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Abstract. This article describes recent advances in the computation
of the homology groups of semialgebraic sets. It summarizes a series
of papers by the author and several coauthors (P. Bürgisser, T. Krick,
P. Lairez, M. Shub, and J. Tonelli-Cueto) on which a sequence of ideas
and techniques were deployed to tackle the problem at increasing levels
of generality. The goal is not to provide a detailed technical picture but
rather to throw light on the main features of this technical picture, the
complexity results obtained, and how the new algorithms fit into the
landscape of existing results.
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1 Semialgebraic Sets

Simply put, a semialgebraic set is a subset of R
n which can be described as a

Boolean combination of the solution sets of polynomial equalities and inequali-
ties. But let’s be more precise.

An atomic set is the solution set of one of the following five expressions

f(x) = 0, f(x) ≥ 0, f(x) > 0, f(x) ≤ 0, f(x) < 0, (1)

where f ∈ R[X1, . . . , Xn]. A Boolean combination of subsets of R
n is a set

obtained by sequence of Boolean operations (unions, intersections and comple-
ments) starting from these subsets. For instance,

((Ac ∪ B) ∩ C)c ∪ (A ∩ B) (2)

(here Sc denotes the complement of S) is a Boolean combination of A,B,C.
There is a close relationship between the set-operations context of Boolean

combinations and the syntaxis of formulas involving polynomials. Indeed, unions,
intersections and complements of the sets defined in (1) correspond, respectively,
to disjunctions, conjunctions and negations of the formulas defining these sets.

Partially supported by a GRF grant from the Research Grants Council of the Hong
Kong SAR (project number CityU 11202017).

c© Springer Nature Switzerland AG 2019
F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 1–12, 2019.
https://doi.org/10.1007/978-3-030-22996-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22996-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-22996-2_1


2 F. Cucker

If, for instance, A,B,C are given by f(x) > 0, g(x) = 0 and h(x) ≤ 0 then the
set in (2) is given by the formula

¬((¬(f(x) > 0) ∨ g(x) = 0
) ∧ h(x) ≤ 0

) ∨ (
f(x) > 0 ∧ g(x) = 0

)
.

A formula is monotone if it does not contain negations. Any formula can be
rewritten into an equivalent monotone formula. A formula is purely conjunctive
if it contains neither negations nor disjunctions. It is therefore just a conjunction
of atomic formulas. The associated semialgebraic subsets of R

n are said to be
basic.

By definition, the class of semialgebraic sets is closed under unions, intersec-
tions and complements. It is much less obvious, but also true, that it is closed
under projections. That is, if π : R

n → R
m is a projection map and S ⊂ R

n is
semialgebraic then so is π(S). It follows that if Ψ is a formula involving polynomi-
als f1, . . . , fq in the variables X1, . . . , Xn and X1, . . . ,X� are (pairwise disjoint)
subsets of these variables then the set of solutions of the formula

Q1X1 Q2X2 . . .Q�X� Ψ (3)

where Qi ∈ {∃,∀}, is semialgebraic as well. Note that this is a subset of R
s where

s = n−(n1+ . . .+n�) with ni being the number of variables in Xi. A well-known
example is the following. Consider the set of points (a, b, c, z) ∈ R

4 satisfying
az2 + bz + c = 0. This is, clearly, a semialgebraic subset of R

4. Its projection
onto the first three coordinates is the set

∃z (az2 + bz + c = 0)

which is the same as
(
a = 0 ∧ (b2 − 4ac ≥ 0)

) ∨ (
a = 0 ∧ b = 0

) ∨ (
a = 0 ∧ b = 0 ∧ c = 0

)

which is a semialgebraic subset of R
3.

Some books with good expositions of semialgebraic sets are [6–8].

2 Some Computational Problems

Because of the pervasive presence of semialgebraic sets in all sorts of contexts,
a variety of computational problems for these sets have been studied in the
literature. In these problems, one or more semialgebraic sets are given as the
data of the problem. The most common way to specify such a set S ⊆ R

n is by
providing a tuple f = (f1, . . . , fq) of polynomials in R[X1, . . . , Xn] and a formula
Ψ on these polynomials. We will denote by S(f, Ψ) the semialgebraic set defined
by the pair (f, Ψ).

A few examples (but this list is by no means exhaustive) are the following.

Membership. Given (f, Ψ) and x ∈ R
n, decide whether x ∈ S(f, Ψ).

Feasibility. Given (f, Ψ) decide whether S(f, Ψ) = ∅.
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Dimension. Given (f, Ψ) compute dim S(f, Ψ).
Counting. Given (f, Ψ) compute the cardinality |S(f, Ψ)| if dimS(f, Ψ) = 0
(and return ∞ if dimS(f, Ψ) > 0 or 0 if S(f, Ψ) = ∅).
Connected Components. Given (f, Ψ) compute the number of connected com-
ponents of S(f, Ψ).
Euler Characteristic. Given (f, Ψ) compute the Euler characteristic χ(S(f, Ψ)).
Homology. Given (f, Ψ) compute the homology groups of S(f, Ψ).

Another example is the following.

Quantifier Elimination. Given (f, Ψ) and a quantifier prefix as in (3) compute
polynomials g and a quantifier-free formula Ψ ′ such that the set of solutions of (3)
is S(g, Ψ ′).

In the particular case when the union of X1, . . . ,X� is {X1, . . . , Xn} (in other
words, when (3) has no free variables) the formula (3) evaluates to either True
or False. The problem above has thus a natural subproblem.

Decision of Tarski Algebra. Given (f, Ψ) and a quantifier prefix without free
variables decide whether (3) is true.

A number of geometric problems can be stated as particular cases of the Decision
of Tarski Algebra. For instance the Feasibility problem is so, as deciding whether
S(f, Ψ) = ∅ is equivalent to decide the truth of ∃x (x ∈ S(f, Ψ)). It is not difficult
to see that deciding whether S(f, Ψ) is closed, or compact, or convex, etc. can
all be expressed as particular cases of the Decision of Tarski Algebra.

3 Algorithms and Complexity

3.1 Symbolic Algorithms

In 1939 Tarski proved that the first-order theory of the reals was decidable (the
publication [39] of this work was delayed by the war). His result was actually
stronger; he gave an algorithm that solved the Quantifier elimination problem.
At that time, interest was put on computability only. But two decades later,
when focus had mostly shifted to complexity, it was observed that the cost
of Tarski’s procedure (that is, the number of arithmetic operations and com-
parisons performed) was enormous: a tower of exponentials. Motivated by this
bound, Collins [16] and Wüthrich [43] independently devised an algorithm with a
better complexity. Given f = (f1, . . . , fq) their algorithm computes a Cylindrical
Algebraic Decomposition (CAD) associated to f . Once with this CAD at hand,
all the problems mentioned in Sect. 2 can be solved (with a cost polynomial in
the size of the CAD). The cost of computing the CAD of f is

(qD)2
O(n)

where D is the maximum of the degrees of the fi. Whereas this doubly exponen-
tial bound is much better than the tower of exponentials for Tarski’s algorithm,
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it is apparent that this approach may be inefficient. Indeed, one must compute
a CAD before solving any of the problems above and one would expect that not
all of them require the same computational effort.

In the late 1980s Grigoriev and Vorobjov introduced a breakthrough, the
Critical Points Method. Using new algorithmic ideas they showed that the fea-
sibility problem could be solved with cost (qD)nO(1)

[24] and, more generally,
that the truth of a quantifier-free formula as in (3) could be decided with cost
(qD)O(n4�) [23]. The new algorithmic ideas were further refined to obtain sharper
bounds for both deciding emptiness [4,32] and eliminating quantifiers [4] but
were also quickly applied to solve other problems such as, for instance, counting
connected components [5,14,15,25,27], computing the dimension [28], the Euler-
Poincaré characteristic [2], and the first few Betti numbers [3]. For all of these
problems, singly exponential time algorithms were devised. But for the com-
putation of homology groups only partial advances were achieved. The generic
doubly exponential behavior of CAD remained the only choice.

All the algorithms mentioned above belong to what are commonly called
symbolic algorithms. Although there is not an agreed upon definition for this class
of algorithms, a characteristic feature of them is the use of exact arithmetic. Most
of them consider input data to be arrays of integers (or rational numbers) and the
size of these integers, as well as of all intermediate computations, is considered
both to measure the input size and to define the cost of arithmetical operations.
A formal model of such an algorithm is the Turing machine introduced by Turing
in [40].

3.2 Numerical Algorithms

Shortly after the end of the war, Turing began working at the National Physics
Laboratory in England. In his Turing Lecture [42] Wilkinson gives an account
of this period. Central in this account is the story of how a linear system of
18 equations in 18 variables was solved using a computer and how, to under-
stand the quality of the computed solution, Turing eventually came to write a
paper [41] which is now considered the birth certificate of the modern approach
to numerical algorithms. We will not enter into the details of this story (the
reader is encouraged to read both Wilkinson’s and Turing’s papers). Suffice to
say that the central issue here is that the underlying data (the coefficients of the
linear system and the intermediate computations) are finite-precision numbers
(such as the floating-point numbers dealt with by many computer languages).
This implies that every operation—from the reading of the input data to each
arithmetic operation—is affected by a small error. The problem is, the accu-
mulation of these errors may end up on a very poor, or totally meaningless,
approximation to the desired result. Turing realized that the magnitude of the
final error depended on the quality of the input data, a quality that he measured
with a condition number. This is a real number usually in the interval [1,∞].
Data whose condition number is ∞ are said to be ill-posed and correspond to
those inputs for which arbitrary small perturbations may have a qualitatively
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different behavior with respect to the considered problem. For instance, non-
invertible matrices viz linear equation solving (as arbitrary small perturbations
may change the system from infeasible (no solutions) to feasible). Condition
numbers were (and still are) eventually used both for numerical stability anal-
ysis (their original role) and for complexity analysis. A comprehensive view of
this condition-based approach to algorithmic analysis can be found in [9].

Although there is not an agreed upon definition for the notion of numerical
algorithm, a characteristic feature of them is a design with numerical stability
in mind. It is not necessary that such an analysis will be provided with the
algorithm but some justification of its expected merits in this regard is common.
A cost depending on a condition number is also common. Sometimes it is this
feature what distinguishes between a numerical algorithm and a symbolic one
described in terms of exact arithmetic with data from R.

Numerical algorithms (in this sense) were first developed in the context of
linear algebra. In the 1990s Renegar, in a series of influencial papers [33–35],
introduced condition-based analysis in optimization while Shub and Smale were
doing so for complex polynomial system solving [36]. Probably the first article to
deal with semialgebraic sets was [19], where a condition number for the feasibility
problem is defined and a numerical algorithm is exhibited solving the problem.
Both the cost and the numerical stability of the algorithm were analyzed in
terms of this condition number.

It is worth to describe the general idea of this algorithm. One first homoge-
nizes all polynomials so that solutions are considered on the sphere S

n instead
of on R

n. Then one constructs a grid G of points on this sphere such that any
point in S

n is at a distance at most η = 1
2 of some point in G. At each point x in

the grid one checks two conditions. The first one, involving the computation of
g(x) and the derivative Dg(x) (for some polynomial tuples g), if satisfied, shows
the existence of a point in S(f, Ψ). The second, involving only the computation
of g(x), if satisfied, shows that there are no points of S(f, Ψ) at a distance at
most η to x. If the first condition is satisfied at some x ∈ G the algorithm stops
and returns feasible. If the second condition holds for all x ∈ G the algorithm
stops and returns infeasible. If none of these two events occurs the algorithm
replaces η ← η

2 and repeats. The number of iterations depends on the condition
number of the data f and it is infinite, that is, the algorithm loops forever, when
the input is ill-posed. The cost of each iteration is exponential in n (because so
is the number of points in the grid) and, hence, the total cost of the algorithm is
also exponential in n. From a pure complexity viewpoint, a comparison with the
symbolic algorithms for feasibility mentioned in Sect. 3.1 is far from immediate.
But the motivating reasoning behind this algorithm was not pure complexity.
One observes that the symbolic algorithms have ultimately to do computations
with matrices of exponential size. In contrast, the numerical algorithm performs
an exponential number of computations with polynomial size matrices. As these
computations are independent from one another one can expect a much better
behavior under the presence of finite precision.
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3.3 Probabilistic Analyses

A shortcoming of a cost analysis in terms of a condition number is the fact
that, unlike the size of the data, condition numbers are not known a priori.
The established way of dealing with this shortcoming is to endow the space of
data with a probability measure and to eliminate the condition number from
the complexity (or numerical stability) bounds in exchange for a probabilistic
reliance. We can no longer bound how long will it take to do a computation.
We can only have some expectation with a certain confidence. This approach
was pioneered by von Neumann and Goldstine [22] (who introduced condition
in [30] along with Turing) and was subsequently advocated by Demmel [20] and
Smale [37].

The most extended probabilistic analysis in the analysis of algorithms is the
average-case. Cost bounds of this form show a bound on the expected value of the
cost (as opposed to its worst-case). A more recent form of probabilistic analysis
is the smoothed analysis of Spielman and Teng. This attempts to extrapolate
between worst-case and average-case by considering the worst case over the data
a of the expectation of the quantity under study over random perturbations of a
(see [38] for a vindication of this analysis). Even more recently a third approach,
called weak analysis, was proposed in [1] by Amelunxen and Lotz. Its aim is to
give a theoretical explanation of the efficiency in practice of numerical algorithms
whose average complexity is too high. A paradigm of this situation is the power
method to compute the leading eigenpair of a Hermitian matrix: this algorithm
is very fast in practice, yet the average number of iterations it performs has been
shown to be infinite [29]. Amelunxen and Lotz realized that here, as in many
other problems, this disagreement between theory and practice is due to the
presence of a vanishingly small (more precisely, having a measure exponentially
small with respect to the input size) set of outliers, outside of which the algorithm
can be shown to be efficient. They called weak any complexity bound holding
outside such small set of outliers. One can prove, for instance, that the numerical
algorithm for the feasibility problem in [19] has weak single exponential cost.

4 Computing the Homology of Semialgebraic Sets

It is against the background of the preceding sections that we can describe some
recent progress in the computation of homology groups of semialgebraic sets. As
the algorithms behind this progress are numerical a good starting point for its
discussion is understanding ill-posedness and condition for the problem.

4.1 Ill-Posedness and Condition

Recall, our data is a pair (f, Ψ) where f = (f1, . . . , fq) is a tuple of polynomi-
als. Consider, to begin with, the case where q ≤ n and Ψ corresponds to f = 0.
This equality defines a real algebraic subset V of R

n. It is well known that in gen-
eral, if V is non-singular then sufficiently small perturbation in the coefficients of
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f will define an algebraic set with the same topology as V . The one exception to
this fact is the case where the projective closure of V intersects the hyperplane
at infinity in a non-transversal manner. If V is singular, in contrast, arbitrary
small perturbations can change its topology. The simplest instance of this occurs
when considering a degree two polynomial in one variable. In this case, its zero
set is singular if and only if it consists of a single point (which is a double zero).
Arbitrarily small perturbation of the coefficients can change the discriminant of
the polynomial to either negative (V becomes empty) or positive (the number of
connected components of V becomes two). A similar behavior can be observed
when the intersection of V with the hyperplane at infinity is singular. The sim-
plest example is now given by a degree two polynomial in two variables. The
intersection above is singular if and only if V is a parabola. Again, arbitrarily
small perturbations may change V into a hyperbola (and hence increase the
number of connected components) or into an ellipse (which, unlike the parabola,
is not simply connected).

We conclude that f is ill-posed when either its zero set in R
n has a singularity

or the zero set of (fh,X0) in P
n has one. Here fh is the homogenization of f

with respect to the variable X0 and P
n is n-dimensional projective space. This

is equivalent to say that the zero set of either fh or (fh,X0) has a singular point
in P

n.
Exporting this understanding from algebraic sets to closed semialgebraic sets

is not difficult. One only needs to notice that when a closed semialgebraic set
(given by a lax formula Ψ) has a change in topology due to a perturbation, there
is a change of topology in its boundary as well. As this boundary is the union
of (parts of) zero sets of subsets of f it follows that we can define the set of
ill-posed tuples f to be

Σ :=
{
f ∈ R[X1, . . . , Xn] | ∃J ⊂ {0, 1, . . . , q}, |J | ≤ n + 1,∃ξ ∈ P

n

(
fh

j (ξ) = 0 for j ∈ J and rank Dξf
h
J < |J |)}

where fh
0 := X0 and fh

J = (fh
j )i∈J . One can then show that a tuple f is in Σ if

and only if for some lax formula Ψ there exist arbitrarily small perturbations of
f changing the topology of S(f, Ψ).

In [12] a condition number κaff(f) is defined that has several desirable fea-
tures. Notably among them, the inequality (see [12, Thm. 7.3])

κaff(f) ≤ 4D
‖f‖

d(f,Σ)

where ‖ ‖ is the Weyl norm and d is its induced distance, and the following
result [12, Prop. 2.2].

Proposition 1. There is an algorithm κ-estimate that, given f ∈
R[X1, . . . , Xn], returns a number K such that

0.99κaff(f) ≤ K ≤ κaff(f)
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if κaff(f) < ∞ or loops forever otherwise. The cost of this algorithm is bounded
by (qnDκaff(f))O(n). ��

The condition number κaff is the last incarnation in a sequence of condition
numbers that were defined for a corresponding sequence of problems: the Turing
condition number for linear equation solving, the quantity μnorm(f) defined by
Shub and Smale [36] for complex polynomial equation solving, the value κ(f)
defined for the problem of real equation solving [17], and the condition number
κ∗(f ; g) for the problem of computing the homology of basic semialgebraic sets.

4.2 Main Result

We can finally describe the main result in this overview. To do so, we first define
a few notions we have been vague about till now.

Let d := (d1, . . . , dq) be a degree pattern and Pd [q] be the linear space of
polynomial tuples f = (f1, . . . , fq) with fi ∈ R[X1, . . . , Xn] of degree at most di.
We endow Pd [q] with the Weyl inner product (see [9, §16.1] for details) and its
induced norm and distance. This norm allows us to further endow Pd [q] with
the standard Gaussian measure with density

ρ(f) =
1

(2π)
N
2

e− ‖f‖2

2 .

Here N := dim Pd [q]. Note that, as the condition number κaff(f) is scale invari-
ant, i.e., it satisfies κaff(f) = κaff(λf) for all real λ = 0, the tail Prob{κaff(f) ≥ t}
has the same value when f is drawn from the Gaussian above and when it is
drawn from the uniform distribution on the sphere S(Pd [q]) = S

N−1.

Theorem 1. We exhibit a numerical algorithm Homology that, given a tuple
f ∈ Pd [q] and a Boolean formula Φ over p, computes the homology groups
of S(f, Φ). The cost of Homology on input (f, Φ), denoted cost(f, Φ), that is,
the number of arithmetic operations and comparisons in R, satisfies:

cost(f, Φ) ≤ size(Φ)qO(n)(nDκaff(p))O(n2).

Furthermore, if f is drawn from the Gaussian distribution on Pd [q] (or, equiva-
lently, from the uniform distribution on S

N−1), then

cost(f, Φ) ≤ size(Φ)qO(n)(nD)O(n3)

with probability at least 1 − (nqD)−n. The algorithm is numerically stable. ��
The algorithm Homology uses the same broad idea of the algorithm in [19]

for deciding feasibility: it performs some simple computations on the (exponen-
tially many) points of a grid in the sphere S

n. The mesh of this grid, determining
how many points it contains, is a function of κaff(f).
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Summarizing to the extreme, the algorithm proceeds as follows. Firstly, we
homogenize the data. That is, we pass from f = (f1, . . . , fq) to fh := (fh

0 , fh
1 , fh

q )
(recall, fh

0 = X0) and from Ψ to Ψh := Ψ ∧ (fh
0 > 0). Let SS(fh, Ψh) denote the

solutions in S
n for the pair (fh, Ψh). We then have the isomorphism of homology

H∗
(
S(f, Ψ)

) � H∗
(
SS(fh, Ψh)

)
.

Secondly, we use κ-estimate (recall Proposition 1) to approximate κaff(f). With
this approximation at hand we construct a sufficiently fine grid G on the sphere.
In the basic case, that is when Ψ is purely conjunctive, a subset X ⊂ G and a
real ε are constructed such that we have the following isomorphism of homology

H∗
(
SS(fh, Ψh)

) � H∗
( ∪x∈X B(x, ε)

)
(4)

where B(x, ε) is the open ball centered at x with radius ε. The Nerve Theo-
rem [26, Corollary 4G.3] then ensures that

H∗
( ∪x∈X B(x, ε)

) � H∗(Cε(X )) (5)

where Cε(X ) is the Čech complex associated to the pair (X , ε). And computing
the homology of a Čech complex is a problem with known algorithms. The
cost analysis of the resulting procedure in terms of κaff(f)—the first bound in
Theorem 1—easily follows. The second bound in this theorem relies on a bound
for the tail Prob{κaff(f) ≥ t} which follows from the geometry of Σ (its degree
as an algebraic set) and the main result in [11].

This is the roadmap followed in [10]. A key ingredient in this roadmap is a
bound of the radius of injectivity (or reach) of an algebraic manifold in terms of
its condition number obtained in [18]. This bound allows one to get a constructive
handle on a result by Niyogi, Smale and Weinberger [31, Prop. 7.1] leading to (4)
and, more generally, it allowed to obtain a version of Theorem 1 in [18] for the
case of smooth projective sets.

To obtain a pair (X , ε) satisfying (4) when Ψ is not purely conjunctive appears
to be difficult. The equivalence in (4) follows from showing that, for a sufficiently
small s > 0, the nearest-point map from the tube around SS(fh, Ψh) of radius s
onto SS(fh, Ψh) is a retraction. This is no longer true if Ψ is not purely conjunctive.

In the case that Ψ is lax the problem was thus approached differently [12].
For every ∝∈ {≤,=,≥} and every i = 0, . . . , q, let X ∝

i ⊂ G and ε be as above,
so that (4) holds with Ψh the atomic formula fh

i ∝ 0. To each pair (X ∝
i , ε) we

associate the Čech complex Cε(X ∝
i ). Then, the set SS(fh, Ψh) and the complex

Ψ
(
Cε(X ≤

0 ),Cε(X=
0 ),Cε(X ≥

0 ), . . . ,Cε(X ≤
q ),Cε(X=

q ),Cε(X ≥
q )

))

have the same homology groups. This complex is recursively built from the
complexes Cε(X ∝

i ) in the same manner (i.e., using the same sequence of Boolean
operations) that SS(fh, Ψh) is built from the atomic sets fh

i (x) ∝ 0. One can then
algorithmically proceed as in [10]. The proof of this homological equivalence is
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far from elementary; it relies on an inclusion-exclusion version of the Mayer-
Vietoris Theorem and on the use of Thom’s first isotopy lemma on a convenient
Whitney stratification of SS(fh, Ψh).

The extension to arbitrary (i.e., not necessarily lax) formulas has been
recently done in [13]. It reduces this case to that of lax formulas through a
construction of Gabrielov and Vorobjov [21]. This construction, however, was
purely qualitative: the existence of a finite sequence of real numbers satisfying a
desirable property was established, but no procedure to compute this sequence
was given. The core of [13] consists of a quantitative version of Gabrielov and
Vorobjov construction. Maybe not surprisingly, a distinguished role in this result
is again played by the condition of the data: indeed, this sequence can be taken
to be any sequence provided its largest element is less than 1√

2 κaff(f)
.

4.3 Final Remarks

It is worth to conclude with some caveats about what exactly are the merits of
Theorem 1. This can only be done by comparing this result with the computation
of homology groups via a CAD described in Sect. 3.1, a comparison which is
delicate as these algorithms are birds of different feather.

A first remark here is that, in the presence of finite precision, the CAD will
behave appallingly whereas Homology is likely do behave much better. With
this in mind, let us assume that arithmetic is infinite-precision and focus in this
case.

The main virtue of Homology is the fact that, outside a set of exponentially
small measure, it has a single exponential cost. Hence, outside this negligibly
small set, it runs exponentially faster than CAD. Inside this set of data, however,
it can take longer than CAD and will even loop forever for ill-posed data. But
this shortcoming has an easy solution: one can run “in parallel” both Homology
and CAD and halt whenever one of them halts. This procedure results in a weak
singly exponential cost with a doubly exponential worst-case.

Once said that, these considerations are of a theoretical nature. In practice,
the quality of the bounds is such that only “small” data (i.e., polynomials in
just a few variables) can be considered. In this case the difference between the
two cost bounds depends much on the constants hidden in the big O notation.
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