
Higher Type Recursion for Transfinite
Machine Theory

Philip Welch(B)

School of Mathematics, University of Bristol, Bristol BS8 1TW, England
p.welch@bristol.ac.uk

http://people.maths.bris.ac.uk/∼mapdw/

Abstract. We look at some preliminary work in the theory of trans-
finite Turing machines generalised in the manner of Kleene to higher
type recursion theory. The underlying philosophy is that ordinary Tur-
ing computability and inductive definability is replaced by the example
here of Infinite Time Turing Machine computability and quasi-inductive
definability.

1 Introduction

The purpose of this paper is to give a purely descriptive account of how notions of
‘recursion’ obtained from transfinite computational machines could be harnessed
to yield a theory of higher type of recursion using those machines. (To make it
clear from the outset: type 0 objects are of the form: n ∈ ω; type 1 are of the
form x : ω → ω, and type 2 are of the form F : (NN) → ω etc. We shall not deal
with objects here of type higher than 2.)

We restrict ourself here to ideas and definitions. We summarise some results
that characterise the semi-decidable sets for such notions, but all proofs must be
omitted. The point is to indicate how analogies with Kleene’s theory of Higher
Type recursion from the late ‘50’s and early ‘60’s can be used to develop these
ideas in the transfinite context.

Our transfinite machine will be the ω length tape Infinite Time Turing
Machine (“ittm”) model of Hamkins and Kidder [8] with which we shall assume
the reader is familiar. Much of what we say generalises to machines with longer
tapes.

We shall give analogies to Kleene’s type-2 recursion and the objects that
naturally arise there, but formulated for type-2 recursion using ittm’s. We don’t
claim to give the final form of this: there are a number of decisions and choices
along the way, that could have been made differently. Kleene’s theory can be
cast in that of monotone inductive definitions which we first recall. The concept
corresponding to this for ittm-theory is that of a quasi-inductive definition. In
Sect. 2 we give first a sketch of Kleene’s theory applied to wellfounded trees of
Turing machines (“tm” will always denote a regular Turing machine) and the
type-2 objects that naturally occur here. The theory of hyperarithmetic sets
and the fact that ‘semi-decidable’ in this context corresponds to Π1

1 are of great
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weight in what follows. In Sect. 3 we give a description of the ittm version of this,
according to a choice of type-2 oracles. As much for motivation, or additional
justification for our structure, as for anything else, in Sect. 4 we state some
applications results in low levels of determinacy.

2 Inductive Operators

Let Φ : P(N) → P(N) be any arithmetic Γ operator (that is ‘n ∈ Γ (X)’ is an
arithmetic relation of X and n.)

Definition 1. (i) Φ is monotone iff ∀X ⊆ Y ⊆ N −→ Φ(X) ⊆ Φ(Y );
(ii) Φ is progressive iff ∀X ⊆ N (X ⊆ Φ(X)).

In either case we set: Φ0(X) = X and then: Φα(X) = Φ(
⋃

β<α(Φβ(X))).
We call Φ inductive if it is monotone or progressive. Clearly Φ inductive implies
there will be fixed points the least of which will be: Φ∞(X) =df Φα(X) where α
is least with Φα(X) = Φα+1(X); clearly α will be countable.

The theory of inductive operators was heavily investigated in the 1960’s and
early 70’s by Spector, Gandy, Hinman, Richter, Aczel, Moschovakis, Aanderaa,
Cenzer and others. From this work developed Moschovakis’s theory of gener-
alised definability and inductive definitions over abstract structures [15]. This
tied in with previous work in admissibility theory “The next admissible set”
(Barwise-Gandy-Moschovakis Theorem, [1]), and the Spector-Gandy Theorem
that: “Π1

1 = Σ1(Lωck
1

)” - Lωck
1

being the least admissible set over N.

Definition 2 (Quasi-inductive operators). Let Φ be any operator. Define
iterates Φ as before except for limits λ ≤ On:

Φλ(X) = lim inf
α→λ

Φα(X) =
⋃

α<λ

⋂

λ>β>α

Φβ(X).

For arithmetic operators this is, in effect, due to Burgess [3], but which has its
roots in the notion of revision theoretic definability of Gupta and Belnap [6].

Lemma 1. Any such operator has a least countable ζ = ζ(Φ,X) with Φζ(X) =
ΦOn(X). Moreover there is a cub class of ordinals, closed and unbounded beneath
any uncountable cardinal, of ordinals ξ, with Φζ(X) = ΦOn(X).

There are not a huge number of examples of quasi-inductive operators in
the literature, but an important one is that of an infinite time turing machine
(ittm) where we regard the ω-length tape(s) as a sequence of cells whose contents
are revised according to the transition table of the program. This results in a
recursive operator Φ which moreover only updates at most one cell, so one integer
of X, at each stage. All the active new work takes place at the limit stages with
the lim inf rule.

Kleene in [10] developed an equational calculus, itself evolving out of his
analysis of the Gödel-Herbrand General Recursive Functions (on integers) from
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the 1930’s, but now enlarged for dealing with recursion in objects of finite type. A
particular type-2 functional was that derived from the ordinary jump oJ, where

oJ(e,m, x) =
{

1 if [e](m, x)↓ (meaning has a defined value or converges)
0 otherwise.

(We shall also use the notation “[e]I(p)” rather than “{e}I(p)” to indicate
that we are using Kleene recursion using tm’s, and reserve the latter more usual
notation for ittm recursion.) Here m is a string of integers, and x a function x :
ω → ω (thus an object of type 1) and e the index number of an ordinarily Turing
recursive functional of type-1 objects. (A vector of such functions will be denoted
in bold.) The reader should note the use of the downarrow in [e](m,x)↓ to mean
just what it says: the expression is defined, and for which we use convergence
as a synonym. Similarly [e](m,x)↑ will mean the expression is undefined with
synonym of divergence. Functions of type greater than 1 are conventionally called
‘functionals’, but we may occasionally let this slip.

The functional oJ can be considered as a functional just on type-2 objects
(absorbing objects of lower type by their type-2 counterparts). Using coding of
vectors of functions we ultimately think of this as oJ having domain ω×kω× l(ωω)
for any k, l ∈ ω.

Kleene then developed (see Hinman [9] Ch. VI) a theory of generalised recur-
sion in type-2 (and higher) functionals; in this theory a designation such as ‘[e]I’
refers to the e’th function recursive in the type-2 functional I. (Warning: this is
not just the simple use of the oracle I in a linear computation as the notation
might suggest, but refers to a tree of computation with calls to the oracle.) Dur-
ing a computation of, say, [e]I(n,y) oracle steps are allowed whereby the result
of a query (f,m,x) is directly asked of I, and an integer result, I(f,m,x), is
returned. (Of course even to make the query the values of each of the infinitely
many values of the functions x have to already have been calculated; calculating
each of these values can in turn require asking the oracle I for further values etc.;
thus such a recursion can be represented by a tree, which if convergent is well
founded, but is potentially infinitely branching at any node, with each branch
calculating some x(k) say.) In this formalism the index set HoJ defined by:

HoJ(e)↔ [e]oJ(e)↓
is a complete semi-recursive (in oJ) set of integers, and Kleene showed that this
is in turn a complete Π1

1 set of integers. Further he showed that the oJ-recursive
sets of integers, i.e. those sets R for which

R(n)↔ [e]oJ(n)↓1 ∧ ¬R(n)↔ [e]oJ(n)↓0

for some index e, are precisely the hyperarithmetic ones. (See Hinman [9] Ch.
VII.1 for a discussion of this.)

Kleene gave his account of recursion in objects of finite type which we have
alluded to above in [10,13]. In order to give further weight to his definition he
then showed it was extensionally equivalent to an alternative given by a Turing
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machine model enhanced with oracle calls to a higher type functional, see [11,12];
this was just as for the case of ordinary Turing computation. Many different
concepts of computation on numbers turned out to be equivalent. By showing
that the equational model had the same functions as a Turing machine model he
was emulating the same conceptual move Turing had made. In the first paper [11]
he showed how any Turing machine computation of finite type could be achieved
on the generalized recursive equational approach. The second paper [12] showed
the reverse. In both directions a convergent, (so defined) computation could be
represented, not as a finite tree of computations as for ordinary recursion, but
now as a well-founded but in general infinitely branching tree of computations
of function values - which in general required calculating infinite objects (as we
indicated above), such as all values x(n) for a function x : N−→N, at some
level in the tree before submitting that completely calculated function itself as
an argument to a function of higher type at the level above. The wellfounded
tree of either functional calculations, or of Turing machine computational calls,
depending on the representation, witnessed a successfully defined or convergent
computation. The tree occurs dynamically as part of the computational process.

Our account here is motivated in spirit by that latter approach. Instead of
using an equational calculus we shall couch our model not just in terms of the
Kleenean Turing machine, but in terms of ittm’s and their computations, viewed
as quasi-inductive operators now recursive in a certain operator iJ in place of
Kleene’s oJ.

Viewed as a class of quasi-inductive operators, the output tape (or every third
cell say of a single tape model) of an ittm represents an element of Cantor space
at any stage; that output tape may or may not converge to a fixed value. If it does
then the the real there is to be regarded as the output of the computation. Notice
this is a more generalised notion than that of the machine halting and hence with
a fixed output tape for that reason. Halting is really just a special case of the basic
phenomenon of ‘fixed output’. The idea that a tape is eventually settled is broader
in the infinite time context: a calculation can continue indefinitely, without any
changes to the output tape section. It must have seemed natural to consider only
the halting computations when first thinking about ittm behaviour, but as [17]
showed, even to characterise those halting calculations required stepping back
and analysing the whole class of eventually settled computations: the latter we
regard as more fundamental, and as characteristic of the ittm process. To analyse
ittm behaviour is to analyse the eventually settled outputs (which we shall call
‘fixed outputs’ below), and to find out what they are capable of computing
requires analysing those fixed outputs, not just the more specialised halting
outputs. The Spector class naturally associated to this form of definability by
itttm’s is precisely that using this fixed output rather than the proper subclass
using nominally halting output. And of course this is in accord with the quasi-
inductive scheme above.

Given a set A ⊆ ω ∪ ω2, this can be used as an oracle during a computation
on an ittm in a familiar way: ? Is the integer on (or is the whole of) the current
output tape contents an element of A? and receive a 1/0 answer for “Yes”/“No”.
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We identify elements of ω as coded up in ω2 in some fixed way, and so may
consider such A as always subsets of ω2. But further: since having A respond with
one 0/1 at a time can be repeated, by using an ω-sequence of queries/responses,
we could equally well allow A to return an element f ∈ ω2 as a response (we
have no shortage of time). We could then allow as functionals also I : ω2−→ ω2.
However for this paper we shall only consider functionals into ω. Some examples
follow. As is usual we let {e} represent the partial function computed by the
e’th ittm programmed machine Pe.

Definition 3. (The infinite time jump iJ)
(i) We write {e}(m,x)↓ if the e’th ittm-computable function with input m,x
has a fixed output c ∈ 2N, in which case we write {e}(m,x) = c.
(ii) We then define iJ by:

iJ(e,m,x) =
{

1 if {e}(m,x) ↓ ;
0 otherwise (for which we write {e}(m,x)↑ ).

The functional iJ then is the counterpart of the standard tm operator oJ.

Definition 4. For x a real, the complete (ordinary) ittm-semirecursive-in-x set,
denoted by x̃ is the set of integers {e | {e}(e, x)↓}.
One consequence of the (relativized to a real x) λ-ζ-Σ-Theorem (cf. [16] Thm
2.6) is that x̃ is recursively isomorphic to the complete Σ2-Theory of Lζx [x].

3 Higher Type Recursion

In the Kleenean recursion in type-2 functionals, in [11,12] a successful compu-
tation (meaning one with output) could be effected by imagining tm’s placed
at nodes on a wellfounded tree, with computations proceeding at nodes that
make computation calls to a lower node, seeking the value of some x(k) say. The
computation time at each node, regarding each call to a lower node as being just
one step in the computation of the calling node, is then finite. (For otherwise
the computation at the node is never completed and the whole overall compu-
tation will fail.) An overall computation may fail by instituting a series of calls
to subcomputations that form an infinite descending path in the tree. In such
cases the machines on the path all hang after finitely many steps, all waiting for
data to be passed up from the immediate subcomputation it has called.

In the ittm case we may again conceive of an overall or master ittm computa-
tion taking place at the top level; such a computation may take infinitely many
steps in time, and will be considered as successful if the output tape is fixed
from some point in time onwards. The master computation may make queries
of a type-2 functional I in which the computation is considered recursive. It may
call subcomputations of exactly the same type: ittm’s with the capability to
make oracle queries of I.

We give a more detailed description of this as a representation in terms of
underlying ittm’s. {e}I(m,x) will represent the e’th program in the usual format,
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say transition tables, but designed with appeal to oracle calls possible. We are
thus considering computations of a partial function {e}I : kω× l(ω2) → ω2. Such
a computation has potentially computation time, or stages, unbounded in the
ordinals.

The computation of P I
e(m,x) proceeds in the usual ittm-fashion, working as a

tm at successor ordinals and taking lim inf’s of cell values etc. at limit ordinals.
(We take lim inf’s rather than lim sup’s as this accords more with the notion
characteristic functions of quasi-inductive operators. This makes no difference
to the computational possibilities of ittms’s or here at higher types.) At a time
α an oracle query may be initiated. We may conventionally fix that the real
number subject to query is that infinite string on the even numbered cells of the
scratch type. If this string is (f,m, y0, y1 . . . , ) then setting y = y0, y1 . . ., the
query or oracle call which we shall denote Q(I, f,m, y) is the question: ?What is
I(z) where P I

f (m, y)↓z ? and at stage α+1 receives the value I(z). If it is not the
case that P I

f (m, y)↓ z for any z, i.e., it fails to have a fixed output, then there
is no z to which I can be applied, and the overall computation fails. (We could
try to stay closer to the Kleenean setting, where a tree branches infinitely often
downwards, to compute for some z ∈ ωω, z(0), z(1), . . . in turn, and then can
ask for I(z). There, if any of the computations z(k) failed, then the query to I
did not take place, and the overall computation failed. But one thing we have
with ittm computation is plenty of time, so we can amalgamate the individual
computations z(k) as simply one computation of all of z.)

Space prohibits a formal definition of the representation above, but we can
determine its effect as follows via an inductive operator I. Just as the Kleene
equational calculus can be seen to build up in an inductive fashion a set of indices
Ω[I] for successful computations recursive in I (see Hinman [9], pp. 259–261), so
we can define the fixed point of a monotone operator I = I I on (ω × ω<ω ×
(ωω)<ω)×ωω which will give us the successful ittm-computations recursive in I.

Definition 5. We set I(X) =:

{〈〈e,m,x〉, z〉| PX
e (m,x)↓z is an ittm-computation making only oracle calls

Q(X, e′,m′,x′) and receiving back I(z′)where X(〈e′,m′,x′〉) = z′ }.

As this is monotone, we may let
I0 = ∅; I<α =

⋃
β<α Iβ & Iα = I(I<α) in the usual way, and reach a least

fixed point I∞.

Then:

Theorem 1 (The {e}’th function generalised recursive in I). Using I∞:
{e}I(m,x) is defined, or convergent, with output z iff I∞(〈e,m,x〉) = z.
In which case we set {e}I(m,x) = z. Otherwise it is undefined or divergent.

Overall we have a computation tree - also called a tree of subcomputations,
with subcomputation calls performed at branching nodes below the top level.
However, although the computation is most easily represented by a tree, we may
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think of the computation as a linear sequential process as we visit each node of
the tree in turn.

We therefore make the following conventions. During the calculation of
{e}I(m,x) the initial calculation takes place at the topmost node ν0 which we
declare to be at Level 0 in our computation tree T = TI(e,m,x). Let us suppose
the first oracle query concerning {f0}I(n0, y0) is made at some stage. The tree
T will then have a node ν1 below ν0, labelled with 〈f0, n0, y0〉 and we declare
the computation {f0}I(n0,y0) to be performed at this Level 1. Thus ‘control’ of
the overall process is at the level of the node. Further, we may define the overall
length function H = H(I, e,m,x) as the length of the computation that occurs
at the nodes of the wellfounded part of T. Sequentially H totals up the ordi-
nal number of stages of operation at each of the nodes where control currently
resides.

Definition 6. (i) The level of the computation {e}I(m,x) at time α (as given
by H), denoted Λ(e, I, (m,x), α), is the level of the node νι at which the overall
computation is being performed at time α, where:
(ii) the level of a node νι is the length of the path in the tree from ν0 to νι.
(iii) By Level n we accordingly mean the set of nodes in the tree with level n.

Thus for a convergent computation, at any time the level is a finite number
(‘depth’ would have been an equally good choice of word). A divergent compu-
tation is one in which either (i) an oracle call resulting in a calculation at some
node fails to produce an output z (and so no value I(z) can be returned to the
level above) or (ii) T is illfounded (with a rightmost path of order type then ω).

Recall that a ‘snapshot’ at time γ in a computation by an ittm is the ω-
sequence of bits of information consisting of the current read/write head position,
transition state number, and the sequence of cell values. The snapshots up to the
stage in a calculation P I

e(m,x) where it ends its first loop (if this occurs) will
have all the relevant information then in the calculation: everything thereafter is
mere repetition. (This would be undefined if the computation tree is illfounded).
We say that a computation ‘exhibits final looping behaviour’ (‘at stage σ’, or
‘by stage τ ’), if there are stages or times ξ < σ (≤ τ) with at the top level (a)
identical snapshots at ξ and σ, and moreover (b) no cell that had a stable value
at time ξ changes that value in the interval (ξ, σ).

ITTM Recursion in 2E. We shall draw to a close the discussion of generalised
recursion in functions I as this will take us too far from our goal, and shall leave
this for future work. For us, as for Kleene, recursion in 2E is fundamental. Recall,
for y ∈ NN, 2E(y) = 0 if ∃n y(n) = 0 and 2E(y) = 1 otherwise. Many of the
theorems of type-2 recursion about functionals F have to be prefixed with the
requirement that 2E is recursive in F. (Such F are called normal.)

Definition 7. We say F is (generalised) ittm-partial recursive in G if there is
an index e so that F = {e}G. F is ittm-recursive in G if it is partial recursive
in G and total. A relation R is ittm-recursive in I if its characteristic function
is. R is ittm semi-recursive in I if it is the domain of a functional ittm-partial
recursive in I.
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Kleene showed that the functionals 2E and oJ are mutually (Kleene) recursive
in each other (cf. [9] VI.1.4.). We shall have this too:

Theorem 2. The functionals iJ and 2E are mutually ittm-recursive.

We wish to apply this theory to the particular case of iJ - the infinite jump.

A number of elementary facts concerning computation trees T living in tran-
sitive admissible sets M may be proven.

Lemma 2. Suppose {e}iJ(m,x) has a computation tree T ∈ M , and with x ∈
M , where M is a transitive admissible set, closed under the function y � ỹ.
Then ({e}iJ(m,x) is convergent)M ←→{e}iJ(m,x) is convergent.

It was an essential feature of ordinary ittm-theory that if a computation
Pe(m) produced an output it would always have done this by stage ζ where ζ is
least so that for some Σ > ζ we had Lζ ≺Σ2 LΣ ; this was shown in the “λ-ζ-Σ
Theorem” (see [16] 2.1 and 2.3). The Σ2 liminf nature of the limit rule underlay
this, and the same is true here.

Definition 8. A pair of ordinals (μ, ν) is a Σ2-extendible pair if Lμ ≺Σ2 Lν

and moreover ν is the least such with this property with respect to μ. We say
μ is Σ2-extendible if there exists ν with (μ, ν) a Σ2-extendible pair. By rel-
ativisation, a pair of ordinals (μ, ν) is an (x, I)-Σ2-extendible pair, and μ is
(x, I)-Σ2-extendible, if Lμ[x, I] ≺Σ2 Lν [x, I].

Then of importance for our purposes are:

Lemma 3. The computation {e}I(m,x) exhibits final looping behaviour if and
only if there exists some (x,I)-Σ2-extendible pair (ζ,Σ) so that Λ(e, I,x, ζ) = 0.

The dependence on I in the above is natural. With iJ it can be dropped:

Lemma 4. The computation {e}iJ(m,x) exhibits final looping behaviour if and
only if there exists some x-Σ2-extendible pair (ζ,Σ) so that Λ(e, iJ,x, ζ) = 0.

Usual methods prove an Sn
m-theorem and:

Theorem 3 (The I-Recursion theorem). If F(e,m,x) is ittm-recursive in
I, there is e0 ∈ ω so that

{e0}I(m,x) = F(e0,m,x).

Another Example: Lubarsky’s Feedback-ittm Recursions
We are indebted to Lubarsky’s work in [14] and grateful for discussions with him
on his earlier FITTM’s (= Feedback ITTM’s). His notion of ‘feedback’ uses the
concept of properly halting where the basic outcome occurs when an ITTM halts
rather than having, as here, a fixed output. (We have indicated above why we
consider ‘fixed output’ to mean a fixed output tape.) He describes wellfounded
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computation trees, not as arising from a Kleene style recursion, but as ITTM’s
(with extra tapes) that have the additional state of “an oracle query does the
Feedback ITTM with program the content of the first additional tape on input
the content of the second [tape] converge?” which will receive a Yes/No answer.
(As intimated, convergence is halting.) He then describes the semantics of such
computations as wellfounded trees, where subcalls are again queries of the same
type (“Does {e}FITTM (x) halt?”). An FITTM computation freezes if the tree
becomes illfounded. He asks a number of questions, such as to the ranks for the
wellfounded trees occurring, what are the reals output or appearing on tapes of
such machines. We briefly state answers to these below.

We may describe an induction building up directly the class of successful
FITTM-computations as a fixed point of a monotone operator, in this spirit,
just as in Definition 5 above. However we construe this fixed point as that arising
from a type-2 operator, let us call it here hJ, from an ittm-recursion defined as in
this paper. Recursion in hJ then also becomes an example of ittm-recursion in 2E
with Theorem 2 applying again: hJ and 2E are mutually ittm-recursive in each
other. Thus for us Feedback-ITTM computations become a particular example
of this higher type ittm recursion, and the class of x ∈ NN FITTM-computable
coincide with those ittm-recursive in 2E.

Computation Times. The Lemmata 3 and 4 above give sufficient conditions
for a computation {e0}iJ(m,x) to converge. We need to find out exactly how
long computations in iJ take in order to characterise the iJ-recursive and semi-
recursive sets. The clue is that ordinary ittm-computations can compute the
theories and codes for the levels of the L-hierarchy up to the end of the first Σ2-
extendible pair interval (ζ,Σ). (This is shown in [17], and in [4] a programme
is explicitly given that shows how codes and theories can be simultaneously
produced by an ordinary ittm recursion on α for α < Σ; after stage Σ it drops
into a repeating loop of reproducing the results on its output tape of the α ∈
(ζ,Σ).) A machine that writes out codes for Lα’s must in some sense be, at least
akin to, a universal machine, since by absoluteness, any ittm computation on
integer input can be run in L. Here we have, in effect, ittm’s that can whilst
within such a Σ2-extendible interval, call other ittm’s as part of a subroutine. It
might not be inconceivable that such behaviour is overall fashioned, when they
try to write codes for levels Lα’s, by their reaching levels of the L-hierarchy,
where the Σ2-extendible pairs become nested.

Definition 9. For m ≥ 1 an m-depth Σ2-nesting of an ordinal α is a sequence
(ζn, σn)n<m so that
(i) if m = 1 then ζ0 < α < σ0;
(ii) if 0 < n + 1 < m then ζn ≤ ζn+1 < α < σn+1 < σn;
(iii) if k < m then Lζk ≺Σ2 Lσk

.

We may show that there are processes generalised ittm-recursive in iJmf
that compute levels of L up to the points where any finite depth of nesting occurs,
where each additional depth of nesting corresponds to computing up to repeating
snapshots at one depth lower in T. It then seems inevitable that illfounded trees
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must ultimately occur by some ordinal corresponding to infinite depth nesting.
But prima facie there is no such ordinal, since there can be no infinite descending
chain σn+1 < σn in the above definition.

We thus shall want to consider non-standard admissible models (M,E) of KP
together with some other properties. We let WFP(M) be the wellfounded part of
the model. By the so-called ‘Truncation Lemma’ it is well known (v. [2]) that this
wellfounded part must also be an admissible set. Usually for us the model will
also be a countable one of “V = L”. Let M be such and let α = On ∩WFP(M).
By the above α is thus an admissible ordinal, i.e. Lα will also be a KP model.
As remarked, an ‘ω-depth’ nesting cannot exist by the wellfoundedness of the
ordinals. However an illfounded model M when viewed from the outside may
have infinite descending chains of M -ordinals in its illfounded part. These con-
siderations motivate the following definition.

Definition 10. An infinite depth Σ2-nesting of α based on M is a sequence
(ζn, sn)n<ω with:

(i) ζn ≤ ζn+1 < α ⊂ sn+1 ⊂ sn; (ii) sn ∈ OnM ; (iii) (Lζn ≺Σ2 Lsn
)M .

Thus the sn form an infinite descending E-chain (where, as above, E is the
membership relation of the illfounded model) through the illfounded part of the
model M .

Whilst any countable transitive admissible set can be extended to have an ill-
founded part, (again v. [2]) and, for example, there are illfounded end-extensions
of Lωck

1
, that does not mean that this latter model can be extended to an ill-

founded model M which supports an infinite depth Σ2-nesting: a relatively large
countable admissible β is needed for that:

Definition 11. Let β0 be the least ordinal β so that Lβ forms the wellfounded
part of an admissible end-extension (M,E) based on which there exists an infinite
depth Σ2-nesting of β.

It turns out that Lβ0 is a model of Σ1-Separation. Hence it has a proper, and
so least, Σ1-elementary submodel: Lα0 ≺Σ1 Lβ0 . These ordinals feature in what
follows.

4 Conclusions

Theorem 4. (i) If a recursion {e}iJ(m) converges, then it does so by time α0,
and the latter ordinal is the supremum (over e and m) of convergence times of
such computations. (ii) There is a recursion {h}iJ(m) that only diverges at β0,
and all such divergent computations diverge before or at this time.

Lemma 5. (i) The iJ-recursive sets of integers are precisely those of Lα0 ;
(ii) the iJ-semi-recursive sets are those Σ1(Lα0). Q.E.D.

The following answers two questions of Lubarsky:
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Corollary 1. The reals appearing on the tapes of freezing fittm-computations
of [14] are precisely those of Lβ0 ; similarly the supremum of the ranks of the
wellfounded parts of freezing fittm-computation trees is also β0.

Lemma 6. The complete ittm-semidecidable-in-iJ set of integers

K = {(e,m) ∈ ω × ω | {e}iJ(e)(e,m) = 1}

as well as
H iJ(e)↔{e}iJ(e)↓

are recursively isomorphic to the complete Σ1-Theory of 〈Lα0,∈〉.
These last two lemmata can be compared with a result of Kleene et al.:

Theorem 5. The complete (Kleene)-semidecidable in oJ set of integers is recur-
sively isomorphic to the complete Σ1-Theory of 〈Lωck

1
,∈〉. The oJ-recursive sets

of integers are precisely those of Lωck
1

, that is, the hyperarithmetic sets.

A Postlude. In earlier work we had located in the L-hierarchy winning strate-
gies for Σ0

3 two person perfect information games. The games in [18] connected to
nested Σ2-extendability. The presumed connection with ittm’s becomes a intrigu-
ing question, and most of this work was motivated by trying to understand this.
The summary above indeed ties in with these results, which we mention here
without explaining the connection. See [19].

Theorem 6. Let η be least so that for any Σ0
3 -game there is a winning strategy

for one of the players definable over Lη. Then η = β0.

Subsequently S. Hachtman ([7]) found another remarkable characterisation
of β0:

• Let γ be least so that, as a model of a fragment of second order arithmetic,
R ∩ Lγ is a model of Π1

2 -monotone induction. Then γ = β0.

Open Questions. As can perhaps be seen from this sketch there are more open
questions than known facts. A closer analysis of ittm recursions in general type
2 functionals needs to be done:

Q1 Formulate a Stage Comparison Theorem for ittm-recursion. (See [9].VI)
Much as there are several approaches to the hyperarithmetic sets uses Kleene
recursion, there are notation systems associated with ittm-theory. One can use
the theory of �Σ0

3 -monotone operators to obtain norms, thus prewellorderings,
on ittm semi-decidable sets. Presumably many features of Kleene recursion have
some analogue for ittm recursion.

Q2 What is the correct definition and properties of the superjump (due to Gandy
for Kleene recursion) for ittm higher type recursions? (See [9].VI)
We have only considered type-2 recursions to date.



Higher Type Recursion for Transfinite Machine Theory 83

Q3 Is there a suitable notion of ittm-recursion in this spirit at types-3 and above?
In another direction one can enlarge the notion of computation by taking on the
hypermachines of [5]. Such machines may have loops at Σn-extendible ordinals
by analogy with the ittm’s.

Q4 Develop a theory of higher type hypermachine recursion.
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