
Context-Aware Instance Matching
Through Graph Embedding in Lexical

Semantic Space

Ali Assi1(B), Hamid Mcheick2, and Wajdi Dhifli3

1 University of Quebec At Montreal, Montreal H2X3Y7, Canada
assi.ali@courrier.uqam.ca

2 University of Quebec At Chicoutimi,
555, University Boulevard, Chicoutimi, Canada

hamid mcheick@uqac.ca
3 Univ. Lille, EA2694, 3 rue du Professeur Laguesse,

BP83, 59006 Lille Cedex, France
wajdi.dhifli@univ-lille.fr

Abstract. Instance matching is one of the processes that facilitate the
integration of independently designed knowledge bases. It aims to link
co-referent instances with an owl:sameAs connection to allow knowl-
edge bases to complement each other. In this work, we present VDLS,
an approach for automatic alignment of instances in RDF knowledge
base graphs. VDLS generates for each instance a virtual document from
its local description (i.e., data-type properties) and instances related
to it through object-type properties (i.e., neighbors). We transform
the instance matching problem into a document matching problem and
solve it by a vector space embedding technique. We consider the pre-
trained word embeddings to assess words similarities at both the lexi-
cal and semantic levels. We evaluate our approach on multiple knowl-
edge bases from the instance track of OAEI. The experiments show that
VDLS gets prominent results compared to several state-of-the-art exist-
ing approaches.

Keywords: Data linking · Instance matching · RDF graph ·
Semantic web

1 Introduction

Linked Open Data (LOD) includes several Knowledge Bases (KBs) expressed
by ontologies in the form of RDF graphs from various domains of applications
such as geography, biology, etc. These KBs are often created independently from
each other. They may contain resources (with distinct descriptions) that are
co-referring, but not explicitly defined. Instance Matching (IM) is the process
of matching instances across these different knowledge bases, that refer to the

c© Springer Nature Switzerland AG 2019
F. Wotawa et al. (Eds.): IEA/AIE 2019, LNAI 11606, pp. 422–433, 2019.
https://doi.org/10.1007/978-3-030-22999-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22999-3_37&domain=pdf
https://doi.org/10.1007/978-3-030-22999-3_37

Context-Aware Instance Matching Through Graph Embedding 423

same entity in the real-world (e.g., the same person in two different knowledge
bases).

The existing IM approaches can be categorized as domain-dependent [19,20]
and domain-independent approaches [7,12,16,21]. An IM approach is called
domain-dependent when it deals with KBs related to a specific domain (e.g.,
music domain). Otherwise, it is called domain-independent. For more details
about IM approaches, we refer the reader to [6,15]. In fact, most of the exist-
ing approaches mainly depend on the result of the instances’ property align-
ments. The property alignment process aims to match properties from different
KBs, that have similar semantics. This process is not trivial since KBs are usu-
ally expressed by their specific ontologies in order to describe the RDF graph
instances and relations. For example, the information included in the “address”
property in a source KB can be represented by several properties (e.g., street, zip-
code, etc.) in another KB. Thus, the property alignment will not find its corre-
sponding property in the target KB. As a result, such information will be ignored
even if it may be worthy to consider it for IM. Indeed, in some cases the descrip-
tion of instances does not carry properties with similar semantics. However, they
can contain information with some expressive relationships. For example, given
a KB that describes the instance “Arthur Purdy Stout” with two properties:
“f:profession” and “f:death Place”, the former property says “Researcher
in Surgical pathology and pathologists” as his profession. The latter one indi-
cates “New York City” where he died. Now given another KB that describes his
“d:place of birth” as “New York City” and the information about his career
can be deduced from the text given by the property “d:description” which
states “Arthur Purdy Stout, M.D., (1885–1967) was a noted American surgeon
and diagnostician.”. As you notice, the two descriptions have the same meaning.
However, they cannot be inferred by any of the existing property alignment-
based approaches.

In this paper, we propose an approach that tackles these drawbacks. Our
approach represents instances as virtual documents where each of the latter is
represented by a collection of words, and is generated for each instance declared
in the KB. It consists of a “bag of words” extracted from the identifier of the
instance, predicates, as well as the ones from all of its neighbors. To capture
the semantic string similarity between words as “pathologist” and “diagnosti-
cian” in the above example, we use the distributed representation of words (e.g.,
FastText [3], GloVe [18]) also known as word embedding. This latter represents
words by a low dimensional dense vector, such that the vectors for similar words
(i.e., “pathologist”, “diagnostician”) are close to each others in their semantic
embedding space.

Our major contributions are summarized as follows: (1) We propose a new
idea for building virtual documents for instances. (2) We include words embed-
dings for capturing their semantics (i.e., synonym and terminological variants).
(3) We transform the instance matching problem into a document similarity
problem and we solve it using lexical semantic similarity technique [13].

424 A. Assi et al.

We experimentally validate our approach, Virtual Document Lexical Similar-
ity (termed VDLS), on four KBs from the benchmark instance matching track of
OAEI 2009 and 2010. The obtained results show that our approach gets highly
competitive results compared to state-of-the-art approaches.

2 Preliminaries

In the semantic web, the meaning of a “concept” is similar to the notion of a
Class in the Object-Oriented Programming (OOP) view. Thus, resources cre-
ated according to the structure of a class are known as instances of that class [1].

The Resource Description Framework (RDF) data model [9] represents the
descriptions of the entities (i.e., concepts) and the instances by RDF expressions,
called triples, in the form <subject, predicate, object>. A subject can be
a URI or a blank node. The latter represents an anonymous entity. An object
can be a URI, a blank node, or a basic value (e.g., a string, a date, an integer,
etc). A predicate allows to model a relationship between the subject and the
object.

Definition 1 (RDF knowledge base graph). An RDF Knowledge Base (KB)
graph is a set of facts in the form <subject, predicate, object> ∈ (E ∪B)×
P × (E ∪ L ∪ B), where E is the set of instances, B is the set of blank nodes, P
is the set of predicates and L is the set of literals (basic values).

An RDF KB graph can adhere or not to an ontology. In the rest of the paper,
we write KB shortly to refer to RDF KB graph.

Instance Matching (IM) is the problem of identifying instances that co-refer
to the same object of the real world. It can be seen as a process of building the
predicate owl:sameAs between the co-referent instances belonging to different
KBs. Formally:

Definition 2 (Instance matching). Given two input sets of instances S and
T belonging to two different KBs, the aim of IM is to compute the set M =
{(i1, i2) | (i1, i2) ∈ S × T , <i1, owl:sameAs, i2>}.

Instance matching is a difficult task [5] mainly due to textual variation of
the property values, incompleteness, presence of erroneous information, multi-
lingualism, etc.

3 Instance Matching Through Graph Embedding and
Lexical Semantic Similarity

3.1 Virtual Document

An instance e is described by a set of triples: T (e) = {t1, . . . , tn}. All these
triples share the same subject e denoted by a URI. For every instance in the
KB, a “Virtual Document” (VD) is created. It is represented as a collection

Context-Aware Instance Matching Through Graph Embedding 425

of words extracted from different parts of its triples (i.e., from the URI’s sub-
ject and its properties’ values). We consider to treat the URIs as literals as
in [17]. This approach is based on the assumption that many URIs encompass
valuable information. It detects a pattern from the characters of the URIs. The
pattern has the form (prefix-infix-(suffix)). The prefix (P) is the URI domain.
The (optional) suffix (S) contains details about the format of the data or named
anchor. The infix (I) represents the local identifier of the target instance.

Example 1. In the URI: http://people.csail.mit.edu/lalana kagal/foaf#me, the
prefix is “http://people.csail.mit.edu”, the infix is “/lalana kagal”, and the suffix
is “/foaf#me”.

Definition 3 (Statement). A statement t is the smallest irreducible represen-
tation for linking one object s to another object o or a literal l via a predicate p.
Formally: t = <s, p, o> where s ∈ E ∪ B, p ∈ P and o ∈ E ∪ B ∪ L.

In the following, we refer to the infix of a given URI e by I(e). Indeed,
we refer to the different parts of a statement t by subject(t) to designate its
subject (i.e., s), by object(t) to designate its object (i.e., o) when this object is
a URI or by value(t) when the object is a basic value. We have only included in
T (e) the forward statements (triples) from the instance e. We suppose that such
triples allow to describe the main features of the instance e. Thus, we define the
neighbors of e as follows:

Definition 4 (Forward neighbors). Let e be an instance, B be the set of blank
nodes and t be any statement with e as its subject. The instance e has a set of
forward neighbors denoted by FN and defined as:

FN(e) =
⋃

e=subject(t)

{object(t)} (1)

Definition 5 (Local name of an instance). Let e be an instance in E. The
local name of e, denoted by LN(e), is equal to the infix of e, i.e., LN(e) = I(e).

Definition 6 (Local name of a blank node). Let :b be a blank node (:b ∈ B)
and t be any statement with :b as its subject. The local name of :b, denoted
by LN(:b), is defined as equal to the local names of its direct 1-hop forward
neighbors in the graph:

LN(:b) =
∑

o∈FN(:b)

N(o) (2)

where N is a function that returns the name of the object o ∈ E∪B. The function
N is equal to I when the object o ∈ E . Whereas, it leads to a recursive extended
definition of the local name of a blank node when o ∈ B.

Definition 7 (Recursive local name of a blank node). Let :b be a blank
node (:b ∈ B) and t be any statement with :b as its subject. The recursive local

http://people.csail.mit.edu/lalana_kagal/foaf#me
http://people.csail.mit.edu

426 A. Assi et al.

name of :b, denoted by LNk(:b), is defined as the local names of leaf nodes of
at most k-hops paths starting form :b and ending in object nodes o ∈ E:

∀k ≥ 1, LNk(:b) = LN(:b) +
∑

:b=subject(t)
o=object(t)

o∈B

LNk−1(o)
(3)

Note that the recursive definition could terminate in less then k-hops in
the case where all the neighbor nodes are leaf nodes. Otherwise, the function
terminates in k-hops (in the worst case), if there exists at least a path of length
greater or equal to k composed of only blank nodes and that starts from the root
blank node of the recursive function. The benefits of this limitation are twofold.
Indeed, this allows to alleviate the computation in cases of big KB graph datasets
or in cases where the datasets contain long paths of consecutive blank nodes. In
addition, this avoids the trap of infinite loops in cases where a cycle of blank
nodes exists.

Definition 8 (Local description of an instance). Let e be an instance
denoted by a Uniform Resource Identifier (URI) and t be any statement with
e as its subject. The local description of e, denoted by Des(e), is a collection of
words defined by:

Des(e) = α1 × LN(e) + α2 × Data(e) + α3 ×
∑

e=subject(t)
o=object(t)
o∈FN(e)

LN(o)
(4)

where Data is the set of values extracted from T (e) (i.e., basic values) and the
coefficients α1, α2 and α3 are three fixed constants in {0, 1}. LN depends on the
strategy used when creating the URIs (i.e., α1 = 1 when the URIs information
is meaningful).

Definition 9 (Local description of a blank node). Let :b be a blank node
(:b ∈ B) and t be any statement with :b as its subject. The local description of
:b, denoted by LD(:b), is defined as equal to its local data values (Data(:b))

and the local descriptions of its direct 1-hop forward neighbors in the graph:

LD(:b) = Data(:b) +
∑

:b=subject(t)
o∈FN(:b)

D(o)
(5)

where D is a function that returns the description of the object o ∈ E ∪ B. If
o ∈ E , then the function D will be equal to Des. Whereas, in the case where
o ∈ B, then the local description of a blank node will be defined in a recursive
way as follows.

Definition 10 (Recursive local description of a blank node). Let :b be a
blank node (:b ∈ B) and t be any statement with :b as its subject. The recursive

Context-Aware Instance Matching Through Graph Embedding 427

local description of :b, denoted by LDk(:b), is defined as the local descriptions
of leaf nodes of the k-hops paths starting form :b and ending in object nodes
o ∈ E:

∀k ≥ 1, LDk(:b) = LD(:b) +
∑

o=object(t)
:b=subject(t)

o∈B

LDk−1(o)
(6)

Note also that here the iterations of the recursive definition will terminate in
at most k-hops for the same arguments discussed in Definition 7.

Definition 11 (Virtual document of an instance). The virtual document
of an instance e (denoted by V D(e)) is defined as:

V D(e) = Des(e) + α ×
∑

e′∈FN(e)

Des(e′) (7)

where α is a parameter defined in {0, 1}. If the node has a rich description,
then we can limit VD(e) to the local description of e provided in the set of 1-
hop neighbors by setting the parameter α to 0. However, in some applications,
the local description of e in the KB graph could be poor and thus it would be
judicious to incorporate additional information on e from farther neighbors in
the KB by performing walks in the graph. This could be performed by setting
α to 1.

3.2 Lexical Semantic Vector

The lexical semantic vector method was introduced in [13] then modified in [10].
Given two VDs (V D1, V D2), we create a combined list of vocabulary, denoted by
L, that consists of all the unique words in V D1 and V D2, i.e., L = V D1 ∪V D2.
Then, we compute the pairwise similarity of each word vL in L with every word
v1 in V D1. This leads to create a lexical semantic vector V1 that contains the
maximum similarities between each word in L and all words in V D1 (respectively
for V D2). Formally, each element in the lexical semantic vectors V1 and V2 is
defined as:

V1j = max
1≤i≤|V D1|

Sim(v1i, vLj) : ∀vLj ∈ L (8)

V2j = max
1≤i≤|V D2|

Sim(v2i, vLj) : ∀vLj ∈ L (9)

where Sim is a similarity measure (cosine in this paper) that computes the
similarity between pairs of words based on their embedding vectors.

Definition 12 (Lexical semantic word embedding). A word embedding
(also called dense distributed representation [2]) is a learned representation where
each word is mapped to a real-valued dense vector in a semantic vector space.
This is based on the assumption that words with similar contexts will have simi-
lar meanings and also will have similar representations (i.e., close vectors in the
semantic vector space).

428 A. Assi et al.

3.3 Indexing

After determining the VDs that correspond to the source KB, we build an
inverted-index, i.e., a binary vector representation (1 the presence or 0 the
absence) from the words of these VDs.

Infrequent-Words: One of the common problems encountered while build-
ing the inverted-index representation is that multiple used keywords are highly
frequent and thus they do not sufficiently provide specificity for the instances.
In order to alleviate this drawback, we define Infrequency as a measure that
quantifies the infrequency of a given word in a dataset:

Infrequency(token) =
1

log2
(
WF (token) + 1

) (10)

where WF is the number of VDs containing the token. Infrequency is theoreti-
cally defined in [0, 1]. A word appearing only once in a KB has an infrequency of
1. In contrast, the more a word appears in the KB, the more its infrequency is
close to 0. In fact, 0 represents a theoretical lower bound for infrequency where
WF leans toward +∞. In practical cases, the maximum word frequency WF is
bounded by the size of the dataset. Thus, we propose to normalize (MinMax
normalization) the infrequency values to make them fall within the range of [0,
1]. Note that a token is considered as an infrequent-word when its infrequency
(after normalization) is higher or equal to a predefined threshold γ.

Common Infrequent-Words: Let I1 and I2 be two instances for a source and
a target KB, respectively. I2 is considered as a potential matching candidate for
I1 (i.e., Candidate(I1, I2) = True), if both instances share a number of “common
infrequent-words” that is higher or equal to a predefined threshold β. Formally:

Candidate(I1, I2) = | I1 ∩ I2 |≥ β (11)

3.4 Approach Overview

Our approach VDLS (see Fig. 1) starts by parsing the given source and tar-
get KBs then it builds the VDs for each instance in them according to the
Definition 11. Once the VDs corresponding to the source KB are determined, an
inverted-index is set up from their words. Note that infrequency takes effect only
over the words of the source KB. By using this index, each source instance gets
its candidates from the target KB. A target instance is a candidate for a source
instance if both share at least β common infrequent-words in their descriptions
as described in Eq. 11. The similarity between the instances is computed between
their corresponding Lexical Semantic embedding vectors as detailed in Sect. 3.2.
Once this computation step is done, we select for each source instance its best
candidate (i.e., top similarity score) as a co-referent.

Context-Aware Instance Matching Through Graph Embedding 429

4 Experimental Evaluation

Datasets. We evaluate our proposed method on two benchmark datasets
(Table 1): PR (synthetic) and A-R-S (real) used in OAEI 2010 and 2009, respec-
tively. PR is a small benchmark including two persons data and one restaurants
RDF data. A-R-S includes three RDF files named eprints, rexa and dblp related
to scientific publications RDF data. For each set, the OAEI provides a mapping
file (“gold standard”) including the co-referent pairs between the source and
target RDF files.

Fig. 1. An overview of our instance matching approach.

Table 1. Benchmarks statistics

Benchmarks Datasets Source Target Gold standard

PR Person1 2000 URIs 1000 URIs 500

Person2 2400 URIs 800 URIs 400

Restaurant 399 URIS 2256 URIs 112

A-R-S eprints-rexa 1130 URIS 18,492 URIs 777

eprints-dblp 1130 URIs 2, 650, 832 URIs 554

Experimental Setup. For word embedding vectors, we use a dataset of pre-
trained word vectors embedding developed by Facebook research team using
FastText [3]. This dataset is trained on Wikipedia corpus and the generated
vectors are of dimensionality equal to 300. If a word does not exist in the pre-
trained embeddings, a unique vector will be created at test time. We run the
experiments with different infrequency thresholds γ between [0,1] with a step size
of 0.1. In Table 2, we report the optimal obtained results. We set β = 2 in Eq. 11
to represent the minimum required number of words between two instances to be
considered as a candidate pair. In addition, we allow the paths to be composed at
most of 2 blank nodes (i.e., k = 2 in Eq. 3). Our approach is implemented in Java
and the KBs are parsed using the RDF4J library. We execute the experiments
on a Linux server with 128 GB RAM and two Intel E5-2683 v4 “Broadwell”
CPUs of 2.1 Ghz.

430 A. Assi et al.

4.1 Results and Discussion

Analysis of the Effect of the Context on the IM. We first analyze the effect
of including (or not) the context information on the accuracy of the IM process.
Table 2 reports the obtained results for VDLS with the context information (α =
1) and without it (α = 0). We notice that when the instances contain a sufficient
local description information, the neighboring information either does not bring
any benefit to the matching process (the case of Person1 and Person2) or it
leads to an information overload and thus may hinder the IM results (the case
of Restaurant). In the case of largely and noisy datasets as in eprints-rexa, the
neighboring information permits to relax the effect of the noisy data and thus
to enhance the accuracy of the matching process.

Table 2. F-measure results of VDLS with (α = 1) and without (α = 0) the context
information.

Datasets Person1 Person2 Restaurant eprints-rexa eprints-dblp

VDLS (α = 0) 1 1 1 0.85 0.89

VDLS (α = 1) 1 1 0.98 0.87 0.9

Fig. 2. The effect of Infrequency on the running time of VDLS (using the eprints-rexa
datasets).

Analysis of the Effect of Word Infrequency on the Running Time. A
higher F-measure requires a higher number of words and thus lower values of
infrequency. This requires more running time. Figure 2 shows a clear example
of the evolution of running time of VDLS with respect to different infrequency
thresholds. Indeed, the required computation time increases when we add more
words (lower infrequency) in the VDs. However, such a consideration makes
VDLS subject to the “no free lunch” principle [22], where the gain in accuracy
comes with an offset of computational cost. Hence, a trade-off between running
time and accuracy is essential especially with large scale datasets.

Context-Aware Instance Matching Through Graph Embedding 431

Comparative Analysis. In Table 3, we report the results of multiple state-of-
the-art IM approaches on the PR and A-R-S benchmarks and we compare our
approach against them. On the PR benchmark, VDLS performed overall better
than the other approaches. It was able to correctly retrieve all the co-referent
instance, except for Restaurant where VDLS (α = 1) where the F-measure was
0.98. This was due to the effect of information overload, where the context
(neighbor) information did slightly hinder the accuracy of the IM process. As for
the A-R-S benchmark, the IM was more difficult than with the PR benchmark.
Indeed, VDLS outperformed all the other approaches in terms of F-measure yet
the best results did not exceed 0.87 and 0.9 respectively for eprints-rexa and
eprints-dblp. By analyzing the false matchings, we noticed that several of these
instances were isolated nodes in the RDF graph and thus their VDs did lack
context information.

Table 3. Comparative analyses of F-measure results on PR and A-R-S benchmarks.

Datasets Person1 Person2 Restaurant eprints-rexa eprints-dblp

VDLS (α = 0) 1 1 1 0.85 0.89

VDLS (α = 1) 1 1 0.98 0.87 0.90

PARIS [21] 1 1 0.91 - -

ObjectCoref [7] 1 0.95 0.90 - -

ASMOV-D [8] 0.87 0.24 0.70 - -

CODI [16] 0.91 0.36 0.72 - -

RIMOM [11] 1 0.97 0.81 0.80 0.73

DSSIM [14] - - - 0.38 0.13

HMATCH [4] - - - 0.62 0.65

VMI [12] - - - 0.85 0.66

5 Conclusion and Future Works

In this paper, we proposed a property-independent approach for IM and a new
method for building VDs corresponding to the instances. We also transformed
the IM problem into a document matching problem and we created lexical seman-
tic vectors to measure the similarity between two VDs. We have compared our
approach to state-of-the-art methods on benchmark datasets, and we achieved
very promising results.

As future work, we will include more pruning heuristics to reduce the num-
ber of candidates for each query instance. It will also be interesting to propose
an extension for VDLS that leverages parallel and distributed computation to
efficiently handle big data scenarios with large-scale KBs.

432 A. Assi et al.

References

1. Antoniou, G., Van Harmelen, F.: A Semantic Web Primer. MIT Press, Cambridge
(2008)

2. Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H.: Greedy layer-wise training of
deep networks. In: Advances in Neural Information Processing Systems, vol. 19.
MIT Press, Cambridge, MA (2007)

3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606 (2016)

4. Castano, S., Ferrara, A., Montanelli, S., Lorusso, D.: Instance matching for ontol-
ogy population. In: Italian Symposium on Advanced Database Systems (SEBD),
pp. 121–132. ICAR-CNR (2008)

5. Ferrara, A., Lorusso, D., Montanelli, S., Varese, G.: Towards a benchmark for
instance matching. In: Proceedings of the 3rd International Conference on Ontology
Matching, vol. 431, pp. 37–48. CEUR-WS. org (2008)

6. Ferraram, A., Nikolov, A., Scharffe, F.: Data linking for the semantic web. Semant.
Web Ontol. Knowl. Base Enabled Tools Serv. Appl. 169, 326 (2013)

7. Hu, W., Chen, J., Qu, Y.: A self-training approach for resolving object coreference
on the semantic web. In: Proceedings of the 20th International Conference on
World Wide Web, pp. 87–96. ACM (2011)

8. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with
semantic verification. Web Semant. Sci. Serv. Agents World Wide Web 7(3), 235–
251 (2009)

9. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts
and abstract syntax (2004). http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/

10. Konopik, M., Prazák, O., Steinberger, D., Brychćın, T.: UWB at SemEval-2016
task 2: interpretable semantic textual similarity with distributional semantics for
chunks. In: Proceedings of the 10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pp. 803–808 (2016)

11. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: a dynamic multistrategy ontology align-
ment framework. IEEE Trans. Knowl. Data Eng. 21(8), 1218–1232 (2009)

12. Li, J., Wang, Z., Zhang, X., Tang, J.: Large scale instance matching via multiple
indexes and candidate selection. Knowl. Based Syst. 50, 112–120 (2013)

13. Li, Y., McLean, D., Bandar, Z., O’Shea, J., Crockett, K.A.: Sentence similarity
based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8),
1138–1150 (2006)

14. Nagy, M., Vargas-Vera, M., Motta, E.: DSSim - managing uncertainty on the
semantic web. In: CEUR Workshop Proceedings, OM, vol. 304. CEUR-WS.org
(2007)

15. Nentwig, M., Hartung, M., Ngonga Ngomo, A.C., Rahm, E.: A survey of current
link discovery frameworks. Semant. Web 8(3), 419–436 (2017)

16. Noessner, J., Niepert, M., Meilicke, C., Stuckenschmidt, H.: Leveraging termino-
logical structure for object reconciliation. In: Aroyo, L., et al. (eds.) ESWC 2010.
LNCS, vol. 6089, pp. 334–348. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13489-0 23

17. Papadakis, G., Demartini, G., Fankhauser, P., Kärger, P.: The missing links: dis-
covering hidden same-as links among a billion of triples. In: Proceedings of the 12th
International Conference on Information Integration and Web-based Applications
& Services, pp. 453–460. ACM (2010)

http://arxiv.org/abs/1607.04606
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://doi.org/10.1007/978-3-642-13489-0_23
https://doi.org/10.1007/978-3-642-13489-0_23

Context-Aware Instance Matching Through Graph Embedding 433

18. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: In EMNLP (2014)

19. Raimond, Y., Sutton, C., Sandler, M.B.: Automatic interlinking of music datasets
on the semantic web. In: LDOW, vol. 369 (2008)

20. Rowe, M., Group, O.: Interlinking distributed social graphs. In: In Linked Data on
the Web Workshop, WWW 2009, April 2009 (2009)

21. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic alignment of
relations, instances, and schema. Proc. VLDB Endow. 5(3), 157–168 (2011)

22. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

	Context-Aware Instance Matching Through Graph Embedding in Lexical Semantic Space
	1 Introduction
	2 Preliminaries
	3 Instance Matching Through Graph Embedding and Lexical Semantic Similarity
	3.1 Virtual Document
	3.2 Lexical Semantic Vector
	3.3 Indexing
	3.4 Approach Overview

	4 Experimental Evaluation
	4.1 Results and Discussion

	5 Conclusion and Future Works
	References

