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Abstract. We fill an apparent gap in the literature by giving a short
and self-contained proof that the ordinal of the theory RCA0 + WO(σ)
is σω, for any ordinal σ satisfying ω · σ = σ (e.g., ωω, ωωω

, ε0). The-
ories of the form RCA0 + WO(σ) are of interest in Proof Theory and
Reverse Mathematics because of their connections to a number of well-
investigated combinatorial principles related to various subsystems of
arithmetic.

1 Introduction

Well-ordering statements are commonly used in Proof Theory and Reverse Math-
ematics as measures of strength of a theorem or a theory. For example a number
of interesting theorems is known to be equivalent to WO(ωω) or WO(ωωω

) over
the theory RCA0 (see, e.g., [3,7,9,15]). It is then natural to ask what is the
proof-theoretic ordinal of the theories RCA0 + WO(ωω), RCA0 + WO(ωωω

)
and, in general, RCA0 + WO(α). While it is well-known that the ordinal of
RCA0 is ωω, the answer for the other theories is not so immediate and occa-
sionally some confusion arises.1 Even the standard argument for showing that ωω

is an upper bound on the proof-theoretic ordinal of RCA0 is somewhat indirect
in that it hinges on the characterization of the provably recursive functions of
RCA0 rather than only on the computation of its proof-theoretical ordinal. A
proper direct treatment approach to determining the proof-theoretic ordinal of
theories of the form RCA0+WO(α) seems to be missing from the literature. The
closest match is Sommer’s [17] model-theoretical treatment of first-order theo-
ries with transfinite induction restricted to various formula-classes and ordinals
strictly below ε0.

In this paper we show that, if σ is an ordinal satisfying ω · σ = σ, the proof-
theoretic ordinal of the theory RCA0 + WO(σ) is σω. Examples of relevant σs
1 For example, in proving that a Π1

1 -version of Ramsey’s Theorem called the Adjacent
Ramsey Theorem is equivalent to WO(ε0) over RCA0, [4] Lemma 2.2 makes use of
the false equivalence, over RCA0, between WO(ε0) and the Π1

1 -soundness of ACA0.
The presentation in the later [5] avoids this pitfall but establishes a slightly different
result.
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are ωω, ωωω

etc. and ε0. This should be contrasted with the fact that the ordinal
of ACA0 + WO(ε0) is the much larger ε1, as can be gleaned from the proof-
theoretical analysis of transfinite induction over Peano Arithmetic (the original
proof seems to be in [8]).

Essentially, we show that the first-order part of RCA0+WO(σ) is the theory
IΣ1 plus the scheme of transfinite induction up to σ restricted to Π1 formulas,
which we denote by TI(σ,Π1). We give an ordinal analysis of the latter theory
augmented by a generic unary predicate symbol U and then show that the the-
ories prove the same Π1

1 -statements, where a Π1
1 -sentence ∀XF (X) with F (X)

being arithmetic is identified with F (U) in the first-order context of TI(σ,Π1).
For the remainder of the paper, we fix an ordinal σ such that ω · σ = σ.

The ordinal σ is assumed to be represented in a natural ordinal representation
system. We denote by � the primitive recursive ordering on the ordinals smaller
that σ to distinguish it from the usual ordering on the naturals.

2 Ordinal Analysis of IΣ1 + TI(σ, Π1)

The language of Tσ := IΣ1 + TI(σ,Π1) is the language of Primitive Recursive
Arithmetic, PRA, augmented by a unary predicate symbol U. Especially we
assume that there is a binary surjective coding function 〈 · , · 〉 with inverses
( · )0, ( · )1. The order relation for the ordering on σ will be denoted by the
same symbol � used to denote the corresponding primitive recursive relation.
Bounded quantifiers ∀x ≤ t and ∃x ≤ t will be treated as quantifiers in their
own right. Formulas containing only bounded quantifiers are called Δ0-formulas.
For our proof-theoretic purposes, Tσ will be formalized in a one-sided sequent
calculus, using negation normal forms following [14] (this is also known as the
Tait-calculus [18]). Tσ has the usual axioms pertaining to primitive recursive
functions and predicates. A noteworthy feature is that transfinite induction on
σ for Π1-formulas is expressed via the rule

Θ, ∃z ((z)0 � a ∧ ¬F ((z)1, (z)0)), ∀xF (x, a)
Θ, F (t, s)

(1)

where a is an eigenvariable, F (x, a) is Δ0, t, s are arbitrary terms, and Θ is an
arbitrary finite set of formulas.

Observe that we do not need Σ1-induction as an extra induction principle as
it follows from TI(σ,Π1), since IΠ1 entails IΣ1.

In order to perform partial cut eliminations, we define the degree, |A|, of a
formula A as follows:

– |A| = |¬A| = 0 if A is Δ0.

If A is not Δ0 and of one of the forms below, then:

– |A0 ∧ A1| = |A0 ∨ A1| = max(|A0|, |A1|) + 1;
– |∀xF (x)| = |∃xF (x)| = |F (0)| + 1;
– |∀x ≤ t F (x)| = |∃x ≤ t F (x)| = |F (0)| + 2.



146 L. Carlucci et al.

As the rule (1) introduces a Δ0-formula and the main formulas of axioms are
Δ0 as well, we can easily eliminate cuts of degree greater than 0. We use the
notation Tσ

m

k
Γ to convey that Γ is deducible in Tσ by a deduction of length

at most m such that all cuts occurring in this deduction are with cut formulas
of a degree < k. Thus Tσ

m

1
Γ means that there is deduction in which all cut

formulas (if any) are Δ0-formulas.

Theorem 1. Tσ
n

r+1
Γ ⇒ ∃mTσ

m

1
Γ .

Proof. By the usual cut elimination method of Gentzen’s Hauptsatz.

2.1 Embedding Tσ in an Infinitary System

Next we embed Tσ into an infinitary system, called PAω, with ω-rule (basically
the same as the system Z∞ in [14]; a definition of PAω in a two-sided Gentzen
calculus can be found in [10]). The formulas of PAω are the closed formulas
of Tσ, i.e. formulas without free variables. We shall assign a rank, |A|Δ0 to a
formula A of PAω as follows:

(i) |A|Δ0 = 0 if A is atomic or a negated atom.
(ii) |A0 ∧ A1|Δ0 = |A0 ∨ A1|Δ0 = max(|A0|Δ0 , |A1|Δ0) + 1.
(iii) |∃x ≤ t F (x)|Δ0 = |∀x ≤ t F (x)|Δ0 = |F (0)|Δ0 + 1.
(iv) |∃xF (x)|Δ0 = |∀x F (x)|Δ0 = max(ω, |F (0)|Δ0 + 1).

Note that |A|Δ0 < ω exactly when A is Δ0, and |∃xF (x)|Δ0 = |∀xF (x)|Δ0 = ω
when F (0) is Δ0.

Definition 1. For a natural number n we use n̄ to denote the nth numeral, that
is the term obtained from the term 0̄ for zero by adding the successor function
symbol n-times in front of it. The terms of PAω are closed and thus can be
evaluated to a number. For a term t let tN be the number n such that t evaluates
to n (in the following we occasionally refer to tN by t).

The axioms of PAω are sequents of two kinds. Let Γ be a finite set of formulas
of PAω.

(i) Let R(t1, . . . , tr) be an atomic formula, where R is a relation symbol for a
primitive recursive relation RN. If RN(tN1 , . . . , tNr ) is true, then

Γ,R(t1, . . . , tr)

is an axiom. If RN(tN1 , . . . , tNr ) is false, then

Γ,¬R(t1, . . . , tr)

is an axiom.
(ii) If sN = tN holds for terms s and t, then

Γ,U(s),¬U(t)

is an axiom.
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The ω-rule is the following rule: If Γ, F (n̄) is deducible for all n, then Γ,∀xF (x)
is the conclusion.

Similarly to derivations in Tσ, we will use the notation PAω
α

β
Γ to convey that

Γ is deducible in PAω by a deduction of height at most α such that all cuts
occurring in this deduction are with cut formulas of | · |Δ0 -rank < β.

Lemma 1 (Reduction Lemma). If |B|Δ0 = ω, PAω
α

ω Γ,B and

PAω
β

ω Γ,¬B , then

PAω
α#β

ω Γ

where α#β denotes the natural or Hessenberg sum of α and β.

Proof. Standard.

Theorem 2 (Embedding Theorem). If Tσ
m

1
Γ , then PAω

σm

ω Γ ∗ , where
Γ ∗ is the result of assigning closed terms to all free variables in Γ (the same
term to the same variable).

Proof. We proceed by induction on m. We only need to pay attention to
the case where the last inference is an instance of the rule (1). So let Γ =
Θ,F (t, s) and assume Tσ

m0

1
Λ with m0 < m and Λ = Θ,∃z ((z)0 � a ∧

¬F ((z)1, (z)0)),∀x F (x, a).
Let * be an assignment. Inductively we have for all closed terms q that

PAω
σm0

ω Θ∗,∃z ((z)0 � q ∧ ¬F ∗((z)1, (z)0)),∀xF ∗(x, q). (2)

We use transfinite induction on α for α in the field of � to show that:

PAω
σm0 ·ω·(α+1)

ω Θ∗,∀xF ∗(x, ᾱ) (3)

By the induction hypothesis, we have:

PAω
σm0 ·(ω·(η+1))

ω Θ∗, F ∗(s′, η̄)

for every η � α and arbitrary closed term s′, yielding

PAω
σm0 ·(ω·α)+1

ω Θ∗, η̄ � ᾱ → F ∗(s′, η̄)

via an inference (∨). If r is a closed term such that rN is different from all η
preceding α, then ¬r � ᾱ is an axiom, and thus, via an inference (∨), we arrive
at PAω

1

0
Θ∗, r � ᾱ → F ∗(s′, r) . Thus from the above we conclude that

PAω
σm0 ·(ω·α)+1

ω Θ∗, (k̄)0 � ᾱ → F ∗((k̄)1, (k̄)0)

holds for all k, so that, via an application of the ω-rule, we get:

PAω
σm0 ·(ω·α)+2

ω Θ∗,∀z ((z)0 � ᾱ → F ∗((z)1, (z)0)). (4)
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Applying the Reduction Lemma 1 to (2) and (4) yields:

PAω
σm0#(σm0 ·(ω·α))+2

ω Θ∗,∀xF ∗(x, ᾱ). (5)

From (5) we finally get:

PAω
σm0 ·(ω·(α+1))

ω Θ∗,∀xF ∗(x, ᾱ) ,

confirming (3).
If a term q has the property that qN is not in the field of � then one can

directly infer from (2) that

PAω
σm0

ω Θ∗,∀xF ∗(x, q). (6)

The reason for this is that if the formula ∃z ((z)0 � q ∧ ¬F ∗((z)1, (z)0)) figures
as the main formula of an inference in this derivation its minor formula is of
the form (p)0 � q ∧ ¬F ∗((p)1, (p)0). The latter formula conjunctively contains a
false atomic formula. Such a formula can always be erased from the derivation.
Formally, of course, this has to be proved by a separate induction on the ordinal
of the derivation.

(3) and (6) now yield

PAω
σm

ω Θ∗, F ∗(t, s)

for all closed terms t and s, since ω · (α + 1) � σ on account of ω · σ = σ.

2.2 Eliminating Cuts with Δ0-Formulas

The next step is to eliminate cuts with Δ0-formulas that are not atomic.

Lemma 2. Let 0 < n < ω and suppose PAω
α

n+1
Γ . Then PAω

ω·α
n Γ .

Proof. We proceed by induction on α. The crucial case is when the last inference
was a cut of rank n with cut formulas A,¬A. Note that A is not an atomic
formula. We then have PAω

α0

n+1
Γ,A and PAω

α0

n+1
Γ,¬A for some α0 < α.

The induction hypotheses furnishes us with

PAω
ω·α0

n Γ,A and PAω
ω·α0

n Γ,¬A . (7)

Let A be of the form ∃x ≤ t F (x). Then ¬A is the formula ∀x ≤ t ¬F (x). From
(7) we obtain

PAω
ω·α0

n Γ, F (0̄), . . . , F (p̄) and PAω
ω·α0

n Γ,¬F (k̄) (8)

for all k ≤ p, where p is the numerical value of t. As the formulas F (k̄),¬F (k̄)
have rank < n, we can employ (p + 1)-many cuts to (8) to arrive at
PAω

ω·α0+p+1

n Γ . Thus we have PAω
ω·α
n Γ as ω · α0 + p + 1 < ω · α. A similar

argument works when A is of either form A0 ∧ A1 or A0 ∨ A1.
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Corollary 1. If PAω
α

ω Γ then PAω
ωω·α
1

Γ .

Proof. We use induction on α. The only interesting case arises when the
last inference is a cut with a formula A of rank k > 0. Then we have
PAω

α0

ω Γ,A and PAω
α0

ω Γ,¬A for some α0 < α. The induction hypothesis

yields PAω
ωω·α0

1
Γ,A and PAω

ωω·α0

1
Γ,¬A . Hence PAω

ωω·α0+1

k+1
Γ . Apply-

ing Lemma 2 k times we arrive at PAω
ωk·(ωω·α0+1)

1
Γ . As ωk · (ωω · α0 + 1) =

ωω · α0 + ωk ≤ ωω · α we also have PAω
ωω·α
1

Γ as desired.

Note that σ ≥ ωω since ω · σ = σ.

Corollary 2. Let m > 0. If PAω
σm

ω Γ then PAω
σm+1

1
Γ .

Proof. Corollary 1 yields PAω
ωω·σm

1
Γ . Thus the desired conclusion follows as

ωω · σm ≤ σ · σm = σm+1.

3 Upper Bounds for the Provable Well-Orderings of Tσ

The results of the previous section can be utilized to determine the ordinal rank
of provable well-orderings of Tσ. Let ≺ be a primitive recursive ordering. ≺ is
said to be a provable well-ordering of Tσ if Tσ proves that ≺ is a total linear
ordering and

Tσ 
 WO(≺)

where WO(≺) stands for the formula

∀v[∀u ≺ vU(u) → U(v)] → ∀vU(v).

Assuming Tσ 
 WO(≺), as a consequence of Theorems 1, 2 and Corollary 2 we
then have

PAω
σm

1
∀v[∀u ≺ vU(u) → U(v)] → ∀vU(v) (9)

for some m > 0. There are several ways of obtaining an upper bound for the
order-type of ≺ in terms of the length of a cut-free deduction of WO(≺) (see e.g.
[13, Theorem 23.1], [19, Theorem 3.6], [6, Theorem 2.27]) which ultimately go
back to Gentzen. Schütte [13, Theorem 23.1] obtains particularly sharp bounds.
He shows that the length α of a cut-free derivation of transfinite induction along
an ordering ≺ provides an upper bound for the ordinal rank of ≺ if ω ·α = α. For
our purpose, however, we need to extract bounds from deductions that still have
cuts with formulas U(s),¬U(s).2 We could first eliminate these remaining cuts,
however, we would get bounds of the form 2σm

, and these are too high for our
purpose of showing that σω is the proof-theoretic ordinal of Tσ. To overcome
2 They may also contain cuts with formulas R(t1, . . . , tk),¬R(t1, . . . , tk), where R is

a symbol for a primitive recursive predicate. But these are entirely harmless.
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this obstacle we shall draw on a technique that the third author has used for
many years. To this end we extend PAω by yet another infinitary rule Prog≺
due to Schütte [11, p. 384] called Progressionsregel (Prog≺ was also used in [12,
p. 214] and in [14]):

Γ,U(m̄) for all m ≺ n

Γ,U(s)
(10)

whenever s is a closed term with value n.
Let PROG≺ be an abbreviation for ∀v[∀u ≺ vU(u) → U(v)]. The rule Prog≺

has the effect of making PROG≺ provable. We shall refer by PA∗
∞ to the exten-

sion of PAω by the rule Prog≺.

Lemma 3

PA∗
∞

α

1
¬PROG≺, Γ ⇒ PA∗

∞
3·α
1

Γ . (11)

Proof. We proceed by induction on α. If ¬PROG≺ was not the main formula
of the last inference then the desired result follows immediately by applying
the inductive assumption to its premisses and subsequently reapplying the same
inference. Thus suppose that ¬PROG≺ was the main formula of the last infer-
ence. Then

PA∗
∞

α0

1
¬PROG≺,∀u ≺ sU(u) ∧ ¬U(s), Γ (12)

for some α0 � α. The induction hypothesis yields

PA∗
∞

3·α0

1
∀u ≺ sU(u) ∧ ¬U(s), Γ . (13)

for some s. Using inversion for (∧), (∀) and (∨) we arrive at

PA∗
∞

3·α0

1
Γ, ¬ n̄ ≺ s, U(n̄) (14)

for all n, and

PA∗
∞

3·α0

1
¬U(s), Γ . (15)

Since PA∗
∞

0

0
Γ, n̄ ≺ s holds for all n with n ≺ sN, we can apply cuts and the

rule Prog≺ to (14) to arrive at

PA∗
∞

3·α0+2

1
Γ, U(s). (16)

Applying Cut to (16) and (15) yields

PA∗
∞

3·α0+3

1
Γ (17)

and hence

PA∗
∞

3·α
1

Γ. (18)
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Corollary 3

PA∗
∞

σm

1
U(n̄)

for all n.

Proof. Follows from (9) and Lemma 3. Note that m > 0.

For a closed numerical term s we denote by |s|≺ the ordinal {|n̄|≺ | n̄ ≺ s is true}.

Proposition 1. Assume that the sequent ¬U(t1), . . . ,¬U(tr),U(s1), . . . ,U(sq) is
not an axiom and s1 � . . . � sq holds. Then

PA∗
∞

α

1
¬U(t1), . . . ,¬U(tr),U(s1), . . . ,U(sq)

implies

|s1|≺ < ω · α. (19)

Proof. Let ¬U(t ) be an abbreviation for ¬U(t1), . . . ,¬U(tr). In the above we
allow r = 0 in which case ¬U(t ) is the empty sequent.

We proceed by induction on α. As the sequent is not an axiom it must have
been inferred. The only two possibilities are applications of Prog≺ or cuts with
atomic formulas.

Case 1: The last inference was Prog≺. Then there is a term sj and α0 � α such
that PA∗

∞
α0

1
¬U(t ),U(s1), . . . ,U(sq),U(n̄) for all n̄ ≺ sj . As s1 � sj this also

holds for all n̄ ≺ s1. The induction hypothesis yields that

|n̄|≺ < ω · α0

holds for those n̄ ≺ s1 for which the sequent is not an axiom. Since by Defini-
tion 1 (ii)

¬U(t ),U(s1), . . . ,U(sq),U(n̄) (20)

is an axiom only if n̄ has the same value as some t1, . . . , tr, then there are only
finitely many n for which (20) is an axiom. Thus |s1|≺ < ω · α0 + ω, whence
|s1|≺ < ω · α.

Case 2: The last inference was a cut with cut formulas U(p),¬U(p), i.e., we
have

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq),U(p) (21)

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq),¬U(p) (22)
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for some α0 < α and closed term p. If the sequent from (22) is not an axiom,
the induction hypothesis applied to that derivation yields |s1|≺ < ω · α0. If it
is an axiom, there is an sj such that p and sj evaluate to the same numeral,
and hence s1 � p. So in this case the induction hypothesis applied to (21) yields
|s1|≺ < ω · α0.

Case 3: The last inference was a cut with cut formulas
R(u1, . . . , up),¬R(u1, . . . , up) for a symbol R for a primitive recursive relation.
Then we have

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq), R(u1, . . . , up) (23)

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq),¬R(u1, . . . , up) (24)

for some α0 < α. If R(u1, . . . , up) is true it follows from (24) that we also have

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq)

and hence the induction hypothesis yields |s1|≺ < ω · α0.
Likewise, if R(u1, . . . , up) is false it follows from (23) that we also have

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq)

and hence the induction hypothesis yields |s1|≺ < ω · α0.

Corollary 4

(i)

PA∗
∞

α

1
U(s) ⇒ |s|≺ < ω · α.

(ii)

PAω
β

1
WO(≺) ⇒ | ≺ | ≤ ω · 3 · β

where | ≺ | stands for the ordinal rank of ≺.

Proof. (i) is an immediate consequence of Proposition 1.
(ii) follows from (i) and Lemma3.

In sum, it follows that the ordinal rank of ≺ is not bigger than σm, and hence
σω is an upper bound for the proof-theoretic ordinal of Tσ.

Proposition 1 can also be shown via techniques in A. Beckmann’s dissertation,
notably his [1, 5.2.5 Boundedness Theorem] that also features in [2].

Turning to lower bounds, one can easily show, using external induction on n,
that Tσ 
 WO(σn). This is a folklore result; details can be found in [17, Lemma
4.3]. As a consequence of the results gathered so far we have

Theorem 3. The proof-theoretic ordinal of IΣ1 + TI(σ,Π1) is σω.

It remains to transfer this result to our target theory RCA0 + WO(σ).
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4 Π1
1 -Conservativity

We here prove that RCA0+WO(σ) is Π1
1 -conservative over Tσ. More precisely,

a Π1
1 -sentence ∀XF (X) (with F (X) being arithmetic) is identified with F (U)

in the first-order context of TI(σ,Π1). This is enough to apply our results from
the previous section to conclude that the ordinal of RCA0 + WO(σ) is σω.

To prove the conservativity result, we proceed as follows. We start by
showing that any model of IΣ1 + TI(σ,Π1) can be extended to a model of
RCA0 + WO(σ). The argument is essentially contained in Simpson [16], IX.1.
By writing that M1 is an ω-submodel of M2 we mean that M1 = (M1,S1) and
M2 = (M1,S2) where S1 ⊆ S2. In other words, the two models share the same
first-order part M1.

Lemma 4. Let M be an L2-structure which satisfies the axioms of
IΣ1 + TI(σ,Π1). Then M is an ω-submodel of some model of RCA0 + WO(σ).

Proof. We first show that M can be extended to a model M′ satisfying RCA0

and TI(σ,Δ0
0) with the same first-order domain as M. Then we show that such

an extension also satisfies WO(σ).
The ω-extension M′ is defined exactly as in Simpson [16] Lemma IX.1.8, i.e.,

the second-order part is given by the Δ0
1-definable sets of the base model M. By

Lemma IX.1.8 of [16] we have that M′ satisfies RCA0.
Then, in order to check that TI(σ,Δ0

0) is also satisfied, we use the first claim
in Simpson’s Lemma IX.1.8. Let ϕ be a Σ0

0 formula with no free set variables
and parameters in M ′. Then, there exists a Π0

1 -formula ϕΠ with the same free
variables and parameters only in M such that ϕ and ϕΠ are equivalent over M ′.
Thus, TI(σ,Π0

1 ) in M implies TI(σ,Δ0
0) in M′.

Finally, we show that M ′ also satisfies WO(σ). If this were not the case, let-
ting S be a set witnessing ¬WO(σ), we would have that S̄, i.e. the complement of
S, witnesses the failure of an instance of TI(σ,Δ0

0). More precisely: suppose that
S is non-empty and has no �-minimal element. Then ∃x(x ∈ S). On the other
hand, S̄ is in M ′ (since any model of RCA0 is closed under Turing reducibility
hence under complement) and ∀x(∀y(y � x → y ∈ S̄) → x ∈ S̄). Suppose in fact
that for some x, ∀y(y � x → y ∈ S̄) but x ∈ S. Then all y � x are not in S but
x is in S and thus x is the minimum of S, contra our hypothesis. ��
Remark 1. The proof of Lemma 4 above shows that if RCA0 + WO(σ) proves
∀XF (X) with F (X) arithmetic, then Tσ proves the formula F ′(U) obtained
from F (X) by replacing expressions of the form ‘t ∈ X’ by ‘U(t)’.

Then, we proceed by showing that Lemma 4 gives a sufficient condition for
Π1

1 -conservativity.

Lemma 5. If T1 and T2 are theories in the language of second order arith-
metic and every model of T1 is an ω-submodel of a model of T2 then T2 is
Π1

1 -conservative over T1.
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Proof. If ψ is Π1
1 and T1 does not prove ψ, let M1 be a model of T1 +¬ψ. Then

M1 is an ω-submodel of a model M2 of T2. Then M2 is a model of T2 +¬ψ and
thus T2 does not prove ψ. ��
Theorem 4. RCA0 + WO(σ) is Π1

1 -conservative over IΣ1 + TI(σ,Π1).

Proof. Follows immediately from Lemmas 4 and 5.

Theorem 5. The proof-theoretic ordinal of RCA0 + WO(σ) is σω.

Proof. The upper bound follows from Theorems 3 and 4. The lower bound follows
from the observation that for each n RCA0 + WO(σ) 
 WO(σn). The proof,
which we omit, is analogous to the proof that RCA0 
 WO(ωn), for each n.

��
Remark 2. The Π1

1 -conservativity of IΣ1 +TI(σ,Π1) over RCA0 + WO(σ) also
holds and can be established by standard arguments. In particular one can prove
that if A(U) is provable in Tσ then ∀XA∗(X) is provable in RCA0 + WO(σ),
where A∗(X) is the result of first replacing ‘U(t)’ by ‘t ∈ X’ and then translating
the primitive recursive function and predicate symbols not belonging to the
language of RCA0 as in [16], Definition IX.3.4.
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