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Abstract. When systems become smarter they have to cope with
faults occurring during operation in an intelligent way. For example, an
autonomous vehicle has to react appropriately in case of a fault occur-
ring during driving on a highway in order to assure safety for passengers
and other humans in its surrounding. Hence, there is a need for fail-
operational systems that extend the concept of fail-safety. In this paper,
we introduce a method that relies on rules for controlling a system. The
rules specify the behavior of the system including behavioral redundan-
cies. In addition, the method provides a runtime execution engine that
selects the rules accordingly to reach a certain goal. In addition, we
present a language and an implementation of the method and discuss
its capabilities using a case study from the mobile robotics domain. In
particular, we show how the rule-based fail-operational system can adapt
to a fault occurring at runtime.
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1 Introduction

Autonomous systems must have the capabilities to make decisions during oper-
ation in an independent fashion without considering external control. Ideally
such systems must not only be able to react to external stimuli coming from
the system’s environment in a smart way, but also in case of internal faults or
misinterpretations of sensor inputs causing deviations from ordinary behavior.
Reacting on internal faults is especially relevant for safety critical systems like
autonomous vehicles, where the vehicle itself has not only to detect the fault,
but also to react in a smart way in order to reach a safe state autonomously.
Such behavior requires that the system is capable of compensating faults at least
for a certain amount of time. For example, if the autonomous vehicle detects a
fault in its powertrain, stopping operation in a blind bend might not be safe for
the passengers. It might be a wiser choice to go to the closest parking space and

c© Springer Nature Switzerland AG 2019
F. Wotawa et al. (Eds.): IEA/AIE 2019, LNAI 11606, pp. 137–145, 2019.
https://doi.org/10.1007/978-3-030-22999-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22999-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-22999-3_13


138 G. Engel et al.

keep operation even under degraded conditions. Hence, such autonomous vehi-
cles have to have build in capabilities for implementing fail-operational behavior.
Obviously, fail-operational behavior can only be provided in case of redundancy.
Redundancy can be achieved either via using spare parts that are used to replace
broken parts autonomously, or re-configuring the system during operation to
achieve the desired functionality. The latter deals with either using components
in an undesired way to replace a broken function, or to go to degraded mode that
can still be achieved with the available functionality. Regardless of the underlying
redundancy, a fail-operational system requires a control program that enables
the use of redundancy in case of a fault. In this paper, we contribute to the imple-
mentation of fail-operational systems, and introduce a rule-based programming
language that is capable of deciding which redundant behavior to use during
operation. In addition, we discuss a case study from the autonomous mobile
robot’s domain showing that the control system relying on the rule-based pro-
gram is capable of dealing with faults in the powertrain by going to a degraded
mode.

The idea behind the programming language RBL is to provide means for spec-
ifying control rules that select redundant behavior during runtime and to have
an interface between the selected rules and the rest of the system. In particular,
our implementation allows to call external Java methods used for communicat-
ing with the rest of the system. RBL also offers means for computing weights
for rules that should be selected. These weights are not fixed, but vary during
runtime based on the success of actions executed previously. Hence, actions that
are not successful when carried out are less often executed. For example, if we
have two rules implementing the same functionality but using redundant com-
ponents that are triggered via their Java interface, the rule that most often lead
to a successful execution will also be more likely used in the future. Whenever
there is a fault in the corresponding component, the action will fail, the rule
weight will decrease, and the other alternative rule will be more likely selected
for execution. Besides the underlying foundations behind the RBL language,
which is based on previous work [9,20], we introduce an extension that supports
fine tuning of the weight calculation of the rules.

2 The RBL Programming Language

The RBL language is a programming language that uses rules to model fault-
tolerant systems. RBL is an extension to a previously proposed rule-based lan-
guage [20]. Every rule in RBL has a set of preconditions and post conditions.
If all preconditions are satisfied the rule can be executed. If the rule was suc-
cessfully executed, the post conditions will be true and can enable new rules to
be executed afterwards. A simple example for a rule is: “If the water bottle is
full and open, you can pour out the water, after that the bottle is empty”. In
this section, we give a brief overview about the syntax and semantic of RBL
and describe the interface between RBL, Java and a Modelica Model. For more
details about RBL and a more formal definition of the underlying semantics, we
refer the interested reader to a previous paper [20].
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Every RBL program comprises a set of rules, where the basic syntax of a
rule is: <preconditions> -> <postconditions> <action> [<weight modifiers>].

where <preconditions> and <postconditions> are sets of propositions that
can also be empty. It is worth noting that in the postcondition we are able to
add proposition and to remove proposition using + and - respectively before
writing the proposition. A rule might be selected if all the preconditions are
satisfied. The <action> is a Java class that implements a specific Java interface.
A method of this class is called whenever the rule is executed. Before we discuss
the <weight modifiers>, which are a new extension to the language, we will
first briefly explain the fault-tolerant behavior of RBL.

For each execution RBL generates a list of rules, which when executed in
succession, satisfies all precondition of the rules and the last rule in the list is a
goal rule (denoted by “#” as postcondition). If there is more than one of such
lists, meaning there are redundancies in the rules, RBL takes the list with the
smallest number of rules and highest weight. The original rule-based language
calculates the weight as follows:

w = (1 − current act) ∗ (1 − damp). (1)

After each run current act and damp are updated. Where current act is
increased if the rule was selected in the path and decreased if it was not selected,
meaning current act is a measure of how often the rule was selected in the past.
damp on the other hand is decreased if the rule was executed and was successful
and increased when it failed, meaning it is a measure of how successful the rule
was in the past. Formula (Eq. 1) together with the update enables the fault-
tolerant behavior.

To fine-tune the fault-tolerant behavior to different situations, we introduce
two new extensions to the language: (i) Aging is another update step that
occurs after each run. damp will be decreased or increased by the aging value
based on whether the aging target is currently smaller or greater than damp. (ii)
Activity and damping scaling can be used to disable, or lessen, the effect
of damp and current act on the weight calculation. This leads to following new
weight calculation:

w = (1 − (current act ∗ act scaling)) ∗ (1 − (damp ∗ damp scaling)). (2)

The <weight modifiers>, with which the two new concepts can be config-
ured, are 5 values separated by a comma, if a value is left blank a default value is
used. For example [0.2,,,0,1] is a valid <weight modifiers>. The different
values have following meaning accordingly to their order:

1. Damping value is the value by which damp is increased or decreased
2. Aging value is the value by which damp ages
3. Aging target is the value towards damp ages
4. Activity scaling is the value of act scaling in Equation (Eq. 2)
5. Damping scaling is the value of damp scaling in Equation (Eq. 2)
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Fig. 1. Architecture of the RBL and FMU interface.

Table 1. Faults over time of the different fault modes.

0 to 10 s 10 to 20 s 20 to 30 s

Normal No fault No fault No fault

Fault A Left wheel faulty No fault No fault

Fault B No fault Left wheel faulty Right wheel faulty

Fault C No fault Left and right wheel faulty No fault

For example, the rule “If the water bottle is full and open, you can pour out
the water, after that the bottle is empty.” can be expressed in RBL as follows:

b open, b full -> +b empty -b full action.emptyBottle [0.1,,,0.5,1].

3 The Mobile Robot Case Study

In this section, we discuss a case study where we outline the use of RBL to imple-
ment fail operational behavior for a mobile robot. The mobile robot includes
a differential drive, where each wheel is connected with a motor, and a wheel
encoder attached for measuring the rotational speed during operation. For details
of the mathematical modelling of the powertrain we refer to [3]. In the case study
we assume a controller that is able to set the voltage for the motors such that
they start rotating. The speed of rotation is proportional to the voltage pro-
vided. The task of the controller is to set the voltage such that the robot moves
straight. The controller itself only receives the rotational speed measured using
the wheel encoders as inputs. We further assume that in case of a fault of the
motor the rotational speed does not follow the given voltage anymore. For sim-
plicity, we assume that in the fault case the rotational speed is half the expected
speed. For the experiment based on the case study, we implemented the kinetics
of the robot drive using Modelica [5].

In order to couple the Java-based control program with the Modelica model
capturing the kinematics of the robot, we made use of co-simulation. Co-
simulation is a simulation method involving a collaboration of various solvers and
often tools [6]. Usually, co-simulation is chosen when different specialized tools
are employed to model different subsystems of a heterogeneous complex system.
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Various co-simulation interfaces are available [4], a prominent one is the Func-
tional Mockup Interface (FMI) [1]. It has been developed as tool-independent
standard in the ITEA2 European Advancement project MODELISAR, and is by
now widely supported by many tools. FMI supports both model exchange and
co-simulation of dynamic models, providing a zip of an executable and xml-files
describing metadata for the subsystem, for a detailed discussion see e.g. [16].
For our experiments, we used the open-source library javaFMI [7] as an inter-
face between a controller implemented in Java and a dynamical simulation model
implemented in Modelica.

We briefly discuss the underlying co-simulation framework used for the exper-
imental evaluation. The framework comprises three main components: the main
program, the executor, and the Functional Mock-up Unit (FMU). In Fig. 1 we
depict the general underlying architecture. The main program starts the execu-
tion and evaluates the results. The executor is generated out of the RBL rules
and is responsible for the fault-tolerant behavior. The executor communicates
through javaFMI with the FMU and evaluates the results from the FMU. The
FMU is generated directly from the Modelica model of the robot.

4 Experimental Evaluation

In this section we will describe our experimental evaluation. First, we will give
an overview of our experimental setup, then we will present and discuss our
results.

Experimental Setup: For our experimental evaluation we coupled the former
mentioned Modelica Model with the RBL language, as we described in Sect. 3.
The goal of the robot was to drive in a straight line and if faults occur going in
a degraded mode.

The only inputs the fault-tolerant system can give to the robot was that
either both motors of the wheels get the same voltage, or the left or right motor
gets half as much voltage as the other motor. In case of a fault this would mean
that the healthy wheel should match the speed of the faulty wheel, by reducing
the voltage of the healthy wheel to half. As a feedback the fault-tolerant system
only knows if both wheels turn at the same speed, or not.

The ruleset of RBL for our experiment was very simple as we can see in the
following listing. To note is that we disabled that current act has any influence
on our system, this means the only relevant measure for choosing a rule for our
experiment was how often the rules succeed.

-> #drive actions.leftHalfDrive [0.2,,,0,1].

-> #drive actions.rightHalfDrive [0.2,,,0,1].

-> #drive actions.normalDrive [0.2,,,0,1].

To see the fail-tolerant behavior in action we tested 4 different configurations of
the model, where each was executed for 30 s. The concrete faults can be seen in
Table 1.
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Table 2. Results of the different fault modes for runs with and without RBL rules.

Without RBL With RBL

% of straight Distance from Y % of straight Distance from Y

Normal 100.0% 0.0 99.8% 3

Fault A 66.7% 15,264.6 99.7% 695.2

Fault B 33.4% 1,762.3 99% 1,473.8

Fault C 100.0% 0.0 99.8% 3

Average 75.0% 4,256.7 99.6 543.7

Fig. 2. Visual comparison of the test without RBL (left) and with RBL (right) with
fault B. We can clearly see that the robot with RBL drives a more straight line towards
infinity than the robot without RBL.

Results: To understand our result, we used 3 metrics: (i) The percentage of the
time the robot actually drove straight, meaning both wheels turned at the same
speed. (ii) the sum of the distances from the robot to the y axis per time step.
(iii) we plotted the path of the robot in absolute coordinates to compared them
visually. We compared runs without the RBL rules , and runs with RBL, i.e.,
where the fault-tolerant system could change the supplied voltage to the wheels
in case of a fault.

We conclude from Table 2 that in the case no fault occurs (Normal), or both
wheels are faulty (Fault Mode C), the robot without the RBL rules performance
a bit better than the robot with RBL rules. This is due to the nature of the
fault-tolerant system that first has to find the correct voltage supply for the
robot. However, the other tests show that the robot with RBL rules perform
much better. It has always a success rate of over 99%. Interesting to note is that
the % of driving straight does not correlate to the distance from the y axis. In
Fig. 2, we can see why. When we look at the Figure of the path without the RBL
rules (left), we can see that even though the robot drives wrong most of the time
it always circles back to the y axis which leads to a value comparable to the
distance to the Y axis from the robot with RBL rules. On the figure however
we can clearly see that the robot did not fulfil its target to drive in a straight
line. All tests run with the RBL rules however fulfil this target within a small
margin.
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5 Related Research and Conclusions

Early work in the domain of adaptive and self-healing systems include [15] and
[10] where the authors focus on reconfiguration and self-repair of hardware.
Musliner et al. [11] introduced an approach for self-adaptive software to be used
in real-time environments. The use of self-healing in the context of autonomous
systems and automotive is not novel. Seebach and colleagues [17] introduced an
approach for implementing such a behavior.

Pell and colleagues [12] were one of the first making use of model-based rea-
soning [2,14] for allowing systems gaining additional autonomy, which finally
led to a model-based control system for space probes [13]. In the latter papers,
models are used to allow the system to react to internal faults occurring during
operation in a smart way. Steinbauer and Wotawa [18] used this idea and imple-
mented a system for mobile robots that was able to detect software issues and
to restart software modules causing these issues at runtime to bring the robot
back to operation. Hofbaur et al. [8] introduced a system that is able to change
control models for mobile robots at runtime in case of faults in the robot’s drive.
For a summary, of model-based approaches for self-adaptive systems we refer to
[19]. See [21] for more information and details regarding the formal background
of model-based reasoning for self-adaptive systems.

In this paper we presented a case study that uses RBL to combine a control-
system with a physical model of a robot that captures the kinematics of the
robot. Hence, we are able to demonstrate that the proposed approach for self-
adaptive systems also works in a simulated environment that is very close to the
real world. We tested our approach by modeling a robot and introducing faults in
the system. The experimental results indicate that RBL can be effectively used
for controlling such a robot in case of faults. In future research, we will extend the
case study capturing different fault scenarios and also different drives. Moreover,
we will compare the outcome with other means for implementing fail-operational
behavior like model-based reasoning.

Acknowledgments. The research was supported by ECSEL JU under the project
H2020 737469 AutoDrive - Advancing fail-aware, fail-safe, and fail-operational elec-
tronic components, systems, and architectures for fully automated driving to make
future mobility safer, affordable, and end-user acceptable. AutoDrive is funded by the
Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) under
the program “ICT of the Future” between May 2017 and April 2020. More information
https://iktderzukunft.at/en/ . The financial support by the Austrian Federal
Ministry for Digital and Economic Affairs and the National Foundation for Research,
Technology and Development is gratefully acknowledged.

https://iktderzukunft.at/en/


144 G. Engel et al.

References

1. Blochwitz, T., et al.: The functional mockup interface for tool independent
exchange of simulation models. In: 8th International Modelica Conference 2011,
pp. 173–184 (2009)

2. Davis, R.: Diagnostic reasoning based on structure and behavior. Artif. Intell. 24,
347–410 (1984)

3. Dudek, G., Jenkin, M.: Computational Principles of Mobile Robotics. Cambridge
University Press, Cambridge (2010)

4. Engel, G., Chakkaravarthy, A.S., Schweiger, G.: A general method to compare
different co-simulation interfaces: demonstration on a case study. In: Obaidat, M.S.,
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