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Abstract. The pertinent problem of Traveling Time Estimation (TTE)
is to estimate the travel time, given a start location and a destination,
solely based on the coordinates of the points under consideration. This
is typically solved by fitting a function based on a sequence of obser-
vations. However, it can be expensive or slow to obtain labeled data or
measurements to calibrate the estimation function. Active Learning tries
to alleviate this problem by actively selecting samples that minimize the
total number of samples needed to do accurate inference. Probabilistic
Programming Languages (PPL) give us the opportunities to apply pow-
erful Bayesian inference to model problems that involve uncertainties. In
this paper we combine Thompson Sampling with Probabilistic Program-
ming to perform Active Learning in the Travel Time Estimation setting,
outperforming traditional active learning methods.
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1 Introduction

An important part of traveling is estimating travel time. Without knowing the
time it will take to travel between two locations it can be difficult to plan ahead
and ensure that things go according to plan. Many services already provide good
estimates for well-known scenarios such as car travel and public transportation.
For these services, estimates are typically based on first determining a route and
then adding up the individual components of that route to obtain the total travel
time.

However, in many situations, the navigation system may fail to provide ade-
quate information to form a route, leaving it unable to provide travel time esti-
mates. These situations could occur for instance when hiking cross country or
when traveling in areas where shortcuts and obstacles that do not appear on
maps are frequent, such as in urban city centers. An alternative approach is
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to focus on estimating the true road distance. While this is an interesting app-
roach, the data required for estimation is significantly harder to gather. Not only
does one need a timekeeping device, one also need some way to accurately track
velocity. We avoid this by instead focusing on the actual time it takes to travel
between two points.

Definition 1. A Travel Time Estimation Function (TTEF) is a function
, where a is the start location, b is the destination, and θ is the

parameters learned from the observations.

The challenge is thus to determine θ by observing the actual travel time
between locations and generalize from those observations. To minimize this cal-
ibration cost, the number of observations should be kept at a minimum. An
important task is therefore to gather information in such a manner that each
observation maximizes the gain in estimation accuracy. The objective of this
paper is to address the calibration of TTEFs using as few data points as possi-
ble. We achieve this by formulating the problem as an Active Learning problem.

1.1 Active Learning

Active Learning (AL) has emerged as an effective tool for bridging supervised
learning and unsupervised learning [2,12]. The settings where supervised learning
thrive are those abundant with labeled data, for instance sentiment analysis for
movie reviews where the reviews typically have been assigned e.g. a star-rating
by the reviewer, allowing the collection of large amounts of labeled data [9].

This is in contrast to other fields such as medical imaging, where one often
need human experts to manually label the data. In such cases, it becomes perti-
nent with learning algorithms that maximize the information gained from each
labeled example. An active learner operates by carefully selecting the most ben-
eficial example to be labeled, with the result that fewer examples have to be
labeled in total, while simultaneously performing as well as a passive learner,
i.e., a learner that simply observes the labeled examples.

The active learning paradigm can roughly be divided into two parts based
on the nature of the unsupervised examples, it is either pool-based where all
the examples are available without a label, or stream-based where the examples
are given as a stream, feeding one example at a time. In our novel variant of
the TTE, the data is neither stream based nor pool based, it is instead a hybrid
between the two types of AL. In TTE the learner is faced with a stream of pools,
where the learner may only select one example from each pool, discarding the
rest, as clarified below.

1.2 Active Learning in Travel Time Estimation

We define the data generating process of TTE as follows. An observer is standing
on a location at=1 and then has to select a destination from a set or pool of n
distinct locations, Dt=2 = {d1, d2, . . . , dn}. Once a destination at=2 ∈ Dt=2 is
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selected the observer travel from at=1 to at=2 and record the travel time δ1.
This process is then repeated with at=2 as the new starting location. A new
destination at=3 needs to be selected, now from Dt=3, and we obtain δ2 – the
travel time between at=2 and at=3. An important factor that makes TTE more
difficult is that the observation δt does not only depend on at but on at−1 as
well.

1.3 Probabilistic Programming

Probabilistic Programming (PP) is an attempt to close the representation gap
between the much celebrated probabilistic graphical models (PGM) such as
Bayesian Networks and Markov Networks and the more specialized algorithms
that are typically represented as a mixture of pseudo code, natural language,
and mathematics. The idea is to formulate the entire model, from sample gen-
eration to the joint distribution in a unified representation framework, and let
the underlying architecture handle the inference. This alleviates the need for
highly specialized algorithms and lets the designer focus on designing a correct
model, rather than focusing on models that are easy to do inference on. With
the advances in computational power, a wide array of PPL have appeared in
the literature. In this paper we employ PyMC3 [11], which is built on top of the
Theano framework [15].

1.4 Paper Contributions

In this paper, we demonstrate the effectiveness of using Probabilistic Program-
ming to solve the TTE problem, while simultaneously applying Thompson Sam-
pling based Active Learning to minimize the number of observations required.
To further investigate the effectiveness of this approach we also show that it
performs comparable to traditional baselines for active learning on a well know
regression problem [4].

2 Related Work

2.1 Active Learning

The highly effective Query By Committee (QBC) [4,13] algorithm is based on
the premise that a committee of unique learners label each potential data point.
That is, in a pool-based setting each data point in the pool is labeled by each
learner. The next data point to obtain a label for is simply the data point where
the learners disagree the most. For the simple case with binary labeled points
and two learners, any point where the two learners disagree is considered as
the next query point. In cases where the labels are real-valued, an alternative
approach is to select the point that is expected to reduce prediction error the
most [4]. For real-valued regression problems, the data point that maximizes the
variance of the training set after being added is selected [3].
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A critical aspect of the QBC algorithm is the disagreement between the
learners. In the original work [13] a randomized algorithm was used. However, a
more general approach is to train the same algorithm on different subsets of the
data, as in query by bagging and query by boosting [8].

Bandit based active learning is a well-explored area of research [1,5,10], but
this class of approaches is ill-suited to the TTE problems due to the simple fact
that they require a pool based approach where one can track the uncertainty for
each possible query-point as part of the active learning.

2.2 Distance Estimation

The field of Distance Estimation (DE) has primarily been dominated by the
use of parameterized functions of a simple yet effective form. These functions
are then calibrated using a set of inter-connected points and their distances [7]
by maximizing the Goodness of Fit (GoF) between the observed values and the
underlying function. Recently, an Adaptive Tertiary Search (ATS) based method
that does not explicitly depend on GoF was proposed [6]. Instead, this method
depends on the sign between the estimated distance and the actual, observed
distance, and can thus be seen as a form of gradient descent.

To be consistent with previous work we will restrict ourself to the family of
Weighted LP functions:

W-Lp(X) = k(
∑

|xi|p)1/p

where k is the linear weight, and p ∈ R+ denotes the p-norm.

3 Active Learning with Thompson Sampling for Travel
Time Estimation

The principle of Thompson Sampling (TS) can be summarized as follows. Given
a distribution π(θ) over a parameter θ to be estimated, we sample an instance
s from π(θ). We then assume that s is, in fact, the correct underlying value for
θ. Thus, we explore by assuming that s is optimal and gather information Is
that we use to update the distribution over πt+1(θ | Is). Consequently, we also
exploit our previous knowledge as the distribution over θ gets sharper towards
the optimal value as t increases.

In the context of active learning in a probabilistic program, the objective of
TS is to convince the maximum a-posteriori (MAP) model Mmap that the TS
sampled model Mts is optimal by selecting the observation o ∈ O such that the
difference between Mmap(o) and Mts(o) is minimized after observing o.

In contrast, QBC is based on generating a committee M
(i)
map, i = 1, 2, . . . ,m

where each MAP estimate is based on a different subset of the data. This inher-
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ently means that the quality of an individual committee M
(i)
map is worse than

the MAP estimate of a TS model Mmap that employs all available data.

Algorithm 1. The TS-PPL algorithm
Result: A program P (T ) based on T observations.
Set a prior program P (0);
for t = 1, 2, . . . , T do

Mmap(t) = MAP(P (t − 1));
Mts(t) ∼ P (t − 1));
o(t) = argmaxoi∈O(t)[Mmap(oi; t) − Mts(oi; t)]

2;
y(t) = Query(o(t))
P (t) = P (t − 1) ← o(t), y(t)

end

4 Experiments

To demonstrate the efficiency of TS-PPL we apply it to two different problems.
First, we investigate the performance for learning real-valued functions as done
in [2]. Second, we investigate how it perform in the Travel Time Estimation
problem. The metric of interest for the experiments will be the head-to-head
results generated from identical experimental data and model. That is, the trials
will be identical except the choice of observations to label. The objective function
is to minimize the error on a separate hold-out set and thus, the cumulative error
ET is the sum of errors from t = 0 to t = T . The head-to-head metric between A
and B is therefore the fraction of trials where scheme A have a lower cumulative
error than B at the reported time-step t, i.e.

∑N
i=0 1[E(i)

t (A) < E
(i)
t (B)]/N .

4.1 Active Learning of Real-Valued Functions

The objective in a real-valued function is to minimize the generalization error
between the learned function and the underlying true function, e.g. the difference
in the area under the curve. We will now test TS-PPL with a standard function
learning experimental setup [2], that have an underlying true function as shown
in Eq. 1, with z = x−0.2

0.4 , a = 1, b = −1, c = 0 and ε ∼ N(0, 0.12).

f(x) = ax2 + bx + c + δ
z3 − 3z√

6
+ ε (1)

Algorithm 2. The PP for the function regression problem
a ∼ N(μ = 1, σ = 2)
b ∼ N(μ = 1, σ = 2)
c ∼ N(μ = 1, σ = 2)
s ∼ |N(μ = 0, σ = 10)|
μt = ax2 + bx + c
yobs ∼ N(μ = μt, σ = s | y)
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The available observations are drawn from N(0.2, 0.42) and presents a seri-
ous challenge for QBC to outperform due to the Signal-To-Noise Ratio (SNR)
of 0.42/0.32 = 1.8 shift between the underlying function and the test distribu-
tion that the candidate points are drawn from. In Table 1 we observe that the
standard QBC outperform the TS-PPL algorithm when the assumed function
type is approximately correct (δ = 0.005). However, it is outperformed when
the difference between the assumed model and the underlying model is large
(δ = 0.05).

Table 1. The result of head-to-head comparisons between the different methods based
on 5k trials in the function approximation scenario. The data is given in the format
X/Y where X is the fractions of wins in head-to-head matches from t = 20 and Y is
the fraction of wins from t = 40.

δ arms = 5 arms = 10 arms = 20 arms = 100

TS vs QBC 0.05 0.56/0.50 0.48/0.43 0.55/0.42 0.56/0.53

TS vs Passive 0.05 0.58/0.57 0.69/0.61 0.66/0.64 0.84/0.83

QBC vs Passive 0.05 0.57/0.61 0.65/0.64 0.62/0.65 0.76/0.75

TS vs QBC 0.005 0.49/0.48 0.46/0.45 0.41/0.41 0.51/0.51

TS vs Passive 0.005 0.55/0.64 0.71/0.67 0.72/0.69 0.71/0.72

QBC vs Passive 0.005 0.58/0.62 0.68/0.69 0.77/0.73 0.68/0.71

4.2 Travel Time Estimation

Similar to [6], we conduct the TTE experiments on publicly available data
from the TSPLIB Symmetric Traveling Salesman Problem Instances (MP-
TESTDATA) [14] with N=29. The O(t) = {(xi, yi)}n pairs available for obser-
vations at time t is drawn from xi ∼ U(0, xmax), yi ∼ U(0, ymax) where
xmax = 2300 and ymax = 1900. The purpose is to draw the observations uni-
formly from the entire dataset.

The oracle computes the travel time from a to b, denoted Q(a, b), as

||a → p||L1 + TravelTime(p, q) + ||q → b||L1 (2)

where p, q is the closest points in the dataset to a and b respectively and
TravelTime(p, q) is provided by the dataset.

The PP used is defined as a Bayesian prior over the W-Lp model from [6].
and is as follows:

Algorithm 3. The PP for the Travel Time problem
k ∼ N(μ = 1, σ = 2)
p ∼ N(μ = 1, σ = 2)
s ∼ |N(μ = 0, σ = 50)|
μt = k ||li − li−1||p
y ∼ N(μ = μt, σ = s | t1, . . . , tn)
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Table 2. The result of head-to-head comparisons between the different methods based
on 5k trials. The data is given in the format X/Y where X is the fractions of wins in
head-to-head matches from t = 20 and Y is the fraction of wins from t = 40.

arms = 2 arms = 5 arms = 10

TS-PPL vs QBC 0.65/0.64 0.54/0.58 0.61/0.61

TS-PPL vs Passive 0.55/0.58 0.70/0.71 0.72/0.72

QBC vs Passive 0.45/0.46 0.64/0.57 0.72/0.65

arms = 20 arms = 50 arms = 100

TS-PPL vs QBC 0.64/0.62 0.66/0.64 0.50/0.57

TS-PPL vs Passive 0.70/0.70 0.63/0.70 0.69/0.66

QBC vs Passive 0.60/0.60 0.57/0.62 0.69/0.60

The results for comparing between OBC and TS-PPL is found in Table 2.
From the results, it is quite clear that TS-PPL outperforms QBC as well as
Passive for the TTE problem achieving near 10% better results. This indicates
that when the problem is not a simple regression problem, anchoring the selec-
tion process in the MAP estimate, as done in TS, gives a better trade-off than
anchoring in the variance over a committee.

5 Conclusion

We have proposed TS-PPL an effective scheme for performing Active Learning
in Probabilistic Programs. We have shown that TS-PPL can be applied to both
a standard regression problem and a more complex problem in the Travel Time
Estimation problem. Our method significantly outperforms the strong baseline
of Query by Committee as well as passive learning for Travel Time Estimation.
TS-PPL further gives competitive results in the case of regression.
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