Fig. 6. The dark red arrows indicate
the load distribution that acts on the femoral head. The arrow length is proportional to the load
magnitude

Fig. 5 Principal stress (a–d) and principal strain (e–h) distribution in the YZ plane (coronal plane)
of the HF (a, e), ES (b, f), IS (c, g) and AS (d, h) models of the femoral head. In Fig. e–h, we
represent the vector map of the principal strain. The outcomes are illustrated for the three layers
composing the femur head model (cartilage, cortical and trabecular bone)



Prediction of Stress and Strain Patterns from Load … 59

Fig. 6 Maximum shear stress (a–d) and shear strain (e–h) distribution in the YZ plane (coronal
plane) of the HF (a, e), ES (b, f), IS (c, g) and AS (d, h) models of the femoral head. In Fig. e–h,
we represent the vector map of the shear strain. The outcomes are illustrated for the three layers
composing the femur head model (cartilage, cortical and trabecular bone)

results lie in the interval 0–10 MPa and are consistent with experimentally studies
which confirmed that large shear stresses could be observed at the interface between
cartilage and cortical tissue [46].

The distribution andmagnitude of stress and strain allow to analyse thoroughly the
alteration of the bone tissue. Figure 3 reports the normal stress (a–d) and strain (e–h)
that characterize the trabecular region of the femur head. For all loading scenarios
considered, in correspondence of the contact points, the tissue is load in compression,
while the central region of the femoral head results in tension. The normal stress
magnitude lies in the ranges reported in literature [46]. With the evolution of the
disease, we observed a decrease of the stress values interval since the load is applied
on a greater area composed of the reduced MCA and the areas attributed to the
osteophytes presence. Whilst in the HF condition a gradual transition from high to
low stress could be observed, in the pathological cases, an alternation of stressed and
unstressed regions emerges.

Analogous observations could be performed for the normal strain distribution
(Fig. 3 e–h), i.e. tensile strain in the unload areas of the femur head and compressive
strain in correspondence of the contact points for each FE model. As expected, with
the progression of OA a prominent change in the strain pattern could be noted since
the compressive strain area increases its extension.

In terms of trabecular shear stress and strains (Fig. 4), similar patterns with respect
to the normal distribution are achieved. The tangential components of the stress and
strains are characterized by higher values in comparison to the values obtained in
the normal direction. Nonetheless, a slight variation in the shear stress distribution
can be observed in the HF model while the OA cases are characterized by a gradual
increment of the extension of the stressed area with respect to the low stressed region.
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Previously related studies [46] found that shear stress and strain represent quantities
of interest that can highlight harmful conditions which contribute actively to the
development of OA.

In the coronal plane, we analysed the variations of the second principal stress
and strain with the progression of the disease (Fig. 5). For all models, the maximum
tensile stress is found at the interface between the cortical and trabecular regions,
while overstimulated zones in terms of compressive stress characterizes the MCA
and the pathological contact points considered to mimic the presence of osteophytes.
Previous models predicted the highest compressive stress to occur in bone in corre-
spondence of the subchondral region [14, 47]. During abnormal loading conditions,
the subchondral bone is the main absorber of the impact load. This ability is asso-
ciated with microcrack formation that could lead to the appearance of altered bone
structures, i.e. geodes or eburnations. In comparison with the HF condition, the ES
and IS cases show a similar stress pattern with the central trabecular region described
by a slight tensile stress. The altered load distribution considered for the AS model
leads to the development of a predominant compressive stress pattern in the trabecu-
lar zone. The alternated pattern of compressive and tensile stress experienced in the
subchondral region for all pathological conditions is comparable with the previous
2D studies [10, 11].

The analysis of the secondprincipal strain leads to similar observationswith regard
to the pattern features, i.e. a predominant tensile strain in the trabecular regions of
HF, ES and IS models, while a compressive strain characterizes the AS trabecular
region. Nonetheless, the abnormal load distribution applied to the pathological mod-
els implies the development of isolated regions of compressive strain for all models.
These zones are also identified by changes in the direction of the strain vector that
could imply the presence of anomalous bone structures. Furthermore, the principal
strain magnitude determined in this study is comparable to the strain values and
distribution achieved by Van Rietbergen et al. [25].

The maximum shear stress (Fig. 6a–d) achieves elevated values in the cortical
region, while in the trabecular bone, the highest stress is denoted in the femoral neck
region. In the trabecular zone, regions characterized by lower values of shear stress
increase their extension with the evolution of OA. According to the previous inves-
tigations [10], a high turnover of bone tissue is identified in stimulated zones, while
understressed regions represent a favourable site for geodes development [6,13]. Sub-
chondral sclerosis is commonly reported in OA patients and it is widely considered
a main feature of advanced OA [12, 13].

In the subchondral trabecular bone, OA is associated with an abnormal lowminer-
alization pattern [2]. The presence of osteophytes leads to a critical load distribution
which induces an altered remodelling response. This is well corroborated also by
the shear strain (Fig. 6e–h) in the subchondral region. Generally, with the evolution
of OA, large variations of the strain vectors direction and magnitude are observed
for this zone. Furthermore, the regions characterized by this mechanical behaviour
coincide with the zones where clinical observations highlight the development of
bone geodes [5].
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The previous investigations of Marinozzi et al. [10, 11] and Turmezei et al. [6]
support the assumption that osteophytes have a significative impact on the archi-
tecture of bone tissue. The abnormal load distribution due to the presence of bone
outgrowths leads to the development of regions with alternated low and high values
of strain that coincides with the geodes localization identified by Jeffery [5]. The
agreement with clinical observations [5, 12] regarding the pattern and the location of
bone sclerosis validates the load distribution adopted in the OA model of the femur
head.

While these results are promising, the model has some limitations. We consid-
ered the thickness of cartilage to be constant in the healthy and OA situations. This
assumption is supported by the recent investigation that highlights the existence of
bone alterations in the absence of cartilage damage [19]. However, predictions con-
sidering different cartilage thickness should be further compared and its importance
could be emphasized in such case. We also adopted the hypothesis that bone tissue
exhibits linear, elastic, homogeneous, isotropic behaviour. Although this approach
is not physiologic, it is frequently used in biomechanical FEM [25] as a first attempt
in investigating complex mechanically induced processes in the bone.

4 Conclusions

The 3D FE analysis leads to a model of the mechanical behaviour of the trabecular
bone that fits the actual biomechanics measurements which predict regions of high
contact pressures at the superior and superolateral femoral head [48]. The evolution
of the 3D model confirms the results achieved in the 2D analysis [10, 11] though the
present model allows to more accurately assess the strain and stress patterns within
the hip joint.

We suggest that the altered load distributions due to the osteophytes can influence
the appearance of subchondral bone anomalies. The nature of this mechanism is,
however, yet to be clarified and further research is required to confirm this assump-
tion. For instance, a future enhancement of the model should consider non-linear FE
simulations. Nevertheless, in the context of the specified limitations, the FE approach
presented in this work could provide new insights by identifying potentially harm-
ful defects that could promote progressive trabecular loss. A more sophisticated
simulation of muscle attachments, material properties and geometry of osteophytes
could enforce the OA knowledge and could provide support for predictive studies of
the properties of bone tissue [49] or bone substitutes, especially if combined with
biosensors based on ZnO nanomaterials [50, 51].
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Process of a New Stent Produced
by Ultrasonic-Microcasting: The Role
of the Balloon’s Constitutive Modeling
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Abstract The application of the Finite Element Method (FEM) allows to predict
the behavior of a stent during the deployment process and when in service, being
a powerful tool to use in its design and development. As the promoter of the stent
expansion, the balloon plays a very important role, offering a strong influence on
its performance, mainly during the deployment process. This element is usually
built in a rubber-like material such as polyurethane, being modeled as linear elastic
or hyperelastic with a Mooney–Rivlin description. This work aims, through FEM
analysis, the study of the influence of both adopted material formulation—linear
elastic or hyperelastic—as well as the respective material constants and properties
for the balloon modeling on the performance of a biocompatible magnesium stent
regarding a set of metrics. Furthermore, a comparison is established between those
results and the obtained ones in the scenario of application of pressure directly in
the inner surface of the stent, neglecting the balloon. The obtained results suggest
that material formulation has a direct influence on the stent deployment process.
Concerning to hyperelastic models, two different combinations of parameter values
were tested, showing a similar behavior regarding the considered metrics, while the
linear elasticmodel presents comparable values for the expansion pressure and recoil,
but different in terms of dogboning and foreshortening. The scenario of neglecting
the balloon suggests providing the highest values of dogboning, foreshortening, and
recoil, with an expansion pressure inferior to that of hyperelastic models.
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1 Introduction

Coronary heart diseases such as atherosclerosis are, nowadays, one of the major
causes of death in the world [1]. One of the possible treatments for this condition
is the deployment of a stent, a tiny wire mesh tube-like structure, which is radially
expanded through the inflation of a balloon placed within it, reopening the vessel
and acting as a scaffold [2, 3].

The Finite Element Method (FEM) is a powerful tool used in the study, design,
and development of these devices once it allows to predict their behavior in a more
expeditious waywith lower costs when compared to the experimental techniques [4].
Thus, to guarantee that the obtained results are trustworthy, it is crucial the correct
definition of the system, namely in terms of the material constitutive models applied
to the involved constituents, including the stent and the balloon.

As the promoter of the stent expansion, the balloon plays an important role, hav-
ing a strong influence on its performance, mainly during the deployment process.
The balloon element is made of rubber-like materials such as polyurethane [4–7] or
nylon [8] and its constitutive behavior is modeled through different formulations,
being the linear elastic and the hyperelastic with Mooney–Rivlin description the
most used. Such definition is suggested to have an impact on the results obtained by
the analysis by FEM and therefore, on their applicability to the reality. Wang et al.
[9], Gervaso et al. [10] and Pant et al. [11] have adopted the linear elastic model
for cylindrical-shaped balloons, being this formulation more common when a folded
balloon geometry is used as presented by Schiavone et al. [5, 12, 13] and De Beule
et al. [6]. Although the rubber-like materials are characterized by its incompressibil-
ity or near-incompressibility and highly nonlinear behavior at large strains, in the
region of small strains, which is characterized by a linear behavior, a Young’s modu-
lusmay be assigned [14]. Hyperelasticmodels withMooney–Rivlin descriptionwere
preferred for cylindrical balloons modeling by Chua et al. [15], Schiavone et al. [5],
Eshghi et al. [7] and Beigzadeha et al. [16] with different values for material param-
eters. The material constants are derived from experimental data of mechanical tests,
where different tests may lead to different values. Consequently, the mechanical tests
to perform to provide information for the material constants calculation must repre-
sent a stress state as close as possible to the one that the studied element expectedly
undergoes to describe the material behavior in a reliable way. The aforementioned
relation between geometry and material constitutive modeling and its impact on the
trustworthiness of the results obtained by Finite Element Analysis (FEA) highlights
these two factors as of major importance and therefore, as deserving a study focused
on it.

Hence, the present work aims the study of the influence of the adopted material
formulation—linear elastic or hyperelastic—and respective material constants and
properties for the balloon modeling on the performance of a biocompatible mag-
nesium alloy stent, using FEM method. Furthermore, a comparison is established
between those results and the obtained ones in the scenario of application of pres-
sure directly in the inner surface of the stent to mimic the presence of the balloon.
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2 Description of the Methodology

In the present work, the influence of balloon material constitutive modeling is
assessed using two different material formulations—linear elastic and hyperelastic
with Mooney–Rivlin description, being used two different sets of material parame-
ters, designated as Hyperelastic 1 (HE1) and Hyperelastic 2 (HE2).

A simpler simulation is performed neglecting the presence of the balloon. In this
case, the stent expansion is promoted by the application of a linear pressure directly
in the inner surface of the stent until the target diameter is reached, after what the
stent slightly recoils by the absence of applied load, what mimics the deflation of
the balloon. When considering the inflation of the balloon within the stent, a linear
pressure is applied on its inner surface, leading to its expansion and consequently, to
the radial deformation of the stent. An augmented Lagrange formulation is adopted
for the contact between the stent and the balloon, which is considered frictionless.
This method allows to produce less penetration and better accuracy than the pure
penalty method presenting, however, higher computational cost.

2.1 Geometry

The NG stent geometry [17] results of a combination of straight lines and arcs,
which are expected to contribute to both reduction of the expansion pressure and
foreshortening phenomenon. The linkage between the rings of the structure is made
using curved “bridge” elements, whose deformation during the expansion process
allows the compensation of the length reduction due to the radial expansion. The
nonexpanded inner diameter of the stent and its length is 5 and 24 mm, respectively,
and its thickness is equal to 0.1 mm.

This geometry presents periodicity in the circumferential and longitudinal direc-
tions in the cylindrical coordinate system as it is formed by the assembling ofmultiple
identical unit cells. Along with the geometrical periodicity, the isotropic behavior of
the material allows the use of only one-tenth (1/5 in the circumferential direction and
1/2 in the longitudinal direction) of the model, reducing the required computation
time thanks to a smaller number of Degrees of Freedom (DOFs) while the accuracy
of the results is guaranteed. For this purpose, symmetry conditions are applied to all
degrees of freedom of the stent belonging to planar faces α, β, and γ, as shown in
Fig. 1a.

A cylindrical balloon with open ends is used to promote the radial expansion of
the stent, presenting an inner diameter equal to 4.7 mm, thickness of 0.15 mm, and
a full length of 26 mm. Once again, due to the geometrical symmetry and isotropic
behavior of the material, only one-tenth of the balloon model is used, being applied
symmetry conditions on all its degrees of freedom that belong to the planar faces α,
β, and γ, as presented in Fig. 1a, being the ends fully constrained to represent the
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Fig. 1 Balloon and stent set a identification of the planes of symmetry; b assembly of balloon and
stent with identification of the contact area

bond to the catheter. The assembly of both elements (stent and balloon) is presented
in Fig. 1b.

2.2 Material Constitutive Modeling

The material selected for the stent is a magnesium alloy whose mechanical behavior,
due to the manufacturing process, is assumed to be isotropic and elastoplastic with
Young’s modulus E = 43 GPa and Poisson’s ratio v = 0.30, being the plastic behav-
ior modeled by the von Mises yield criterion. The nonlinear isotropic stress–strain
hardening curve is modeled by a Voce-type law defined by Eq. (1).

σ = σ0 + (σsat − σ0)(1− exp(−Cy × ε̄ p)) (1)

where σ0 is the initial yield stress, equal to 174.8 MPa, σsat is the saturation flow
stress, equal to 315.6 MPa, Cy is the unitless hardening rate, equal to 16.3 and ε̄ p is
the equivalent plastic strain, work conjugate of the von Mises equivalent stress.

The constitutive modeling of balloon hyperelastic material, characterized by low
elastic modulus and high bulk modulus, is derived from the strain energy function
(W ), which represents the energy stored in the material per unit of reference volume,
based on three strain invariants of the Cauchy–Green deformation tensor ( Ī1, Ī2 and
Ī3). Once hyperelastic materials are considered incompressible, Ī3 is equal to 1 and
W becomes a function dependent only on Ī1 and Ī2.
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Table 1 Material constants
for hyperplastic material
models

Material model C10 [MPa] C01 [MPa] k[MPa]

HE1 1.03 [5] 3.69 [5] 104

HE2 −0.89 5.39

Table 2 Elastic properties of
linear elastic material models

Material model E [MPa] v [−] ρ [kg/m3]

LE 10 [9] 0.49 [9] 1100 [6]

Mooney–Rivlin models are one of the possible formulations for the description of
the behavior of hyperelastic materials, whose generic expression is given by Eq. (2).

W =
∑

i

∑

j

Ci j ( Ī1 − 3)i ( Ī2 − 3) j + 1

2
k(Jel − 1)2 (2)

where Ī1 and Ī2 are the first and second invariant of the left isochoric Cauchy–Green
deformation tensor, Jel is the elastic Jacobian, k is the bulk modulus, and Ci j are
model parameters, resulting from material experimental data from mechanical tests.
In this study, and according to Eq. (3), a two-parameter Mooney–Rivlin model to
describe the behavior of polyurethane rubber is used, being the values of the material
constants presented in Table 1.

W = C10( Ī1 − 3) + C01( Ī2 − 3) + 1

2
k(Jel − 1)2 (3)

The values of the material constants of HE2 model were obtained through curve
fitting of experimental data from a uniaxial tensile test performed on a polyurethane
sample.

Regarding the linear elastic behavior modeling of balloon material, the material
properties used in the study are presented in Table 2.

3 Results and Discussion

Figure 2 presents the required expansion pressure as a function of the expanded
radius of the stent.

The use of LEmodel shows results close to those obtained through the adoption of
HE1 and HE2models, being the difference equal to approximately 5.13% (0.39MPa
vs. 0.37 MPa) for the first and 10.26% (0.39 MPa vs. 0.35 MPa) for the second.
According to the aforesaid, it is suggested that the adoptionof a linear elastic approach
to the constitutive modeling of a hyperelastic material for a cylindrical balloon may
be a valid option as a similar behavior was found between the LE, HE1, and HE2
models, as demonstrated by Z. Guo et al. [14].
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Fig. 2 Required expansion
pressure as a function of the
expanded radius of the stent

Fig. 3 Evolution of
dogboning parameter as a
function of the expansion
pressure

The simulation of the stent itself leads to values of required expansion pressure
considerably inferior to those of HE1, HE2, and LE models, about 28.00%, sug-
gesting that such simplification may not provide adequate results despite the minor
computational cost.

Figure 3 presents the performance of dogboning parameter, whose evolution is a
function of the expansion pressure of the balloon.

All the cases studied present negative values of dogboning, which means that the
central region of the stent experiences greater expansion than its ends. Moreover, the
models present an increase of dogboning parameter as the expansion pressure rises
excepting the direct pressurization of the stent, being the hyperelastic models (HE1
and HE2) the ones that present higher values with post-dilatation absolute values of
11.60 and 13.02%, respectively. When the presence of the balloon is neglected, the
dogboning effect presents a different behavior comparing to that of other scenarios,
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Fig. 4 Evolution of
foreshortening parameter as
a function of the expansion
pressure

as its maximum value is not reached at full expansion. Once the pressure application
is ceased as the target diameter is reached in each point, the recoil phenomenon does
not occur simultaneously for all the structure, resulting in that the central section of
the stent experiences it first than its ends. The referred situation leads to the presented
inversion of the dogboning tendency.

Conversely to what is verified for the relation between the applied expansion
pressure and the stent diameter, the dogboning effect suggests being more sensitive
to the adoption of a linear model instead of a hyperelastic one once more significant
differences are found in the results.

The results obtained in foreshortening evaluation are presented in Fig. 4. The
results show that the adoption of hyperelastic formulations for modeling the consti-
tutive behavior of balloon leads to an elongation (positive values of foreshortening)
of the stent in the initial phase of the expansion changing to its shortening (negative
values of foreshortening), which are in agreement with the remaining models. The
linear elastic model LE presents significantly higher values of foreshortening when
compared to those of hyperelastic (HE1 and HE2) models (−0.12% vs. −0.033%),
that are approximately equal. This evidence highlights once again the influence of the
adopted material formulation in the behavior of the system. As verified for dogbon-
ing, when a pressure is applied directly in the inner surface of the stent, the maximum
absolute value of foreshortening (−0.53%) does not occur at its maximum diameter,
which may have origin on the aforementioned mechanism.

The different behavior presented by the Linear Elastic (LE) and hyperelastic (HE1
and HE2) models can be promoted by the contact formulation between the stent
and the balloon, as there are related variables strongly dependent on them. Indeed,
the characteristic stiffness of the contact is dependent on the equivalent Young’s
modulus, whose value is equal to the Young’s modulus itself in the case of linear
elastic models while it depends on the bulk modulus and on the Mooney–Rivlin
constants for hyperelastic formulations, giving origin to different values.
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Table 3 Recoil evaluation Longitudinal
recoil (%)

Distal recoil
(%)

Central recoil
(%)

LE −0.08 2.98 6.22

HE1 0.002 2.95 7.12

HE2 0.003 2.86 7.33

Stent −0.36 5.58 9.27

After the complete expansion of the stent promoted by the balloon inflation,
it is deflated in order to be extracted along with the further elements used in the
deployment process. At this stage, the pressure exerted by the balloon in the inner
surface of the stent ceases and the elastic portion of its deformation is recovered
producing a phenomenon called recoil, which can be longitudinal, central and distal.
The obtained values for these metrics are presented in Table 3.

Concerning to the longitudinal recoil, which corresponds to the variation of the
stent length as the balloon is deflated, all cases studied with exception of the hyper-
elastic models show negative values and therefore, a shrinkage of the device. The
values of longitudinal recoil presented by HE1 and HE2 models are significantly
inferior to those of the remaining scenarios and close to zero, meaning that there
is no relevant alteration of the length of the stent due to its elastic recovery. The
obtained value for the linear elastic model is lower than that of the simulation of the
stent without balloon, which leads to the highest absolute value (−0.36%).

The distal recoil corresponds to the difference between the stent diameter in its
ends in the fully expanded configuration and after the balloon deflation. Regarding
this parameter, it is noticeable that the LE, HE1, andHE2models present comparable
values, whilst the highest one is the obtained through the neglection of the balloon
(5.58%). Indeed, the LE value is only about 1.02% superior to that of HE1, while
this difference is about 46.59% compared to the use of the stent itself.

The difference between the stent diameter in its mid-region in the aforementioned
conditions is called central recoil. The obtained results show that this phenomenon
is more relevant than the distal recoil, once higher values are achieved, existing a
greater reduction of the stent expanded diameter in the central part. Regarding this
parameter, the value presented by the stent itself (9.27%) is the highest one, being
significantly above those presented by the remaining models.

The occurrence of such phenomena is a situation with negative impact on the
performance of the stent once it may demand an overexpansion of the device in
order to take into consideration its diameter loss after the deflation of the balloon,
which can compromise the integrity of the blood vessel and therefore, the success of
the procedure.



Numerical Simulation of the Deployment Process of a New Stent … 73

4 Conclusions

In the present work, a systematic study of the influence of the adopted material for-
mulation for the expansion balloon modeling was performed. The main conclusions
to be drawn from this study are:

1. the choice of the material constitutive model of the expansion balloon suggests
having a significant influence on the stent deployment process simulation.

2. the adoption of different material formulations leads to different results of the
considered performance metrics, possibly driving to significant discrepancies
between the results obtained through numerical analysis and those then pre-
sented by the device in real context. Such situation may have as consequence the
inadequacy of the numerical model to correctly describe the behavior of the sys-
tem, not providing results close to reality and therefore, invalidating the stent’s
designs proposed by it.

3. the adoption of a linear elastic model may be suitable for the description of
the relation between expansion pressure and expanded radius for a cylindrical
balloon built in a rubber-like material if a low Young’s modulus is assigned.
Concerning to the evaluation of the remaining performance metrics, this option
does not suggest being a so-appropriate approach, as more significant differences
relatively to hyperelastic models are noticed.

4. the direct application of pressure in the inner surface of the stent produces values
inferior to linear elastic and hyperelastic models of required expansion pressure,
being the remaining metrics significantly higher.
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New Techniques for Combined
FEM-Multibody Anatomical Simulation

John E. Lloyd, Antonio Sánchez, Erik Widing, Ian Stavness, Sidney Fels,
Siamak Niroomandi, Antoine Perrier, Yohan Payan and Pascal Perrier

Abstract This article describes a number of new techniques useful for the
construction of biomechanical and anatomicalmodels, particularly those that employ
combined FEM-multibody simulation. They are being introduced to the ArtiSynth
mechanical modeling system, and include reduced coordinate modeling, in which an
FEMmodel ismademore computationally efficient by reducing it to a low degree-of-
freedom subspace; newmethods for connecting points and coordinate frames directly
to deformable bodies; and the ability to create skin and embedded meshes that are
connected to underlying FEMmodels and other dynamic components. All these tech-
niques are based on the principle of virtual work, and we illustrate their application
with a number of examples, including a reduced FEM tonguemodel, subject-specific
skeletal registration, skinning applied to modeling the human airway, and a detailed
model of the human masseter.

1 Introduction

Effective simulation of human anatomical structure and function can benefit from
combining low-fidelity models with fast computation times and high-fidelity models
that emulate detailed tissue dynamics but have slower computation times. Multibody
methods are typically used for the former, modeling structures such as bones, joints
andpoint-to-pointmuscles,whilefinite elementmethods (FEM)are typically used for
the latter, modeling deformable tissues and capturing internal stress/strain dynamics.
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Combining the two can enable the creation of models with efficient, and possibly
interactive, simulation times while also providing appropriate fidelity in an area of
interest.

In this article, we describe new techniques that are being introduced intoArtiSynth
[12] (www.artisynth.org), an open- source simulation platform that permits
researchers to combinemultibody andFEMtechniques and hence leverage the advan-
tages of both. These new techniques include reduced coordinate modeling, attaching
points and frames to deformable bodies, and skinning and embedded meshes.

2 Reduced Coordinate Modeling

Reduced coordinate modeling is a technique in which a deformable body is mod-
eled using a restricted deformation basis instead of a collection of deformable finite
elements [10]. It spans the gap between FEM methods and rigid bodies (which are
themselves reduced models condensed to purely rigid motions), and can be effective
in speeding up simulation times formodels inwhich the range of typical deformations
is constrained (such as tongue motions in speech production).

To create a reduced coordinate model, it is often convenient to begin with a
standard FEM model. One can then construct a basis U of nodal deformations (with
respect to the nodal rest positions) which spans the set of all possible deformations
for the reduced model. Assume the FEM modal has n nodes (each with 3 degrees
of freedom), and let x, x0 and u denote composite vectors of their positions, rest
positions, and displacements, such that x = x0 + u. Then if q is a vector of the r
reduced coordinates, we have

x = x0 + Uq, (1)

where U ∈ R
3n×r . The basis U does not have to be constant but often is and will be

assumed tobe for the remainder of this article.Determining an appropriate basis is one
of the principal challenges in constructing a reduced model. Automatic techniques
include linearmodal analysis [14] (when the deformation is small), alongwith various
ways to extend a modal basis with additional vectors to handle large deformations,
such as using modal derivatives [3] or applying additional linear transformations to
the basis vectors [22]. In practice, better results are often obtained by creating the
basis via a training method in which a non-reduced FEM model is used to recreate
the deformations that are required for the modeling application [10].

2.1 Reduced Dynamics

Background material for reduced dynamics modeling can be found in [20]. Here, we
provide an overview of reduced dynamics within theArtiSynthmodeling framework.
An FEM model advances in time according to the dynamics

www.artisynth.org
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Mẍ + Dẋ + Kδx = fint(x) + fext, (2)

whereM and D are mass and damping matrices,K is the local stiffness matrix, δx is
the local change in x, and fint and fext are the internal and external forces. Note that
the matrices in (2) are almost always sparse.

ArtiSynth uses (2), in conjunction with a semi-implicit integrator, to solve for the
motion of the FEM model. In order to handle reduced models, it is necessary to find
the equivalent reduced dynamics,

M̃q̈ + D̃q̇ + K̃δq = f̃int(q) + f̃ext, (3)

where M̃, D̃, and K̃ are the reduced mass, damping, and stiffness matrices, and f̃int
and f̃ext are the reduced internal and external forces. Note that all of the matrices in
(3) are dense.

Model reduction implies a linear relationship between the nodal velocities ẋ of
the original FEM model and the velocities q̇ of the reduced model:

ẋ = Uq̇.

Note that even if U were not constant, this would still be true locally. Then from the
principle of virtual work, we know that the work done in nodal coordinates, fT ẋ,
must equal the work done in reduced coordinates, f̃T q̇, and therefore

f̃ = UT f .

This allows us to determine the reduced quantities in (3):

M̃ = UTMU, D̃ = UTDU, K̃ = UTKU, f̃int = UT fint, f̃ext = UT fext. (4)

ArtiSynth normally employs a lumped mass model in which M is constant, and
so M̃ is also constant and can be precomputed. The damping matrix D is also often
constant and so D̃ is also typically easy to determine.However, in anymodel involving
large deformations, K is almost always nonconstant, and must be reevaluated at
each simulation time step by integrating the stress/strain relationships of the model’s
constitutivematerials over a set of integration points within each FEMmodel element
[5]. This process, sometimes known as matrix assembly, has O(n) complexity, with
a proportionality constant depending on the nodal connectivity.

If K̃ is evaluated using (4) directly, the resulting complexity will be O(r2n) (since
K is sparse with O(n) entries). For larger r , however, this can be burdensome. A
more efficient approach is to use a smaller number of integration points, generally
O(r) (such that the number of points is proportional to r and not n). For example,
one can select O(r) elements, use a single integration point in the middle of each,
and then rather than forming K, instead accumulate the local stiffness matrix K j

associated with each integration point directly into K̃:
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K̃ =
∑

j

UTK jU.

Because each K j has O(1) size, the resulting K̃ can be formed in O(r3) [1].
It is also possible to show that for O(r) integration points, f̃int can be determined

in O(r2) time [1]. Other computations involving the reduction of external forces,
and updating of the original FEM nodal positions (such as for graphic display), have
a complexity of O(nr).

2.2 Application to an FEM Tongue Model

As a test case, we applied the above reduction method to a finite element model of
the human tongue [8] for modeling the tongue motions associated with speech pro-
duction. The mesh is hex dominant and contains 4255 elements and 2961 nodes. The
constitutive material is the same as that used for an earlier model [6]: a nearly incom-
pressible Mooney Rivlin material with C10 = 1037, C20 = 486, and bulk modulus
κ = 10370.

Tongue deformation is effected by embedding within the model a number of
fiber fields corresponding to the different tongue muscles. Each field is associated
with an additional anisotropic constitutive law that results in directed stresses along
the fiber directions when the muscle is activated. The work described in this paper
uses five tongue muscles: the hyoglossus (HG), inferior longitudinal (IL), superior
longitudinal (SL), posterior genioglossus (GGP), and the transversalis (TRANS).
Figure 1 shows a cutaway view of the tongue mesh, along with a representation of
the fiber directions for these muscles.

Our study consisted of creating two different reduced models for this tongue,
using two different basis generation techniques, and then examining how well these
were able to recreate three different tongue motions (protrusion, retroflexion, and

Fig. 1 Left: cutaway view of the FEM tongue model, showing the mesh structure; right: fiber
directions for the five muscles (HG, IL, SL, GGP, and TRANS) used in this paper
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Fig. 2 Different tongue motions used in this study. From left to right: rest position, protrusion,
retroflexion, and retraction

Table 1 Maximum muscle excitation levels associated with the different motions

Motion GGP TRANS SL HG IL

Protrusion 0.4 0.4 0.1 – –

Retroflexion – 0.4 0.6 – –

Retraction – – – 0.6 0.4

retraction) as produced by the original model. Figure 2 shows the different motions,
while Table 1 shows the muscle excitations associated with each.

The first basis was generated using modal analysis combined with a linear exten-
sion technique, as described in [22], which provides the extra degrees of freedom
needed to accommodate large deformations. Specifically, six linear modes were
extended by applying nine linearly independent affine transformations, resulting in a
basis with r = 54 vectors. The second basis was determined by a training technique
as described in [10], during which the tongue was exercised through activation of
all muscles, one at a time, and the displacements of all nodes where recorded. The
final reduced basis, consisting of 20 modes, was then determined through a principal
orthogonal decomposition of the recorded data and selection of the most significant
modes.

As mentioned in Sect. 2.1, the solution complexity for the reduced model is
O(r3) only if the number of integration points is O(r). In particular, this means that
the number of integration points must be subsampled in comparison to the original
model. This can be achieved in a couple of ways: (a) by choosing a certain number
of points randomly within the model and (b) by using a training method to select
the integration points, based on [22]. The training approach can be expected to give
better results since it hasmore ability to ensure sufficient coverage of themuscle fiber
fields, without which simulation fidelity may be lost. Results for both approaches
are presented below. Also, to get a better idea of how error varied with the number
of sampled integration points, we computed three different distributions of 600, 300,
and 200 points, respectively.

To compare the effectiveness of the reduced model under each basis, each of the
three tongue motions was executed, using 600 integration points, over a one second
time interval, with the excitations ramped from zero to full strength over the interval
t ∈ [0, 0.5] s and the displacement then being allowed to settle for an additional 0.5 s.
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Fig. 3 Mean average errors (mm) versus time (s) for a reduced model and each of the three tasks,
using both an “extendedmodal” and “trained” basis. The reducedmodel used 600 integration points.
In all cases, the error was less for the trained basis
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Fig. 4 Mean average errors (mm) versus time (s) for a reducedmodel (with a trained basis) and each
of the three tasks, using 600 integration points determined by both training and random selection.
In all cases the error was less for the trained integration points

These motions were then compared with those of the original (unreduced) model,
with the error associated with each node’s position being computed and averaged to
determine a mean average error over time. The results for each motion are shown in
Fig. 3, with mean average errors given in mm. For a sense of scale, the approximate
tongue diameter is around 60 mm. These results show that the trained basis exhibited
somewhat less error for a significantly smaller value of r (20 vs. 54).We also observe
that the reduced model has some dynamic lag with respect to the unreduced model,
as evidenced by the small error overshoot near t = 0.5.

To study how the error was affected by the choice of integration points, the same
testswere performed again (using the trained basis),with different point distributions.
First, we tested the difference between choosing points randomly versus identifying
them with a training method. The results, for 600 points, are shown in Fig. 4. The
training method produces slightly lower errors for two cases and significantly lower
errors for another. This suggests the while training is likely to be preferred, a random
method may work instead if the number of points is sufficiently large. Second, we
tested the effect of using fewer points (200 and 300); results for this are shown in
Fig. 5. To provide a better sense of the worst-case error, static views are shown of the
unreduced and 300 point reduced model at the point of maximum error. In general,
fewer integration points results in a larger error, but not always: for the protrusion
task, 300 integration points give a larger error than 200. The dynamic lag also tends
to increase as the number of points decreases.
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Fig. 5 Mean average errors (mm) versus time (s) for a reduced model (with a trained basis) and
each of the three tasks, with the number of integration points varying between 600, 300, and 200.
To get a sense of the absolute error, static images are provided of the unreduced model (middle)
and 300-point reduced model (right) at the point of maximum error

Table 2 Average per-step computation times (ms) for each basis with different numbers of inte-
gration points

Basis 600 300 200

Extended modal 53.2 33.0 23.6

Trained 27.7 15.2 12.1

Reducedmodel effectiveness is also illustrated by an online video, showing a side-
by-side comparison of task execution between an unreduced model and a reduced
model with 300 integration points:

www.artisynth.org/videos/CMBBE2018ModelReduction.mp4.
Finally, average per-step computation times were compared for each of the bases,

using 200, 300, and 600 integration points, with the results shown in Table 2. Compu-
tations were performed on an Intel quad core i7-7700 desktop with 16 GB of RAM.
The average per-step computation time for the unreduced model was 188.9 ms, using
the Pardiso [19]multicore direct solver utilizing a hybrid direct/iterative scheme. The
reduced computation times were roughly linear in the number of integration points,
as we would expect from the discussion of Sect. 2.1, while appearing to be roughly

www.artisynth.org/videos/CMBBE2018ModelReduction.mp4
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linear in r . However, that is because of the O(nr) overheads associated with system
assembly and the updating of nodal positions from the reduced coordinates.

Typical maximum absolute errors in the above results are around 3 mm, which for
an approximate tongue diameter of 60 mm corresponds to a relative error of around
5%. Meanwhile, for 300 or 200 integration points, the speed-up with the trained
basis is more than 10 times, and reduces the average per-step computation time to
interactive rates.

2.3 Application to an FEM Foot Model

As an example involving a larger FEM model containing internal rigid structures,
we describe preliminary work on model reduction for the detailed biomechanical
foot model described in [15]. Developed in ArtiSynth, this contains all the bones
of the foot, together with tendons and ligaments, embedded within an FEM model
that emulates the skin and other soft tissues (Fig. 6). The bones are modeled as rigid
bodies, to which nearby FEMnodes are connected using point-to-frame attachments.
The FEM model itself uses a neo-Hookean material and contains 23,298 elements
and 13,087 nodes. Joints between the bones are modeled using unilateral contact,
which provides more realistic joint motions, but, when combined with the FEM
embedding, increases per-step computation times to around 2600 ms on a an Intel
quad-core i7-7700 desktop with 16 GB of RAM. When run by itself without any
embedded structures, the FEM model has an execution speed of around 650 ms.

To help make this model suitable for clinical applications, we are investigating
model reduction to reduce its computation time to the point where it can be run
interactively. We developed a reduced basis for the model by creating a series of
nodal displacements corresponding to various excitement levels of the tibialis anterior
muscle and then applying a principal orthogonal decomposition in a manner similar
to that used for the tongue model (Sect. 2.2). The basis contains 6 vectors, and when
combined with 100 randomly chosen integration points allows the model to be run
at a real-time rate of around 10 ms/step (Fig. 7). Further investigations will consider
other muscle excitations and external loadings such as floor contact.

Fig. 6 The foot model,
showing bones, tendons,
ligaments, and the
embedding FEM mesh
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Fig. 7 The reduced foot model at rest (left) and after muscle excitation (right)

3 Attaching Points and Frames to Deformable Bodies

Biomechanical models are often built using a variety of components and sub-models,
whichmust then be connected together. An illustrative example of this is the FRANK
model [2] (Fig. 8), which provides a reference model of human head and neck
anatomy. Implemented inArtiSynth [12], FRANK is designed to simulate anatomical
functions related to swallowing, chewing and speech, and consists of various compo-
nentsmodeled using finite elements, rigid bodies, point-to-point springs, andmuscles
structures. ArtiSynth provides a number of means for connecting such components
together, including general constraints, joints, and the ability to directly attach points
and coordinate frames directly to other components. This section focuses on the lat-
ter capability, and describes the recently enhanced mechanism for connecting either
points or frames to deformable bodies. This allows, for example, a point-to-point
muscle to be connected directly to an FEM tissue model.

The ArtiSynth attachment mechanismworks by defining the coordinates xa of the
attached component to be a function of the coordinates xm of one or more master
components to which it is attached:

xa = f (xm). (5)

This then implies that the velocities are related by a linear relationship of the form

ẋa = Gam ẋm, Gam ≡ ∇ f (xm). (6)

From the principle of virtual work, discussed above, forces fa on the attached com-
ponents then propagate back to forces fm on the master components via

fm = GT
amfa . (7)
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Fig. 8 The FRANK model
of human head and neck
anatomy, with some
structures (such as the jaw)
not shown to reveal internal
detail

3.1 Point Attachments

For the case of a point attached to an FEMmodel, its position (and velocity) is given
by a weighted sum of nearby nodal positions x j :

xa =
∑

j

w jx j , ẋa =
∑

j

w j ẋ j .

Forces fa applied to the point then propagate back to each node according to

f j = wj fa .

Often the local nodes are chosen to be the ones associatedwith the element containing
the node, but in some cases, it may be desirable to spread the attachment across a
larger set of nodes, in order to better distribute forces imparted by the attached point
across the FEM model (Fig. 9). A good case example of this is shown in Fig. 10,
where the styloglossus muscles of a tongue are modeled as external point-to-point
muscles connected to the main FEM tongue model.

Points can be attached to a reduced model in essentially the same way, only now
the support nodes are themselves controlled by the underlying reduced coordinates:

xa =
∑

j

w j (x j0 + U jq), ẋa =
∑

j

w jU j q̇,

where x j0 andU j are the rest position and the submatrix ofU corresponding to node
j . With respect to (6), Gam takes the form
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Fig. 9 Two examples of a point-to-point muscle attached to an FEMmodel, using 4 support nodes
(top) and 24 support nodes (bottom). The resulting stress/strain pattern is smoother andmore diffuse
with the larger number of support nodes

Fig. 10 A finite element
model of the tongue, with the
styloglossus modeled as
externally connected
point-to-point muscles (red).
It may be desirable to
distribute the
styloglossus/tongue
attachment across the nodes
of multiple elements

Gam =
∑

j

w jU j .

One difference between reduced and FEM model attachments is that for the former
it is often less necessary to be concerned about distributing the stress/strain across
multiple nodes, since the model reduction process tends to do this automatically.

A current open problem is the ability to directly connect two reduced models
together. This is because there is no easy way to guarantee that the reduced motion
of each body would be mutually compatible with the attachment, particularly when
the attachment has spatial extent. Any future implementation of such an attachment
would presumably need to “relax” its constraints to accommodate the motion range
of the reduced models.
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3.2 Frame Attachments

Coordinate frames can also be connected to deformable bodies in much the same
way as for points. The frame origin is attached as a point, and the orientation R can
then be determined in one of two ways:

• Element shape functions: If the nodes are associatedwith an element, then the local
deformation gradient F can be determined using element shape functions in the
standard FEMmanner,withR then determined fromF using a polar decomposition
F = RP.

• Procrustean method: If the nodes are arbitrary, then R can be estimated based on
a Procrustean approach. First we compute a matrix F according to

F =
∑

j

w j (r jrT0 j ),

where wj are the nodal weights and r j and r0 j are the current and rest positions of
the nodes described with respect to the coordinate frame origin. R can then again
be determined from F using a polar decomposition F = RP.

The ability to connect frames means in particular that rigid bodies can be con-
nected directly to deformable models, as shown in Fig. 11, right.

Since frames can be attached to deformable bodies, this also means that joints
(which implement constraints between frames) can also be attached to deformable
bodies. A useful application of this is the subject-specific registration of skeletal
anatomy, as presented in [17] and illustrated in Fig. 12. This involves taking a refer-
ence model of a skeletal structure, including bones and joints, and registering (i.e.,
deforming) it to a specific subject based on medical imaging data (e.g., an CT scan).
To do this, the bones in the reference model must be made deformable (which can
be done by placing them within an embedding mesh, as described in Sect. 4) and
then “attracted” to the subject data using a technique such as iterative closest point

Fig. 11 Attaching frames to deformable bodies. Left: a frame connected directly to the nodes of a
single FEM element. Right: an ellipsoidal rigid body connected to the end of an FEM beam
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Fig. 12 Subject-specific
registration of skeletal
structures. Each bone mesh
of a reference model (top) is
made deformable by
embedding it within a
regular FEM grid (shown
here for the ulna). The
deformable bones are then
connected using FEM joints,
allowing the reference to be
more easily registered to
subject-specific data
(bottom) using ICP or
similar techniques

(ICP) [4]. In order to preserve the structural integrity of the reference model, the
(deformable) bones are connected with joints appropriate to the anatomy, allowing
the model to bend freely at each joint (up to joint limits) and to simultaneously regis-
ter the shape and pose of each bone. If instead the reference was modeled as a single
deformable structure without such joints, it would be necessary to greatly reduce the
stiffness near each joint location, in an anisotropic way that emulated the constraints
of each joint.

4 Skinning and Embedded Meshes

Another useful technique for creating anatomical and biomechanical models are to
attach a passive mesh to an underlying set of dynamically active bodies so that it
deforms in accordancewith themotion of those bodies.ArtiSynth allowsmeshes to be
attached to collections of both rigid bodies and FEMmodels, facilitating the creation
of structures that are either embedded-within, connected-to, or enveloped-by a set
of underlying components. Such mesh embedding approaches are well known in the
computer graphics community and have more recently been applied to biomechanics
[13], and also figure prominently in the SOFA system [7].

It should be noted that mesh embedding provides an alternate way to perform
model reduction, in the sense that the number of dynamic DOFs for the resulting
system is determined by the number of nodes in the embedding mesh. By using a
course embedding mesh, the number DOFs can be significantly reduced.

The underlying method uses the attachment mechanism (Eqs. (5)–(7)), with the
mesh vertices being the “attached components”. Themesh deforms in response to the
attachment configuration,while external forces applied to themesh can be propagated
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back to the dynamic components via (7). This technique is useful in a variety of
applications, as presented below.

4.1 Skinning for Modeling the Human Airway

One application is to create a continuous skin surrounding an underlying set of
anatomical components. For example, formodeling the human airway, a disparate set
of models describing the tongue, jaw, palate and pharynx can be connected together
with a surface skin to form a seamless airtight mesh (Fig. 13), as described in [21].
This then provides a uniformboundary for handling air or fluid interactions associated
with tasks such as speech or swallowing. In [21], each skin mesh vertex is attached
to one or more master components, which can be either an FEM model or a rigid
body. The position qv of each vertex is given by a weighted sum of contributions
from the master components, according to

qv = qv0 +
M∑

i

wi fi (qm,qm0,qv0) (8)

where qv0 is the initial position of the skinned vertex, qm and qm0 give the positions
and rest positions of the M master components, and wi and fi are the skinning
weight and blend function associated with the i th master component. Further details
are given in [21]. The position equation (8) can be differentiated to yield a velocity
relationship

uv = Gum,

Fig. 13 A skin mesh used to delimit the boundary of the human upper airway, connected to various
surrounding structures including the palate, tongue, and jaw [21]
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where uv and um are the velocities of the skin vertex and the master components and
G is a (local) matrix. Then from the principle of virtual work, vertex forces fv can
be propagated back onto the master component forces fm via

fm = GT fv.

In general, this means that forces, pressures, or contact interactions applied to the
skin can be reflected back onto the underlying master components. In the case of the
airway model, these external loads could involve pressures from air, fluid, or food
bolus interactions.

4.2 Mesh Embedding Applied to Modeling the Masseter

Embedding and attachment techniques have recently been applied to the creation of a
finite elementmodel of the humanmasseter [16],which is the principalmuscle used in
chewing (Fig. 14). Thismodel contains detailed information about the internalmuscle
fascicles and aponeuroses, with a primary purpose being to study the importance of
aponeuroses stiffness in the transmission of force within the masseter.

Fascicle and aponeuroses data were obtained using the dissection and digitization
procedure of [9]. Fascicle datawas discretized into a set of line segmentmeshes,while
the aponeuroses (tendon sheets) were discretized into triangular surface meshes. A
muscle volume was then constructed by constructing a wrapping surface around this
fiber and aponeuroses data, in a manner similar to [11]. Originally, this was used
as the surface mesh from which a conforming hex-dominant volumetric mesh was
constructed [18] (Fig. 15, middle). However, creating such a conforming mesh was
both time consuming and also yielded a number of poorly conditioned elements, and
so a mesh embedding approach was adopted instead in which the muscle volume
surface was embedded inside a coarse but highly regular and well-conditioned grid
(Fig. 15, right). Model fidelity was improved using the technique of [13], in which
the mass and stiffness values of the embedding FEM are weighted to account for
regions where the embedded mesh is absent.

Fig. 14 Model of the
masseter connected to the
jaw and mandible
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Fig. 15 Left: raw digitized data for masseter fascicles and aponeuroses. Middle: FEM masseter
model based on a conforming mesh generated from a wrapping surface enclosing the data. Right:
FEM model based on a regular embedding mesh. For both models, fascicles and aponeuroses are
added as embedded structures

Fascicles and aponeuroses were also incorporated within this primary FEMmesh.
Fascicle data was embedded within the primary mesh, hence allowing it to deform
accordingly. The fiber directions were used to determine the direction of muscle con-
traction used by the muscle constitutive law at nearby integration points of the pri-
marymesh. Aponeuroses weremodeled as thinmembrane-like FEMmodels, created
by extruding their triangular surface data using wedge elements. These membrane
FEMswere then attached to the primary FEM by connecting each membrane node to
its containing element within the primary mesh (as described in Sect. 3.1), allowing
the membrane stiffness to be transferred onto the entire structure.

By using embedding and attachment techniques, it is possible to create a masseter
model with far fewer degrees of freedom (and hence a much faster simulation time)
than would otherwise be possible. The embedding technique allows the primary
mesh to be set at a resolution appropriate to the overall deformability of the muscle,
rather than a need to accommodate the surface structure.More importantly, the use of
attachments to connect the aponeuroses allow the primary and aponeuroses meshes
to be nonconforming. Otherwise, it would be necessary to employ meshes with far
higher resolutions, which would be both harder to construct andwould result inmuch
higher simulation times.

5 Conclusion

We have described a number of useful methods for enhancing the construction of
biomechanical models. The first, model reduction, allows applications to implement
complex deformablemodels at reasonable computational cost, andwe are currently in
the process of introducing this into the ArtiSynthmodeling system.Most of the effort
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associated with model reduction involves determining both the basis and integration
point distribution. Our results suggest that training techniques tend to yield the best
basis results, yielding both a smaller basis and less error. Training is also useful for
selecting integration points, although random point selection may sometimes work
sufficiently well.We have also seen that model reduction has the potential to improve
computational speeds to interactive rates.

The othermethods includeways to attach points and frames to finite elementmod-
els, along with skinning and mesh embedding. All of these are currently available
in ArtiSynth and facilitate the dynamic interconnection of model components and
the introduction of auxiliary mesh structures for both visualization and simulation
purposes. They have already been applied to a number of applications in biome-
chanics; those described here include a large scale reference model of the head and
neck, subject-specific skeletal registration, skinning applied to modeling the human
airway, and a detailed model of the human masseter.

The unifying concept underlying all these techniques is the principle of virtual
work, which explains the force relationship between coordinate systems when the
velocity relationship is known.
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Computational Cell-Based Modeling
and Visualization of Cancer Development
and Progression

Jiao Chen, Daphne Weihs and Fred J. Vermolen

Abstract This paper presents a review of the role of mathematical modeling in
investigating cancer progression, focusing on five models developed in our group. A
brief overview of computational modeling progress is presented, followed by intro-
duction of several mathematical formalisms (e.g., stochastic differential equations),
numerical methods (e.g., finite element method, Green’s functions, and combina-
tions of time integration), and Monte Carlo simulations, which are currently used
to quantify the underlying biomedical mechanisms, to approximate the results and
to evaluate the impact of the input variables. Next, we provide specific examples
of the computational models that we developed aimed at predicting the dynamics
of the initiation and progression of cancer. Our simulation results show qualitative
consistency with references and/or available experimental observations. Finally, per-
spectives are drawn on the possibilities of mathematical modeling for the prospects
of cancer understanding and treatment therapies.

Keywords Mathematical modeling · Numerical method · Cancer progression ·
Cell migration · Angiogenesis · Metastasis · Immune responses · Cell deformation

1 Introduction

Cancer has become one of the leading causes of death in developed countries and
its global mortality rate is rising [55]. Cancer initiates and develops by a series
of processes comprising cell mutation, abnormal proliferation, angiogenesis, and
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metastasis accompanied by the evolution of cell morphology. Many studies have
utilized in vitro systems using primary cells or cell lines. While those studies have
provided an important understanding of cancer, the interaction between cancer cells
and their microenvironments are difficult to reproduce accurately. Thus, for more
physiologically relevant conditions, animal experiments have been used.

Animal-based experiments have been crucially important in cancer research, in
particular, in cancer pathology, tumor transplant, immunization, and treatment. How-
ever, the cruelty and ethical views caused by animal experiments have caused a
reduction in their use. In 1959, the conception of “Three Rs” was proposed as the
principles of Replacement, Reduction, and Refinement in The Principles of Humane
Experimental Technique and the concept has been a hot issue in the EU legislation
since 1986, aimed at protecting animals [26, 90]. Therefore, in the wake of research
requirements and experimental regulations, well-designed experiments are crucially
important, which definitely need the input from various disciplines like mathematics,
physics, computer science, etc.

To validate developed hypotheses regarding biological processes occurring during
cancer development, it is necessary to assess experimental outcomes. Since experi-
mental results are usually represented in the form of patterns and numbers, the devel-
oped hypotheses need quantification. This quantification requires the translation of
hypotheses into quantitative relations, which generally pose a set of mathematical
relations. The combination of the mathematical relations constitutes the backbone
of the mathematical model that is used to simulate the biological process of inter-
est. Mathematical models are capable of reproducing situations that are beyond the
measured data. Despite all advantages of mathematical modeling, one should be
careful in the evaluation of the results due to possible shortcomings in the model.
Shortcomings in mathematical models arise from neglecting several features in bio-
logical processes due to lack of knowledge, as well as by uncertainty of parametric
values. The latter shortcoming requires parameter sensitivity analysis. Facing the
societal burden, mathematical modeling of cancer is a promising approach to com-
bine with experiments in vitro and in vivo, using both animal and human materials.
On one hand, the modeling results lead to predictions [45] and further description
with examples can be found in Gammon [44]. On the other hand, with computational
modeling, the number of animal trials could be reduced and the experiments can be
designed better, however, conversely, mathematical models could be validated by
corresponding experiments.

As early as in 1942, a book named “On Growth and Form” by Thompson et al.
[110] cited the following quote from a statistician Karl Pearson (first published in
1901):

I believe the day must come when the biologist will - without being a mathematician - not
hesitate to use mathematical analysis when he requires it

and presents mathematical principles in his book. A 100 years later, a paper in ‘The
Economist’ (2004) stated that

If cancer is ever to be understood properly, mathematical models such as these will surely
play a prominent role.
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1.1 Mathematical Modeling on Various Scales

Mathematical models have been developed for a broad spectrum of length scales,
ranging from a molecular level (from a few atoms to multitudes of biomolecules)
to a tissue level. Fearon and Vogelstein [38] describe a conceptual model showing
cancer evolution as a series of genetic mutation mainly in tumor oncogenes and sup-
pressor genes. With a further rigorous verification, Gatenby and Vincent [46, 124]
find that environmental selection forces are dominated by competition for limited
substrate in the era of carcinogenesis. Next to genes, due to a large amount of pro-
teins involved in cancer development and progression, where some of them even
become the targets of new drugs, molecular modeling is important and is able to
provide details that would not be accessible if solely experiments on the molecular
dynamics [43] were carried out. For example, Wonpil et al. [53] proposes Brownian
dynamics for modeling the movement of ions in membrane channels. Binding of
proteins and DNA have been described by Chuanying Chen and Pettitt [19]. Further-
more, molecular mechanics have been described by Spiegel and Magistrato [106],
Turjanski et al. [112], and other molecular models refer to a review paper by Fried-
man et al. [43].

Cells constitute the fundamental, independent functional unit of organisms. Can-
cerous cells display many features compared to the characteristics of normal con-
stitutive cells, which have been incorporated in various mathematical formalisms.
In a cell-based modeling framework, the geometry of one cell can be fixed, see for
instance, [10, 13, 18, 22, 31, 123]; whereas, the cell morphology is also change-
able in reality. Rejniak [93], Rejniak and Dillon [95] utilize an immersed boundary
approach with distributed sources to model the deformable boundary of cells at early
stages with an application to ductal tumor. Moreover, deformation of cells can also
be realized through the simulation of cytoskeleton [120]. Furthermore, the studies
by Madzvamuse [70], Elliott et al. [34] treat the evolving geometry of the cell mem-
brane by combining a moving boundary problem with a system of coupled surface
partial differential equations, which are solved by the use of surface finite element
methods.

For the study of cancer progression and disease pathology, the modeling of large
ensembles of interacting cells in biological tissue is needed. A literature study by
Murray [81] proposes several partial differential equation-based models to simulate
various biological phenomena like wound healing, cancer development, and immune
system response on the macro tissue scale. In the context of cancer dissemination
and metastasis, clusters of cells have much higher metastatic potentials than singular
migrating cancer cells [58, 76]. Based on this, Dudaie et al. [32] describe a model
on the collective movement of cancer cells on a cell colony level and Jolly et al. [58]
developed a model for investigating cluster-based dissemination of breast cancer
cells. Taking the CPU time into consideration, parallel computing platforms are
feasible for tissue simulation involving large numbers of interacting cells [28].
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1.2 Mathematical Modeling from a View of Cancer
Development and Progression

Cancer development involves a chain of biophysical processes including initiation,
angiogenesis, metastasis and colonization, of which some of them are sketched in
Fig. 1.

With a series of gene mutations, normal cells mutate into cancer cells and obtain
abnormal properties (i.e., dysfunctional excessive proliferation) [41]. According to
the studies byNHS (NationalCancer IntelligenceNetwork), early diagnosis of cancer
can increase the likelihood of survival significantly. However, during this period,
cancer is usually difficult to detect. A literature review on cell-based models in
which the initial stages of cancer have beenmodeled in Chen andVermolen [20]. The
importance of early diagnosismotivates the need for strengthening scientific research
on the early stages of cancer development both from clinical and in-silico studies. To
simulate cancer initiation, Vermolen et al. [123] develop various cell-based models
and Chen et al. [22] introduce a model to describe the antitumor immune responses
by tumor-specific T-lymphocytes at tumor early stage with applications to pancreatic
cancer. Furthermore, Enderling et al. [36] develop a model on radiotherapy strategies
targeting cancer during its early stages.

Angiogenesis triggers a key transition for tumors from being a dormant avascular
phase to reaching a soaring vascular phase [40] see Fig. 1. Based on this phenomenon,
many experimental studies aim at preventing angiogenesis or at cutting off oxygen
sources to prevent further development and more importantly metastasis of a tumor.
For example, a drug named Avastin is regarded as a powerful means for cutting off
the tumor’s oxygen supply, however, tumors become more aggressive as a result of

Fig. 1 The transition from a benign tumor, see left, to a malignant tumor, see right. The interaction
of tumor growth and angiogenesis. Taken from Siemann DW, Vascular targeting agents. Horizons
in Cancer Therapeutics: From Bench to Bedside. 2002; 3 (2): 4–15 [104]
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further hypoxia [101]. To aid the experiments, mathematical modeling has yielded
several contributions such as an 3D angiogenesis model [103], a cellular automata
model of growth of blood vessels byRens et al. [96], and other relevantworks [17, 73,
74]. An excellent review about tumor-induced angiogenesis is written by Stephanou
et al. [107].

Metastasis is responsible for as much as 90% of cancer-caused mortality [15]. In
this case, the migration of cells often proceeds through mechanotaxis, which can be
classified into tensotaxis (movement according tomechanical tensions) and durotaxis
(migration toward a stiffness gradient). In tensotaxis migration, cells exert forces on
their extracellular matrix environment, and in turn the stresses, displacements, and
strains due to cell-induced deformation of the microenvironment can be sensed by
neighboring cells. Those neighboring cells are then able to migrate according to the
mechanical signals. This is experimentally evidenced andmodeled in Reinhart–King
et al. [91], Vermolen and Gefen [118], Quinlan et al. [87], Dembo and Wang [29],
DuFort et al. [33]. For durotaxis migration, cells will tend to move in the direction
of a stiffness gradient, and especially cancerous cells show a preference for a stiffer
substrate or extracellular matrix (ECM) [33, 69, 83, 129]. The works by Weihs et
al. have also shown that the stiffness of the substrate affects the ability of cancer
cells to exert forces related to adherence [72] and to mechanical invasiveness [65].
Regarding cancer metastasis, some existing mathematical models can be found in
the works [2, 5, 89, 99, 113].

The existence of the complexity and heterogeneity in various cancers poses a
big challenge to adequate treatments. For many decades, many studies have been
devoted to finding a breakthrough for cancer treatment. With the bound of ethics as
well as the increasingly loud voice of anti-animal experiments, biological experi-
ments and clinical trials need to be closely integrated with mathematics and high-
speed development of computer technology. In this fast pace of life, more and more
people are suffering from chronic or emerging diseases and a majority of cancers
develop as a result of chronic inflammation [111]. Mathematical models provide an
avenue to explore possible improved and alternative therapies against cancer [105].
For instance, Enderling et al. [35–37] model radiotherapy of breast cancer and their
work showed the possibility of investigating clinically verifiable hypotheses for the
influence of radiotherapy on cancer progression through numerical simulation. Fur-
thermore, Tanaka et al. [109] propose a model for prostate cancer which is helpful
to scrutinize the application of hormone therapy. Another modeling work, treating
the influence of chemotherapy on cancer cells, is reported in [82]. Next to the tra-
ditional treatment approaches like surgery, chemotherapy, radiotherapy, and cancer
immunotherapy has shown some prospects [27, 75]. Therefore, the numerical sim-
ulation of immunotherapy has become a research direction. Through boosting the
immune system of individuals to fight cancers, a model in terms of tumor–immune
interaction is developed in [64]. A survey of several mathematical models and meth-
ods dealing with the tumor–immune interaction is provided in [7]. Moreover, any
process of cancer progression could be a therapeutic target and several therapy-
related models are introduced by Abbott and Michor [1]. Furthermore, smart health
care has drawn a lot of attention, which is able to monitor a patient’s vital organs and
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to guide doctors to perform surgery as well as to apply medications more accurately.
However, smart health care is non-separable from computer technology with numer-
ical simulation and it faces many mathematical challenges that need to be solved.
Therefore, mathematical modeling is a promising means to reduce the cost and eth-
ical burden of experimental tests for cancer research [105] and will even contribute
to quantify the impact of therapies against cancer. This quantification will be used
to improve and even better, to optimize certain therapies by computing the impact
of new therapies against cancer.

1.3 Mathematical Modeling from a View of Identified Cancer
Types

There are currently more than a 100 distinct types of identified cancers [48]. Accord-
ing to the global cancer statistics given by Ferlay et al. [39], the cancer with the
highest mortality rate, as high as 19.4% in adults, is lung cancer. Regarding the mod-
els on lung cancer, Chmielecki et al. [24] use an evolutionary model to optimize the
dosing of drug treatment. Wang et al. [126] and Bianconi et al. [8] propose further
mathematical models to simulate lung cancer by multiscale agent-based and systems
biology inspired formalisms for large tumors. Furthermore, other types of cancers are
simulated mathematically like liver cancer [128], breast cancer [35–37, 58], brain
cancer [52, 60, 86], avascular cancer [127], prostate cancer [54, 109], etc. Some
tumors develop in distinct architectural forms, e.g., preinvasive intraductal tumors
in the breast or prostate, which are simulated by Rejniak and Dillon [95]. Pancreatic
cancer is notorious for its profuse stroma with less than 4% 5-years survival rate
[56], which is modeled as far as we know for the first time by Chen et al. [22].

1.4 Mathematical Modeling from a View of Model Types

Modeling mechanics of cancer cells and tissue is an emerging field with a broad
spectrum of patterns. Agent-based models are developed to understand the mutual
interplay of an individual cell and its surroundings on the microscale, compared
to the macro-scale off-agent models. The macro-scale models consider rather than
individual cells. Their merit is their applicability to larger physical tissue regions.
For a literary review on agent-based modeling, we refer to [115], which describes
three types agent-based models.

1. Lattice-based models can be further classified into various types such as cellular
automata [9, 88], lattice gas cellular [98], and cellular Potts models [47, 77, 116].
Cellular automata, viewed as an approach to model complex systems, is applied
to tumor invasion in [50]. In terms of tumor development, a critical review [80]
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evaluates classical cellular automaton models. To unravel the potential effects of
movement and interaction of individuals (like cells collisions), lattice gas cellular
automata is slightly improved from classical cellular automata. The model in [51]
is an example with application to cell migration. Using cellular Potts models, it
is possible to define the cell more precisely. The possibilities to apply them to
tumor evolution are described by Szabó and Merks [108].

2. Off-lattice models, see [57] as an example, can stimulate tumor growth and inva-
sion. Jeon et al. [57] state that an off-lattice model enables them to model cell
motility with detailed forces and to overcome the drawbacks of a lattice model
(e.g., a limited set of possible directions and discrete displacements). Schaller
and Meyer–Hermann [102] introduce a three-dimensional off-lattice Voronoi–
Delaunay model to study multicellular tumor spheroids. Moreover, there are
alternative off-lattice models like particle models, such as [14, 30, 117, 121]
and cell shape evolving models such as [11, 120].

3. Hybrid discrete-continuum models are feasible for large systems [63, 78, 115,
131]. Here the hybrid model serves as an integrated method to predict cancer
cell behavior in a microenvironment in terms of both discrete and continuous
variables [94]. Another example of a hybrid model of interaction between tumor
and stromal environment is developed for breast cancer [62].

Due to the overwhelming complexity in cancer research, the joint-effort has to be
accelerated. Our group is working on the mathematical modeling on cancer progres-
sion including different stages with applications to various types of cancers. Albeit
cancer differs even between patients, some underlying mechanisms are comparable
and therefore we generalize the similarities and simulate the biophysical processes
by using analogous mathematical frameworks and numerical methods that are pre-
sented in the following section. Subsequently, several models and results are shown
and conclusions, as well as prospects, are given.

2 Mathematical Concepts

Mathematicalmodeling can reshape our viewof cancer [44].An in-depth understand-
ing of any phenomenon associated with cancer is ultimately based on the biological
interaction between different time–space scales. Simplified mathematical models
and formalisms to describe real biological processes and phenomena can be devel-
oped to provide hypotheses and predictions, as well as quantify their impacts for
experimentalists to focus on [68].

Generally, mathematical models are based on abstract relations or a set of equa-
tions that ensue from a description of the various processes involved. The solution
of the equations can be used to describe the evolution of a biological system over
time or to simulate properties near an equilibrium point. Some hypotheses are nec-
essary during the process of mathematical modeling to define the model and to
make the problem well-tractable. In our group, we encode the mathematical model
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under the premise of the following assumptions: (1) in most instances, all cells have
a circular projection on a two-dimensional substrate or a spherical shape inside a
three-dimensional ECM; (2) each cell has a viable or dead discrete state; (3) to
reduce the CPU time, we consider a small number of cells in either an 2D or 3D
domain of computation as representative for a larger cell system; (4) cells are treated
as point sources for chemokines and for the strain energy density. Based on the above
assumptions, we sketch the common basic principles of the mathematical models for
the various stages of cancer development in the following bullet points:

• Typically, cellular processes like cell proliferation, cell death and cell mutation
happen thought to be caused by the interaction of internal genes and the external
environment. Due to some unpredictable factors, we incorporate stochastic pro-
cesses in the model as one of the criteria to determine whether division, death or
mutation happens or not. The principle we are using is under the assumption that
the probability of each process to occur is taken from a memoryless distribution
and the probability can be influenced by mechanical force, chemokine concentra-
tion or other signals, which is given by Vermolen et al. [123]. With the probability
per unit of time (that is probability rate) λ over a time interval Δt , then

P(t ∈ (tn, tn + Δt)) =
∫ tn+Δt

tn

λe−λ(t−tn)dt

= 1 − e−λΔt

≈ λΔt.

(1)

• Tensotaxis means that cells move according to mechanical tensions. The cells
both experience a strain energy density field, and exert forces on their neighbor-
ing environment, which gives a contribution to the entire strain energy density
field and which is essential for cell adhesion to effectuate cell migration, shape
maintenance as well as other intercellular communications [92, 125]. Then the
deformation of the substrate or ECM results into a strain energy which is trans-
mitted to neighboring cells [72]. Moreover, the cells are not allowed to overlap
too much because of the cell contact inhibition and therefore a repulsive force is
taken into account. Having n cells exerting pulling forces and pushing forces if
they are in physical contact, this gives at cell i

M(xi ) =
n∑
j=1

M0
j exp{−λ j

‖ xi − x j ‖
R

} − 4

15
√
2

E

π
(
h

R
)
5
2 , f or i, j ∈ {1, . . . , n}, (2)

where M and E represent the strain energy density and the Young’s modulus.
Further R, h, and λ j , respectively, denote the cell radius, indentation distance,
and mechanical signal attenuation ratio of the strain energy density through the
substrate. Furthermore, xi denotes the spatial location of the midpoint of cell i .
The first term in the above equation represents the long-distance attenuation of
the strain energy density over the extracellular matrix. The second term takes into
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account the contact forces exerted by the cells when they mechanically impinge.
The second term in the right-hand side of the above equation is only nonzero if
||xi − x j || < 2R. More information regarding this formalism can be found in [22,
119].

• Cell migration driven by chemical cues includes chemotaxis and haptotaxis
where cells move toward the concentration gradient of chemokines in a fluid phase
or an extracellular matrix, respectively. Reactive T-cells move and fight against
cancer cells directed by the gradient of tumor-derived chemokines [61, 114]. In
the solid-part of ECM, the balance of chemokines typically looks like

∂c

∂t
− DcΔc =

∑
j∈T(t)

γ j (t)δ(x − x j (t)), j ∈ T(t), (3)

where c, Dc, x, and γ j denote concentration and diffusivity of chemokine aswell as
location and secretion rate by cancer cells, respectively. Moreover, δ(r) represents
the Dirac Delta Function to describe the secretion of chemokines for each cancer
cell and T(t) represents a set of cancer cells which secrete chemokines. Further,
x j (t) denotes the center position of cell j at time t . Somemore complicated chains
of reactions like in [10] are possible.

• Over a broad type of cells, the cell boundary is mobile accompanied by a locally
persistent random character [67] caused by cellular random processes and by
random local properties of theECMin termsof orientation anddenseness. Thereby,
we use a Wiener process dW(t) (also known as Brownian motion, where dW
contains independent samples from the normal distribution N (0, dt)) to simulate
the randomness in cell migration. Therefore, one cell migrates within the domain
of computation by random walk, chemotaxis, durotaxis and as a result of the
localized strains they are exposed to. Let x j (t) denote the center position of cell i
at time t , then this gives

dxi (t) = αi M̂i (x)ẑi dt + β∇c(t, xi (t))dt + √
2DdW(t), f or i ∈ {1, . . . , n}.

(4)
Where α, β, and D denote a parameter with dimension [ m3

Ns ], cell mobility, and
cell diffusion coefficient. The first, second, and third term, respectively, represent
tensotaxis, chemo- or haptotaxis, and random walk. More information regarding
this formalism can be found in [22].

• Due to the uncertainties from stochastic processes in the model and input
parameters, statistical assessment of the model and variables is very important.
Monte Carlo simulations are performed to investigate the models and to estimate
the influence of data, where the sensitivity of a couple of variables are tested
simultaneously and quantitatively. To start with, random input values based on
their probability distributions that can be lognormal, uniform, normal or other
sorts of distributions need to be generated. Taking a normal distribution as an
example, a stochastic variable X can be generated by Eq.5 (see below), where
N , σ , and μ denote the number of samples, the standard deviation, and the mean
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of the distribution, respectively. Subsequently, one repeats the calculations with
N samples, and then constructs a frequency distribution [71, 79]. The results of
Monte Carlo simulations become more accurate as the amount of trials increases,
with an error that decreases inversely proportional to the square root of the number
of samples. Moreover, the correlation coefficient r between several variables can
be computed to establish whether statistically significant correlations between the
variables of interest exist. This has been done for the transmigration of cancer cells
through cavities and arteries in [21].

X = (randn(N , 1) × σ) + μ (5)

• During cell migration, certain cells (e.g., cancer cells, immune cells) exhibit
ameoboid migration where they push the surrounding ECM away and squeeze
through constrictions, which are much smaller than their own diameters [130].
Furthermore, cells could secrete proteinases to degrade the ECM and remodel
the surroundings [16]. In both scenarios, cells migrate through confined spaces
accompanied by a morphological evolution. Since the cells deform when migrat-
ing through confined spaces, we take the evolution of the cell shape into account.
In order to so, the cell boundary is divided into mesh points, where for each mesh
point i an equation of motion is formulated on the basis of taxis, random motion
and cell stiffness. This equation reads as

dxi (t) = β∇c(t, xi (t))dt + α(xni (t) + B(φ)x̂i − xi (t))dt + ηdW(t), f or i ∈ {1, . . . , n},
(6)

where β represents the cell’s response to external signals and α > 0 stands for
the cytoplasm’s stiffness. Since the cell boundary is divided into points that are
connected to the nucleus, the xi (t) and xni (t), respectively, denote the nodal points
on the cell membrane and nucleus surface. Here, x̂i is a vector connecting the
initial positions of one point i on the cell membrane to the one point i on nucleus
surface. Furthermore, dW(t) denotes a vector Wiener process multiplied to model
local random mobility. Since we incorporate the deformation of the cells, it is
important to simulate the correct angular orientation of the cell, we incorporate
the rotation matrix B(φ),

B(φ) =
(
cos(φ) − sin(φ)

sin(φ) cos(φ)

)
, (7)

where φ is the angle of rotation determined to ensure the following position of
one cell is as close as possible to the current position during the adjustment of
cell orientation. More details regarding the cell (and nucleus) deformation model
and the three-dimensional version of the rotation matrix as well as applications
are given in [21].

• With intravasation and extravasation of blood vessels or lymphatic vessels, indi-
vidual cancer cells or multiple cells are able to transmigrate from part to part and
thereby seed into distant organs. One way of transmigrating is through blood ves-
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sels. First, the cancer cells penetrate through a vessel wall to get into the blood
vessel. Subsequently, they are advected and transmigrate out of the blood vessel
through the vessel wall. Having arrived in the new body part, the cancer cell is
sometimes able to set up a new colony. In this case, a steady blood fluid flow is
necessary to be incorporated. To model a laminar flow as well as to simplify the
process, the pressure-induced Poisseuille flow serves as a method, which reads as

uz(r) = −∂p

∂z
· R2

t

4μ
· (1 − r2

R2
t
), in b, (8)

where Rt ,μ and p represent half-width of the blood vessel, viscosity, and pressure.
One cell with a radius of r moveswith a parabolic profile velocity in the vasculature
domain b. Some computational models can be found in [23, 122].

2.1 Applications

We have already said earlier the scope of our models involves various stages of
cancer progression consisting of tumor initiation, immune responses, angiogenesis,
andmetastasis. Since the current paper aims at describing the general applicability of
cell-basedmathematical models to simulate cancer progression, we show and discuss
some of the simulation results from the various models. More specific details can be
found in the respective papers.

2.2 Modeling Tumor Initiation

Vermolen et al. [123] develop a semi-stochastic cell-based model to simulate tumor
initiation in two and three dimensions. In the model, the mutated cancer cells are
allowed to spread and to invade the neighboring tissue, which induces chemotaxis-
driven migration of antitumor T-lymphocytes. Then T-cells transmigrate from adja-
cent blood vessels and move in the direction of to the concentration gradient of
chemokines and cytokines secreted by cancer cells. This simulation takes into account
the proliferation and death by apoptosis of epithelial and cancer cells, mutation
of epithelial cells and immune responses of antitumor T-lymphocytes. In the sim-
ulations, the computational domain is modeled as spherical where on designated
locations T-cells appear randomly as a result of excavation from surrounding blood
vessels.

In Fig. 2, we show several snapshots at consecutive times from a simulation of
the initiation of cancer. The simulations are done in an 3D framework. The spherical
domain with a radius of 40 micrometer is filled with endothelial cells (indicated
in green color), which are allowed to migrate, proliferate as well as being subject
to apoptosis, at the beginning. Once the endothelial cells mutate to cancer cells
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Fig. 2 Tumor development at four consecutive times from a front view. The green, red, and blue
cells represent, respectively, the epithelial cells, tumor cells, and immune T-cells. The black dots
represent locations on the blood vessel points where T-cells are able to extravasate freely [123]

(indicated in red color), antitumor T-cells (indicated in blue color) are able to be
released and to migrate from the blood vessels, which are depicted by six black
dots. The number of cancerous cells increases significantly in the domain, whereas
the T-cells, represented by blue spheres, hardly enter the region from the boundary.
The intercellular contact inhibition force inhibits the chemotaxis migration of T-cells
toward the center. Therefore, under this simulation, one can imagine that the number
of cancerous cells gradually increases and that the cancerous cells will dominate in
the tissue or have a detrimental impact on an organ of a patient if the immune system
is not sufficiently strong in terms of T-cells counts and migration rate (mobility).

This model captures the most relevant aspects of the tumor initiation which lays
the foundation for the further understanding of the microscopic phenomenon as well
as for the exploration of drug treatment to fight the cancer cells optimally. We finally
remark that the computational limitations forced us to consider a very small portion
of the tissue with a size order of several tens of micrometers. Further, the simulation
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can be used to simulate the very early stages of general cancers such as lung cancer
where cancer cells have easy access to abundant levels of oxygen.

2.3 Modeling of T-cells Migration in Pancreatic Cancer

The tumor-specific T-lymphocytes play an essential role in antitumor immune
responses, which is the body’s first line of defense to clear the body from pathogens,
hazardous chemicals, and cancerous cells. However, cancer cells could escape their
removal by T-cells via several ways. For example, pancreatic ductal adenocarcinoma
is notorious for its profuse desmoplastic ECM, which is a barrier built by cancer cells
to protect themselves against T-cells [97]. This anisotropic stromal ECM is arranged
parallel to the tumor circumference, hence making it appear like tumor islets [100].
The cross-talk between a solid tumor and itsmicroenvironment aswell as the function
of anisotropic stromal ECM are unclear due to the dynamic changes in cellular and
noncellular constituents [6, 25, 49, 84]. However, this anisotropic stroma does have
an obstructive effect on T-cells migration in antitumor immune responses, where
T-cells mainly move between two parallel collagen fibers and hence they migrate
faster in the direction of the orientation of fibers, once they enter the stromal ECM
[12]. Thence, the reduction in their entry reduces their ability to engulf and remove
the cancer cells.

The influence of anisotropic ECM networks on T-cells migration in and around
pancreatic tumor islets has recently been studied byChen et al. [22]. In this aforemen-
tioned work, we are able to quantify the delay of T-cells invasion in cancer-affected
area due to anisotropic ECM orientation. Since anisotropic ECM has an effect on
limiting the direction and the magnitude of the velocity component of T-cells in the
direction toward the center of the tumor islets around the pancreatic tumor islets,
T-cells are hindered in their entering the tumor islets. In Fig. 3, a thick annular gray
domain depicts an anisotropic ECMfilled with profuse collagen as well as other non-
cellular constituents. Inside the tumor islets, the epithelial cells (indicated in blue)
are able to migrate, proliferate, die or mutate to cancer cells (the latter phenotype is
indicated in red).

With an increase of chemokine signals secreted by cancer cells, T-cells (indicated
in green) migrate in the direction of the inner side to fight against cancer cells. As a
result, T-cells engulf all the cancer cells in the tumor islets under a strong immune
system (see Fig. 3a, c, where a “strong immune system” refers to the case that the
immune system is sufficiently strong to neutralize the cancer cells), whereas T-cells
are not able to control the number of cancer cells under a weak immune system (see
Fig. 3b, d). Furthermore, the model quantifies the increase in the length of the period
for the T-cells needed to engulf the cancer cells under both isotropic and anisotropic
circumstances (see Fig. 4). In terms of the obstructing effect of anisotropic ECM on
T-cells migration, the higher the degree of anisotropy, the harder it becomes for the
T-cells to enter inside.
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Fig. 3 Tumor islets a, b with an isotropic and with c, d an anisotropic ECM orientation under a
weak b, d and a strong a, c immune reaction. The blue, red, and green cells represent epithelial
cells, cancer cells, and T-cells, respectively [22]

One important objective of this model is to set up a formulism for the inhibition of
adaptive immune system caused by the orientation of anisotropic ECM layer. It would
bemeaningful to combine themodel with experiments to investigate lethal pancreatic
cancer in the early stages. Moreover, the model could also be used to quantify the
exploration of drug treatment and to quantify the needed strength of the immune
system in terms of T-cells counts, T-cells migration speed, and engulfment capacity
for a certain aggression (in terms of cancer cell proliferation rate and mutation rate)
of cancer proliferation.
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Fig. 4 Comparison of the
evaluation of the percentage
of cancer cell amount. The
blue line and red line denote
the tumor islets under a
strong immune system
without (with immune time
t1) and with (with the
immune time t2) anisotropic
ECM orientation. The light
blue and brown lines
represent the corresponding
95% confidence
intervals [22]
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2.4 Modeling Angiogenesis

Angiogenesis is the process of new blood vessels sprouting from existing ones.
This process includes degradation of vascular basement membrane, activation, pro-
liferation, and migration of endothelial cells, as well as reconstruction of vascular
networks. This is a normal process in the body that is also employed by grow-
ing tumors as their blood supply demands grow. The work by Bookholt et al. [10]
takes into account the dynamic interaction during angiogenesis between two kinds
of endothelial cells: stalk cells and tip cells.

Bookholt et al. [10] simulate early angiogenesis in a scaffold by using a cell-based
formalism combined with a finite element method in three dimensions to solve the
partial differential equations for the chemical entities. Their work could be fruitfully
applied to model angiogenesis near a tumor. The migration of endothelial cells (ECs)
proceeds via chemotaxis and durotaxis which is modeled by obtaining the numerical
solution of a system of stochastic differential equations in the form of Eq.4 and a
set of diffusion-reaction equations of the form of Eq.3. This model is expected to
be applicable to simulate a re-establishment of a vascular network around cardiac
arteries or other organs, as well as inhibiting the regeneration of tumor blood vessels.

The resulting mathematical problem is solved by a combination of a cell-based
approach with the finite element method, the results are shown in Fig. 5. In Fig. 5a,
the green and red cells denote the stalk and tip cells, respectively. The tip cells take the
lead andmove faster toward the bottomwhich can be observed from different angles.
The tip cells rush to the front to chemically degrade the basementmembrane andfibrin
by which channels are formed. Endothelial cells are able to degrade the collagen and
fibrin matrix by releasing MMPs as well as uPA [59]. The interplay between cancer
cells, uPA, uPA inhibitors, plasmin, and ECM is numerically simulated by Andasari
et al. [4]. Figure6a shows the first layer at the top surface of the experiment, which
had to be considered since the experimental study, see Fig. 6b, measured the area of



108 J. Chen et al.

Fig. 5 a Three-dimensional cell plot on the left and projections with respect to different angles of
plot in right. The green and red cells denote the stalk and tip cells, respectively. bThree-dimensional
surface plot of cells. The cylindrical boundary in black lines denotes the computational domain [10]

Fig. 6 a Microscopic plot from a top view. The red, blue, and green circles represent cells in top,
middle, and lower levels. Furthermore, the small red crosses are tip cells and white gaps marked
with black arrows visualize new vessel sprouts. b Dermal ECs in a well after stimulation with 25
ng/mL vascular endothelial growth factor (VEGF) and 2 ng/mL the cytokine named tumor necrosis
factor α (TNF-α). Similar to the circular shape of the structures are new vessel sprouts, and one of
which is marked by an arrow [10]

the gaps of the top surface. Figure6b represents a micrograph showing the top layer
of the experimental gel structure through which the endothelial cells migrate. The
gaps represent the channels that resulted by endothelial cells migrating into the gel
and their simulated counterparts can be observed in Fig. 6a. The channels, formed by
the tip cells-induced degradation of the ECM, are represented by the white patches
over the surface in Fig. 6a, and by the areas enclosed by the closed curves in Fig. 6b.
Furthermore, Fig. 6a shows the other cells in the very top layers of top, middle and
lower plotted by red, blue as well as green, respectively. Two gaps that coincide
with vessel sprouts formed by the tip cells, are indicated by arrows in Fig. 6a. This
cell-based model is qualitatively successful in describing the in vitro angiogenesis
sprouting experiments done by the VUmc dermatology department (see Fig. 6b).
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2.5 Modeling of Durotaxis-Driven Migration of Cancer Cells
in Metastasis

Cancer cells are able to apply relatively large forces [65, 72] which relate to their
increased mobility and mechanical invasiveness [3, 76]. The study by Dudaie et al.
[32] is devoted to the development of a model for collective migration of cells under
varying stiffness and cell-to-cell mechanical communication. The simulation results
indicate that cells prefer to move to a stiffer region and that the rate of migration
depends on the stiffness of the cell and substrate or ECM. This model is developed
to simulate cancer metastasis, in particular in the context of breast cancer, and other
processes such as wound healing. In the aforementioned work, the stiffness of the
cells and substrate or ECM is assumed to be fixed at all times in an 2D or 3D model.
However, the tumors are stiffer due to a stiff stroma compared to normal tissue [85].
Furthermore, cancer cells are capable of changing the stiffness of their environment.
This is the reason why the influence of varying stiffness on cell migration is inves-
tigated by Dudaie et al. [32]. Based on their results, the migration velocities of the
cells differ with varying elastic modulus of the substrate and the simulation can be
used for describing cancer metastasis. See Fig. 7 for several snapshots at consecutive
times. Furthermore, the ratio between the elastic moduli of the substrate and the
cell steers the net direction of cell migration. In Fig. 7, the blue, red, and black cells
represent the normal cells, cancerous cells, and the dead cells, respectively. Due to
the attraction by the tumor, normal cells in the tissue tend to move toward the tumor
domain where the ECM is much stiffer than it is in the normal tissue. Cells have
previously been shown to be attracted to stiffer substrates [66].

This model focuses on the assessment of the influence of the stiffness on cellular
migration through mechanotaxis and as a result, cells are likely to move toward a
stiffer region (that is durotaxis). Besides metastasis, this model can also be applied to
other biomechanical processes, such as tissue growth, wound healing, tumor devel-
opment, or preventing migration from metastasis.

2.6 Modeling Cell Deformation During Cancer Metastasis

Next to cell colony models with relatively many cells, we also consider the behavior
of one cell only. This is done experimentally [65, 72] and computationally. This
single cell approach allows to study the behavior of one cell in more detail and this
could help to reveal the migration and transmigration kinetics through cavities and
other objects.

In most of our models, the shape of a cell is fixed to circular in 2D and spherical
in 3D; this is the morphology of cells in suspension and also on soft gels. However,
the real shape of a cell and nucleus during migration could be dynamic [42]. To
simulate dynamic cell shape changes, a phenomenological model with application
to simplified cancer metastasis has been developed [21]. One cell migrates toward to
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Fig. 7 3D simulation of metastasis of cancer. The blue, red, and black cells represent the normal
cells, cancer cells, and dead cells, respectively [32]

an imaginary source in Fig. 8, which could be the oxygen emitting spot or a stiffness
signal. We use this model to simulate how a single cell intravasates and extravasates
a blood vessel or a lymphatic vessel subject to the evolution of morphology caused
by constricted spaces. To mimic a micro blood fluid, Poisseuille flow is incorporated
to simulate blood flow through a small blood vessel in an extended model where the
impact of vessel radius on the success rate of cell transmigration is studied [23].

We use an IMEX Euler Maruyama method to deal with the nonlinear stochas-
tic differential equations and Monte Carlo simulations to analyze the correlations
between uncertain input values and simulated results. In our simulations, a cell is
able to deform well when it comes across various stiff obstacles in 2D or 3D sur-
roundings. This is consistent with various in vitro experimental studies. Moreover,
Monte Carlo simulations show that, among others, the correlation between the first
passage time, which is the time needed for the cell to reach the hypothetical source
(denoted by the asterisk), and the channel roughness is significantly positive.

This model could be used to find ways to inhibit metastasis through inhibition
of transmigration of cancer cells through blood vessels and organ walls. One could
for instance search for ways to reduce the metastatic driving force by decreasing the
signal for durotaxis by reducing the environmental stiffness variations, or by exposing
the cancer cells to a chemical that decrease their strength in applying forces on their
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Fig. 8 Consecutive snapshots of one cell deformation during intravasation and extravasation. The
vessels, metastatic cell, and nucleus are visualized in gray, red, and green colors, respectively. The
cell is attracted by a hypothetical source (e.g., a chemical signal) represented by a blue asterisk [21]

extracellular environment or by reducing the deformability (and motility) of the cells
such that the cancer cells are no longer able to move from one part in the body to
another part through cavities and other types of obstacles. Since the mathematical
modeling of biomedical processes only started relatively recently, many challenges
remain to be dealt with.

3 Discussion

Mathematical simulationswith awide range of techniques can be applied tomany dif-
ferent practical problems and its importance on cancer research has been increasingly
recognized in the recent decades. Differential equation-based continuum models are
able to cover relevant scales from 102 µm to 10 cm, whereas hybrid models includ-
ing cellular automata, and agent-based techniques can span scales from microns to
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millimeters [103]. Normally, mathematical modeling is a process of several steps: (1)
choose a specific problem and computational domain; (2) make some simplifications
using assumptions and convert this real problem to a mathematical problem through
quantification; (3) establish mathematical equations which enable to describe the
relationship between the relevant quantities; (4) calculate the solution to the actual
problem quickly and accurately using computing technology, software and other
tools. Certainly, a sound mathematical model in this context must be analyzed (such
as well-posedness, stability, error, etc.), validated in vitro or in vivo and applied to
obtain further understanding of the fatal disease or any other biophysical or biomed-
ical phenomenon.

Since biomedical studies often involve extensive experimental data in terms of pat-
terns and numbers, the quantified hypotheses pose mathematical challenges, which
are the backbone of mathematical models. The mathematical models can be used to
investigate case studies that do not exactly fit within the experimental outcomes. A
major advantage of mathematical modeling is that the number of animal or in vitro
experiments can be reduced.Manymathematical models are based on the abstraction
of biological phenomena into sets of partial differential equations, stochastic pro-
cesses or even combinations of both. The approximate solutions are solved by using
numerical methods such as combinations of time integration, finite element method,
Green’s functions etc., or using stochastic processes. In case of probabilistic models,
the model results need a statistical assessment in terms of intervals of confidence,
correlations, or other statistical tests.

In our future studies,wewill developmodelswith expanded physiological, such as
the formation of abnormal stroma caused by cancer, interaction of innate immunity
and adaptive immunity for cancer, angiogenesis, and network models for cancer
metastasis, as well as other processes. Through the combination of various stages of
the models of cancer, the complete model is expected to be applied in various aspects
of cancer research. To keep the CPU time of the model low, a small number of cells
is considered in two and three dimensions currently. However, parallel computing
is capable to upscale the number of cells in size to achieve large-scale quantitative
simulation of cells. Therefore, we will use parallel computing facilities to simulate
human tissue and even organs in an 3D environment to make the model as realistic
as possible.

Existing models by us and others will also need to be expanded to include more
complexity and physiological aspects. One aspect is sensitivity analysis of input
values, due to the uncertainties, the study of parametric variation is crucially impor-
tant. In our statistical evaluation of results, we use Monte Carlo simulations, which
enables us to simultaneously and quantitatively investigate the input variables and
correlations among them [71, 79]. It could be useful to compare our statistical out-
comes in terms of probabilities, correlations and significancewith large data sets from
experimental and clinical studies and to investigate whether similar trends arise.

Another important matter is the accessibility to realistic values of the input param-
eters, currently, most of the parameters in our simulations have been chosen on the
basis of the literature or by educated guesses. Hopefully, more realistic input val-
ues will be available to us such that we are able to validate our modeling results
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better with available experimental outcomes. Thence it is crucial to cooperate with
biomedical labs or hospitals to realize the validation, evaluation, and application of
our models, which definitely enable to enhance further understanding of the pro-
gression and inhibition of cancer. Another important issue concerns the variations
of the input from patient to patient due to age, genetic, pattern, lifestyle, and gender.
This makes that many of the simulated results contain uncertainties despite possible
well-measured data in generic patients. These uncertainties require a probabilistic
modeling approach and hence, a statistical assessment of the simulation results is
indispensable.

Last but not the least, next to common surgical therapieswhere tumors are removed
or where chemotherapy is applied, therapies could be directed to paralyzing cancer
cells in terms of motility and invasiveness by reducing cell deformability and/or
by reducing the durotactic signal through de-stiffening certain body parts. Further
treatments could target cancer cells by decreasing their proliferation rate and by
increasing mortality rates. This is often done in chemotherapies. Alternatively, one
could investigate and quantify the treatment of cancers by nanoparticles that only
target the cancer cells. Modeling studies and frameworks could help investigate the
impact and feasibility of the aforementioned treatments.

4 Conclusion

In the current manuscript, we illustrated the importance of mathematical modeling
to the cancer research community. The illustration is done by describing several
case studies of models of various applications in early-stage cancer development.
A large advantage of mathematical modeling is the availability of a tool to pre-
dict outcomes from conditions that are beyond the measured and observed values.
Biological and clinical researchers normally have limited training in mathematics,
conversely, applied mathematicians often poorly understand the complicated multi-
scale dynamics that characterize the processes studies in the life sciences [45]. As a
fact, typically medical biologists and clinicians show little interest in mathematical
modeling, and thereby limited data is accessible to mathematicians. Another prob-
lem is that often mathematical modelers ask for parameters that are hard or even
impossible to measure by medical biologists.

The evolutionary nature of cancer is undoubtedly important for oncologists to
hack cancer disease, where mathematical modeling is able to aid us to obtain a better
understanding of howcancer evolves and how it adapts to the environment.Moreover,
mathematical modeling can help clinicians optimize the drug treatment strategies,
and further do the pre-validation studies on a computer with a few seconds before
testing in animals or humans [44]. At later stages, the mathematical models will
be used to improve existing therapies and to quantify the impact of new therapies
against cancer. To summarize, mathematical modeling has brought new insights into
the underlying mechanisms of cancer evolution and provides prospects for oncology
research.
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Estimation of 6 Degrees-of-Freedom
Accelerations from Head Impact
Telemetry System Outputs
for Computational Modeling

Logan E. Miller, Jillian E. Urban and Joel D. Stitzel

Abstract To understand the biomechanical basis of head impacts, finite element
(FE) modeling is used to estimate the response throughout the brain in various
impact conditions. FE simulation of head motion requires a complete description
of kinematics, such as six degrees of freedom (6DOF) linear and rotational acceler-
ation curves defining the boundary conditions. These are not available from many
common head impact sensors such as the Head Impact Telemetry (HIT) System.
At the same time, there are hundreds of thousands of impacts, likely millions of
impacts, collected by HITS which represent an underutilized resource for compu-
tational modeling. The goal of this study was to develop an algorithm to determine
6DOF acceleration curves based on the corresponding HITS output data for use in
FE modeling. The transformation algorithm was developed from a dataset of 14,767
head impacts collected with the HIT System and the corresponding 6DOF informa-
tion provided by a published algorithm for this study. The impacts were sorted into
impact regions and classified by the polarity of peak accelerations, and characteristic
curves for each polarity combination were calculated. The algorithm was validated
against 50 random impacts by comparing predicted and true acceleration curves
using an objective curve comparison metric, CORA, to quantify error. These results
demonstrate the algorithm accurately estimates 6DOF motion characteristics from
5DOF inputs sufficient for the purpose of performing basic biomechanical analyses
of the impacts through FE modeling.

1 Introduction

There are approximately 5 million athletes playing organized football in the United
States; 2,000 professional players, 100,000 college players, 1.3 million high school
players, and 3.5 million youth players [1–3]. Sport-related traumatic brain injury
(TBI) is an important public health concern due to the number of people affected
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and unknown and potentially serious resulting conditions. Although football has a
high rate of concussion, exposure to repetitive subconcussive head impacts, which
occur as part of normal participation in the sport, and associated changes in the brain
related to neurodegenerative diseases is of increasing concern [4–8]. The advent of
head-sensing technology has allowed researchers to collect real-world on-field head
impact data by instrumenting athletes during typical play over the course of entire
seasons [9–13]. In this context, head impact exposure in football has been extensively
studied; however, the biomechanical basis of subconcussive head impacts is still not
well-understood. Tobetter understand the effects of repetitive subconcussive impacts,
biomechanical factors of head impact, such as impact location and direction, as well
as brain parenchymal deformations can be studied in detail using finite element (FE)
models.

Various FE-based studies have been conducted to quantify the strain response of
the brain under conditions representative of typical football impacts. In 2014, Ji et al.
used the Dartmouth Head Injury Model (DHIM) and the Simulated Injury Monitor
(SIMon) to investigate brain-strain-related responses in a range of loading conditions
representative football impacts experienced at the youth, high school, and collegiate
levels [14]. Brain deformation was measured using deformation metrics proposed
to have a correlation to brain injury, such as maximum principal strain (MPS) and
von Mises stress [15, 16]. This study also investigated the relative contributions of
linear and angular acceleration to the strain response and found that isolated linear
acceleration generates negligible strain. A similar study used the DHIM, SIMon, and
Wayne State University Brain Injury Model (WSUBIM) models to study regional
brain response in the cerebrum, cerebellum, brainstem, and whole brain [17]. Smith
et al. (2015) used the UCDBTM to evaluate strain response for indirect, direct, and
combined loading scenarios [18]. Darling et al. (2016) used the head model from the
Global Human BodyModels Consortium (GHBMC) full body model to evaluate the
strain response to two typical loading conditions experienced in football—frontal
impact and crown impact [19].

Combining the large existing data set of real-world head impacts collected over the
years with validated FE brain models presents a valuable opportunity to advance our
knowledge of the brain’s response to head impact. This is not a straightforward task,
when considering the data head-sensing devices provide and the data necessary for FE
modeling. FE simulation of head motion requires a full description of the kinematics
of the skull. Oneway to achieve this is through the provision of six degrees of freedom
(6DOF) linear and rotational acceleration curves to define the boundary conditions,
which is not available frommost common head impact sensors. For example, outputs
from the Head Impact Telemetry (HIT) System are limited to peak XYZ linear
acceleration values, peak XY rotational acceleration values, a 40 ms linear resultant
time trace, and an azimuth and elevation angle for each impact [20]. Beckwith et al.
published an algorithm, which can be used to estimate 6DOF information from the
original accelerations collected by the single axis accelerometers used in the HITS.
However, the raw acceleration data for each impact is not provided to researchers
using the system under any circumstance and the 6DOF algorithm is only used to
generate 6DOF data which is provided to researchers with a collaborative contract
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or grant with Simbex (Lebanon, NH). This means that a very large percentage of
the HITS data collected in the research environment cannot be used for modeling,
including for many studies where there is imaging data also available [21–26].

Therefore, the objective of this study was to develop a transformation algorithm to
determine 6DOF acceleration curves based on the corresponding HITS output data
for use in future finite element studies.

2 Methods

The current study develops a transformation algorithm to estimate complete kine-
matic descriptions for head impacts from 5DOF HITS output data. The HITS output
data include only the following kinematics: resultant linear acceleration time history,
peak XYZ linear acceleration values, and peak XY rotational acceleration values.
Figure 1 shows complete kinematics for an example head impact; the HITS output
is shown in black, whereas the missing information is shown in gray. Thus, the kine-
matic information displayed in gray is the information that will be produced by the
transformation algorithm.

Fig. 1 Head kinematics for an example impact showing information included in the HITS outputs
(displayed in black) and the missing information to complete the 6DOF kinematics (displayed in
gray)
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Fig. 2 All impacts plotted on a sphere representing the head (a), impact levels (b), impact regions
(c), and all impacts reflected to the left side (d)

Fig. 3 Numbering scheme for impact regions

The transformation algorithm was developed from an existing dataset of head
impacts collected with the HIT System. First, the impacts were sorted into impact
regions defined by approximately equal divisions of azimuth and elevation. Twelve
impact levels representing 15° increments in elevation angles were defined (Fig. 2b),
numbered from the top of the head (1) to the bottom (12). Starting at the impact level
with the largest surface area (level 6), regions were divided into 15° azimuth regions.
Then, for impact levels 1 through 5, regions were defined using azimuth angles that
resulted in the surface area of impact regions closest to the surface area for impact
regions from impact level 6. This resulted in between 4 and 24 regions defined per
level to define ensure similar surface area impact regions in a spherical coordinate
system. This process resulted in a total of 192 impact regions (Fig. 2c).

Next, assuming symmetry, impacts that occurred on the right side of the headwere
reflected to the left side so all impacts occurred on the left hemisphere (Fig. 2d). To
reflect an impact, the azimuth angle was inverted, as well as the following accel-
eration components: linear Y, rotational X, and rotational Z. A two-dimensional
representation of the numbering scheme for impact regions is shown in Fig. 3, which
may be considered analogous to a map cartographic projection.

Impacts were then classified by the polarity of peak accelerations with a 1 × 6
vector of positive or negative ones corresponding to the polarity of XYZ linear and
rotational acceleration. For example, the polarity characterization corresponding to
the impact is shown in Fig. 4 is [−1 −1 −1 +1 −1 −1]. Impacts corresponding to
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Fig. 4 Example impact demonstrating polarity characterization

Table 1 Unique polarity
combinations for level 2,
region 2

Lin X Lin Y Lin Z Rot X Rot Y Rot Z # Impacts

−1 −1 −1 +1 −1 −1 123

−1 −1 −1 +1 +1 −1 87

−1 −1 −1 +1 −1 +1 70

+1 −1 −1 +1 +1 −1 9

−1 −1 −1 +1 +1 +1 7

+1 −1 −1 +1 +1 +1 4

+1 +1 +1 −1 +1 +1 4

+1 −1 −1 +1 −1 −1 3

+1 −1 −1 +1 −1 +1 3

−1 −1 −1 −1 −1 −1 1

−1 +1 −1 −1 −1 +1 1

−1 +1 −1 +1 +1 +1 1

−1 +1 +1 −1 +1 −1 1

+1 −1 −1 −1 +1 −1 1

+1 +1 −1 −1 +1 +1 1

+1 +1 +1 −1 −1 +1 1

+1 +1 +1 −1 +1 −1 1

each region were then grouped by unique polarity combinations. For example, there
were 17 unique polarity combinations corresponding to the 318 impacts in impact
Level 2, Region 2 (Table 1).

To use the algorithm to estimate 6DOF curves for a given HITS impact, char-
acteristic curves corresponding to the appropriate impact region and polarity are
determined and then scaled to the peak values output by the HIT System.
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To validate the algorithm, 50 random impacts from the dataset were selected
and the true and predicted acceleration curves were compared. CORA, an objective
comparison metric, was used to quantify error between the true and predicted curves
[27]. CORA is an objective ratingmethod combining two independent submethods, a
corridor rating, and a cross-correlation rating. These two ratings range from0 to 1 and
are averaged to determine theCORArating (1 indicates a perfectmatch). The corridor
method computes a rating based on where the simulation curve falls in relation to
corridors around the experimental curve. The cross-correlation method is based on
ratings for the phase shift, size, and shape of time-shifted curves. In addition to
incorporating both point-by-point and peak value comparisons for assessing model
performance, CORA is also able to evaluate the cross-correlation of two curves.
CORA scores were calculated for all six acceleration curves and averaged to get a
single rating for each tested impact.

3 Results

The dataset consisted of 14,767 impacts which were sorted into 192 impact regions.
The number of impacts associated with an individual impact region ranged from 9
to 710. A total of 8,060 (54.6%) impacts were reflected from the right hemisphere
to the left. The number of unique polarities per impact region ranged from 4 to 44
combinations.

Characteristic curves for each unique polarity combination were calculated by
averaging aligned normalized acceleration curves. The characteristic curves for the
impact Level 4, Region 2 (Fig. 5) are shown in Fig. 6. 6DOF curves were generated
for each impact by scaling the characteristic curves to the peak values output by the
HIT System given the impact region and polarity.

To validate the characteristic curves produced by the 5DOF to 6DOF algorithm,
50 random impacts were selected and the curves predicted by the algorithm were
compared to the true acceleration curves for that impact. CORA scores were cal-
culated for all six acceleration curves and averaged to compute a single rating for
each tested impact. The mean, minimum, and maximum CORA scores of the 50

Fig. 5 Impacts associated
with impact level 4, region 2
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Fig. 6 Characteristic curves for impact region highlighted in Fig. 5

Fig. 7 Validation of an example sampled impact

validation impacts were 0.497, 0.267, and 0.733, respectively. Comparison of true
and predicted curves for an example sampled impact is shown in Fig. 7, which had
an average CORA score of 0.675.

4 Discussion

The algorithm presented in this study utilizes calculated characteristic curves associ-
ated with specific polarities at each impact region to compute 6DOF data from 5DOF
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HITS data. In this approach, the impact region and polarity combination is calculated
to determine the associated characteristic curves. The curves are then scaled to the
peak values of the acceleration components determined from the HITS output. This
algorithm was validated against 50 random impacts and resulted in mean, minimum,
and maximum CORA scores of the 50 validation impacts were 0.497, 0.267, and
0.733, respectively. These results demonstrate the algorithm accurately estimates
6DOF motion characteristics from 5DOF inputs sufficient for the purpose of per-
forming basic biomechanical analyses of the impacts through FE modeling. This
algorithm allows the leveraging of hundreds of thousands of head impacts collected
using the HITS system, many with accompanying medical imaging and neurocog-
nitive data, over years of research to be further studied using FE brain models. This
ability will contribute to the goal of quantifying subconcussive impact exposure, and
perhaps elucidating concussion mechanisms, and identifying finite element based
metrics discriminating concussion injury thresholds.

A limitation of this approach is that the use of estimated inputs to the algo-
rithm (FE boundary conditions) to predict strain and other metrics correlated with an
injury. While the algorithm provides promising results and demonstrates the ability
to closely predict acceleration curves, small differences may still result in differences
in the FE output.

5 Conclusion

The goal of this study was to develop a transformation algorithm to determine 6DOF
acceleration curves based on the corresponding HITS output data for use in future
FE studies. An algorithm consisting of a set of characteristic curves was calculated
which can be used with HITS output values to produce estimated 6DOF acceleration
curves. These results demonstrate the algorithm accurately estimates 6DOF motion
characteristics from 5DOF inputs to the degree necessary for using in FE simulation.
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Physiological Cybernetics: Methods
and Applications

Daniela Iacoviello

Abstract In this paper, it is discussed howphysiological systems can be regulated by
using the control theory as well as methodologies of system analysis, modeling, and
identification. In physiology, the natural tendency to homeostasis, despite changes
in the environments, implies a feedback-control scheme. The study of the natural
regulation in physiological systems could help in its replacing when pathological
situations are present. The basic concepts of homeostasis, modeling and control are
here recalled, and some case studies are described.

1 Introduction: Physiological Cybernetics

The term “physiological cybernetics”, introduced by Wiener in 1948, refers to the
possibility of determining models able to suitably describe physiological systems in
the framework of systems and control theory.

The study of physiological phenomena in the control context implies many diffi-
culties [32]; first, the definition of the state variables, the inputs and the outputs are
not always evident. This aspect is strictly relatedwith themodeling of the phenomena
under exam and with the fact that the system to be controlled is a controller itself;
physiological systems are usually unknown and different systems interact between
each other, thus making difficult and complex the description of the phenomena.
They are systems intrinsically time variant and highly nonlinear, and linearization
does not provide, usually, realistic results. When a model is defined according to the
physical relations, its parametersmust be determined generally consideringmeasures
taken in the correspondent real conditions, with in vivo experiments rather difficult
to be reproduced and sometimes expensive. The control designed for a physiological
system requires versatility and the capability to face different functions; this con-
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trol system should act not only with a feedback action but also assuming that the
controller characteristics could change in an adaptive way.

The specificity of dealing with physiological control systems requires researchers
able to interact with experts of the different disciplines involved, physiology, mod-
eling, identification, measurements, data analysis and, of course, automatic control.
The latter may require techniques in the framework of nonlinear and/or optimal
and/or adaptive control to deal with the complexity of this kind of phenomena. The
importance of communication between researchers with different skills was stated
by Wiener [46], who, referring specifically to mathematicians and physiologists,
emphasized the importance of the researchers involved in interdisciplinary studies
to share different expertise and knowledge. This difficulty is enhanced also in [12],
where it is noted that generally control theory has been applied in electrical, mechan-
ical and aerospace engineering field, but rarely in bioengineering, despite the fact,
as will be shown in this paper, that the basic elements of automatic control, such as
the feedback, are intrinsic in physiological systems.

The availability of a large amount of physiological and environmental data and of
new techniques for combining multiple data sources have further increased the inter-
est to physiological cybernetics, thus allowing the effective action and improvement
of the research activities. This is also due to the undeniable advantage of the simula-
tion aspect to study the behaviors of the variables and the effects of possible actions,
before acting on a real system or, even better, alongwith experiments in vivo. In fact,
the interaction of the modeling, simulation and control with experiments improves
the knowledge of the phenomena, suggesting possible control strategies.

The applications of automatic control actions to physiological problems includes
the following studies: diabetes [11, 22], pharmacokinetics/pharmacodynamics [3,
33] and thyroid control [41, 45] allowing the drug dosage determination, epidemic
analysis and control [4, 35, 29], respiratory and cardiac modeling and control [9,
31], bone remodeling [1, 5, 43], gene network regulation [14], rehabilitation devices
[37, 38], just to mention few examples. All these topics may be appreciated also for
their interdisciplinary characteristics, including in the term “physiological systems”
also compartmentalmodels describing interactions between individuals. The fields of
applications are in awide range, in different contexts and from various points of view.

This paper is organized as follows; in Sect. 2 the concept of homeostasis is dis-
cussed, and some examples are recalled. In Sect. 3, the modeling and control pecu-
liarities in physiological cybernetics are described pointing out, whenever necessary,
the differences with respect to other application fields. In Sect. 4 some case stud-
ies of control applied to physiological systems are discussed; they refer to glucose
regulation, epidemic modeling control, bone remodeling, dosage determination in a
chemotherapy and pupil light reflex.
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2 Homeostasis

The concept of homeostasis dates to 1926, whenCannon introduced theword “home-
ostasis” to describe the stability of various constituents in body fluids and of core
temperature [6]; in particular, he wrote: “When a factor is known which can shift
a homeostatic state in one direction it is reasonable to look for automatic control
of that factor or for a factor or factors having an opposing effect.” Physiological
functions require stability conditions despite changes in the environments, Fig. 1.
Homeostasis is the regulation and maintenance of the internal environment of the
body; the body must remain within a narrow range of conditions, like, for example,
the body temperature.

The homeostasis, or equilibrium state, is possible by suitable feedback action;
it acts at different levels, molecular, cellular, organism, and population [27]. More
precisely, at the molecular level, it limits the final quantity of products due to the
enzymatic system; at the cellular level, it limits the mitotic process in a cellular
population when the cells become too numerous; at the organism level, the various
mechanisms work together in different modalities; at population level it regulates
the flux of subjects from one class to the other. The homeostatic system is based on
the following principal items that, together, represent the feedback response, Fig. 2:

• the stimulus: it is the change that stimulates the receptor to activate the regulation;
• the receptor: it gets the external and internal conditions;
• the control center: it compares the condition identified by the receptor and the
optimal one and acts consequently;

• the actuator: it applies the decisions of the control center.

In the classical control language, the corresponding block diagram scheme is
shown in Fig. 3.

Fig. 1 Non-homeostatic situation as a condition for disease
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Fig. 2 The feedback response as the homeostatic scheme

Fig. 3 A classical feedback scheme

As said, the homeostasis guarantees the maintenance of almost constant physi-
ological parameters despite changes in the external and internal conditions. It is so
important that a redundancy in the control mechanism is usually present: sometimes
for a single “variable” more than one control system is present, and more than one
effector can act; redundancy guarantees stability of the variable despite different
perturbations. Examples of redundancy are in blood pressure and in the temperature
control mechanisms.

The regulation of the body temperature is a typical example of homeostasis, see
Fig. 4. When the body temperature falls, all the body acts to conserve the heat: the
blood vessels constrict, sweat glands do not secrete fluid, shivering produced by
involuntary contraction of muscles generates heats. On the other hand, when the
body temperature arises all the body acts to lose heat: blood vessels dilate, sweat
glands secrete fluids, and, as the fluids evaporate, heat is lost.

Another classic example of homeostasis regards glucose regulation, Fig. 5. If the
level of glucose is high (for example, after a meal), the beta cells of pancreas release
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Fig. 4 Body temperature homeostasis cycle

Fig. 5 Glucose homeostasis cycle

insulin, that acts as a “key” allowing the fat cells to take glucose from the blood: the
normal blood glucose level is thus achieved. On the contrary, if the blood glucose
level is low, the alpha cells of pancreas release glucagon and the liver releases glucose
into the blood, thus allowing the blood to achieve the normal glucose level.
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3 Modeling and Control

In this section, the modeling and control peculiarities in physiological cybernetics
are discussed pointing out, whenever necessary, the differences with respect to other
application fields. The complete replacement of natural control action by an exter-
nal automatic method is not an easy task; it requires the knowledge (not completely
available) of the phenomenon, biomedical instruments and devices, data analysis and
processing, modeling and control. The possibility of a mathematical representation
could allow a better understanding of the relations among the variables of inter-
est; moreover, control strategies could be implemented to mimic the natural control
mechanisms, thus allowing the determination of possible action (for example the
medication) whenever required.

In the following, there will be discussed the noteworthy aspects of modeling and
control from the physiological cybernetics point of view.

Modeling Aspects
To face a physiological control problem, the knowledge of the underlying medical
and, if necessary, also social aspects is needed to guide the modeling and control
phases, [8]. In Sect. 4, some case studies are discussed enhancing the rationale under
the choices regarding the description and the control actions adopted. As far as the
modeling point of view, two main approaches may be cited: the data-driven models
and the system modeling; in the first case, the models are based on experimental
data, looking for quantitative description of the phenomena. This kind of models
are particularly appropriate when there is a lack of knowledge of the physiological
mechanisms involved: sometimes they are referred to as “black box models”. When
it is possible to get a priori knowledge of the phenomena, some assumptions aremade
and, depending on the degree of approximation chosen, a model is proposed. In this
framework, one can deal with linear/nonlinear models, of distributed, or stochastic,
or discrete modeling and so on; all of these represent approximations that must be
considered. Another common aspect in the modeling phase is tentative to use well-
known models to describe physiological phenomena; for example, electrical models
could help in describing the respiratorymechanics, aswell as the theory of oscillators,
and in general of periodic systems, are useful to describe the cardiac output and the
periodic breathing [25, 31].

Once a first choice of the model has been proposed, simulations are useful to
examine the behaviors of the variables and therefore to check if the chosen repre-
sentation is appropriate, comparing the output of the model with the real data and/or
the information available on the physiology. This problem involves also the identi-
fication of the models’ parameters: data are required, along with the proper choice
of the experiments design. Finally, model validation studies whether the model is
adequate with the purposes; it is not “the last step”, since during the overall modeling
procedure one or more phase could be repeated to improve and/or to simplify the
model as well as to update the numerical values of the parameters.
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Control Aspects
All the physiological aspects of our body may be described in terms of “mainte-
nance of homeostatic conditions” involving feedback-control scheme, both negative
and positive ones, as shown in Fig. 3. Both schemes are common in nature; in
the former case, the negative feedback allows the system to act as regulator, thus
reducing the error signal. The two cases previously proposed, the regulation of the
body temperature and of the glucose, are obviously examples of negative feedback
schemes, since the aim of the control action is to restore the physiological conditions,
despite the variation due, for example, to the external changes of temperature and
to the assumption of food, respectively. Another example of negative feedback is
the pupil light reflex; the size of the pupil depends on muscles activated or left to
relax: they receive control signals from the brain, depending on the light level. Pupil
size depends on the interaction of the parasympathetic and the sympathetic nervous
system, controlled by the central nervous one. When the light level is high, there is
the activation of constricting muscles which shrink the pupil area thus decreasing
the light flux on the retina. On the other hand, when the light level is low, the smooth
cells of the radial muscle contract and the result is the dilation of the pupil.

In the positive feedback scheme, the feedback signal is added to the input, rather
than being subtracted, thus leading to a vicious cycle of events [31]. A typical example
of positive feedback regards the oxytocin cycle and the birth of a baby. The baby
pushes against the cervix causing its stretching; the latter causes nerve impulses to
be sent to the brain that stimulates the pituitary gland to release oxytocin; it increases
the uterus contractions and the cycle goes on up to the birth of the baby.

The importance of the study of physiological systems and their control mecha-
nisms is summarized in Fig. 6; more precisely, in Fig. 6a it is shown the feedback
scheme of the glucose–insulin interaction. When the action of the beta-cells falls, an
external control must be applied, Fig. 6b: it must try to replicate automatically the
spontaneous insulin production and action. Again, this implies the involvement of
many different disciplines, such as modeling, instrumentation, and feedback-control
strategies.

As already noted, models of physiological systems are in general highly nonlinear
and the control methods to be used must face this difficulty. Some important physio-
logical problems, such as the study of the cardiac output, the fluctuation of ventilation
and the circadianmodel, and their pathologies, may be adequately described by using
oscillator modeling along with the phase-plane analysis and the isocline method. The
nonlinearity characteristics of the physiological systems may lead to complex pat-
terns that can be efficiently described within the theory of bifurcation [47], as in
the logistic equation where fractal structures are present in the time evolution of the
solution. Also in physiological control systems linearization is possible and some-
times used, for example with the theory of small signal perturbation; an interesting
example of this approximation is used in the model of the Cheyne–Stokes breathing
[7, 36].
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Fig. 6 Glucose-insulin feedback scheme; a normal case; b in a diabetic patient an external control
is required

4 Case Studies

In this Section, there will be discussed some examples of the application of automatic
control theory to real problems, such as the regulation of glucose, the dynamic of
population, bone remodeling, the chemotherapeutic strategies definition, and the
pupil light reflex.

The examples proposed present the dynamics and interaction that could be
described at different levels; in all the cases it has been chosen a complete but
not too complicated modeling to focus the attention on the homeostatic aspects and
modeling motivation, other than the regulation. As far as the control point of view,
many results are available in the literature and could substitute the ones discussed
herein, provided the compatibility of the variables used: this is an interesting modu-
lar characteristic that guarantees versatilities both of the modeling and of the control
steps.

The examples are discussed in a “constructive way”, trying to involve the reader in
the motivations of the choices. After a short medical and physiological introduction
useful to understand the problem, the mathematical description is briefly proposed
referring to recently published papers of different authors.

The case studies discussed are heterogeneous and may be referred to as “physio-
logical control systems” broadly speaking.

Regulation of Glucose
Diabetes is a chronic disease that occurs either when the pancreas does not produce
enough insulin (type 1) or when the body cannot effectively use the produced one
(type 2). Insulin is the hormone that regulates blood sugar. The common effect of
uncontrolled diabetes is the raised blood sugar (hyperglycemia) that leads to serious
damage, like in blood vessels and nerves. The literature on the regulation of glucose
is vast, from one of the first model by Stolwijk and Hardy of [40], to the Hovorka
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one of [26], up to the more recent models in [15, 30]. In this Section, it has been
chosen to discuss the approach of [39] in which the simple model of Stolwijk and
Hardy is assumed, and an action based on a PID control is introduced.

Denoting by x(t) and y(t), the glucose and the insulin quantities respectively,
their dynamics are described by the following nonlinear equations:

CG
dx
dt = U (t) + QL − λx − νxy x ≤ θ

CG
dx
dt = U (t) + QL − λx − νxy − μ(x − θ) x > θ

CI
dy
dt = UI (t) − αy x ≤ ϕ

CI
dy
dt = UI (t) − αy + β(x − ϕ) x > ϕ

where θ and ϕ are thresholds that, when exceeded, imply the renal loss and the
production of the insulin, respectively; U (t) represents the external glucose infused
in the bloodstream, whereasUI (t) is the exogenous insulin infusion; parameters are
described in detail in [31]. By considering the two inputs, U (t) and UI (t), and the
two outputs, x(t) and y(t), the transfer function of a PID controller requires the
tuning of the proportional, integral, and derivative gains. A possible methodology
for their determination is to use an optimization algorithm, that tries to replicate
the natural mechanism of insulin production in a healthy subject. In [39] different
optimization algorithms are tested, genetic, particle swarm optimization, artificial
bee colony algorithms. As an objective function it is chosen the normalized error,
where the error is given by the difference between the value of the glucose in a
healthy subject and the measured one

Error = 1

n

∑ ∣∣∣∣
xhealthy − xmeasured

xhealthy

∣∣∣∣

In Fig. 7, the block diagram of this procedure is shown.

Fig. 7 Block diagram of the optimization procedure proposed by Soylu [39]
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It could be appreciated the interdisciplinary characteristic of studying a physiolog-
ical problem (in this case the diabetes control) with an engineering approach; to solve
the problem with the proposed procedure it is required the model that simulates the
“virtual diabetic patient” and the “healthy subject”, the definition of the cost index,
as function of the error, the choice of an optimization procedure, the knowledge of
the physiological glucose concentration in a subject. For a real-case implementation
also problems from sensors, and more in general, from a measurements points of
view, must be faced to obtain the artificial pancreas that could be able to yield the
right dosage of insulin, taking into account changes due to the meals, stress, physical
activities, weather, and so on. Moreover, it could be noted the possibility of changing
the adopted model with another one but preserving the general scheme of Fig. 7, as
well as change the control strategy.

Epidemic Modeling and Control: the HIV/AIDS Spread
The Human Immunodeficiency Virus (HIV) is responsible of the Acquired Immune
Deficiency Syndrome (AIDS); it infects cells of the immune system, destroying or
impairing their function: the immune system becomesweaker, and the person ismore
susceptible to infections. The HIV/AIDS spread has been studied from a different
point of view, at cells level [10, 20, 48], or by studying subjects’ interaction, [18, 34].

AIDS is the most advanced stage of the HIV infection and can be reached in
10–15 years from the infection. This spread has some characteristics that must be
taken into account in the modeling process:

• the HIV can be transmitted only by some body fluids;
• only about 54% of people with HIV are aware of the infection;
• currently, no vaccine exists, and the treatment consists of standard antiretroviral
therapy to maximally suppress the HIV virus and stop its progression;

• using a condom and regular blood analysis on subjects belonging to risk-categories
could help in contrasting the spread of this virus.

As far as the control aspect, theWorld Health Organization (WHO) suggests three
levels of intervention: the first level of intervention is designed for healthy people to
reduce the possibility of new infections and corresponds to the information effort to
use wise attitudes; the second level of intervention is devoted to a fast identification
of new infections to reduce the percentage of subjects that are not aware of their
illness (and therefore to reduce new infections); the third level of intervention is
the effort for medication to the aware infected subjects. Therefore, among infected
subjects the most dangerous are those that, not aware of their status, could infect
the unwise susceptible subjects. These considerations have recently suggested a new
model describing the HIV/AIDS spread [19], in which two classes of susceptible
individuals are introduced: S1(t) representing the number of healthy people that are
not aware of unprotected sex acts risks (and then can contract the virus) and S2(t)
denoting the number of healthy people that, suitably informed, gives great attention
to the protection. Three classes of infected people are considered: the subjects I(t) not
aware of the infection, the patients P(t) in the pre-AIDS condition and the subjects
A(t) in the AIDS state, see Fig. 8.
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Fig. 8 Block diagram of the
HIV/AIDS model proposed
in Di Giamberardino et al.
[19]

For the precise meaning of the parameters of the model see [19]; the complete
controlled model, with the three levels of intervention, is

Ṡ1(t) = Q − dS1(t) − βS1(t)I (t)

Nc(t)
+ γ S2(t) − S1(t)u1(t)

Ṡ2(t) = −(γ + d)S2(t) + S1(t)u1(t)

İ (t) = βS1(t)I (t)

Nc(t)
− (d + δ)I (t) − ψ

I (t)

Nc(t)
u2(t)

Ṗ(t) = εδ I (t) − (α + d)P(t) + φψ
I (t)

Nc(t)
u2(t) + P(t)u3(t)

Ȧ(t) = (1 − ε)δ I (t) + αP(t) − (μ + d)A(t) + (1 − φ)ψ
I (t)

Nc(t)
u2(t) − P(t)u3(t)

After the usual model analysis with the determination of the equilibrium points
(their number and nature depend on the value of β−(d + β)), the control strategy
could be chosen in different ways. A possibility is to determine an optimal control
by minimizing a suitable cost index, as in [21], where, taking into account resources
limitation, the aim is to minimize the number of infected I(t) not aware of their
condition; this number is not available in general, and a state estimator is required.
The possible choice of a quadratic cost index suggested the use of a linear quadratic
regulator and a linearization of the original system, thus yielding a solution in closed
form. The results obtained consisted, as reasonable, in devoting a large amount of
resource in inducing the people to check the eventual positiveness to the HIV, since
the awareness of the infection has a double implication: it reduces dangerous contacts
and induces patients to medication.

This example shows the use of control theory from a different point of view: anal-
ysis of the equilibrium points, linearization, state observer, linear quadratic control,
convergence properties, just to mention the main items. In [10], the analysis of the
equilibrium points is particularly interesting since it is shown how to drive the HIV
patient state to the Long-Term Nonprogressor (LNTP) region of attraction.

A different approach [20] considers the model in [10], and introduces a switching
control action that changes on the basis of the updated situation. The choice of a
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model and/or of a control strategy depends on the specific problem at hand, on the
data available and of course on the goals to be pursued.

Bone Remodeling
Bone tissue during skeletal growth continuously adjusts its mass and architecture to
changing conditions; the bones must adapt their shape and architecture efficiently to
provide rigid levers for muscles, remaining as light as possible. At the cell scale, new
bone tissue is formed by osteoblasts, and resorbed by osteoclasts; it is hypothesized
that the osteocytes control bone adaptation, acting as mechanosensors based on local
loading conditions. The understanding and possibly predicting the adaptation prop-
erties of bones are important for surgical screws, artificial joints, fractures, and so on.
Bone remodeling formulation may be described from two different points of view:
considering local regulation at the tissue and cellular level as in [13], or assuming
global optimality of the bone structure, as in [1, 2, 24, 43]. As pointed out in Sect. 3,
deviation from the remodeling equilibrium condition would initiate the remodeling
activity, as a homeostatic goal.

In the second approach, the structure is usually divided into N elementary regions,
the cellular automata CA; the driving force for adaptive activity is given by the
difference between the strain energy averaged on the volume of the ith cellular
automata, SEDi, and the strain energy density target value SED*.

ei (t) = SEDi − SED∗

In [1, 2] as remodeling local control rule it has been chosen a PID one, using the
effective error:

ēi (t) = 1

N + 1

⎡

⎣ei (t) +
n∑

j=1

e j (t)

⎤

⎦

xi = xi (t + t) − xi (t) = cP ēi (t) + cD[ēi (t) − ēi (t − 1)] + cI

t∑

τ=1

ēi (t − τ)

being xi (t) the mass of the ith CA and cP , cI , cD the PID parameters.
As said, the bones must adapt their shape and architecture efficiently remaining

as light as possible; therefore, the goal to be pursued is to minimize the total mass,
maximizing the stiffness, that is equivalent to minimize the total mass M and the
total energy U.

J = (1 − ω)
M

M0
+ ω

U

U0
, 0 < ω < 1

In [1, 2], the optimization problem has been solved also tuning optimally the PID
parameters cP , cI , cD , under box constraints. It has not been possible to solve the
problem in closed form, and a numerical procedure based on sequential quadratic pro-
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gramming method is used. For the control modulus, it has been used a finite element
analysis-based remodeling algorithm, able to implement the PID bone remodeling
rule.

Also, in this case study, it can be appreciated the strong interdisciplinary required
when facing this kind of problems; for this specific example, skills in structural
engineering, biomedical materials, automatic control and optimization are required,
as well as, of course, suitable knowledge of the physiological aspects involved.

Chemotherapy: An Optimal Control-Based Therapy
The determination of the chemotherapy, both in terms of drug dosage and scheduling,
could be studied in the framework of optimal control theory, aiming at minimizing
contrasting requirements, [33, 44]. Generally, the aim is to preserve healthy cells
while destroying tumoral ones, using the minimum dosage of the drug to avoid toxic
effects. In [23] it is considered the dynamics of the volume N of a tumor:

dN

dt
= r N F(N ) − G(N , t)

where F is the generalized growth function, r is the growth rate of the tumor; G
describes the effects of the drug on the system; different choices are possible and cell-
kill strategies are compared. As an example, it is now considered the Gompertzian
growth for F and Skipper’s log-kill hypothesis for G, as described in [23]:

dN

dt
= r N ln

(
1

N

)
− δu(t)N

being δ the magnitude of the dose, u(t) is the control, that is the strength of the drug
effect, assumed bounded u(t) ∈ [0, M].

As for cost index a reasonable choice is to minimize the toxicity of the drug and
the volume of the tumor at the end of the treatment, [23]:

J (u) = aN (T ) + b
∫ T

0
u(t)dt, a, b > 0

By introducing the change of variables x(t) = ln N , the variation of the volume
of the tumor may be rewritten as

dx

dt
= −r x − δu(t)

The Pontryagin principle allows the determination of optimal control:

u∗(t) =
{
M i f λ(t) > b/2
0 i f λ(t) > b/2

with λ(t) the costate function satisfying the equation:
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dλ(t)

dt
= rλ(t), λ(T ) = aex(T )

The obtained control is the typical bang–bang solution, and the switching depends
on the costate function that is, obviously, function of the volume of the tumor. Dif-
ferent choices of the cost index yield, obviously, different solutions; it is important
the definition of the objective function that better considers the specificities of the
drug and its toxicity. In the cost index, it could be introduced also the duration of
the treatment as variable to minimize, and other elements such as the possibility of
complications.

Pupil Light Reflex
The possibility of modeling pupillary light reflex and measuring the response of
pupil also under different stimuli (auditory, for example) represents a support in
the diagnosis of various pathologies. In particular, the latency after a stimulus is
an indicator of drug and/or alcohol addiction, and of many diseases, such as the
Parkinson, the Alzheimer, and the diabetes ones.

The interdisciplinary characteristic of physiological cybernetic is well evidenced
when studying the pupillary light reflex, Fig. 9a. The determination of the pupil size
implies the use of a pupillometer able to determine noninvasive measurements of the

Fig. 9 Pupil light reflex; a feedback pupil light reflex scheme; b experiment proposed by Stark
[42]
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pupil and of its variations when there is a stimulus. This requires the implementa-
tion of methods of image analysis and processing, [16, 17, 28]; the images may be
degraded by the natural fluctuations of the pupils, called pupil noise, present also in
absence of any kind of stimuli, or by the presence of eyelashes, or artifacts due to
the breath.

Stark [42] studied the fluctuation of the pupil by determining the transfer function
of the pupil light reflex system and analyzed its stability with classical techniques,
such as the Nyquist theorem and the Routh method. In Fig. 9b, it is described the
experiment proposed by Stark to “open the loop”, that is to deduce the transfer
function of the pupillary reflex, [31, 42]. He introduced in the feedback loop a device
with a light source able to adjust the delivered light at intensity inversely proportional
to the pupil area. This expedient allowed him to deduce an estimation of the transfer
function of the reflex.

The identification of a systemby “opening the loop” is particularly importantwhen
studying physiological processes, since they operate generally in closed-loop; “open
the loop” may imply a surgical action or the use of a pharmacological intervention,
or, as in the case of pupil light reflex, the preparation of noninvasive experiments
[31].

5 Conclusions

In this paper, it is discussed how physiological systems and their functions may
be described within the framework of control theory; the feedback action allows
the maintenance of the internal environments of the body, despite changes due to
external conditions. Even if physiological phenomena may be adequately described
by using control formalism, it is still not easy to find researches with skills in the
disciplines involved and able to talk a common language.

Interdisciplinarity is the path for promising improvements to the understanding
of physiological phenomena and to be able to act, whenever the spontaneous and
natural intrinsic mechanisms do not work. This possibility is widely used in many
fields with repercussions on everyday life, such as, for example, to determine the
dosage of a drug.

The recent studies of gene networksmake use of the classical andmodernmethod-
ologies of automatic control: the formalism of system analysis and identification
along with the feedback control theory have shown their power in modeling and
analysis of gene regulatory network.
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New Computational Solution to Compute
the Uptake Index from 99mTc-MDP Bone
Scintigraphy Images

Vânia Araújo, Diogo Faria and João Manuel R. S. Tavares

Abstract The appearance of bone metastasis in patients with breast or prostate
cancermakes the skeletonmost affected bymetastatic cancer. It is estimated that these
two cancers lead in 80% of the cases to the appearance of bone metastasis, which is
considered the main cause of death. 99mTc-methylene diphosphonate (99mTc-MDP)
bone scintigraphy is the most commonly used radionuclide imaging technique for
the detection and prognosis of bone carcinoma. With this work, it was intended to
develop a new computational solution to extract from 99mTc-MDP bone scintigraphy
images quantitative measurements of the affected regions in relation to the non-
pathological regions. Hence, the uptake indexes computed from a new imaging exam
are compared with the indexes computed from a previous exam of the same patient.
Using active shape models, it is possible to segment the regions of the skeleton more
prone to be affected by the bone carcinoma. On the other hand, the metastasis is
segmented using the region-growing algorithm. Then, the uptake rate is calculated
from the relation between the maximum intensity pixel of the metastatic region in
relation to the maximum intensity pixel of the skeletal region where the metastasis
was located. We evaluated the developed solution using scintigraphic images of 15
patients (7 females and 8 males) with bone carcinoma in two distinct time exams.
The bone scans were obtained approximately 3 h after the injection of 740 MBq
of 99mTc-MDP. The obtained indexes were compared against the evaluations in the
clinical reports of the patients. It was possible to verify that the indexes obtained are
according to the clinical evaluations of the 30 exams analyzed. However, there were
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2 cases where the clinical evaluation was unclear as to the progression or regression
of the disease, and when comparing the indexes, it is suggested the progression of the
disease in one case and the regression in the other one. Based on the obtained results,
it is possible to conclude that the computed indexes allow a quantitative analysis
to evaluate the response to the prescribed therapy. Thus, the developed solution is
promising to be used as a tool to help the technicians at the time of clinical evaluation.

Keywords Medical imaging · Image segmentation · Point distribution model ·
Active shape model · Bone metastasis

1 Introduction

The skeleton is most affected by metastatic cancer, with a higher prevalence for
prostate and breast cancer. These two cancers cause in 80% of the cases, the appear-
ance of bone metastases, which is considered the main cause of death. In many cases,
the metastatic lesions are multifocal, which means that they are located throughout
the skeleton with greater incidence in the axial skeleton [1].

The skeleton is constantly remodelingdue to the coordinated activity of osteoclasts
and osteoblasts. In normal bone, there is a balanced sequence: first, the osteoclasts
absorb the bone and then the osteoblasts form bone in the same place. In cases of
metastatic cancer, malignant cells secrete factors that affect this balance leading to
osteoblastic stimulation [2].

Premature detection of metastases can prevent complications, control the stage
of the disease, and help to determine the treatment to follow, which may result in a
higher probability of survival and improvements in quality of life.

Bone scintigraphy with 99mTc methylene diphosphonate (MDP) is currently the
most commonly used imaging technique in NuclearMedicine to determine the extent
of these lesions in the skeleton, as it provides a two-dimensional (2D) image of the
skeleton showing regions with higher uptake (hotspots) [3]. In addition, it has good
sensitivity and has been considered as the first alternative imaging method capable of
diagnosing asymptomatic bonemetastases, since it is readily available and provides a
complete skeletal view at reasonable time and cost [4]. Modern bone scan techniques
can detect an increase in bone mineral turnover as small as 10% in regions that are
only a few millimeters in size. In contrast, a relatively large volume of bone (1 cm3)
must demineralize by about 50% before the change can be detected by radiographs.
It is not surprising then, that in regard to prostate cancer, the bone scan is often
used to stage patients and monitor the course of bone involvement. However, the
interpretation of these exams has significant limitations: The evaluation of the exam
is not yet standardized making the interpretations subjective and dependent on the
experience of the technician. In numerous situations, these evaluations are described
in vague terms as the presence or absence of tumor propagation in the skeleton.
Therefore, a quantitative analysis of the images under study is necessary to reduce
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the variability of the observer in order to determine the extent of the lesions in the
bone and to identify posttreatment changes that are clinically relevant.

To improve the monitoring of the treatment of bone lesions, some authors have
developed scoringmetrics for more objectivemethods of assessing the extent of bone
metastasis, such as counting the number of lesions in the total skeleton, assessing the
regional distribution of the metastasis or indexes that measures the tumor burden as
a percentage of the total skeletal mass (Bone Scan Index) [5]. Therefore, the aim of
the present study was to develop a semiautomatic method for the segmentation, i.e.,
identification, of regions of interest in 99mTc-MDP scintigraphy images of the skeletal
system. The segmented regions allow the posterior assessment of the intensity of the
hotspots under study and, therefore, the uptake index calculation.

2 Materials and Methods

2.1 Bone Scintigraphy

The bone scans used to evaluate the developed solution were obtained approximately
3 h after an intravenous (IV) injection of 740 MBq of 99mTc MDP. Whole-body
images with anterior and posterior views were acquired according to a matrix size of
256× 1024 pixels and using a gamma camera equipped with low-energy all-purpose
collimators (Discovery NM 360, GE Healthcare). The energy discrimination was
provided by a 20% window centered on the 140 keV of 99mTc.

2.2 Training Images Group

A training group of images was randomly chosen to build the Point Distribution
Models [6, 7, 8, 9], used in the image segmentation step. The used group consisted of
10 images of patients who had undergonewhole-body bone scintigraphy at Lenitudes
Medical Center & Research, in Portugal.

2.3 Evaluation Images Group

The evaluation group consists of images acquired from 15 patients (8 males and 7
females), 7 of whom had prostate cancer, the other 7 have breast cancer, and 1 case of
lung cancer. All these patients perform whole-body bone scintigraphy at Lenitudes
Medical Center & Research every 3 months to evaluate the treatment response.
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Fig. 1 Diagram of the proposed solution

2.4 Bone Scintigraphy Image Processing

The diagram of the developed solution is depicted in Fig. 1. The proposed solution
has three main stages: image preprocessing, image segmentation, and uptake index
computation. The image preprocessing stage is adapted to minimize the noisy arti-
facts and enhance the contrast of the input bone scintigraphy images [10]. Image
segmentation is one of the most common steps in image processing and analysis
area, which intends to identify features of interested in input images [11, 12, 13].
Therefore, the enhanced images are submitted to the segmentation stage in order to
identify the regions of the skeleton; namely, the skull, spine, thorax, clavicle, femur,
humerus, pelvis, scapula, and sternum, Fig. 2.

After the segmentation of the regions under analysis, it is necessary to segment
the existent metastasis, commonly known as hotspots. Then, each uptake index
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Fig. 2 Example of a point distribution model built to segment whole-body bone scintigraphy
images: on the left, an example of a training image; On the center, landmark points used to build the
model (117 points manually defined); on the right, automatically segmented whole-body scintigra-
phy image

assessment consists in computing the ratio between the value of the pixel with the
highest intensity of the corresponding hotspot and the pixel with the highest intensity
of the region where the hotspot is located without considering its region.

In the preprocessing step, an adaptive histogram equalization algorithm [14] is
applied to enhance the contrast of the dark regions of the input images. In this step,
it is also employed the anisotropic diffusion algorithm, first introduced by [15],
which is a process that creates a space-scale system where an image leads to a
parameterized family of images increasingly blurred based on a diffusion process
[10]. This technique had become a useful tool to smooth image noise, detect image
edges, segment images, and highlight them; particularly, anisotropic diffusion can
smooth an input image while preserving the boundaries of the regions and the small
structures present in the image [16].

As already mentioned, in the segmentation step, the Point Distribution Models
(PDMs) proposed by Cootes and Taylor [6, 7, 8, 17] are used. PDMs have been
used in statistical modeling of objects to describe, i.e., learning, their shapes from
a set of training images. Thus, the built model describes the mean shape of the
modeled object together with admissible variations in relation to the same mean
shape [9]. PDMs emerged as a way of representing a set of forms of an object
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through the use of a flexible model of the position of certain landmarks located
in image examples. These landmark points should reflect important characteristics
of the shape of the object to be modeled, and must be selected in a similar way
in all training images. In practice, this selection step is time-consuming and some
automatic and semiautomatic methods have been proposed to define the landmark
points to use in the PDMs building process [9].

In the process of building a PDM, the shape of the object to be modeled must be
defined in a set of training images through a set of landmark points [8]. Once the
points are selected, the coordinates of all n points that describe the i shape of the
object are concatenated in vector xi :

xi = (xi1, xi2, xi3, . . . xin, yi1, yi2 . . . , yin)
T (1)

where i = 1,…, N, with N representing the number of shapes in the set of training
images and n the number of landmark points. Then, all the training shapes must be
aligned in the same set of coordinates. After the alignment of the training shapes, it
is possible to find the mean of the shapes and the variability presented in the training
images. The modes of variation characterize the ways according to the landmarks of
the built model tend to move, and can be obtained through a principal component
analysis (PCA) to the derivations of the mean [9]. Thus, it is possible to rewrite each
coordinates vector as

x = x̄ + Psbs (2)

where x represents the number of points of the resultant shape of the modeled object,
(xk, y) is the position of landmark point k, x̄ is the mean position of the landmark
points, Ps = (ps1 ps2 . . . pst ) is the matrix of the first t modes of variation, psi
correspond to the most significant eigenvectors in a PCA of the position variables,
and bs = (bs1bs2 . . . bst )

T is a vector of weights for each variation mode of the shape.
Each eigenvector describes how each landmark point moves on the training image
set. Equation (2) represents the PDM of an object and can be used to generate new
forms of the same.

Considering the existence of a trained model, i.e., a PDM, the corresponding
Active Shape Model (ASM) [8] can be used to find, i.e., to segment, the modeled
object in a new image. Starting with an approximate position of the object to be
segmented, the ASM based segmentation applies an iterative optimization method
to move each PDM landmark point to a better position. The decision-making to find
the best position is based on finding the best combination of a local model along the
normal boundary profile of the object in the image to be segmented [9].
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Fig. 3 Example of the
regions used to determine the
uptake index

2.5 Uptake Index Determination

In order to segment the metastasis, it was used the region-growing algorithm [12,
13], that allows the user to select a seed point and, from this seed point, i.e., seed
pixel, the region to be segmented starts growing by attaching neighbor pixels that
have similar properties.

The next step consists in calculating the uptake index based on the following steps
(Fig. 3):

• For each segmented metastasis:

a. Compute the tumor involvement based on the intensity of the image pixels,
Fig. 3: in the anatomical region where the tumor is located, identify the pixel
with the highest intensity of the region (R) that does not belong to the tumor
region (M); identify the highest intensity pixel in the tumor region; calculate
the ratio between the two intensities previously found;

b. Add the computed result of the tumor involvement to the exam uptake index.
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3 Results

3.1 Segmentation

The proposed computational solution was used on bone scintigraphy images, and
each segmented regionwas compared against the correspondingmanually segmented
region. The Dice coefficient, Hausdorff distance, and centroid distance were used
to validate the computational segmentations. Examples of segmentations obtained
by the proposed solution along with the corresponding manual segmentations are
shown in Fig. 4.

The computational segmentations obtained for the skull, thorax, pelvis, and thigh
were then evaluated. The range of the centroid distance obtained for the skull was
4.49 ± 2.48, for the thorax was 4.78 ± 2.71, 3.44 ± 1.62 for the pelvis and 10.91 ±
6.59 for the thigh. On the other hand, for the Dice Coefficient, the obtained range for
the skull was 0.89 ± 0.024, 0.89 ± 0.038 for the thorax, 0.91 ± 0.021 for the pelvis
and 0.67± 0.073 for the thigh. Finally, the range of the Hausdorff distance obtained
for the skull was 3.24 ± 0.53, 5.41 ± 0.56 for the thorax, 5.64 ± 0.72 for the pelvis
and 3.98 ± 0.48 for the thigh.

Fig. 4 Examples of segmentation obtained by the proposed solution for the skull (I) and of the
femur (II): a training images; b segmentations obtained by the proposed solution; c segmentations
manually delineated
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Fig. 5 Uptake index values
computed for the prostate
cancer patients from their
last two studies

Fig. 6 Uptake index values
computed for the breast
cancer patients from their
last two studies

3.2 Uptake Index

The uptake indexes were computed based on the approach previously described.
For each patient, it was studied the last two exams, and the obtained indexes were
compared with evaluations presented in the clinical reports.

As to the patients with metastatic prostate cancer, there was a decrease in the
uptake index from the first to the second study in all patients with the exception of
patient # 3, where the uptake index increased, as can be seen in Fig. 5. On the other
hand, as to the patients of metastatic breast cancer, there was a decrease in the uptake
index in the second study in patients # 1, # 2, # 4, and # 7 relatively to the first study.
Contrary, in patients # 3, # 5, and # 6 the uptake index increased for the second study,
Fig. 6. Finally, the patient with lung cancer in the second study had no metastasis
and an uptake index of 1.98 computed in the first study.

4 Discussion

Regarding the distances between the centroids found for the skull, thorax, and pelvis,
the mean of this metric ranged from 3 to 4 pixels, with a standard deviation around 2
pixels. Given that the size of the images under study was equal to 256× 1024 pixels,
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the values found for this metric indicate high similarity between the computed and
manual segmentations. Regarding the Dice coefficient, values close to 1 (one) show
that the segmentations under comparison are similar,whereas closer to 0 (zero)means
that there is no similarity between the segmentation. The mean of this metric found
for the skull, thorax, and pelvis was 0.89 for the first two and 0.91 for the pelvis,
which once again indicates that the segmentation under comparison were close. The
Hausdorff distance, and the distance between centroids also shows that there is not
a high degree of distinction between the segmentations. However, the comparison
of the femoral segmentations showed more discrepant results. The distance between
centroids was on average of 10 pixels with a standard deviation higher than the
ones found in the previous cases, around 6 pixels. In terms of the Dice coefficient,
the average of this metric was 0.67, considerably lower in comparison to the Dice
coefficient found for the other cases. In fact, the segmentation of the femur obtained
using the built Point DistributionModel generated the most distinct results. One way
to solve this problem is to increase the number of training images. Another alternative
would be increasing the number of landmark points distributed along the femur in
the PDM building process; mainly, around the head of the femur, which is the less
homogenous region to a segment.

In what concerns to the computed uptake indexes, the patients with prostate can-
cer had results that are in agreement with their qualitative evaluations. For example,
in the cases where the study was described as “lower osteoblastic intensity”, it was
possible to verify a decrease in the uptake indexes, which indicates a good response
to the prescribed therapy. However, in the case of patient #3, it was possible to verify
a rise in the levels of uptake index, and the description of this study was evaluated as
a “mixed response”, this was due to the regression of some hotspots in the first exam-
ination and the appearance of new ones. However, when comparing the two studies
through the uptake indexes, it was possible to verify the progression of the metastatic
disease. To note, the case of patient #4where the qualitative analysis was described as
“overlapping hotspots in relation to the last study” and the indexes obtained showed
a decrease from 2.65 to 2.1 suggesting improvements in the hypercaptation hotspots,
mainly in the left ischium. In the case of metastatic breast cancer patients, all results
are in agreement with the clinical evaluations. For the patient with carcinoma in the
lung, it went from an index of 1.98 in the first study to an uptake index of 0 (zero),
since there were no metastasis in the most recent study.

5 Conclusion

The challenges regarding the development of solutions for the fully automatic seg-
mentation of the skeleton and metastasis in scintigraphy images remains a strong
research topic. A semiautomatic solution for the segmentation of the regions of
interest and the extraction of the information from these regions in 99mTc-MDP bone
scintigraphy images was described. The developed solution proved to be effective
in identifying the regions of interested in the input images. Although some difficul-
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ties have arisen in segmenting properly in some regions, these difficulties can be
overcome by increasing the number of training images.

The developed solution was applied to 30 whole-body bone scans acquired from
15 patients. The computed uptake indexes were compared with the corresponding
clinical evaluations, and a very promising matching was found. However, the pro-
posed solution should be tested using more challenging cases in order to further
evaluate and interpret critically the computed uptake indexes; mainly, to verify how
they indicate properly the progression or regression of bone metastasis from 99mTc-
MDP bone scintigraphy images.
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