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Abstract. The theory of numberings gives a fruitful approach to study-
ing uniform computations for various families of mathematical objects.
The algorithmic complexity of numberings is usually classified via the
reducibility ≤ between numberings. This reducibility gives rise to an
upper semilattice of degrees, which is often called the Rogers semilattice.
For a computable family S of c.e. sets, its Rogers semilattice R(S) con-
tains the ≤-degrees of computable numberings of S. Khutoretskii proved
that R(S) is always either one-element, or infinite. Selivanov proved that
an infinite R(S) cannot be a lattice.

We introduce a bounded version of reducibility between numberings,
denoted by ≤bm. We show that Rogers semilattices Rbm(S), induced by
≤bm, exhibit a striking difference from the classical case. We prove that
the results of Khutoretskii and Selivanov cannot be extended to our set-
ting: For any natural number n ≥ 2, there is a finite family S of c.e. sets
such that its semilattice Rbm(S) has precisely 2n − 1 elements. Further-
more, there is a computable family T of c.e. sets such that Rbm(T ) is an
infinite lattice.

1 Introduction

Uniform computations for families of mathematical objects constitute a classi-
cal line of research in computability theory. Formal methods for studying such
computations are provided by the theory of numberings. The theory goes back
to the seminal article of Gödel [17], where an effective numbering of first-order
formulae was used in the proof of the incompleteness theorems. One of the first
results, which gave rise to the systematic study of numberings, was obtained by
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Kleene [25]: he gave a construction of a universal partial computable function.
After that, the foundations of the modern theory of numberings were developed
by Kolmogorov and Uspenskii [26,36] and, independently, by Rogers [34].

Let S be a countable set. A numbering of S is a surjective map ν from ω
onto S. A standard tool for measuring the algorithmic complexity of numberings
is provided by the notion of reducibility between numberings: A numbering ν is
reducible to another numbering μ (denoted by ν ≤ μ) if there is total computable
function f(x) such that ν(x) = μ(f(x)) for all x ∈ ω. In other words, there is
an effective procedure which, given a ν-index of an object from S, computes a
μ-index for the same object. In general, however, the goal is for f to be a readily
understandable function, so that we can actually obtain some information from
the reduction.

In this paper, we consider only families S containing subsets of ω, i.e., we
always assume that S ⊂ P (ω) and S is countable.

Let Γ be a complexity class (e.g., Σ0
1 , d-Σ0

1 , Σ0
n, or Π1

n). A numbering ν of
a family S is Γ -computable if the set {〈x, n〉 : x ∈ ν(n)} belongs to the class Γ .
We say that a family S is Γ -computable if it has a Γ -computable numbering.

Following the literature, the term computable numbering will be used as a
synonym of a Σ0

1 -computable numbering. In particular, a computable family is
a family with a Σ0

1 -computable numbering.
In a standard recursion-theoretical way, the notion of reducibility between

numberings give rise to the Rogers upper semilattice (or Rogers semilattice for
short) of a family S: For a given complexity class Γ , this semilattice contains
the degrees of all Γ -computable numberings of S. Here two numberings have the
same degree if they are reducible to each other, see Sect. 2 for the formal details.

There is a large body of literature on Rogers semilattices of computable fam-
ilies. To name only a few, computable numberings were studied by Badaev [4,5],
Ershov [11,12], Friedberg [14], Goncharov [18,19], Lachlan [27,28], Mal’tsev [29],
Pour-El [33], and many other researchers. Note that computable numberings are
closely connected to algorithmic learning theory (see, e.g., the recent papers
[1,9,23]). For a survey of results and bibliographical references on computable
numberings, the reader is referred to the seminal monograph [12] and the articles
[3,6,13].

Goncharov and Sorbi [21] started developing the theory of generalized
computable numberings: In particular, this area includes investigations of
Γ -computable numberings. The approach of [21] proved to be fruitful for classi-
fying Rogers semilattices in hyperarithmetical hierarchy [3,8,32] and the Ershov
hierarchy [7,20,22,31].

In the paper, we introduce the following bounded version of the reducibility
between numberings:

Definition 1.1. Let ν and μ be numberings. We say that ν is bm-reducible to
μ if there is a total computable function f(x) with the following properties:
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(a) for every x ∈ ω, we have ν(x) = μ(f(x));
(b) for every y ∈ ω, the preimage f−1(y) is a finite set.

We write f : ν ≤bm μ if a function f bm-reduces ν to μ.

The notation ≤bm is a tribute to the little-known paper of Maslova [30]. She
introduced a bounded version of m-reducibility on sets: Suppose that f(x) is a
computable function, A and B are subsets of ω. Then f : A ≤bm B iff f : A ≤m B
and f satisfies the condition (b) above [30, Definition 1].

Nowadays various types of reductions are commonly used to study proper-
ties of mathematical structures (e.g., in Borel reducibility theory [15,16] or in
the theory of ceers [2]). Following this line of research, we are introducing the
reducibility ≤bm, and we aim to investigate the complexity of the corresponding
Rogers semilattices and their structural properties.

One would expect that investigating Rogers semilattices under bm-
reducibility makes little or no difference for most of the known results on num-
berings. Quite strikingly, this is not the case. In the paper, we illustrate this by
considering two algebraic properties of Rogers semilattices.

Historically, the first two major problems on Rogers semilattices were raised
by Ershov [10] (see also [6] for a detailed discussion): Let R be the Rogers
semilattice of a computable family S.

Problem A. What is a possible cardinality of R?

Problem B. Can R be a lattice?

In the classical case (i.e. for the reducibility ≤), the problems were solved in
1970s:

A. Khutoretskii [24] proved that R either has only one element, or is countably
infinite.

B. Selivanov [35] proved that an infinite R cannot be a lattice.

Unexpectedly, the theorems of Khutoretskii and Selivanov cannot be
extended to the case of bm-reducibility. We obtain the following results:

A′. For every natural number n ≥ 2, there is a finite family of c.e. sets such
that its Rogers semilattice under bm-reducibility has cardinality 2n − 1.
A similar result is proved for infinite computable families.

B′. There is a computable family of c.e. sets such that its Rogers semilattice
under bm-reducibility is an infinite lattice.

These results witness that the bm-reducibility of numberings is an interesting
object of study in itself.

The outline of the paper is as follows. Section 2 contains the necessary prelim-
inaries and some general observations about bm-reducibility. In Sect. 3, we obtain
an infinite lattice under bm-reducibility (Result B′). Section 4 deals with the
possible cardinalities of semilattices under bm-reducibility (Result A′). Section 5
contains further discussion.
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2 Preliminaries and General Facts

In all the sections of the paper, except the last one, we consider only computable
numberings.

Suppose that ν is a numbering of a family S0, and μ is a numbering of a
family S1. Note that the condition ν ≤ μ always implies that S0 ⊆ S1. Clearly,
if ν ≤bm μ, then ν ≤ μ.

Numberings ν and μ are equivalent (denoted by ν ≡ μ) if ν ≤ μ and μ ≤ ν.
The bm-equivalence ≡bm is defined in a similar way. The numbering ν ⊕μ of the
family S0 ∪ S1 is defined as follows:

(ν ⊕ μ)(2x) = ν(x), (ν ⊕ μ)(2x + 1) = μ(x).

The following fact is well-known (see, e.g., Proposition 3 in [12, p. 36]): If � ∈
{≤,≤bm} and ξ is a numbering of a family T , then

(ν � ξ &μ � ξ) ⇔ (ν ⊕ μ � ξ).

Let S be a computable family of c.e. sets. By Com0
1(S) we denote the set

of all computable numberings of S. Suppose that ∼ is the equivalence relation
induced by a preorder � ∈ {≤,≤bm}. Since the relation ∼ is a congruence on the
structure (Com0

1(S);�,⊕), we use the same symbols � and ⊕ on numberings of
S and on ∼-equivalence classes of these numberings.

The quotient structure Q∼(S) := (Com0
1(S)/∼;�,⊕) is an upper semilat-

tice. We say that Q∼(S) is the Rogers semilattice of the family S under the
reducibility �. For the sake of convenience, we use the following notations:

Rm(S) := Q≡(S); Rbm(S) := Q≡bm
(S).

Note that card(Rm(S)) ≤ card(Rbm(S)).
Numberings ν and μ are computably isomorphic if ν = μ ◦ f , where f is a

computable permutation of ω. If ν is a numbering, then by ην we denote the
corresponding equivalence relation on ω:

m ην n ⇔ ν(m) = ν(n).

A numbering ν is decidable if the relation ην is computable. Numbering ν is
Friedberg if ην is the identity relation.

In our proofs, we will often refer to the following simple fact about bm-
reducibility:

Lemma 2.1. Suppose that ν and μ are numberings, and ν(x) = μ(y). If the
class [x]ην

is infinite and [y]ημ
is finite, then ν �bm μ.

Proof. Assume that f : ν ≤bm μ. Since ν(x) = μ(y), we have f−1([y]ημ
) = [x]ην

.
By the pigeonhole principle, there is an element z ∈ [y]ημ

such that f−1(z) is
infinite, which contradicts the definition of bm-reducibility. ��



100 N. Bazhenov et al.

It is well-known that any decidable numbering ν of a family S induces a
minimal element in the semilattice Rm(S). It is easy to show that a similar
result fails for the structure Rbm(S):

Corollary 2.1. Suppose that S is a computable infinite family, and ν is a decid-
able, computable numbering of S. Then ν is minimal in Rbm(S) if and only if
for every x ∈ ω, the class [x]ην

is finite.

For reasons of space, the proof of Corollary 2.1 is omitted.
A countable family S of sets is discrete if there is a family of finite sets F

with the following properties:

– for any X ∈ F , there is at most one W ∈ S with X ⊆ W ;
– for every W ∈ S, there is at least one X ∈ F such that X ⊆ W .

A family S is effectively discrete if it is discrete, and for the witnessing family
F , there is a strongly computable sequence of finite sets (Fi)i∈ω such that F =
{Fi : i ∈ ω}.

3 Lattices

Let S be a computable family of c.e. sets. Here we show that the Rogers semi-
lattice Rbm(S) can be an infinite lattice.

Theorem 3.1. Consider a family S := {{k} : k ∈ ω}. Then the structure
Rbm(S) is isomorphic to the lattice of all Π0

2 sets (under inclusion).

Proof. Let ν be a computable numbering of the family S. We define a set

Inf(ν) := {k ∈ ω : the set {k} has infinitely many ν-numbers}.

It is not hard to show that Inf(ν) is a Π0
2 set.

Lemma 3.1. Let X be an arbitrary Π0
2 set. Then there is a computable num-

bering μ of the family S such that Inf(μ) = X.

Proof. Choose a computable predicate R(e, y) with the following property: for
any e ∈ ω,

e ∈ X ⇔ ∃∞yR(e, y).

W.l.o.g., one may assume that R(e, 0) is true for every e. Fix a computable
injective function f : ω → ω2 such that range(f) = R.

For n ∈ ω, we define μ(n) := {en}, where f(n) = (en, yn). It is not hard
to show that μ is a computable numbering of the family S. Furthermore, the
following holds:

(a) If e ∈ X, then there are infinitely many n with R(e, yn) true. For each such
n, we have μ(n) = {e}.

(b) If e �∈ X, then there are only finitely many numbers n with μ(n) = {e}.

Therefore, we deduce that Inf(μ) = X. ��
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Lemma 3.1 implies that in order to prove the theorem, it is sufficient to
establish the following fact:

Lemma 3.2. Let ν and μ be computable numberings of the family S. Then
ν ≤bm μ if and only if Inf(ν) ⊆ Inf(μ).

Proof. Assume that ν ≤bm μ. Then Lemma 2.1 shows the following: If the set
{k} has infinitely many ν-numbers, then {k} also has infinitely many μ-numbers.
Hence, Inf(ν) ⊆ Inf(μ).

Now suppose that Inf(ν) ⊆ Inf(μ). We build a bm-reduction f : ν ≤bm μ.
For a number e ∈ ω, we choose effective enumerations {ai}i∈I and {bj}j∈J

(without repetitions), which enumerate the set of all ν-numbers of {e} and the
set of all μ-numbers of {e}, respectively. Here we assume that I =

⋃
s∈ω I[s]

and J =
⋃

s∈ω J [s], where all I[s] and J [s] are finite initial segments of ω,
I[0] = J [0] = {0}, I[s] ⊆ I[s + 1], J [s] ⊆ J [s + 1], and card(I[s + 1] \ I[s]) ≤ 1.
Moreover, {I[s]}s∈ω and {J [s]}s∈ω are strongly computable sequences of finite
sets.

The desired function f is built in stages.
Stage 0. Set f(a0) = b0.
Stage s+1. If I[s+1] = I[s], then proceed to the next stage. Otherwise, find

n such that I[s+1]\ I[s] = {n}. Let k be the greatest number with bk ∈ f(I[s]).
Consider the following two cases:

1. If k + 1 ∈ J [s], then define f(an) := bk+1.
2. If k + 1 �∈ J [s], then set f(an) := bk.

Note that the described procedure is effective, uniformly in e ∈ ω. Thus, it
is easy to see that f is a total computable function such that f : ν ≤ μ.

Assume that there is a number y such that the set f−1(y) is infinite. Suppose
that μ(y) = {e} and y = bk. The description of the construction implies that
there is a number n such that for all m ≥ n, we have m ∈ I and f(am) = bk.
Thus, k + 1 �∈ J [s] for every s. We deduce that e ∈ Inf(ν) \ Inf(μ), which
contradicts our original assumption. Therefore, the function f provides a bm-
reduction from ν onto μ. Lemma 3.2 is proved.

This concludes the proof of Theorem 3.1. ��

The proof of Theorem 3.1 can be easily modified to obtain the following:

Corollary 3.1. Let S = {Ai : i ∈ ω} be a computable family of c.e. sets. Sup-
pose that there is a strongly computable sequence of finite sets (Fi)i∈ω such that
Fi ⊆ Ai and Fi �⊆ Aj, for all i �= j. Then the structure Rbm(S) is isomorphic to
the lattice of all Π0

2 sets.
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4 Cardinalities of Rogers Semilattices

Here we attack Problem A from the introduction. For finite families S, we obtain
a complete description of possible cardinalities of Rbm(S) (Subsect. 4.1). In Sub-
sect. 4.2, we show that the cardinalities from the previous subsection can also
be realized via infinite families S. In order to prove this, we give a computable
infinite family T such that all its computable numberings are computably iso-
morphic (Theorem 4.2). We also provide two sufficient conditions for Rbm(S)
being infinite.

First, we recall the following classical result:

Lemma 4.1 (folklore). Let S be a computable family of c.e. sets. If S con-
tains sets A and B such that A � B, then the semilattice Rm(S) is infinite. In
particular, this implies that Rbm(S) is also infinite.

4.1 Finite Families

Theorem 4.1. Suppose that S is a finite family of c.e. sets. If S contains pre-
cisely n sets, then card(Rbm(S)) is either equal to 2n − 1 or countably infinite.
Furthermore, for n ≥ 2, both these cases can be realized.

Proof. Let S = {A1, A2, . . . , An} be a family of c.e. sets. If there are numbers
i �= j with Ai � Aj , then by Lemma 4.1, the semilattice Rbm(S) is infinite.

Assume that Ai �⊆ Aj for all i �= j. Now it is sufficient to show that the
structure Rbm(S) contains precisely 2n − 1 elements.

Note that the family S is effectively discrete. Indeed, for every i �= j, choose
an element ai,j ∈ Ai \ Aj , and define the set Fi := {ai,j : j �= i}. It is easy to
see that for any i and k, the condition Fk ⊆ Ai holds iff k = i. Therefore, if ν
is an arbitrary computable numbering of S, then for all i ≤ n and x ∈ ω, the
following conditions are equivalent:

ν(x) = Ai ⇔ Fi ⊆ ν(x) ⇔ for every j �= i, Fj �⊆ ν(x).

This implies that the numbering ν is decidable.
Let D be a non-empty subset of {1, 2, . . . , n}, and d be the least number from

D. We define a decidable numbering μD of the family S as follows:

μD(x) = Ax+1, for x < n;

μD(〈i, j〉) =
{

Ai, if i ∈ D,
Ad, otherwise, where we assume that 〈i, j〉 ≥ n.

It is not hard to establish the following properties:

(a) Lemma 2.1 implies that for finite sets D �= E, we have μD �≡bm μE .
(b) Consider an arbitrary computable numbering ν of S. We define a non-empty

set Dν := {i : Ai has infinitely many ν-numbers}. Using the decidability of
ν, one can obtain that ν ≡bm μDν

.

These properties show that the cardinality of Rbm(S) is equal to the number of
non-empty subsets of the set {1, 2, . . . , n}. Thus, card(Rbm(S)) = 2n − 1. ��
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4.2 Infinite Families

First, we build infinite computable families S with finite semilattices Rbm(S).
Recall that numberings ν and μ are computably isomorphic if there is a com-
putable permutation g of ω such that ν = μ ◦ g. We establish the following fact:

Theorem 4.2. There is an infinite computable family T such that any two com-
putable numberings of T are computably isomorphic. In particular, the semilat-
tice Rbm(T ) contains only one element.

Proof. In the proof of Theorem 3.3 from [2], Andrews and Sorbi built a uniform
sequence (Ei)i∈ω of computably enumerable equivalence relations on ω (or ceers
for short) with the following properties: Each Ei has infinitely many equivalence
classes, and if a c.e. set W intersects infinitely many Ei-classes, then it intersects
every Ei-class.

Fix such a ceer E := E0. Note that every E-class is non-computable: Indeed,
if a class [x]E is computable, then the c.e. set ω \ [x]E intersects all but one
E-classes.

We define the desired family T by arranging its computable numbering: For
x ∈ ω, set θ(x) := [x]E .

Lemma 4.2. 1. The family T is effectively discrete.
2. Let S � T . If S is infinite, then it does not have computable numberings.
3. If ν ∈ Com0

1(S), then every set A ∈ S has infinitely many ν-numbers.

Proof. (1) If A �= B are sets from T , then A ∩ B = ∅. Thus, the sequence of
finite sets ({k})k∈ω witnesses the effective discreteness of the family T .

(2) Assume that ν is a computable numbering of an infinite family S � T . Then
the c.e. set W :=

⋃
n∈ω ν(n) intersects infinitely many E-classes, but it does

not intersect all E-classes. This contradicts the choice of the ceer E.
(3) Suppose that A has only finitely many ν-numbers. W.l.o.g., one may assume

that there is a natural number n0 such that ν(x) = A iff x ≤ n0. Then a
numbering μ(x) := ν(x + n0 + 1) is a computable numbering of the family
T \ {A}, which contradicts the previous item of the lemma.

��

We say that a numbering ν is 1-reducible to a numbering μ (denoted by
ν ≤1 μ) if there is an injective, total computable function f(x) such that ν =
μ ◦ f . The following analogue of Myhill Isomorphism Theorem is known (see,
e.g., Corollary 2 in [12, p. 208]): If ν ≤1 μ and μ ≤1 ν, then ν is computably
isomorphic to μ.

Therefore, it is sufficient to show that for any ν, μ ∈ Com0
1(T ), we have

ν ≤1 μ. A desired 1-reducibility f : ν ≤1 μ can be built in stages. At a stage s,
we find an element k enumerated into the c.e. set ν(s). After that, we search for
a number m such that m �∈ range(f [s]) and k ∈ μ(m). Such a number m exists
by the third item of Lemma 4.2. Moreover, it is easy to see that μ(m) = ν(s).
Thus, we set f(s) := m and proceed to the next stage. Theorem 4.2 is proved. ��
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Corollary 4.1. For any natural number n ≥ 1, there is a computable infinite
family S such that card(Rbm(S)) = 2n − 1.

Proof. Consider the family T from the theorem above. If n = 1, then one can
just choose S := T .

Suppose that n ≥ 2. Choose a finite family V from Theorem 4.1 such that
card(Rbm(V)) = 2n − 1. Then the desired family S contains the following sets:
For any A ∈ T , we add the set {2x : x ∈ A} into S. For every B ∈ V, we put
the set {2y + 1 : y ∈ B}. It is not difficult to show that for this S, the Rogers
bm-semilattice contains precisely 2n − 1 elements. ��

The next two propositions give sufficient conditions for a semilattice Rbm(S)
being infinite.

Proposition 4.1. Let S be a computable infinite family. Suppose that there is
a computable numbering ν of S with the following property: there are infinitely
many sets A ∈ S such that the set ν−1[A] = {x ∈ ω : ν(x) = A} is computable.
Then the semilattice Rbm(S) is infinite.

Proof (sketch). Suppose that A0, A1, . . . , An are distinct sets from S such that
ν−1[Ai], i ≤ n, are computable. For i ≤ n, fix the least number mi such that
ν(mi) = Ai. W.l.o.g., we may assume that mi > 0. We define computable
numberings

μ(x) :=

⎧
⎨

⎩

ν(x), if ν(x) �∈ {A0, A1, . . . , An},
Ai, if x = mi,
ν(0), otherwise;

θi(2x) := μ(x), θi(2x + 1) := Ai, i ≤ n.

Lemma 2.1 implies that the numberings θi, i ≤ n, are pairwise incomparable
under bm-reducibility. Therefore, the semilattice Rbm(S) is infinite. ��
Corollary 4.2. If an infinite family S has a decidable, computable numbering,
then the semilattice Rbm(S) is infinite.

Recall that an infinite set X ⊂ ω is immune if there is no infinite c.e. set W
with W ⊆ X. A set Y ⊆ ω is co-immune if its complement is immune.

Proposition 4.2. Let S be a computable infinite family. Suppose that there is
a computable numbering ν of S with the following property: there are infinitely
many sets A from S such that ν−1[A] is co-immune. Then the semilattice Rbm(S)
contains an infinite antichain.

Proof (sketch). Given a set A from S, we define a computable numbering

μA(2x) := ν(x), μA(2x + 1) := A.

Suppose that A and B are distinct sets from S such that both ν−1[A] and
ν−1[B] are co-immune. Assume that f : μA ≤bm μB . Then the set V := {f(2x+
1)/2 : x ∈ ω} is an infinite c.e. subset of ω \ ν−1[B], which contradicts the co-
immunity of ν−1[B]. Thus, μA and μB are incomparable under bm-reducibility.
Therefore, the semilattice Rbm(S) contains an infinite antichain. ��
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5 Further Discussion

First, we briefly discuss related results on hyperarithmetical numberings.
Let α be a computable ordinal such that α ≥ 2. Consider a family of Σ0

α-sets
S, which has a Σ0

α-computable numbering. Following the lines of Sect. 2, one can
introduce the Rogers semilattices R0

α;m(S) and R0
α;bm(S), which are induced by

the degrees of Σ0
α-computable numberings of S, under the reducibilities ≤ and

≤bm, respectively.

Proposition 5.1. Let α ≥ 2 be a computable successor ordinal. Suppose that S
is a Σ0

α-computable family such that S contains at least two elements. Then the
Rogers semilattice R0

α;bm(S) is infinite, and it is not a lattice.

Proof. Recall that card(R0
α;m(S)) ≤ card(R0

α;bm(S)). Goncharov and Sorbi [21,
Theorem 2.1] proved that the semilattice R0

α;m(S) is infinite.
Furthermore, in [21, Proposition 2.8] the following result was obtained. If

S is infinite, then one can build a uniform sequence (νi)i∈ω of Σ0
α-computable

numberings of S with the following property: If i �= j, then there is no Σ0
α-

computable numbering μ of S such that μ ≤ νi and μ ≤ νj .
This implies that for an infinite S, both structures R0

α;m(S) and R0
α;bm(S)

are not lower semilattices. Note that the results of Goncharov and Sorbi are
formulated and proved only for finite ordinals α. Nevertheless, essentially the
same proofs also work for infinite successor α.

Now assume that a Σ0
α-computable family S is equal to {A0, A1, . . . , An},

and consider the following Σ0
α-computable numberings of S:

νi(x) :=
{

Ax, if x ≤ n,
Ai, otherwise.

Lemma 2.1 shows that the numberings νi, i ≤ n, are pairwise bm-incomparable.
Moreover, it is not hard to show that for i �= j, there is no numbering μ of the
family S such that μ ≤ νi and μ ≤ νj . Hence, R0

α;bm(S) is not a lattice. ��

We note that the methods of [22] can be used to transfer the obtained exis-
tence results (such as Theorem 3.1 and Corollary 4.1) into non-limit levels of the
Ershov hierarchy, see Theorems 2 and 17 in [22] for the details.

In conclusion, we formulate two problems that are left open.

Question 5.1. Let S be a computable infinite family of c.e. sets. Describe all
possible cardinalities of the Rogers semilattice Rbm(S).

Note that all our examples of computable families S possess the following
property: If Rbm(S) is an infinite lattice, then the structure Rm(S) has only one
element.

Question 5.2. Is there a computable family S such that Rm(S) is infinite and
Rbm(S) is a lattice?
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