
Compressing and Querying Skypattern
Cubes

Willy Ugarte1, Samir Loudni2, Patrice Boizumault2, Bruno Crémilleux2(B),
and Alexandre Termier3

1 Peruvian University of Applied Sciences, Lima, Peru
willyugarte@gmail.com

2 Normandie Univ., UNICAEN, ENSICAEN, CNRS – UMR GREYC, Caen, France
{samir.loudni,patrice.boizumault,bruno.cremilleux}@unicaen.fr

3 Univ. Rennes, Inria, CNRS, IRISA, Rennes, France
alexandre.termier@irisa.fr

Abstract. Skypatterns are important since they enable to take into
account user preference through Pareto-dominance. Given a set of mea-
sures, a skypattern query finds the patterns that are not dominated by
others. In practice, different users may be interested in different mea-
sures, and issue queries on any subset of measures (a.k.a subspace). This
issue was recently addressed by introducing the concept of skypattern
cubes. However, such a structure presents high redundancy and is not
well adapted for updating operations like adding or removing measures,
due to the high costs of subspace computations in retrieving skypatterns.
In this paper, we propose a new structure called Compressed Skypat-
tern Cube (abbreviated CSKYC), which concisely represents a skypat-
tern cube, and gives an efficient algorithm to compute it. We thoroughly
explore its properties and provide an efficient query processing algorithm.
Experimental results show that our proposal allows to construct and to
query a CSKYC very efficiently.

Keywords: Skypatterns · Pareto-dominance relation ·
Skypattern cubes

1 Introduction

The notion of skyline queries [2] has been quite recently integrated into the
pattern discovery paradigm to mine skyline patterns (henceforth called skypat-
terns) [11,15]. Given a set of measures, skypatterns are based on a Pareto-
dominance relation, which means that no measure can be improved without
degrading the others. As an example, a user may prefer patterns with a high fre-
quency, large size and a high confidence. Then a pattern xi dominates another
pattern xj if freq(xj) ≥ freq(xi), size(xj) ≥ size(xi), conf(xj) ≥ conf(xi)
where at least one strict inequality holds. The skypattern set contains the pat-
terns that are not dominated by any other pattern. Skypatterns are highly inter-
esting since they do not require thresholds for the measures and the dominance

c© Springer Nature Switzerland AG 2019
F. Wotawa et al. (Eds.): IEA/AIE 2019, LNAI 11606, pp. 406–421, 2019.
https://doi.org/10.1007/978-3-030-22999-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22999-3_36&domain=pdf
https://doi.org/10.1007/978-3-030-22999-3_36

Compressing and Querying Skypattern Cubes 407

relation gives them global interestingness with a semantics easily understood by
the user.

In practice, users do not know the exact role of each measure and it is difficult
to select beforehand the most appropriate subset of measures. Users would like
to keep all potentially useful measures, look at what happens on skypattern sets
when removing or adding a measure, thus evaluating the impact of measures,
and then converge to a convenient skypattern set.

This issue has been first addressed with the notion of a Skypattern Cube [13],
which is the lattice of all possible subsets of measures associated with their sky-
pattern sets. More formally, given a set M of n measures, the 2n − 1 possible
non-empty skypattern subsets should be precomputed to efficiently handle vari-
ous queries of users. By comparing two neighboring nodes (differentiated by only
one measure), users can observe new skypatterns and the ones which disappear,
greatly helping to better understand the role of the measures. To sum up, the
cube is a structure that enables to discover the most interesting skypattern sets.
The skypattern cube has been exploited in various domains such as bioinfor-
matics [10] and mutagenicity [13]. However there are 2n − 1 possible non-empty
skypattern sets with high redundancy coming from derivations of skypatterns
among subspaces of the cube [13].

In this paper, we propose a new structure called the Compressed Skypattern
Cube (denoted CSKYC). Each subspace stores skypatterns (called proper skypat-
terns) that do not appear in its descendant ones and the compressed skypattern
cube contains only non-empty subspaces. Compared to the original skypattern
cube [13], the CSKYC has fewer duplicates among subspaces, and does not need
to store all of them. Moreover the cube includes unbalanced skypatterns. For
instance, let M = {freq, size} and three patterns xi, xj and xk such that
freq(xi) = 10, size(xi) = 1, freq(xj) = 2, size(xj) = 8, freq(xk) = 4 and
size(xk) = 5. Clearly, xi (resp. xj) is a skypattern for {freq} (resp. {size}),
thus xi (resp. xj) will be instantly a skypattern for M being derived from {freq}
(resp. {size}). However, xk is also a skypattern for M , being more balanced over
measures than xi (resp. xj) which only has an extreme value for {freq} (resp.
{size}). Proper skypatterns are often well-balanced skypatterns.

Contributions Overview. We thoroughly explore interesting properties of the
compressed skypattern cube and provide an efficient query processing algorithm.
Our contributions can be summarized as follows: (i) we provide the summariza-
tion structure CSKYC which concisely represents the whole skypattern cube and
preserves its essential information. (ii) We propose a bottom-up approach to con-
struct the CSKYC. (iii) We show how this structure can be used efficiently for
query processing. Finally, (iv) we present an extensive set of experiments showing
the advantages of our proposals.

Paper Organization. The rest of this paper is organized as follows. Section 2
recalls the definitions of the notions used in this paper. Section 3 first introduces
the CSKYC, provides algorithms to build it, and shows how the CSKYC can

408 W. Ugarte et al.

Trans. Items
t1 c1 A E F
t2 c1 B C D E
t3 c1 B C D E F
t4 c2 A B C D E
t5 c2 B C D
t6 c2 B E F
t7 c2 A B C D E F

Item A B C D E F

Price 30 40 10 40 70 55

(a) Transactional dataset T. (b) Skypatterns for {m1,m3}. (c) Skypatterns for {m2,m4}.

(d) Lattice associated to M.

Subset of M Skypatterns
{m1, m2, m3, m4} BCD, BCDE, BDE, BE, E, EF

{m1, m2, m3} BCD, BCDE, E
{m1, m2, m4} E
{m1, m3, m4} BCD, BCDE, BDE, BE, E, EF
{m2, m3, m4} BCDE, BDE, E, EF

{m1, m2} E
{m1, m3} BCD, BCDE, B, E
{m1, m4} E
{m2, m3} BCDE
{m2, m4} E
{m3, m4} BCDE, BDE, E, EF

{m1} B, E

{m2} AEF, BCDE, BCDEF, BDE, E,
BCDF, BDEF, BDF, AF, EF, F

{m3} BCDE
{m4} E

(e) SKY C for M.

Subset of M Proper
Skypatterns

{m1,m3,m4} BE
{m1,m3} BCD
{m3,m4} BDE, EF

{m1} B, E

{m2}

AEF, AF, BDE,
BCDEF, BCDF,
BCDE, BDEF,
BDF, E, EF, F

{m3} BCDE
{m4} E

(f) CSKY C for M.

Fig. 1. Running example: M = {m1:freq(x),m2:gr1(x),m3:area(x),m4:mean(x.price)}.
(Color figure online)

handle various skypattern queries. Section 4 is devoted to related works. Finally,
Sect. 5 shows our experimental results and Sect. 6 concludes.

2 Preliminaries

Let I be a set of distinct literals called items. A pattern (or itemset) is a non-
empty subset of I. The language of patterns corresponds to LI = 2I \ ∅. A
transactional dataset T is a multiset of patterns in LI . The traditional exam-
ple is a supermarket database in which, for each transaction ti, every item in
a transaction is a product bought by the customer i. Table 1 summarizes the
different notations used throughout the paper.

Example 1. Figure 1a depicts a transactional dataset T where items in a trans-
action ti are denoted A, . . . , F . It serves as example throughout the paper. An
attribute (price) is associated to each item. For instance, the Price of A is $30.
The dataset is partitioned into two classes, class c1 for clients with loyalty pro-
grams and class c2 for other clients.

Constraint-based pattern mining aims at extracting all patterns x ∈ LI
satisfying a query q(x) which is usually called theory [7]: Th(LI , q) =

Compressing and Querying Skypattern Cubes 409

Table 1. Notations.

Symbol Definition

T Transactional dataset

I Set of items

LI = 2I \ ∅ Language of patterns

M Set of measures

U ⊆ M Subspace U (i.e. subset of measures of M)

Sky(LI ,U) Skypatterns set over LI for U

P -Sky(LI ,U) Proper Skypattern set over LI for U

�-Sky(LI ,U) Large Skypattern set over LI for U

Desc(LI ,U) Union of all proper skypattern sets for all descendant subspaces V ⊂ U

SKY C(LI ,M) Skypattern Cube over LI for M
CSKY C(LI ,M) Compressed Skypattern Cube over LI for M
P ⊆ LI Set of patterns

O(P) Set of data points associated to P

Skyline(O(P),U) Set of skyline points on O(P) for U

{x ∈ LI | q(x) is true}. A common example is the minimal frequency con-
straint (freq(x) ≥ θ) which provides patterns having a number of occurrences
exceeding a given minimal threshold θ. Many other measures for patterns can
be considered such as:

– size(x) = |x| is the number of items that x contains.
– gr1(x) = (|T |−|T1|)×freq1(x)

|T1| × (freq(x)− freq1(x))
where T1 is a sub-dataset (i.e a class partition)

on T .
– min(x.att) = min

i∈x
{i.att} (resp. max(x.att) = max

i∈x
{i.att}) is the lowest (resp.

highest) among item values of x for attribute att.
– mean(x.att) = (min(x.att) + max(x.att))/2.

Example 2. freq(BC) = 5, mean(BCD.price) = 25, . . .

Skypatterns allow to express a user-preference according to a dominance rela-
tion [11].

Definition 1 (Pareto-dominance). A pattern x dominates another pattern y
w.r.t a measure subset (a.k.a subspace) U, noted by x �U y, iff ∀mi ∈ U,mi(x) ≥
mi(y) and ∃mj ∈ U,mj(x) > mj(y).

Example 3. For U = {m1:freq(x),m3:area(x)}, pattern BCD dominates pat-
tern BC since freq(BCD) = freq(BC) = 5 and area(BCD) > area(BC).

The Skypattern Operator [11] extracts the skypattern set w.r.t a subspace U.

410 W. Ugarte et al.

Definition 2 (Skypattern Operator). A pattern is a skypattern w.r.t a
subspace U iff it is not dominated by any other pattern w.r.t U. The
Skypattern Operator returns all the skypatterns w.r.t U: Sky(LI ,U) =
{x ∈ LI | � ∃ y ∈ LI , y �U x}.

Example 4. Consider the dataset of Fig. 1a, users may ask for the skypatterns
for every combination of the measures {m1,m2,m3,m4}. Figures 1b and c depict
skypatterns for {m1,m3} and {m2,m4} respectively.

As said above, users may query multiple skypattern sets for different sub-
spaces. Furthermore, for a space M there are 2|M| − 1 different skypattern sets.
The Skypattern Cube [13] retrieves all skypattern sets for any subspace.

Definition 3 (Skypattern Cube). Given a set of measures M, the
Skypattern Cube of M is defined as SKY C(LI ,M) = {(U, Sky(LI ,U)) | U}
⊆ M,U �= ∅

Example 5. Figure 1d depicts the lattice associated to M (power set of M: 2M \
∅). Figure 1e associates to each non-empty subset of M its skypattern set.

For computing the skypattern cube, [13] has proposed a bottom-up approach
using two derivation rules that provide an easy way to automatically infer a large
proportion of the skypatterns of a parent node from the skypattern sets of its
child nodes without any dominance test (if k measures are associated to a parent
node, its child nodes are the nodes defined by the

(
k

k−1

)
subsets of k−1 measures).

3 Contributions

This section introduces the CSKYC (Compressed Skypattern Cubes) which con-
cisely represents the entire skypattern cube. The main idea is, for every subspace,
to only store its proper skypatterns. More precisely, a skypattern x for a subspace
U is stored iff x ∈ Sky(LI ,U) and there exists no V ⊂ U s.t. x ∈ Sky(LI ,V).
First, we introduce the CSKYC of a set of measures. Then, we propose a bottom-
up approach for building such a CSKYC. Finally, we show how to efficiently
query the whole skypattern set for U from the CSKYC.

3.1 The Compressed Skypattern Cube

Definition 4 (Proper Skypattern). The set of proper skypatterns for a sub-
space U is the subset of skypatterns on U which are not skypatterns in any subset
of U:

P -Sky(LI ,U) = {x ∈ Sky(LI ,U) | �V ⊂ U, x ∈ Sky(LI ,V)}

Example 6. Consider U = {m1,m3,m4} and U′ = {m3,m4}. Table 2a shows the
measure values for skypatterns for U and U′. Figure 2b illustrates how proper
skypattern BE (in red) (resp. BDE (in light-blue)) is more balanced than other
skypatterns for U (resp. U′), having fewer extreme values than the other sky-
patterns.

Compressing and Querying Skypattern Cubes 411

Pattern freq area mean(x.price)
S
k
y
(L

I,
U
) BCD 5 15 25.00

S
k
y (L

I
, U

′)

BCDE 4 16 40.00
E 6 6 70.00
EF 4 8 62.50
BDE 4 12 55.00
BE 5 10 55.00

(a) Skypatterns for U and U′.
(b) Measure values of skypatterns.

Fig. 2. Example of (Proper) Skypatterns for U = {m1,m3,m4} and U′ = {m3,m4}.
(Color figure online)

Based on this notion, we define the compressed skypattern cube.

Definition 5 (Compressed Skypattern Cube). Given a set of measures
M, the compressed skypattern cube of M is defined as

CSKY C(LI ,M) =
{
(U,P -Sky(LI ,U)) | U ⊆ M,U �= ∅,P -Sky(LI ,U) �= ∅

}

Example 7. For the dataset shown in Fig. 1a, the CSKY C(LI ,M) is depicted
in Fig. 1f and its sub-lattice (in red) in Fig. 1d. It contains only 6 non-empty
subsets compared to 15 subsets in SKY C(LI ,M). Clearly, the CSKYC is much
more compact.

3.2 Computing the CSKYC

A first and naive way to get the CSKYC consists in first computing the sky-
pattern cube, and then deriving the CSKYC by removing duplicates from their
subspaces. Such an approach is inefficient as the number of subspaces to process
is exponential. In this section, we provide a bottom-up algorithm (CSKYC-BUC)
for building the CSKYC. Given a set of measures M of size d, the subspaces
are organized into d levels, such that the subspaces of size i are in level i. We
only keep non-empty subspaces (i.e. those containing proper skypatterns). All
descendant skypatterns of a subspace are collected to form a large skypattern
set (�-Sky) which are then used as filters, and if no new skypattern is found, the
subspace is discarded from the CSKYC.
Let us first give some preliminary definitions in order to compute the CSKYC.

Definition 6 (Indistinct/Incomparable Skypatterns). Let x, y be two sky-
patterns w.r.t a subspace U: (i) x, y are indistinct, noted x =U y, iff ∀mi ∈
U,mi(x) = mi(y); (ii) x, y are incomparable, noted x ≺�U y, iff x ��U y, y ��U x
and x �=U y.

Incomparable skypatterns and indistinct ones for U constitute partitions of
Sky(LI ,U).

412 W. Ugarte et al.

Definition 7 (Indistinct Subspace (IS)). A subspace U is an Indistinct
Subspace (IS) iff all patterns in Sky(LI ,U) are indistinct from each other.

Example 8. Let U = {m1}, and V = {m1,m3}. B and E are indistinct w.r.t. U,
while BCDE and BCD are incomparable w.r.t. V.

Lemma 1 states that skypatterns that are common to two different subspaces
remain skypatterns in their union.

Lemma 1. Sky(LI ,U) ∩ Sky(LI ,V) ⊆ Sky(LI ,U ∪ V)

Proof (By contradiction). Assume that, for two subspaces U,V s.t. W =
U ∪ V, ∃x ∈ Sky(LI ,U) ∩ Sky(LI ,V)

︸ ︷︷ ︸
(1)

, but x /∈ Sky(LI ,W)
︸ ︷︷ ︸

(2)

. From (1):

x ∈ Sky(LI ,U)
︸ ︷︷ ︸

(3)

and x ∈ Sky(LI ,V)
︸ ︷︷ ︸

(4)

. From (2): ∃y ∈ Sky(LI ,W), y �W x ⇒

∀mi ∈ W,mi(y) ≥ mi(x)︸ ︷︷ ︸
(5)

.

From (3): y ��U x ⇒ ∀mi ∈ U,mi(y) ≤ mi(x). From (5): x =U y
From (4): y ��V x ⇒ ∀mi ∈ V,mi(y) ≤ mi(x). From (5): x =V y

}
x =W y.

Thus, x ∈ Sky(LI ,W) leading to a contradiction.

Based on Lemma 1, the following theorem enables us to characterize empty sub-
spaces in the CSKYC, i.e. those without proper skypatterns.

Theorem 1 (Empty subspaces in CSKYC). Given two subspaces U and
V that are IS, if Sky(LI ,U) ∩ Sky(LI ,V) �= ∅, then U ∪ V is an IS and
P -Sky(LI ,U ∪ V) = ∅.

Proof (By contradiction). Let U,V two IS and W = U ∪ V.

– Assume that W is not an IS and ∃x, y ∈ Sky(T,U) ∩ Sky(T,V). From
Lemma 1: x, y ∈ Sky(T,W). Since W is not an IS, x ≺�W y. As x, y ∈
Sky(T,U), x, y ∈ Sky(T,V) and U and V are IS, thus, x =U y and x =V y.
Thus, x =W y leading to a contradiction.

– Assume that ∃x ∈ Sky(T,U) ∩ Sky(T,V) and ∃y ∈ P -Sky(T,W). From
Lemma 1: x ∈ Sky(T,W). Since W is an IS, x =W y. Thus, x =U y and
x =V y. So, y ∈ Sky(T,U) and y ∈ Sky(T,V). Thus, y /∈ P -Sky(T,W)
leading to a contradiction.

Example 9. In Fig. 1f, P -Sky(LI , {m1,m4}) = ∅ as Sky(LI , {m1}) ∩ Sky(LI , {m4})
= {E}.

Compressing and Querying Skypattern Cubes 413

The authors in [13] showed that incomparable skypatterns and some indistinct
skypatterns of a child subspace remain also skypatterns in its parent subspace
(they are referred to as derivable skypatterns). They also showed that a parent
subspace can include non-derivable skypatterns (i.e., those that are not skypat-
terns in any of its child subspaces). Thus, one can collect the non-empty sets of
descendants (which are proper skypatterns) of a subspace to form a large sky-
pattern set and to use them as filters to detect a priori that no proper skypattern
exist (see Corollary 1).

Definition 8 (Large Skypattern Set). The Large Skypattern Set for a sub-
space U is the union of proper skypattern set of U with all proper skypattern sets of
its descendant subspaces V ⊂ U: �-Sky(LI ,U) = P -Sky(LI ,U) ∪ Desc(LI ,U),
where Desc(LI ,U) =

⋃

V⊂U

P -Sky(LI ,V) =
⋃

V⊂U∧|V|=|U|−1

�-Sky(LI ,V).

Example 10. For U = {m1:freq(x),m3:area(x),m4:mean(x.price)}:
�-Sky(LI ,)U = P -Sky(LI ,)U ∪ �-Sky(LI , {m1,m3}) ∪ �-Sky(LI , {m1,m4}) ∪ �-Sky(LI , {m3,m4})

︷ ︸︸ ︷

B,E,
EF,BCD,
BE,BDE,
BCDE

︷ ︸︸ ︷

P -Sky(LI , {m1,m3})
∪

P -Sky(LI , {m1})
∪

P -Sky(LI , {m3})

︷ ︸︸ ︷

P -Sky(LI , {m1,m4})
∪

P -Sky(LI , {m1})
∪

P -Sky(LI , {m4})

︷ ︸︸ ︷

P -Sky(LI , {m3,m4})
∪

P -Sky(LI , {m3})
∪

P -Sky(LI , {m4})

Based on Definition 4, the proper skypatterns of any parent subspace can be
computed thanks to the following corollary.

Corollary 1. P -Sky(LI ,U) = Sky(LI ,U) \ Desc(LI ,U).

To compute P -Sky(LI ,U), we first retrieve its descendants (which are proper
skypatterns), then we seek for skypatterns that are not in Desc(LI ,U). Algo-
rithm1 gives the pseudo-code of our bottom-up approach. It starts by computing
P -Sky(LI ,mi) for every mi ∈ M (level 1) and then follows a level-wise strategy:
from the lower level, each level of the lattice is constructed by applying The-
orem 1 and, if needed, computing non-derivable skypatterns (cf. line 21). Two
data structures, IS and �-Sky are also maintained during the construction pro-
cess, storing for each subspace its large pattern set and its status. They allow
an incremental computation of �-Sky.

3.3 Querying Sky(LI ,U) from CSKY C(LI ,M)

When a skypattern set for a given subspace U is queried, the CSKYC may not
have a record for U; even if it does, the skypattern set that is stored for U is
not complete. We propose a straightforward approach to query the complete
skypattern set for U from CSKY C(LI ,M).

Our approach is based on the fact that Sky(LI ,U) ⊆ �-Sky(LI ,U) and
proceeds in two steps (see Algorithm 2): first, approximating Sky(LI ,U) by
�-Sky(LI ,U), and then, performing domination tests to filter dominated pat-
terns.

414 W. Ugarte et al.

Algorithm 1. CSKYC-BUC: Bottom-up approach for computing CSKYC.

Input: T: a dataset, M: a set of measures.
Output: The Compressed Skypattern Cube w.r.t M.

1 CSKYC ← ∅; IS[] ← ∅; �-Sky[] ← ∅; // Initialization step

2 foreach mi ∈ M do
3 P -Sky ← CP+Sky(LI , {mi}) ; // Compute P -Sky(LI ,mi)
4 �-Sky[{mi}] ← P -Sky;
5 CSKYC ← CSKYC ∪ {({mi},P -Sky)};
6 IS[{mi}] ← true;

7 for i ← 2 to |M| do
8 foreach U ⊆ M s.t. |U| = i do
9 P -Sky ← ComputeProperSky(U); // Compute P -Sky(LI ,U)

10 if P -Sky �= ∅ then
11 CSKYC ← CSKYC ∪ {(U,P -Sky)};

12 return CSKYC ;
13 Function ComputeProperSky(U):
14 children ← {V ⊂ U | |V| = |U| − 1}; // Children of U
15 childrenIS ← {W ∈ children | IS[W] = true};
16 IS[U] ← false;
17 if ∃V,W ∈ childrenIS s.t. Sky[V] ∩ Sky[W] �= ∅ then // Apply theorem 1

18 P -Sky ← ∅;
19 IS[U] ← true;

20 Desc ←
⋃

V∈children

�-Sky[V]; // Generate the filter skypatterns

21 if ¬IS[U] then
22 P -Sky ← CP+Sky(LI \ Desc,U); // Apply corollary 1

23 �-Sky[U] ← P -Sky ∪ Desc; // Update �-Sky for U
24 return P -Sky

(i) Approximating Sky(LI ,U).
Based on Definition 8, we have that: ∀ U ⊆ M, Sky(LI ,U) ⊆ �-Sky(LI ,U). The
proof is straightforward: ∀ x ∈ Sky(LI ,U), either x ∈ P -Sky(LI ,U), or ∃V ⊂
U s.t. x ∈ P -Sky(LI ,V).

(ii) Filtering dominated skypatterns.
To remove dominated skypatterns, we convert the problem into skyline mining
operation in |U| dimensions to process it more efficiently. Let f be a mapping
function from a set of patterns P ⊆ LI to IRn that associates, to each pattern
xi ∈ P , a data point f(xi) ∈ IRn with coordinates (m1(xi) = vi,1, . . ., mn(xi) =
vi,n). Let us note by O(P) = {f(x) | x ∈ P} the set of data points associated to
P (see Table 2) and Skyline(O(P),U) be the set of skyline points of O(P) w.r.t.
U. Thus, ∀U ⊆ M, Sky(P,U) = Skyline(O(P),U). So, applying the skyline
operator on O(P) provides the skypattern set.

Compressing and Querying Skypattern Cubes 415

Table 2. The multidimensional view for a set of patterns P ⊆ LI w.r.t. a subspace
U (|U| = n).

Pa
tte
rn

m1 m2 . . . mn

P ⊆ LI

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 v1,1 v1,2 . . . v1,n
x2 v2,1 v2,2 . . . v2,n
...

...
...

...
...

xp−1 vp−1,1 vp−1,2 . . . vp−1,n

xp vp,1 vp,2 . . . vp,n

Algorithm 2. Querying Sky(LI ,U) from CSKY C(LI ,M)
Input: U: a subspace and CSKY C: the compressed skyppatern cube w.r.t. M.
Output: Sky(LI ,U)

1 �-Sky ←
⋃

V⊆U

P -Sky(LI ,V); // Approximating Sky(LI ,U)

2 Sky ← BNL(O(�-Sky),U); // Filtering dominated skypatterns

3 return Sky, �-Sky

Theorem 2. Sky(LI ,U) = Skyline(O(�-Sky(LI ,U)),U).

Proof. Given a subspace U, we prove the two implications:
(⇒) Assume that ∃x ∈ Sky(LI ,U): ∀y ∈ LI , y ��U x. So, ∀y ∈
�-Sky(LI ,U), y ��U x therefore x ∈ Sky(�-Sky(LI ,U),U). Thus, f(x) ∈
Skyline(O(�-Sky(LI ,U)),U).
(⇐) Assume that ∃f(x) ∈ Skyline(O(�-Sky(LI ,U)),U). So, ∀y1 ∈
�-Sky(LI ,U), y1 ��U x. From Definition 8: ∀y2 ∈ LI \ �-Sky(LI ,U),∃y3 ∈
Sky(LI ,U), y3 �U y2. Thus, y2 ��U x. Therefore, x ∈ Sky(LI ,U).

The second step is performed using a skyline algorithm based on the BNL app-
roach [2].

4 Related Work

Skylines vs Skypatterns. The notion of skyline queries [2,3] has been recently
integrated into pattern discovery to mine skypatterns [11]. Even if these notions
seem similar, they correspond to very different extraction tasks. Skyline queries
focus on the extraction of dominant tuples of a (point) database (T). The points
(objects) are known in advance and then dominance test are applied. The sky-
pattern mining task requires to mine patterns from a dataset (T) that must
be Pareto-dominant for a given set of measures. Therefore, the latter problem
is much harder since the search space for skypatterns is much larger than the
search space for skylines: O(LI = 2|I|) instead of O(|T |). Two methods have

416 W. Ugarte et al.

been designed for mining skypatterns: Aetheris [11] is a two-step method that
benefits from theoretical relationships between condensed representations and
skypatterns, while CP+Sky [15] mines skypatterns using dynamic CSPs. Finally,
[12] provides a point-to-point comparison between these two approaches.

Skyline Cube vs Skypattern Cube. To offer the best possible response time
for a subspace skyline query, skyline cubes (a.k.a SkyCube) were introduced
independently by [9,17]. They proposed several strategies to share skyline com-
putation in different subspaces. Pei et al. proposed in [8] Stellar, which computes
seed skylines groups in the full space, then extend it to build the final set of sky-
line groups and thus avoid the computation of skylines in all the subspaces.
Similarly to the notions of skyline/skypattern, the skyline cube differs from the
skypattern cube. A SkyCube tackles a point database looking for skyline point
sets for a given set of dimensions. The skypattern cube computation has to deal
with all the skypattern sets for a given set of measures. As seen in the previous
paragraph, even if these notions are close, computing the skypattern cubes is
much harder due to the huge search space. Two methods have been proposed
to compute the skypattern cube. The first method, called as CP+SKY+CUBE [13],
is based on a bottom-up approach and derivation rules exploiting the relation
between the nodes in the lattice. The second method [14] proposes an approx-
imation of the skypattern cube and then applies skyline cube mining in |M|
dimensions on that approximation.

The Compressed Skyline Cube. Probably the closest previous work to our
proposal is the so called compressed skycube (CSC) [16]. Its compression tech-
nique consists in storing for every subspace its partial skyline. It also supports
concurrent subspace skyline queries in frequent updated databases. Our CSKYC
can be seen as a reshaping of the CSC. However, the compressed skypattern cube
computation is much harder due to the huge search space. Indeed, as shown pre-
viously, we need to extract patterns from a transactional dataset (T) in order to
determinate proper skypatterns for a given subspace. Other skycube summariza-
tion techniques have also been introduced. For instance, [1] proposed Hashcube, a
structure based on bit-strings for storing the whole skycube. The work described
in [6] proposed the negative skycube that returns subspaces where objects are
not skylines.

5 Experimental Evaluation

This section evaluates constructing and querying the CSKYC on a real-life
dataset and benchmarks. We compare the performances of the CSKYC with
those of the original SKYC in terms of running-time and space storage, fol-
lowed by query performance using CSKYC. The implementation of the different
algorithms were carried out in C++. All experiments were conducted on a PC
running Linux with a core i3 processor at 2.13 GHz.

Compressing and Querying Skypattern Cubes 417

5.1 Compressed Skypattern Cubes for Mutagenicity Dataset

We performed experiments on a real-life dataset of large size extracted from
mutagenicity data [5] (a major problem in risk assessment of chemicals). This
dataset has |T|=6, 512 transactions encoding chemicals and |I| = 1, 073 items
encoding frequent closed subgraphs previously extracted from T with a 2% rel-
ative frequency threshold. Chemists use up to |M| = 11 measures, five of them
are typically used in contrast mining (e.g. growth rate) and allow to express
different kinds of background knowledge. The other six measures are related to
topological and chemical properties of the chemicals.

Space Analysis. Figure 3a shows the storage comparison of CSKYC to skypat-
tern cubes of different dimensionality. Column 1 corresponds to the number of
measures. Columns 2 and 3 report the total number of skypatterns for SKYC
and CSKYC respectively. Column 4 gives their ratio. Columns 5 and 6 report
the total number of subspaces for SKYC and CSKYC respectively. Column 7
gives their ratio. For each |M| = k, reported values in columns (2), (3), (5)
and (6) represent the averages over all

(
11
k

)
possible skypattern cubes. Over-

all, CSKYC achieves the best compression of the skypattern sets. The effect of
duplicate elimination is greatly amplified for |M| ≥ 6. CSKYCachieves up to
20.6× compression (in number of skypatterns) and permits using 4− 7× fewer
subspaces. For |M| = 11, the total number of proper skypatterns is 3, 853, while
for SKYC the total number of skypatterns is 87, 374. This lead to a substantial
gain greater than 95%.

CPU-Time Analysis. We compare our approach (CSKYC-BUC) with two
methods: (i) a base-line method (BL-CSKYC) for computing CSKYC, and (ii)
CP+SKY+CUBE proposed in [13] for computing SKYC. BL-CSKYC follows a bottom-
up strategy: from the lower level, for each level and each subspace of the lattice,
we compute its skypatterns, collect the skypatterns of its descendant subspaces,
and then we remove all the duplicates. Figure 3b shows the performance of the
three methods according to the number of measures |M |. The scale is logarithmic.
For CSKYC-BUC (resp. CP+SKY+CUBE)) and for |M | = k, the reported CPU-time
is the average of CPU-times over all

(
11
k

)
possible CSKYC (resp. SKYC). As we

can see, CSKYC-BUC clearly outperforms BL-CSKYC by several orders of magni-
tude. This is particularly obvious for higher values of |M | due to the reduced
number of skypatterns involved in the construction. For (2 ≤ |M| ≤ 5), the
average speed-up is 37.3. For |M| = 8, there is an order of magnitude (speed-up
value 213.15). For |M| = 11, the speed-up value reaches 949. Finally, CSKYC-BUC
is an average 2x faster than CP+SKY+CUBE for building the CSKYC.

Querying CSKYC. Evaluating the query performance of Algorithm2, for
|M | = k, is performed by dividing the total time to sequentially query every
subspace by 2k−1. Each query is extracted from the CSKYC. The reported CPU-
time in Fig. 3c are the averages of CPU-times over all

(
11
k

)
possible CSKYCs.

By comparing the CPU-times for the two steps of Algorithm 2, overall, the BNL

418 W. Ugarte et al.

|M| ∑

U
⊆

M
|S
k
y
(L

I,
U
)|

∑

U
⊆

M
|P

-S
k
y
(L

I,
U
)|

1
−

(3
)

(2
)

2|M
| −

1

1
−

(6
)

(5
)

(2) (3) (5) (6)
1 338 338 0.00 1 1 0.00
2 753 493 0.35 3 1 0.67
3 1,280 784 0.39 7 4 0.43
4 1,983 1,123 0.43 15 6 0.60
5 2,982 1,525 0.49 31 11 0.65
6 4,526 1,990 0.56 63 20 0.68
7 7,146 2,484 0.65 127 32 0.75
8 12,015 2,924 0.76 255 51 0.80
9 21,773 3,246 0.85 511 82 0.84
10 42,386 3,462 0.92 1,023 149 0.85
11 87,374 3,853 0.96 2,047 281 0.86

(6) |{ U ⊆ M | P -Sky(LI ,U) �= ∅ }|
(a) Space analysis.

(b) CPU-times.

(c) Query times.

Fig. 3. Results on Mutagenicity Dataset with |M| = 11.

step is negligible as compared to the fist step. The scale is logarithmic. Experi-
mental results show that query processing of the CSKYC is fast (less than 10 s
for |M | = 11).

5.2 Compressed Skypattern Cubes for UCI Datasets

Experiments were carried out on 15 datasets from UCI benchmarks [4]. We
considered 5 measures M = {freq, max, area, mean, gr1}. In order to use mea-

Compressing and Querying Skypattern Cubes 419

Dataset CPU-Time Speed-Up

Name I T Density BL-CSKYC CP+SKY+CUBECSKYC-BUC (5)
(7)

(6)
(7)(5) (6) (7)

austral 55 690 0.272 6m04s 1m31s 1m01s 5.97 1.49
cleve 43 303 0.325 1m53s 21s 15s 7.53 1.40
cmc 28 1,474 0.357 26s 22s 16s 1.63 1.38
crx 59 690 0.269 8m40s 1m13s 59s 8.81 1.24

german 76 1,000 0.276 2h34m18s 14m03s 9m36s 16.07 1.46
heart 38 270 0.368 1m46s 19s 9s 11.78 2.11
hepatic 45 155 0.421 6m12s 19s 10s 37.20 1.90
horse 75 300 0.235 10m34s 58s 32s 19.81 1.81
hypo 47 3,163 0.389 6h13m57s 4m41s 1m21s 159.13 3.47
lymph 59 142 0.322 4m32s 11s 8s 34.00 1.38

mushroom 119 8,124 0.193 9h23m28s 8h54m43s 6h32m15s 1.44 1.36
tic-tac-toe 29 259 0.344 1m10s 41s 21s 3.33 1.95
vehicle 58 846 0.327 34m01s 2m55s 1m03s 32.40 2.78
wine 45 179 0.311 1m00s 13s 7s 8.57 1.86
zoo 43 102 0.394 19s 1s 1s 19.00 1.00

|M| 1 2 3 4 5

Dataset ∑ |U
|=

1

S
k
y
(L

I,
U
)

∑ |U
|=

2

S
k
y
(L

I,
U
)

∑ | U
|=

2

P
-S

k
y
(L

I,
U
)

1
−

(4
)

(3
)

∑ | U
|=

3

S
k
y
(L

I,
U
)

∑ |U
|=

3

P
-S

k
y
(L

I,
U
)

1
−

(7
)

(6
)

∑ |U
|=

4

S
k
y
(L

I,
U
)

∑ |U
|=

4

P
-S

k
y
(L

I,
U
)

1
−

(1
0
)

(1
1
)

∑ |U
|=

5

S
k
y
(L

I,
U
)

∑ |U
|=

5

P
-S

k
y
(L

I,
U
)

1
−

(1
3
)

(1
2
)

(3) (4) (6) (7) (9) (10) (12) (13)
austral 101,630 1,314 45 0.97 403 211 0.48 648 83 0.87 317 9 0.97
cleve 43,504 6,601 34 0.99 238 85 0.64 300 12 0.96 111 0 1.00
cmc 12,208 559 57 0.90 269 76 0.72 299 1 0.99 104 0 1.00
crx 107,742 5,216 58 0.99 307 105 0.66 437 1 0.99 215 0 1.00

german 1,173,279 35,083 60 0.99 620 352 0.43 1,198 210 0.82 610 13 0.98
heart 34,400 1,218 29 0.98 283 133 0.53 468 35 0.93 211 5 0.98
hepatic 9,598 189 95 0.50 537 194 0.64 762 71 0.91 343 4 0.99
horse 129,716 10,352 22 0.99 177 64 0.64 220 10 0.95 84 0 1.00
hypo 671,961 789 613 0.22 2,134 686 0.68 2,812 129 0.95 1,172 0 1.00
lymph 45,644 98 55 0.44 428 157 0.63 524 59 0.89 268 4 0.99

mushroom 650,965 96,164 45 0.99 216 66 0.69 307 24 0.92 131 1 0.99
tic-tac-toe 16,157 1,301 77 0.94 259 93 0.64 310 16 0.95 109 0 1.00
vehicle 141,974 15,901 69 0.99 480 208 0.57 827 144 0.83 421 24 0.94
wine 15,112 1,346 25 0.98 152 27 0.82 170 5 0.97 57 0 1.00
zoo 4,871 599 50 0.92 197 29 0.85 211 5 0.98 74 0 1.00

(b) Space Analysis. (c) Summarization Ratios.

(a) Time Analysis.

Fig. 4. Results on UCI datasets with |M| = 5.

sures using numeric values, like mean, we generated random values associated
to attributes, each value being within the range [0..1]. Figure 4 summarizes the
results we obtained.

CPU-Time Analysis. Figure 4a compares the performance of the three meth-
ods (with a graphical view). Cols. 1–4 give the characteristics of each dataset
(name, number of items (I), number of transactions (T) and density). CSKYC-BUC
clearly dominates the base-line method. On half of the datasets, there is an order
of magnitude (speed-up value at least 11.78) (Col. 8). CSKYC-BUC is an average
2 times faster than CP+SKY+CUBE.

Space Analysis. Figure 4b compares, for each dataset, the number of proper
skypatterns vs. the total number of skypatterns at each level of the cube. For
each level i (2 ≤ i ≤ 5), the corresponding summarization ratio is also depicted.
Figure 4c shows the graphical view of these ratios. For level 2, on most of the
datasets, CSKYC achieves a very high summarization ratios (up to 99%). For
level 3, these ratios mostly decrease since both levels (2 and 3) share most
subspaces (

(
5
2

)
+

(
5
3

)
= 20 in total against 31 for the cube). Finally, for level 4

420 W. Ugarte et al.

(resp. 5), CSKYC uses less storage than SKYC by at least 82% (resp. 94%) in
size for all datasets we considered. Within these levels, there are almost no proper
skypatterns since they have few subspaces (

(
5
4

)
= 5 for level 4 and

(
5
5

)
= 1) for

level 5 and each one of these subspaces has a lot of descendant subspaces (14 for
level 4 and 30 for level 5).

6 Conclusion

We have presented the compressed skypattern cube which concisely represents
the skypattern cube and preserves its essential information. Compared to the
original skypattern cube, the compressed skypattern cube has much less dupli-
cates among susbpaces. We have provided an efficient algorithm to compute it
and to query the skypattern set for any subspace. Our experimental study shows
that CSKYC is particularly efficient in terms of build time and space usage com-
pared to the original skypattern cube. Another interesting property is its ability
to efficiently provide the skypattern set of any subspace. As future work, we plan
to investigate the incremental maintenance of the CSKYC by allowing to add
and/or remove any measure.

References

1. Bøgh, K.S., Chester, S., Sidlauskas, D., Assent, I.: Hashcube: a data structure for
space- and query-efficient skycube compression. In: CIKM, pp. 1767–1770 (2014)

2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp.
421–430 (2001)

3. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE,
pp. 717–719 (2003)

4. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

5. Hansen, K., Mika, S., Schroeter, T., Sutter, A., ter Laak, A., Steger-Hartmann,
T., Heinrich, N., Müller, K.: Benchmark data set for in silico prediction of Ames
mutagenicity. JCIM 49(9), 2077–2081 (2009)

6. Hanusse, N., Kamnang Wanko, K., Maabout, S.: Computing and summarizing the
negative skycube. In: CIKM, pp. 1733–1742 (2016)

7. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)

8. Pei, J., Fu, A.W., Lin, X., Wang, H.: Computing compressed multidimensional
skyline cubes efficiently. In: ICDE, pp. 96–105 (2007)

9. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline: a semantic
approach based on decisive subspaces. In: VLDB, pp. 253–264 (2005)

10. Pham, H., Lavenier, D., Termier, A.: Identifying genetic variant combinations using
skypatterns. In: DEXA Workshops, pp. 44–48. IEEE Computer Society (2016)

11. Soulet, A., Räıssi, C., Plantevit, M., Crémilleux, B.: Mining dominant patterns in
the sky. In: ICDM, pp. 655–664 (2011)

12. Ugarte, W., et al.: Skypattern mining: from pattern condensed representations to
dynamic constraint satisfaction problems. Artif. Intell. 244, 48–69 (2017)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Compressing and Querying Skypattern Cubes 421

13. Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B.: Computing skypattern
cubes. In: ECAI, pp. 903–908 (2014)

14. Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B.: Computing skypattern
cubes using relaxation. In: ICTAI, pp. 859–866 (2014)

15. Ugarte Rojas, W., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A.: Min-
ing (Soft-) Skypatterns using dynamic CSP. In: Simonis, H. (ed.) CPAIOR 2014.
LNCS, vol. 8451, pp. 71–87. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-07046-9 6

16. Xia, T., Zhang, D.: Refreshing the sky: the compressed skycube with efficient
support for frequent updates. In: SIGMOD Conference, pp. 491–502 (2006)

17. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation
of the skyline cube. In: VLDB, pp. 241–252 (2005)

https://doi.org/10.1007/978-3-319-07046-9_6
https://doi.org/10.1007/978-3-319-07046-9_6

	Compressing and Querying Skypattern Cubes
	1 Introduction
	2 Preliminaries
	3 Contributions
	3.1 The Compressed Skypattern Cube
	3.2 Computing the CSKYC
	3.3 Querying Sky(LI,) from CSKYC(LI, M)

	4 Related Work
	5 Experimental Evaluation
	5.1 Compressed Skypattern Cubes for Mutagenicity Dataset
	5.2 Compressed Skypattern Cubes for UCI Datasets

	6 Conclusion
	References

