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Abstract. This is the 5th paper in our series of papers on hierarchical learning
for classification. Hierarchical learning for classification is an automated method
of creating hierarchy list of learnt models that are on the one hand capable of
partitioning the training set into equal number of subsets and on the other hand
are also capable of classifying elements of each corresponding subset into
classes of the problem. In this paper, the probabilistic hierarchical learning for
classification has been formalized and presented as a theory. The theory asserts
that the accurate models of complex datasets can be produced through hierar-
chical application of low complexity models. The theory is validated through
experiments on five popular real-world datasets. Generalizing ability of the
theory is also tested. Comparison with the contemporary literature points
towards promising future for this theory. The theory is covered by four postu-
lates, which are carved out elegantly through mathematical formalisms.
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1 Introduction

We have set this introduction to differentiate between hierarchical learning for classi-
fication and hierarchical classification itself. The word hierarchical classification has
been used in numerous contexts therefore, we have designed this introduction in a way
to exclude the irrelevant contexts hierarchically one by one to mark the constrained
field of theory of probabilistic hierarchical leaning for classification.

The theory of probabilistic hierarchical leaning for classification is not about
hierarchical classification analytically done by human beings. The most profound
example of this is the classification of all biological organisms on earth e.g. [1]. The
biological organisms are now classified into eight levels i.e., domains, kingdoms,
phyla, classes, orders, families, genera and lastly into species in that hierarchical order.
This hierarchical classification can be represented through a directed acyclic graph
(DAG) e.g. [2]. While considering DAG representation of biological classes, domains
can be placed at the root node while species can be placed at the leaf node.

The theory of probabilistic hierarchical leaning for classification is not about
hierarchical classification using computational learning methods, where hierarchies are
decided meticulously by humans themselves. The classical example of this is a
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Hierarchical Support Vector Machines (H-SVM) [3]. In these methods hierarchies are
not set by computers but decided prior to start of a computer program. This is done by
merging elements of several classes into one meta-class then applying SVM as a binary
classifier between one class against a meta-class. Then again in the next hierarchy
another class is extracted from the meta-class and SVM is applied to classify between
the newly extracted class against a remaining meta-class. This procedure continues
until meta-class retains elements from only one class of the dataset.

The theory of probabilistic hierarchical leaning for classification is not about
automated generation of meta-classes either. The automated generation of meta-classes
was proposed in 2008 for a handwriting character recognition system [4]. However, to
our understanding creation of a meta-class is an artificial creation of class hierarchy
where the actual classes are flat not hierarchical.

The theory of probabilistic hierarchical leaning for classification is not about
hierarchical classes at all. This theory proposes a model of hierarchical learning even
though classes of the dataset are flat. The model of hierarchical learning consists of
hierarchy of learnt models rather than hierarchy of classes. The model in each hierarchy
is applicable to a subset of the training set created during training in the corresponding
hierarchy. Please note that subset created in a hierarchy doesn’t represent a single class
or a meta-class containing several classes. This is just a subset of the training set
containing some of the elements from various classes. Therefore, this subset doesn’t
represent class hierarchy. This only represents hierarchy of learning where both the
model and its area of influence are learnt altogether [5–8].

One might argue that theory of probabilistic hierarchical learning is similar to
ensemble learning [9] because both contain multiple models. However, this is an
inaccurate assessment. This is because unlike theory of probabilistic hierarchical
learning, models in the ensemble learning are not hierarchically learnt. Furthermore, in
ensemble learning domain of each of the models covers whole training set, whereas in
the theory of probabilistic hierarchical learning sum of domains of all the models is
equal to one training set. Therefore, method based on theory of probabilistic hierar-
chical learning can be much quicker than ensemble learning. Additionally, ensemble
learning consists of averaging error of all the models over the whole training set in
contravention of the theory of probabilistic hierarchical learning where learnt models
are error free in their constrained domains. Finally, models in the ensemble learning are
independent of each other therefore they can be applied simultaneously in parallel.
However, this is not the case with the theory of probabilistic hierarchical learning
where models are actually sub-models of a supermodel in a way that each sub-model is
placed at one hierarchy of the supermodel. Therefore, these models can only be applied
sequentially or hierarchically on their turn to the rest of the unclassified training set but
not applied in parallel to the whole training set.
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This paper is structured as follows. In Sect. 2 the theory addresses the question of
why hierarchical learning in first place? The theory proposes the model of probabilistic
hierarchical learning in Sect. 3. In Sect. 4 the theory sets out the probability of class
membership as a corner stone of hierarchical learning. The alternative methodology for
class membership under specific circumstances is discussed in Sect. 5. The litmus test
of the theory is designed and experimented in Sect. 6. In Sect. 7, generalization ability
of theory is experimented. Comparison of results with the literature is done in Sect. 8.
Finally, in Sect. 9, conclusions are made, and future work is set out.

2 Hierarchical Learning-Why?

This section sets out very premise of the theory i.e., the “Hierarchical Learning”. Why
the hierarchical learning in first place? Response to this question is not very difficult to
formulate. Complex problems require complex solution methodologies. Since we are
classifying the complex datasets, so they require complex solution methodologies.
Such complex methodologies are already present in the literature such as Deep
Learning e.g. [10, 11] and Recurrent Neural Network e.g. [12]. In these methods we
have several hidden layers for training the network. This is because one hidden layer is
not enough to grasp the complexity of the problem. In pursuit of our search we have
two objectives at hand. One objective is reducing complexity of our model and another
objective is increasing its accuracy. Both the objectives are conflicting to each other. As
we try to improve on accuracy, we make our model more complex. Therefore, any low
complexity discriminant model is impossible to classify any meaningful real-world
datasets of practical size. If we try to improve on accuracy with a discriminant model
then we will be introducing more and more mathematical operators, which may end up
in a very complex discriminant containing several mathematical operators and set of
those operators would be very difficult or even impossible to generalize over wide
spectrum of datasets. So, what if we keep our discriminant simply restricted to only
four elementary mathematical operators þ ; �; �& � ? We should not expect from
such a low complexity discriminant to classify the whole dataset. However, we can
expect from such a discriminant that it may classify only a subset of the training set. If
our expectation is reasonable, then this generates an idea. The idea is why not create
multiple low complexity discriminants each for specific subset of the training set? In
this paper, we have explored this idea. After a rigorous experimentation, we came to
conclusion that the only way to materialize such an idea is the development of hier-
archical learning procedure where in each hierarchy a model and its corresponding area
of influence (subset) be learnt simultaneously. This scenario is depicted in Fig. 1.

It can be seen in Fig. 1 that the model M1 divides the training set into subsets S1
and Su1, then Su1 is further divided by model M2 into subsets S2 and Su2 and so on and
finally the model Mn�1 divides the remaining training set into subsets Sn�1 and Sun�1.
The subset Sun�1 turns out to be equal to subset Sn, as no further division of this subset is
needed. This is because it contains the elements belonging to only one class therefore
there is no need of another trained model Mn. The scenario in the Fig. 1 can be
generalised as a hierarchical model as shown in the Eq. 1.
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8i2UHi :

Mi�1 �Mi : Si ! C
U ¼ Sci [ Sui

Sci ¼ [ 1� j� iSj
Sui ¼ [ 1� j� iSj

� �0

8>><
>>: ð1Þ

Where

Hi = Hierarchy level i
Mi = Trained Model at hierarchy level i
Si = Subset of training set at hierarchy level i
C = Class set
U = Training Set
Sci = Set of classified samples at hierarchy level i
Sui = Set of unclassified samples at hierarchy level i

The Eq. 1, says that

• at any hierarchy level i, model Mi�1 precedes model Mi, whose domain is subset Si
and codomain is class set C

• at any hierarchy level i, the training set U is the union of classified Sci and
unclassified Sui samples

Fig. 1. Successive bifurcation of training set through hierarchical training of low complexity
nonlinear discriminants.
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• at any hierarchy level i, the classified set Sci is the union of all classified subsets
preceding and including subset i

• at any hierarchy level i, the unclassified set Sui is the complement of the classified
set Sci

It is emphasized that set of classified samples at any hierarchy level can contain
data points from any number of available classes. From the above discussion following
postulate can be formulated.

Postulate 1
High complexity model can be replaced with several low complexity models with
constrained domains of the training set that could be trained one by one hierarchically
until union of all constrained domains covers the whole training set.

3 Hierarchical Learning-How?

Now the question arises how the philosophy of postulate 1 could be materialized? If we
have a close look at the model of hierarchical learning in the Fig. 1, we may start
doubting the applicability of whole theory in first place. This is because it can be seen
in the model in Eq. 1, the trained model in each hierarchy needs to achieve two-
pronged classification in parallel i.e., categorization of elements within the corre-
sponding subset into their original classes and also partitioning the remaining training
set of unclassified elements into two subsets i.e. subset within its domain and subset
outside its domain. There is no doubt as far as ability of model Mi to classify the
elements within the subset Si is concerned. This can normally be achieved using
probability of class membership as shown in relation 2 below.

P jð Þ [ 8k 6¼j P kð Þ ) j 2 Ckf g ð2Þ

The relation 2 says that if the probability of the class membership of element j for
class k is greater than its probability of class membership for each of the classes other
than class k then the element j is the member of class k. This is the fundamental
principle which most of the linear e.g. [13] or nonlinear e.g. [14] discriminants use for
the classification. Now the question arises how the second part of classification could
be achieved in parallel. If we look at objective of second part of classification carefully
then we can make sense of it. Since the second part of classification involves parti-
tioning of elements of training set into two subsets, one within and another outside the
domain of the model Mi, therefore we need to decide which elements are within its
domain. Naturally those elements which obey the relation (2) are within the domain of
the model Mi. Therefore, we slightly modify the probabilistic model of relation 2 for
hierarchical learning as shown in relation (3).

P i; j; kð Þ[ 8h 6¼k P i; j; hð Þ ) j 2 Ck; Sif g ð3Þ

The relation 3 says that for model Mi if the probability of the class membership of
element j for class k, i.e. P i; j; kð Þ is greater than its probability of class membership for
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each of the classes other than class k then the element j is the member of class k (Ck)
and it is also the member of subset i (Si), which is domain of model Mi. The elements
which do not obey the probabilistic model of relation (3) are outside the domain of
model Mi, as shown in relation (4).

P i; j; kð Þ[ 8h 6¼k P i; j; hð Þ ) j 2 Ch; Sif g ð4Þ

The relation 4 says that for model Mi even though the probability of the class
membership of element j for class k is greater than its probability of class membership
for each of the classes other than class k but the element j is not the member of class k,
it is the member of class h instead which is any class other than class k but it is still the
member of subset Si as a misclassified element, which is not desirable. Now the
question arises through which mechanism the hierarchical learning could push element
j out of subset Si or domain of model Mi to avoid its misclassification. To understand
this, we need to define a technical term ‘Highest Misclassifying Margin’ (HMM).
The HMM is the greatest margin by which the model Mi, could misclassify a sample.
The HMM can be calculated through Eq. 5.

Dmax ¼ max 8j 2 Ch; S
u
i

� �
P i; j; kð Þ � max 8h 6¼kP i; j; hð Þ� ���

ð5Þ

From Eq. 5, it can be seen that Dmax (HMM) represents the maximum difference
between the probabilities of wrongly assigned class and the maximum of probabilities
from rest of the classes. Technically, we can incorporate HMM as computed in Eq. 5,
in Eq. 4, to separate element j from subset Si and thus prevent model Mi from mis-
classifying it, as shown in relation 6.

P i; j; kð Þk8h 6¼k P i; j; hð ÞþDmax ) j2Sui ð6Þ

It can be seen from relation 6, that probability of element j for the class k could not
surpass the value on the right-hand side of the relation where Dmax has been added to
probabilities of the rest of the classes. This means element j is pushed out to subset Sui ,
which is not within the domain of model Mi and thus remains unclassified and should
wait for next round of model training for the classification. However, it should be noted
that element j could also be the member of right class Ck if the Dmax was not introduced
in the equation. This means that the Dmax, not only pushes all the potentially mis-
classifying elements out of domain of model Mi but it does also push some of the
potentially correctly classifying elements out of the domain of model Mi. However,
with the introduction of Dmax in the model, it is now confirmed that there will be no
misclassification, either the element j will remain unclassified as in relation 6 or it will
be classified correctly as in relation 7 below.

P i; j; kð Þ[ 8h 6¼k P i; j; hð ÞþDmax ) j 2 Ck; Sif g ð7Þ
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By generalizing the relations (6–7) into one model we get

j 2 Ck; Sif g P i; j; kð Þ[ 8h 6¼kP i; j; hð ÞþDmax

j 2 Sui otherwise

�
ð8Þ

It should be noted that hierarchy i is the last hierarchy iff either Sui ¼ ;f g or
contains members belonging to one class only. We call it a remainder class. In any case
whole training set is classified accurately. It should also be noted that if Sui ¼ ;f g then
Dmax ¼ 0 else Dmax [ 0. This means that there must always be some misclassifying
margin if unclassified set is non-empty. It is emphasized that number of hierarchy
levels is not fixed and entirely depends on the structure of the dataset and domain size
of the models evolved.

Postulate 2
Misclassification of elements can be eliminated completely during hierarchical training
with the incorporation of Highest Misclassifying Margin (HMM) in the fundamental
model of probabilistic class membership, thus rendering the hierarchical training model
error free.

4 Relative Closeness as Measure of Probability of Class
Membership

From the probabilistic model (expression 8) presented in Sect. 3, it can be seen, that
hierarchical learning is largely based on probability of class membership therefore it is
better to call it probabilistic hierarchical learning. The probabilistic hierarchical
learning could only be useful when computation of probability of class membership is
easy, helpful and relevant. Now to understand this we need to think about how can we
compute probability of element j for the membership of class Ck, with respect to model
Mi, i.e., P i; j; kð Þ? It should be computed in a way that supports the probabilistic model
(expression 8) in the objective of classification. In doing so, constraints associated with
the notion of probability as a quantity could also be avoided and we will learn in a
moment what we mean by that. Since the model is very simple therefore, the most
natural way of computation of probability of class membership should be based on the
relative closeness of element/sample to the mean of the class, i.e., closer the sample to
the mean of the class greater should be the probability of its membership of the class.
This can be understood from Eq. 9.

P i;j;kð Þ ¼
l i;jð Þ�c i;k;minð Þ

c i;k;meanð Þ�c i;k;minð Þ
; l i;jð Þ � c i;k;meanð Þ

c i;k;maxð Þ�l i;jð Þ
c i;k;maxð Þ�c i;k;meanð Þ

; otherwise

(
ð9Þ

where

l i;jð Þ = value of sample j according to model Mi

c i;k;minð Þ = estimated minimum value of samples of class Ck according to model Mi

c i;k;maxð Þ = estimated maximum value of samples of class Ck according to model Mi
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c j;k;meanð Þ = estimated mean value of samples of class Ck according to model Mi

The mean value of model Mi of class Ck can be estimated as follows.

c i;k;meanð Þ ¼
P

j2Ck
l i;jð Þ

nk
ð10Þ

where

nk = Number of samples in the training set of class Ck

The maximum and minimum value among samples of class Ck according to model
Mi can be estimated as,

c
i;k;

max
min

	 
 ¼ c i;k;meanð Þ � 3:0	d i;k;sdð Þ ð11Þ

where

d i;k;sdð Þ = estimated standard deviation of samples of class Ck according to modelMi

The standard deviation of samples of class Ck according to model Mi can be
estimated as,

d i;k;sdð Þ ¼
P

j2Ck
l i;jð Þ � c i;k;meanð Þ

� �2

nk
ð12Þ

Now the model from Eqs. 9–12 suggests that the class Ck might have the class
mean farther than the other classes from the sample j to whom it is assigned. This can
be understood from the Fig. 2.

Fig. 2. Principle of relative closeness

Introducing the Theory of Probabilistic Hierarchical Learning 635



It can be seen from Fig. 2, that dk [ dr, but according to model in Eqs. 9–12 the
sample will be assigned to class Ck instead of class Cr because value of sample j lies
outside the boundary of class Cr but within the boundaries of class Ck . Therefore, even
though value of sample j according to model Mi is closer to mean of the class Cr but it
is assigned to class Ck because it is closer to class Ck in relative terms or in other words
relatively closer to class Ck . However, the measure of relative closeness will only work
well when we have good number of training samples belonging to each class, this is
because it can be seen from Eq. 11 of the model that estimation of minimum and
maximum of the class entirely depend on mean and standard deviation of the class
sample values. These quantities are only meaningful when good number of samples are
present in the training set.

Postulate 3
Relative closeness of sample to the mean of the class can be a useful measure for
computation of probability of class membership when we have good representation of
number of samples for each class in the training set.

5 Distance Inverse as a Measure of Probability of Class
Membership

Now, since this is a hierarchical learning model, which bifurcates training set in each
hierarchy into classified and unclassified samples therefore size of the training set
continues to decrease with each hierarchy. In such a situation in the last hierarchy the
training set may end up with very few samples such that number of samples of some or
all the classes become less than 3. In such a case computation of standard deviation
becomes meaningless and so estimation of minimum and maximum. To deal with this
scenario, the measure of relative closeness is replaced with the measure of distance
inverse. Therefore, Eq. 9 can be modified as Eq. 13 below.

P i;j;kð Þ ¼

l i;jð Þ�c i;k;minð Þ
c i;k;meanð Þ�c i;k;minð Þ

; l i;jð Þ � c i;k;meanð Þ; nk 
 3
c i;k;maxð Þ�l i;jð Þ

c i;k;maxð Þ�c i;k;meanð Þ
; otherwise; nk 
 3

1
dk
; not applicable; otherwise

8>><
>>: ð13Þ

where

nk = number of samples in the training set for class Ck

It can be seen from the Eq. 13 that distance inverse measure is introduced when
number of training samples of the class are less than 3. This changes measure of
relative closeness to measure of closeness only or in popular terms measure of nearest
neighbor.

Postulate 4
Closeness of sample to the mean of the class can be a useful measure for computation
of probability of class membership when we have inadequate representation of number
of samples for each class in the training set.
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6 Litmus Test of the Theory

What is a litmus test that could validate the theory presented above? Expression 8
presents core model of the theory which is linked to postulate 2, which states that the
misclassification can be eliminated completely. This means that learnt models should
be able to accurately classify the training set. Therefore, if we can classify some of the
popular datasets accurately through hierarchical learning of low complexity models,
then this would mean that the basic idea behind the theory is valid. To see that the
theory passes this litmus test we chose some of the popular real-world datasets from the
UCI repository. The details of those datasets are tabulated in Tables 1 and 2. Table 1
gives feature description and Table 2 gives class description of each dataset.

We devised the training method [5–8] based on hierarchical learning theory above
and coded in Microsoft Visual Studio C/C++. Please see details of the parameters and
models learnt during training in our earlier works [5–8]. The program was applied on
the five datasets described in Tables 1 and 2. The training method was applied for 30
simulations on each dataset on different random seeds. The trained models were then
tested back on the same dataset. All the datasets were classified accurately in each
simulation.

Table 1. Feature description for each dataset

S.
Nr.

Dataset Nr. of
features

Feature names

(1) (2) (3) (4)

1 Iris flower 4 f 1: sepal length, f 2: sepal width, f 3: petal length, f 4:
petal width

2 Balance scale 4 f 1: left weight, f 2: left distance, f 3: right weight, f 4:
right distance

3 Car
evaluation

6 f 1: buying cost, f 2: maintenance cost, f 3: number of
doors, f 4: number of seats, f 5: size of lug-boot, f 6: level
of safety

4 Banknote
authentication

4 f 1: variance of wavelet transformed image (WTI), f 2:
skewness of WTI, f 3: curtosis of WTI, f 4: entropy of
image

5 Seeds 7 f 1: area, f 2: perimeter, f 3: compactness, f 4: length of
kernel (k), f 5: width of k, f 6: asymmetry coeff:, f 7:
length of k groove
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7 Generalizing Ability of the Theory

Retrieving accurate models of the complex datasets is an achievement but generalizing
ability of such models should also be investigated. Generalizing ability means how
such models perform on the unseen data or the data on which the model is not trained.
We can devise experiments to test this ability of hierarchical learning. Let us develop
hierarchical models on training sets containing only 50% randomly chosen samples of
the original dataset and then test the model on the rest of the 50% samples on which
they are not trained. The test results on this unseen data will show generalizing ability
of the hierarchical model. To cross validate the models we reverse the roles of the
training set and test set. Such an approach will reduce any statistical bias towards or
against the hierarchical models. Furthermore, repeating this procedure for 30 inde-
pendent runs will show close to average performance of the hierarchical learning
theory. So, these experiments were performed on the same five datasets described in
Sect. 6 and the results are reported in Table 3. In Table 3, column 1 shows serial
number of the dataset, name of the dataset is given in column 2. Average results of 30
simulations are stated in column 3. Column 4 mentions best result in 30 simulations,
column 5 provides percentage of accurate results in 30 simulations. This means the
percentage of number of simulations out of 30 where 100% samples are correctly
classified. Finally, column 6 just informs that whether data normalization procedure has
been applied on the dataset. It can be seen from the results that in all the datasets more
than 90% correct results have been obtained on average.

Table 2. Class description for each dataset

S. Nr. Dataset Nr. of
classes

c1 c2 c3 c4 Total Nr. of
samples

(1) (2) (3) (4) (5) (6) (7) (8)

1 Iris flower 3 Setosa
50

Verginica
50

Versicolour
50

– 150

2 Balance scale 3 Balanced
49

Left tipped
288

Right
tipped
288

– 625

3 Car
evaluation

4 Unacceptable
1210

Acceptable
384

Good
69

Very
good
65

1728

4 Banknote
authentication

2 True
610

False
762

– – 1372

5 Seeds 3 Kama
70

Rosa
70

Canadian
70

– 210
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8 Comparison with State of Art

Now let us see how the results presented in Table 3 compare with the literature. For fair
comparisons we need to compare this scheme with recently published methods that are
applied on all the above datasets. We have chosen three recently published methods
namely Support Vector Machines [15], Decision Trees [16] and random forest [17] that
are applied on all the above five datasets. In Table 4 we compare the results of pro-
posed approach with those methods. In Table 4, column 1 gives bibliographical ref-
erence, columns 2–6 state average results of five datasets. Number of simulations are
mentioned in column 7, column 8 informs about x-validation type and finally size of
the training set is revealed in column 9.

It can be seen from the results that the proposed technique has outsmarted the three
methods on the balance scale dataset with a very wide margin i.e. (99.11%/92.00%/
80.30%/67.10%). The Hierarchical learning has also beaten the other three methods on
the banknote authentication dataset, with smaller margins <1.00%. On the car evalu-
ation dataset, the hierarchical learning has produced much better results than two
methods (93.09%/78.26%/73.70) but little worse than the third method. On the rest of

Table 3. Classification results

S.
Nr.

Dataset Average
results

Best
results

%age of accurate
results

Data
normalization

(1) (2) (3) (4) (5) (6)

1 Iris 92.87% 94% 0.00% No
2 Balance scale 99.11% 100% 3.33% No
3 Car evaluation 93.09% 95.08% 0.00% No
4 Banknote

authentication
99.63% 99.93% 0.00% No

5 Seeds 90.40% 93.33 0.00% Yes

Table 4. Comparison with literature

Ref. Iris Bal.
Scale

Car
Evln.

Bn.
Auth.

Seeds Nr. of
Sim.

x-
valid

Size of
Tr. Set

ID %age %age %age %age %age Int type %age
(1) (2) (3) (4) (5) (6) (7) (8) (9)

[15] 98.00 92.00 78.26 99.12 94.29 5 – 80.00
[16] 92.40 67.10 73.70 90.10 88.70 5 – 75.00
[17] 94.53 80.30 94.70 99.34 93.57 10 10-fld 90.00
Hierarchical
learning

92.87 99.11 93.09 99.63 90.40 30 2-fld 50.00
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the two datasets hierarchical learning has performed better than one of the techniques
but worse than other two. However, it should be noted that hierarchical learning has
used only 50% of the training set while the other three techniques have used 90%, 80%
and 75% of training sets. Keeping this in mind the results produced by hierarchical
learning can be regarded as respectable.

9 Conclusion and Future Work

This paper is fifth in our series of papers on hierarchical learning. This paper proposes
the theory of probabilistic hierarchical learning covering four postulates. The first
postulate says that multiple low complexity models can emulate the effect of high
complexity model, when put together hierarchically. The second postulate says that
chance of misclassification of the sample can be eliminated with smart use of funda-
mental model of probabilistic class membership. The third postulate proposes relative
closeness rather than absolute nearness of sample to the mean of the class as basis for
the probability of class membership. The fourth postulate proposes absolute nearness of
sample to the mean of the class as basis for the probability of class membership in case
of inadequate class representation in the training set. The theory is not only supported
through mathematical analysis but also through experimentation on five popular
classification datasets taken from UCI repository. In doing so, generalization ability of
theory is also tested and compared with state of art showing satisfactory results. For
this theory to work with large spectrum of datasets further theoretical enhancements are
still needed which are currently under investigation.
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