
Representations of Natural Numbers
and Computability of Various Functions

Micha�l Wroc�lawski(B)

Institute of Philosophy, University of Warsaw, Warsaw, Poland
michalwro@wp.pl

Abstract. We discuss various ways of representing natural numbers
in computations. We are primarily concerned with their computational
properties, i.e. which functions each of these representations allows us
to compute. We show that basic functions, such as successor, addition,
multiplication and exponentiation are largely computationally indepen-
dent from each other, which means that in most cases computability of
one of them in a certain representation does not imply that others will
be computable in it as well.

We also examine what difference can be made if we restrict our atten-
tion only to those representations in which it is decidable whether two
numerals represent the same number. It turns out that the impact of
such restriction is huge and that it allows us to rule out representations
with certain unusual properties.

Keywords: Representations of numbers · Computable functions ·
Characteristic functions

1 Introduction

Various authors have been considering the view that the notion of computability
applies in the first place to functions on numerals, rather than on numbers them-
selves. Such position has been suggested by Shapiro in [4] and further discussed,
among others, by Rescorla in [3], Copeland and Proudfoot in [1] and Quinon in
[2]. I have also considered related issues in [5].

All algorithms are performed on strings of symbols which denote numbers
(or other objects)—but a certain number can be represented by different strings.
E.g. the number 6 is represented as VI when we use Roman numerals, but by 110
if we want to use binary numerals. Computation of a function such as addition
is different in each of these cases.

According to Church’s thesis, computable functions are exactly recursive
functions. However, if we allow non-standard ways of encoding numbers, this
does not have to be true. A set of numerals (satisfying a few additional conditions
specified in the next section) together with a function assigning a natural number
to each numeral, shall be called a representation.

c© Springer Nature Switzerland AG 2019
F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 298–309, 2019.
https://doi.org/10.1007/978-3-030-22996-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22996-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-22996-2_26

Representations of Numbers and Computability of Various Functions 299

In this paper we are going to examine computability of the most important
functions on natural numbers: successor, addition, multiplication and exponen-
tiation. While they are all recursive and hence their computability is normally
taken for granted, we want to show that this is not always the case (i.e. not
in every representation). Furthermore, as it turns out, these functions are com-
putationally largely independent from each other—i.e. the assumption of com-
putability of one of them in most cases does not guarantee computability of the
others.

We shall also provide a suggestion of an additional constraint on representa-
tions which will allow us to rule out representations with particularly irregular
properties. Namely, if for a certain representation there exists an algorithm which
for any two numerals determines whether they represent the same number or
not, then such representations exhibit properties much more similar to represen-
tations usually employed.

2 Defining the Concept of Representation

In this section we are going to define some basic notions regarding representa-
tions.

Definition 1. Let Σ be a finite alphabet. We shall call (S, σ) a representation
of N, where S ⊆ Σ∗ is an infinite computable set and σ : S → N is a surjection.

Definition 2. Let (S, σ) be a representation of N. We shall say that this rep-
resentation is unambiguous iff for every n ∈ N there exists exactly one numeral
α ∈ S such that σ(α) = n. Otherwise we shall call the representation ambiguous.

The basic example of a representation is the unary representation defined as
follows:

Let Σ = {1}. S is the set of all finite sequences comprised of 1 and the empty
word ε, and the function σ is defined in the following way:

σ(ε) = 0,

if σ(α) = n, then σ(α � 1) = n + 1.

Another representation, which we shall refer to throughout this paper as the
standard representation, is the decimal representation, defined as follows:

Let Σ = {0, 1, ..., 9}. S is the set of all standard decimal numerals (i.e. the
set consisting of the numeral 0 and of all finite sequences of digit from Σ which
do not begin with 0), and the function σ is defined in the following way:

σ(an...a0) =
n∑

i=0

ai · 10i,

Both these representations are unambiguous.

300 M. Wroc�lawski

In unambiguous representations, the concept of computability is simple. A
function is computable if there exists an algorithm which for every numeral (rep-
resenting a certain number) supplied on the input, returns the numeral repre-
senting the value of the function on the output. The issue gets more complicated
when it comes to ambiguous representations. This is how we define computability
in general case:

Definition 3. Let (S, σ) be a representation of N. Then for any function,
f : N

n → N, by fσ : Sn → S we shall denote a function such that for any
α1, ..., αn, β ∈ S the following condition is satisfied:

fσ(α1, ..., αn) = β ⇒ f(σ(α1), ..., σ(αn)) = σ(β).

If there exists a computable function fσ satisfying the above condition, than we
shall say that f is computable in (S, σ).

Note that in case of ambiguous representations, many such functions fσ can
exist. It is possible that some of them are computable, and some are not. We
adopt a convention that “to compute the function f in (S, σ)” and “to compute
fσ” are both going to mean “to compute any function fσ which satisfies the
above condition”.

We will also want to be able to compute Boolean functions, i.e. functions
whose values are TRUE and FALSE.

Definition 4. Let R ⊆ N
n. The characteristic function of the relation R is the

function χR such that for any a1, ..., an ∈ N the following holds:

χR(a1, ..., an) = TRUE ⇔ R(a1, ...an).

χR(a1, ..., an) = FALSE ⇔ ¬R(a1, ...an).

In this paper we are going to be particularly concerned with the characteristic
function of identity:

χ=(a1, a2) = TRUE ⇔ a1 = a2,

χ=(a1, a2) = FALSE ⇔ a1 �= a2.

The computability of characteristic functions is defined in a similar way as in
the case of numerical functions.

Definition 5. Let (S, σ) be a representation of N. Then for any relation R ⊆ N
n

we shall define Rσ ⊆ Sn in the following way:

(α1, ..., αn) ∈ Rσ ⇔ (σ(α1), ..., σ(αn)) ∈ R,

for all α1, ..., αn ∈ S. We shall say that χR is computable (or simply that R is
computable) in (S, σ) if and only if Rσ is computable.

Note that TRUE and FALSE are neither numerals, nor numbers, but they are
entirely different symbols.

Representations of Numbers and Computability of Various Functions 301

3 Computability of Successor, Addition, Multiplication
and Exponentiation in Representations of Natural
Numbers

In this section we are going to show what are the relations between computabil-
ity of some basic functions. In particular, we want to emphasise the role of
computability of characteristic function of identity χ=.

The proofs of Theorems 6 (in a modified form) and 7 come from my paper
[5]. The former theorem is a generalised version of Shapiro’s result included
in his paper [4]. Shapiro considered only unambiguous representations (in his
terminology—notations), which is a very common approach among authors deal-
ing with this subject. I have generalised his result to include all types of repre-
sentations.

Theorem 6. Let (S, σ) be a representation of N in which successor and χ=

are computable. Then all functions computable in the standard representation,
including addition, multiplication and exponentiation, are also computable in
(S, σ).

Proof. Let (S, σ) be a representation of N in which the successor function
(denoted as Succ) and χ= are computable. In this representation there is a
numeral representing number 0. Let us denote such a numeral as α, i.e. let
α ∈ S be such that σ(α) = 0. Note that for the purpose of this proof we only
need to know that such α exists, not which numeral it is. This is because it is our
aim here only to prove the existence of an algorithm, not to state which exactly
algorithm it is.

We shall first show how to translate numerals from (S, σ) to the standard
representation.

Let n be a numeral representing n in the standard representation, for every
natural number n. The purpose of this convention is to clearly distinguish
between standard numerals and numbers which they denote.

Let λ be a numeral of (S, σ). For every natural number n, let us denote
λn = Succσ(Succσ(...(α)...)), where the successor is iterated n times in λn. We
compare one by one each λn with λ until we find such n that χσ

=(λ, λn) = TRUE.
Then σ(λ) = n, so the numeral n represents the same number in the standard
representation as the numeral λ in (S, σ).

Let n be a numeral of the standard representation. To find its counterpart
in (S, σ), we calculate λn defined as above.

Now suppose that f is computable in the standard representation. We want
to compute this function in (S, σ) on some given input. In order to do so, we
translate this input to the standard representation, perform an algorithm in the
standard representation and then translate the output back to (S, σ).

Theorem 7. There exists a representation (S, σ) of N in which the successor
function is computable, but addition, multiplication and exponentiation are not
computable.

302 M. Wroc�lawski

Proof. We construct (S, σ) as follows:
The alphabet consists of symbols: 0, 1, a.
The set of numerals S consists of all finite non-empty sequences of symbols

from the alphabet which contain at most one occurrence of a.
Let A ⊆ N be uncomputable in the standard representation.
We construct σ in the following way:

σ(0) = 0,

σ(1) = 1,

σ(a) = 0 ⇔ 1 �∈ A,

σ(a) = 1 ⇔ 1 ∈ A.

Also, for any α ∈ S:
σ(α � 0) = σ(α),

σ(α � 1) = σ(α) + 1,

σ(α � a) = σ(α) ⇔ lh(α) + 1 �∈ A,

σ(α � a) = σ(α) + 1 ⇔ lh(α) + 1 ∈ A,

where � is a concatenation and lh(α) is the length of the sequence α.
This is a correct representation because every natural number n is represented

by at least one numeral, namely 1...1 consisting of n digits 1, with the exception
of number 0, which is represented by the numeral 0.

For any α ∈ S, let #1(α) denote the number of occurrences of symbol 1 in
the numeral α.

The successor function in (S, σ) can be computed as follows:

Succσ(α) = α � 1.

We shall show that addition is not computable in this representation. Suppose
to the contrary that it is.

For any natural number n ≥ 1 let us denote:

λn = 0...0a,

where λn consists of n − 1 digits 0 followed by one occurrence of a.
We want to find out whether n ∈ A. We compute λn +λn in (S, σ). We know

that σ(λn) is equal to 0 or 1. Thus σ(λn +σ λn) is equal to 0 or 2.
If n ∈ A, then σ(λn) = 1 and σ(λn +σ λn) = 2. Then #1(λn +σ λn) ≥ 1. If,

however, n �∈ A, then σ(λn) = σ(λn +σ λn) = 0 and then #1(λn +σ λn) = 0.
It is easy to find out which of these cases occurs and thus—whether n ∈ A. It

follows that A is computable in the standard representation, which contradicts
our assumption. Therefore, addition is not computable in (S, σ).

Similarly we show that multiplication and exponentiation are not computable
in (S, σ). Let us denote:

δn = 1...1a,

Representations of Numbers and Computability of Various Functions 303

where λn consists of n − 1 digits 1 followed by one occurrence of a. Then we
compute respectively δn · δn or δn

11 in (S, σ) (note that they both return the
same result, we shall only provide a proof for the case with multiplication).

Suppose that multiplication is computable in (S, σ). We shall prove that A is
also computable. Let n ∈ N. We want to find out whether n ∈ A. Without loss of
generality we can assume that n ≥ 2.1 Let α ∈ S be the result of multiplication
δn · δn in (S, σ). We know that σ(δn) is equal to either n − 1 or n. Therefore:

1. If σ(δn) = n − 1, then σ(δn ·σ δn) = (n − 1)2 = n2 − 2n + 1. Therefore
#1(α) = n2 − 2n or #1(α) = n2 − 2n + 1.

2. If σ(δn) = n, then σ(δn ·σ δn) = n2. Therefore #1(α) = n2 −1 or #1(α) = n2.

Note that for n ≥ 2 we can find out which of these cases occurs. If the first
case occurs, then n �∈ A, otherwise n ∈ A. Thus we have obtained contradiction
with the assumption that A is not computable. Therefore multiplication (and
similarly exponentiation) is not computable in (S, σ).

Theorem 8. Let (S, σ) be a representation of N in which addition is computable.
Then the successor function is also computable in this representation.

Proof. Let (S, σ) be a representation of N in which addition is computable. In
(S, σ) there must be a numeral representing number 1. Let us denote this numeral
as β. Then we can calculate the successor function in (N,σ) as follows:

Succ(α) = α +σ β.

Theorem 9. There exists a representation (S, σ) of N in which addition (and
thus also successor) is computable, but multiplication and exponentiation are not
computable.

Proof. For any natural number n, let n denote the numeral which represents n
in the standard representation of N.

We construct the following representation (S, σ):
The alphabet Σ consists of digits 0, ... , 9, of symbols (,) and the comma.
We construct the set S of numerals as follows:
For any standard numerals a0, ... , an, the sequence (a0, ..., an) is a numeral

of the representation (S, σ) if a0 ≥
n∑

i=1

ai.

Let A ⊆ N be uncomputable in the standard representation such that 0 ∈ A.
For any (a0, ..., an) ∈ S the function σ is defined as follows:

σ((a0, ..., an)) =
n∑

i=0

(ai · χA(i)),

where for any natural number i: χA(i) = 1 if i ∈ A, and χA(i) = 0 if i �∈ A.
1 The algorithm which is supposed to find out whether n ∈ A will have answers for
n ∈ {0, 1} explicitly given as special cases.

304 M. Wroc�lawski

This representation is well-defined because every natural number is repre-
sented by at least one numeral, in particular n is represented by (n).

For any numerals (a0, ..., am) and (b0, ..., bn) (without loss of generality we
assume that m ≤ n), we define addition in (S, σ) in the following way:

(a0, ..., am) +σ (b0, ..., bn) = (a0 + b0, ..., am + bm, bm+1, ...bn),

where +S is interpreted as addition of numbers represented by respective numer-
als in the standard representation. It is obviously computable.

We shall prove that multiplication is not computable in this representation.
Suppose that it is computable. We shall show that then A is computable in the
standard representation which leads to a contradiction.

We want to find out whether n ∈ A.
For any natural number n we define the following numeral:

λn = (1, 0, ..., 0, 1),

where λn has 1 on the zeroth and n-th position and 0 on all the other positions.
We compute the multiplication λn ·λn in (S, σ). There are two possible cases:
If n ∈ A, then σ(λn) = 2 and σ(λn · λn) = 4. From the condition that

a0 ≥
n∑

i=1

ai it follows that a0 ≥ 2 for every numeral representing number 4 in

this representation.
If n �∈ A, then σ(λn) = 1 and σ(λn · λn) = 1, so a0 = 1 in a numeral

representing number 1 in this representation.
We determine which of these cases occurs and thus we can find out whether

n ∈ A. Therefore A is a computable set in the standard representation, which
leads to a contradiction. It follows that multiplication is not computable in (S, σ).

Similarly, by considering the result of the computation λn
λn we can show

that exponentiation is not computable in this representation.
We compute λn

λn in (S, σ). There are two possible cases:
If n ∈ A, then σ(λn) = 2 and σ(λn

λn) = 4. From the condition that a0 ≥
n∑

i=1

ai it follows that a0 ≥ 2 for every numeral representing number 4 in this

representation.
If n �∈ A, then σ(λn) = 1 and σ(λn

λn) = 1, so a0 = 1 in a numeral represent-
ing number 1 in this representation.

We determine which of the cases occurs and thus we can find out whether
n ∈ A. Therefore A is a computable set in the standard representation, which
leads to a contradiction. It follows that exponentiation is not computable in
(S, σ).

Theorem 10. There exists a representation (S, σ) of N in which multiplication
and χ= are computable, but addition and exponentiation are not computable.

Proof. Let π be a permutation of N uncomputable in the standard representa-
tion.

Representations of Numbers and Computability of Various Functions 305

We construct the following representation. The alphabet consists of the digits
0, ... , 9, of the symbols (,) and the comma.

The admissible numerals in (S, σ) are all finite sequences of the form
(a0, ..., an), where each ai is a natural number. Additionally, the numeral 0
belongs to S.

We construct σ as follows:
σ(0) = 0,

σ((a0, ..., an)) = pa0
π(0) · ... · pan

π(n),

where ai is the numeral representing ai in the standard representation and pi is
the i-th prime number.

It is a correct representation because each natural number is represented by
a certain numeral, which results from the fundamental theorem of arithmetic.

For any numerals (a0, ..., am) and (b0, ..., bn) (without loss of generality we
assume that k ≤ l), we define multiplication in (S, σ) in the following way:

(a0, ..., am) ·σ (b0, ..., bn) = (a0 + b0, ..., am + bm, bm+1, ...bn),

where + is interpreted as addition of numbers in the standard representation.
Additionally, for any α ∈ S, let α ·σ 0 = 0 ·σ α = 0.
Hence, multiplication is computable in (S, σ). The function χ= is also com-

putable, as a consequence of the fundamental theorem of arithmetic. We shall
show that addition and exponentiation are not computable in this representa-
tion.

Let us assume that addition is computable in this representation. We shall
show that then the permutation π must be computable in the standard repre-
sentation, which leads to a contradiction.

Let n be any natural number. We want to find the value of π−1(n). We
take any non-zero numeral λ ∈ S and we calculate λ + ... + λ︸ ︷︷ ︸

pn times

in (S, σ). Then

we check on which position of λ the number has increased by 1 (note that
it can also be a new position on which 1 has appeared). The number of this
position is equal to π−1(n). Thus we can compute the permutation π−1 in the
standard representations. However, if π−1 is computable, then obviously π is
also computable.

Now suppose that exponentiation is computable in this representation. We
shall prove that then the permutation π must be computable in the standard
representation.

For any natural number n we shall find π(n) using the following method:
Let λn be a numeral of the form (0, ..., 0, 1), where the digit 1 is proceeded

by n occurrences of the digit 0. Then σ(λn) = pπ(n). We compute the result of
(1)λn in (S, σ). Obviously:

σ((1)λn) = p
pπ(n)

π(0) .

When we calculate this exponentiation, we will get the numeral (pπ(n)) as a
result. Thus we find out the value of the π(n)-th prime number, so we can easily
compute π(n).

306 M. Wroc�lawski

Theorem 11. Let (S, σ) be a representation of N in which exponentiation and
χ= are computable. Then multiplication and addition are also computable in this
representation.

Proof. Let α, β ∈ S. We want to calculate α ·σ β and α+σ β. Let λ be a numeral
representing number 2 in (S, σ) and let (ζn)n∈N be a recursive enumeration of
all numerals from S. For each ζn we check if the following equality holds:

(λα)β = λζn

until we find a numeral for which it is true. Such ζn shall be the result of
calculating α ·σ β in (S, σ).

To calculate α +σ β in (S, σ), for each ζn we check whether the following
equality holds:

λα ·σ λβ = λζn .

until we find a numeral for which it is true. Such ζn shall be the result of
calculating α +σ β in (S, σ).

We conclude that addition and multiplication are computable in (S, σ).

Theorem 12. There exists a representation (S, σ) of N in which exponentiation
is computable, but successor, addition and multiplication are not computable.

Proof. We construct such a representation as follows:
The alphabet consists of digits 0, ... , 9, symbols π, E, (,) and the comma.
The set of numerals S is the smallest set satisfying the following conditions:
Every numeral of the standard representation belongs to S.
If α, β ∈ S \ {0, 1}, then E(α, β) ∈ S.
If α ∈ S and α represents a prime number in the standard representation,

then π(α) ∈ S.
We construct the function σ in the following way:
Let π be a permutation of prime numbers (i.e. a bijection from prime numbers

onto prime numbers) uncomputable in the standard representation such that
π(2) = 2.

For any standard numeral n, let σ(n) = n

For any α, β ∈ S \ {0, 1}, let σ(E(α, β)) = σ(α)σ(β).
For any prime number p, let σ(π(p)) = π(p).
This representation is well-defined because every natural number is repre-

sented by a certain numeral, in particular by the same numeral as in the standard
representation.

We define exponentiation in (S, σ) as follows:
αβ = E(α, β), for α, β ∈ S \ {0, 1},
α0 = 1, α1 = α, 1α = 1, for any α ∈ S,
0α = 0, for any α ∈ S \ {0, 1}.
Exponentiation is computable in this representation.
We shall prove that successor is not computable in (S, σ). Suppose to the

contrary that it is computable. We shall show that π is then computable in the
standard representation, which leads to a contradiction.

Representations of Numbers and Computability of Various Functions 307

Let T = (αij)i,j∈N be defined as follows:

αij = Succσ(Succσ(...(π(pi))...)),

where the successor is iterated j times, and pi is the i-th prime number.
Since we assumed that the successor function is computable, it follows that

T is a computable family of numerals indexed by pairs of natural numbers.
Note that each prime number p is represented by exactly two numerals in

(S, σ), namely p and π(q), for a certain prime number q. Let us consider the
following cases:

Case 1. Suppose that there exists a prime number p and that there exist natural
numbers i, j such that αij = p (by this we understand the equality of numerals,
not just the equality of numbers represented by them) and for every prime
number p′ > p and for any natural numbers i′, j′ the following holds: αi′j′ �= p′.
Then we consider the infinite sequence of results of the following computations
(which is a row of T , possibly with the exception of a certain initial segment):

p, Succσ(p), Succσ(Succσ(p)), ...

It is a sequence of numerals representing consecutive natural numbers, starting
with σ(p). For any natural numbers i, j, if αij is a numeral representing a cer-
tain prime number p, then αij = p or αij = π(q), for a certain prime number
q. According to our assumption, there are only finitely many prime numbers
represented in the first of these two ways. In each row of T nearly all prime
numbers are represented by numerals of the second type. Since T is computable,
by calculating consecutive numerals from any row of T and choosing only those
of them which represent prime numbers, we obtain an infinite sequence repre-
senting consecutive prime numbers:

π(pi0), π(pi1), π(pi2), ...

Then we compute π in the following way: nearly all of its elements can be
obtained from the above sequence, the rest of them (which are finite in number)
can be enumerated as special cases.

Case 2. Suppose that there exists a natural number i such that for any natural
number j and any prime number p: αi,j �= p. Then from the i-th row of T , like
in the previous case, we calculate nearly all values of π. Since there are only
finitely many values outside of this row, it follows that π is computable.

Case 3. Suppose that there is no natural number which satisfies either of the
conditions from cases 1 and 2. Therefore, for every natural number i there exist
a natural number j and a prime number p such that αi,j = p. Let us take any
natural number i. We shall show how to compute π(pi), where pi is the i-th
prime number. Let j, p be such that αi,j = p, where p is a prime number. Also:

αi,j = Succσ(Succσ(...(π(pi))...)),

where the successor function is iterated j times.

308 M. Wroc�lawski

Therefore π(pi) + j = p. It follows that π(pi) = p − j. We have obtained
a contradiction with the assumption that π is not computable in the standard
representation. Therefore the successor function is not computable in (S, σ).

From this and Theorem 8 it follows that addition is not computable in (S, σ)
either.

We shall show that multiplication is not computable in (S, σ). Assume to the
contrary that it is. We shall show that π is then computable in the standard
representation and thus we shall obtain a contradiction. Let p > 2 be a prime
number. We shall show how to compute π(p).

Let us calculate 2 ·σ π(p). From the definition of (S, σ) it follows that the
result of this calculation cannot be of the form E(α, β) for any numerals α, β.
It cannot be of the form π(q), for any prime number q because the result of this
multiplication is not a prime number. Therefore it must be a certain standard
numeral n. However, all such numerals are interpreted in (S, σ) just like in the
standard representation. Therefore π(p) = n

2 .
It follows that π is computable in the standard representation, which contra-

dicts our assumption. Therefore, multiplication is not computable in (S, σ).

4 Conclusions

In this paper we have considered computability of the most important functions
on natural numbers. We believe that we have managed to establish in what ways
their computability depends on each other.

Based on these results it seems that except for some trivial cases, we can
usually construct a representation in which one function is computable and the
other is not. The example of such a trivial case was that computability of addition
implies computability of successor—which is not surprising because successor
function can be obtained by addition by substituting a constant for one of the
arguments.

It is our purpose to find general rules governing such dependencies. Suppose
that for a function f , we define computational closure of f as the set of all
functions computable in every representation in which f is computable. Certainly
f will be closed under such operations as substitution, composition of functions,
etc. But is it possible to give a complete description of what functions belong to
such closure? This is a question we are currently investigating.

Another important conclusion is that the computational landscape dramat-
ically changes as soon as Boolean functions are included. The assumption of
computability of χ= ensures that we are already able to say a lot more about
properties of various representations. The question arises whether there are other
equivalence relations of similar importance.

Representations of Numbers and Computability of Various Functions 309

References

1. Copeland, B.J., Proudfoot, D.: Deviant encodings and Turing’s analysis of com-
putability. Stud. Hist. Philos. Sci. Part A 41(3), 247–252 (2010)

2. Quinon, P.: A taxonomy of deviant encodings. In: Manea, F., Miller, R.G., Nowotka,
D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 338–348. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94418-0 34

3. Rescorla, M.: Church’s thesis and the conceptual analysis of computability. Notre
Dame J. Formal Logic 48(2), 253–280 (2007)

4. Shapiro, S.: Acceptable notation. Notre Dame J. Formal Logic 23(1), 14–20 (1982)
5. Wroc�lawski, M.: Representing Numbers. Filozofia Nauki 26(4), 57–73 (2018)

https://doi.org/10.1007/978-3-319-94418-0_34
https://doi.org/10.1007/978-3-319-94418-0_34

	Representations of Natural Numbers and Computability of Various Functions
	1 Introduction
	2 Defining the Concept of Representation
	3 Computability of Successor, Addition, Multiplication and Exponentiation in Representations of Natural Numbers
	4 Conclusions
	References

