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Abstract. A Boolean network (BN) with n components is a discrete
dynamical system described by the successive iterations of a function
f : {0, 1}n → {0, 1}n. This model finds applications in biology, where
fixed points play a central role. For example in genetic regulation they
correspond to cell phenotypes. In this context, experiments reveal the
existence of positive or negative influences among components: compo-
nent i has a positive (resp. negative) influence on component j, mean-
ing that j tends to mimic (resp. negate) i. The digraph of influences is
called signed interaction digraph (SID), and one SID may correspond to
multiple BNs. The present work opens a new perspective on the well-
established study of fixed points in BNs. Biologists discover the SID of
a BN they do not know, and may ask: given that SID, can it correspond
to a BN having at least k fixed points? Depending on the input, this
problem is in P or complete for NP, NP#P or NEXPTIME.

1 Introduction

A Boolean network (BN) with n components is a discrete dynamical system
described by the successive iterations of a function

f : {0, 1}n → {0, 1}n, x = (x1, . . . , xn) �→ f(x) = (f1(x), . . . , fn(x)).

The structure of the network is often described by a signed digraph G, called
signed interaction digraph (SID) of f , catching effective positive and negative
dependencies among components: the vertex set is [n] := {1, . . . , n} and, for all
i, j ∈ [n], there is a positive (resp. negative) arc from i to j if fj(x) − fj(y) is
positive (resp. negative) for some x, y ∈ {0, 1}n that only differ in xi > yi. The
SID provides a very rough information about f . Hence, given a SID G, the set
F (G) of BNs f whose SID is G, is generally huge.

BNs have many applications. In particular, since the seminal papers of Kauff-
man [14,15] and Thomas [30,31], they are very classical models for the dynamics
of gene networks. In this context, the first reliable experimental information often
concern the SID of the network, while the actual dynamics are very difficult to
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observe [18,32]. One is thus faced with the following question: What can be said
about the dynamics described by f according to G only?

Among the many dynamical properties that can be studied, fixed points are
of special interest, since they correspond to stable patterns of gene expression
at the basis of particular cellular phenotypes [3,31]. As such, they are arguably
the property which has been the most thoroughly studied. The number of fixed
points and its maximization in particular is the subject of a stream of work, e.g.
in [4–7,11,12,24,26].

From the complexity point of view, previous works essentially focused on
decision problems of the following form: given f and a dynamical property P ,
what is the complexity of deciding if the dynamics described by f has the prop-
erty P . For instance, it is well-known that deciding if f has a fixed point is
NP-complete in general (see [17] and the references therein), and in P for some
families of BNs, such as monotone or non-expansive BNs [10,13]. However, as
mentioned above, in practice, f is often unknown while its SID is well approxi-
mated. Hence, a much more natural question is: given a SID G and dynamical
property P , what is the complexity of deciding if the dynamics described by
some f ∈ F (G) has the property P . Up to our knowledge, there is, perhaps
surprisingly, no work concerning this kind of questions.

In this paper, we study this class of decision problems, focusing on the max-
imum number of fixed points. More precisely, given a SID G, we denote by φ(G)
the maximum number of fixed points in a BN f ∈ F (G), and we study the
complexity of deciding if φ(G) ≥ k.

After the definitions in Sect. 2, we first study the problem when the positive
integer k is fixed. We prove in Sect. 3 that, given a SID G, deciding if φ(G) ≥ k
is in P if k = 1. We also prove in Sect. 4 that the same problem is NP-complete
if k ≥ 2. Furthermore, these results remain true if the maximum in-degree Δ(G)
is bounded by any constant d ≥ 2. The case k = 2 is of particular interest
since many works have been devoted to finding necessary conditions for the
existence of multiple fixed points, both in the discrete and continuous settings,
see [16,24,25,28] and the references therein. Section 5 considers the case where
k is part of the input. We prove that, given a SID G and a positive integer
k, deciding if φ(G) ≥ k is NEXPTIME-complete, and becomes NP#P-complete
if Δ(G) is bounded by a constant d ≥ 2. Note that, from these results, we
immediately obtain complexity results for the dual decision problem φ(G) < k.
A summary is given in Table 1.

In the case where k is fixed, while proving that the problem φ(G) ≥ k belongs
to NP, we study a decision problem of independent interest, called extension or
consistency problem [2,8,9]. Here, the property P consists of a partial BN, that
is, a function h : X → {0, 1}n where X ⊆ {0, 1}n. This partial BN may represent
some experimental observations about the dynamics. Given a SID G, we prove
that we can check in O(|X|2n2) time if there is a BN f ∈ F (G) which is consistent
with h, that is, such that f(x) = h(x) for all x ∈ X. Thus, the task consists in
extending h to a global BN f under the constraint that the SID of f is G.
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Table 1. Complexity results.

Problem Δ(G) ≤ d k = 1 k ≥ 2 k given in input

φ(G) ≥ k Yes P NP-complete NP#P-complete

No NEXPTIME-complete

φ(G) < k Yes coNP-complete coNP#P-complete

No coNEXPTIME-complete

2 Definitions and Notations

Let V be a finite set. A Boolean network (BN) with component set V is defined
as a function f : {0, 1}V → {0, 1}V . A configuration x ∈ {0, 1}V assigns a state
xi ∈ {0, 1} to each component i ∈ V . During an application of f , the state of
component i evolves according to the local function fi : {0, 1}V → {0, 1}, which
is the coordinate i of f , i.e. fi(x) = f(x)i for all x ∈ {0, 1}V . When V = [n], we
write x = (x1, . . . , xn) and f(x) = (f1(x), . . . , fn(x)).

Given a configuration x ∈ {0, 1}V and I ⊆ V , we denote by xI the config-
uration y ∈ {0, 1}I such that yi = xi for all i ∈ I. Given i ∈ V , we denote the
i-base vector ei, that is, (ei)i = 1 and (ei)j = 0 for all j �= i. If x, y ∈ {0, 1}V

then x ⊕ y is the configuration z ∈ {0, 1}V such that zi = xi ⊕ yi for all i ∈ V ,
where the addition is computed modulo two. Hence, x ⊕ ei is the configuration
obtained from x by flipping component i only.

A signed digraph G = (V,A, σ) is a digraph (V,A) with an arc-labeling func-
tion σ from A to {−1, 0, 1}, that gives a sign (negative, null or positive) to each
arc (i, j), denoted σij . We say that G is simple if it has no null sign. Given a
vertex i and s ∈ {−1, 0, 1}, we denote by Ns

G(i) the set of in-neighbors j of i such
that σij = s, and we drop G in the notations when it is clear from the context.
We call N1(i) (resp. N−1(i)) the set of positive (resp. negative) in-neighbors
of i. We also simply denote N(i) the set of all in-neighbors of i. In the following,
it is very convenient to set σ̃ij = 0 if σij ≥ 0 and σ̃ij = 1 otherwise.

The signed interaction digraph (SID) of a BN f with component set V is
the signed digraph Gf = (V,A, σ) defined as follows. First, given i, j ∈ V ,
there is an arc (i, j) ∈ A if and only if there exists a configuration x such
that fj(x ⊕ ei) �= fj(x) (i.e. the state of component i influences the state of
component j). Second, the sign σij of an arc (i, j) ∈ A depends on whether the
state of j tends to mimic or negate the state of i, and is defined as

σij =

⎧
⎨

⎩

1 if fj(x ⊕ ei) ≥ fj(x) for all x ∈ {0, 1}n with xi = 0,
−1 if fj(x ⊕ ei) ≤ fj(x) for all x ∈ {0, 1}n with xi = 0,

0 otherwise.

Given j ∈ V , we say that fj is the AND (resp. OR) function if it is the ordinary
logical and (resp. or) but inputs with a negative sign are flipped, i.e

fj(x) =
∧

i∈N(j)

xi ⊕ σ̃ij (resp. fj(x) =
∨

i∈N(j)

xi ⊕ σ̃ij).
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Given a signed digraph G, we know that G is a SID (i.e. there exists a BN
f with Gf = G), if and only if there is no vertex i such that |N(i)| ≤ 2 and
|N0(i)| = 1 [23]. In particular, a simple signed digraph is always a SID.

A fundamental remark regarding the present work is that multiple BNs may
have the same SID. Given a SID G with vertex set V , we denote by F (G) the
set of BNs admitting G as SID:

F (G) = {f : {0, 1}V → {0, 1}V | Gf = G}.

The size of F (G) is generally huge. If a component i has in-degree d in G, then the
number of possible local functions fi is doubly exponential according to d, thus
it scales as the number of Boolean functions on d variables, 22

d

. Hence, |F (G)| is
at least doubly exponential according to its maximum in-degree, denoted Δ(G).
The precise value of |F (G)| is not trivial, see A006126 on the OEIS [1].

A fixed point of f is a configuration x such that f(x) = x, which is equivalent
to fi(x) = xi for all i ∈ [n]. We denote by Φ(f) the set of fixed points of f and
φ(f) = |Φ(f)|. We are interested in a decision problem related to the maximum
number of fixed points of BNs within F (G), denoted

φ(G) = max {φ(f) | f ∈ F (G)} .

More precisely, we will study the complexity of deciding if φ(G) ≥ k, where k is
a positive integer, fixed or not. This gives the two following decision problems.

k-Maximum Fixed Point Problem (k-MFPP)
Input: a SID G.
Question: φ(G) ≥ k?

Maximum Fixed Point Problem (MFPP)
Input: a SID G and an integer k ≥ 1.
Question: φ(G) ≥ k?

Cycles of interactions (in the SID) are known to play a fundamental role in
the dynamical complexity of BN (the cycles we consider are always directed and
without repeated vertices). Indeed, if Gf is acyclic then φ(f) = 1 [26]. The sign
of a cycle or a path in a signed digraph is the product of the signs of its arcs.
It is well-known that if all the cycles of Gf are positive (resp. negative) then
φ(f) ≥ 1 (resp. φ(f) ≤ 1), see [4,25]. Hence, if all the cycles of a SID G are
negative, then φ(G) ≤ 1. The previous notions are illustrated in Fig. 1.

3 k-Maximum Fixed Point Problem for k = 1

A strongly connected component H in a signed digraph G is trivial if it has a
unique vertex and no arc, and initial if G has no arc (i, j) where j is in H but
not i. We first have a lemma to concentrate on simple signed digraphs.
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1

23

f1(x) = ¬x3

f2(x) = x1 ∨ ¬x2

f3(x) = x1 ∨ (¬x2 ∧ x3)

g1(x) = ¬x3

g2(x) = x1 ∨ ¬x2

g3(x) = x1 ∧¬x2 ∧x3

Fig. 1. Example of simple signed digraph G with two BNs f, g ∈ F (G). BN f has no
fixed point, and g has one fixed point (110), which is the maximum for BNs in F (G),
that is φ(G) = 1. Note that G has two positive cycles and two negative cycles.

Lemma 1. For any SID G, there is a simple SID G′ such that φ(G) ≥ 1 ⇐⇒
φ(G′) ≥ 1, and G′ is computable from G in constant parallel time.

Proof. From G, the construction of G′ is made component by component, inde-
pendently, by removing incoming arcs. For j ∈ [n],

– If |N0(j)| ≥ 2 then we delete all incoming arcs of j. If there exists f ∈ F (G)
and y ∈ Φ(f), then we can take f ′ ∈ F (G′) equal to f , except for f ′

j(x) = yj

(a constant). Conversely, if there exists f ′ ∈ F (G′) and y ∈ Φ(f ′), then we
can take f ∈ F (G) equal to f ′, except for

fj(x) = (bj ⊕
⊕

i∈N0(j)

xi) ∧
∧

i∈N(j)\N0(j)

(xi⊕σ̃ij)

with bj =
⊕

i∈N0(j) yi, in the case yj = 0 (the case yj = 1 is symmetric, with
OR instead of AND function). We have f ′

j(y) = fj(y) = yj hence y ∈ Φ(f).
– If |N0(j)| = 1, then we delete this arc. One can check that, if y ∈ Φ(f) with

f ∈ F (G) (resp. y ∈ Φ(f ′) with f ′ ∈ F (G′)), then there exists i ∈ N(j)\N0(j)
such that yi ⊕ σ̃ij = yj . Consequently, if there exists f ∈ F (G) and y ∈ Φ(f)
then we can take f ′ ∈ F (G′) equal to f , except that f ′

j is the AND function
if yj = 0 and the OR function otherwise. Conversely, suppose there exists
f ′ ∈ F (G′) and y ∈ Φ(f ′), and let {k} = N0(j). In the case yj = 0, we can
construct a function f ∈ F (G) equal to f ′, except for

fj(x) =
(
(xi ⊕ σ̃ij) ∨ (xk ⊕ yk)

) ∧
∧

�∈N(j)\{i,k}

(
(x� ⊕ σ̃�j) ∨ (xk ⊕ ¬yk)

)
.

We have fj(y) = 0 = yj because the left hand side of the conjunction is false,
thus y ∈ Φ(f) (the case yj = 1 is symmetric by switching OR and AND
functions, and replacing yk with ¬yk). ��

Lemma 2. Let G be a simple SID. Then φ(G) ≥ 1 if and only if each non-trivial
initial strongly connected component of G contains a positive cycle.

Proof. The left to right implication has been proved by Aracena [4, Corollary 3].
For the converse, suppose that G = (V,A, σ) has p initial strongly connected
components H1, . . . , Hp. For all k ∈ [p], if Hk is trivial then ik denotes the
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unique vertex it contains, and otherwise we select a positive cycle Ck in Hk and
an arc (jk, ik) inside. Then, G can be spanned by a forest of p vertex disjoint
trees T1, . . . , Tp rooted in i1, . . . , ip such that if Hk is not trivial then the path
from ik to jk contained in Tk is the one contained in Ck. For all k ∈ [p] and
all vertices j in Tk, we denote by Pkj the path from ik to j contained in Tk (if
j = ik this path is of length zero and positive by convention).

Now, we define f ∈ F (G) as follows. First, for all k ∈ [p], if Hk is trivial then
fik is the constant 0 function, and otherwise fik is the AND function. Second,
for all k ∈ [p] and all vertices j �= ik in Tk, fj is the AND function if Pkj is
positive and the OR function otherwise. Next, we define x ∈ {0, 1}V as follows:
for all j ∈ V , xj = 0 if and only if Pkj is positive (thus xik = 0 for all k ∈ [p]).

We claim that x ∈ Φ(f). Indeed, given k ∈ [p] and a vertex j �= ik in Tk, it
is easy to prove that fj(x) = xj by induction on the length of Pkj . Next, if Hk

is trivial then fik(x) = 0. Otherwise, (jk, ik) is an arc of Hk. Let s be the sign
of the path Pkjk , which is in Ck by construction. Since Ck is positive, s = σjkik .
So if σjkik = 1 then xjk = 0 and thus fik(x) = 0, and if σjkik = −1 then xjk = 1
and thus fik(x) = 0. In all cases, fik(x) = 0 = xik . We deduce that x ∈ Φ(f). ��

Thus, to decide if φ(G) ≥ 1, it is sufficient to compute the non-trivial initial
strongly connected components of G (this can be done in linear time [29]) and
to check if they contain a positive cycle. As described below, this checking can
be done in polynomial time using the following difficult theorem independently
proved by Robertson, Seymour and Thomas [27] and McCuaig [20].

Theorem 1 ([20,27]). There exists a polynomial time algorithm for deciding
if a given digraph contains a cycle of even length.

Let G be a signed digraph with n vertices, and let G̃ be obtained from G
by replacing each positive arc by a path of length two, with two negative arcs,
where the internal vertex is new. Then G̃ has at most n + n2 vertices, and it is
easy to see that G has a positive cycle if and only if G̃ has a cycle of even length
[21]. We then deduce the following theorem.

Theorem 2. 1-MFPP is in P.

4 k-Maximum Fixed Point Problem for k ≥ 2

Theorem 3. For any k ≥ 2, k-MFPP is NP-complete, even with Δ(G) ≤ 2.

Theorem 3 is obtained from Lemmas 3, 5 and 6.

Lemma 3. For any k ≥ 2, k-MFPP is in NP.

Proof (sketch, see details in Appendix ??). First, consider the case where Δ(G) ≤
d for some constant d. Then a certificate of φ(G) ≥ k could consist in a network
f ∈ F (G) and k distinct fixed points x(1), . . . , x(k). The fact that f ∈ F (G), and
f(x(i)) = x(i) with distinct x(i) for all i ∈ [k], is checked in polynomial time.
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However, when Δ(G) is not bounded, F (G) can be of doubly exponential size
in n. Thus, some functions f require an exponential space to be encoded. Instead,
one can give as a certificate a partial function h : X → {0, 1}n with X ⊆ {0, 1}n

such that f(x) = h(x) for any x ∈ X. In the set X, we put k fixed points and
configurations which assert the effectiveness of the arcs. To check the certificate
it is sufficient to ensure that there are no inconsistencies (independently for each
local function). As a result, the problem is in NP. ��

A shorter certificate (only the k fixed points) is possible when G is simple (see
Appendix ??). This result from the following theorem. Note that the extending
partial Boolean functions is a well established topic [8,9].

Theorem 4. Let G be a simple SIG with vertex set V and consider a partial
BN h : X → {0, 1}V with X ⊆ {0, 1}V . There is a O(|X|2|V |2)-time algorithm
to decide if there exists an extension of h in F (G).

We now prove that 2-MFPP is NP-hard. We will use observations from [4].

Lemma 4 ([4]). Let G = (V,A, σ) be a simple signed digraph, f ∈ F (G) and
x, y two distinct fixed points of f . Then there exists a positive cycle C in G such
that, for any arc (i, j) in C, we have xi ⊕ σ̃ij = xj �= yj = yi ⊕ σ̃ij.

Remark 1. If the positive cycle C in Lemma 4 has only positive arcs, then either
xi < yi for all vertex i in C, or xi > yi for all vertex i in C.

Remark 2. Given f ∈ F (G) and x, y two distinct fixed points of f , for any
feedback vertex set I of G we have xI �= yI .

Lemma 5. The problem 2-MFPP is NP-hard, even with Δ(G) ≤ 2.

Proof. We reduce 3SAT to our problem. Let us consider a 3SAT instance ψ with
n variables λ1, . . . , λn and m clauses μ1, . . . , μm. We define the signed digraph
Gψ = (V,A, σ), where |V | = 4n + 2m + 1, as follows (see Fig. 2).

First, V = R∪P ∪L∪ L̄∪S ∪T with R = {ri | i ∈ [n]}, P = {pi | i ∈ [0, n]},
L = {�i | i ∈ [n]}, L̄ = {�̄i | i ∈ [n]}, S = {si | i ∈ [m]}, and T = {ti | i ∈ [m]}.
To simplify the notation let s0 = p0 and sm+1 = pn. Second,

A :=
⋃

i∈[n]
{(pi−1, �i), (pi−1, �̄i), (�i, pi), (�̄i, pi), (ri, �i), (ri, �̄i)}

∪
⋃

j∈[m]
{(ti, si), (si, si−1)} ∪ {(pn, sm)}

∪{(�i, tj) | i ∈ [n], j ∈ [m] if λi appears positively in μj}
∪{(�̄i, tj) | i ∈ [n], j ∈ [m] if λi appears negatively in μj}.

Arcs in {(si, ti) | i ∈ [m]}∪{(ri, �i) | i ∈ [n]} are negative, all others are positive.
Let us first prove that if ψ is satisfiable then there exists a BN f ∈ F (Gψ)

with has at least two fixed points. Consider a valid assignment v : {λ1, . . . λn} →
{⊥,�}. Let I⊥ = {i ∈ [n] | v(λi) = ⊥} and I� = {i ∈ [n] | v(λi) = �}. We
define f ∈ F (Gψ) as follows.
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– For all i ∈ I⊥ (resp. I�), fri
is the constant 0 (resp. 1) function.

– For all i ∈ [n], f�i and f�̄i are both AND functions.
– For all i ∈ [0, n], fpi

is the OR function.
– For all i ∈ [m], fsi

and fti are the AND functions.

The two following configurations x and y are distinct fixed points of f , and
therefore φ(Gψ) ≥ 2: for all j ∈ V ,

xj =
{
1 if j ∈ {ri | i ∈ I�}
0 otherwise

yj =
{
1 if j ∈ {ri | i ∈ I�} ∪ P ∪ S ∪ {�i | i ∈ I⊥} ∪ {�̄i |∈ I�}
0 otherwise.

Now, we prove that if φ(Gψ) ≥ 2 then ψ is satisfiable. Consider a BN f ∈
F (Gψ) with two distinct fixed points x and y. Remark that {p0} is a feedback
vertex set of Gψ. In other words, all cycles of Gψ contain p0. We deduce from
Remark 2 that xp0 �= yp0 and that φ(Gψ) ≤ 2. Without loss of generality,
suppose that xp0 < yp0 . Remark also that any cycle containing one of the vertices
t1, . . . , tm is negative, and that no positive cycle in Gψ contains any negative arc.
Thus, according to Remark 1, there exists a cycle C such that xj < yj for every
vertex j in C. In other words, xP < yP and xS < yS and for every i ∈ [n] either
C contains �i and we have x�i < y�i , or it contains �̄i and we have x�̄i < y�̄i . We
construct the following assignment v from C.

v(λi) =
{⊥ if C contains �i,

� if C contains �̄i.

For the sake of contradiction, suppose that v does not satisfy the formula. As
a consequence, there is a clause μj which is false with assignment v. In other
words, any variable which appears positively in the clause is assigned to false
and any variable which appears negatively is assigned to true.

Let us prove that xtj < ytj . Since any incoming arc of tj is positive, and since
x and y are fixed points, it is sufficient to prove that, for every in-neighbor � of
tj , we have x� < y�. By definition of Gψ, any in-neighbor of tj corresponds to a
variable λi of the clause. If λi appears positively (resp. negatively) in clause μj

then the in-neighbor of tj corresponding to λi is �i (resp. �̄i). Since v(λi) = ⊥
(resp. �) because the clause is false then C contains �i (resp. �̄i) and we have
x�i < y�i (resp. x�̄i < y�̄i). As a result, xtj < ytj .

Now, the vertex sj has two in-neighbors. One of them is sj+1 and we have
σsj+1sj

= 1 and xsj+1 < ysj+1 . The other is tj with σtjsj
= −1 and xtj < ytj .

Hence, there are two possible local functions for fsi
:

– fsj
(z) = zsj+1 ∨ ¬ztj , and then xsj

= fsj
(x) = xsj+1 ∨ ¬xtj = 0 ∨ ¬0 = 1.

– fsi
(z) = zsi+1 ∧ ¬ztj , and then ysj

= fsj
(y) = ysj+1 ∧ ¬ytj = 1 ∧ ¬1 = 0.

In both cases, we do not have xsj
< ysj

, which is a contradiction since sj is
in C. As a result, the 3SAT instance ψ is satisfiable. Additionally, remark that
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φ(Gψ) ≥ 1 because, with the constant 1 function for the vertices in R, and the
OR local function everywhere else, the configuration zi = 1 for all i is a fixed
point. We can conclude that φ(Gψ) = 1 when ψ is unsatisfiable.

To get a bounded degree Δ(Gψ) ≤ 2, notice that only vertices in T have
in-degree three, which can be decreased by adding an intermediate vertex (see
the right picture in Fig. 2) while preserving the correctness of the reduction.

��
We can extend the NP-hardness reduction to any k ≥ 2.

p0

�1

�̄1

p1

�2

�̄2

p2

�3

�̄3

p3

�4

�̄4

p4

r1 r2 r3 r4

s1 s2 s3 s4 s5

t1 t2 t3 t4 t5

ti

�

ti

t′
i

Fig. 2. Example of construction in the reduction from 3SAT to k-MFPP (Lemma 5).
This signed digraph Gψ implements the following 3SAT instance ψ: (λ1 ∨ λ2 ∨ λ3) ∧
(¬λ1∨λ2∨λ4)∧(λ1∨¬λ2∨¬λ3)∧(¬λ1∨¬λ2∨λ3)∧(λ1 ∨λ3∨¬λ4) which is satisfiable
if and only if φ(Gψ) ≥ 2, otherwise φ(Gψ) = 1.

Lemma 6. For any k ≥ 2, k-MFPP is NP-hard, even with Δ(G) ≤ 2.

Proof. Let � = �log2(k − 1)�, i.e. 2� < k ≤ 2�+1. Given a formula, consider the
digraph G from Lemma 5, and add � new isolated vertices with positive loops.
Then 1 or 2 fixed points on Gψ become respectively 2� or 2�+1 fixed points. ��
Remark 3. For Δ(G) ≤ 1, |F (G)| = 1 since each local function is the identity or
the negation, and computing φ(G) is in O(|G|), hence k-MFPP ∈ P.

5 Maximum Fixed Point Problem

Theorem 5. When Δ(G) ≤ d, MFPP is NP#P-complete.

In this first part of the section, we prove Theorem 5, from Lemmas 7 and 8.
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Lemma 7. When Δ(G) ≤ d, MFPPis in NP#P.

Proof. An algorithm in NP#P to solve MFPP is, on input G, k:

1. guess local functions fi for i ∈ [n] (polynomial from Δ(G) ≤ d),
2. construct ψ = (f1(x) = x1) ∧ · · · ∧ (fn(x) = xn) on variables x1, . . . , xn,
3. compute the number of solutions of ψ with the #P oracle, that is φ(f),
4. accept if and only if φ(f) ≥ k.

A non-deterministic branch accepts if and only if φ(G) ≥ k. ��
Lemma 8. When Δ(G) ≤ d, MFPPis NP#P-hard.

Proof (sketch, see details in Appendix ??). We consider the following problem.

Existential-Majority-3SAT (E-Maj3SAT)
Input: A 3SAT formula ψ on {λ1, . . . , λn} and s ∈ [n]
Question: Is there an assignment v of λ1, . . . , λs such that the majority
of assignments of λs+1, . . . , λn satisfy ψ?

We know that E-Maj3SAT is NPPP-complete [19] and that NP#P = NPPP

(direct extension of P#P = PPP [22]). Consequently, it is sufficient to prove
that we can reduce E-Maj3SAT to MFPP. To represent an instance (ψ, s) of
E-Maj3SAT, we construct a digraph Gψ,s similar to the digraph Gψ constructed
in Lemma 5 except that we add a positive loop to the q = n − s vertices
rs+1, . . . , rn. We claim that φ(Gψ,s) = α + 2q, with

α = max
v:{λ1,...,λs}→{⊥,�}

|{u : {λs+1, . . . , λn} → {⊥,�} | v ∪ u satisfies ψ}|.

Indeed, consider f ∈ F (Gψ,s) with φ(f) = φ(Gψ,s). As in Lemma 5, the func-
tions fi for i ∈ {�1, �̄1, . . . , �s, �̄s} correspond to an assignment v of λ1, . . . , λs.
Moreover, each valuation u of λs+1, . . . , λn corresponds to one (resp. two) fixed
points if the assignment v ∪ u makes ψ false (resp. true). As a consequence, the
reduction is correct by setting k = 3

22q. ��
In this second part, we study MFPP with unbounded maximum degree.

Theorem 6. When Δ(G) is unbounded, MFPP is NEXPTIME-complete.

Proof (sketch, see details in Appendix ??). It is easy to see that the problem
MFPP with unbounded degree is in NEXPTIME. Indeed, to know if φ(G) ≥ k
it is sufficient to guess a function f ∈ F (G) (encoded in exponential space), to
compute φ(f) (in exponential time) and then accept if φ(f) ≥ k, reject otherwise.
A non-deterministic branch accepts if and only if φ(G) ≥ k.

For the hardness, we reduce from Succint-3SAT [22], which is 3SAT where
ψ has n = 2ñ variables, m = 2m̃ clauses, and is given by a circuit D with:

– m̃ input bits for the clauses, and 2 for the three literal positions,
– ñ output bits to give the corresponding variable, and 1 for its polarity.
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D is acyclic, has in-degree at most 2, and has simple OR, AND, NOT, iden-
tity or constant functions. The idea is to generalize the construction from the
proof of Theorem 3, with one literal for each node of the circuit D (top part), and
additional clauses implementing the circuit (bottom part). With non-trivial addi-
tional elements, choosing local functions correspond to choosing an assignment.
There will be a maximum of one (resp. two) fixed point for each non-satisfied
(resp. satisfied) clause. As a result, ψ is satisfiable if and only if φ(G) ≥ 2m. ��

6 Conclusion

This first work raises many open questions. First, is the problem 1-MFPP
P-complete? We proved that it is equivalent to the problem of finding an even
cycle in a digraph, for which the P versus NP-complete status remained open
until [20,27]. Now we know that the problem is in P, but is it a tight bound?

Several natural extensions of the present results may be addressed. What
happens to the complexity when we study the minimum number of fixed points
instead of the maximum? And for digraphs with only positive arcs? What about
limit cycles of period greater than one instead of fixed points? Understanding
the complexity of computing bounds on dynamical properties of BNs respect-
ing a given interaction digraph is a new and promising approach, both on the
theoretical and practical points of view.
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