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Abstract. Sacks proved that every admissible countable ordinal is the
first admissible ordinal relatively to a real. We give an algorithmic proof
of this result for constructibly countable admissibles. Our study is com-
pleted by an algorithmic approach to a generalization of Sacks’ theorem
due to Jensen, that finds a real relatively to which a countable sequence
of admissibles, having a compatible structure, constitutes the sequence of
the first admissibles. Our approach deeply involves infinite time Turing
machines. We also present different considerations on the constructible
ranks of the reals involved in coding ordinals.

Introduction

One motivation for ordinal computability (see, e.g., [5]) is to find new proofs for
theorems in constructible and descriptive set theory. Such proofs may yield extra
information and give a further perspective. Examples so far include the proof by
Koepke and Seyfferth of the existence of incomparable α-degrees using α-Turing
machines in [26], Koepke’s proof of the continuum hypothesis in L using ordinal
Turing machines in [25] and the proof by Schlicht and Seyfferth of Shoenfield’s
absoluteness theorem in [34], also via ordinal Turing machines.

In this paper, we prove a constructive version of a theorem of Sacks, along
with a strengthening thereof due to Jensen, the latter using infinite time Tur-
ing machines (ITTMs). These were invented by Hamkins and Kidder and first
introduced in [17]. A topic that has received particular attention is the issue
of clockability. This subject is of special concern for us as it shows some deep
relations with admissible ordinals.

Admissible ordinals correspond to levels of the constructible hierarchy that
are closed enough to carry computabilities, in other words closed under Σ1 defin-
ability; the reference text is Barwise’s book [1]. This notion has several equivalent
definitions stated in rather different terms and involves many deep properties
witnessed by ITTMs.
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Sacks’ theorem is very important to understand countable admissible ordi-
nals. It states that for any countable admissible ordinal α, there exists a real r
such that α is the first non-recursive ordinal relatively to r (written ωCK,r

1 , this
ordinal is admissible and the first admissible > ω relatively to r). For the first
admissibles, this statement is rather clear: the first admissible is ωCK

1 , the next
one is ωCK,r1

1 where r1 is a code of lowest constructible rank for ωCK
1 , and so

on. The situation is more complex with the first recursively inaccessible ordinal
(an admissible which is a limit of admissibles). Indeed a computability construc-
tion is required to transform a sequence of admissibles co-final in this admissible
into an adequate real. The situation is much more complex for larger ordinals
because of coding problems. For successor admissibles, those that are not recur-
sively inaccessible, our idea is to use a code for the admissible just below, but
questions arise to know whether such a code exists and if it exists, in which con-
structibility level. For recursively inaccessibles, the situation is even more subtle
since the ω-sequence of admissibles cofinal in this ordinal must also be definable,
and various cases arise depending on the different gaps in which the ordinals of
the sequence might appear.

When one has proven Sacks’ theorem, it is rather natural to try to obtain that
any two admissibles become the first and the second admissibles relatively to a
real. Once again the case where the ordinals are small is not difficult (although
it requires to work both with Turing and hyperarithmetic reducibilities). For
transfinite sequences of admissibles, the situation is more complex since our goal
is that this sequence coincides with an initial segment of the admissibles using
only an oracle r—which one can see as some kind of translation function. We
provide an elementary proof of Jensen’s generalization to Sacks’ theorem for
sequences of constructibly countable admissibles, the ordinal type of which is
bounded by the supremum of the clockable times of ITTMs.

We begin our paper by describing various gaps and ranks concerning defin-
ability/coding issues, and then describe our algorithmic and computability app-
roach to proving versions of these two theorems.

1 Gaps and ranks

In the different results of this paper, in particular in Theorem 3, we are interested
in finding the simplest reals, simplest in the sense that they appear at the lowest
possible rank in the constructible hierarchy. This approach is naturally linked to
various gaps and ranks described in this section.

1.1 The constructible hierarchy

We recall Gödel’s constructible hierarchy (Lα : α ∈ On) and an accompanying
ad hoc hierarchy Jα in which we can find Jensen’s master codes for levels where
new reals appear. The reader is referred to [22,10,21] for more on this hierarchy.

Definition 1. L0 = J0 = ∅, Lα+1 = Def(Lα), Lλ =
⋃

α<λ Lα, L =
⋃

α∈On Lα,
Jω·ξ = Lξ, Jω·ξ+n = Δn(Lξ), where λ is a limit ordinal and Def(X), resp.
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Δn(X), is the set of all subsets of X definable with parameters in 〈X,∈〉 by a
first order formula, resp. by both Σn and Πn first order formulae.

We are interested in finding the lowest level of Gödel’s constructible hierarchy
where certain sets appear, in particular certain reals (subsets of ω). The least
level α of L where a certain set A appears (A ∈ Lα+1) is called the L-rank of A.

1.2 Gaps in the constructible hierarchy

H. W. Putnam and G. S. Boolos identified levels of L where no new reals appear.

Theorem 1. There are arbitrarily long gaps in L where no new reals appear.1

This leads to the notion of gaps in the constructible hierarchy: an ordinal
α is in a Putnam gap (or L-gap) if no new reals appear in Lα. The proof of
Theorem 1 uses the fact that if M is a countable elementary subset of LωL

2
, then

the image of ωL
1 under the Mostowski collapse of M is a very long Putnam gap.

The idea behind such a Putnam gap is that an ordinal α < ωL
1 starts a long gap

if it is very similar to ωL
1 . When new reals appear at level α + 1, a real coding

all of Lα is one of them.

Lemma 1 ([2,3]). If new reals appear at α + 1, then among them is an arith-
metical copy2 Eα of Lα.

If α is a Putnam-gap ordinal and if r ∈ Lα is a real coding a well-order on ω,
then the order type of that well-order is less than α. Thus if α starts a Putnam-
gap, then α is a limit ordinal and Marek and Srebrny [30] actually showed that
an ordinal α starts a Putnam-gap if and only if Lα |= ZFC− + V = HC.

Gaps naturally appear both in the L and the J hierarchies. When new reals
appear at a level, we call this level an index. Let �J (α) be the maximum β such
that [α, α + β) is a J -gap. Thus α is a J -gap ordinal if and only if �J (α) �= 0,
and if α starts an J -gap, �J (α) is the length of that J -gap.

Special reals in J were identified by Jensen: a real r is a master code for Jξ

(or, for ξ) if {x ⊆ ω : x �T r} = Jξ+1 ∩ P(ω).

Theorem 2 (Jensen). ξ is a J -index if and only if there is a master code for
ξ. Furthermore, if r is a master code for ξ, then r′ is the master code for ξ + 1.

The gaps in the J hierarchy can be described in the following way (for more
on master codes and these gaps, see [20,18,19,22,23]): let ς(α) be the least strict
upper bound on {IndJ (ξ) : ξ < α}, where IndJ : ωL

1 → ωL
1 enumerates the J -

indices in increasing order; obviously α � IndJ (α). α � ς(α) and α < ς(α)
1 Let β > α be countable ordinals such that there is an elementary embedding

j : Lβ → Lω2 with critical point cr(j) � α. For every γ < cr(j), Lω2 |=
“No new reals appear between ranks ω1 and ω1 + γ.” No new reals thus appear
between cr(j) and cr(j) + γ, by elementarity and absoluteness. Cf. [31,2,3,28].

2 Eα is an arithmetical copy of Lα if there is one-one function f from Lα to ω (and
onto the field of Eα) such that ∀x, y ∈ Lα, x ∈ y ⇐⇒ 〈f(x), f(y)〉 ∈ Eα.
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iff IndJ (α) > α and α does not start a J -gap. ς(α) �= IndJ (α) iff α starts a
J -gap. IndJ (α) = ς(α) + �J (ς(α)). ς(λ) is a J -gap ordinal iff ς(λ) is admissible
iff λ is admissible and locally countable (|= ∀a (a is countable)). If α starts an
L-gap, then α also starts a J -gap. If α starts a J -gap, then α is the supremum
of L-indices and α starts an L-gap iff �J (α) � ω. Moreover if α starts a J -gap
and �J (α) � n, then α is Σn-admissible.

1.3 Definability and coding

There are some other gaps that we call definability gaps, which are obviously
linked to Putnam gaps: there are countable ordinals α, υ such that α is not
definable in Lυ.3 It is possible to characterize the least such definability gap: the
ordinal υ0, which is the least υ such that there is an ordinal α not definable in
Lυ, can be characterized as the least η such that there exists an ordinal δ < η
such that Lδ ≺ Lη (≺ means being an elementary submodel).4

Now we would like to know for a particular real where it first appears, espe-
cially for a real coding a countable ordinal.

Definition 2. Let α be a countable ordinal. α is definable at (level)γ if α is
definable without parameters in Lγ . α is codable at (level)γ if a real appears in
Lγ+1 coding α. The code-rank of α (< ωL

1 ), code-rk(α), is the least γ such that
α is codable at γ. α is countable at (level)γ if Lγ |= “α is countable”.

If α < ωL
1 , then it is codable at some level. And if α is countable at β, then

α is codable and definable at β.

Lemma 2. For every countable ordinal α, there exists a countable β such that
α is definable at β.5

By Löwenheim-Skolem and a combination of footnotes 5 and 3, there exists
an ordinal α < ωL

1 which is definable at a β, then not definable at a β′ > β, etc.
There is actually an upper bound for the ordinals that remain definable from

3 There exists α such that Lα ≺ Lω1 , α is thus not definable in Lω1 . There is a
countable υ > α such that Lυ ≺ Lω1 , and α is already not definable in Lυ.

4 υ0 is clearly � the least such η, η0, since whenever one has Lα ≺ Lβ , α is not definable
in Lβ . Now, suppose that υ0 < η0, in other words, for all δ < υ0, Lδ 
≺ Lυ0 . Now,
by Löwenheim-Skolem there is a countable elementary submodel of Lυ0 . Take the
⊆-least such model M . By the Condensation Lemma, there is an α < υ0 and an
isomorphism j such that the Mostowski collapse of M is isomorphic to Lα via j.
j cannot be trivial as this would mean that Lα ≺ Lδ, although δ < υ0 and υ0

is the least such ordinal. We can thus consider κ, the critical point1 of j. Since
Lα

∼= M ≺ Lυ0 , Lκ ≺ Lj(κ). But then κ cannot be definable in Lj(κ), and thus
υ0 � j(κ). But j(κ) < υ0, contradiction.

5 Consider κ = ℵα. κ is definable as the greatest cardinal in Lκ+ . (Here κ+ denotes
the least ordinal of cardinality greater than κ.) And thus α is also definable in
Lκ+ . Löwenheim-Skolem’s theorem, in conjunction with Mostowski’s lemma and
the Condensation Lemma, provides the countable β such that α is definable in Lβ .



An algorithmic approach to characterizations of admissibles 185

some point on (they have been called memorable6 ordinals): ordinals α for which
there exists β such that for any countable γ � β, α is still definable at γ.7

1.4 Clockability

Computations by ITTMs are intimately related to admissibles since they are in
some sense universal tools for Σ1 functions. In particular, an ordinal α is said
to be clockable if there exists an ITTM that halts exactly in time α on input 0.
ITTMs can also write a real coding an ordinal. In this case the ordinal is said
to be writable. See [17] for more on these notions. A very powerful theorem by
Welch [36] asserts that the supremum of clockable ordinals is the same as the
supremum of the writable ordinals. In our paper, we denote this ordinal by λ∞.8

Writable ordinals have no gaps: α is writable if and only if α < λ∞. The
situation is different with clockability: there are gaps inside clockable ordinals.
The study of these gaps is very interesting and has been carried out through
many papers (see in particular the seminal [17,37]), among them we refer to [6]
since it contains all the considerations on gaps needed in the present paper. We
can summarize the situation in terms of clockable gaps as follows. The situa-
tion resembles Putnam gaps with a major difference: for a clockable gap, the
starting point is also a limit ordinal, but its size is always a limit ordinal. Fur-
thermore, they are deeply related to admissibles. The properties we most often
use in the present paper are that all starting points of gaps are admissibles,
that no admissible is clockable, but some admissibles can be strictly inside a gap
(see [6]). Moreover, if α starts a gap, the ordinal type of clockable ordinals below
α is exactly α.

The structure of admissible ordinals can be relativized to a real without any
major change. With ITTMs we can use the standard oracle definition of Turing
machines (with a special oracle tape), or even see the oracle real as an input.

Some other considerations are important for us. If an ordinal can be written
by an ITTM in time γ then it is codable at level γ. The writing time of a
recursive ordinal is exactly ω and if the ordinal α is not recursive, its writing
time is exactly the supremum of the ends of those gaps that start no later than α.
For admissibles, the situation is simple: their writing time is exactly the end of
the gap they belong to. A detailed proof of these results can be found in [27,11].
A consequence of these results is that for every clockable α < λ∞ which does
not end a clockable gap, we have that the code-rank of α is < α and bounded
by its writing time.
6 Cf. https://mathoverflow.net/questions/259100/memorable-ordinals.
7 Any countable τ such that Lτ ≺ Lω1 is such an upper bound: if α is definable at β,

take δ above τ and β such that Lδ ≺ Lω1 . We then have Lτ ≺ Lδ ≺ Lω1 . α is thus
definable at δ, since δ is above β, and also at τ . τ is therefore above α and any other
definable ordinal. In fact, the least non-memorable ordinal τ0 is the least ordinal τ
with uncountably many elementary extensions Lτ ≺ Lγ . (Cf. footnote 6).

8 We use Barwise’s convention for admissibles: τ0 = ω, τ1 = ωCK
1 , . . . , τα is the α-th

admissible. Note that there exist admissibles α such that α = τα. Such is the case
for λ∞, but it is not the first one.

https://mathoverflow.net/questions/259100/memorable-ordinals
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If we set a (sufficiently closed) bound for computation times of the ITTMs,
we obtain nice computation models. If the bound is chosen as ω, we obtain
classical Turing machines; if the bound is chosen to be any admissible ordinal,
then the model is well defined, keeping the same universal machine for all bounds.
Therefore, if α is admissible, we can define �α as the ITTM reducibilities with
computations bounded by admissible time α. The reducibilities �α and �β are
the same over reals if and only if α and β belong to the same clockable gap.
If α and β do not belong to the same clockable gap and α < β then �α is a
refinement of �β .

2 Sacks’ theorem revisited

Theorem 3 (Sacks). For every admissible countable ordinal α, there exists a
real r such that α = ωCK,r

1 .

Gerald E. Sacks first proved Theorem 3 in [32] by a forcing argument. Fried-
man and Jensen [13] gave an alternative proof, which does not make use of
forcing but involves infinitary logic. See also Chong and Yu [8, Theorem 5.4.12]
for a proof using Steel forcing.

In the proof of our version of Sacks’ theorem, Theorem 4, we need to be able
to construct reals with ad hoc properties. We choose to isolate this construction
in the following lemma.

Lemma 3. For any countable set of reals {ri : i ∈ ω} such that for every i,
r′
i �T ri+1, there exists a real r such that for all i, ri �T r, but9

⊕
i ri ��T r.

Moreover r �T (
⊕

i ri)
′.

Proof. We first prove the lemma when for every i, r′′
i �T ri+1, then we adapt

the proof to the hypothesis r′
i �T ri+1. Please note that it is not straightforward

(we cannot just take every other real in the sequence) since it might be possible
that

⊕
i r2i <T

⊕
i ri. This cannot be the case for the sequences constructed in

our use of this lemma but we prefer to formulate the lemma and prove it in its
most general form.

The real r needs to code the ri’s in such a way that for every i, ri can be
computed from r but not uniformly, as

⊕
i ri would then be �T -below r. We

consider that r is a mapping from ω2 to {0, 1} that contains ri in the column
b(i). At the same time, we make sure that

⊕
i ri ��T r by adding just the needed

supplementary information to hide the ri’s.

Construction: r is constructed as
⋃

i oi where the oi’s are compatible (infinite)
oracles that represent the left part of r up to the column b(i), the rest is empty
(at 0). We now assume that oi has been built and that we know b(i), and we
give the construction for oi+1 and b(i + 1).

We now consider all the computations ϕτ
i (〈i + 1, j〉) for every j and every

finite extension τ of oi. We look for the first (τ, j) such that it either (i) converges

9 The infinite join,
⊕

i ri, of the ri’s is defined as {〈i, j〉 : j ∈ ri}.
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and is �= ri+1(j), or (ii) for every extension of τ , it diverges. b(i+1) is then taken
to be greater (+1) than [case (i)] the maximum between b(i) and the greatest
column reached during the computation, [case (ii)] the greatest column reached
in the enumeration of the extensions of oi; which is the column from which every
extension will make the computation diverge on j.

oi+1 is the found τ , in which we add ri+1 at column b(i + 1). Thus oi+1 con-
tains oi, ri+1 in column b(i+1), and some extra finite information. ��Construction

We now show, by induction, that the construction works: we suppose that oi

has been constructed and that oi �T r′
i. We show that oi+1 is built such that

oi+1 �T r′
i+1. In the construction of oi+1 from oi, we end up either in case (i)

or (ii): by reductio ad absurdum, suppose that both cases are false. We then

–a– either have convergence for every j such that they all converge to ri+1(j).
But then we would have ri+1 �T oi, which is impossible since oi �T r′

i,
–b– or there are some j’s where it diverges and all extensions end up making it

converge to ri+1(j), but then ri+1 would be recursively enumerable in oi,
which is also impossible since ri+1 �T r′′

i .

Looking closely at the construction, one observes that oi+1 �T r′
i+1.

Now, for every i, ri �T r (from a finite information, b(i)). And if we had⊕
i ri �T r, there would be an e such that for all i, j, ϕr

e(〈i, j〉) = ri(j). Take
i = e + 1, we observe a contradiction:

Case (i) : ϕr
e(〈e + 1, j〉) �= re+1(j) for the found j,

Case (ii) : ϕr
e(〈e + 1, j〉) diverges for every extension. But r is an extension of

oi+1, which implies that ϕr
e diverges on the found j.

As we have that for every i, oi �T r′
i, we get that r =

⋃
i oi �T (

⊕
i ri)

′.
Now let us adapt the proof to the hypothesis r′

i �T ri+1: instead of coding
ri in the column b(i) we code r2i in b(i) and r2i+1 in b(i) + 1. The oracle oi is
thus defined until the b(i) + 1 column and the finite extension which is defined
uses r2i+3 instead of ri+1 since we have that r2i+3 �T o′

i. Thus we have non-
recursivity relative to oracle r only on the r2i+1 terms of

⊕
i ri but it is sufficient

for our lemma. ��
The construction can be slightly enhanced to make r and

⊕
i ri incomparable,

by introducing witnesses for r ��T

⊕
i ri. We just need to be careful to intro-

duce only a finite number of witnesses on every column. The following theorem
provides an explicit construction of a weaker version of Sacks’ result.

Theorem 4. For every admissible constructibly countable ordinal α, there exists
a real r such that α = ωCK,r

1 .

Proof. First, we solve the easy case, where α is a successor admissible, i.e.,
admissible but not a limit of admissibles: α = β+ for some admissible β.

We first assume that α and β are not codable at the same level. There exist
(many) reals that code β. For any such real r, we have that α � ωCK,r

1 and ωCK,r
1

is admissible. Among those reals, we choose rβ of least constructible rank γ.
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If α < ω
CK,rβ

1 , then α is recursive in rβ and codable at level γ. Therefore, β and
α are codable at the same level, which contradicts the hypothesis.

We now assume that α and β have the same code-rank (in L). Let γ then be
the least level of J where a code for α appears, and thus also where one appears
for β. New reals appear at this level and among them, there is a master code
for γ. From this master code, we can extract a code r for β of minimal Turing
degree. α is not recursive in r, since α is admissible. And thus, α = ωCK,r

1 .
Now assume that α is recursively inaccessible. As α < ωL

1 , we have α =
limn<ω αn, where the αn’s are admissible, the αn’s are codable at the code-rank
of α, and α is admissible relative10 to {αn : n < ω}. For each n, rn is chosen as
a “simplest” code for αn. To precise the meaning of “simplest”, there are two
cases: either they are all of the same code-rank than α, or they can be chosen
to have strictly increasing code-ranks.

In the latter case, by the admissibility hypothesis on the structure, we choose
the rn’s of least code-rank so that the

⊕
n rn ≡T rα. In other terms, we do not

add extra information in the precise chosen sequence.
In the former case, α and all αn’s are of code-rank γ. As a code for α, we

choose a real rα extracted from a master code of J for the least level where a
code for α appears. From rα we can define integer indices i0, i1, . . . such that in
the order that codes α in rα, αn is at index in. Thus, the order for α truncated
at level in is a code for αn and is represented by a real rn. We can remark
that 1’s in rn are also 1’s in rn+1 while some 0’s in rn become 1’s in rn+1.
By the admissibility hypothesis on the structure, the infinite join of the rn’s is
Turing-equivalent to rα.

In both cases, we also have that r′
n �T rn+1, since the αn’s are admissible.

The real r we look for is obtained directly by Lemma 3. As rα is not recursive
in r, and because of the hypothesis on the sequence of the αn’s, rn is recursive
in r and α is the least ordinal which is not recursive in r. α is thus ωCK,r

1 . ��
This proof provides properties that go beyond the statement of Theorem 4.

For instance, if α = ωCK,r
1 for r ∈ Lα then α = β+, i.e., is a successor admissible,

and there is γ, such that β < γ < α and new reals appear in Lγ , i.e., the interval
(β, α) is not inside a coding gap. An analogous result can be found in [7].

Note that since Lemma 3 gives r �T (
⊕

i ri)
′, our proof provides a certain

minimality property of the constructed real. In general, it can be expressed
in terms of hyperarithmetic11 minimality, exactly as the refinement that Sacks
obtained in [33, Theorem 4.26] of his original theorem. But in the case where
the admissible is a successor admissible, we get an improved optimality result:

Theorem 5. For every admissible α < ωL
1 , there exists a real r such that

ωCK,r
1 = α, and for every real s <h r, ωCK,s

1 < α. Moreover if α is a successor
admissible, for every real s <T r, ωCK,s

1 < α.

10 An ordinal α is admissible relative to a set of ordinals A if 〈Lα [A] ; A ∩ α〉 is an
admissible structure.

11 Recall that Y �h X if Y is hyperarithmetic in X, that is if Y is ITTM-computable
in some bounded recursive ordinal length of time (< ωCK,X

1 ).
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This naturally leads to the study of the least constructible rank of the real
that defines a countable admissible ordinal via Sacks’ result. The Sacks-rank of a
countable ordinal α, Sacks-rk(α), is the least γ such that there is a real r in Lγ+1

such that ωCK,r
1 = α. Thanks to our construction, some structural properties

can be proved concerning Sacks ranks: for every countable ordinal α < ωL
1 , if

α is a successor admissible (=β+), we have that Sacks-rk(α) = code-rk(β), and
otherwise (α is recursively inaccessible) that Sacks-rk(α) = code-rk(α).

3 Jensen’s theorem revisited

Ronald B. Jensen and Harvey Friedman gave in [13] a model-theoretic proof
of Sacks’ theorem (cf. Theorem 3). Jensen had formulated the model existence
theorem and applied it to provide an alternative proof. This method could not
be applied to prove Jensen’s theorem, which is a generalization of Sacks’ theorem
to a sequence of admissibles. He had to use proper class forcing over admissible
sets. A proof of Jensen’s theorem can be found in his unpublished manuscript
[23, Chapter 6, Theorem 4] and also in Simpson and Weitkamp’s [35].

It has to be noted that one needs to be careful when stating the hypoth-
esis of this theorem: choose for example a recursively inaccessible for αω and
{αi : i ∈ ω} a sequence of admissibles cofinal in αω. Relative to any oracle, the
supremum of the first ω admissibles cannot be admissible: to see that, design an
ITTM looking for clockable gaps and make it halt at the sup of the ω first gaps
(cf. [6]). The hypothesis proposed by Jensen, which solves this difficulty, asserts
that every admissible in the considered sequence is still admissible relative10 to
admissibles of the sequence below it.12 This is the hypothesis that we use in our
version of the theorem (Theorem 6).

We first present a computability lemma that provides a real that verifies some
computability specifications in terms of ITTM reducibilities (�τα

means ITTM-
computable in time < τα). The proof of this lemma is a direct generalization of
the proof of Lemma 3.

Lemma 4. For any ordinal γ < λ∞, for any sequence of reals (rα : α < ω · γ),
such that for every α, r′

α <T rα+1, there exists r : γ → P(ω) such that for
all β < γ, for all i < ω, rω·β+i �τβ

r(β), but
⊕

i rω·β+i and r(β) are �τβ
-

incomparable, and
⊕

i rω·β+i and r(β + 1) are �τβ
-incomparable; and for any

limit ordinal λ < ω · γ and any α < λ, rα �τλ
r(λ),

⊕
α<λ rα and r(λ) are

�τλ
-incomparable. Moreover for all β < γ, r(β) �T (

⊕
i rω·β+i)

′ and for any
limit ordinal λ < ω · γ, r(λ) �T

(⊕
α<λ rα

)′.
⊕

α<λ rα is defined as follows: first note that if λ is a recursive ordinal, we
can use a standard bi-recursive encoding of ω2 in ω. Otherwise, we form the

12 This hypothesis carries the ideas of progressivity of the sequence and indiscernibility
by first order properties: in the list of admissibles 〈τβ : β < λ∞〉, the sequence
of indices that correspond to the considered sequence does not contain too much
information in itself.
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equivalence classes of those ITTMs (represented by their indices in a standard
enumeration) that halt in a given ordinal time δ. In each class we have ω integers.
We encode rω+δ at the abscisse given by the first ITTM that halts in time δ.
Note that this encoding covers all clockable ordinals. When we enter gaps, we
proceed in the same way but on the second ITTM that halts in time η, for the
η-th non-clockable ordinal. Then we continue the construction for ω imbrications
of gaps of gaps of gaps, etc. But we could have more than ω such imbrications.
Thus, we use once again ITTM indices inside the sequence of ITTMs that halt
at a given time to find the proper abscisse. Please note that the lengths and
the ranks of the clockable gaps are co-final in λ∞. Thus, for any λ < λ∞, we
get a coding that is recursive for ITTMs bounded by time supremum of length
of the possible gap and starting point. This construction of a transfinite join is
compatible with Jensen’s hypothesis on relative admissibility of the admissible
ordinals of the considered sequence.

Our version of Jensen’s theorem provides an explicit construction: we keep
Jensen’s hypothesis, but add λ∞ as an upper bound on the length of the sequence
and also require that the admissibles of the sequence are below ωL

1 .

Theorem 6. Let γ < λ∞. If 〈αβ : β < γ〉 is a sequence of constructibly
countable admissibles such that for every δ < γ, αδ is admissible relative10 to
{αβ : β < δ}, then there is a real r such that αβ is the β-th r-admissible ordinal.

Proof sketch. To start with, we would like to construct r such that α0 = ωCK,r
1 .

And of course, we would like to add much more things in r in order to get that
α1 becomes the next admissible, and so on. The situation is analogous to that
of Sacks’ theorem: if α0 is a successor admissible, then we consider r0 a code of
its predecessor that we write in r (if we are in a definability gap, we proceed as
we have done in the proof of Theorem 4). If α0 is recursively inaccessible, then
we encode in a special way an ω-sequence of codes 〈rβi

: i < ω〉 for admissibles
〈βi : i < ω〉 cofinal in α0. We use Lemma 3 to get the ad hoc real r0.

Now we would like to add some new information to encode also the real r1 that
makes α1 the second admissible. But while doing this, we should not make α0 com-
putable. Thus we can make a special version of Lemma 3 where the reduction used
is not the Turing reducibility, but the ITTM reducibility with time bounded by the
first admissible (which is exactly the hyperarithmetic reducibility, �h) and while
doing this, we make sure that we still have α0 ��T r0 ⊕ r1.

This construction gives the induction step when β is a successor ordinal.
When β is limit, let us first assume that β is not strictly inside an ITTM-gap;
thanks to the relative admissibility hypothesis of the sequence, αβ is recursively
inaccessible if and only if τβ is. We propose a single construction for the two
cases concerning αβ , being recursively inaccessible or a successor admissible. We
proceed as above, with the help of a more complex lemma. We consider ITTM-
reducibilities bounded by the β-th admissible, and apply this to the ω-sequence
extracted from admissibles below αβ if inaccessible, or to the real coding its pre-
decessor if αβ is a successor admissible. The hypotheses of our improved lemma
(Lemma 4) that provides rβ are verified thanks to the relative admissibility
hypothesis and the constructibly countability of the considered ordinals.
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The problem now is when the β-th admissible is inside an ITTM clockable
gap. Indeed, if τη starts a clockable gap which contains τβ , then �τη

is exactly
the same reducibility than �τβ

. Note that in this case, αη starts a clockable gap
which contains αβ . We use a slightly modified version of Lemma 4 that uses αη

as an oracle from rank η on. If αβ is in a gap of a gap of a gap . . . (of rank δ),
then we modify analogously Lemma 4 adding as an oracle the starting points of
the gaps of rank < δ. ��

We propose an application of our theorem to a bounded version of Solovay’s
problem, namely finding a real relatively to which the admissibles are the recur-
sively inaccessibles. The solution to Solovay’s problem by Sy D. Friedman (cf. [15])
proves that the sequence of recursively inaccessible ordinals below ωL

1 verify the
relative admissibility hypothesis of Jensen, thus our construction works as is.

Theorem 7 (Solovay’s problem below λ∞). If 〈ιβ : β < λ∞〉 is the sequence
of recursively inaccessible ordinals below λ∞, then there is a real r such that ιβ
is the β-th r-admissible ordinal.
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