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Abstract. Reliable query execution time prediction is a desirable fea-
ture for modern databases because it can greatly help ease the database
administration work and is the foundation of various database manage-
ment/automation tools. Most exiting studies on modeling query execu-
tion time assume that each individual query is executed as serialized
steps. However, with the increasing data volume and the demand for
low query latency, large-scale databases have been adopting the mas-
sive parallel processing (MPP) architecture. In this paper, we present a
novel machine learning based approach for building a robust model to
estimate query execution time by considering both query-based statis-
tics and real-time system attributes. The experiment results demonstrate
our approach is able to reliably predict query execution time in both idle
and noisy environments at random levels of concurrency. In addition, we
found that both query and system factors are crucial in making stable
predictions.
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1 Introduction

Commercial databases hold companies’ most critical information and need to be
maintained at high-availability with stable-latency at all times. They need to be
installed and tuned very carefully (e.g., fault tolerance, knob setting, resource
pool setting, etc.). Nevertheless, no matter how comprehensive a database has
been tuned, it is still challenging to maintain stable-latency [2]. In real world
scenarios, databases receive various queries with a wide range of complexities at
any given time. Some of those queries are sub-optimal and even do not make
much sense, and may cause a database to execute with unexpected long latency
and fail to guarantee service quality [4]. In those cases, database administrators
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usually do not have much control and have no clue how to adjust databases in
time to deal with the problem.

The situation becomes worse when a database is loaded with concurrent
workloads [11], in which we can frequently observe significant degradation of
query performance resulting in serious consequences. For example, a sub-second
dashboard query may be slowed down to dozens of seconds or even minutes
resulting in poor user experience [16]; a system with periodical ETL process
can break if the report generation query failed to finish within the interval of
two consecutive ETL jobs [9]; with Software as a Service (SaaS) providers the
service-level agreement (SLA) can break and result in severe revenue loss [13];
etc. The degradation can be due to resource contention, as concurrent queries
may compete on the same resources - disk I/O, network, memory, threads, etc
[17]; the degradation can also be caused by less available resources that lead
to lower execution parallelism or spills [6]. The following is a classic disastrous
case. When a poorly written query (usually generated by dashboard/business
intelligence (BI) tool) is sent to the database unintentionally, the query can
consume most resources in the system, especially modern analytical databases
with extensive distributed/parallelized query execution engines [18]. The whole
database performance can be significantly impacted. Even worse. The query may
take very long time to run or “never” finish. A typical solution is to allocate
dedicated/cascaded resource pools, where short queries and long-run queries
have different dedicated pools [10], while short queries can be evicted to the long-
run pool if they does not finish within a predefined time threshold. Nevertheless,
such solution can only work well if the workload is to some extent known or
predictable. In addition, significant resources can be wasted on those queries
that need to be evicted and cascaded to a different pool.

The above problem can be much better solved if query execution time can be
somewhat predicted. Many researches have been done in estimating area [1,5,
15,20,21]. Existing works on estimating the running time of concurrent queries
either limit the concurrent query workload to a given set of queries or assume
that the execution of each query is serialized. However, in modern analytical
database platforms built on massively parallel processing (MPP) architecture.

This study takes a first step to explore the possibility to estimate dynamic
workload on Vertica analytic platform [12], a column-oriented relational database
system built on the MPP architecture, and is commercialized from the C-Store
project [19]. Our goal is to achieve reliable estimations of the running time of any
arbitrary query at various levels of concurrency. We adopted a data driven app-
roach and applied machine learning to automatically construct a query execution
time estimator.

2 Method

In this section, we explain our machine learning approach for building a model
to infer query execution time under mixing workloads with high concurrency.
We used Random Forest [7,8,14] to build an ensemble regressor whose inputs
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include the features describing the states of the operating system and the features
extracted from the query plan generated by the Vertica Database for each query.

Constructing appropriate features is essential to building a good prediction
model. The Vertica database uses a data flow based cost model, due to its sim-
plicity and robustness. A query is decomposed into a set of operators, which are
arranged into a operation tree. Each operator is responsible for running a certain
algorithm to perform a sub-task. The Vertica database can estimate the amount
resources needed by an operator to process a data flow, The resources are clas-
sified into four categories: CPU, Memory, Disk, Network. The Vertica database
chooses the best query plan based on the previous mentioned cost model. The
execution engine of Vertica is multi-threaded and streamed into a pipeline based
on the chosen query plan. More than one operator can run simultaneously at any
given time. By using the information from the cost model, we are able to learn
the relationship between the required resources and its corresponding execution
time. However, this approach only works in single-thread settings, since such
features only describes the query itself. When multiple queries are run concur-
rently, the execution of each query will be significantly affected by others. Thus,
we introduced the following system level features to characterize the system wise
workload:

1. CPU circles: the number of CPU circles requested by an operator.
2. Memory Data: the memory size required by an operate.
3. Network Data: the amount of data need to be transferred via network by

an operator.
4. Disk Data: the amount of data to be split out to disk by an operator.
5. Optimizer Cost: the cost estimated by the Vertica Optimizer.
6. Input Rows: the row count of the related tables to be scanned.
7. Estimated Output Rows: the estimated row count of output rows, which

is calculated based on Cardinality.
8. CPU utilization: the percentage of CPU utilization. If there are multiple

CPUs, we take the average.
9. Query Concurrency: the number of queries running concurrently.

3 Experiments

The experiments were carried out using the Vertica database. The Vertica
database ran on a single cluster of three independent nodes. We used all 22
TPC-H query templates [3] to randomly generate 22000 queries (1000 for each
query template) with 10 GB standard TPC-H data. The data was collected by
running those 22000 queries at each of the 20 concurrency levels. For a given
concurrency level of K (1 ≤ K ≤ 20), we concurrently run K sessions and each
session continuously executes queries randomly sampled from the 22000 queries
generated above. We conducted the experiments in two environments. One of
them is a “stand-alone” environment where only our experiments are allowed
to run, and the other is a “noisy” environment where there are other unknown
applications running simultaneously with our experiments. The running time
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variations are high for queries generated across all query templates and are also
high within queries generated from the same query template. Hence, it is chal-
lenging to accurately and robustly estimate query execution time. For all the
experiments reported below, we split the data into two parts: 70 % of queries
as the training data and the rest as the test data. Below we first discuss the
results of using individual features in making predictions (Sect. 3.1), which give
us some intuitions about their contributions, and then report the results of using
all features (Sect. 3.2).

3.1 Query Execution Time Prediction Using Individual Features

This experiment was carried out in a “stand-alone” environment. Table 1 lists
the mean relative errors of using individual features in query execution time pre-
diction. The relative error of a prediction is calculated as |Tpredict−Ttruth|/Ttruth

where Tpredict is the predicted time and Ttruth is the ground truth. The log rel-
ative error is calculated as log(Tpredict/Ttruth). A zero log relative error means
Tpredict = Ttruth. In Table 1, we divide the test data into five tiers based on their
real execution time (e.g., the first tier is the fastest 20% queries, and the last
tier is the slowest 20% queries). More specifically, the execution time ranges of
the queries are (0, 3.4 s) in Tier 1, [3.4 s, 7.1 s] in Tier 2, [7.1 s, 12.4 s] in Tier 3,
[12.4 s, 23.2 s] in Tier 4, and (23.2 s, +∞) in Tier 5. Table 1 show that individ-
ual features perform poorly under mixing workloads. The overall relative error
across tiers ranges from 0.86 to 2.84, which means the predicted execution time
of a 10-minute query can range from 1 min to 38 min. Since we used the Mean
Square Error as the cost function to optimize the parameters of the query exe-
cution prediction model, the trained model focuses more on slow queries, which
contribute more significantly to the overall error than short queries. This leads
to extremely unstable predictions on short-run queries. We also observe that the
model actually performs best for middle-run-time queries and its performance
drops more for queries that need longer time to run.

3.2 Results of Integrating Multiple Features

To deal with the unstable problem with using individual features to make pre-
dictions, we explore the approach of integrating multiple features, which takes
slightly more computational resources. This experiment was carried out in a
“stand-alone” environment. Shown in Table 2, the mean relative error of stand-
alone is 0.156, which is about five times better than the best results achievable
by using individual features. The variation between different tiers is also sig-
nificantly smaller, which indicating the model performs robustly for a variety
of queries. Figure 1(a) shows that most of the log relative errors are close to
zero (zero means a prediction is identical to the ground truth), and few per-
centages of them are larger than 0.5. Higher concurrency level also makes it
more challenging to accurately predict query execution time (see Table 3). To
investigate the benefits of using the “system-level” information, we performed
an experiment that used only the intrinsic features (i.e., features derived from a
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Table 1. The rest results of the models using individual feature in a “stand-alone”
environment. The queries are grouped into 5 tiers based on their execution time. See
the main text for detailed explanations.

Tier Optimizer cost CPU cycles Memory data Network data CPU utilization

1 2.02 2.16 2.07 10.23 5.74

2 1.06 1.05 1.07 2.37 1.47

3 0.36 0.38 0.39 0.80 1.00

4 0.41 0.39 0.41 0.16 0.42

5 0.43 0.43 0.42 0.57 0.49

Overall 0.86 0.88 0.87 2.82 1.82

Tier Disk data Input rows Output rows Query concurrency

1 10.35 3.03 3.42 5.35

2 2.34 1.00 0.99 1.39

3 0.77 0.37 0.34 0.97

4 0.15 0.42 0.48 0.43

5 0.57 0.43 0.45 0.47

Overall 2.84 1.05 1.13 1.72

query, excluding Query Concurrency and CPU Utilization). As shown in Table 2,
the results are a little better than those of using individual features, however,
are significantly worse those those of integrating all features. Thus, including
the “system-level” features is essential to the accurate estimation. The above
results clearly show that integrating multiple features, as we designed, can sig-
nificantly improve robustness and accuracy of predictions across a wide spectrum
of queries.

Table 2. The test results of the model using all features in a “stand-alone” environ-
ment. The queries were grouped into tiers in the same way to Table 1.

Tier Mean relative error all features Mean relative error intrinsic only

1 0.169 1.911

2 0.158 0.994

3 0.161 0.379

4 0.156 0.438

5 0.137 0.439

Overall 0.156 0.832

3.3 Noisy Environment

Most previous works conducted their experiments in “stand-alone” environ-
ments. Neglecting the effects of system status can lead to inferior performances.
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Fig. 1. Histogram of the log relative errors of the model integrating all features in a
(a) “stand-alone” and (b) “noisy“environment.

Table 3. The test results of the model integrating all features in a “stand-alone”
environment. The results are grouped into their corresponding concurrency levels.

Concurrency Mean relative error Concurrency level Mean relative error level

1 0.024 11 0.181

3 0.119 13 0.212

5 0.094 15 0.560

7 0.229 17 0.331

9 0.203 19 0.260

10 0.186 20 0.307

When a system is busy due to whatever reasons, it will slow down the execu-
tion of database. By considering the “system-level” features, our approach can
perform more robust than others. To test the robustness of our approach, we
did another experiment on a public server where other users may run unknown
applications on it. We call this a “noisy environment” because the data is more
noisy. Shown in Fig. 1(b), the distribution of the relative error in a “noisy” envi-
ronment spreads out more than that in a “stand-alone” environment, but still
concentrating around 0. One encouraging observation is that the mean relative
errors of short-run queries is under 0.4 even in a “noisy” condition, and the
performance of our approach on long-run queries is only slightly affected by
unknown “noise” in the environment.

4 Conclusion

In this paper, we present a data-driven method that applies Random Forest to
build model for predicting query execution time under mixing workloads. Tested
on a commercial database Vertica, we demonstrate that our approach is able to
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robustly and accurately estimate the running time under various levels of work-
loads and concurrency. We designed a set of features include the intrinsic ones,
which can be extracted from each query (or the execution plan of each query),
and the system-level ones (e.g., CPU Utilization and Query Concurrency). Our
experiments show that each individual feature is not enough for accurately esti-
mation the query execution time because each feature alone does not provide
enough information about actual multi-thread query execution. Our experiments
also show that the system-level features can be used to significantly stabilize and
improve the performance of our approach. Combining the intrinsic and system-
level features together in a Random Forest fashion, we are able to model the
query execution characteristics well even in a noisy environment. In future, we
plan to incorporate our approach into real database systems to help allocate
queries into different resource pools based on the estimated query execution
time, and detect poorly written queries before execution.
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