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Abstract. Skyline queries constitute an appropriate tool that can help
users to make intelligent decisions in the presence of multidimensional
data when different, and often contradictory criteria are to be taken into
account. Based on the concept of Pareto dominance, the skyline process
extracts the most interesting (not dominated in sense of Pareto) objects
from a set of data. However, this process often leads to a huge skyline,
which is less informative for the end-users. In this paper, we propose
an efficient approach to refine the skyline and reduce its size, using the
principle of the formal concepts analysis. The basic idea is to build a
formal concept lattice for skyline objects based on the minimal distance
between each concept and the target concept. We show that the refined
skyline is given by the concept that contains k objects (where k is a user-
defined parameter) and has the minimal distance to the target concept.
A set of experiments are conducted to demonstrate the effectiveness and
efficiency of our approach.

Keywords: Skyline queries · Skyline refinement · Pareto dominance ·
Lattice of formal concepts

1 Introduction

The skyline queries are introduced by Borzsönyi in [4] to formulate multi-criteria
searches. Recently, this concept, has gained much attention in the database com-
munity. It has been integrated in many database applications that require deci-
sion making and personalized services. Skyline process attempts to identify the
most interesting (not dominated in sense of Pareto) objects from a set of data.
Skyline queries are based on Pareto dominance relationship. This means that,
given a set D of d-dimensional points (objects), a skyline query returns, the
skyline S, set of points of D that are not dominated by any other point (object)
of D. A point p dominates another point q iff p is better than or equal to q in
all dimensions and strictly better than q in at least one dimension.
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A great research effort has been devoted to develop efficient algorithms to
skyline computation [12,14,17,20,24,29]. The skyline computation often leads
to a huge number of skyline objects which is less informative for the user and
does not bring any insight to decision making. In order, to solve this problem
and reduce the size of skyline, several algorithms have been developed [2,6,7,9,
13,18,21,23,26]. In this paper, we consider this problem, but with another novel
vision. In particular, the idea of the solution advocated is borrowed from the
formal concept analysis field. This idea consists in building a formal concept
lattice for skyline objects based on the minimal distance between each concept
and the target concept (i.e., the ideal object w.r.t the user query). The refined
skyline Sref is given by the concept that has the minimal distance to the target
concept and contains k objects (k is a parameter given by the user). Starting
from this idea, we develop an algorithm to compute the refined skyline, called
FLCMD. In summary, our main contributions cover the following points:

– We define an efficient approach to refine the skyline S based on the minimal
distance between the concepts lattice and the target concept.

– We develop and implement an algorithm to compute Sref efficiently.
– We conduct a set of thorough experiments to study, analyze and compare the

relevance and effectiveness of proposed approach and the naive method.

This paper is structured as follows. In the Sect. 2, we define some necessary
notions about the skyline queries, fuzzy set theory, the formal concept analysis
and lattice then, we report some works related to the skyline refinement and at
the end of this section, we explain the naive approach. In Sect. 3, we present our
approach and we give the FLCMD algorithm that compute the refined skyline
Sref . Section 4 is dedicated to the experimental study and Sect. 5 concludes this
paper and points out some future work.

2 Background and Related Work

2.1 Skyline Queries

Skyline queries [4] represent a very popular and powerful paradigm to extract
objects from a multidimensional dataset. They are based on Pareto dominance
principle which can be defined as follows:

Definition 1. Let D be a set of d-dimensional data points and ui and uj two
points of D. ui is said to dominate, in Pareto sense, uj (denoted ui � uj) iff ui

is better than or equal to uj in all dimensions and strictly better than uj in at
least one dimension. [25]

Formally, we write:

ui � uj ⇔ (∀k ∈ {1, .., d}, ui[k] ≤ uj [k]) ∧ (∃l ∈ {1, .., d}, ui[l] < uj [l]) (1)

where each tuple ui = (ui[1], ui[2], · · · , ui[d]) with ui[k] stands for the value of
the tuple ui for the attribute Ak.

In Eq. (1), without loss of generality, we assume that the minimal value, the
better.
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Definition 2. The skyline of D, denoted by S, is the set of points which are not
dominated by any other point.

u ∈ S ⇔ �u′ ∈ D,u′ � u (2)

Example 1. To illustrate the concept of the Skyline, let us consider a database
containing information about apartments as shown in Table 1. The list of apart-
ments includes the following information: code apartment, area of apartment
(m2), price in (e) and distance between work and home (apartment) (dist wh
in km). Ideally, a person is looking to rent an apartment with a minimal price
and having a minimal distance to his/her work (price and dist wh), ignoring the
other pieces of information. Applying the traditional skyline on the apartments
list of Table 1, returns the following apartments: {A1, A3, A5, A7}, see Fig. 1.

Table 1. List of apartments

Code Area (m2) Price (e) dist wh (km)

A1 60 525 20

A2 40 400 120

A3 25 360 85

A4 30 380 100

A5 25 340 90

A6 60 550 95

A7 65 540 10

Fig. 1. Skyline of apartments

2.2 Fuzzy Set Theory

The concept of fuzzy sets has been developed by Zadeh [30] in 1965 to represent
classes or sets whose limits are imprecise. They can describe gradual transitions
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between total belonging and rejection. Formally, a fuzzy set F on the universe X
is described by a membership function μF : X → [0, 1], where μF (x) represents
the degree of membership of x in F . By definition if μF (x) = 0 then the element
x does not belong to F , μF (x) = 1 then x completely belongs to F , these
elements form the core of F denoted by Cor(F ) = {x ∈ F\μF (x) = 1}. When
0 < μF (x) < 1 we talk about a partial membership, these elements form the
support of F denoted by supp(F ) = {x ∈ F\μF (x) > 0}. Moreover, μF (x) is
closed to 1, more x belongs to F . Let x, y ∈ F , we say that x is preferred to
y iff μF (x) > μF (y). If μF (x) = μF (y) then x and y have the same preference.
In practice, F can be represented by a trapezoid membership function (t.m.f)
(α, β, ϕ, ψ) where [β, ϕ] is the core and ]α,ψ[ is its support see Fig. 2.

Fig. 2. Trapezoidal fuzzy set.

2.3 Formal Concept Analysis

The theory of formal concept analysis (FCA), proposed by Wille in 1982 [28].
It is based on a formal context K = (O,P,R), where O is a set of objects, P
is a set of properties (attributes) and R a binary relation between O and P .
Wille defined a correspondence between sets O and P . These correspondences
are called a Galois derivation operator (or sufficiency operator) noted by �.
Given A ⊂ O, B ⊂ P , A� express all the properties satisfied by all the objects
of A and dually B� express the set of objects satisfying all the properties of B
(see [28]). The dual pair of operators ((.)�,(.)�) constitutes a Galois connection
which allows to introduce formal concepts. A formal concept of a formal context
K is a pair (A,B) with A ⊂ O, B ⊂ P , A� = B and B� = A. A and B
are respectively called extent and intent of the formal concept (A,B). The set
of all formal concepts is equipped with a partial order denoted � defined by:
(A1, B1) � (A2, B2) iff A1 ⊆ A2 or B2 ⊆ B1. Ganter and Wille have proved in
[10] that, the set of all formal concepts ordered by � forms a complete lattice
of the formal context K denoted by L(K). In most applications, like in our case
the attributes are defined a fuzzy way. In order to take into account relations
allowing a gradual satisfaction of a property by an object, a fuzzy FCA was
proposed by Burusco and Fuentes-Gonzales [5] and belohlávek et al. in [3]. In
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this case, the notion of satisfaction can be expressed by a degree ∈ [0, 1]. A
fuzzy context formal is a tuple (L,O, P,R), where a fuzzy relation R ∈ LO×P is
a function that is defined O × P −→ L which assigns to each object o ∈ O and
for each property p ∈ P a degree R(o, p) for which the object o has the property
p. In general L = [0, 1]. The generalization of the Galois derivation operator, to
fuzzy settings is based on the fuzzy implication defined by belohlávek in [3]. It
is defined for an subset A ∈ LO (and similarly defined for an subset B ∈ LP ) as
follows:

A�(p) =
∧

o∈O

(A(o) → R(o, p)) (3)

B�(o) =
∧

p∈P

(B(p) → R(o, p)) (4)

→: is a fuzzy implication that verify (0 → 0 = 0 → 1 = 1 → 1 = 1 and
1 → 0 = 0). We distinguish three type of fuzzy formal concepts. Concept with
crisp extent and fuzzy intent, crisp extent and fuzzy intent the third type fuzzy
extent and fuzzy intent.

In this paper, we use concept with crisp extent and fuzzy intent, i.e., the set
of objects is crisp and the set of properties is fuzzy.

Example 2. To illustrate the computation of formal concepts in our case, let us
consider a database containing information about hotels as shown in Table 2.
The set of objects O is composed by different hotels {h1, h2, h3}, the set of
properties P contains the properties cheap (denoted Ch) and Near the beach
(denoted Nb), i.e., P = {Ch,Nb}. R(oi, pj) represents the degree for witch the
object oi satisfies the property pj , for example R(h2, ch) = 0.5 means that the
hotel h2 satisfies the property cheap with degree 0.5. Let us consider the sets of
objects A1 = {h2, h3}, A2 = {h2} and the set of properties B1 = {Ch0.5, Nb0.5}.
Now, let us describe how to compute (A1)�, (A2)� and (B1)�. For (A1)� and
(A2)�, we use Eq. (3) and the implication of Gödel defined by

p −→ q =

{
1 if p ≤ q

q else
(5)

Table 2. List of hotels

Hotel Cheap (Ch) Near the beach (Nb)

h1 0.0 0.8

h2 0.5 0.5

h3 0.5 0.6
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A1 = {h2, h3} = {h0
1, h

1
2, h

1
3}

(A1)�(Ch) = ∧(0 → 0, 1 → 0.5, 1 → 0.5) = ∧(1, 0.5, 0.5) = 0.5
(A1)�(Nb) = ∧(0 → 0.8, 1 → 0.5, 1 → 0.6) = ∧(1, 0.5, 0.6) = 0.5
(A1)� = {Ch0.5, Nb0.5} = B1

Similarly, we obtain (A2)� = {Ch0.5, Nb0.5} = B1

To compute (B1)�, we use Eq. (4) and the implication of Rescher Gaines
defined by

p −→ q =

{
1 ifp ≤ q

0 else
(6)

(B1)�(h1) = ∧(0.5 → 0, 0.5 → 0.8) = ∧(0, 0.5) = 0
(B1)�(h2) = ∧(0.5 → 0.5, 0.5 → 0.5) = ∧(1, 1) = 1
(B1)�(h3) = ∧(0.5 → 0.5, 0.5 → 0.6) = ∧(1, 1) = 1
(B1)� = {h0

1, h
1
2, h

1
3} = {h2, h3} = A1.

– (A1)� = B1 and (B1)� = A1, this means that (A1, B1) forms a fuzzy formal
concept, A1 is its extent and B1 its intent.

– (A2)� = B1 but (B1)� = {h2, h3} = A2 then, (A2, B1) is not a fuzzy formal
concept.

2.4 Related Work

The work proposed by Börzsönyi and al. in [4] is the first work that addresses the
issue of skyline queries in the database field. They have proposed two different
algorithms to process skyline queries in complete database, namely, Block Nested
Loop (BNL) and Divide and Conquer (D& C). Later, many algorithms have been
developed which are inspired from BNL and D&C [4,8,19,23,27,27]. Several
authors have been interested in the problem of huge skyline and have proposed
additional mechanisms to refine the skyline and reduce its size.

In [2,7,13,18,21,23,26] ranking functions are used to refine the skyline. The
idea of these approaches is to combine the skyline operator with the top-K oper-
ator. For each tuple in the skyline, one joins a related score, which is computed
by the means of ranking function F . We note that F must be monotonic on
all its arguments. Skyline tuples are ordered according to their scores, and the
top-K tuples will be returned.

In [11] authors, propose the notion of fuzzy skyline queries, which replaces
the standard comparison operators (=, <,>,≤,≥) with fuzzy comparison oper-
ators defined by user. While in [15], Hadjali and al. have proposed some ideas
to introduce an order between the skyline points in order to single out the most
interesting ones. In [1], a new definition of dominance relationship based on
the fuzzy quantifier “almost all” is introduced to refine the skyline, while in
[16] authors, introduce a strong dominance relationship that relies on the rela-
tion called “much preferred”. This leads to a new extension of skyline, called
MPS (Must Preferred Skyline), to find the most interesting skyline tuples. In
[22] authors, propose a flexible approach called “θ − skyline” to categorize and



A Formal-Concept-Lattice Driven Approach for Skyline Refinement 547

refine the skyline set by applying successive relaxations of the dominance con-
ditions with respect to the user’s preferences. This approach is based on the
ranking method which deals with decision-making in the presence of conflicting
choices. Furthermore, they define a global ranking method over the skyline set.
In [13], Haddache et al. have proposed an approach based on ELECTRE method
borrowed from the outranking domain to refine the skyline.

Furthermore, several researchers have worked on skyline’s refinement for the
evidential data. In [9] authors, have developed efficient algorithms to retrieve
the best evidential skyline objects over uncertain data.

2.5 Naive Method

This approach [6] is based on two steps: (i) first compute for each skyline point
p, the number of points dominated by p denoted by num(p). (ii) The skyline
points are sorted according to num(p) in order to choose the Top − k.

3 Our Approach

In this section, we will present the main steps of our approach. First, we assume
that, we have

– A database formed by a set of m objects (tuples), O = {o1, o2, · · · , om}.
– A set P of n properties (or dimensions or attributes), P = {p1, p2, · · · , pn}.
– Each object oj from the set O is evaluated for every property pi.
– S the skyline of O, S = {o1, o2, · · · , ot}, t <= m, t is the size of skyline.
– Sref the refined skyline returned by our approach.
– In our approach we use the implication(−→) of Rescher Gaines defined by

Eq. (6).

Fig. 3. Steps of our approach

The principle of our approach is to build the fuzzy concept lattice of the skyline
points based on the minimal distance between each new concept and the target
concept. In summary, our approach is based on the following steps (see Fig. 3).
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Algorithm 1. FLCMD
Input: A Skyline S, K: the number of objects chosen by the user
Output: A refined skyline Sref

1 Sref ← ∅; dist ← 100; stop ← false;
2 Compute degree(S); /*compute the degrees of objects*/;
3 Intent target ← Compute target intent();
4 for i := 1 to n do
5 Intent min(i) ← S(1, i);
6 for j := 2 to m do
7 if S(j, i) < Intent min(i) then
8 Intent min(i) ← S(j, i);
9 end

10 end

11 end
12 while stop = false do
13 for i := 1 to nb d do
14 New Intent ← Next intent(Intent min, i);;
15 d ← Compute distance(New Intent, Intent target);
16 if (d < dist) then
17 dist = d; save Intent ← New Intent;
18 extent ← Compute Extent(New Intent);
19 if (size(extent) = k) then
20 Sref ← extent; stop ← true;
21 end

22 end

23 end
24 Intent min ← save Intent;

25 end
26 return Sref ;

1. First, we calculate the skyline using the Basic Nested Loop algorithm (BNL)
for more details see [4].

2. Second, we compute the refined skyline using Algorithm 1 (FLCMD). This
algorithm, starts by computing for each object oi the degree R(oi, pj) for
witch the oi minimizes the property pj chosen by the user. Then, it computes
the formal concept whose intent minimizes the properties chosen by the user,
i.e., maximizes the degrees R(oi, pj) for these properties (this concept is called
target concept).

3. FLCMD builds the fuzzy lattice for skyline objects. It starts by computing the
formal concept whose intent minimizes the degrees R(oi, pj) for the properties
chosen by user,

4. The algorithm FLCMD computes all the following concepts of this concept.
5. For each new concept, FLCMD, computes the size of its extent and the dis-

tance between its intent and the intent of target concept.
6. If the size of the extent equals k (where k is a user-defined parameter), the

process stopped. The refined skyline is given by the objects of this extent
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(when the number of extents having a size equals k is greater than 1, FLCMD
chooses the extent whose intent has the minimal distance).

7. If the size of the extent is greater than k, FLCMD selects the intent that has
the minimal distance and it starts from step 4.

FLCMD algorithm uses the following functions:

– Next intent(Intent min, i): gives the following intent of Intent min on the
dimension i.

– Compute Extent(New Intent): computes the extent of New Intent, using
the equation (4) and the implication given by the Eq. (6).

– Compute distance(New Intent, Intent target): computes the Euclidean dis-
tance between New Intent and Intent target.

Example 3. To illustrate our approach, let us come back to the skyline calculated
in Example 1 presented in Sect. 2.1. As a reminder, we use two properties, namely
price and dist wh. Furthermore, we assume that the minimal value, the better.
BNL algorithm returns as skyline the following apartments: {A1, A3, A5, A7},
see Table 3.
Remark In the following, we note the intent (priceα, dist whβ) by (α, β).

Table 3. Classic skyline and objects degrees

Classic skyline Object degrees R(Ai, Pi)

Code Area (m2) Price (e) dist wh(km) Price dist wh

A1 60 525 20 0.075 0.875

A3 25 360 85 0.9 0.0625

A5 25 340 90 1 0

A7 65 540 10 0 1

First, we compute for each object skyline Ai the degree R(Ai, Pi) for which
Ai minimizes the property Pi. These degrees are given by (see Fig. 4).

– R(Ai, price) = 1 − (x1 − 340)/200, x1 is the value of Ai w.r.t property price.
– R(Ai, dis wh) = 1− (x2 −10)/80, x2 is the value of Ai w.r.t property dis wh.

Second, we compute the target intent and the intent that minimizes the degree
R(Ai, Pi) w.r.t cheap price and short distance. Using data from Table 3, and the
Algorithm 1, one cane observe that Intent target = (1, 1) Intent min = (0, 0).
Then, we compute the following intents of the intent min.

For i = 1, New Intent = (0.075, 0). The distance between this intent and
the target intent d =

√
(1 − 0.075)2 + (1 − 0)2 = 1.36, extent = (A1, A3, A5).

For i = 2, New Intent = (0, 0.0625). The distance between this intent and
the target intent d =

√
(1 − 0)2 + (1 − 0.0625)2 = 1.37, extent=(A1, A3, A7).

If k = 3, the process stopped and Sref = {A1, A3, A5}.



550 M. Haddache et al.

Fig. 4. Objects degrees

If k < 3, we select the intent (0.075, 0) (because it has the minimal distance
(1.36) with the target intent) then, we compute its following intents and the
process continues as shown in Fig. 5. From Fig. 5, we can see that, if k = 2, the
refined skyline equals {A3, A5}, when k = 1 Sref = {A3}.

Fig. 5. Lattice of skyline points based on minimal distance

4 Experimental Study

In this section, we present the experimental study that we have conducted.
The goal of this study is to prove the effectiveness of our algorithm and its
ability to refine huge skyline and compare its relevance to the naive method.
All experiments were performed under Windows OS, on a machine with an Intel
core i7 2,90 GHz processor, a main memory of 8 GB and 250 GB of disk. All
algorithms were implemented with Java. Dataset benchmark is generated using
the method described in [4]. The test parameters used are distribution dataset
[DIS] (correlated, anti-correlated and independent), the dataset size [D] (100K,
250K, 500K, 1000K, 2000K, 4000K) and the number of dimensions [d] (2, 4, 6, 10,
15). To interpret the results we define the following refinement rate (ref rate):

ref rate =
(ntcs − ntrs)

(ntcs)
(7)

where ntcs is the number of tuples of the regular skyline and ntrs is the number
of tuples for the refined skyline.
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Impact of [DIS]. In this case, we use a dataset with |D| = 100K, d = 6.
Figure 6 shows that the execution time of the two algorithms for anti-correlated
data is high compared to the correlated or independent data. This is due to the
important number of tuples to refine (14758 tuples for anti-correlated data, 2184
and 89 tuples for independent and correlated data). Figure 6 shows also that our
algorithm has the best execution time compared to the naive algorithm (0.004 s
for FLCMD, 0.85 s for naive algorithm in the case of correlated data, 10.41 s for
FLCMD and 72.32 s for the naive algorithm in the case of anti-correlated data,
0.38 s for FLCMD and 18.2 s for the naive algorithm in the case of independent
data). The refinement rate for the two algorithms is very high (for correlated
data = (89−10)/89 = 0.88, for anti-correlated data = (14758−10)/14758 = 0.99
and for independent data = (2184 − 10)/2184 = 0.995).

Fig. 6. Impact of [DIS]

Impact of the Size of the Dataset [D]. In this case, we study the impact
of the size of the database on the execution time of the refined skyline and the
refinement rate for the two algorithms. To do this, we use an anti-correlated
database with d = 4. Figure 7, shows that, the execution time increases with the
increase of the database size. But the execution time of our algorithm remains
the best compared to the naive algorithm (the execution time increases from 0.3
s if |D| = 100K to 10.52 s when |D| = 4000K for FLCMD and from 13.48 s if

Fig. 7. Impact of [D]
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|D| = 100K to 1130.5 s if |D| = 4000K for naive algorithm). The refinement rate
for the two algorithms is very high varied from 0.996 ((2811−10)/2811 = 0.996)
when |D| = 100K to 0.999 ((12540 − 10)/12540 = 0.999) when |D| = 4000K.

Impact of the Number of Dimensions [d]. In this case, we study the impact
of varying the number of dimensions skyline in the process of computing Sref .
We use an anti-correlated distribution data with |D| = 50K. Figure 8 shows that
the execution time increases with the number of dimensions (from 0.008 s for
d = 2 to 120.3 s when d = 15 for the FLCMD algorithm) and (between 0.5 s
and 420 s when d varied from 2 to 15 for naive algorithm). This indicates that
our algorithm gives the best execution time compared to naive algorithm. The
refinement rate increases from 0.94 ((187 − 10)/187 = 0.94) when d = 2 to 0.99
((48103 − 10)/48103 = 0.99) for d = 15.

Fig. 8. Impact of [d]

5 Conclusion and Perspectives

In this paper, we addressed the problem of the skyline, especially a huge sky-
line and we proposed a new approach to reduce its size. The basic idea of this
approach is to build a fuzzy concept lattice for skyline objects based on the
minimal distance between each concept and the target concept. The process
of refinement stopped when we compute the concept that contains k objects
(where k is a user-defined parameter) and has the minimal distance with the
target concept. The refined skyline is given by the objects of this concept. An
algorithm called FLCMD to calculate the refined skyline is proposed. In addi-
tion, we implemented the naive algorithm to compare its performance to that of
our algorithm. The experimental study we have done showed that, our approach
is a good alternative to reduce the size of the classic skyline (the refinement rate
reached 99%) and has a reasonable time computation also, the execution time of
our algorithm is the best compared to the naive algorithm. As for future work,
we will explore, on the one hand the use of semantic distance between concepts
to build the refinement lattice and on the other hand, we will use the lattice
construction algorithms that gives fuzzy extensions in order to sort the objects
of the same concept.
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