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Preface

Computability in Europe 2019:
Computing with Foresight and Industry

Durham, UK,
July 15–19, 2019

The conference Computability in Europe (CiE) is the annual flagship conference of the
Association CiE, a European association of mathematicians, logicians, computer
scientists, philosophers, physicists, biologists, historians, and others interested in new
developments in computability and their underlying significance for the real world. The
Association CiE promotes the development of computability-related science, covering
mathematics, computer science, and applications in various natural and engineering
sciences, such as physics and biology, as well as related fields, such as philosophy and
history of computing.

CiE 2019 had as its motto “Computing with Foresight and Industry” and was the
15th conference in the series. The conference was organized by Algorithms and
Complexity in Durham (ACiD), a research group in the Department of Computer
Science of Durham University. The 14 previous CiE conferences were held in
Amsterdam (The Netherlands) in 2005, Swansea (Wales) in 2006, Siena (Italy) in
2007, Athens (Greece) in 2008, Heidelberg (Germany) in 2009, Ponta Delgada (Por-
tugal) in 2010, Sofia (Bulgaria) in 2011, Cambridge (UK) in 2012, Milan (Italy) in
2013, Budapest (Hungary) in 2014, Bucharest (Romania) in 2015, Paris (France) in
2016, Turku (Finland) in 2017, and Kiel (Germany) in 2018. CiE 2020 will be held in
Salerno (Italy).

The CiE conference is the largest annual international meeting focused on
computability-theoretic issues. Its proceedings are published in the Springer series
Lecture Notes in Computer Science and contain the best submitted papers, as well as
extended abstracts of invited, tutorial, and special session speakers.



The CiE conference series is coordinated by the CiE Conference Series Steering
Committee consisting of Alessandra Carbone (Paris), Gianluca Della Vedova
(executive officer), Liesbeth De Mol (Lille), Mathieu Hoyrup (Nancy), Natasha
Jonoska (Tampa FL), Benedikt Löwe (Amsterdam), Florin Manea (Kiel, chair), Klaus
Meer (Cottbus), Mariya Soskova (Sofia), and ex-officio members Paola Bonizzoni
(Milan, President of the Association CiE) and Dag Normann (Oslo).

The Program Committee of CiE 2019 was chaired by Daniël Paulusma (Durham
University, UK) and Giuseppe Primiero (University of Milan, Italy) and consisted of 30
members. The committee selected the invited and tutorial speakers and the special
session organizers, and reviewed the submitted papers.

The Program Committee invited four speakers to give plenary lectures at CiE 2019:
Felipe Cucker (City University of Hong Kong, SAR China), Ursula Martin (University
of Oxford, UK), Sonja Smets (University of Amsterdam, The Netherlands), and Linda
Brown Westrick (Penn State, USA). The conference also had two plenary tutorials,
presented by Markus Holzer (JLU Giessen) and Assia Mahboubi (University of
Nantes).

In addition, the conference had six special sessions: Computational Neuroscience,
History and Philosophy of Computing, Lowness Notions in Computability,
Probabilistic Programming and Higher-Order Computation, Smoothed and Proba-
bilistic Analysis of Algorithms, and Transfinite Computations. Speakers in these spe-
cial sessions were selected by the respective special session organizers and were invited
to contribute a paper to this volume.

Computational Neuroscience.
Organizers: Noura Al Moubayed and Jason Connolly
Speakers:
Ulrik Beierholm (Durham University)
Netta Cohen (Leeds University)
Evelyne Sernagor (Newcastle University)
V Anne Smith (University of St. Andrews)

History and Philosophy of Computing.
Organizers: Council of the HaPoC Commission
Speakers:
Tony Hoare (University of Oxford)
Michael Jackson (Open University)
Raymond Turner (University of Essex)

Lowness Notions in Computability.
Organizers: Johanna Franklin and Joseph S. Miller
Speakers:
Kenshi Miyabe (Meiji University)
Benoît Monin (LACL, Créteil University)
Keng Meng Selwyn Ng (Nanyang Technological University)
Don Stull (LORIA)
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Probabilistic Programming and Higher-Order Computation
Organizer: Christine Tasson
Speakers:
Thomas Ehrhard (IRIF, Paris Diderot University)
Cameron Freer (MIT)
Joost-Pieter Katoen (RWTH Aachen)
Sam Staton (University of Oxford)

Smoothed and Probabilistic Analysis of Algorithms
Organizer: Bodo Manthey
Speakers:
Sophie Huiberts (CWI, Amsterdam)
Stefan Klootwijk (University of Twente)
Clemens Rösner (University of Bonn)
Sebastian Wild (University of Waterloo)

Transfinite Computations
Organizer: Sabrina Ouazzani
Speakers:
Merlin Carl (University of Konstanz)
Lorenzo Galeotti (University of Hamburg)
Benjamin Rin (Utrecht University)
Philip Welch (University of Bristol)

The members of the Program Committee of CiE 2019 selected for publication in this
volume and for presentation at the conference 20 of the 35 non-invited submitted
papers. Each paper received at least three reviews by the Program Committee and their
subreviewers. In addition to the accepted contributed papers, this volume contains
seven invited papers. The production of the volume would have been impossible
without the diligent work of our expert referees, Program Committee members and
additional reviewers alike. We would like to thank all of them for their excellent work.

All authors who contributed to this conference were encouraged to submit
significantly extended versions of their papers, with additional unpublished research
content, to Computability. The Journal of the Association CiE.

The Steering Committee of the conference series CiE is concerned about the rep-
resentation of female researchers in the field of computability. In order to increase
female participation, the series started the Women in Computability (WiC) program in
2007. In 2016, after the new constitution of the Association CiE allowed for the
possibility of creating special interest groups, a Special Interest Group named Women
in Computability was established. Since 2016, the WiC program has been sponsored by
ACM’s Women in Computing. This program includes a workshop, the annual WiC
dinner, the mentorship program and a grant program for young female researchers. The
Women in Computability workshop continued in 2019, coordinated by Liesbeth De
Mol. In 2019, additional funding for the workshop was received from the L’Oréal
foundation.
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The organizers of CiE 2019 would like to thank the following entities for their
financial support (in alphabetical order): the Association for Symbolic Logic (ASL), the
Division of History of Science and Technology (DHST), the Division of Logic,
Methodology and Philosophy of Science and Technology (DLMPST), Durham
University, the European Association for Theoretical Computer Science (EATCS), the
Commission for the History and Philosophy of Computing (HaPoC), the London
Mathematical Society (LMS), and Springer. We would also like to acknowledge the
support of our non-financial sponsor, the Association Computability in Europe.

We gratefully thank Matthew Johnson for his work in the Organizing Committee
toward making the conference a successful event, and Eelkje Eppenga for designing the
poster of CiE 2019.

We thank Andrej Voronkov for his EasyChair system, which facilitated the work
of the Program Committee and the editors considerably.

May 2019 Florin Manea
Barnaby Martin
Daniël Paulusma

Giuseppe Primiero
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Recent Advances in the Computation
of the Homology of Semialgebraic Sets

Felipe Cucker(B)

Department of Mathematics, City University of Hong Kong,
Kowloon Tong, Hong Kong
macucker@cityu.edu.hk

Abstract. This article describes recent advances in the computation
of the homology groups of semialgebraic sets. It summarizes a series
of papers by the author and several coauthors (P. Bürgisser, T. Krick,
P. Lairez, M. Shub, and J. Tonelli-Cueto) on which a sequence of ideas
and techniques were deployed to tackle the problem at increasing levels
of generality. The goal is not to provide a detailed technical picture but
rather to throw light on the main features of this technical picture, the
complexity results obtained, and how the new algorithms fit into the
landscape of existing results.

Keywords: Semialgebraic sets · Homology groups · Weak complexity

1 Semialgebraic Sets

Simply put, a semialgebraic set is a subset of R
n which can be described as a

Boolean combination of the solution sets of polynomial equalities and inequali-
ties. But let’s be more precise.

An atomic set is the solution set of one of the following five expressions

f(x) = 0, f(x) ≥ 0, f(x) > 0, f(x) ≤ 0, f(x) < 0, (1)

where f ∈ R[X1, . . . , Xn]. A Boolean combination of subsets of R
n is a set

obtained by sequence of Boolean operations (unions, intersections and comple-
ments) starting from these subsets. For instance,

((Ac ∪ B) ∩ C)c ∪ (A ∩ B) (2)

(here Sc denotes the complement of S) is a Boolean combination of A,B,C.
There is a close relationship between the set-operations context of Boolean

combinations and the syntaxis of formulas involving polynomials. Indeed, unions,
intersections and complements of the sets defined in (1) correspond, respectively,
to disjunctions, conjunctions and negations of the formulas defining these sets.

Partially supported by a GRF grant from the Research Grants Council of the Hong
Kong SAR (project number CityU 11202017).

c© Springer Nature Switzerland AG 2019
F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 1–12, 2019.
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2 F. Cucker

If, for instance, A,B,C are given by f(x) > 0, g(x) = 0 and h(x) ≤ 0 then the
set in (2) is given by the formula

¬((¬(f(x) > 0) ∨ g(x) = 0
) ∧ h(x) ≤ 0

) ∨ (
f(x) > 0 ∧ g(x) = 0

)
.

A formula is monotone if it does not contain negations. Any formula can be
rewritten into an equivalent monotone formula. A formula is purely conjunctive
if it contains neither negations nor disjunctions. It is therefore just a conjunction
of atomic formulas. The associated semialgebraic subsets of R

n are said to be
basic.

By definition, the class of semialgebraic sets is closed under unions, intersec-
tions and complements. It is much less obvious, but also true, that it is closed
under projections. That is, if π : R

n → R
m is a projection map and S ⊂ R

n is
semialgebraic then so is π(S). It follows that if Ψ is a formula involving polynomi-
als f1, . . . , fq in the variables X1, . . . , Xn and X1, . . . ,X� are (pairwise disjoint)
subsets of these variables then the set of solutions of the formula

Q1X1 Q2X2 . . .Q�X� Ψ (3)

where Qi ∈ {∃,∀}, is semialgebraic as well. Note that this is a subset of R
s where

s = n−(n1+ . . .+n�) with ni being the number of variables in Xi. A well-known
example is the following. Consider the set of points (a, b, c, z) ∈ R

4 satisfying
az2 + bz + c = 0. This is, clearly, a semialgebraic subset of R

4. Its projection
onto the first three coordinates is the set

∃z (az2 + bz + c = 0)

which is the same as
(
a = 0 ∧ (b2 − 4ac ≥ 0)

) ∨ (
a = 0 ∧ b = 0

) ∨ (
a = 0 ∧ b = 0 ∧ c = 0

)

which is a semialgebraic subset of R
3.

Some books with good expositions of semialgebraic sets are [6–8].

2 Some Computational Problems

Because of the pervasive presence of semialgebraic sets in all sorts of contexts,
a variety of computational problems for these sets have been studied in the
literature. In these problems, one or more semialgebraic sets are given as the
data of the problem. The most common way to specify such a set S ⊆ R

n is by
providing a tuple f = (f1, . . . , fq) of polynomials in R[X1, . . . , Xn] and a formula
Ψ on these polynomials. We will denote by S(f, Ψ) the semialgebraic set defined
by the pair (f, Ψ).

A few examples (but this list is by no means exhaustive) are the following.

Membership. Given (f, Ψ) and x ∈ R
n, decide whether x ∈ S(f, Ψ).

Feasibility. Given (f, Ψ) decide whether S(f, Ψ) = ∅.
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Dimension. Given (f, Ψ) compute dim S(f, Ψ).
Counting. Given (f, Ψ) compute the cardinality |S(f, Ψ)| if dimS(f, Ψ) = 0
(and return ∞ if dimS(f, Ψ) > 0 or 0 if S(f, Ψ) = ∅).
Connected Components. Given (f, Ψ) compute the number of connected com-
ponents of S(f, Ψ).
Euler Characteristic. Given (f, Ψ) compute the Euler characteristic χ(S(f, Ψ)).
Homology. Given (f, Ψ) compute the homology groups of S(f, Ψ).

Another example is the following.

Quantifier Elimination. Given (f, Ψ) and a quantifier prefix as in (3) compute
polynomials g and a quantifier-free formula Ψ ′ such that the set of solutions of (3)
is S(g, Ψ ′).

In the particular case when the union of X1, . . . ,X� is {X1, . . . , Xn} (in other
words, when (3) has no free variables) the formula (3) evaluates to either True
or False. The problem above has thus a natural subproblem.

Decision of Tarski Algebra. Given (f, Ψ) and a quantifier prefix without free
variables decide whether (3) is true.

A number of geometric problems can be stated as particular cases of the Decision
of Tarski Algebra. For instance the Feasibility problem is so, as deciding whether
S(f, Ψ) = ∅ is equivalent to decide the truth of ∃x (x ∈ S(f, Ψ)). It is not difficult
to see that deciding whether S(f, Ψ) is closed, or compact, or convex, etc. can
all be expressed as particular cases of the Decision of Tarski Algebra.

3 Algorithms and Complexity

3.1 Symbolic Algorithms

In 1939 Tarski proved that the first-order theory of the reals was decidable (the
publication [39] of this work was delayed by the war). His result was actually
stronger; he gave an algorithm that solved the Quantifier elimination problem.
At that time, interest was put on computability only. But two decades later,
when focus had mostly shifted to complexity, it was observed that the cost
of Tarski’s procedure (that is, the number of arithmetic operations and com-
parisons performed) was enormous: a tower of exponentials. Motivated by this
bound, Collins [16] and Wüthrich [43] independently devised an algorithm with a
better complexity. Given f = (f1, . . . , fq) their algorithm computes a Cylindrical
Algebraic Decomposition (CAD) associated to f . Once with this CAD at hand,
all the problems mentioned in Sect. 2 can be solved (with a cost polynomial in
the size of the CAD). The cost of computing the CAD of f is

(qD)2
O(n)

where D is the maximum of the degrees of the fi. Whereas this doubly exponen-
tial bound is much better than the tower of exponentials for Tarski’s algorithm,
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it is apparent that this approach may be inefficient. Indeed, one must compute
a CAD before solving any of the problems above and one would expect that not
all of them require the same computational effort.

In the late 1980s Grigoriev and Vorobjov introduced a breakthrough, the
Critical Points Method. Using new algorithmic ideas they showed that the fea-
sibility problem could be solved with cost (qD)nO(1)

[24] and, more generally,
that the truth of a quantifier-free formula as in (3) could be decided with cost
(qD)O(n4�) [23]. The new algorithmic ideas were further refined to obtain sharper
bounds for both deciding emptiness [4,32] and eliminating quantifiers [4] but
were also quickly applied to solve other problems such as, for instance, counting
connected components [5,14,15,25,27], computing the dimension [28], the Euler-
Poincaré characteristic [2], and the first few Betti numbers [3]. For all of these
problems, singly exponential time algorithms were devised. But for the com-
putation of homology groups only partial advances were achieved. The generic
doubly exponential behavior of CAD remained the only choice.

All the algorithms mentioned above belong to what are commonly called
symbolic algorithms. Although there is not an agreed upon definition for this class
of algorithms, a characteristic feature of them is the use of exact arithmetic. Most
of them consider input data to be arrays of integers (or rational numbers) and the
size of these integers, as well as of all intermediate computations, is considered
both to measure the input size and to define the cost of arithmetical operations.
A formal model of such an algorithm is the Turing machine introduced by Turing
in [40].

3.2 Numerical Algorithms

Shortly after the end of the war, Turing began working at the National Physics
Laboratory in England. In his Turing Lecture [42] Wilkinson gives an account
of this period. Central in this account is the story of how a linear system of
18 equations in 18 variables was solved using a computer and how, to under-
stand the quality of the computed solution, Turing eventually came to write a
paper [41] which is now considered the birth certificate of the modern approach
to numerical algorithms. We will not enter into the details of this story (the
reader is encouraged to read both Wilkinson’s and Turing’s papers). Suffice to
say that the central issue here is that the underlying data (the coefficients of the
linear system and the intermediate computations) are finite-precision numbers
(such as the floating-point numbers dealt with by many computer languages).
This implies that every operation—from the reading of the input data to each
arithmetic operation—is affected by a small error. The problem is, the accu-
mulation of these errors may end up on a very poor, or totally meaningless,
approximation to the desired result. Turing realized that the magnitude of the
final error depended on the quality of the input data, a quality that he measured
with a condition number. This is a real number usually in the interval [1,∞].
Data whose condition number is ∞ are said to be ill-posed and correspond to
those inputs for which arbitrary small perturbations may have a qualitatively
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different behavior with respect to the considered problem. For instance, non-
invertible matrices viz linear equation solving (as arbitrary small perturbations
may change the system from infeasible (no solutions) to feasible). Condition
numbers were (and still are) eventually used both for numerical stability anal-
ysis (their original role) and for complexity analysis. A comprehensive view of
this condition-based approach to algorithmic analysis can be found in [9].

Although there is not an agreed upon definition for the notion of numerical
algorithm, a characteristic feature of them is a design with numerical stability
in mind. It is not necessary that such an analysis will be provided with the
algorithm but some justification of its expected merits in this regard is common.
A cost depending on a condition number is also common. Sometimes it is this
feature what distinguishes between a numerical algorithm and a symbolic one
described in terms of exact arithmetic with data from R.

Numerical algorithms (in this sense) were first developed in the context of
linear algebra. In the 1990s Renegar, in a series of influencial papers [33–35],
introduced condition-based analysis in optimization while Shub and Smale were
doing so for complex polynomial system solving [36]. Probably the first article to
deal with semialgebraic sets was [19], where a condition number for the feasibility
problem is defined and a numerical algorithm is exhibited solving the problem.
Both the cost and the numerical stability of the algorithm were analyzed in
terms of this condition number.

It is worth to describe the general idea of this algorithm. One first homoge-
nizes all polynomials so that solutions are considered on the sphere S

n instead
of on R

n. Then one constructs a grid G of points on this sphere such that any
point in S

n is at a distance at most η = 1
2 of some point in G. At each point x in

the grid one checks two conditions. The first one, involving the computation of
g(x) and the derivative Dg(x) (for some polynomial tuples g), if satisfied, shows
the existence of a point in S(f, Ψ). The second, involving only the computation
of g(x), if satisfied, shows that there are no points of S(f, Ψ) at a distance at
most η to x. If the first condition is satisfied at some x ∈ G the algorithm stops
and returns feasible. If the second condition holds for all x ∈ G the algorithm
stops and returns infeasible. If none of these two events occurs the algorithm
replaces η ← η

2 and repeats. The number of iterations depends on the condition
number of the data f and it is infinite, that is, the algorithm loops forever, when
the input is ill-posed. The cost of each iteration is exponential in n (because so
is the number of points in the grid) and, hence, the total cost of the algorithm is
also exponential in n. From a pure complexity viewpoint, a comparison with the
symbolic algorithms for feasibility mentioned in Sect. 3.1 is far from immediate.
But the motivating reasoning behind this algorithm was not pure complexity.
One observes that the symbolic algorithms have ultimately to do computations
with matrices of exponential size. In contrast, the numerical algorithm performs
an exponential number of computations with polynomial size matrices. As these
computations are independent from one another one can expect a much better
behavior under the presence of finite precision.
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3.3 Probabilistic Analyses

A shortcoming of a cost analysis in terms of a condition number is the fact
that, unlike the size of the data, condition numbers are not known a priori.
The established way of dealing with this shortcoming is to endow the space of
data with a probability measure and to eliminate the condition number from
the complexity (or numerical stability) bounds in exchange for a probabilistic
reliance. We can no longer bound how long will it take to do a computation.
We can only have some expectation with a certain confidence. This approach
was pioneered by von Neumann and Goldstine [22] (who introduced condition
in [30] along with Turing) and was subsequently advocated by Demmel [20] and
Smale [37].

The most extended probabilistic analysis in the analysis of algorithms is the
average-case. Cost bounds of this form show a bound on the expected value of the
cost (as opposed to its worst-case). A more recent form of probabilistic analysis
is the smoothed analysis of Spielman and Teng. This attempts to extrapolate
between worst-case and average-case by considering the worst case over the data
a of the expectation of the quantity under study over random perturbations of a
(see [38] for a vindication of this analysis). Even more recently a third approach,
called weak analysis, was proposed in [1] by Amelunxen and Lotz. Its aim is to
give a theoretical explanation of the efficiency in practice of numerical algorithms
whose average complexity is too high. A paradigm of this situation is the power
method to compute the leading eigenpair of a Hermitian matrix: this algorithm
is very fast in practice, yet the average number of iterations it performs has been
shown to be infinite [29]. Amelunxen and Lotz realized that here, as in many
other problems, this disagreement between theory and practice is due to the
presence of a vanishingly small (more precisely, having a measure exponentially
small with respect to the input size) set of outliers, outside of which the algorithm
can be shown to be efficient. They called weak any complexity bound holding
outside such small set of outliers. One can prove, for instance, that the numerical
algorithm for the feasibility problem in [19] has weak single exponential cost.

4 Computing the Homology of Semialgebraic Sets

It is against the background of the preceding sections that we can describe some
recent progress in the computation of homology groups of semialgebraic sets. As
the algorithms behind this progress are numerical a good starting point for its
discussion is understanding ill-posedness and condition for the problem.

4.1 Ill-Posedness and Condition

Recall, our data is a pair (f, Ψ) where f = (f1, . . . , fq) is a tuple of polynomi-
als. Consider, to begin with, the case where q ≤ n and Ψ corresponds to f = 0.
This equality defines a real algebraic subset V of R

n. It is well known that in gen-
eral, if V is non-singular then sufficiently small perturbation in the coefficients of
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f will define an algebraic set with the same topology as V . The one exception to
this fact is the case where the projective closure of V intersects the hyperplane
at infinity in a non-transversal manner. If V is singular, in contrast, arbitrary
small perturbations can change its topology. The simplest instance of this occurs
when considering a degree two polynomial in one variable. In this case, its zero
set is singular if and only if it consists of a single point (which is a double zero).
Arbitrarily small perturbation of the coefficients can change the discriminant of
the polynomial to either negative (V becomes empty) or positive (the number of
connected components of V becomes two). A similar behavior can be observed
when the intersection of V with the hyperplane at infinity is singular. The sim-
plest example is now given by a degree two polynomial in two variables. The
intersection above is singular if and only if V is a parabola. Again, arbitrarily
small perturbations may change V into a hyperbola (and hence increase the
number of connected components) or into an ellipse (which, unlike the parabola,
is not simply connected).

We conclude that f is ill-posed when either its zero set in R
n has a singularity

or the zero set of (fh,X0) in P
n has one. Here fh is the homogenization of f

with respect to the variable X0 and P
n is n-dimensional projective space. This

is equivalent to say that the zero set of either fh or (fh,X0) has a singular point
in P

n.
Exporting this understanding from algebraic sets to closed semialgebraic sets

is not difficult. One only needs to notice that when a closed semialgebraic set
(given by a lax formula Ψ) has a change in topology due to a perturbation, there
is a change of topology in its boundary as well. As this boundary is the union
of (parts of) zero sets of subsets of f it follows that we can define the set of
ill-posed tuples f to be

Σ :=
{
f ∈ R[X1, . . . , Xn] | ∃J ⊂ {0, 1, . . . , q}, |J | ≤ n + 1,∃ξ ∈ P

n

(
fh

j (ξ) = 0 for j ∈ J and rank Dξf
h
J < |J |)}

where fh
0 := X0 and fh

J = (fh
j )i∈J . One can then show that a tuple f is in Σ if

and only if for some lax formula Ψ there exist arbitrarily small perturbations of
f changing the topology of S(f, Ψ).

In [12] a condition number κaff(f) is defined that has several desirable fea-
tures. Notably among them, the inequality (see [12, Thm. 7.3])

κaff(f) ≤ 4D
‖f‖

d(f,Σ)

where ‖ ‖ is the Weyl norm and d is its induced distance, and the following
result [12, Prop. 2.2].

Proposition 1. There is an algorithm κ-estimate that, given f ∈
R[X1, . . . , Xn], returns a number K such that

0.99κaff(f) ≤ K ≤ κaff(f)
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if κaff(f) < ∞ or loops forever otherwise. The cost of this algorithm is bounded
by (qnDκaff(f))O(n). ��

The condition number κaff is the last incarnation in a sequence of condition
numbers that were defined for a corresponding sequence of problems: the Turing
condition number for linear equation solving, the quantity μnorm(f) defined by
Shub and Smale [36] for complex polynomial equation solving, the value κ(f)
defined for the problem of real equation solving [17], and the condition number
κ∗(f ; g) for the problem of computing the homology of basic semialgebraic sets.

4.2 Main Result

We can finally describe the main result in this overview. To do so, we first define
a few notions we have been vague about till now.

Let d := (d1, . . . , dq) be a degree pattern and Pd [q] be the linear space of
polynomial tuples f = (f1, . . . , fq) with fi ∈ R[X1, . . . , Xn] of degree at most di.
We endow Pd [q] with the Weyl inner product (see [9, §16.1] for details) and its
induced norm and distance. This norm allows us to further endow Pd [q] with
the standard Gaussian measure with density

ρ(f) =
1

(2π)
N
2

e− ‖f‖2

2 .

Here N := dim Pd [q]. Note that, as the condition number κaff(f) is scale invari-
ant, i.e., it satisfies κaff(f) = κaff(λf) for all real λ = 0, the tail Prob{κaff(f) ≥ t}
has the same value when f is drawn from the Gaussian above and when it is
drawn from the uniform distribution on the sphere S(Pd [q]) = S

N−1.

Theorem 1. We exhibit a numerical algorithm Homology that, given a tuple
f ∈ Pd [q] and a Boolean formula Φ over p, computes the homology groups
of S(f, Φ). The cost of Homology on input (f, Φ), denoted cost(f, Φ), that is,
the number of arithmetic operations and comparisons in R, satisfies:

cost(f, Φ) ≤ size(Φ)qO(n)(nDκaff(p))O(n2).

Furthermore, if f is drawn from the Gaussian distribution on Pd [q] (or, equiva-
lently, from the uniform distribution on S

N−1), then

cost(f, Φ) ≤ size(Φ)qO(n)(nD)O(n3)

with probability at least 1 − (nqD)−n. The algorithm is numerically stable. ��
The algorithm Homology uses the same broad idea of the algorithm in [19]

for deciding feasibility: it performs some simple computations on the (exponen-
tially many) points of a grid in the sphere S

n. The mesh of this grid, determining
how many points it contains, is a function of κaff(f).
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Summarizing to the extreme, the algorithm proceeds as follows. Firstly, we
homogenize the data. That is, we pass from f = (f1, . . . , fq) to fh := (fh

0 , fh
1 , fh

q )
(recall, fh

0 = X0) and from Ψ to Ψh := Ψ ∧ (fh
0 > 0). Let SS(fh, Ψh) denote the

solutions in S
n for the pair (fh, Ψh). We then have the isomorphism of homology

H∗
(
S(f, Ψ)

) � H∗
(
SS(fh, Ψh)

)
.

Secondly, we use κ-estimate (recall Proposition 1) to approximate κaff(f). With
this approximation at hand we construct a sufficiently fine grid G on the sphere.
In the basic case, that is when Ψ is purely conjunctive, a subset X ⊂ G and a
real ε are constructed such that we have the following isomorphism of homology

H∗
(
SS(fh, Ψh)

) � H∗
( ∪x∈X B(x, ε)

)
(4)

where B(x, ε) is the open ball centered at x with radius ε. The Nerve Theo-
rem [26, Corollary 4G.3] then ensures that

H∗
( ∪x∈X B(x, ε)

) � H∗(Cε(X )) (5)

where Cε(X ) is the Čech complex associated to the pair (X , ε). And computing
the homology of a Čech complex is a problem with known algorithms. The
cost analysis of the resulting procedure in terms of κaff(f)—the first bound in
Theorem 1—easily follows. The second bound in this theorem relies on a bound
for the tail Prob{κaff(f) ≥ t} which follows from the geometry of Σ (its degree
as an algebraic set) and the main result in [11].

This is the roadmap followed in [10]. A key ingredient in this roadmap is a
bound of the radius of injectivity (or reach) of an algebraic manifold in terms of
its condition number obtained in [18]. This bound allows one to get a constructive
handle on a result by Niyogi, Smale and Weinberger [31, Prop. 7.1] leading to (4)
and, more generally, it allowed to obtain a version of Theorem 1 in [18] for the
case of smooth projective sets.

To obtain a pair (X , ε) satisfying (4) when Ψ is not purely conjunctive appears
to be difficult. The equivalence in (4) follows from showing that, for a sufficiently
small s > 0, the nearest-point map from the tube around SS(fh, Ψh) of radius s
onto SS(fh, Ψh) is a retraction. This is no longer true if Ψ is not purely conjunctive.

In the case that Ψ is lax the problem was thus approached differently [12].
For every ∝∈ {≤,=,≥} and every i = 0, . . . , q, let X ∝

i ⊂ G and ε be as above,
so that (4) holds with Ψh the atomic formula fh

i ∝ 0. To each pair (X ∝
i , ε) we

associate the Čech complex Cε(X ∝
i ). Then, the set SS(fh, Ψh) and the complex

Ψ
(
Cε(X ≤

0 ),Cε(X=
0 ),Cε(X ≥

0 ), . . . ,Cε(X ≤
q ),Cε(X=

q ),Cε(X ≥
q )

))

have the same homology groups. This complex is recursively built from the
complexes Cε(X ∝

i ) in the same manner (i.e., using the same sequence of Boolean
operations) that SS(fh, Ψh) is built from the atomic sets fh

i (x) ∝ 0. One can then
algorithmically proceed as in [10]. The proof of this homological equivalence is



10 F. Cucker

far from elementary; it relies on an inclusion-exclusion version of the Mayer-
Vietoris Theorem and on the use of Thom’s first isotopy lemma on a convenient
Whitney stratification of SS(fh, Ψh).

The extension to arbitrary (i.e., not necessarily lax) formulas has been
recently done in [13]. It reduces this case to that of lax formulas through a
construction of Gabrielov and Vorobjov [21]. This construction, however, was
purely qualitative: the existence of a finite sequence of real numbers satisfying a
desirable property was established, but no procedure to compute this sequence
was given. The core of [13] consists of a quantitative version of Gabrielov and
Vorobjov construction. Maybe not surprisingly, a distinguished role in this result
is again played by the condition of the data: indeed, this sequence can be taken
to be any sequence provided its largest element is less than 1√

2 κaff(f)
.

4.3 Final Remarks

It is worth to conclude with some caveats about what exactly are the merits of
Theorem 1. This can only be done by comparing this result with the computation
of homology groups via a CAD described in Sect. 3.1, a comparison which is
delicate as these algorithms are birds of different feather.

A first remark here is that, in the presence of finite precision, the CAD will
behave appallingly whereas Homology is likely do behave much better. With
this in mind, let us assume that arithmetic is infinite-precision and focus in this
case.

The main virtue of Homology is the fact that, outside a set of exponentially
small measure, it has a single exponential cost. Hence, outside this negligibly
small set, it runs exponentially faster than CAD. Inside this set of data, however,
it can take longer than CAD and will even loop forever for ill-posed data. But
this shortcoming has an easy solution: one can run “in parallel” both Homology
and CAD and halt whenever one of them halts. This procedure results in a weak
singly exponential cost with a doubly exponential worst-case.

Once said that, these considerations are of a theoretical nature. In practice,
the quality of the bounds is such that only “small” data (i.e., polynomials in
just a few variables) can be considered. In this case the difference between the
two cost bounds depends much on the constants hidden in the big O notation.
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Abstract. Blum-Shub-Smale machines are a classical model of com-
putability over the real line. In [9], Koepke and Seyfferth generalised
Blum-Shub-Smale machines to a transfinite model of computability by
allowing them to run for a transfinite amount of time. The model of
Koepke and Seyfferth is asymmetric in the following sense: while their
machines can run for a transfinite number of steps, they use real num-
bers rather than their transfinite analogues. In this paper we will use the
surreal numbers in order to define a generalisation of Blum-Shub-Smale
machines in which both time and register content are transfinite.

1 Introduction

In 1989 Blum, Shub and Smale introduced a model of computation to study
computability over rings; see [1]. Of particular interest for us is the notion of
computability that Blum-Shub-Smale machines (BSSM) induce over the real
numbers. A BSSM for the real numbers is a register based machine in which each
register contains a real number. A program for such a machine is a finite list of
commands. Each command can be either a computation or branch command.
The execution of a computation command allows the machine to apply a rational
function to update the content of the registers. A branch command, on the other
hand, leaves the content of the registers unchanged and allows the machine to
apply a rational function to some register and execute a jump based on the result
of this operation, i.e., to jump to a different point of the code if the result is 0
and to continue the normal execution otherwise.

In [9,11], Koepke and Seyfferth defined the notion of infinite time Blum-Shub-
Smale machine that is a generalised version of Blum-Shub-Smale machines which
can carry out transfinite computations over the real numbers.

Infinite time Blum-Shub-Smale machines work essentially as standard BSSMs
at successor times apart from the fact that, contrary to classical BSSMs, they
can only apply rational functions with rational coefficients1. At limit stages an
1 A stronger version of infinite time Blum-Shub-Smale machines could be obtained by

allowing infinite time Blum-Shub-Smale machines to use rational functions with real
coefficients, but this was not done in [11].
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infinite time Blum-Shub-Smale machine computes the content of each register
by taking the limit over the real line of the values that the register assumed at
previous stages (if this exists); and updates the program counter to the inferior
limit of its values at previous stages. The theory of infinite time Blum-Shub-
Smale machine was further studied in [7].

Infinite time Blum-Shub-Smale machines provide an asymmetric generalisa-
tion of BSSMs. In particular, while infinite time Blum-Shub-Smale machines are
allowed to run for arbitrary transfinite time, they are using real numbers, a set
that can be very small compared to the running times. It is then natural to ask
whether a symmetric notion can be defined.

The first problem in doing so is, as usual in this context, that of finding a
suitable structure which one can use in place of the real line in the generalised
context. As we will see, the surreal numbers, a very general number system
which contains both real and ordinal numbers, will provide a natural framework
to develop this generalised theory.

In this paper, we will introduce a generalised version of Blum-Shub-Smale
machines based on surreal numbers and we will show some preliminary results
of the theory of these machines.

2 Surreal Numbers

The surreal numbers were introduced by Conway in order to give a mathematical
definition of the abstract notion of “number”. In this section we will present basic
results on surreal numbers; see [2,5] for a detailed introduction. A surreal number
is a function from an ordinal α to {+,−}, i.e., a sequence of pluses and minuses
of ordinal length. We denote the class of surreal numbers by No. The length of
a surreal number x (i.e., its domain) is denoted by �(x).

For surreal numbers x and y, we define x < y if there exists α such that
x(β) = y(β) for all β < α, and x(α) = − and either α = �(y) or y(α) = +, or
α = �(x) and y(α) = +.

In Conway’s original construction, every surreal number is generated by filling
some gap in the previously generated numbers. The following theorem connects
this intuition to the surreal numbers as we have defined them. First, given sets
of surreal numbers X and Y , we write X < Y if for all x ∈ X and y ∈ Y we
have x < y.

Theorem 1 (Simplicity theorem). If L and R are two sets of surreal numbers
such that L < R, then there is a unique surreal x of minimal length such that
L < {x} < R, denoted by [L|R ]. Furthermore, for every x ∈ No we have x =
[Lx|Rx ] for Lx = {y ∈ No ; x > y ∧y ⊂ x} and Rx = {y ∈ No ; x < y ∧y ⊂ x}.
Given two subsets L and R of surreal numbers such that L < R, we will call
the pair (L,R) a cut. For any surreal number x ∈ No we define the canonical
representation of x as the cut (Lx, Rx).

Using the simplicity theorem Conway defined the field operations +s, ·s, −s,
and the multiplicative inverse over No and proved that these operations satisfy
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the axioms of real closed fields; see [2,5]. Moreover, Ehrlich proved that No is
the universal class real closed field in the sense that every real closed field is
isomorphic to a subfield of No; cf., e.g., [3].

3 Generalising Infinite Time BSSMs

The main goal of this paper is to introduce a notion of register machine which
generalises infinite time Blum-Shub-Smale machines in order to allow them to
work with arbitrary transfinite space. To do so we want to make our machines
able to perform transfinite computations over surreal numbers.

A very natural approach to this problem would be to allow infinite time Blum-
Shub-Smale machine registers to store surreal numbers keeping the behaviour of
the machine the same. This means that at successor stages the machine will still
be allowed to either branch or apply a rational function with surreal coefficients
to the registers. At limit stages the machine would have then to use limits2

over No to compute the contents of the registers. Unfortunately this approach
does not work: one can show that if a totally ordered field3 K has cofinality
κ > ω, then every non-eventually constant sequence of length <κ diverges in K.
Similarly for surreal numbers we have the following result:

Lemma 2 (Folklore). For every ordinal α, every non-eventually constant
sequence of length α of surreal numbers diverges.

The previous result tells us that the classical notion of limit is not the right
notion in the context of transfinite computability over a field. Note that the phe-
nomenon of diverging sequences is not a special feature of the surreal numbers,
but follows from the basic theory of ordered fields. Thus, any generalisation of
the theory of BSSMs to a non-archimedean field would need to deal with this
issue.

4 Surreal Blum-Shub-Smale Machines

A surreal Blum-Shub-Smale machine (SBSSM) is a register machine. Since, as we
will see, the formal definition of SBSSMs is quite involved, let us start by giving
a brief informal explanation of how they work. There are two different types
of registers in our machines: normal registers and Dedekind registers. Normal
registers are just registers that contain surreal numbers; as we will see, the
machine can write and read normally from these registers. Dedekind registers on
the other hand are a new piece of hardware. Each Dedekind register R can be
thought of as to have three different components SL, SR, and R. The components

2 By this we mean the notion of limit coming from the order topology over No.
3 A totally ordered field is a field together with a total order ≤ such that for all x, y,

and z, we have that if x ≤ y, then x + z ≤ y + z, and if x and y are positive, then
x · y is positive. The cofinality of an ordered field is the least cardinal λ such that
there is a sequence of length λ cofinal in the field.
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SL and SR called left and right stack of R, respectively, can be thought of as two
possibly infinite stacks of surreal numbers. The last component R of the register
can be thought as a normal register whose content is automatically updated by
the machine to the surreal [SL|SR]. Note that it could be that SL �< SR; in this
case we will assume that the machine crashes.

A SBSSM is just a finite set of normal and Dedekind registers. A program
for such a machine will be a finite linear sequence of commands. As for BSSMs
there are two types of commands:
Computation: the machine can apply a rational function to a normal register
or to a Dedekind register and save the result in a register (either Dedekind or
normal) or in a stack.
Branch: the machine can check if the content of a normal register or of a
Dedekind register is bigger than 0 and perform a jump based on the result.

In each program we should specify two subsets of the set of normal registers;
one that will contain the input of the program, and the other that will contain
the output of the program.

A surreal Blum-Shub-Smale machine will behave as follows: at successor
stages our machine just executes the current command and updates content
of stacks, registers, and program counter accordingly. At limit stage α, the pro-
gram counter is set using lim inf as for infinite time Blum-Shub-Smale machines;
the content of each normal register is updated as follows: if the content of the
register is eventually constant with value x, then we set the value of the register
to x; otherwise we set it to 0. For Dedekind registers we proceed as follows: if
from some point on the content of the stacks is constant, we leave the content of
the stacks, and therefore the content of the register, unchanged. If the content
of the stacks is not eventually constant but from some point β < α on there is
no computation instruction whose result is saved in the register, then we set the
value of each stack to the union of its values from β on, and we set the content
of the register accordingly. If none of the previous cases occurs, then we set the
content of the register to 0 and empty the stacks.

We are now ready to give a formal definition of surreal Blum-Shub-Smale
machine.

Given two polynomials p, q ∈ No[X0, . . . , Xn], we will call p(X0,...,Xn)
q(X0,...,Xn) a formal

polynomial quotient over No in n + 1 variables.
Let n ∈ N and F : Non+1 → No be a partial class function. Then, we say

that F is a rational map over No if there are polynomials in n + 1 variables p, q ∈
No[X0, . . . , Xn] such that F (s0, . . . , sn) = p(s0,...,sn)

q(s0,...,sn) for each s0, . . . , sn ∈ No. In

this case, we will say that p(X0,...,Xn)
q(X0,...,Xn) is a formal polynomial quotient defining F .

Denote by
−→
X the set of finite tuples of variables of any length. Then, we

will denote by No(
−→
X ) the class of formal polynomials quotients over No in any

number of variables. Given a subclass K of No(
−→
X ) and a partial class function

F : Nom+1 → No with m ∈ N, we will say that F is in the class K, in symbols
F ∈ K, if there is a formal polynomial quotient in K defining F . Finally, given
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a subclass K of No we will denote by K(
−→
X ) the the class of formal polynomial

quotients with coefficients in K.

Definition 3. Let N and D be two disjoint sets of natural numbers, I and O be
two disjoint subsets of N, and K be a subclass of No. A (N,D, I, O,K)-SBSSM
program P is a finite sequence (C0, . . . , Cn) with n ∈ N such that for every
0 ≤ m ≤ n the command Cm is of one of the following types:

1. Computation Ri:=f(Rj0
, . . . , Rjm

) were f : Non+1 → No is a map in K(
−→
X )

and i ∈ (N \ I) ∪ D and j0, . . . , jm ∈ N ∪ D.
2. Stack Computation Pushd(Ri, Rj) were i ∈ D, j ∈ N ∪ D and d ∈ {L,R}.
3. Branch if Ri then j were i ∈ N ∪ D and j ≤ n.

The sets N and D are the sets of normal and Dedekind registers of our program,
respectively; and, I and O are the sets of input and output registers, respectively.
When the registers are irrelevant for the argument we will omit, N, D, I, and
O and call P a K(

−→
X )-SBSSM program.

Definition 4. Let N and D be two disjoint sets of natural numbers, the sets
I = (i0, . . . , im) and O = (i0, . . . , im′) be two disjoint subsets of N, K be a
subclass of No, and P = (C0, . . . , Cn) be a (N,D, I, O,K)-SBSSM program.
Given x ∈ Nom+1 the SBSSM computation of P with input x is the transfinite
sequence4

(RN(t), SL(t), SR(t),PC(t))t∈θ ∈ (NoN × ℘(No)D × ℘(No)D × ω)θ

where

1. θ is a successor ordinal or θ = On;
2. PC(0) = 0;
3. RN(0)(ij) = x(j) if ij ∈ I and RN(0)(i) = 0 otherwise;
4. for all i ∈ D we have SL(0)(i) = SR(0)(i) = ∅;
5. if θ = On then for every t < θ we have 0 ≤ PC(t) ≤ n. If θ is a successor

ordinal PC(θ − 1) > n and for every t < θ − 1 we have 0 ≤ PC(t) ≤ n;
6. for all t < θ for all j ∈ D we have SL(t)(j) < SR(t)(j);
7. for every t < θ if 0 ≤ PC(t) ≤ n and CPC(t) = Ri:=f(Rj0

, . . . , Rjn
) then

PC(t + 1) = PC(t) + 1 and: RN(t + 1)(i) = f(c(j0), . . . , c(jn)) if i ∈ N,
(SL(t+1)(i), SR(t+1)(i)) is the canonical representation of f(c(0), . . . , c(n))
if i ∈ D, where for every m < n c(m) := [SL(t)(jm)|SR(t)(jm)] if jm ∈ D,
and c(m) := Rjm

otherwise.
8. for every t < θ if 0 ≤ PC(t) ≤ n and CPC(t) = Pushd(Ri, Rj) then PC(t +

1) = PC(t) + 1 and Sd(t + 1)(i) := RN(t)(j) if j ∈ N; Sd(t + 1)(i) :=
[SL(t)(j)|SR(t)(j)] if j ∈ D. The rest is left unchanged in t + 1;

9. for every t < θ if 0 ≤ PC(t) ≤ n and CPC(t) = if Ri then j then:
PC(t + 1) := j if i ∈ N and RN(t)(i) > 0; PC(t + 1) := j if i ∈ D and
[SL(t)(i)|SR(t)(i)] > 0; PC(t + 1) := PC(t) + 1 if i ∈ N and RN(t)(i) ≤ 0;
and, PC(t + 1) := PC(t) + 1 if i ∈ D and [SL(t)(i)|SR(t)(i)] ≤ 0. The rest
is left unchanged in t + 1;

4 By abuse of notation we write ℘(No) for the class of subsets of No.
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10. for every t < θ if t is a limit ordinal then: PC(t) = lim infs<t PC(s), for
every i ∈ N we let RN(t)(i) := RN(t′)(i) if there is t′ such that ∀t > t′′ >
t′RN(t′)(i) = RN(t′′)(i); RN(t)(i) := 0 if there is no such a t′.
For all i ∈ D, if there are t′L and t′R smaller than t such that for every
t′L < t′′L < t and t′R < t′′R < t we have SL(t′′L)(i) = SL(t′L)(i) and SR(t′′R)(i) =
SRL(t′R)(i) we have SL(t)(i) = SL(t′L)(i) and SR(t)(i) = SR(t′R)(i). Other-
wise, let Ut,i := {t′′ < t | ∀t′′ ≤ t′ < t(CPC(t′) = Rj :=f(Rj0

, . . . , Rjn
) → i �=

j)}. Then SL(t)(i) =
⋃

t′∈Ut,i
SL(t′)(i) and SR(t)(i) =

⋃
t′∈Ut,i

SR(t′)(i).

If θ is a successor ordinal, we say that P halts on x with output y := (RN(θ −
1)(i))i∈O and write P (x) = y.

In the previous definition, for each α ∈ θ and i ∈ N, RN(α)(i) is the content of
the normal register i at the αth step of the computation; similarly, SL(α)(i) and
SR(α)(i) are the sets representing the left and the right stack of the Dedekind
register i; moreover, PC(α) is the value of the program counter. Items 2, 3, and
4 describe the initialisation of the machine. In particular, the program counter is
set to 0, each normal register but the input registers are initialised to 0, the input
registers are initialised to x, and each stack is emptied. Item 5 ensures that the
program counter assumes correct values and that the computation stops. Items
7, 8, and 9 describe the semantics of the instructions according to our previous
description. Finally, item 10 describes the behaviour of the machine at limit
stages according to the description we gave before.

Definition 5. Let n,m ∈ N and F : Non → Nom be a (partial) class function
over the surreal numbers and K a subclass of No. Then we say that F is K(

−→
X )-

SBSSM computable iff there are N,D, I, O ⊂ N with |I| = n, |O| = m and
there is a (N,D, I, O,K)-SBSSM program P such that for every n-tuple x of
surreal numbers we have that: if F (x) = y then P (x) = y, and if x /∈ dom(F )
then P (x) does not halt. Moreover, we say that F is SBSSM computable if it is
No(

−→
X )-SBSSM computable.

As show in [7], infinite time Blum-Shub-Smale machines can only compute
reals in the ωωth level Lωω of constructible universe. Since R is a subfield of
No, every constant real function is R(

−→
X )-SBSSM computable. Therefore, our

SBSSM machines are stronger than infinite time Blum-Shub-Smale machines.
Note that the hardware of our machines in principle does not allow a direct

access to the sign sequence representing a surreal number, e.g., there is no instruc-
tion which allows us to read the αth sign of a surreal in the register i.

Lemma 6. Let K be a subclass of No such that {−1, 0, 1} ⊆ K. Then, the
following functions are K(

−→
X )-SBSSM computable:

1. The function Lim that given an ordinal number α returns 1 if α is a limit
ordinal and 0 otherwise;

2. Gödel’s pairing function g : On × On → On;
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3. The function sgn : No × On → {0, 1, 2} that for every α ∈ On and s ∈ No
returns 0 if the 1 + αth5 sign in the sign expansion of s is −, 1 if the 1 + αth
sign in the sign expansion of s is + and 2 if the sign expansion of s is shorter
than 1 + α;

4. the function seg : No × On → No that given a surreal s and an ordinal
α ∈ dom(s) returns the surreal whose sign sequence is the initial segment of
s of length α.

5. The function cng : No × On × {0, 1} → No that given a surreal s ∈ No, sgn ∈
{0, 1} and α ∈ On such that α < dom(s) returns a surreal s′ ∈ No whose sign
expansion is obtained by substituting the 1 + αth sign in the expansion of s
with − if sgn = 0 and with + if sgn = 1;

By interpreting 0 as − and 1 as +, every binary sequence corresponds naturally
to a surreal number. Therefore, we can represent the content of a tape of Turing
machines, infinite time Turing machines (ITTMs), and ordinal Turing machines
(OTMs) as a surreal number. Lemma 6 tells us that we can actually access this
representation and modify it.

5 Computational Power of Surreal Blum-Shub-Smale
Machines

Now that we introduced a notion of computability over No, we shall compare
our new model of computation with classical and transfinite models of compu-
tation. In this section, we will assume that the reader is familiar with the basic
definitions of classical computability theory, infinite time Turing machines com-
putability theory, and ordinal Turing machines computability theory; see, e.g.,
[6,8].

Given a class C and a set X we will denote by X<C the class of functions
whose domain is in C and codomain is X. Let α be an ordinal, X be a set, and
C be a class. Given a sequence (wβ)β<α of elements in X<α, we define [wβ ]β<α

to be the concatenation of the wβs.
We start by fixing a representation of binary sequences in No. Let Δ : No →

2<On be such that for all s ∈ No, Δ(s) is the binary sequence of length dom(s)
obtained by substituting each + in s by a 1 and each − by a 0.

Definition 7. Given a partial function f : 2<On → 2<On and a class of rational
functions K(

−→
X ) we say that f is K(

−→
X )-SBSSM computable if there is a K(

−→
X )-

SBSSM program which computes the surreal function F such that f = Δ ◦ F ◦
Δ−1.

As we will see, if K is a subclass of No containing {−1, 0, 1} then K(
−→
X )-

SBSSMs are very powerful. In order to show this, we will now begin by proving
their capability of simulating all the most important classical models of transfi-
nite computation. Using Lemma 6 it is immediate to see that if K is a subclass
5 In this sentence 1 + α should be read as the ordinal addition so that for α ≥ ω we

have 1 + α = α.
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of No such that {−1, 0, 1} ⊆ K, then every function computable by an ordinary
Turing machine is K(

−→
X )-SBSSM computable; moreover, the classical halting

problem is K(
−→
X )-SBSSM computable.

The following notion was introduced by Hamkins and Lewis in [6] and further
studied by several authors; see, e.g., [12]. An ordinal α is clockable if there is an
ITTM which runs on empty input for exactly α steps. We will denote by λ the
supremum of the clockable ordinals.

Theorem 8. Let K be a subclass of No such that {−1, 0, 1} ⊆ K. Then, every
ITTM-computable function is K(

−→
X )-SBSSM computable. Moreover, if λ ∈ K,

then the halting problem for ITTMs is K(
−→
X )-SBSSM computable.

Proof. We will assume that our ITTM has only one tape; a similar proof works
in the general case. We call a snapshot of an execution of an ITTM at time α a
tuple (T (α), I(α),H(α)) ∈ {0, 1}ω ×ω×ω where T (α) is a function representing
the tape content of the ITTM at time α, I(α) is the state of the machine at
time α, and H(α) is the position of the head at time α. We know that we can
code T (α) as a sign sequence of length ω. Moreover, at the successor stages,
by Lemma 6, we can modify this sequence in such a way that the result is a
sign sequence in Noω coding the ITTM tape after the operation is performed.
Moreover, we know that there is a bound, λ, to the possible halting times of an
ITTM. Therefore, we can code the list of the T (α) in the snapshots of an ITTM
as a sequence of pluses and minuses length λ; hence, as a surreal number of
the same length. Consider the K(

−→
X )-SBSSM program that uses two Dedekind

registers T and S, and two normal registers I and H. The first Dedekind register
is used to keep track of the tapes in the snapshots, the second Dedekind register
is used to keep track of how many ITTM instructions have been executed, the
register I is used to keep track of the current state of the ITTM, and the register
H to keep track of the current head position.

At each step α, if S is a successor ordinal, the program first copies the last
ω-many bits of T into a normal register R; then, executes the instruction I with
head position6 (ω × S) + H on the string sequence of T writing the result in R.
Then, the program computes the concatenation sα of T and R; and pushes the
canonical representation of sα into the stacks of T . Since for all β < α, the sign
sequence of sβ is an initial segment of sα, T will contain

⋃
β∈α sα at limit stages.

Now, if S is a limit, the program first computes the content of R as the point-
wise lim inf of the snapshots in T . Note that this is computable. Indeed, suppose
that the program needs to compute the lim inf of the bit in position i; then it
can just look sequentially at the values of the snapshots at i and if it finds a 0
at i in the αth snapshot it pushes α−1 into the left stack of a Dedekind register
R′. Once the program has looked through all the snapshots, it will compute the
lim inf of the cell in position i as 0 if R′ = S and as 1 otherwise. Then, the
program will set H to 0 and I to the special limit state and continue the normal
execution. This ends the first part of the proof.
6 Once again the operations in (ω ×S)+H must be interpreted as ordinal operations.
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Now, assume that λ ∈ K. Note that the K(
−→
X )-SBSSM program we have

just introduced can simulate the ITTM and check after the execution of every
ITTM step that S < λ. If at some point the program simulates λ-many steps of
the ITTM, i.e., S ≥ λ, the program will just halt knowing that the ITTM can
not halt.

Since, by [11, Lemma 5], ITTMs can decide the halting problem of infinite
time Blum-Shub-Smale machines we get:

Corollary 9. Let K be a subclass of No such that {−1, 0, 1} ⊆ K. Then, every
function computable by an infinite time Blum-Shub-Smale machine is K(

−→
X )-

SBSSM computable and the halting problem for infinite time Blum-Shub-Smale
machine is K(

−→
X )-SBSSM computable.

As shown in [8, Lemma 6.2], every OTM computable real is in the con-
structible universe L. Therefore, if V �= L, we have that the notions of OTM
and R(

−→
X )-SBSSM computability do not coincide. As usual we will denote by

ZFC the axioms of set theory with the Axiom of Choice.

Lemma 10. If ZFC is consistent, so is ZFC+“there is a function that is R(
−→
X )-

SBSSM computable but not OTM computable”.

Theorem 11. Let K be a subclass of No such that {−1, 0, 1} ⊆ K. Then, every
OTM computable partial function f : 2<On → 2<On is K(

−→
X )-SBSSM com-

putable.

Proof. We will assume that our machine has two tapes, one read-only input tape
and an output tape; the general case follows.

Our program will be very similar to the one we used for ITTMs. For this
reason, we will mostly focus on the differences.

The main difference is that, while for ITTM we can just save the sequence
of tape snapshots, for OTM we cannot simply do that because the tape has
class length. The problem can be solved by padding. Given a binary sequence
b := [bβ ]β∈α where bβ ∈ {−,+} for each β < α, let bp be the sequence obtained
by concatenating the sequence [+bβ+]β∈α with the sequence −−. We call bp the
padding of b. With this operation, we can now save the initial meaningful part
of the OTM tape in a register.

The program has four Dedekind registers T , S, Hi, Ii, and two normal reg-
isters H and I. As for ITTMs, the Dedekind register T is used to keep track
of the tapes in the snapshots; the Dedekind register S is used to keep track of
how many OTM instructions have been executed; the register I is used to keep
track of the current state of the OTM; and the register H to keep track of the
current head position. Note that, since at limit stages the head position and the
state of the machine need to be set to the lim inf of their previous contents, we
added the Dedekind registers Hi and Ii to keep track of the histories of H and
I, respectively.
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The registers T , Hi and Ii are really the main difference between this pro-
gram and the one we used to simulate ITTM. At each stage, T will contain the
concatenation of the paddings of the previous configurations of the OTM tape.
Note that the sequence −− works as a delimiter between one snapshot and the
next one. Also, since we cannot save all the OTM tape, each time we will just
record the initial segment of the OTM tape of length S, i.e., the maximum
portion we could have modified.

If S := α + 1, the program first copies the last snapshot in T to a normal
register sα removing the padding. At this point, the program can just simulate
one step of OTM and then compute the padding sp

α of sα, and push the standard
representation of sp

α in T .
Now, the program will take the content of Hi, and will compute the surreal

number hα whose sign sequence is Hi followed by H minuses and one plus. Then,
the program will push the canonical representation of hα into the stacks of Hi.
Similarly for I, the program will take the content of Ii, and will compute the
surreal number iα whose sign sequence is Ii followed by Ii minuses and one plus.
Then, the program will push the canonical representation of iα into the stacks
of Ii.

Again, note that, as for ITTMs, at limit stages T , Hi and Ii will contain the
concatenation of the padded snapshots of the tape, H and I, respectively.

If S is a limit ordinal, with a bit of overhead due to padding, the program
can compute the pointwise lim inf of the tape. It is not hard to see that this
operation is a minor modification of the one used for ITTMs. Note that, in this
case, not all the bits will be present in every snapshot; if we want to compute
the ith bit of the limit snapshot we will have to start computing the lim inf from
the ith snapshot in T . The rest is essentially the same as what we did for ITTM
case. Then, the program will compute the content of I; and, using Hi and Ii,
it can compute the lim inf of H only considering the stages where I was the
current state. Then, the program can proceed exactly as in the successor case.

As we have seen so far, if K is a subclass of No such that {−1, 0, 1} ⊆ K

then K(
−→
X )-SBSSMs are at least as powerful as OTMs. It turns out that, if

K = {−1, 0, 1}, the two models of computation are actually equivalent; see
Theorem 14.

As shown in [4], via representations it is possible to use OTMs to induce a
notion of computability over surreal numbers. We will take the same approach
here.

Let δNo : 2<On → No be the function that maps each surreal number to
a binary sequence as follows: δNo(p) = q iff p is a binary sequence of length
2 × �(q) + 2, such that p = [wα]α∈�(q)+1 where: wα := 00 if α ∈ dom(q) and
q(α) = − and, wα := 11 if α ∈ dom(q) and q(α) = +, and w�(q) := 01.

To avoid unnecessary complications, in the following we will only deal with
unary surreal functions.

Definition 12. Given a partial function F : No → No, we say that F is OTM
computable if there is an OTM program that computes the function G such that
F = δNo ◦ G ◦ δ−1

No .
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Note that the function δNo is essentially7 an extension to the class of surreal
numbers of the function δQκ

introduced in [4]. From this fact, and from the
fact that, as shown in [4, Lemma 9 & 10], OTMs are capable of computing
surreal operations and convert back and forth from cut representation to sign
sequences, it is easy to see that OTMs and {−1, 0, 1}(

−→
X )-SBSSM have the same

computational strength.

Theorem 13. Let K be a subclass of OTM computable elements of No, i.e.,
such that for every s ∈ K the sequence δ−1

No (s) is computable by an OTM with
no input. Then, every K(

−→
X )-SBSSM computable function is OTM computable.

In particular, every {−1, 0, 1}(
−→
X )-computable function is OTM computable.

So, {−1, 0, 1}(
−→
X )-SBSSM have the same computational power as OTMs.

Note that, if we enlarge the class of rational functions our machine is allowed
to use, we obtain progressively stronger models of computations. Moreover, it is
easy to see that the class of coefficients allowed in the class of rational functions
acts as a set of parameters on the OTMs side.

Theorem 14. Let K be a subclass of No. Then a partial function F : No → No is
K(

−→
X )-SBSSM computable iff it is computable by an OTM with parameters in K.

Corollary 15. Every partial function F : No → No which is a set is No(
−→
X )-

SBSSM computable.

In [10], Ethan Lewis defines a notion of computability based on OTMs
which allows for infinite programs. We will call these machines infinite program
machines (IPMs). In [10], Lewis shows that IPMs are equivalent to OTMs with
parameters in 2On. Therefore, Theorem 14 tells us that No(

−→
X )-SBSSM are a

register model for IPMs.
We end this paper by introducing halting sets and universal programs for

our new model of computation. Using classical coding techniques, given a class
of rational functions K(

−→
X ), every K(

−→
X )-SBSSM program can be coded as one

(possibly infinite) binary sequence, i.e., a surreal number.
Given two natural numbers n and m, and a subclass K of surreal numbers we

will denote by Pn,m
K the class of (N,D, I, O,K)-SBSSM programs with |I| = n,

|O| = m.
Let K be a class of the surreal numbers. We define the following class8:

Hn,m
K := {(p, s) ∈ No | p is a K(

−→
X )-SBSSM program in Pn,m

K halting on s}.
As usual, we say that a set of surreal numbers is decidable if its characteristic

function is computable.

7 The class function δNo is not literally an extension of δQκ just because in [4] we
assumed dom(δQκ) ⊂ 2κ rather than dom(δQκ) ⊂ 2<κ. This does not make much of
a difference in our algorithms as far as we have a marker for the end of the code of
the sign sequence (i.e., the last two bits in the definition of δNo).

8 Note that, if K is a set Hn,m
K is also a set.
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If we assume that K contains {−1, 0, 1} we can use the code of a program,
together with the fact that OTMs can simulate K(

−→
X )-SBSSM and can be sim-

ulated by K(
−→
X )-SBSSM, to define a universal SBSSM program.

Let N and D be two disjoint sets of natural numbers, I and O be two disjoint
subsets of N, and K be a class of surreal numbers. A (N,D, I, O,K)-SBSSM
program P with |I| = n + 1 and |O| = m is called universal if for every code p′

of a program in Pn,m
K and for every x ∈ Non we have P (p′, x) = P (x).

A straightforward generalisation of the classical arguments shows the follow-
ing results:

Theorem 16. Let K be a subclass of No containing {−1, 0, 1}. Moroever, let
N,D, I, O ⊂ N be such that: N and D are disjoint; and, I and O are disjoint
subsets of N. Then, there is a universal (N,D, I, O,K)-SBSSM program.

Corollary 17. Let K be a subclass of No containing {−1, 0, 1}. Then H1,1
K is

not K(
−→
X )-SBSSM computable.
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Abstract. We briefly summarize some of the findings on non-recursive
trade-offs, which were first observed by Meyer and Fischer in their sem-
inal paper on “Economy of Description by Automata, Grammars, and
Formal Systems” in 1971. This general phenomenon is about conver-
sion problems between different (computational) description models that
cannot be solved efficiently. Indeed, they evade solvability a forteriori
because the change in description size caused by such a conversion can-
not be bounded above by any recursive function. Hence, a result on non-
recursive trade-offs can alternatively be interpreted as a compression of
the description model with arbitrary space gains. Since 1971 there has
been a steadily growing list of results where this phenomenon has been
observed, and it appears that non-recursive trade-offs are “almost every-
where.”

1 Introduction

In computer science the systematic analysis and classification of the size of formal
systems for specifying mathematical objects as opposed to the computational
power of such systems was initiated by Meyer and Fischer [22], and is known
as descriptional complexity (of formal systems). Descriptional complexity has
historically been a multidisciplinary area of study, with contributions from very
different areas of computer science such as, for example, automata and formal
language theory, computational complexity, cryptography, information theory,
etc. In the classification of automata, grammars, and related (formal) systems it
turns out that the gain in economy of description heavily depends on the consid-
ered system. For instance, it is well known that nondeterministic finite automata
can be converted into equivalent deterministic finite automata of at most expo-
nential size. For deterministic pushdown automata accepting a regular language,
we know that they can be converted into an equivalent finite automaton of at
most doubly-exponential size [27]. In contrast, if we replace “deterministic push-
down automata” with “nondeterministic pushdown automata” then the maxi-
mum size blow-up can no longer be bounded by any recursive function—more
precisely [22, Proposition 7]:

“For any recursive function f and for arbitrarily large integers n, there is
a [nondeterministic pushdown automaton] of size n describing a regular

c© Springer Nature Switzerland AG 2019
F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 25–36, 2019.
https://doi.org/10.1007/978-3-030-22996-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22996-2_3&domain=pdf
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(in fact co-finite) set whose reduced finite automaton has at least f(n)
states.”

Therefore the achievable benefit in description length is of arbitrary size. This
result is not a coincidence. In fact, it is an expression of a much wider phe-
nomenon which is nowadays known as a non-recursive trade-off between descrip-
tional systems. Since its original encounter there has been a steadily growing
list of results where non-recursive trade-offs have been observed, for exam-
ple, [6,8,9,12,16,17,19,20,25,26,28]. They usually sprout at the wayside of the
crossroads of (un)decidability and in many cases proving such trade-offs appar-
ently requires ingenuity and careful automata constructions. From the broad
spectrum of descriptional systems that are covered by the previously mentioned
papers, it is fair to say that “non-recursive trade-offs are almost everywhere.”
For a survey on descriptional complexity results, not limited to non-recursive
trade-offs, we refer to, for example, [13].

In this paper we briefly give our view of what constitute nice and interest-
ing findings on non-recursive trade-offs. Our focus is on the relation between
non-recursive trade-offs and undecidability from a automata and formal lan-
guage perspective. We do not prove the presented results but we draw attention
to the big picture of some of the main ideas involved. Besides techniques and
tools to prove non-recursive trade-offs we present an assorted list of examples
involving formal description systems of Chomskyan and Lindenmayerian stan-
dard formal language families, as well as from classical automata theory. These
formal languages are very appealing since they are well studied from different
angles in the literature, in particular inclusions relations, incomparabilities, clo-
sure properties, decision problems, etc. It is worth mentioning that besides the
qualitative classification of transformations it is also possible to quantitatively
classifying non-recursive trade-offs. Due to the overwhelming amount of litera-
ture on the subject in question it obviously lacks completeness. Nevertheless, we
hope to give a detailed overview on how non-recursive trade-offs are triggered
by (un)decidability results on the underlying description systems.

The paper is organized as follows: in the next section we introduce some
notations and basic properties of descriptional systems and reasonable size mea-
sures. Then in Sect. 3 we present a unified proof scheme for non-recursive trade-
offs emerging form the literature with some examples applied. Finally, Sect. 4 is
devoted to the categorization of non-recursive trade-offs by bounds on their
growth rate. To this end, some preliminaries from computability theory are
needed. Then it is shown how to derive upper and lower bounds on non-recursive
trade-offs by verifying that descriptors of a certain type generate languages that
can be described by another description system. This problem is central and it is
called the “S2-ness of S1 descriptor problem,” where S1 and S2 are descriptional
systems satisfying certain properties. Moreover, it is shown how non-recursive
trade-offs can be deduced by simple non-closure properties and their computa-
tional complexity. In all cases we give meaningful assorted examples from the
literature.
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2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. For the length of a word w we write |w|.
Set inclusion is denoted by ⊆ and strict set inclusion by ⊂.

We recall some notation for descriptional complexity. Following [13] we say
that a descriptional system S is a set of finite descriptors such that each D ∈ S
describes a formal language L(D), and the underlying alphabet alph(D) over
which D represents a language can be obtained from D. The family of languages
represented (or described) by S is L (S) = {L(D) | D ∈ S }. For every lan-
guage L, the set S(L) = {D ∈ S | L(D) = L } is the set of its descriptors in S.
A complexity measure for a descriptional system S is a total recursive mapping c
with c : S → N.

Example 1. Finite automata or (deterministic) linear bounded automata can
be encoded over some fixed alphabet such that their input alphabets can be
extracted from the encodings. The sets of these encodings are descriptional sys-
tems S1 and S2, and L (S1) is the family of regular languages and L (S2) is the
family of (deterministic) context-sensitive languages.

Examples for complexity measures for finite automata or linear bounded
automata are the total number of symbols, that is, the length of the encoding
(length), or, in the former case, the number of states and, in the latter case, the
product of the number of states and the number of tape symbols. �

Here we only use complexity measures that are recursively related to length.
If there is a total recursive function g : N × N → N such that

length(D) ≤ g(c(D), |alph(D)|)
for all D ∈ S, then c is said to be an s-measure. If, in addition, for any alpha-
bet Σ, the set of descriptors in S describing languages over Σ is recursively
enumerable in order of increasing size, then c is said to be an sn-measure.

Example 2. The number of states is an sn-measure for finite automata. The
product of the number of states and the number of tape symbols is an sn-measure
for linear bounded automata. �

We say that a descriptional system S is recursive (recursively enumerable),
if for each descriptor D ∈ S the language L(D) is recursive (recursively enumer-
able). Moreover, if there exists an effective procedure to convert D into a Turing
machine that decides (semi-decides) L(D), then the descriptional system is said
to be effectively recursive (effectively recursively enumerable).

Whenever we consider the relative succinctness of two descriptional sys-
tems S1 and S2, we assume that the intersection L (S1) ∩ L (S2) is non-empty.
Let S1 and S2 be descriptional systems with complexity measures c1 and c2,
respectively. A total function f : N → N is an upper bound for the increase in
complexity when changing from a descriptor in S1 to an equivalent descriptor
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in S2, if for all D1 ∈ S1 with L(D1) ∈ L (S2), there exists a D2 ∈ S2(L(D1))
such that c2(D2) ≤ f(c1(D1)).

If there is no recursive upper bound, then the trade-off for changing from a
description in S1 to an equivalent description in S2 is said to be non-recursive.
In other words, there are no recursive functions serving as upper bounds, that is,
whenever the trade-off from one descriptional system to another is non-recursive,
one can choose an arbitrarily large recursive function f but the gain in economy
of description exceeds f when changing from the former system to the latter.
In fact, the non-recursive trade-offs are independent of particular sn-measures.
Any two complexity measures c1 and c2 for some descriptional system S are
related by a function h(n) = max{ c2(D) | D ∈ S such that c1(D) = n }. By the
properties of sn-measures, function h is recursive. So, a non-recursive trade-off
exceeds any difference caused by applying two sn-measures. Moreover, as long
as non-recursive trade-offs are studied one may think safely as the length of the
encoding strings to be the complexity measure.

3 Non-recursive Trade-Offs

Most of the non-recursive trade-off proofs appearing in the literature are basically
relying on two general results of Hartmanis [8,9]. The following theorem is a
slightly generalized and unified form of these proof techniques [13].

Theorem 1. Let S1 and S2 be two descriptional systems for recursive languages
such that any descriptor D in S1 and S2 can effectively be converted into a
Turing machine that decides L(D), and let c1 be a measure for S1 and c2 be an
sn-measure for S2. If there exists a descriptional system S3 and a property P
that is not semi-decidable for descriptors from S3, such that, given an arbitrary
D3 ∈ S3, (i) there exists an effective procedure to construct a descriptor D1

in S1, and (ii) D1 has an equivalent descriptor in S2 if and only if D3 does not
have property P , then the trade-off between S1 and S2 is non-recursive.

So, to some extend, the undecidability of the problem whether some descrip-
tor in S3 does not have property P is reduced to the computability of the
trade-off.

Are non-recursive trade-offs a rare phenomenon? No, they are appearing
almost everywhere. For example, between each two separated Turing machine
space classes there is always a non-recursive trade-off (see also [9]).

Example 3. Denote the languages accepted by deterministic Turing machines
obeying a space bound s by DSPACE(s). If DSPACE(s1) ⊃ DSPACE(s2) for a
constructable bound s1, then the trade-off between s1-space bounded Turing
machines and s2-space bounded Turing machines is non-recursive.

In order to obtain the trade-offs, we apply Theorem 1 as follows. There exists
an s1-space bounded Turing machine M that has no equivalent s2-space bounded
Turing machine. Let S3 be the set of deterministic one-tape Turing machines.
For any D3 ∈ S3 an s1-space bounded Turing machine D1 is constructed that
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works as follows. On input w, machine D1 generates successively all strings v
whose lengths are bounded by s1(|w|) (s1 is constructable). For each v it is tested
whether it represents a valid (halting) computation of D3 on empty input. If D1

does not find this string, it starts simulating M on its input w. If D1 finds the
string, it rejects its input w. So, we obtain L(D1) = L(M) if D3 does not halt
on empty input. Otherwise, L(D1) is empty or a finite subset of L(M).

This implies D1 has an equivalent s2-space bounded Turing machine if and
only if M halts on empty input. So, property P is to run forever on empty input,
which is not semi-decidable for Turing machines. �

The example can be modified to work for several other Turing machine classes
which are separated by bounding some resource. For example, P 	= NP if and
only if the trade-off between NP and P is non-recursive—see [9–11] for further
relations between descriptional and computational complexity.

Let us come to more restricted computational models than Turing machines.
The first non-recursive trade-off at all was observed by Meyer and Fischer [22]
between context-free grammars and finite automata. Also for restricted models
the method to derive non-recursive trade-offs presented in Theorem 1 can serve
as a powerful tool. Some non-recursive trade-offs follow immediately by known
undecidability results.

Let S1 and S2 be two descriptional systems that meet the prerequisites of
Theorem 1 such that the set

R = {D | D ∈ S1 and D has no equivalent descriptor in S2 }

is not recursively enumerable. Then we apply Theorem 1 as follows: descriptional
system S3 is set to be S1 and the property P is to have no descriptor in S2. So,
the trade-off between S1 and S2 is non-recursive.

Example 4. Deciding the regularity of linear context-free grammars is Σ2-
hard [2] which implies that neither the problem nor its negation is semi-decidable.
So, we may apply Theorem 1 for any pairs of descriptional systems whose
first component effectively represents the linear context-free and whose sec-
ond component effectively represents the regular languages. That is, there are
non-recursive trade-offs between linear context-free grammars and determinis-
tic finite automata, between one-turn pushdown automata and nondeterministic
finite automata, etc. �

Exemplarily, we mention some further non-recursive trade-offs. For more
results, references, and discussions about this phenomenon see [13,18].

Theorem 2. The trade-offs between context-free grammars and unambiguous
context-free grammars, and between unambiguous context-free grammars and
deterministic pushdown automata are non-recursive.

So, even if the nondeterminism is restricted to unambiguous computations,
the descriptional power of such pushdown automata is much stronger than that of
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deterministic ones. On the other hand, the impact of the restriction is significant,
since the descriptional power of nondeterministic pushdown automata is much
stronger than that of unambiguous ones.

Recently, in [14] a new interpretation of nondeterminism has been intro-
duced. The restriction introduced there is that of one-time nondeterminism,
which means that at the outset the computation is nondeterministic, but when-
ever it performs a guess, this guess is fixed for the rest of the computation.
This is a clear change on the semantics of nondeterminism. The new concept is
studied for finite automata (OTNFA) and pushdown automata. Although one-
time nondeterminism does not increase the accepting power of ordinary finite
state devices, their conciseness is even greater than that of ordinary nondeter-
ministic finite automata compared to deterministic ones. In particular, for the
special case of an n-state OTNFA with a sole nondeterministic state, that is
nondeterministic only for one input symbol and has nondeterministic degree n,
then (n + 1)n states are a lower bound for any equivalent deterministic finite
automaton.

For one-time nondeterministic pushdown automata the results on the descrip-
tional complexity are even more dramatic.

Theorem 3. The trade-offs between nondeterministic pushdown automata and
one-time nondeterministic pushdown automata, and between one-time nonde-
terministic pushdown automata and deterministic pushdown automata are non-
recursive.

Also between the levels of infinite hierarchies of separated language classes,
where intuitively the classes are closer together, there are non-recursive trade-
offs. In [21] the trade-offs between (k + 1)-turn and k-turn pushdown automata
are investigated.

Theorem 4. Let k ≥ 1 be an integer. Then the following trade-offs are non-
recursive:

1. between nondeterministic 1-turn pushdown automata and finite automata,
2. between nondeterministic (k +1)-turn pushdown automata and nondetermin-

istic k-turn pushdown automata,
3. between nondeterministic pushdown automata and nondeterministic finite-

turn pushdown automata, and
4. between nondeterministic and deterministic k-turn pushdown automata.

So, there are infinite hierarchies such that between each two levels there are
non-recursive trade-offs. Other results of such flavor have been obtained in [18]
where deterministic and nondeterministic one-way k-head finite automata (k-
DFAs and k-NFAs, respectively) are considered.

Theorem 5. Let k ≥ 1 be an integer. Then the following trade-offs are non-
recursive:

1. between (k + 1)-DFAs and k-DFAs,



Non-Recursive Trade-Offs Are “Almost Everywhere” 31

2. between (k + 1)-NFAs and k-NFAs,
3. between (k + 1)-DFAs and k-NFAs,
4. between 2-NFAs and (k + 1)-DFAs, and
5. between (k + 1)-DFAs and nondeterministic pushdown automata.

In [16] the problem whether there are non-recursive trade-offs between the
levels of the hierarchies defined by two-way k-head finite automata (cf. also [17])
has been answered in the affirmative.

Furthermore, Hartmanis [8] raised the question whether the trade-off between
two descriptional systems is caused by the fact that in one system it can be
proved what is accepted, but that no such proofs are possible in the other system.
For example, consider descriptional systems for the deterministic context-free
languages. It is easy to verify whether a given pushdown automaton is deter-
ministic, but there is no uniform way to verify that a nondeterministic push-
down automaton accepts a deterministic context-free language. Sticking with
this example, one may ask whether the trade-off is affected if so-called veri-
fied nondeterministic pushdown automata are considered which come with an
attached proof that they accept deterministic languages. The following theorem
summarizes results from [8].

Theorem 6. The following trade-offs are non-recursive:

1. between verified and deterministic pushdown automata,
2. between pushdown automata and verified pushdown automata, and
3. between verified ambiguous and unambiguous context-free grammars.

4 Levels of Non-Recursive Trade-Offs

Non-recursive trade-offs between descriptional systems are investigated in an
abstract and more axiomatic fashion in [7]. The aim is to categorize non-recursive
trade-offs by bounds on their growth rate, and to show how to deduce such
bounds in general. Also criteria are identified which, in the spirit of abstract
language theory, allow to deduce non-recursive trade-offs from effective closure
properties of language families on the one hand, and differences in the decidabil-
ity status of basic decision problems on the other.

So, we are now interested in classifying non-recursive trade-offs qualitatively.
As it will turn out, the S2-ness of S1 descriptors, that is, the problem given a
descriptor D1 ∈ S1 does the language L(D1) belong to L (S2), plays a central role
in this task. We assume the reader to be familiar with the basics of recursively
enumerable sets as contained in [23]. In particular we consider the arithmetic
hierarchy, which is defined as follows:

Σ1 = {L | L is recursively enumerable },

Σn+1 = {L | L is recursively enumerable in some P ∈ Σn },

for n ≥ 1. Here, a language L is said to be recursively enumerable in some P
if there is a Turing machine with oracle P that semi-decides L. Let Πn be
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the complement of Σn, that is, Πn = {L | L is in Σn }. Moreover, let Δn =
Σn ∩ Πn, for n ≥ 1. Observe that Δ1 = Σ1 ∩ Π1 is the class of all recursive
sets. Completeness and hardness are always meant with respect to many-one
reducibilities ≤m, if not otherwise stated. Let K denote the halting set, that is,
the set of all encodings of Turing machines that accept their own encoding. For
any set A define A′ = KA to be the jump or completion of A, where KA is
the A-relativized halting set, which is the set of all encodings of Turing machines
with oracle A that accept their own encoding, and define A(0) = A and A(n+1) =
(A(n))′, for n ≥ 0. By Post’s Theorem we have that ∅(n) is Σn-complete (∅(n)
is Πn-complete) with respect to many-one reducibility, for n ≥ 1, where ∅(n)
is the n-th jump of ∅. Moreover, note that (1) L ∈ Σn+1 if and only if L is
recursively enumerable in ∅(n) and (2) L ∈ Δn+1 if and only if L is recursive in,
or equivalently Turing reducible to, the jump ∅(n). In this case we simply write
L ≤T ∅(n), where ≤T refers to Turing reducibility. In the following we also use
the above introduced framework on Turing machines and reductions in order to
compute (partial) functions.

4.1 Bounds for Non-Recursive Trade-Offs

In this subsection we generalize the observations before Example 4 the other
way around. It will turn out, that whenever a non-recursive trade-off between
descriptional systems S1 and S2 exists, its (upper) bound is induced by the
property of verifying the S2-ness of an S1 descriptor, that is, the problem of
determining, whether for a given descriptor D ∈ S1 the language L(D) belongs
to L (S2). In order to make this more precise we need the following theorem [7].

Theorem 7. Let S1 and S2 be two descriptional systems. The problem of deter-
mining for a given descriptor D1 ∈ S1 whether there exists an equivalent descrip-
tor in S2, that is, the S2-ness of S1 descriptors, can be solved in Σ3, if both S1

and S2 are effectively recursively enumerable. When both systems are effectively
recursive, the problem can be solved in Σ2.

A closer look reveals that equivalence between descriptors from S1 and S2

can be solved in Π1 if both descriptional systems are effectively recursive. This
equivalence problem belongs to the class Π2 if both systems are constructively
recursively enumerable. Thus, the upper bound on the equivalence problem is
one less in the level of unsolvability than the S2-ness of S1 descriptors.

The previous theorem can be utilized to prove an upper bound when changing
from one system to another one.

Theorem 8. Let S1 and S2 be two descriptional systems, c1 be an sn-measure
for S1 and c2 be a measure for S2. If both S1 and S2 are constructively recursively
enumerable, then there is a total function f : N → N that serves as an upper
bound for the increase in complexity when changing from a descriptor in S1

to an equivalent descriptor in S2, satisfying f ≤T ∅′′′. When both systems are
constructively recursive, the function f can be chosen to satisfy f ≤T ∅′′.
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What about lower bounds on the trade-off function f? In fact, we show
that there is a relation between the function f and the equivalence problem
between S1 and S2 descriptors, in the sense that, whenever the former problem
becomes easy, the latter is easy too.

Theorem 9. Let S1 and S2 be two descriptional systems, c1 be a measure for S1,
c2 be an sn-measure for S2, and f : N → N be a total function that serves as
an upper bound for the increase in complexity when changing from a descriptor
in S1 to an equivalent descriptor in S2. Then we have:

1. If both S1 and S2 are constructively recursively enumerable and f ≤T ∅′′ then
the S2-ness of S1 descriptors is recursive in ∅′′.

2. If both descriptional systems are constructively recursive and f ≤T ∅′ then
the S2-ness of S1 descriptors is recursive in ∅′.

Thus, we can show that only two types of non-recursive trade-offs within the
recursively enumerable languages exist! First consider the context-free grammars
and the right-linear context-free grammars (or equivalently finite automata) as
descriptional systems. Thus, we want to consider the trade-off between context-
free languages and regular languages. In [22] it was shown that this trade-off is
non-recursive. By Theorem 8, one can choose the upper bound function f such
that f ≤T ∅′′. On the other hand, if f ≤T ∅′, then by Theorem 9 we deduce
that checking regularity for context-free grammars is recursive in ∅′ and hence
belongs to Δ2. This is a contradiction, because in [4] this problem is classified to
be Σ2-complete. So, we obtain a non-recursive trade-off somewhere in between ∅′′

and ∅′, that is, f ≤T ∅′′ but f 	≤T ∅′.
Furthermore, based on the previous observations, in [7] another proof scheme

for non-recursive trade-offs is developed. The statement reads as follows.

Theorem 10. Let S1 and S2 be two descriptional systems, c1 be a measure
for S1, and c2 be an sn-measure for S2. Then the trade-off between S1 and S2 is
non-recursive, if one of the following two cases applies:

1. If both S1 and S2 are effectively recursively enumerable and the S2-ness of S1

descriptors is at least Σ3-hard, or
2. if both descriptional systems are effectively recursive and the S2-ness of S1

descriptors is at least Σ2-hard.

Here hardness is meant with respect to many-one reducibility.

4.2 Deriving Non-recursive Trade-Offs from Closure Properties

Next we present two rather abstract methods for proving non-recursive trade-
offs. In contrast to previous schemes, here we only use properties that are known
from the literature for many descriptional systems: these concern the decidability
of basic decision problems on the one hand, and closure properties familiar from
the study of abstract families of languages on the other hand.
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To this end, we define effective closure of descriptional systems under lan-
guage operations. We illustrate the definition by example of language union.
Let S be a descriptional system. We say that S is effectively closed under union,
if there is an effective construction that, given some pair of descriptors D1 and D2

from S, yields a descriptor from S for L(D1) ∪ L(D2). Effective closure under
other language operations is defined in a similar vein.

A descriptional system is called an effective trio [15], if it is effectively closed
under λ-free homomorphism, inverse homomorphism, and intersection with reg-
ular languages. If it is also effectively closed under general homomorphism, we
speak of an effective full trio. Every trio is also effectively closed under concate-
nation with regular sets.

Theorem 11. Let S1 and S2 be two descriptional systems that are effective full
trios, S1 be effectively recursively enumerable, c1 be a measure for S1, and c2 be
an sn-measure for S2. If

1. the infiniteness problem for S1 is not semi-decidable and
2. the infiniteness problem for S2 is decidable,

then the trade-off between S1 and S2 is non-recursive.

The advantage of this quite abstract method for proving non-recursive trade-
offs lies in the fact that in automata and formal language theory language families
and their closure properties are very well investigated. We give an assorted list
of examples:

Example 5. For any applicable s-measures, the following trade-offs are non-
recursive:

1. between Turing machines and finite automata,
2. between Turing machines and (linear) context-free grammars,
3. between Turing machines and ET0L systems, and
4. between Turing machines and (linear) context-free indexed grammars,

where indexed grammars were introduced in [1], and ET0L systems were studied,
for example, in [24]. �

Yet another method is given next, where the undecidable problem the non-
recursive trade-off relies on is the emptiness problem and not the infiniteness
problems as in the previous theorem.

Theorem 12. Let S1 and S2 be two descriptional systems that are effective
trios, S1 be effectively recursively enumerable, c1 be a measure for S1, and c2 be
an sn-measure for S2. If

1. S1 has a decidable word problem but an undecidable emptiness problem, and
2. S2 has a decidable emptiness problem,

then the trade-off between S1 and S2 is non-recursive.
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Since the emptiness problem is more likely to be studied for a formal lan-
guage family, it is somehow easier to apply the previous theorem. Again, we give
an assorted list of non-recursive trade-offs between different formal language
generating mechanisms.

Example 6. For any applicable s-measures, the following trade-offs are non-
recursive:

1. between growing context-sensitive grammars and finite automata,
2. between growing context-sensitive grammars and (linear) context-free gram-

mars,
3. between growing context-sensitive grammars and ET0L systems,
4. between growing context-sensitive grammars and indexed grammars,
5. between context-sensitive grammars and finite automata,
6. between context-sensitive grammars and ET0L systems,
7. between context-sensitive grammars and (linear) context-free grammars, and
8. between context-sensitive grammars and indexed grammars,

where growing context-sensitive grammars are studied, for example, in [3,5].
Observe that context-sensitive grammars form an effective trio. �

5 Conclusions

We have given a brief overview on non-recursive trade-offs. What we have not
talked about are recursive trade-offs. The best known recursive trade-off is
between nondeterministic and deterministic finite automata, but this is only
one example of many others. Recursive trade-offs are as present as non-recursive
ones. In fact, one can show that there exist two descriptional systems S1 and S2

and two sn-measures c1 and c2 such that Ω(f) may serve as a lower bound in
the order of magnitude when changing from a descriptor in S1 to an equivalent
descriptor in S2, where f : N → N is any total recursive function [7].
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3. Buntrock, G., Loryś, K.: On growing context-sensitive languages. In: Kuich, W.
(ed.) ICALP 1992. LNCS, vol. 623, pp. 77–88. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55719-9 65

4. Cudia, D.F.: The degree hierarchy of undecidable problems of formal grammars.
In: Symposium on Theory of Computing (STOC 1970), pp. 10–21. ACM Press
(1970)

5. Dahlhaus, E., Warmuth, M.K.: Membership for growing context-sensitive gram-
mars is polynomial. J. Comput. Syst. Sci. 33, 456–472 (1986)

https://doi.org/10.1007/3-540-55719-9_65
https://doi.org/10.1007/3-540-55719-9_65


36 M. Holzer and M. Kutrib

6. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8, 193–234
(2002)

7. Gruber, H., Holzer, M., Kutrib, M.: On measuring non-recursive trade-offs. J.
Autom. Lang. Comb. 15, 107–120 (2010)

8. Hartmanis, J.: On the succinctness of different representations of languages. SIAM
J. Comput. 9, 114–120 (1980)
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Abstract. The facility location problem is an NP-hard optimization
problem. Therefore, approximation algorithms are often used to solve
large instances. Such algorithms often perform much better than worst-
case analysis suggests. Therefore, probabilistic analysis is a widely used
tool to analyze such algorithms. Most research on probabilistic analysis
of NP-hard optimization problems involving metric spaces, such as the
facility location problem, has been focused on Euclidean instances, and
also instances with independent (random) edge lengths, which are non-
metric, have been researched. We would like to extend this knowledge to
other, more general, metrics.

We investigate the facility location problem using random shortest
path metrics. We analyze some probabilistic properties for a simple
greedy heuristic which gives a solution to the facility location problem:
opening the κ cheapest facilities (with κ only depending on the facility
opening costs). If the facility opening costs are such that κ is not too
large, then we show that this heuristic is asymptotically optimal. On
the other hand, for large values of κ, the analysis becomes more difficult,
and we provide a closed-form expression as upper bound for the expected
approximation ratio. In the special case where all facility opening costs
are equal this closed-form expression reduces to O( 4

√
ln(n)) or O(1) or

even 1 + o(1) if the opening costs are sufficiently small.

1 Introduction

Large-scale combinatorial optimization problems, such as the facility location
problem, show up in many applications. These problems become computation-
ally intractable as the instances grow. This issue is often tackled by (successfully)
using approximation algorithms or ad-hoc heuristics to solve these optimization
problems. In practical situations these, often simple, heuristics have a remark-
able performance, even though theoretical results about them are way more
pessimistic.

Over the last decades, probabilistic analysis has become an important tool
to explain this difference. One of the main challenges here is to come up with
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a good probabilistic model for generating instances: this model should reflect
realistic instances, but it should also be sufficiently simple in order to make the
probabilistic analysis possible.

Until recently, in almost all cases either instances with independent edge
lengths, or instances with Euclidean distances have been used for this purpose
(e.g. [1,7]). These models are indeed sufficiently simple, but they have short-
comings with respect to reflecting realistic instances: realistic instances are often
metric, although not Euclidean, and the independent edge lengths do not even
yield a metric space.

In order to overcome this, Bringmann et al. [3] used the following model
for generating random metric spaces, which had been proposed by Karp and
Steele [12]. Given an undirected complete graph, start by drawing random edge
weights for each edge independently and then define the distance between any
two vertices as the total weight of the shortest path between them, measured
with respect to the random weights. Bringmann et al. called this model random
shortest path metrics. This model is also known as first-passage percolation, intro-
duced by Hammersley and Welsh as a model for fluid flow through a (random)
porous medium [8,10].

1.1 Related Work

Although a lot of studies have been conducted on random shortest path metrics,
or first-passage percolation (e.g. [5,9,11]), systematic research of the behavior of
(simple) heuristics and approximation algorithms for optimization problems on
random shortest path metrics was initiated only recently [3]. They provide some
structural properties of random shortest path metrics, including the existence
of a good clustering. These properties are then used for a probabilistic analysis
of simple algorithms for several optimization problems, including the minimum-
weight perfect matching problem and the k-median problem.

For the facility location problem, several sophisticated polynomial-time
approximation algorithms exist, the best one currently having a worst-case
approximation ratio of 1.488 [13]. Flaxman et al. conducted a probabilistic analy-
sis for the facility location problem using Euclidean distances [6]. They expected
to show that some polynomial-time approximation algorithms would be asymp-
totically optimal under these circumstances, but found out that this is not the
case. On the other hand, they described a trivial heuristic which is asymptoti-
cally optimal in the Euclidean model.

1.2 Our Results

This paper aims at extending our knowledge about the probabilistic behavior
of (simple) heuristics and approximation algorithms for optimization problems
using random shortest path metrics. We will do so by investigating the proba-
bilistic properties of a rather simple heuristic for the facility location problem,
which opens the κ cheapest facilities (breaking ties arbitrarily) where κ only
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depends on the facility opening costs. Due to the simple structure of this heuris-
tic, our results are more structural than algorithmic in nature.

We show that this heuristic yields a 1+ o(1) approximation ratio in expecta-
tion if the facility opening costs are such that κ ∈ o(n). For κ ∈ Θ(n) the anal-
ysis becomes more difficult, and we provide a closed-form expression as upper
bound for the expected approximation ratio. We will also show that this closed-
form expression is O( 4

√
ln(n)) if all facility opening costs are equal. This can be

improved to O(1) or even 1+o(1) when the facility opening costs are sufficiently
small. Note that we will focus on the expected approximation ratio and not on
the ratio of expectations, since a disadvantage of the latter is that it does not
directly compare the performance of the heuristic on specific instances.

We start by giving a mathematical description of random shortest path met-
rics and the facility location problem (Sect. 2). After that, we introduce our
simple heuristic properly and have a brief look at its behavior (Sect. 3). Then
we present some general technical results (Sect. 4) and two different bounds for
the optimal solution (Sect. 5) that we use to prove our main results in Sect. 6.
We conclude with some final remarks (Sect. 7).

2 Notation and Model

In this paper, we use X ∼ P to denote that a random variable X is distributed
using a probability distribution P . Exp(λ) is being used to denote the exponen-
tial distribution with parameter λ. In particular, we use X ∼ ∑n

i=1 Exp(λi) to
denote that X is the sum of n independent exponentially distributed random
variables with parameters λ1, . . . , λn. If λ1 = . . . = λn = λ, then X is a Gamma
distributed random variable with parameters n and λ, denoted by X ∼ Γ (n, λ).

For n ∈ N, we use [n] as shorthand notation for {1, . . . , n}. If X1, . . . , Xm are
m random variables, then X(1), . . . , X(m) are the order statistics corresponding
to X1, . . . , Xm if X(i) is the ith smallest value among X1, . . . , Xm for all i ∈ [m].
Furthermore we use Hn as shorthand notation for the nth harmonic number,
i.e., Hn =

∑n
i=1 1/i. Finally, if a random variable X is stochastically dominated

by a random variable Y , i.e., we have FX(x) ≥ FY (x) for all x (where X ∼ FX

and Y ∼ FY ), we denote this by X � Y .

Random Shortest Path Metrics. Given an undirected complete graph G =
(V,E) on n vertices, we construct the corresponding random shortest path metric
as follows. First, for each edge e ∈ E, we draw a random edge weight w(e)
independently from an exponential distribution1 with parameter 1. Given these
random edge weights w(e), the distance d(u, v) between each pair of vertices
u, v ∈ V is defined as the minimum total weight of a u, v-path in G. Note

1 Exponential distributions are technically easiest to handle due to their memoryless-
ness property. A (continuous, non-negative) probability distribution of a random
variable X is said to be memoryless if and only if P(X > s + t | X > t) = P(X > s)
for all s, t ≥ 0. [17, p. 294].
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that this definition yields the following properties: d(v, v) = 0 for all v ∈ V ,
d(u, v) = d(v, u) for all u, v ∈ V , and d(u, v) ≤ d(u, s)+d(s, v) for all u, s, v ∈ V .
We call the complete graph with distances d obtained from this process a random
shortest path metric.

Facility Location Problem. We consider the (uncapacitated) facility location
problem, in which we are given a complete undirected graph G = (V,E) on n
vertices, distances d : V × V → R≥0 between each pair of vertices, and opening
costs f : V → R>0. In this paper, the distances are randomly generated, accord-
ing to the random shortest path metric described above. Moreover, w.l.o.g. we
assume that the vertices are numbered in such a way that the opening costs
satisfy f1 ≤ f2 ≤ . . . ≤ fn and we assume that these costs are predetermined,
independent of the random edge weights. We will use Fk as a shorthand notation
for

∑k
i=1 fi. Additionally, we assume that the ratios between the opening costs

are polynomially bounded, i.e., we assume fn/f1 ≤ nq for some constant q as
n → ∞.

The goal of the facility location problem is to find a nonempty subset U ⊆ V
such that the total cost c(U) := f(U) +

∑
v∈V minu∈U d(u, v) is minimal, where

f(U) denotes the total opening cost of all facilities in U . This problem is NP-
hard [4]. We use OPT to denote the total cost of an optimal solution, i.e.,

OPT = min
∅ �=U⊆V

c(U).

One of the tools we use in our proofs in Sect. 6 involves fixing the number of
facilities that has to be opened. We use OPTk to denote the total cost of the
best solution to the facility location problem with the additional constraint that
exactly k facilities need to be opened, i.e.,

OPTk = min
∅ �=U⊆V

|U |=k

c(U).

Note that OPT = mink∈[n] OPTk by these definitions.

3 A Simple Heuristic and Some of Its Properties

In this paper we are interested in a rather simple heuristic that only takes the
facility opening costs fi into account while determining which facilities to open
and which not, independently of the metric space. Define κ := κ(n; f1, . . . , fn) =
max{i ∈ [n] : fi < 1/(i − 1)}. Then our heuristic opens the κ cheapest facilities
(breaking ties arbitrarily). Note that in the special case where all opening costs
are the same, i.e. f1 = . . . = fn = f , this corresponds to κ = min{	1/f
, n}.

This rather particular value of κ originates from the following intuitive argu-
ment. Based on the results of Bringmann et al. [3, Lemma 5.1] (see below) we
know that the expected cost of the solution that opens the k cheapest facilities
is given by g(k) := Fk + Hn−1 − Hk−1. This convex function decreases as long
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as k satisfies fk < 1/(k − 1). Therefore, at least intuitively, the value of κ that
we use is likely to provide a relatively ‘good’ solution.

We will show that this is indeed the case. Our main result will be split into
two parts, based on the actual value of κ. If κ ∈ o(n) (i.e. if there are ‘many’
relatively expensive facilities), then we will show that our simple heuristic is
asymptotically optimal for any polynomially bounded opening costs (that satisfy
κ ∈ o(n)). On the other hand, if κ ∈ Θ(n), then the analysis becomes more
difficult, and we will only provide a closed-form expression that can be used to
determine an upper bound for the expected approximation ratio. We will show
that this expression yields an O( 4

√
ln(n)) approximation ratio in the special case

with f1 = . . . = fn = f , and O(1) or even 1 + o(1) if f is sufficiently small.
Throughout the remainder of this paper we will use ALG to denote the value

of the solution provided by this heuristic.

Probability Distribution of ALG. In this section we derive the probability
distribution of the value of the solution provided by our simple greedy heuristic,
ALG, and derive its expectation.

If κ = n, then ALG denotes the cost of the solution which opens a facility at
every vertex v ∈ V . So, we have ALG = Fn, and, in particular, P(ALG = Fn) = 1.

If 1 ≤ κ < n, then the distribution of ALG is less trivial. In this case, the
total opening costs are given by Fκ, whereas, the distribution of the connection
costs is known and given by

∑n−1
i=κ Exp(i) [3, Sect. 5]. This results in ALG−Fκ ∼

∑n−1
i=κ Exp(i).
Using this probability distribution, we can derive the expected value of ALG.

If κ = n, then it follows trivially that E[ALG] = Fn. If 1 ≤ κ < n, then we have

E[ALG] = Fκ +
n−1∑

i=κ

1
i

= Fκ + Hn−1 − Hκ−1 = Fκ + ln(n/κ) + Θ(1).

4 Technical Observations

In this section we present some technical lemmas that are being used for the
proofs of our theorems in Sect. 6. These lemmas do not provide new structural
insights, but are nonetheless very helpful for our proofs.

First of all, we will use the Cauchy-Schwarz inequality to bound the expected
approximation ratio of our simple greedy heuristic. For general random variables
X, Y , this inequality states that |E[XY ]| ≤ √

E[X2]E[Y 2].
Secondly, we will bound a sum of exponential distributions by a Gamma

distribution. The following Lemma enables us to do so.

Lemma 1 ([18, Ex. 1.A.24]). Let Xi ∼ Exp(λi) independently, i = 1, . . . , m.
Moreover, let Yi ∼ Exp(η) independently, i = 1, . . . , m. Then we have

m∑

i=1

Xi �
m∑

i=1

Yi if and only if
m∏

i=1

λi ≤ ηm.
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We will use the following upper bound for the expectation of the maximum of a
number of (dependent) random variables.

Lemma 2 ([2, Thm. 2.1]). Let X1, . . . , Xn be a sequence of random variables,
each with finite mean and variance. Then it follows that

E

[
max

i
Xi

]
≤ max

i
E [Xi] +

√√√√n − 1
n

·
n∑

i=1

Var(Xi).

We will also make use of Rényi’s representation [15,16] in order to be able to
link sums and order statistics of exponentially distributed random variables. It
states the following.

Lemma 3. Let Xi ∼ Exp(λ) independently, i = 1, . . . , m, and let X(1), . . . ,
X(m) be the order statistics corresponding to X1, . . . , Xm. Then, for any i ∈ [m],

X(i) =
1
λ

i∑

j=1

Zj

m − j + 1
,

where Zj ∼ Exp(1) independently, and where “=” means equal distribution.

A special case of Rényi’s representation is given by the following corollary.

Corollary 4. Let Yi ∼ Exp(1) independently, i = 1, . . . , n − 1, and let Y(1), . . . ,
Y(n−1) be the order statistics corresponding to Y1, . . . , Yn−1. Then, for any i ∈
[n − 1],

Y(n−i) ∼
n−1∑

k=i

Exp(k).

Moreover, we use the following bound for the expected value of the ratio X/Y
for two dependent nonnegative variables X and Y , conditioned on the event that
Y is relatively small.

Lemma 5. Let X and Y be two arbitrary nonnegative random variables and
assume that P(Y ≤ δ) = 0 for some δ > 0. Then, for any y that satisfies
P(Y < y) > 0, we have

P(Y < y) · E
[
X

Y

∣∣∣
∣ Y < y

]
≤ 1

δ2
· P(Y < y) +

∫ ∞

1/δ2
P(X ≥ √

x) dx.

5 Bounds for the Optimal Solution

Not much is known about the distribution of the value of the optimal solution,
OPT, and about the distributions of OPTk. Therefore, in this section we derive
two bounds for these optimal solutions which we can use in Sect. 6.

We start with an upper bound for the cumulative distribution function of
OPT that works good for relative small values of OPT (i.e. values close to F1).
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Lemma 6. Let z ∈ [F1, Fn] and define ζ := max{k : z ≥ Fk}. Then, for any
given opening costs fi, we have

P(OPT < z) ≤
ζ∑

i=1

(
n

i

)(
n − 1
i − 1

)(
1 − e−(z−Fi)

)n−i

.

Using the result of Lemma 1 we can also derive a stochastic lower bound for
OPTn−k.

Lemma 7. Let Zk ∼ Γ (k, e
(
n
2

)
/k). Then we have OPTn−k � Fn−k + Zk.

6 Main Results

In this section we present our main results. We show that our simple heuristic
is asymptotically optimal if κ ∈ o(n), and we provide a closed-form expression
as an upper bound for the expected approximation ratio if κ ∈ Θ(n). Finally we
will evaluate this expression for the special case where f1 = . . . = fn = f .

Theorem 8. Define κ := κ(n; f1, . . . , fn) = max{i ∈ [n] : fi < 1/(i − 1)}
and assume that κ ∈ o(n). Let ALG denote the total cost of the solution which
opens, independently of the metric space, the κ cheapest facilities (breaking ties
arbitrarily), i.e., the facilities with opening costs f1, . . . , fκ. Then, it follows that

E

[
ALG

OPT

]
= 1 + o(1).

In order to prove this theorem, we consider the following three cases for the
opening cost f1 of the cheapest facility:

1. f1 ≤ 1/ ln2(n) as n → ∞;
2. f1 ∈ O(ln(n)) and f1 > 1/ ln2(n) as n → ∞;
3. f1 ∈ ω(ln(n)).

The proofs for Case 1 and 3 follow below, after we have stated two lemmas that
are needed for Case 1.

Lemma 9. Let f1 ≤ 1/ ln2(n) as n → ∞. For sufficiently large n we have
∫ ∞

1/f2
1

P
(
ALG ≥ √

x
)

dx ≤ O

(
1
n

)
.

Lemma 10. Let q be a constant such that fn/f1 ≤ nq, let β(n) = ln(n/κ)(1 +
1/n)−1, take ζ(n) := max{i : β(n) ≥ Fi} and assume that κ < n. For sufficiently
large n, and for any integer i with 1 ≤ i ≤ ζ(n), we have

(
n

i

)(
n − 1
i − 1

)(
1 − e−(β(n)−Fi)

)n−i

≤ 1
n2q+4

.
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Proof (Theorem 8 (Case 1)). Let n be sufficiently large. By definition of κ, it
follows that fκ < 1/(κ−1) and thus Fκ < κ/(κ−1) ≤ 2 whenever κ ≥ 2. If κ = 1,
then we have Fκ = f1 < 1 as n → ∞. So, in any case we have Fκ = O(1). Now,
by our observations in Sect. 3 we know that E[ALG] = Fκ + ln(n/κ) + Θ(1) =
ln(n/κ) + Θ(1). Set β(n) := ln(n/κ)(1 + 1/n)−1 and observe that β(n) ∈ ω(1).
Conditioning on the events OPT ≥ β(n) and OPT < β(n) yields

E

[
ALG

OPT

]
≤ E

[
ALG

β(n)

]
+ P (OPT < β(n)) · E

[
ALG

OPT

∣∣∣∣ OPT < β(n)
]

.

We start by bounding the second part. Applying Lemma 5, with X = ALG,
Y = OPT, y = β(n) and δ = f1, we get

P (OPT<β(n))E
[
ALG

OPT

∣∣∣∣OPT<β(n)
]
≤ P (OPT < β(n))

f2
1

+

∞∫

1/f2
1

P
(
ALG ≥ √

x
)
dx.

Note that we may use Lemma 5 since OPT can only take any value in [f1,∞),
and we have β(n) > f1, which implies P(OPT < β(n)) > 0. The probability
containing OPT can be bounded using Lemma 6, whereas the integral can be
bounded by Lemma 9. Together, this yields

E

[
ALG

OPT

]
≤ E

[
ALG

β(n)

]
+

1
f2
1

·
ζ(n)∑

i=1

(
n

i

)(
n − 1
i − 1

)(
1 − e−(β(n)−Fi)

)n−i

+ O

(
1
n

)
,

where ζ(n) := max{i : β(n) ≥ Fi}. The terms of the summation can be bounded
by Lemma 10. Using this lemma, we obtain that

E

[
ALG

OPT

]
≤ E

[
ALG

β(n)

]
+

1
f2
1

·
ζ(n)∑

i=1

1
n2q+4

+O

(
1
n

)
≤ E

[
ALG

β(n)

]
+

1/f2
1

n2q+3
+O

(
1
n

)
,

since ζ(n) ≤ n by definition. Moreover, since κ ∈ o(n) implies fn > 1/n as
n → ∞, we also have f1 ≥ fn/nq > 1/nq+1 as n → ∞ for some constant q. This
results in

E

[
ALG

OPT

]
≤ E

[
ALG

β(n)

]
+ n2q+2 · 1

n2q+3
+ O

(
1
n

)
= E

[
ALG

β(n)

]
+ O

(
1
n

)
.

Since we started with β(n) = ln(n/κ)(1 + 1/n)−1 and n/κ ∈ ω(1) (since κ ∈
o(n)), it follows that

E

[
ALG

OPT

]
≤ E[ALG]

β(n)
+O

(
1
n

)
≤ ln(n/κ) + Θ(1)

ln(n/κ)

(
1 +

1
n

)
+O

(
1
n

)
= 1+o(1),

which finishes the proof of this case. �
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Proof (Theorem 8 (Case 3)). For sufficiently large n, we have f1 > 1, and thus
κ = 1 since f2 ≥ f1 > 1 = 1/(2−1). Therefore, using our observations in Sect. 3,
we can derive that E[ALG] = F1 +ln(n)+Θ(1) for sufficiently large n. Moreover,
we know that OPT ≥ F1. Using this observation, it follows that

E

[
ALG

OPT

]
≤ E

[
ALG

F1

]
=

F1 + ln(n) + Θ(1)
F1

= 1 +
ln(n) + Θ(1)

ω(ln(n))
= 1 + o(1),

which finishes the proof of this case. �

Theorem 11. Define κ := κ(n; f1, . . . , fn) = max{i ∈ [n] : fi < 1/(i − 1)}
and assume that κ ∈ Θ(n). Let ALG denote the total cost of the solution which
opens, independently of the metric space, the κ cheapest facilities (breaking ties
arbitrarily), i.e., the facilities with opening costs f1, . . . , fκ. Then we can bound
the expected approximation ratio by

E

[
ALG

OPT

]
≤

√

max
{

1
F 2

n

, max
k∈[n−1]

O

(
n4Fn−k + kn2

n4F 3
n−k + k4Fn−k

)}

+ 4

√√√√O

(
n6F 2

n−1 + n2

n8F 7
n−1 + F 3

n−1

+
n10F 3

n−2 + n4

n14F 9
n−2 + F 2

n−2

+
n−1∑

k=3

k3n12F 3
n−k + k9n6

n16F 9
n−k + k16Fn−k

)

.

Moreover, if κ = n, then the expected approximation ratio can be bounded by

E

[
ALG

OPT

]
≤ Fn ·

√

max
{

1
F 2

n

, max
k∈[n−1]

O

(
n4Fn−k + kn2

n4F 3
n−k + k4Fn−k

)}

+ Fn · 4

√√√√O

(
n6F 2

n−1 + n2

n8F 7
n−1 + F 3

n−1

+
n10F 3

n−2 + n4

n14F 9
n−2 + F 2

n−2

+
n−1∑

k=3

k3n12F 3
n−k + k9n6

n16F 9
n−k + k16Fn−k

)

.

The proof of this theorem requires some tedious computations which we used
to bound exponential integrals by Padé approximants [14]. The results of these
computations are stated in the following lemmas.

Lemma 12. Let Xk = 1/(Fn−k +Zk)2 where Zk ∼ Γ (k, e
(
n
2

)
/k). Then, for any

k ∈ {1, . . . , n − 1} it follows that

E [Xk] ≤ O

(
n4Fn−k + kn2

n4F 3
n−k + k4Fn−k

)
.

Lemma 13. Let Xk = 1/(Fn−k +Zk)2 where Zk ∼ Γ (k, e
(
n
2

)
/k). Then, for any

k ∈ {3, . . . , n − 1} it follows that

E
[
X2

k

] − (E [Xk])2 ≤ O

(
k3n12F 3

n−k + k9n6

n16F 9
n−k + k16Fn−k

)
,
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whereas for k = 1 and k = 2 we have

E
[
X2

1

] − (E [X1])
2 ≤ O

(
n6F 2

n−1 + n2

n8F 7
n−1 + F 3

n−1

)
,

E
[
X2

2

] − (E [X2])
2 ≤ O

(
n10F 3

n−2 + n4

n14F 9
n−2 + F 2

n−2

)
.

Proof (Theorem 11). Using the Cauchy-Schwarz inequality for random variables
(see Sect. 4), we obtain

E

[
ALG

OPT

]
≤

√
E

[
ALG2

] ·
√

E

[
1

OPT2

]
.

Recall from Sect. 3 that we know the distribution of ALG. We can use this to
compute and bound E[ALG2]. If κ < n, then we obtain

E
[
ALG2

]
= (Fκ + Hn−1 − Hκ−1)

2 +
n−1∑

i=κ

1
i2

= (Fκ + ln(n/κ) + Θ(1))2 +
n−1∑

i=κ

1
i2

which is O(1) since κ ∈ Θ(n) and Fκ ≤ κfκ < κ/(κ−1) ≤ 2 for such κ. If κ = n,
then we have E[ALG2] = F 2

n .
It remains to bound E[1/OPT2]. We start by using our final notion from Sect. 2,
and subsequently using the result of Lemma 7. This yields

E

[
1

OPT2

]
= E

[

max
k

1
OPT2

n−k

]

≤ E

[

max
k

1
(Fn−k + Zk)2

]

,

where Zk ∼ Γ (k, e
(
n
2

)
/k) and where we take the maximum over k ∈ {0, . . . , n −

1}. Next we use the result of Lemma 2 to get the maximum operator out of the
expectation. This yields

E

[
1

OPT2

]
≤ max

k
E

[
1

(Fn−k + Zk)2

]

+

√√√√n − 1
n

·
n−1∑

k=0

Var

(
1

(Fn−k + Zk)2

)

≤ max
k

E [Xk] +

√√√√
n−1∑

k=0

(
E [X2

k ] − (E [Xk])2
)
,

where we also used Xk := 1/(Fn−k + Zk)2 to shorten notation, applied the
difference formula for the variance, and used the inequality (n − 1)/n ≤ 1.
Since we know the distribution of Zk, we can compute and subsequently bound
the expectations of Xk that occur in this last expression. For k = 0 we have
Z0 = 0, and thus E[X0] = 1/F 2

n and E[X2
0 ] − (E[X0])2 = 0. For k ∈ [n − 1],

Lemmas 12 and 13 yield the bounds that we need to obtain the desired result.�

Finally, we evaluate the just proven bound for the approximation ratio for the
special case where all facility opening costs are equal, i.e., f1 = . . . = fn = f .
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Corollary 14. Assume that f1 = . . . = fn = f . Define κ := κ(n; f1, . . . , fn) =
max{i ∈ [n] : fi < 1/(i − 1)} = min{	1/f
, n} and assume that κ ∈ Θ(n).
Let ALG denote the total cost of the solution which opens, independently of the
metric space, κ arbitrarily chosen facilities, e.g., the facilities {1, . . . , κ}. Then,
it follows that

E

[
ALG

OPT

]
= O(1) + O

(
4
√

ln(n)n3f3
)

,

which for f ∈ O(1/n 3
√

ln(n)) is equal to O(1). Moreover, if f ∈ o(1/n3), then
this approximation ratio becomes 1 + o(1).

Before we can prove this corollary, we need two more lemmas.

Lemma 15. Suppose that f ∈ O(1/n). Then, for any k ∈ [n − 1] we have

O

(
n4(n − k)f + kn2

n4(n − k)3f3 + k4(n − k)f

)
≤ O

(
1

n2f2

)
.

Moreover, if f ∈ o(1/n3), then for any k ∈ [n − 1] we have

O

(
n4(n − k)f + kn2

n4(n − k)3f3 + k4(n − k)f

)
≤ o

(
1

n2f2

)
.

Lemma 16. Suppose that f ∈ O(1/n). Then we have

O

(
n8f2 + n2

n15f7 + n3f3
+

n13f3 + n4

n25f9 + n2f2
+

n−1∑

k=3

k3n12(n − k)3f3 + k9n6

n16(n − k)9f9 + k16(n − k)f

)

≤ O

(
ln(n)
nf

+
1

n4f4

)
.

Moreover, if f ∈ o(1/n3) then this result can be improved to O(1/nf3).

Proof (Corollary 14). Observe that κ ∈ Θ(n) and κ = min{	1/f
, n} implies
that f ∈ O(1/n). We start by bounding the maximum in the first term.
Lemma 15 shows that in our special case this maximum is asymptotically
bounded by the first element. Using this result, we can now bound the maximum
in the first term by O(1/n2f2). Moreover, if f ∈ o(1/n3), then for sufficiently
large n it follows that the maximum is given by its first element, i.e., it is equal
to 1/n2f2.

Next, we evaluate the sum of the variances. Lemma 16 provides the corre-
sponding result. If f ∈ Θ(1/n), then it follows that

E

[
ALG

OPT

]
≤

√

O

(
1

n2f2

)
+ 4

√

O

(
ln(n)
nf

+
1

n4f4

)
= O

(
4
√

ln(n)
)

.

If f ∈ o(1/n) then we have for sufficiently large n that κ = n and therefore

E

[
ALG

OPT

]
≤

√

O

(
n2f2

n2f2

)
+ 4

√

O

(
ln(n)n4f4

nf
+

n4f4

n4f4

)
= O

(
1 + 4

√
ln(n)n3f3

)
,
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where the last term in general is bounded by O( 4
√

ln(n)) (since f ∈ O(1/n)) and
more specifically by O(1) if f ∈ O(1/n 3

√
ln(n)). If f ∈ o(1/n3), then we obtain

E

[
ALG

OPT

]
≤ nf

(√
1

n2f2
+ 4

√

O

(
1

nf3

))

= 1 + O
(

4
√

n3f
)

= 1 + o(1),

which finishes this proof. �

7 Concluding Remarks

We have analyzed a rather simple heuristic for the (uncapacitated) facility loca-
tion problem on random shortest path metrics. We have shown that in many
cases this heuristic produces a solution which is surprisingly close to the opti-
mal solution as the size of the instances grows. A logical next step would be to
look at heuristics that are (slightly) more sophisticated, and see whether their
performance on random shortest path metrics is better than our simple heuristic.

On the other hand there are many other NP-hard (combinatorial) optimiza-
tion problems for which it would be interesting to know how they behave on
random short path metrics.
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Abstract. This paper is a tutorial on uniform relativization. The usual
relativization considers computation using an oracle, and the computa-
tion may not work for other oracles, which is similar to Turing reduc-
tion. The uniform relativization also considers computation using oracles,
however, the computation should work for all oracles, which is similar
to truth-table reduction. The distinction between these relativizations
is important when we relativize randomness notions in algorithmic ran-
domness, especially Schnorr randomness. For Martin-Löf randomness, its
usual relativization and uniform relativization are the same so we do not
need to care about this uniform relativization.

We focus on two specific examples of uniform relativization: van
Lambalgen’s theorem and lowness. Van Lambalgen’s theorem holds for
Schnorr randomness with the uniform relativization, but not with the
usual relativization. Schnorr triviality is equivalent to lowness for Schnorr
randomness with the uniform relativization, but not with the usual rel-
ativization. We also discuss some related known results.

1 Introduction

1.1 Relativization

In computability theory, many notions are relativized via oracle Turing machines.
As an example, a set A ⊆ N is called computable if it is computable by a Turing
machine. An oracle Turing machine is a Turing machine with an oracle tape,
which is a one-way infinite tape. If one uses B ⊆ N as an oracle, the oracle Turing
machine can ask whether k ∈ B during the computation. If A is computable by
a Turing machine with an oracle B, then we say that A is Turing reducible to
B or that A is computable relative to B. Similarly, many notions, results, and
proofs can be relativized.

There are some other reducibilities. One of them is truth-table reducibility
or abbreviated by tt-reducibility. If A is Turing reducible to B, then there exists
an oracle Turing machine such that it computes A with the oracle B, but this
machine may be undefined for an oracle other than B. If the reduction is total
and defines a set for every oracle, then the reduction is called tt-reduction, and
we say that A is tt-reducible to B. Some researchers say that A is tt-computable
relative to B.

Uniform relativization is, roughly speaking, this tt-version of relativization.
To distinguish them, we sometimes call Turing-reducibility version of relativiza-
tion Turing relativization. Even if a notion is a tt-version of relativization of a
c© Springer Nature Switzerland AG 2019
F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 50–61, 2019.
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known notion, the notion can be described using the terminology of tt-reduction
in many cases. However, when relativizing a randomness notion, it is not appro-
priate to describe it via the reductions. We admitted that there are some types
of relativization and named it the tt-version uniform relativization.

Uniform relativization of computable sets with an oracle B is nothing but
the sets tt-reducible to B. In a more general setting, uniform relativization of a
notion with an oracle B is defined by a total operator from oracles to the sets
describing the notions and it is no longer a tt-reduction. We require uniformity
for the operator, and that is the reason we call it uniform relativization.

Uniform relativization of Schnorr randomness behaves more naturally than
Turing relativization of Schnorr randomness. This is where we found this rela-
tivization.

1.2 Algorithmic Randomness

Randomness is a central notion in natural science. The theory of algorithmic
randomness defines many randomness notions and studies their properties. For
simplicity, from now on, the underlying space is the Cantor space 2ω with the
uniform measure μ on it.

Martin-Löf randomness (or ML-randomness) is the most studied notion and
a subclass of 2ω. An interesting result was shown for ML-randomness by van
Lambalgen [16]: X⊕Y is ML-random if and only if X is ML-random and Y is ML-
random Turing relative to X. Here, X,Y are infinite binary sequences and X⊕Y
is the sequence alternating between X and Y . Intuitively, if a sequence is random,
then the odd-numbered parts should be random, and the even-numbered parts
should be random relative to the odd parts, and vice versa. This property should
hold for every natural randomness notion and its suitable relativization.

For a randomness notion R ⊆ 2ω, consider a relativized version RA ⊆ 2ω

with an oracle A. If van Lambalgen’s theorem holds for this notion, then

X ⊕ Y ∈ R ⇐⇒ X ∈ R and Y ∈ RX .

Fix R, then the suitable relativization RX is automatically determined for
every X ∈ R. Hence, van Lambalgen’s theorem can be used as a criterion of a
natural relativization for a natural randomness notion.

Schnorr randomness is another natural randomness notion. This notion
comes up naturally in computable measure theory. It turns out that van Lam-
balgen’s theorem holds for Schnorr randomness with the uniform relativization,
but not for Schnorr randomness with Turing relativization. This fact has many
applications, and uniform relativization is a powerful tool in the study of Schnorr
randomness.

Notice that Turing relativization is used in van Lambalgen’s theorem for
ML-randomness. For ML-randomness, its Turing relativization and uniform rel-
ativization are the same. Hence, uniform relativization of ML-randomness is not
a new notion.
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Another result relating to relativized randomness is lowness. A central result
on this topic is the equivalence between lowness for ML-randomness and K-
triviality. When giving a Schnorr-randomness version, we need uniform rela-
tivization of Schnorr randomness. This fact is another evidence that uniformly
relativized Schnorr randomness is a fundamental notion.

In Sect. 2 we review some basic definitions and results. In Sect. 3 we introduce
uniform relativization and give some related results. In Sect. 4 we gather some
results relating to uniform lowness.

2 Preliminaries

2.1 Reduction

We follow standard notations in computability theory. For details, see e.g. [4,30].
We identify a set A ⊆ N of natural numbers with a binary sequence A ∈

2ω = {0, 1}ω by n ∈ A ⇐⇒ A(n) = 1 for all n. Let (Φe)e∈N be a computable
enumeration of all oracle Turing machines. The machine Φ can be seen as an
operator with a partial domain from 2ω to 2ω as follows: For sets A,B ∈ N,
B = ΦA is defined by ΦA(n) = B(n) for every n. This Φ is called a Turing
reduction. If this operator is total, then Φ is called a tt-reduction.

For sets A,B ∈ N, A is Turing reducible to B, denoted by A ≤T B, if there is
a Turing reduction Φ such that A = ΦB . The set A is tt-reducible to B, denoted
by A ≤tt B, if there is a tt-reduction Φ such that A = ΦB .

For a computable set B, we have A ≤T B if and only if A ≤tt B if and only
if A is computable. If A ≤tt B, then clearly A ≤T B. The converse does not
hold.1

2.2 Randomness Notions

We also follow standard notations in the theory of algorithmic randomness. For
details, see e.g. [9,25].

Cantor space 2ω is the set of all infinite binary sequences equipped with the
topology generated by the cylinder sets [σ] = {X ∈ 2ω : σ ≺ X} where σ ∈ 2<ω

is a finite binary sequence, and ≺ is the prefix relation. Let μ be the uniform
measure on 2ω defined by μ([σ]) = 2−|σ| for every σ ∈ 2<ω.

A real x ∈ R is computable if there exists a computable sequence (qn)n of
rationals such that |x−qn| ≤ 2−n for all n. A real x ∈ R is lower semicomputable
if there exists an increasing computable sequence (qn)n of rationals such that
x = limn→∞ qn. Every computable real is lower semicomputable, but there is a
lower semicomputable real that is not computable.

An open set U ⊆ 2ω is c.e. if there exists a computable sequence S of finite
binary strings such that U =

⋃
σ∈S [σ]. Notice that the measure of a c.e. open

set is lower semicomputable, but not computable in general.
1 Every noncomputable c.e. Turing degree contains a hypersimple set [26, Proposition

III.3.13] while a hypersimple set is not tt-complete [26, Theorem III.3.10].
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A ML-test is a uniform sequence (Un)n of c.e. open sets such that μ(Un) ≤
2−n for all n. A set X ∈ 2ω is ML-random if it passes each ML-test, that is,
X 	∈ ⋂

n Un for every ML-test (Un)n. A Schnorr test is a ML-test (Un)n such
that μ(Un) is uniformly computable. A set X is Schnorr random if it passes each
Schnorr test.

2.3 Computable Analysis

To formalize uniform relativization of randomness notions, we use the terminol-
ogy of computable analysis. For more details, see [2,32].

Let X be a set. A representation of X is a surjective function δ :⊆ ωω → X.
For the real line, we usually consider the Cauchy representation ρC :⊆ ωω → R

defined by

ρC(p1, p2, · · · ) = x ⇐⇒ lim
n→∞ νQ(pn) = x and (∀i < j)|νQ(pi) − νQ(pj)| ≤ 2−i

where νQ :⊆ ω → Q is a computable notation of Q. For the class O of all open
sets on 2ω, we usually consider the inner representation θ :⊆ ωω → O defined
by

θ(p1, p2, · · · ) =
⋃

n

ν(pn)

where ν is a computable notation of the cylinder sets. For 2ω, we use the identity
Id :⊆ ωω → 2ω as a representation.

Let X be a set with a representation δ. If δ(p) = x ∈ X for p ∈ ωω, then p is
called a δ-name of x. An element x ∈ X is δ-computable if it has a computable
δ-name. Then, x ∈ R is computable if and only if it is ρC-computable. An open
set U is c.e. if and only if it is θ-computable.

For sets X1,X2 with representations δ1, δ2, a function f :⊆ X1 → X2 is
(δ1, δ2)-computable if there is a computable function g :⊆ ωω → ωω such that
f ◦δ1(p) = δ2 ◦g(p) for every p ∈ dom(δ1). Roughly speaking, given any δ1-name
p of x ∈ X1, the function g computes a δ2-name q of f(x).

3 Uniform Relativization

The goal of this section is to define uniform relativization of Schnorr randomness.
As a warm-up, let us begin by defining uniform relativization of more basic
objects.

3.1 Uniform Relativization of c.e. Sets

We do not try to define uniform relativization itself. Instead, we define uniform
relativization of some notions.

A set A ∈ 2ω is computable uniformly relative to B if there exists a tt-
reduction Φ such that A = ΦB or equivalently A ≤tt B. The reduction can
use B as an oracle, but should be total. This roughly means that the reduction
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cannot use a special property of B because the reduction should work for all
oracles.

A set A ⊆ N is c.e. if there exists a Turing machine Φ :⊆ ω → ω such
that A = dom(Φ). The machine Φ can be seen as an operator. A set A ⊆ N

is c.e. relative to B if there exists an oracle Turing machine Φ :⊆ ω → ω such
that A = dom(ΦB). While the notion of tt-reduction requires the oracle Turing
machine to be total, it is not the case in the relativization of c.e. sets: every
oracle Turing machine sends each oracle Y to a set that is c.e. relative to Y , so
every oracle Turing machine is defined everywhere in that sense. Thus, Turing
relativization of c.e. sets is the same as uniform relativization of c.e. sets.

Recall that the use of tt-reduction has a computable bound. If A ≤tt B via
Φ, then there exists a computable function f : ω → ω such that the oracle use
of ΦX(n) is bounded by f(n). In the computation of dom(ΦB) we do not have
such a bound. Uniform relativization is similar to tt-reduction, but it is not
appropriate to identify them.

3.2 Uniform Relativization of c.e Open Sets

Let us turn to c.e. open sets. An open set U ⊆ 2ω is c.e. if it is θ-computable.
An open set U is c.e. relative to B ∈ 2ω if there is a (Id, θ)-computable function
f :⊆ 2ω → O such that f(B) = U . The function f can be partial but we require
B ∈ dom(f). This is the usual Turing relativization. Notice that the function
f(X) produces a c.e. set for every input X ∈ 2ω, so again uniform relativization
of c.e. openness is the same as its Turing relativization.

We consider the notion of c.e. openness with the measure ≤ 2−n for n ∈ N.
This strange notion comes up in the relativization of Martin-Löf randomness.
An open set U ⊆ 2ω is c.e. and has measure ≤ 2−n relative to B ∈ 2ω if there is a
(Id, θ)-computable function f :⊆ 2ω → O such that f(B) = U and μ(U) ≤ 2−n.
In this case, the measure of μ(f(X)) may be larger than 2−n for some oracle
X ∈ 2ω. However, we can modify f by restricting the enumeration of the cylinder
sets as long as its measure is ≤ 2−n. This modified function f̂ is also computable,
the measure of f̂(X) is ≤ 2−n for each X ∈ 2ω, and f̂(B) = U . Hence, again its
uniform relativization is the same as its Turing relativization.

Finally, we consider the notion of c.e. openness with a computable measure.
This notion corresponds to the relativization of Schnorr randomness. An open
set U ⊆ 2ω is c.e. and has a computable measure Turing relative to B ∈ 2ω if
there are a (Id, θ)-computable function f :⊆ 2ω → O and a (Id, ρC)-computable
function g :⊆ 2ω → R such that f(B) = U and g(B) = μ(U). Notice that f, g
can be partial but we should have B ∈ dom(f) ∩ dom(g).

In this case, we can not extend f, g to be total by any computable modifica-
tion. Let us give a counterexample. Let A,B ⊆ N be sets such that A ≤T B but
A 	≤tt B. Define U =

⋃
k∈A[0k1]. Since A ≤T B, the open set U is c.e. Turing

relative to B and its measure is computable Turing relative to B.
Suppose that there exist a total (Id, θ)-computable function f :⊆ 2ω → O

and a total (Id, ρC)-computable function g :⊆ 2ω → R such that μ(f(Y )) = g(Y )
for every Y ∈ 2ω and f(B) = U . Consider the following reduction Φ :⊆ 2ω → 2ω
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with an input Y ∈ 2ω. For each n ∈ N, enumerate the inner cylinders of f(Y )
until the measure larger than g(Y )−2−n−1. If the intersection between the finite
approximation and [0n1] is not empty, then ΦY (n) outputs 1. Otherwise, ΦY (n)
outputs 0.

Since μ(f(Y )) = g(Y ) for every Y ∈ 2ω, the reduction can find the finite
approximation for every n and Φ is total. Suppose Y = B and n ∈ A. Then, the
finite approximation Un of f(B) should intersect with [0n1], otherwise μ(Un) >
μ(g(Y )) − 2−n−1 = μ(U) − 2−n−1 and μ(Un ∪ [0n1]) = μ(Un) + 2−n−1 > μ(U),
which contradicts with Un ∪ [0n1] ⊆ U . Hence, ΦB(n) = 1 = A(n). Suppose
Y = B and n 	∈ A. Then, the finite approximation Un of f(B) can not intersect
with [0n1] because Un is the inner approximation of U =

⋃
k∈A[0k1]. Hence,

ΦB(n) = 0 = A(n). This contradicts with A 	≤tt B.
Now we know that uniform relativization of c.e. openness with a computable

measure is different from its Turing relativization.

3.3 Uniform Relativization of Schnorr Randomness

We are now ready to define uniform relativization of Schnorr randomness, or
abbreviated by uniform Schnorr randomness. The definition is complicated, but
the idea is the same as the basic notions defined in the above.

Definition 1 ([23]). A uniform Schnorr test is a pair of computable functions
f, g satisfying the follows:

1. f : 2ω × ω → O is (Id, Idω, θ)-computable with μ(f(X,n)) ≤ 2−n for all
X ∈ 2ω and n ∈ ω.

2. g : 2ω × ω → R is (Id, Idω, ρC)-computable such that g(X,n) = μ(f(X,n))
for all X ∈ 2ω and n ∈ ω.

Here, Idω : ω → ω is the identity function on ω. A set A ∈ 2ω is Schnorr random
uniformly relative to B if A 	∈ ⋂

n f(B,n) for each uniform Schnorr test 〈f, g〉.
Each Schnorr test uniformly relative to B is a Schnorr test Turing relative to

B. Thus, each Schnorr random Turing relative to B is Schnorr random uniformly
relative to B. Hence, uniform relativized randomness is weaker than Turing
relativized randomness.

We need this relativization for van Lambalgen’s theorem for Schnorr random-
ness to hold. For sets A,B ⊆ N, let A ⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B}.

Theorem 1 ([23]). The set A⊕B is Schnorr random if and only if A is Schnorr
random and B is Schnorr random uniformly relative to A.

Theorem 2 ([18,33] and [25, Remark 3.5.22]). Van Lambalgen’s theorem
fails for Schnorr randomness with Turing relativization.

In particular, uniform relativization of Schnorr randomness is different from
its Turing relativization.
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Notice that, if A is Schnorr random and B is Schnorr random Turing relative
to A, then A⊕B is Schnorr random. This is because uniformly relativized Schnorr
randomness is weaker than Turing relativized Schnorr randomness. For the other
direction, assume that A is Schnorr random and B is covered by a Schnorr test
relative to A. One needs uniformity or totality of the test to construct a Schnorr
test covering A ⊕ B. Uniform relativization naturally comes up when looking at
the proofs of van Lambalgen’s theorem.

3.4 Other Characterizations

In the above, we defined uniform Schnorr randomness via tests. Schnorr random-
ness has characterizations by martingales, computable measure machines, and
integral tests. We can also characterize uniform Schnorr randomness by them.
The proofs are straightforward, but we need to check that everything works uni-
formly in oracles. We give the definitions to look at how to uniformly relativize
these notions.

A martingale is a function d : 2<ω → R
+ such that 2d(σ) = d(σ0) + d(σ1)

for every σ ∈ 2<ω where R
+ is the set of all nonnegative reals. A set X ∈ 2ω

is ML-random if and only if supn d(X � n) < ∞ for all left-c.e. martingales d.
A set X ∈ 2ω is Schnorr random if and only if d(X � n) < f(n) for at most
finitely many n for every computable martingale d and every computable order
f . These are classical results by Schnorr [28,29]. Here, an order is an unbounded
nondecreasing function from ω to ω. Franklin and Stephan [10] observed that X
is not Schnorr random if and only if there is a computable martingale d and a
computable function f such that (∃∞n)d(X � f(n)) ≥ n.

A uniformly computable martingale is a computable map d : 2ω × 2<ω → R
+

such that dZ := d(Z, ·) is a martingale for every Z ∈ 2ω. A set X is Schnorr
random uniformly relative to A if and only if dA(X � n) < f(n) for almost
all n for each uniformly computable martingale d and a computable order f if
and only if dA(X � h(n)) < n for almost all n for each uniformly computable
martingale d and a strictly increasing computable function h [19]. We can replace
the computable order f above with f̂A such that f̂ : 2ω ×ω → ω is a computable
function and f̂Z is an order for each Z ∈ 2ω. This is because, for such f̂ , we
can find a computable order f such that f̂Z(n) ≥ f(n) for each n ∈ N and each
Z ∈ 2ω by compactness of 2ω.

Franklin and Stephan [10] defined tt-Schnorr random set X relative to A as
a set such that there are no martingale d ≤tt A and no function g ≤tt A such
that (∃n)d(X � h(n)) ≥ n. We can replace h ≤tt A with a computable function
h [10, Remark 2.4]. This notion is equivalent to Schnorr randomness uniformly
relative to A [23, Proposition 6.1]. However, there are some subtle points to note
in the tt-relativization. See Sect. 6 in [23] for details.

Let M :⊆ 2<ω → 2<ω be a Turing machine. The measure (or halting prob-
ability) of M is

∑
σ{2−|σ| : M(σ) ↓}. The measure of a prefix-free Turing

machine is less than or equal to 1 by Kraft’s inequality. The measure of a uni-
versal prefix-free Turing machine U is called Chaitin’s omega, denoted by ΩU ,
which is ML-random [3], hence not computable. A prefix-free Turing machine
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with a computable measure is called a computable measure machine. A set X
is Schnorr random if and only if KM (X � n) > n − O(1) for every computable
measure machine M [7].

An oracle prefix-free Turing machine M :⊆ 2ω × 2<ω → 2<ω is a uniformly
computable measure machine if the maps X �→ ∑

σ{2−|σ| : M(X,σ) ↓} is a
total computable function. A set X is Schnorr random uniformly relative to A
if and only if KMA(X � n) > n − O(1) for every uniformly computable measure
machine M (essentially due to [19]).

An integral test is an integrable nonnegative lower semicomputable function
f : 2ω → R

+. A set X ∈ 2ω is ML-random if and only if f(X) < ∞ for
each integral test, which is by Levin: see e.g. [17, Subsection 4.5.6, 4.7]. A set
X ∈ 2ω is Schnorr random if and only if f(X) < ∞ for each nonnegative lower
semicomputable function f : 2ω → R

+ such that
∫

f dμ is a computable real
[20]. Such a function is called a Schnorr integral test.

A uniform Schnorr integral test is a lower semicomputable function f : 2ω ×
2ω → R

+ such that X �→ ∫
f(X,Z)μ(dZ) is a computable function from 2ω to

R. The first component is for oracles and the second for the tested sets A set Y
is Schnorr random uniformly relative to X if and only if f(X,Y ) < ∞ for each
uniform Schnorr integral test f [23, Proposition 4.1].

3.5 Related Work

Van Lambalgen’s theorem for uniform Schnorr randomness was further gener-
alized to noncomputable measures [27], and was used in the study of Schnorr
reducibility and total-machine reducibility [22]. Van Lambalgen’s theorem for
uniform relativization of computable randomness holds in a weaker form [23,
Theorem 5.1]. Van Lambalgen’s theorem for uniform Kurtz randomness was
studied in [13]. Van Lambalgen’s theorem for Demuth randomness was studied
in [5], where they used “partial relativization.”

4 Uniform Lowness

Another topic relating to relativized randomness is lowness. First, we recall some
results on lowness for ML-randomness. Then, we see that uniform lowness was
needed to give a Schnorr-randomness version.

4.1 Characterization of Triviality via Lowness

Many randomness notions have characterizations via complexity. The Levin-
Schnorr theorem says that A ∈ 2ω is ML-random if and only if K(A � n) >
n − O(1) where K is the prefix-free Kolmogorov complexity. Roughly speaking,
a set is random if the complexities of its initial segments are high. Thus, the
complexity is a measure of randomness. A set A ∈ 2ω is K-reducible to B ∈ 2ω

if K(A � n) < K(B � n)+O(1). This is one formalization of saying that A is not
more random than B. The class of K-trivial sets is the bottom degree of this
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reducibility. A set A ∈ 2ω is K-trivial if K(A � n) ≤ K(n) + O(1). Obviously,
every computable set is K-trivial. In contrast, there is a noncomputable K-trivial
set.

Interestingly, K-triviality can be characterized by lowness. A set A ∈ 2ω is
low for ML-randomness if every ML-random set Turing relative to A is already
(unrelativized) ML-random. This means that the set A can not derandomize any
ML-random set. These notions coincide, that is, a set A ∈ 2ω is K-trivial if and
only if A is low for ML-randomness. For details on this topic, see e.g. [24].

We have Schnorr-randomness counterparts of these notions as follows.

Definition 2 ([7]). A set A ∈ 2ω is Schnorr reducible to B ∈ 2ω denoted by
A ≤Sch B if, for every computable measure machine M , there exists a com-
putable measure machine N such that KN (A � n) ≤ KM (B � n) + O(1). A set
A ∈ 2ω is called Schnorr trivial if A ≤Sch ∅.

This notion can be characterized by uniform lowness for Schnorr randomness.
A set A ∈ 2ω is called uniformly low for Schnorr randomness if every Schnorr
random set uniformly relative to A is already Schnorr random.

Theorem 3 (essentially due to [10]). A set A ∈ 2ω is Schnorr trivial if and
only if A is uniformly low for Schnorr randomness.

Since there is a Turing-complete Schnorr trivial set [8], some Schnorr trivial
sets are not Turing low for Schnorr randomness. Hence, uniform lowness and
Turing lowness for Schnorr randomness are different.

4.2 Other Characterizations

The class of K-trivial sets has many characterizations, and so does the class of
Schnorr trivial sets.

The first one is by traceability. A trace is a sequence {Tn} of sets. A trace for
a function f is a trace {Tn} with f(n) ∈ Tn for all n. For a function h, a trace
{Tn} is h-bounded if |Tn| ≤ h(n) for all n. A set A is computable tt-traceable
if there is a computable order h such that all functions f ≤tt A are traced by
an h-bounded computable trace. Roughly speaking, the values computable from
traceable sets have limited possibilities. Many variants were studied in Hölzl and
Merkle [12].

Franklin and Stephan [10] showed that uniform lowness of Schnorr random-
ness is equivalent to computable tt-traceability. There is no counterpart for ML-
randomness. This result is a modification of the one that Turing lowness of
Schnorr randomness is equivalent to computable (Turing) traceability [15,31].

The next one is by lowness for machines. A set A is called low for K if
K(n) ≤ KA(n) + O(1). This means that the set A can not compress n more
than without it. In fact, a set is K-trivial if and only if it is low for K.

A Schnorr-randomness version is as follows. We say that a set A is uni-
formly low for computable measure machines if, for every uniformly computable
measure machine M , there exists a computable measure machine N such that
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KN (n) ≤ KMA(n) + O(1). Then, uniform lowness for computable measure
machines is equivalent to computable tt-traceability [19], hence to Schnorr trivi-
ality. The proof was given by straightforward modification of the fact that Turing
lowness for computable measure machines is equivalent to computable traceabil-
ity [6].

The class of K-trivial sets also has a base-type characterization. A set A is a
base for ML-randomness if there exists a ML-random set X relative to A such
that A ≤T X. Notice that each computable set is a base for ML-randomness. If
A has much information, the class of ML-random sets relative to A is so small
that we can not find such a set in the Turing degrees above A.

Its Schnorr-randomness version is not straightforward. See the discussion in
[10, Section 6]. We say that a set A is a base for Schnorr randomness if there
is no X ≥T A such that X is Schnorr random Turing relative to A. Franklin,
Stephan, and Yu [11] showed that this is equivalent to saying that the set A does
not compute the halting problem.

One adaptation is as follows. A set A is a tt-base for uniformly computable
martingales if, for each uniformly computable martingale d, there exists a set
X ≥tt A such that supn dA(X � n) < ∞. The last condition roughly means that
X is computably random uniformly relative to A only for this d. It turns out
that Schnorr triviality is equivalent to being a tt-base for uniformly computable
martingales [21, Theorem 6.4].

4.3 Related Work

Decidable prefix-free machines also characterize ML-randomness and Schnorr
randomness [1]. Schnorr reducibility can be characterized by complexity for
prefix-free decidable machines by adding a computable order. We write A ≤wdm

B if, for each decidable prefix-free machine M and a computable order g, there
exists a decidable prefix-free machine N such that KN (A � n) ≤ KM (B �
n) + g(n) + O(1). In fact, A ≤wdm B if and only if A ≤Sch B [21, Theorem
3.5]. In particular, Schnorr triviality has a characterization by decidable prefix-
free machines.

Schnorr triviality is also equivalent to not totally i.o. complex [12], which is
a characterization by total machines.

The equivalence between lowness for ML-randomness and lowness for K
was strengthened to the equivalence between ≤LR and ≤LK [14]. Its uniform
Schnorr-randomness version was proved in [21, Theorem 5.1] and Turing rela-
tivized Schnorr-randomness version in [22].

Computable traceability was characterized by order-lowness for prefix-free
decidable machines [1, Theorem 24]. Recall that computable traceability is equiv-
alent to Turing lowness for Schnorr randomness.
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Abstract. There appear to be two fundamentally different notions of
program correctness that emanate from two different notions of program:
the mathematical correctness of abstract programs and the empirical cor-
rectness of their implemented physical manifestations [2,16,17]. In the
abstract case, a program is taken to be correct when it meets its specifica-
tion. This is a mathematical affair with all the precision and clarity that
follows. But physical correctness raises some concerns and puzzles that
have their origins in Putnam’s notion of physical computation [15]. More-
over, these concerns would appear to effect the mathematical case. Com-
paring the two cases will draw out some underling philosophical issues in
the traditional approaches to correctness. In particular, we examine the
different concepts of explanation that accompany the different notions
of correctness, and expose the underlying role of agency in both.

1 Physical Correctness

The nature of program correctness has been a central concern in the philosophy
of computer science [16,17] for some time (e.g. [4,5]). But much of this debate has
been aimed at the correctness of abstract programs relative to their specification.
However, on the face of it, physical correctness can be characterised in the same
way as its mathematical analogue: the physical artefact has to meet its functional
specification. But matters are not quite so straightforward.

To see why, suppose that the physical artefact is a machine of some kind
with states and operations that move the machine between those states. Physical
programs are sequences of such operations. We assume that the specification is
given via an abstract device. For correctness of the physical device relative to the
abstract one, we would expect the physical machine to behave in harmony with
the abstract one, i.e., the physical state transitions of the machine should be in
harmony with the abstract ones. One proposal that reflects these intuitions is due
to Hillary Putnam [15] who expressed matters in terms of Turing machines. The
following is a generalisation: the so-called Simple Mapping Account of physical
computation (SMA) [13,14].

A physical system P correctly performs a computation A if and only if the
following holds: there is a mapping from the states of the physical system
P to the states of an abstract system A, such that the following is true.
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The state transitions between the physical states mirror the state transi-
tions between the computational states: for any abstract state transition
s1, ⇒s2, if the system is in the physical state that maps onto s1, it then
goes into the physical state that maps onto s2.

On the face of it, this appears to be exactly the right conditions for the physical
system to be a correct implementation of the abstract one. However, there is a
caveat here.

The original proposal was aimed at a characterisation of physical computa-
tion. The following is how the latter notion is introduced in [13].

In our ordinary discourse, we distinguish between physical systems that
perform computations, such as computers and calculators, and physical
systems that don’t, such as rocks. Among computing devices, we distin-
guish between more and less powerful ones. These distinctions affect our
behaviour: if a device is computationally more powerful than another, we
pay more money for it. What grounds these distinctions? What is the
principled difference, if there is one, between a rock and a calculator, or
between a calculator and a computer? Answering these questions is more
difficult than it may seem.

What is the principled difference, if there is one, between a rock and a computer?
If we are concerned with characterising which physical devices compute and
which ones do not, then our goal must be to provide an abstract model of physical
computation. In contrast, our concern is with the correctness of an artefact.
Consequently, we start with the abstract specification and then demand that
the constructed artefact meets the abstract specification. We shall have more
about this difference later.

Despite these different intentions, the simple mapping account is a natural
place to start for both enterprises: we shall explore the consequences of taking
the SMA as a characterisation of physical correctness.

Unfortunately, puzzles come thick and fast: if SMA is taken as the central
definition of physical correctness it trivialises matters. To see why, consider a
concrete case involving digital circuits. Suppose that the abstract specification
of the device is given by the truth table definition of conjunction. The input
states are the usual truth values and their conjunction forms the output state.
The intended artefact might then be taken to be an electronic device that is
given by an NMOS AND gate [12]. According to SMS, if correctly constructed,
such a gate will satisfy the specification, but it is not the only thing that does.
According to SMA, the state-to-state behaviour of the abstract and physical
systems must be in harmony. But what does this amount to? To answer this
notice that the contained conditional

if the system is in the physical state that maps onto s1, it then goes into
the physical state that maps onto s2

would normally be taken to be the standard material conditional. But this
exposes the demands of the specification, and highlights the fact that they are
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very easy to meet: because the material conditional is employed, the requirement
is purely extensional in the sense that the specification only demands a one-to-
one correspondence between the states of the abstract and physical machines.
This leads to a situation where almost anything implements a given abstract
specification. In other words, extensionality only demands that we have some
physical device whose possible state transitions are in one-to-one correspondence
with the abstract ones. Physical correctness is trivialised: any arrangement of
physical objects that is isomorphic to the truth table for conjunction will satisfy
the demands of SMA. This leads to the following simple characterisation.

A physical system P is correct relative to an abstract system A if (for each
operation of the machine) there is a one-to-one correspondence between
the state-to-state table of P and the state-to-state table of A.

In other words, the two tables/relations are in one-to-one correspondence. Cleary,
there is one obvious objection to such an account: in principle almost any physical
table of the right size will provide a correct implementation of a given abstract
operation. So the proposed account of physical correctness seems too liberal. In
fact, any solution that consists of an enumeration of the results of the abstract
machine calculation will be a correct implementation. However, even when we
are dealing with abstract machines such as finite state machines with a finite
number of states, extensional solutions are impractical since the results of the
computation must be computed ahead of time. In practice, this is a crucial part
of the objection to such solutions admitted by the simple mapping account:
enumerated solutions are at best impractical, and at worse impossible.

2 Mathematical Correctness

Moreover, this particular concern is not restricted to the physical situation [17].
To see why things might go awry in the mathematical case, consider the following
specification [7] of the square root for natural numbers.

SQRT (x : Num, y : Real)
←→

y ∗ y = x ∧ y > 0

SQRT defines a relation between natural numbers and real numbers where
Num and Real are the data types for the specification language. Logically, this
unpacks to the following demand.

A program P operating over these data types is taken to satisfy this specifi-
cation if the following holds.

∀x : Num.∀y : Real · SQRT (x, y) ↔ P (x) = y.

Observe that in implemented programming languages we will always be deal-
ing with finite sets and types and finite operations on them. So we restrict our
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Input 1 2 3 4 5

Output 1 1.41421356237 1.73205080757 2 2.2360679775

discussion accordingly. Indeed, for pedagogical reasons we assume that numbers
1, 2, 3, 4, 5 constitute the data type Num of both languages. Now consider an
abstract table A that associates the square root with the numbers 1, 2, 3, 4, 5.

For this table, we then have

∀x : Num.∀y : Real · SQRT (x, y) ←→ A(x) = y.

In other words, the two relations are in extensional agreement. In this sense
the abstract table satisfies the specification. We can put such a table in a more
familiar programming style using case statements as follows.

Case x=1 then y=1
Case x=2 then y=1.41421356237
Case x=3 then y=1.73205080757
Case x=4 then y=2
Case x=5 then y=2.2360679775

Abstract mathematical correctness is reduced to extensional agreement. So
what is common to both the physical and mathematical accounts is that they
admit solutions based upon enumerating the results.

3 Explanation and Correctness

In general, such extensional solutions are not highly valued. This applies to the
simple mapping account based upon the material conditional in the physical
case and with enumerative solutions in the mathematical one. In so far as they
satisfy the functional requirements, they are solutions. However, they are bad
solutions: any solution that requires all the computations to be done ahead
of time is impractical. Moreover, there are underlying conceptual reasons for
this badness. There is something that is common to both the physical and the
mathematical cases: good solutions appeal to some notion of explanation, even
if rather different ones.

In the physical case, we expect some causality to be part of the characterisa-
tion [1,3]. After all, the electronic circuit is a causal device. Consequently, one
natural proposal is to use a conditional such as the counterfactual conditional
that, through its appeal to causal laws, embodies causation in its truth condi-
tions. This offers some causal account of why the physical machine, the electronic
circuit, moves from state to state. Such causal solutions are explanatory.

Kroes provides a similar account of why technical artefacts satisfy their func-
tional requirements. This is given in terms of physical laws, the physical makeup
and configuration of the artefact, and the dynamic behaviours and causal inter-
actions of its components. Of course, as Kroes [9,10] points out, this explains
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what the artefact actually does, not necessarily what it was intended to do.
This is given by its functional specification. He argues that the relation between
abstract structure and physical devices can be conceived in terms of pragmatic
rules of action that are grounded in such causal considerations. Consider again
the AND gate.

– If an electronic AND gate is used properly in appropriate circumstances,
by appeal to an appropriate causal account, it will compute the Boolean
operation of conjunction.

We may then infer the following rule of action:

– In order to compute the Boolean AND, use an AND gate.

Explanation effects the mathematical case as well [11]. Mathematicians seek new
proofs of known theorems because the new proofs throw more light on matters
- they provide better explanations of the result.

In the case of program correctness, the extensional solutions must give way
to more explanatory algorithms and programs. And their explanatory value
depends upon their proofs of correctness. Such proofs provide an explanation
of why the algorithm/program satisfies its specification. For example, consider a
solution for the square root specification based upon Newton’s iterative method.

xk+1 =
1
2

(
xk +

n

xk

)

At each stage the new value is computed from the old one, and the process
continues until the old and new values (xk and xk+1) converge. The Newtonian
solution is explanatory: the algorithm returns the square root of n since, when
the two values of x converge, we obtain a quadratic equation for x whose solution
is the square root of n.

x2 = n

This is obvious in the case of the algorithm, but how does the proof of
correctness for a corresponding program explain how it works? Newton’s method
can be programmed in Python using a simple iteration.

1 def newtonSqrt(n):
2 approx = 0.5 * n
3 better = 0.5 * (approx + n/approx)
4 while better != approx:
5 approx = better
6 better = 0.5 * (approx + n/approx)
7 return approx

Without spelling out all the details of a Hoare style correctness proof [7], we
indicate why they supply explanations. In the Hoare calculus, theorem state-
ments take the following form.

{φ}P{ψ} .
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This asserts that if the predicate calculus assertion φ is true before the pro-
gram P runs, then ψ will be true afterwards. The calculus consists of rules for
all constructs in the language of this form. For example, the rule for sequencing
is given as follows.

{φ}P{ψ} {ψ}Q{μ}
{φ}P ;Q{μ} .

For sequencing, the output state for the first program becomes the input
state for the second. This can be rephrased in explanatory terms as follows.

– In the state φ, P;Q will end in state μ because, in state φ, the program P
will end in state ψ, and in state ψ the program Q will end in state μ

This is a deductive explanation of why the program for sequencing meets its
specification in transforming state φ into state μ.

In the case of iteration, the rule takes the following form.

{B
∧

ϕ}P{ϕ}
{ϕ}whileBdoP{¬B

∧
ϕ}

The premise tells us that the invariant of the loop is φ where B is the Boolean
condition. The conclusion informs us that after the iteration, the invariant still
holds but the Boolean condition is false. This can be rephrased in explanatory
terms as follows.

– In the state φ, while B do P (if it terminates) will end in state ¬B
∧

ϕ because,
in state B ∧ φ, the program P will end in state φ.

The invariant of the loop for Newton’s method is the following.

better = 0.5 ∗ (approx + n/approx)

The invariant forms the basis of the quadratic equation whose solution yields
the square root up to the supplied level of approximation. While other proof
techniques offer similar explanations of why a program meets its specification,
for Hoare style proofs we can dig a little deeper.

Lang [11] offers an account in terms of a symmetrical relationship between
the statement of the theorem and the structure of the proof. In Hoare style
proofs, each step in the formal proof relates directly back to the statement of
the main theorem. So, if we follow the whole proof through, each step mirrors
the statement of the theorem. The proofs are structured around the symmetry
induced throughout the proof by the Hoare-triples. Each step is a miniature form
of the theorems statement. There is a uniformity to the proof that centres on
the statement of correctness, and the correctness of the whole is compositionally
constructed in a way that follows the structure of the program. In this sense, the
proof provides a uniform transparent explanation of why the program satisfies
its specification.

Generally speaking extensional solutions are impractical and lack explanatory
power. The two cases, the abstract and the physical, appeal to different notions of
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explanation in order to enhance the standard extensional correctness demands1.
But there is another hidden philosophical concern that governs both.

4 Intention and Correctness

An assumption underlying enumerative solutions is that computation and pro-
gramming are notions that can be fully characterised independently of any
intentions. Wittgenstein implicitly criticised this long before the simple map-
ping account appeared on the scene.

There might be a caveman who produced regular sequences of marks for
himself. He amused himself, e.g., by drawing on the wall of the cave. But he
is not following the general expression of a rule. And when we say that he
acts in a regular way that is not because we can form such an expression.
That is, the fact that we could construct a rule to describe the regularity
of his behaviour does not entail that he was following that rule [18] (6.41).
Imagine a caveman accidentally scratches the following table in the sand
with a stick:

1 2 3 4 5

1 1.41421356237 1.73205080757 2 2.2360679775

Do we say he has correctly programmed some fragment of the square root?
Obviously not: he had no intention of constructing a program for the square
root. Nor can he explain why it is a solution. Just getting the answer right, by
accident, involves no intention of any kind. The caveman is merely scribbling in
the sand. Programming and computing are intentional activities, and establish-
ing and explaining why a program meets its specification is part of the activity of
programming. Hiving off the extensional aspect of this activity, and considering
it in isolation from its intentional context, is at the core of the problem raised
by the simple mapping account. In terms of technical artefacts, removing agency
and intention is to treat the program as a thing with no function.

The significance of agency can be clearly seen in the logical difference between
a specification and a theory or model. Suppose instead that the specification is
taken as a model of the program. We would still demand the same expression of
the relationship.

∀x : Num.∀y : Real · SQRT (x, y) ←→ A(x) = y.

But being a model of the program has consequences. If the model is wrong,
does not correctly predict the outcome of the program, we change the model.
1 [6] addresses the relationship between the physical and the abstract in terms of levels

of abstraction.
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This is the opposite of what we would do if SQRT is taken as a specification: if
things go wrong we change the program not the specification. The intentional
stance is quite different. If the relationship between SQRT and the program is
merely characterised extensionally, as it is in the simple mapping account, this
distinction is ignored. The distinction between specification and model cannot
be catered for extensionally but must involve this intentional aspect.

We can illustrate the intentional stance in a more familiar setting. The stan-
dard semantics for the language of first-order logic provides a definition of truth
for the language. Consequently, we may employ it to guide the construction of
a proof system: the semantics provides the correctness conditions for the con-
struction of any such system. Success is traditionally taken as the soundness and
completeness of the rules: soundness establishes the legitimacy of the rules, and
completeness demonstrates that we have not missed any. If there is disagree-
ment between the proof theory and the semantics, we blame the proof theory:
we change the rules to gain soundness and completeness.

Conversely, if we take the proof theory to have normative priority, our aim
might be to construct a semantic theory that is sound and complete with respect
to it. In justifying the semantics, we would still be engaged in a mathematical
activity, and we would still attempt to prove soundness and completeness. How-
ever, soundness now establishes that the semantics is a correct reflection of the
rules, and completeness demonstrates that the semantics does not sanction ille-
gitimate ones. The proof theory now has governance. In particular, if there is
disagreement of either kind, we now blame the semantics and change it.

Notice that we would prove the same mathematical results whether we took
the semantics or the proof theory to have priority. The correctness criteria are
identical. However, the intentional stance is different: we may be engaged in the
same proofs but the underling intentions are different. Indeed, what I take to
have definitional priority determines the interpretation I give to soundness and
completeness.

The lambda calculus and its semantics provides a more convincing example
where the proof theory dominates. Any set-theoretic interpretation of the calcu-
lus would only be taken to be a model if the rules were sound. In this sense, the
proof theory of the calculus has normative priority over the semantics.

This intentional aspect of correctness goes beyond any purely extensional
requirements. Programming, proving and explaining are intentional activities.

5 Physical Computation and Physical Correctness

Intentional stance is important in regard to the distinction with which we began:
there is a difference between characterising physical computation and systems
and characterising the correctness of a physical artefact relative to its specifica-
tion. They may have the same conditions of correctness, but they are intention-
ally different. One contemporary characterisation of physical computing systems
is due to Piccinini [14].
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A physical system is a computing system just in case it is a mechanism
one of whose functions is to manipulate vehicles based solely on differences
between different portions of the vehicles according to a rule defined over
the vehicles.

Judgements about success or failure of such characterisations partly depend upon
our ordinary ability to distinguish between physical systems that perform com-
putations and those that do not. Of course, philosophical considerations drive
much of the investigation. Deciding which devices are taken to be computers and
which are not often involves philosophical analysis. Nevertheless the endeavour
is partly an empirical one where these intuitive judgements determine the suc-
cess or failure of the proposed model or characterisation. Ordinarily, we take it
that computers and calculators compute, but rocks do not. Any characterisation
that gets this wrong will probably be rejected. When the model/characterisation
does not agree with such judgments we reject it.

There is an even more empirical approach to the characterisation of physical
computation that is based upon the central notion of representation between
models and physical systems used in physics [8].

The key to the interaction between abstract and physical entities in physics
is via the representation relation. This is the method by which physical
systems are given abstract descriptions: an atom is represented as a wave
function, a billiard ball as a point in phase space, a black hole as a metric
tensor and so on. That this relation is possible is a prerequisite for physics:
without a way of describing objects abstractly, we cannot do science. ....We
argue that a ‘computer’ is a physical system about which we have a set of
physical theories from which we derive both the full representation relation
and the dynamics.

This enterprises has a much stronger empirical feel to it than the philosophical
investigation of [14]. However, our general point does not depend upon such fine
distinctions.

With the characterisation of correctness, it is not the physical device that
determines whether the specification is true. Instead, the aim is to show that
an artefact satisfies its abstract specification. If the artefact does not satisfy
the specification we reject the artefact not the specification. The extensional
relationship between the abstract device and the physical one might well be the
same for both. The intuitions that underlie the simple mapping account would
seem to apply to both. However, the intentional stance is different. When things
go wrong we blame and change different things. Of course, what is a specification
at one level of abstraction is a device at another. See [17] for a detailed discussion
of this issue.
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Abstract. We look at some preliminary work in the theory of trans-
finite Turing machines generalised in the manner of Kleene to higher
type recursion theory. The underlying philosophy is that ordinary Tur-
ing computability and inductive definability is replaced by the example
here of Infinite Time Turing Machine computability and quasi-inductive
definability.

1 Introduction

The purpose of this paper is to give a purely descriptive account of how notions of
‘recursion’ obtained from transfinite computational machines could be harnessed
to yield a theory of higher type of recursion using those machines. (To make it
clear from the outset: type 0 objects are of the form: n ∈ ω; type 1 are of the
form x : ω → ω, and type 2 are of the form F : (NN) → ω etc. We shall not deal
with objects here of type higher than 2.)

We restrict ourself here to ideas and definitions. We summarise some results
that characterise the semi-decidable sets for such notions, but all proofs must be
omitted. The point is to indicate how analogies with Kleene’s theory of Higher
Type recursion from the late ‘50’s and early ‘60’s can be used to develop these
ideas in the transfinite context.

Our transfinite machine will be the ω length tape Infinite Time Turing
Machine (“ittm”) model of Hamkins and Kidder [8] with which we shall assume
the reader is familiar. Much of what we say generalises to machines with longer
tapes.

We shall give analogies to Kleene’s type-2 recursion and the objects that
naturally arise there, but formulated for type-2 recursion using ittm’s. We don’t
claim to give the final form of this: there are a number of decisions and choices
along the way, that could have been made differently. Kleene’s theory can be
cast in that of monotone inductive definitions which we first recall. The concept
corresponding to this for ittm-theory is that of a quasi-inductive definition. In
Sect. 2 we give first a sketch of Kleene’s theory applied to wellfounded trees of
Turing machines (“tm” will always denote a regular Turing machine) and the
type-2 objects that naturally occur here. The theory of hyperarithmetic sets
and the fact that ‘semi-decidable’ in this context corresponds to Π1

1 are of great
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weight in what follows. In Sect. 3 we give a description of the ittm version of this,
according to a choice of type-2 oracles. As much for motivation, or additional
justification for our structure, as for anything else, in Sect. 4 we state some
applications results in low levels of determinacy.

2 Inductive Operators

Let Φ : P(N) → P(N) be any arithmetic Γ operator (that is ‘n ∈ Γ (X)’ is an
arithmetic relation of X and n.)

Definition 1. (i) Φ is monotone iff ∀X ⊆ Y ⊆ N −→ Φ(X) ⊆ Φ(Y );
(ii) Φ is progressive iff ∀X ⊆ N (X ⊆ Φ(X)).

In either case we set: Φ0(X) = X and then: Φα(X) = Φ(
⋃

β<α(Φβ(X))).
We call Φ inductive if it is monotone or progressive. Clearly Φ inductive implies
there will be fixed points the least of which will be: Φ∞(X) =df Φα(X) where α
is least with Φα(X) = Φα+1(X); clearly α will be countable.

The theory of inductive operators was heavily investigated in the 1960’s and
early 70’s by Spector, Gandy, Hinman, Richter, Aczel, Moschovakis, Aanderaa,
Cenzer and others. From this work developed Moschovakis’s theory of gener-
alised definability and inductive definitions over abstract structures [15]. This
tied in with previous work in admissibility theory “The next admissible set”
(Barwise-Gandy-Moschovakis Theorem, [1]), and the Spector-Gandy Theorem
that: “Π1

1 = Σ1(Lωck
1

)” - Lωck
1

being the least admissible set over N.

Definition 2 (Quasi-inductive operators). Let Φ be any operator. Define
iterates Φ as before except for limits λ ≤ On:

Φλ(X) = lim inf
α→λ

Φα(X) =
⋃

α<λ

⋂

λ>β>α

Φβ(X).

For arithmetic operators this is, in effect, due to Burgess [3], but which has its
roots in the notion of revision theoretic definability of Gupta and Belnap [6].

Lemma 1. Any such operator has a least countable ζ = ζ(Φ,X) with Φζ(X) =
ΦOn(X). Moreover there is a cub class of ordinals, closed and unbounded beneath
any uncountable cardinal, of ordinals ξ, with Φζ(X) = ΦOn(X).

There are not a huge number of examples of quasi-inductive operators in
the literature, but an important one is that of an infinite time turing machine
(ittm) where we regard the ω-length tape(s) as a sequence of cells whose contents
are revised according to the transition table of the program. This results in a
recursive operator Φ which moreover only updates at most one cell, so one integer
of X, at each stage. All the active new work takes place at the limit stages with
the lim inf rule.

Kleene in [10] developed an equational calculus, itself evolving out of his
analysis of the Gödel-Herbrand General Recursive Functions (on integers) from
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the 1930’s, but now enlarged for dealing with recursion in objects of finite type. A
particular type-2 functional was that derived from the ordinary jump oJ, where

oJ(e,m, x) =
{

1 if [e](m, x)↓ (meaning has a defined value or converges)
0 otherwise.

(We shall also use the notation “[e]I(p)” rather than “{e}I(p)” to indicate
that we are using Kleene recursion using tm’s, and reserve the latter more usual
notation for ittm recursion.) Here m is a string of integers, and x a function x :
ω → ω (thus an object of type 1) and e the index number of an ordinarily Turing
recursive functional of type-1 objects. (A vector of such functions will be denoted
in bold.) The reader should note the use of the downarrow in [e](m,x)↓ to mean
just what it says: the expression is defined, and for which we use convergence
as a synonym. Similarly [e](m,x)↑ will mean the expression is undefined with
synonym of divergence. Functions of type greater than 1 are conventionally called
‘functionals’, but we may occasionally let this slip.

The functional oJ can be considered as a functional just on type-2 objects
(absorbing objects of lower type by their type-2 counterparts). Using coding of
vectors of functions we ultimately think of this as oJ having domain ω×kω× l(ωω)
for any k, l ∈ ω.

Kleene then developed (see Hinman [9] Ch. VI) a theory of generalised recur-
sion in type-2 (and higher) functionals; in this theory a designation such as ‘[e]I’
refers to the e’th function recursive in the type-2 functional I. (Warning: this is
not just the simple use of the oracle I in a linear computation as the notation
might suggest, but refers to a tree of computation with calls to the oracle.) Dur-
ing a computation of, say, [e]I(n,y) oracle steps are allowed whereby the result
of a query (f,m,x) is directly asked of I, and an integer result, I(f,m,x), is
returned. (Of course even to make the query the values of each of the infinitely
many values of the functions x have to already have been calculated; calculating
each of these values can in turn require asking the oracle I for further values etc.;
thus such a recursion can be represented by a tree, which if convergent is well
founded, but is potentially infinitely branching at any node, with each branch
calculating some x(k) say.) In this formalism the index set HoJ defined by:

HoJ(e)↔ [e]oJ(e)↓
is a complete semi-recursive (in oJ) set of integers, and Kleene showed that this
is in turn a complete Π1

1 set of integers. Further he showed that the oJ-recursive
sets of integers, i.e. those sets R for which

R(n)↔ [e]oJ(n)↓1 ∧ ¬R(n)↔ [e]oJ(n)↓0

for some index e, are precisely the hyperarithmetic ones. (See Hinman [9] Ch.
VII.1 for a discussion of this.)

Kleene gave his account of recursion in objects of finite type which we have
alluded to above in [10,13]. In order to give further weight to his definition he
then showed it was extensionally equivalent to an alternative given by a Turing
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machine model enhanced with oracle calls to a higher type functional, see [11,12];
this was just as for the case of ordinary Turing computation. Many different
concepts of computation on numbers turned out to be equivalent. By showing
that the equational model had the same functions as a Turing machine model he
was emulating the same conceptual move Turing had made. In the first paper [11]
he showed how any Turing machine computation of finite type could be achieved
on the generalized recursive equational approach. The second paper [12] showed
the reverse. In both directions a convergent, (so defined) computation could be
represented, not as a finite tree of computations as for ordinary recursion, but
now as a well-founded but in general infinitely branching tree of computations
of function values - which in general required calculating infinite objects (as we
indicated above), such as all values x(n) for a function x : N−→N, at some
level in the tree before submitting that completely calculated function itself as
an argument to a function of higher type at the level above. The wellfounded
tree of either functional calculations, or of Turing machine computational calls,
depending on the representation, witnessed a successfully defined or convergent
computation. The tree occurs dynamically as part of the computational process.

Our account here is motivated in spirit by that latter approach. Instead of
using an equational calculus we shall couch our model not just in terms of the
Kleenean Turing machine, but in terms of ittm’s and their computations, viewed
as quasi-inductive operators now recursive in a certain operator iJ in place of
Kleene’s oJ.

Viewed as a class of quasi-inductive operators, the output tape (or every third
cell say of a single tape model) of an ittm represents an element of Cantor space
at any stage; that output tape may or may not converge to a fixed value. If it does
then the the real there is to be regarded as the output of the computation. Notice
this is a more generalised notion than that of the machine halting and hence with
a fixed output tape for that reason. Halting is really just a special case of the basic
phenomenon of ‘fixed output’. The idea that a tape is eventually settled is broader
in the infinite time context: a calculation can continue indefinitely, without any
changes to the output tape section. It must have seemed natural to consider only
the halting computations when first thinking about ittm behaviour, but as [17]
showed, even to characterise those halting calculations required stepping back
and analysing the whole class of eventually settled computations: the latter we
regard as more fundamental, and as characteristic of the ittm process. To analyse
ittm behaviour is to analyse the eventually settled outputs (which we shall call
‘fixed outputs’ below), and to find out what they are capable of computing
requires analysing those fixed outputs, not just the more specialised halting
outputs. The Spector class naturally associated to this form of definability by
itttm’s is precisely that using this fixed output rather than the proper subclass
using nominally halting output. And of course this is in accord with the quasi-
inductive scheme above.

Given a set A ⊆ ω ∪ ω2, this can be used as an oracle during a computation
on an ittm in a familiar way: ? Is the integer on (or is the whole of) the current
output tape contents an element of A? and receive a 1/0 answer for “Yes”/“No”.
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We identify elements of ω as coded up in ω2 in some fixed way, and so may
consider such A as always subsets of ω2. But further: since having A respond with
one 0/1 at a time can be repeated, by using an ω-sequence of queries/responses,
we could equally well allow A to return an element f ∈ ω2 as a response (we
have no shortage of time). We could then allow as functionals also I : ω2−→ ω2.
However for this paper we shall only consider functionals into ω. Some examples
follow. As is usual we let {e} represent the partial function computed by the
e’th ittm programmed machine Pe.

Definition 3. (The infinite time jump iJ)
(i) We write {e}(m,x)↓ if the e’th ittm-computable function with input m,x
has a fixed output c ∈ 2N, in which case we write {e}(m,x) = c.
(ii) We then define iJ by:

iJ(e,m,x) =
{

1 if {e}(m,x) ↓ ;
0 otherwise (for which we write {e}(m,x)↑ ).

The functional iJ then is the counterpart of the standard tm operator oJ.

Definition 4. For x a real, the complete (ordinary) ittm-semirecursive-in-x set,
denoted by x̃ is the set of integers {e | {e}(e, x)↓}.
One consequence of the (relativized to a real x) λ-ζ-Σ-Theorem (cf. [16] Thm
2.6) is that x̃ is recursively isomorphic to the complete Σ2-Theory of Lζx [x].

3 Higher Type Recursion

In the Kleenean recursion in type-2 functionals, in [11,12] a successful compu-
tation (meaning one with output) could be effected by imagining tm’s placed
at nodes on a wellfounded tree, with computations proceeding at nodes that
make computation calls to a lower node, seeking the value of some x(k) say. The
computation time at each node, regarding each call to a lower node as being just
one step in the computation of the calling node, is then finite. (For otherwise
the computation at the node is never completed and the whole overall compu-
tation will fail.) An overall computation may fail by instituting a series of calls
to subcomputations that form an infinite descending path in the tree. In such
cases the machines on the path all hang after finitely many steps, all waiting for
data to be passed up from the immediate subcomputation it has called.

In the ittm case we may again conceive of an overall or master ittm computa-
tion taking place at the top level; such a computation may take infinitely many
steps in time, and will be considered as successful if the output tape is fixed
from some point in time onwards. The master computation may make queries
of a type-2 functional I in which the computation is considered recursive. It may
call subcomputations of exactly the same type: ittm’s with the capability to
make oracle queries of I.

We give a more detailed description of this as a representation in terms of
underlying ittm’s. {e}I(m,x) will represent the e’th program in the usual format,
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say transition tables, but designed with appeal to oracle calls possible. We are
thus considering computations of a partial function {e}I : kω× l(ω2) → ω2. Such
a computation has potentially computation time, or stages, unbounded in the
ordinals.

The computation of P I
e(m,x) proceeds in the usual ittm-fashion, working as a

tm at successor ordinals and taking lim inf’s of cell values etc. at limit ordinals.
(We take lim inf’s rather than lim sup’s as this accords more with the notion
characteristic functions of quasi-inductive operators. This makes no difference
to the computational possibilities of ittms’s or here at higher types.) At a time
α an oracle query may be initiated. We may conventionally fix that the real
number subject to query is that infinite string on the even numbered cells of the
scratch type. If this string is (f,m, y0, y1 . . . , ) then setting y = y0, y1 . . ., the
query or oracle call which we shall denote Q(I, f,m, y) is the question: ?What is
I(z) where P I

f (m, y)↓z ? and at stage α+1 receives the value I(z). If it is not the
case that P I

f (m, y)↓ z for any z, i.e., it fails to have a fixed output, then there
is no z to which I can be applied, and the overall computation fails. (We could
try to stay closer to the Kleenean setting, where a tree branches infinitely often
downwards, to compute for some z ∈ ωω, z(0), z(1), . . . in turn, and then can
ask for I(z). There, if any of the computations z(k) failed, then the query to I
did not take place, and the overall computation failed. But one thing we have
with ittm computation is plenty of time, so we can amalgamate the individual
computations z(k) as simply one computation of all of z.)

Space prohibits a formal definition of the representation above, but we can
determine its effect as follows via an inductive operator I. Just as the Kleene
equational calculus can be seen to build up in an inductive fashion a set of indices
Ω[I] for successful computations recursive in I (see Hinman [9], pp. 259–261), so
we can define the fixed point of a monotone operator I = I I on (ω × ω<ω ×
(ωω)<ω)×ωω which will give us the successful ittm-computations recursive in I.

Definition 5. We set I(X) =:

{〈〈e,m,x〉, z〉| PX
e (m,x)↓z is an ittm-computation making only oracle calls

Q(X, e′,m′,x′) and receiving back I(z′)where X(〈e′,m′,x′〉) = z′ }.

As this is monotone, we may let
I0 = ∅; I<α =

⋃
β<α Iβ & Iα = I(I<α) in the usual way, and reach a least

fixed point I∞.

Then:

Theorem 1 (The {e}’th function generalised recursive in I). Using I∞:
{e}I(m,x) is defined, or convergent, with output z iff I∞(〈e,m,x〉) = z.
In which case we set {e}I(m,x) = z. Otherwise it is undefined or divergent.

Overall we have a computation tree - also called a tree of subcomputations,
with subcomputation calls performed at branching nodes below the top level.
However, although the computation is most easily represented by a tree, we may
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think of the computation as a linear sequential process as we visit each node of
the tree in turn.

We therefore make the following conventions. During the calculation of
{e}I(m,x) the initial calculation takes place at the topmost node ν0 which we
declare to be at Level 0 in our computation tree T = TI(e,m,x). Let us suppose
the first oracle query concerning {f0}I(n0, y0) is made at some stage. The tree
T will then have a node ν1 below ν0, labelled with 〈f0, n0, y0〉 and we declare
the computation {f0}I(n0,y0) to be performed at this Level 1. Thus ‘control’ of
the overall process is at the level of the node. Further, we may define the overall
length function H = H(I, e,m,x) as the length of the computation that occurs
at the nodes of the wellfounded part of T. Sequentially H totals up the ordi-
nal number of stages of operation at each of the nodes where control currently
resides.

Definition 6. (i) The level of the computation {e}I(m,x) at time α (as given
by H), denoted Λ(e, I, (m,x), α), is the level of the node νι at which the overall
computation is being performed at time α, where:
(ii) the level of a node νι is the length of the path in the tree from ν0 to νι.
(iii) By Level n we accordingly mean the set of nodes in the tree with level n.

Thus for a convergent computation, at any time the level is a finite number
(‘depth’ would have been an equally good choice of word). A divergent compu-
tation is one in which either (i) an oracle call resulting in a calculation at some
node fails to produce an output z (and so no value I(z) can be returned to the
level above) or (ii) T is illfounded (with a rightmost path of order type then ω).

Recall that a ‘snapshot’ at time γ in a computation by an ittm is the ω-
sequence of bits of information consisting of the current read/write head position,
transition state number, and the sequence of cell values. The snapshots up to the
stage in a calculation P I

e(m,x) where it ends its first loop (if this occurs) will
have all the relevant information then in the calculation: everything thereafter is
mere repetition. (This would be undefined if the computation tree is illfounded).
We say that a computation ‘exhibits final looping behaviour’ (‘at stage σ’, or
‘by stage τ ’), if there are stages or times ξ < σ (≤ τ) with at the top level (a)
identical snapshots at ξ and σ, and moreover (b) no cell that had a stable value
at time ξ changes that value in the interval (ξ, σ).

ITTM Recursion in 2E. We shall draw to a close the discussion of generalised
recursion in functions I as this will take us too far from our goal, and shall leave
this for future work. For us, as for Kleene, recursion in 2E is fundamental. Recall,
for y ∈ NN, 2E(y) = 0 if ∃n y(n) = 0 and 2E(y) = 1 otherwise. Many of the
theorems of type-2 recursion about functionals F have to be prefixed with the
requirement that 2E is recursive in F. (Such F are called normal.)

Definition 7. We say F is (generalised) ittm-partial recursive in G if there is
an index e so that F = {e}G. F is ittm-recursive in G if it is partial recursive
in G and total. A relation R is ittm-recursive in I if its characteristic function
is. R is ittm semi-recursive in I if it is the domain of a functional ittm-partial
recursive in I.
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Kleene showed that the functionals 2E and oJ are mutually (Kleene) recursive
in each other (cf. [9] VI.1.4.). We shall have this too:

Theorem 2. The functionals iJ and 2E are mutually ittm-recursive.

We wish to apply this theory to the particular case of iJ - the infinite jump.

A number of elementary facts concerning computation trees T living in tran-
sitive admissible sets M may be proven.

Lemma 2. Suppose {e}iJ(m,x) has a computation tree T ∈ M , and with x ∈
M , where M is a transitive admissible set, closed under the function y � ỹ.
Then ({e}iJ(m,x) is convergent)M ←→{e}iJ(m,x) is convergent.

It was an essential feature of ordinary ittm-theory that if a computation
Pe(m) produced an output it would always have done this by stage ζ where ζ is
least so that for some Σ > ζ we had Lζ ≺Σ2 LΣ ; this was shown in the “λ-ζ-Σ
Theorem” (see [16] 2.1 and 2.3). The Σ2 liminf nature of the limit rule underlay
this, and the same is true here.

Definition 8. A pair of ordinals (μ, ν) is a Σ2-extendible pair if Lμ ≺Σ2 Lν

and moreover ν is the least such with this property with respect to μ. We say
μ is Σ2-extendible if there exists ν with (μ, ν) a Σ2-extendible pair. By rel-
ativisation, a pair of ordinals (μ, ν) is an (x, I)-Σ2-extendible pair, and μ is
(x, I)-Σ2-extendible, if Lμ[x, I] ≺Σ2 Lν [x, I].

Then of importance for our purposes are:

Lemma 3. The computation {e}I(m,x) exhibits final looping behaviour if and
only if there exists some (x,I)-Σ2-extendible pair (ζ,Σ) so that Λ(e, I,x, ζ) = 0.

The dependence on I in the above is natural. With iJ it can be dropped:

Lemma 4. The computation {e}iJ(m,x) exhibits final looping behaviour if and
only if there exists some x-Σ2-extendible pair (ζ,Σ) so that Λ(e, iJ,x, ζ) = 0.

Usual methods prove an Sn
m-theorem and:

Theorem 3 (The I-Recursion theorem). If F(e,m,x) is ittm-recursive in
I, there is e0 ∈ ω so that

{e0}I(m,x) = F(e0,m,x).

Another Example: Lubarsky’s Feedback-ittm Recursions
We are indebted to Lubarsky’s work in [14] and grateful for discussions with him
on his earlier FITTM’s (= Feedback ITTM’s). His notion of ‘feedback’ uses the
concept of properly halting where the basic outcome occurs when an ITTM halts
rather than having, as here, a fixed output. (We have indicated above why we
consider ‘fixed output’ to mean a fixed output tape.) He describes wellfounded
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computation trees, not as arising from a Kleene style recursion, but as ITTM’s
(with extra tapes) that have the additional state of “an oracle query does the
Feedback ITTM with program the content of the first additional tape on input
the content of the second [tape] converge?” which will receive a Yes/No answer.
(As intimated, convergence is halting.) He then describes the semantics of such
computations as wellfounded trees, where subcalls are again queries of the same
type (“Does {e}FITTM (x) halt?”). An FITTM computation freezes if the tree
becomes illfounded. He asks a number of questions, such as to the ranks for the
wellfounded trees occurring, what are the reals output or appearing on tapes of
such machines. We briefly state answers to these below.

We may describe an induction building up directly the class of successful
FITTM-computations as a fixed point of a monotone operator, in this spirit,
just as in Definition 5 above. However we construe this fixed point as that arising
from a type-2 operator, let us call it here hJ, from an ittm-recursion defined as in
this paper. Recursion in hJ then also becomes an example of ittm-recursion in 2E
with Theorem 2 applying again: hJ and 2E are mutually ittm-recursive in each
other. Thus for us Feedback-ITTM computations become a particular example
of this higher type ittm recursion, and the class of x ∈ NN FITTM-computable
coincide with those ittm-recursive in 2E.

Computation Times. The Lemmata 3 and 4 above give sufficient conditions
for a computation {e0}iJ(m,x) to converge. We need to find out exactly how
long computations in iJ take in order to characterise the iJ-recursive and semi-
recursive sets. The clue is that ordinary ittm-computations can compute the
theories and codes for the levels of the L-hierarchy up to the end of the first Σ2-
extendible pair interval (ζ,Σ). (This is shown in [17], and in [4] a programme
is explicitly given that shows how codes and theories can be simultaneously
produced by an ordinary ittm recursion on α for α < Σ; after stage Σ it drops
into a repeating loop of reproducing the results on its output tape of the α ∈
(ζ,Σ).) A machine that writes out codes for Lα’s must in some sense be, at least
akin to, a universal machine, since by absoluteness, any ittm computation on
integer input can be run in L. Here we have, in effect, ittm’s that can whilst
within such a Σ2-extendible interval, call other ittm’s as part of a subroutine. It
might not be inconceivable that such behaviour is overall fashioned, when they
try to write codes for levels Lα’s, by their reaching levels of the L-hierarchy,
where the Σ2-extendible pairs become nested.

Definition 9. For m ≥ 1 an m-depth Σ2-nesting of an ordinal α is a sequence
(ζn, σn)n<m so that
(i) if m = 1 then ζ0 < α < σ0;
(ii) if 0 < n + 1 < m then ζn ≤ ζn+1 < α < σn+1 < σn;
(iii) if k < m then Lζk ≺Σ2 Lσk

.

We may show that there are processes generalised ittm-recursive in iJmf
that compute levels of L up to the points where any finite depth of nesting occurs,
where each additional depth of nesting corresponds to computing up to repeating
snapshots at one depth lower in T. It then seems inevitable that illfounded trees
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must ultimately occur by some ordinal corresponding to infinite depth nesting.
But prima facie there is no such ordinal, since there can be no infinite descending
chain σn+1 < σn in the above definition.

We thus shall want to consider non-standard admissible models (M,E) of KP
together with some other properties. We let WFP(M) be the wellfounded part of
the model. By the so-called ‘Truncation Lemma’ it is well known (v. [2]) that this
wellfounded part must also be an admissible set. Usually for us the model will
also be a countable one of “V = L”. Let M be such and let α = On ∩WFP(M).
By the above α is thus an admissible ordinal, i.e. Lα will also be a KP model.
As remarked, an ‘ω-depth’ nesting cannot exist by the wellfoundedness of the
ordinals. However an illfounded model M when viewed from the outside may
have infinite descending chains of M -ordinals in its illfounded part. These con-
siderations motivate the following definition.

Definition 10. An infinite depth Σ2-nesting of α based on M is a sequence
(ζn, sn)n<ω with:

(i) ζn ≤ ζn+1 < α ⊂ sn+1 ⊂ sn; (ii) sn ∈ OnM ; (iii) (Lζn ≺Σ2 Lsn
)M .

Thus the sn form an infinite descending E-chain (where, as above, E is the
membership relation of the illfounded model) through the illfounded part of the
model M .

Whilst any countable transitive admissible set can be extended to have an ill-
founded part, (again v. [2]) and, for example, there are illfounded end-extensions
of Lωck

1
, that does not mean that this latter model can be extended to an ill-

founded model M which supports an infinite depth Σ2-nesting: a relatively large
countable admissible β is needed for that:

Definition 11. Let β0 be the least ordinal β so that Lβ forms the wellfounded
part of an admissible end-extension (M,E) based on which there exists an infinite
depth Σ2-nesting of β.

It turns out that Lβ0 is a model of Σ1-Separation. Hence it has a proper, and
so least, Σ1-elementary submodel: Lα0 ≺Σ1 Lβ0 . These ordinals feature in what
follows.

4 Conclusions

Theorem 4. (i) If a recursion {e}iJ(m) converges, then it does so by time α0,
and the latter ordinal is the supremum (over e and m) of convergence times of
such computations. (ii) There is a recursion {h}iJ(m) that only diverges at β0,
and all such divergent computations diverge before or at this time.

Lemma 5. (i) The iJ-recursive sets of integers are precisely those of Lα0 ;
(ii) the iJ-semi-recursive sets are those Σ1(Lα0). Q.E.D.

The following answers two questions of Lubarsky:
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Corollary 1. The reals appearing on the tapes of freezing fittm-computations
of [14] are precisely those of Lβ0 ; similarly the supremum of the ranks of the
wellfounded parts of freezing fittm-computation trees is also β0.

Lemma 6. The complete ittm-semidecidable-in-iJ set of integers

K = {(e,m) ∈ ω × ω | {e}iJ(e)(e,m) = 1}

as well as
H iJ(e)↔{e}iJ(e)↓

are recursively isomorphic to the complete Σ1-Theory of 〈Lα0,∈〉.
These last two lemmata can be compared with a result of Kleene et al.:

Theorem 5. The complete (Kleene)-semidecidable in oJ set of integers is recur-
sively isomorphic to the complete Σ1-Theory of 〈Lωck

1
,∈〉. The oJ-recursive sets

of integers are precisely those of Lωck
1

, that is, the hyperarithmetic sets.

A Postlude. In earlier work we had located in the L-hierarchy winning strate-
gies for Σ0

3 two person perfect information games. The games in [18] connected to
nested Σ2-extendability. The presumed connection with ittm’s becomes a intrigu-
ing question, and most of this work was motivated by trying to understand this.
The summary above indeed ties in with these results, which we mention here
without explaining the connection. See [19].

Theorem 6. Let η be least so that for any Σ0
3 -game there is a winning strategy

for one of the players definable over Lη. Then η = β0.

Subsequently S. Hachtman ([7]) found another remarkable characterisation
of β0:

• Let γ be least so that, as a model of a fragment of second order arithmetic,
R ∩ Lγ is a model of Π1

2 -monotone induction. Then γ = β0.

Open Questions. As can perhaps be seen from this sketch there are more open
questions than known facts. A closer analysis of ittm recursions in general type
2 functionals needs to be done:

Q1 Formulate a Stage Comparison Theorem for ittm-recursion. (See [9].VI)
Much as there are several approaches to the hyperarithmetic sets uses Kleene
recursion, there are notation systems associated with ittm-theory. One can use
the theory of �Σ0

3 -monotone operators to obtain norms, thus prewellorderings,
on ittm semi-decidable sets. Presumably many features of Kleene recursion have
some analogue for ittm recursion.

Q2 What is the correct definition and properties of the superjump (due to Gandy
for Kleene recursion) for ittm higher type recursions? (See [9].VI)
We have only considered type-2 recursions to date.
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Q3 Is there a suitable notion of ittm-recursion in this spirit at types-3 and above?
In another direction one can enlarge the notion of computation by taking on the
hypermachines of [5]. Such machines may have loops at Σn-extendible ordinals
by analogy with the ittm’s.

Q4 Develop a theory of higher type hypermachine recursion.
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Abstract. We study computable embeddings for pairs of structures,
i.e. for classes containing precisely two non-isomorphic structures. We
show that computable embeddings induce a non-trivial degree structure
for two-element classes consisting of computable structures, in particular
the pair of linear orders {ω, ω�}, which are the order types of the positive
integers and the negative integers, respectively.

1 Introduction

We study computability-theoretic complexity for classes of countable structures.
A widely used approach to investigating algorithmic complexity involves com-
paring different classes of structures by using a particular notion of reduction
between classes. Examples of such reductions include computable embeddings
[4,5], Turing computable embeddings [7,13], Σ-reducibility [6,16], computable
functors [10,15], enumerable functors [18], etc. If a class K0 is reducible to a
class K1 and there is no reduction from K1 into K0, then one can say that K1 is
computationally “harder” than K0. In a standard computability-theoretic way, a
particular reduction gives rise to the corresponding degree structure on classes.
Nevertheless, note that there are other ways to compare computability-theoretic
complexity of two classes of structures, see, e.g., [11,14].

Friedman and Stanley [8] introduced the notion of Borel embedding to com-
pare complexity of the classification problems for classes of countable structures.
Calvert, Cummins, Knight, and Miller [4] (see also [13]) developed two notions,
computable embeddings and Turing computable embeddings, as effective counter-
parts of Borel embeddings. The formal definitions of these embeddings are given
in Sect. 2. Note that if there is a computable embedding from K0 into K1, then
there is also a Turing computable embedding from K0 into K1. The converse is
not true, see Sect. 2 for details.
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In this paper, we follow the approach of [4] and study computable embeddings
for pairs of structures, i.e. for classes K containing precisely two non-isomorphic
structures. Our motivation for investigating pairs of structures is two-fold. First,
these pairs play an important role in computable structure theory. The technique
of pairs of computable structures, which was developed by Ash and Knight [1,2],
found many applications in studying various computability-theoretic properties
of structures (in particular, their degree spectra and effective categoricity, see,
e.g., [2,3,9]).

Second, pairs of computable structures constitute the simplest case, which is
significantly different from the case of one-element classes: It is not hard to show
that for any computable structures A and B, the one-element classes {A} and
{B} are equivalent with respect to computable embeddings. On the other hand,
our results will show that computable embeddings induce a non-trivial degree
structure for two-element classes consisting of computable structures.

In this paper, we concentrate on the pair of linear orders ω and ω�. By
degtc({ω, ω�}) we denote the degree of the class {ω, ω�} under Turing com-
putable embeddings. Quite unexpectedly, it turned out that a seemingly sim-
ple problem of studying computable embeddings for classes from degtc({ω, ω�})
requires developing new techniques.

The outline of the paper is as follows. Section 2 contains the necessary pre-
liminaries. In Sect. 3, we give a necessary and sufficient condition for a pair of
structures {A,B} to belong to degtc({ω, ω�}). In Sect. 4, we show that the pair
{1 + η, η + 1} is the greatest element inside degtc({ω, ω�}), with respect to com-
putable embeddings. Section 5 proves the following result: inside degtc({ω, ω�}),
there is an infinite chain of degrees induced by computable embeddings. Section 6
contains further discussion.

2 Preliminaries

We consider only computable languages, and structures with domain contained
in ω. We assume that any considered class of structures K is closed under isomor-
phism, modulo the restriction on domains. In addition, we assume that all the
structures from K have the same language. For a structure S, D(S) denotes the
atomic diagram of S. We will often identify a structure and its atomic diagram.

Let K0 be a class of L0-structures, and K1 be a class of L1-structures. In the
definition below, we use the following convention: An enumeration operator Γ
is treated as a c.e. set of pairs (α,ϕ), where α is a finite set of basic (L0 ∪ ω)-
sentences, and ϕ is a basic (L1 ∪ ω)-sentence.

Definition 1 ([4,13]). An enumeration operator Γ is a computable embedding
of K0 into K1, denoted by Γ : K0 ≤c K1, if Γ satisfies the following:

1. For any A ∈ K0, Γ (A) is the atomic diagram of a structure from K1.
2. For any A,B ∈ K0, we have A ∼= B if and only if Γ (A) ∼= Γ (B).

Any computable embedding has an important property of monotonicity : If
Γ : K0 ≤c K1 and A ⊆ B are structures from K0, then we have Γ (A) ⊆ Γ (B)
[4, Proposition 1.1].
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Definition 2 ([4,13]). A Turing operator Φ = ϕe is a Turing computable
embedding of K0 into K1, denoted by Φ : K0 ≤tc K1, if Φ satisfies the following:

1. For any A ∈ K0, the function ϕ
D(A)
e is the characteristic function of the

atomic diagram of a structure from K1. This structure is denoted by Φ(A).
2. For any A,B ∈ K0, we have A ∼= B if and only if Φ(A) ∼= Φ(B).

Proposition (Greenberg and, independently, Kalimullin; see [12,13])
If K0 ≤c K1, then K0 ≤tc K1. The converse is not true.

Both relations ≤c and ≤tc are preorders. If K0 ≤tc K1 and K1 ≤tc K0, then
we say that K0 and K1 are tc-equivalent, denoted by K0 ≡tc K1. For a class K,
by degtc(K) we denote the family of all classes which are tc-equivalent to K.
Similar notations can be introduced for the c-reducibility.

For L-structures A and B, we say that A ≡1 B if A and B satisfy the same
∃-sentences. Let α be a computable ordinal. The formal definition of a com-
putable Σα formula (or a Σc

α formula, for short) can be found in [2, Chap. 7].
By Σc

α-Th(A), we denote the set of all Σc
α sentences which are true in A. Note

that in this paper we will use Σc
α formulas only for α ≤ 2.

Pullback Theorem (Knight, Miller, and Vanden Boom [13])
Suppose that K1 ≤tc K2 via a Turing operator Φ. Then for any computable infini-
tary sentence ψ in the language of K2, one can effectively find a computable
infinitary sentence ψ� in the language of K1 such that for all A ∈ K1, we have
A |= ψ� if and only if Φ(A) |= ψ. Moreover, for a non-zero α < ωCK

1 , if ψ is a
Σc

α formula, then so is ψ�.

When we work with pairs of structures, we use the following convention:
Suppose that Γ is a computable embedding from a class {A,B} into a class
{C,D}. Then for convenience, we always assume that A and B are not isomor-
phic, Γ (A) ∼= C, and Γ (B) ∼= D.

Notice that here we abuse the notations: Formally speaking, we identify the
two-element class {A,B} with the family containing all isomorphic copies of A
and all isomorphic copies of B.

3 The tc-degree of {ω, ω�}
In this section, we give a characterization of the tc-degree for the class {ω, ω�}:

Theorem 1. Let A and B be infinite L-structures such that A 	∼= B. Then the
following conditions are equivalent:

(i) {A,B} ≡tc {ω, ω�}.
(ii) Both A and B are computably presentable, A ≡1 B,

Σc
2-Th(A) � Σc

2-Th(B) 	= ∅, and Σc
2-Th(B) � Σc

2-Th(A) 	= ∅. (1)
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In order to prove the theorem, first, we establish the following useful fact:

Proposition 1. Let A and B be infinite computable L-structures such that A �

B. If A ≡1 B, then {ω, ω�} ≤tc {A,B}.
Proof (of Theorem 1). (i)⇒(ii). Since {ω, ω�} ≤tc {A,B}, both A and B have
computable copies.

Suppose that A 	≡1 B. W.l.o.g., one may assume that there is an ∃-sentence
ψ which is true in A, but not true in B. By applying Pullback Theorem to the
reduction Φ : {ω, ω�} ≤tc {A,B}, we obtain a Σc

1 sentence ψ� such that ψ� is
true in ω and false in ω�. This gives a contradiction, since ω ≡1 ω�. Hence,
A ≡1 B.

Consider ∃∀-sentences ξ0 and ξ1 in the language of linear orders which say
the following: “there is a least element” and “there is a greatest element,” respec-
tively. Since {A,B} ≤tc {ω, ω�}, one can apply Pullback Theorem to ξ0 and ξ1,
and obtain condition (1).

(ii)⇒(i). Proposition 1 implies that {ω, ω�} ≤tc {A,B}. Now we need to
build a Turing operator Φ : {A,B} ≤tc {ω, ω�}.

Fix Σc
2 sentences ϕ and ψ such that A |= ϕ & ¬ψ and B |= ¬ϕ & ψ. W.l.o.g.,

one may assume that

ϕ = ∃x̄
∧

i∈ω

∀ȳiϕi(x̄, ȳi), ψ = ∃ū
∧

j∈ω

∀v̄jψj(ū, v̄j).

Let S be a copy of one of the structures A or B. We give an informal descrip-
tion of how to build the structure Φ(S). Formal details can be recovered from
the proof of Proposition 1, mutatis mutandis.

Suppose that dom(S) = {d0 <N d1 <N d2 <N . . . }, where ≤N is the standard
order of natural numbers. By dom(S)[s] we denote the set {d0, d1, . . . , ds}. We
say that a tuple d̄ from dom(S)[s] is a ϕ[s]-witness if for any i ≤ s and any tuple
ȳi from dom(S)[s], we have S |= ϕi(d̄, ȳi). The notion of a ψ[s]-witness is defined
in a similar way. The order of witnesses is induced by their Gödel numbers.

At a stage s + 1, we consider the following four cases.
Case 1. There are no ϕ[s + 1]-witnesses and no ψ[s + 1]-witnesses. Then

extend Φ(S)[s] to Φ(S)[s + 1] by copying (a finite part of) ω. In particular, put
into Φ(S)[s + 1] an element which is ≤Φ(S)-greater than every element from
Φ(S)[s].

Case 2. There is a ϕ[s + 1]-witness, and there are no ψ[s + 1]-witnesses.
Proceed as in the previous case.

Case 3. There is a ψ[s + 1]-witness, and there are no ϕ[s + 1]-witnesses.
Extend Φ(S)[s] to Φ(S)[s + 1] by copying ω�.

Case 4. There are both ϕ[s + 1]-witnesses and ψ[s + 1]-witnesses. If the least
ϕ[s+1]-witness is ≤N-less than the least ψ[s+1]-witness, then copy ω. Otherwise,
copy ω�.

It is not difficult to show that the construction gives a Turing operator Φ
with the following properties. If S is a copy of A, then Φ(S) ∼= ω. If S ∼= B, then
Φ(S) ∼= ω�. Theorem 1 is proved. �
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4 The Top Pair

Our goal in this section is to prove that among all pairs of linear orders, which are
tc-equivalent to {ω, ω�}, there is a greatest pair under computable embeddings,
namely {1 + η, η + 1}.

Let us denote by E the equivalence structure with infinitely many equivalence
classes of infinite size. By Ek we shall denote the equivalence structure with
infinitely many equivalence classes of infinite size and exactly one equivalence
class of size k, and Êk denotes the equivalence structure with infinitely many
equivalence classes of infinite size and infinitely many equivalence classes of size
k. It is straightforward to see that {E1, E2} ≤c {Ê1, Ê2}.

Proposition 2. Let L1 and L2 be two linear orders such that L1 has a least
element and no greatest element, and L2 has a greatest element and no least
element. Then {L1,L2} ≤c {E1, E2}.
By transitivity of ≤c, we immediately get the following corollary.

Corollary 1. Let L1 and L2 be two linear orders such that L1 has a least ele-
ment and no greatest element, and L2 has a greatest element and no least ele-
ment. Then {L1,L2} ≤c {Ê1, Ê2}.

In the end of this section, we will need the following special cases.

Corollary 2. {1 + η, η + 1} ≤c {E1, E2} and {1 + η, η + 1} ≤c {Ê1, Ê2}.
The next result is not so useful in itself, because isomorphic copies of the input

structure produce non-isomorphic copies of the output structure, but when we
replace every element of the output structure by a copy of η, we will get the
same structure.

Proposition 3. Let K1 be the class of linear orders, which have a least element
and no greatest element, and let K2 be the class of linear orders, which have
no least element and no greatest element. Then {Ê1, Ê2} ≤c {K1,K2}, which
means that there is an enumeration operator Γ such that for any copy Ŝi of Êi,
Γ (Ŝi) ∈ Ki, for i = 0, 1.

Proof. Given as input a structure S in the language of equivalence structures,
the enumeration operator Γ will output a linear order with domain D consisting
of tuples of elements from S, where

D = {(x0, . . . , xn) |
∧

i<n

(xi <N xi+1 & |[xi]∼| ≥ 2)},

and for two such tuples x̄ = (x0, . . . , xn) and ȳ = (y0, . . . , yk), we will say that
x̄ ≺ ȳ if

– x̄ is a proper extension of ȳ;
– otherwise, if the first index where x̄ and ȳ differ is i, then xi < yi.
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Now we consider the linear orders L1 = Γ (Ê1) and L2 = Γ (Ê2). First we will
show that L1 ∈ K1. Given the structure Ê1, let x̂ be the least element in the
domain of Ê1, in the order of natural numbers, describing an equivalence class
with exactly one element in Ê1 and let x̄ = (x0, . . . , xn) be all elements of Ê1,
ordered as natural numbers, less that x̂ such that

x0 <N x1 <N · · · <N xn−1 <N xn = x̂.

It is easy to see that x̄ cannot have proper extensions in the domain of L1 because
the equivalence class of xn has size one. Then if (y0, . . . , yk) ≺ (x0, . . . , xn), we
have yi < xi, for some i, but this is impossible since x̄ contains all elements less
that x̂ ordered in a strictly increasing order. We conclude that x̄ is the least
element of L1. It is easy to see that L1 does not have a greatest element. It
follows that L1 ∈ K1.

Similarly, it is clear that L2 = Γ (Ê2) does not have a greatest element.
We will show that L2 does not have a least element. Consider an arbitrary
x̄ = (x0, . . . , xn) in the domain of L2. Define x̄′ = (x0, . . . , xn, x′), for some x′

such that xn <N x′. Then x̄′ ≺ x̄, because x̄′ is a proper extension of x̄. �
Corollary 3. {Ê1, Ê2} ≤c {1 + η, η}.
Proof (Sketch). Given the enumeration operatorΓ from the proof of Proposition 3,
we produce a new enumeration operator, where every element of Γ (Êi) is replaced
by an interval of rational numbers of the form [p, q). �
Proposition 4. Let K1 be the class of infinite linear orders, which have a least
element and no greatest element, and let K2 be the class of infinite linear orders,
which have no least element and no greatest element. Then {Ê1, Ê2} ≤c {K2,K1}.
Proof (Sketch). Given as input a structure S in the language of equivalence
structures, the enumeration operator Γ will output a linear order with domain
D consisting of tuples of elements from S, where

D = {(x0, . . . , xn) |
∧

i<n

(xi <N xi+1 & |[xi]∼| ≥ 3) & |[xn]∼| ≥ 2}.

Now we essentially repeat the proof of Proposition 3. �
Corollary 4. {Ê1, Ê2} ≤c {η, η + 1}.
Proof (Sketch). First we reverse the relation in the construction of Γ from Propo-
sition 4 to produce a linear order with a greatest element. Then we produce a
new enumeration operator, where every element of the linear order is replaced
by an interval of rational numbers of the form (p, q]. �
Corollary 5. {Ê1, Ê2} ≤c {1 + η, η + 1}.
Proof (Sketch). We concatenate the results of the enumeration operators from
Corollaries 3 and 4 observing that 1 + η + η = 1 + η and η + η + 1 = η + 1. �
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Theorem 2. {1 + η, η + 1} ≡c {Ê1, Ê2} ≡c {E1, E2}.
Proof. By Corollary 5, we have that {E1, E2} ≤c {Ê1, Ê2} ≤c {1 + η, η + 1} and
by Proposition 2 we have that {1 + η, η + 1} ≤c {E1, E2}. �
Proposition 5. Suppose that A and B are structures in the same language,
for which there exists a Σc

2 sentence φ such that A |= φ and B |= ¬φ. Then
{A,B} ≤c {Ê1, E}.
Corollary 6. Suppose that A and B are structures for which there exist Σc

2

sentences φ and ψ such that A |= φ & ¬ψ and B |= ¬φ & ψ. Then

{A,B} ≤c {Ê1, Ê2}.

Proof (Sketch). For the formula φ, we apply Proposition 5 and produce an enu-
meration operator Γ1 such that {A,B} ≤c {Ê1, E}. It is trivial to modify the
proof of Proposition 5 and apply it for the formula ψ to obtain an enumeration
operator Γ2 such that {A,B} ≤c {E , Ê2}. Then we combine the two operators
into one by simply taking a disjoint union of their outputs. �
Theorem 3. The pair {1+η, η+1} is the greatest one under computable embed-
ding in the tc-equivalence class of the pair {ω, ω�}.
Proof. Consider {A,B} ≡tc {ω, ω�}. By Theorem 1, there exist Σc

2 sentences φ
and ψ such that A |= φ & ¬ψ and B |= ¬φ & ψ. By combining Corollary 6 with
Theorem 2, we conclude that {A,B} ≤c {1 + η, η + 1}. �

5 An Infinite Chain of Pairs

In this section we will show that there is an infinite chain of pairs of linear
orderings under computable embeddings inside the tc-degree of {ω, ω�}. More
concretely, we will show that have the following picture:

{ω, ω�} <c {ω · 2, ω� · 2} <c · · · <c {ω · 2k, ω� · 2k} <c · · · <c {1 + η, η + 1}.

Here we work only with structures in the language of linear orders. We denote
by α, β, γ finite linear orders. For an enumeration operator Γ , and a finite linear
order α, we define

α �Γ x < y
def⇐⇒ ¬(∃β ⊇ α)[ Γ (β) |= y ≤ x ].

Moreover, we shall say that α decides x and y if Γ (α) |= x < y or Γ (α) |= y ≤ x.
For two finite linear orders α and β with disjoint domains, we shall write α + β
for the finite linear order obtained by merging α and β so that the greatest
element of α is less than the least element of β. Following Rosenstein [17], we
will use the notation

∑
i∈ω αi for the linear order α0 + α1 + · · · + αn + · · · , and

the notation
∑

i∈ω� αi for the linear order · · · + αn + · · · + α1 + α0.
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Proposition 6. Suppose x, y ∈ Γ (α) and x 	= y. Then

α �Γ x < y or α �Γ y < x.

Proof. Towards a contradiction, assume that

α 	�Γ x < y and α 	�Γ y < x.

This means that there is some α′ ⊃ α such that Γ (α′) |= y < x and some
α′′ ⊃ α such that Γ (α′′) |= x < y. Consider some new extension β of α, such
that α′ ∩ β = α′′ ∩ β = α, which decides x and y. Without loss of generality,
suppose that Γ (β) |= x < y. Then let γ = β ∪ α′. By monotonicity of Γ , since
α′ ⊂ γ, we have Γ (γ) |= y < x and since β ⊂ γ, we have Γ (γ) |= x < y. We
reach a contradiction. �
Corollary 7. Let x0, . . . , xn be distinct elements and x0, . . . , xn ∈ Γ (α). Then
there is some permutation π of (0, . . . , n) such that

α �Γ xπ(0) < xπ(1) < · · · < xπ(n).

Proposition 7. Suppose x, y ∈ Γ (α) and x 	= y. Then

α �Γ x < y ⇐⇒ α 	�Γ y < x.

Proof. (1) → (2). Since x, y ∈ Γ (α), there is some β ⊇ α which decides x and
y. Since α �Γ x < y, it follows that we must have Γ (β) |= x < y and hence
α 	�Γ y < x.

(2) → (1). Suppose that α 	�Γ y < x. By Proposition 6, we have α �Γ x < y. �
Corollary 8. Let x0, . . . , xn be distinct elements and x0, . . . , xn ∈ Γ (α). Then
there exists exactly one permutation π of (0, . . . , n) for which

α �Γ xπ(0) < xπ(1) < · · · < xπ(n).

Proposition 8. Suppose that {A,B} ≤c {C,D} via Γ , where C has no infinite
descending chains, and D has no infinite ascending chains. Then Γ (α) is finite
for any finite linear order α.

Proof. Towards a contradiction, assume the opposite. We can choose distinct
elements xi ∈ Γ (α), for i < ω, for which, by Corollary 8, we have either

(∀i < ω)[ α �Γ xi < xi+1 ] or (∀i < ω)[ α �Γ xi+1 < xi ].

In the first case, we extend α to a copy B̂ of B. Then Γ (B̂) |= ∧
i<ω xi < xi+1,

which is a contradiction. In the second case, we extend α to a copy Â of A and
again reach a contradiction. �

By Proposition 8, there are infinitely many finite linear orders α such that
Γ (α) 	= ∅. In what follows, we will always suppose that we consider only such
finite linear orders α.
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Proposition 9. Suppose that α and β are finite linear orders with disjoint
domains, and x, y ∈ Γ (α) ∩ Γ (β), x 	= y. Then α �Γ x < y iff β �Γ x < y.

Proof. Let α �Γ x < y and, by Proposition 6, assume that β �Γ y < x. Since α
and β are disjoint, form the finite linear orders γ by merging α and β in some
way. It follows that γ �Γ x < y and γ �Γ y < x, which is a contradiction by
Proposition 7. �
Proposition 10. Suppose that {A,B} ≤c {C,D} via Γ , where A, C have no
infinite descending chains, and B, D have no infinite ascending chains. There
are at most finitely many elements x with the property that there exist α and β
with disjoint domains and x ∈ Γ (α) ∩ Γ (β).

Proof. Towards a contradiction, assume the opposite. By Proposition 8, there
is an infinite sequence of mutually disjoint finite linear orders αi and βi, i < ω,
and distinct elements xi ∈ Γ (αi) ∩ Γ (βi). Consider a copy Â of A extending∑

i∈ω αi. Clearly xi ∈ Γ (Â) and hence

Γ (Â) |=
∧

i<ω

xπ(i) < xπ(i+1),

for some permutation π of ω. For simplicity, suppose that π is the identity
function. Then we have that αi +αi+1 �Γ xi < xi+1. Now, since xi ∈ Γ (βi) and
xi+1 ∈ Γ (βi+1), by Proposition 9, we have βi+1 + βi �Γ xi < xi+1. In this way
we can build a copy B̂ of B extending

∑
i∈ω� βi, and obtain

Γ (B̂) |=
∧

i<ω

xi < xi+1,

which is a contradiction, because Γ (B̂) is a copy of D, which has no infinite
ascending chains. �

Let us call (x, α) a Γ -pair if x ∈ Γ (α). In view of Proposition 10, for any
sequence of (αi)i<ω such that Γ (α) 	= ∅, there is an infinite sequence of Γ -pairs
(xi, αki

)i<ω, where all xi are distinct elements.

Proposition 11. For any two sequences of Γ -pairs (xi, αi)i∈ω and (yi, βi)i∈ω,
the following are equivalent:

(i) Γ (
∑

i∈ω αi +
∑

i∈ω βi) |= ∧
i<ω xi < yi < xi+1;

(ii) Γ (
∑

i∈ω� αi +
∑

i∈ω� βi) |= ∧
i<ω xi < yi < xi+1.

Proof (Sketch). The two directions are symmetrical. Without loss of generality,
suppose that

Γ (
∑

i∈ω

αi +
∑

i∈ω

βi) |=
∧

i<ω

xi < yi < xi+1. (2)

It is enough to show that for an arbitrary i,

αi+1 + αi + βi+1 + βi �Γ xi < yi < xi+1 < yi+1.
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Since xi ∈ Γ (αi) and yi ∈ Γ (βi), by the monotonicity of Γ and (2), we have
αi + βi �Γ xi < yi. Similarly, we have

αi+1 + βi �Γ yi < xi+1 and αi+1 + βi+1 �Γ xi+1 < yi+1.

Since all these four finite linear orders are disjoint, we can place αi+1 before αi

and βi+1 before βi to obtain αi+1 + αi + βi+1 + βi �Γ xi < yi < xi+1 < yi+1. �
Proposition 12. Suppose {ω · 2, ω� · 2} ≤c {D0,D1} via Γ , where D0 is a
linear order without infinite descending chains and D1 is an infinite order with-
out infinite ascending chains. For any two sequences of Γ -pairs (xi, αi)i∈ω and
(yi, βi)i∈ω, there is a number q such that either

Γ (
∑

i∈ω

αi +
∑

i∈ω

βi) |=
∧

i,j>q

xi < yj or Γ (
∑

i∈ω

αi +
∑

i∈ω

βi) |=
∧

i,j>q

yj < xi.

Proof. Assume that for some two sequences of Γ -pairs (xi, αi)i<ω and (yi, βi)i<ω,
we have the opposite. We will show that we can build two infinite subsequences
(xsi

, αsi
)i<ω and (yti

, βti
)i<ω, such that

Γ (
∑

i∈ω

αsi
+

∑

i∈ω

βti
) |=

∧

i

xsi
< yti

< xsi+1 .

Then we will apply Proposition 11 to reach a contradiction. Suppose we have
built the sequences up to index �, i.e. we have the finite sequences of Γ -pairs
(xsi

, αsi
)i≤� and (yti

, βti
)i<�, such that

αs0 + αs1 + · · · + αs�
+ βt0 + βt1 + · · · + βt�−1 �Γ

∧

i<�

xsi
< yti

< xsi+1 .

Start with some indices i and j such that s� < i, t�−1 < j, and

Γ (
∑

i∈ω

αi +
∑

i∈ω

βi) |= xs�
< xi < yj .

Now we find some indices j′ and i′ such that i < i′, j < j′, and

Γ (
∑

i∈ω

αi +
∑

i∈ω

βi) |= yj < yj′ < xi′ .

Since Γ (
∑

i∈ω αi +
∑

i∈ω βi) does not contain an infinite descending chain, and
by our assumption, we know that we can find such indices. We let s�+1 = i′ and
t� = j′. By the properties of �Γ , it is clear that

αs0 + αs1 + · · · + αs�+1 + βt0 + βt1 + · · · + βt�
�Γ

∧

i<�+1

xsi
< yti

< xsi+1 .

Now by Proposition 11, we have the following:

Γ (
∑

i∈ω�

αi +
∑

i∈ω�

βi) |=
∧

i∈ω

xsi
< yti

< xsi+1 ,

which is a contradiction with the fact that Γ (
∑

i∈ω� αi +
∑

i∈ω� βi) does not
contain an infinite ascending chain.
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Theorem 4. Fix some k ≥ 2 and suppose {ω · k, ω� · k} ≤c {D0,D1} via Γ ,
where D0 is a linear order without infinite descending chains and D1 is an infinite
order without infinite ascending chains. Then D0 includes ω · k and D1 includes
ω� · k.

Proof (Sketch). For simplicity, let us consider the case of k = 3, the general case
being a straightforward generalization. Let A, B, and C be copies of ω, with
disjoint domains, partitioned in the following way:

A =
∑

i∈ω

αi, B =
∑

i∈ω

βi, and C =
∑

i∈ω

γi.

We use Proposition 12 at most three times. Start with two arbitrary sequences
of Γ -pairs (xi, αki

)i<ω and (yi, βmi
)i<ω and, without loss of generality, suppose

that there is a number �1 such that

Γ (
∑

i∈ω

αki
+

∑

i∈ω

βmi
) |=

∧

i,j>�1

xi < yj .

Now we take a sequence of Γ -pairs (zi, γni
)i<ω and we may suppose that there

is a number �2 such that

Γ (
∑

i∈ω

αki
+

∑

i∈ω

γni
) |=

∧

i,j>�2

xi < zj .

We must apply Proposition 12 one more time to the two sequences of Γ -pairs
(yi, βki

)i<ω and (zi, γni
)i<ω. We may suppose that there is a number �3 such

that
Γ (

∑

i∈ω

βmi
+

∑

i∈ω

γni
) |=

∧

i,j>�3

yi < zj .

By monotonicity of Γ , it follows that for �0 = max{�1, �2, �3}, we have

Γ (
∑

i∈ω

αki
+

∑

i∈ω

βmi
+

∑

i∈ω

γni
) |=

∧

i,j,k>�0

xi < yj < zk.

Again by monotonicity of Γ , we have Γ (A + B + C) |= ∧
i,j,k>�0

xi < yj < zk.
We conclude that Γ (A + B + C) includes a copy of ω · 3. �
Corollary 9. For any k < ω, {ω · 2k, ω� · 2k} <c {ω · 2k+1, ω� · 2k+1}.
It follows that we have the following chain above {ω, ω�}:

{ω, ω�} <c {ω · 2, ω� · 2} <c · · · <c {ω · 2k, ω� · 2k} <c · · · <c {1 + η, η + 1}.

6 Future Work

Apart from extending our results to more general classes of pairs of structures,
we believe that by exploiting the ideas introduced in Sect. 5, we can prove the
following conjecture.

Conjecture 1. For any two natural numbers n and k,

n | k ⇐⇒ {ω · n, ω� · n} ≤c {ω · k, ω� · k}.
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Abstract. The theory of numberings gives a fruitful approach to study-
ing uniform computations for various families of mathematical objects.
The algorithmic complexity of numberings is usually classified via the
reducibility ≤ between numberings. This reducibility gives rise to an
upper semilattice of degrees, which is often called the Rogers semilattice.
For a computable family S of c.e. sets, its Rogers semilattice R(S) con-
tains the ≤-degrees of computable numberings of S. Khutoretskii proved
that R(S) is always either one-element, or infinite. Selivanov proved that
an infinite R(S) cannot be a lattice.

We introduce a bounded version of reducibility between numberings,
denoted by ≤bm. We show that Rogers semilattices Rbm(S), induced by
≤bm, exhibit a striking difference from the classical case. We prove that
the results of Khutoretskii and Selivanov cannot be extended to our set-
ting: For any natural number n ≥ 2, there is a finite family S of c.e. sets
such that its semilattice Rbm(S) has precisely 2n − 1 elements. Further-
more, there is a computable family T of c.e. sets such that Rbm(T ) is an
infinite lattice.

1 Introduction

Uniform computations for families of mathematical objects constitute a classi-
cal line of research in computability theory. Formal methods for studying such
computations are provided by the theory of numberings. The theory goes back
to the seminal article of Gödel [17], where an effective numbering of first-order
formulae was used in the proof of the incompleteness theorems. One of the first
results, which gave rise to the systematic study of numberings, was obtained by
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Kleene [25]: he gave a construction of a universal partial computable function.
After that, the foundations of the modern theory of numberings were developed
by Kolmogorov and Uspenskii [26,36] and, independently, by Rogers [34].

Let S be a countable set. A numbering of S is a surjective map ν from ω
onto S. A standard tool for measuring the algorithmic complexity of numberings
is provided by the notion of reducibility between numberings: A numbering ν is
reducible to another numbering μ (denoted by ν ≤ μ) if there is total computable
function f(x) such that ν(x) = μ(f(x)) for all x ∈ ω. In other words, there is
an effective procedure which, given a ν-index of an object from S, computes a
μ-index for the same object. In general, however, the goal is for f to be a readily
understandable function, so that we can actually obtain some information from
the reduction.

In this paper, we consider only families S containing subsets of ω, i.e., we
always assume that S ⊂ P (ω) and S is countable.

Let Γ be a complexity class (e.g., Σ0
1 , d-Σ0

1 , Σ0
n, or Π1

n). A numbering ν of
a family S is Γ -computable if the set {〈x, n〉 : x ∈ ν(n)} belongs to the class Γ .
We say that a family S is Γ -computable if it has a Γ -computable numbering.

Following the literature, the term computable numbering will be used as a
synonym of a Σ0

1 -computable numbering. In particular, a computable family is
a family with a Σ0

1 -computable numbering.
In a standard recursion-theoretical way, the notion of reducibility between

numberings give rise to the Rogers upper semilattice (or Rogers semilattice for
short) of a family S: For a given complexity class Γ , this semilattice contains
the degrees of all Γ -computable numberings of S. Here two numberings have the
same degree if they are reducible to each other, see Sect. 2 for the formal details.

There is a large body of literature on Rogers semilattices of computable fam-
ilies. To name only a few, computable numberings were studied by Badaev [4,5],
Ershov [11,12], Friedberg [14], Goncharov [18,19], Lachlan [27,28], Mal’tsev [29],
Pour-El [33], and many other researchers. Note that computable numberings are
closely connected to algorithmic learning theory (see, e.g., the recent papers
[1,9,23]). For a survey of results and bibliographical references on computable
numberings, the reader is referred to the seminal monograph [12] and the articles
[3,6,13].

Goncharov and Sorbi [21] started developing the theory of generalized
computable numberings: In particular, this area includes investigations of
Γ -computable numberings. The approach of [21] proved to be fruitful for classi-
fying Rogers semilattices in hyperarithmetical hierarchy [3,8,32] and the Ershov
hierarchy [7,20,22,31].

In the paper, we introduce the following bounded version of the reducibility
between numberings:

Definition 1.1. Let ν and μ be numberings. We say that ν is bm-reducible to
μ if there is a total computable function f(x) with the following properties:
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(a) for every x ∈ ω, we have ν(x) = μ(f(x));
(b) for every y ∈ ω, the preimage f−1(y) is a finite set.

We write f : ν ≤bm μ if a function f bm-reduces ν to μ.

The notation ≤bm is a tribute to the little-known paper of Maslova [30]. She
introduced a bounded version of m-reducibility on sets: Suppose that f(x) is a
computable function, A and B are subsets of ω. Then f : A ≤bm B iff f : A ≤m B
and f satisfies the condition (b) above [30, Definition 1].

Nowadays various types of reductions are commonly used to study proper-
ties of mathematical structures (e.g., in Borel reducibility theory [15,16] or in
the theory of ceers [2]). Following this line of research, we are introducing the
reducibility ≤bm, and we aim to investigate the complexity of the corresponding
Rogers semilattices and their structural properties.

One would expect that investigating Rogers semilattices under bm-
reducibility makes little or no difference for most of the known results on num-
berings. Quite strikingly, this is not the case. In the paper, we illustrate this by
considering two algebraic properties of Rogers semilattices.

Historically, the first two major problems on Rogers semilattices were raised
by Ershov [10] (see also [6] for a detailed discussion): Let R be the Rogers
semilattice of a computable family S.

Problem A. What is a possible cardinality of R?

Problem B. Can R be a lattice?

In the classical case (i.e. for the reducibility ≤), the problems were solved in
1970s:

A. Khutoretskii [24] proved that R either has only one element, or is countably
infinite.

B. Selivanov [35] proved that an infinite R cannot be a lattice.

Unexpectedly, the theorems of Khutoretskii and Selivanov cannot be
extended to the case of bm-reducibility. We obtain the following results:

A′. For every natural number n ≥ 2, there is a finite family of c.e. sets such
that its Rogers semilattice under bm-reducibility has cardinality 2n − 1.
A similar result is proved for infinite computable families.

B′. There is a computable family of c.e. sets such that its Rogers semilattice
under bm-reducibility is an infinite lattice.

These results witness that the bm-reducibility of numberings is an interesting
object of study in itself.

The outline of the paper is as follows. Section 2 contains the necessary prelim-
inaries and some general observations about bm-reducibility. In Sect. 3, we obtain
an infinite lattice under bm-reducibility (Result B′). Section 4 deals with the
possible cardinalities of semilattices under bm-reducibility (Result A′). Section 5
contains further discussion.
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2 Preliminaries and General Facts

In all the sections of the paper, except the last one, we consider only computable
numberings.

Suppose that ν is a numbering of a family S0, and μ is a numbering of a
family S1. Note that the condition ν ≤ μ always implies that S0 ⊆ S1. Clearly,
if ν ≤bm μ, then ν ≤ μ.

Numberings ν and μ are equivalent (denoted by ν ≡ μ) if ν ≤ μ and μ ≤ ν.
The bm-equivalence ≡bm is defined in a similar way. The numbering ν ⊕μ of the
family S0 ∪ S1 is defined as follows:

(ν ⊕ μ)(2x) = ν(x), (ν ⊕ μ)(2x + 1) = μ(x).

The following fact is well-known (see, e.g., Proposition 3 in [12, p. 36]): If � ∈
{≤,≤bm} and ξ is a numbering of a family T , then

(ν � ξ &μ � ξ) ⇔ (ν ⊕ μ � ξ).

Let S be a computable family of c.e. sets. By Com0
1(S) we denote the set

of all computable numberings of S. Suppose that ∼ is the equivalence relation
induced by a preorder � ∈ {≤,≤bm}. Since the relation ∼ is a congruence on the
structure (Com0

1(S);�,⊕), we use the same symbols � and ⊕ on numberings of
S and on ∼-equivalence classes of these numberings.

The quotient structure Q∼(S) := (Com0
1(S)/∼;�,⊕) is an upper semilat-

tice. We say that Q∼(S) is the Rogers semilattice of the family S under the
reducibility �. For the sake of convenience, we use the following notations:

Rm(S) := Q≡(S); Rbm(S) := Q≡bm
(S).

Note that card(Rm(S)) ≤ card(Rbm(S)).
Numberings ν and μ are computably isomorphic if ν = μ ◦ f , where f is a

computable permutation of ω. If ν is a numbering, then by ην we denote the
corresponding equivalence relation on ω:

m ην n ⇔ ν(m) = ν(n).

A numbering ν is decidable if the relation ην is computable. Numbering ν is
Friedberg if ην is the identity relation.

In our proofs, we will often refer to the following simple fact about bm-
reducibility:

Lemma 2.1. Suppose that ν and μ are numberings, and ν(x) = μ(y). If the
class [x]ην

is infinite and [y]ημ
is finite, then ν �bm μ.

Proof. Assume that f : ν ≤bm μ. Since ν(x) = μ(y), we have f−1([y]ημ
) = [x]ην

.
By the pigeonhole principle, there is an element z ∈ [y]ημ

such that f−1(z) is
infinite, which contradicts the definition of bm-reducibility. ��
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It is well-known that any decidable numbering ν of a family S induces a
minimal element in the semilattice Rm(S). It is easy to show that a similar
result fails for the structure Rbm(S):

Corollary 2.1. Suppose that S is a computable infinite family, and ν is a decid-
able, computable numbering of S. Then ν is minimal in Rbm(S) if and only if
for every x ∈ ω, the class [x]ην

is finite.

For reasons of space, the proof of Corollary 2.1 is omitted.
A countable family S of sets is discrete if there is a family of finite sets F

with the following properties:

– for any X ∈ F , there is at most one W ∈ S with X ⊆ W ;
– for every W ∈ S, there is at least one X ∈ F such that X ⊆ W .

A family S is effectively discrete if it is discrete, and for the witnessing family
F , there is a strongly computable sequence of finite sets (Fi)i∈ω such that F =
{Fi : i ∈ ω}.

3 Lattices

Let S be a computable family of c.e. sets. Here we show that the Rogers semi-
lattice Rbm(S) can be an infinite lattice.

Theorem 3.1. Consider a family S := {{k} : k ∈ ω}. Then the structure
Rbm(S) is isomorphic to the lattice of all Π0

2 sets (under inclusion).

Proof. Let ν be a computable numbering of the family S. We define a set

Inf(ν) := {k ∈ ω : the set {k} has infinitely many ν-numbers}.

It is not hard to show that Inf(ν) is a Π0
2 set.

Lemma 3.1. Let X be an arbitrary Π0
2 set. Then there is a computable num-

bering μ of the family S such that Inf(μ) = X.

Proof. Choose a computable predicate R(e, y) with the following property: for
any e ∈ ω,

e ∈ X ⇔ ∃∞yR(e, y).

W.l.o.g., one may assume that R(e, 0) is true for every e. Fix a computable
injective function f : ω → ω2 such that range(f) = R.

For n ∈ ω, we define μ(n) := {en}, where f(n) = (en, yn). It is not hard
to show that μ is a computable numbering of the family S. Furthermore, the
following holds:

(a) If e ∈ X, then there are infinitely many n with R(e, yn) true. For each such
n, we have μ(n) = {e}.

(b) If e �∈ X, then there are only finitely many numbers n with μ(n) = {e}.

Therefore, we deduce that Inf(μ) = X. ��
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Lemma 3.1 implies that in order to prove the theorem, it is sufficient to
establish the following fact:

Lemma 3.2. Let ν and μ be computable numberings of the family S. Then
ν ≤bm μ if and only if Inf(ν) ⊆ Inf(μ).

Proof. Assume that ν ≤bm μ. Then Lemma 2.1 shows the following: If the set
{k} has infinitely many ν-numbers, then {k} also has infinitely many μ-numbers.
Hence, Inf(ν) ⊆ Inf(μ).

Now suppose that Inf(ν) ⊆ Inf(μ). We build a bm-reduction f : ν ≤bm μ.
For a number e ∈ ω, we choose effective enumerations {ai}i∈I and {bj}j∈J

(without repetitions), which enumerate the set of all ν-numbers of {e} and the
set of all μ-numbers of {e}, respectively. Here we assume that I =

⋃
s∈ω I[s]

and J =
⋃

s∈ω J [s], where all I[s] and J [s] are finite initial segments of ω,
I[0] = J [0] = {0}, I[s] ⊆ I[s + 1], J [s] ⊆ J [s + 1], and card(I[s + 1] \ I[s]) ≤ 1.
Moreover, {I[s]}s∈ω and {J [s]}s∈ω are strongly computable sequences of finite
sets.

The desired function f is built in stages.
Stage 0. Set f(a0) = b0.
Stage s+1. If I[s+1] = I[s], then proceed to the next stage. Otherwise, find

n such that I[s+1]\ I[s] = {n}. Let k be the greatest number with bk ∈ f(I[s]).
Consider the following two cases:

1. If k + 1 ∈ J [s], then define f(an) := bk+1.
2. If k + 1 �∈ J [s], then set f(an) := bk.

Note that the described procedure is effective, uniformly in e ∈ ω. Thus, it
is easy to see that f is a total computable function such that f : ν ≤ μ.

Assume that there is a number y such that the set f−1(y) is infinite. Suppose
that μ(y) = {e} and y = bk. The description of the construction implies that
there is a number n such that for all m ≥ n, we have m ∈ I and f(am) = bk.
Thus, k + 1 �∈ J [s] for every s. We deduce that e ∈ Inf(ν) \ Inf(μ), which
contradicts our original assumption. Therefore, the function f provides a bm-
reduction from ν onto μ. Lemma 3.2 is proved.

This concludes the proof of Theorem 3.1. ��

The proof of Theorem 3.1 can be easily modified to obtain the following:

Corollary 3.1. Let S = {Ai : i ∈ ω} be a computable family of c.e. sets. Sup-
pose that there is a strongly computable sequence of finite sets (Fi)i∈ω such that
Fi ⊆ Ai and Fi �⊆ Aj, for all i �= j. Then the structure Rbm(S) is isomorphic to
the lattice of all Π0

2 sets.
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4 Cardinalities of Rogers Semilattices

Here we attack Problem A from the introduction. For finite families S, we obtain
a complete description of possible cardinalities of Rbm(S) (Subsect. 4.1). In Sub-
sect. 4.2, we show that the cardinalities from the previous subsection can also
be realized via infinite families S. In order to prove this, we give a computable
infinite family T such that all its computable numberings are computably iso-
morphic (Theorem 4.2). We also provide two sufficient conditions for Rbm(S)
being infinite.

First, we recall the following classical result:

Lemma 4.1 (folklore). Let S be a computable family of c.e. sets. If S con-
tains sets A and B such that A � B, then the semilattice Rm(S) is infinite. In
particular, this implies that Rbm(S) is also infinite.

4.1 Finite Families

Theorem 4.1. Suppose that S is a finite family of c.e. sets. If S contains pre-
cisely n sets, then card(Rbm(S)) is either equal to 2n − 1 or countably infinite.
Furthermore, for n ≥ 2, both these cases can be realized.

Proof. Let S = {A1, A2, . . . , An} be a family of c.e. sets. If there are numbers
i �= j with Ai � Aj , then by Lemma 4.1, the semilattice Rbm(S) is infinite.

Assume that Ai �⊆ Aj for all i �= j. Now it is sufficient to show that the
structure Rbm(S) contains precisely 2n − 1 elements.

Note that the family S is effectively discrete. Indeed, for every i �= j, choose
an element ai,j ∈ Ai \ Aj , and define the set Fi := {ai,j : j �= i}. It is easy to
see that for any i and k, the condition Fk ⊆ Ai holds iff k = i. Therefore, if ν
is an arbitrary computable numbering of S, then for all i ≤ n and x ∈ ω, the
following conditions are equivalent:

ν(x) = Ai ⇔ Fi ⊆ ν(x) ⇔ for every j �= i, Fj �⊆ ν(x).

This implies that the numbering ν is decidable.
Let D be a non-empty subset of {1, 2, . . . , n}, and d be the least number from

D. We define a decidable numbering μD of the family S as follows:

μD(x) = Ax+1, for x < n;

μD(〈i, j〉) =
{

Ai, if i ∈ D,
Ad, otherwise, where we assume that 〈i, j〉 ≥ n.

It is not hard to establish the following properties:

(a) Lemma 2.1 implies that for finite sets D �= E, we have μD �≡bm μE .
(b) Consider an arbitrary computable numbering ν of S. We define a non-empty

set Dν := {i : Ai has infinitely many ν-numbers}. Using the decidability of
ν, one can obtain that ν ≡bm μDν

.

These properties show that the cardinality of Rbm(S) is equal to the number of
non-empty subsets of the set {1, 2, . . . , n}. Thus, card(Rbm(S)) = 2n − 1. ��
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4.2 Infinite Families

First, we build infinite computable families S with finite semilattices Rbm(S).
Recall that numberings ν and μ are computably isomorphic if there is a com-
putable permutation g of ω such that ν = μ ◦ g. We establish the following fact:

Theorem 4.2. There is an infinite computable family T such that any two com-
putable numberings of T are computably isomorphic. In particular, the semilat-
tice Rbm(T ) contains only one element.

Proof. In the proof of Theorem 3.3 from [2], Andrews and Sorbi built a uniform
sequence (Ei)i∈ω of computably enumerable equivalence relations on ω (or ceers
for short) with the following properties: Each Ei has infinitely many equivalence
classes, and if a c.e. set W intersects infinitely many Ei-classes, then it intersects
every Ei-class.

Fix such a ceer E := E0. Note that every E-class is non-computable: Indeed,
if a class [x]E is computable, then the c.e. set ω \ [x]E intersects all but one
E-classes.

We define the desired family T by arranging its computable numbering: For
x ∈ ω, set θ(x) := [x]E .

Lemma 4.2. 1. The family T is effectively discrete.
2. Let S � T . If S is infinite, then it does not have computable numberings.
3. If ν ∈ Com0

1(S), then every set A ∈ S has infinitely many ν-numbers.

Proof. (1) If A �= B are sets from T , then A ∩ B = ∅. Thus, the sequence of
finite sets ({k})k∈ω witnesses the effective discreteness of the family T .

(2) Assume that ν is a computable numbering of an infinite family S � T . Then
the c.e. set W :=

⋃
n∈ω ν(n) intersects infinitely many E-classes, but it does

not intersect all E-classes. This contradicts the choice of the ceer E.
(3) Suppose that A has only finitely many ν-numbers. W.l.o.g., one may assume

that there is a natural number n0 such that ν(x) = A iff x ≤ n0. Then a
numbering μ(x) := ν(x + n0 + 1) is a computable numbering of the family
T \ {A}, which contradicts the previous item of the lemma.

��

We say that a numbering ν is 1-reducible to a numbering μ (denoted by
ν ≤1 μ) if there is an injective, total computable function f(x) such that ν =
μ ◦ f . The following analogue of Myhill Isomorphism Theorem is known (see,
e.g., Corollary 2 in [12, p. 208]): If ν ≤1 μ and μ ≤1 ν, then ν is computably
isomorphic to μ.

Therefore, it is sufficient to show that for any ν, μ ∈ Com0
1(T ), we have

ν ≤1 μ. A desired 1-reducibility f : ν ≤1 μ can be built in stages. At a stage s,
we find an element k enumerated into the c.e. set ν(s). After that, we search for
a number m such that m �∈ range(f [s]) and k ∈ μ(m). Such a number m exists
by the third item of Lemma 4.2. Moreover, it is easy to see that μ(m) = ν(s).
Thus, we set f(s) := m and proceed to the next stage. Theorem 4.2 is proved. ��
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Corollary 4.1. For any natural number n ≥ 1, there is a computable infinite
family S such that card(Rbm(S)) = 2n − 1.

Proof. Consider the family T from the theorem above. If n = 1, then one can
just choose S := T .

Suppose that n ≥ 2. Choose a finite family V from Theorem 4.1 such that
card(Rbm(V)) = 2n − 1. Then the desired family S contains the following sets:
For any A ∈ T , we add the set {2x : x ∈ A} into S. For every B ∈ V, we put
the set {2y + 1 : y ∈ B}. It is not difficult to show that for this S, the Rogers
bm-semilattice contains precisely 2n − 1 elements. ��

The next two propositions give sufficient conditions for a semilattice Rbm(S)
being infinite.

Proposition 4.1. Let S be a computable infinite family. Suppose that there is
a computable numbering ν of S with the following property: there are infinitely
many sets A ∈ S such that the set ν−1[A] = {x ∈ ω : ν(x) = A} is computable.
Then the semilattice Rbm(S) is infinite.

Proof (sketch). Suppose that A0, A1, . . . , An are distinct sets from S such that
ν−1[Ai], i ≤ n, are computable. For i ≤ n, fix the least number mi such that
ν(mi) = Ai. W.l.o.g., we may assume that mi > 0. We define computable
numberings

μ(x) :=

⎧
⎨

⎩

ν(x), if ν(x) �∈ {A0, A1, . . . , An},
Ai, if x = mi,
ν(0), otherwise;

θi(2x) := μ(x), θi(2x + 1) := Ai, i ≤ n.

Lemma 2.1 implies that the numberings θi, i ≤ n, are pairwise incomparable
under bm-reducibility. Therefore, the semilattice Rbm(S) is infinite. ��
Corollary 4.2. If an infinite family S has a decidable, computable numbering,
then the semilattice Rbm(S) is infinite.

Recall that an infinite set X ⊂ ω is immune if there is no infinite c.e. set W
with W ⊆ X. A set Y ⊆ ω is co-immune if its complement is immune.

Proposition 4.2. Let S be a computable infinite family. Suppose that there is
a computable numbering ν of S with the following property: there are infinitely
many sets A from S such that ν−1[A] is co-immune. Then the semilattice Rbm(S)
contains an infinite antichain.

Proof (sketch). Given a set A from S, we define a computable numbering

μA(2x) := ν(x), μA(2x + 1) := A.

Suppose that A and B are distinct sets from S such that both ν−1[A] and
ν−1[B] are co-immune. Assume that f : μA ≤bm μB . Then the set V := {f(2x+
1)/2 : x ∈ ω} is an infinite c.e. subset of ω \ ν−1[B], which contradicts the co-
immunity of ν−1[B]. Thus, μA and μB are incomparable under bm-reducibility.
Therefore, the semilattice Rbm(S) contains an infinite antichain. ��
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5 Further Discussion

First, we briefly discuss related results on hyperarithmetical numberings.
Let α be a computable ordinal such that α ≥ 2. Consider a family of Σ0

α-sets
S, which has a Σ0

α-computable numbering. Following the lines of Sect. 2, one can
introduce the Rogers semilattices R0

α;m(S) and R0
α;bm(S), which are induced by

the degrees of Σ0
α-computable numberings of S, under the reducibilities ≤ and

≤bm, respectively.

Proposition 5.1. Let α ≥ 2 be a computable successor ordinal. Suppose that S
is a Σ0

α-computable family such that S contains at least two elements. Then the
Rogers semilattice R0

α;bm(S) is infinite, and it is not a lattice.

Proof. Recall that card(R0
α;m(S)) ≤ card(R0

α;bm(S)). Goncharov and Sorbi [21,
Theorem 2.1] proved that the semilattice R0

α;m(S) is infinite.
Furthermore, in [21, Proposition 2.8] the following result was obtained. If

S is infinite, then one can build a uniform sequence (νi)i∈ω of Σ0
α-computable

numberings of S with the following property: If i �= j, then there is no Σ0
α-

computable numbering μ of S such that μ ≤ νi and μ ≤ νj .
This implies that for an infinite S, both structures R0

α;m(S) and R0
α;bm(S)

are not lower semilattices. Note that the results of Goncharov and Sorbi are
formulated and proved only for finite ordinals α. Nevertheless, essentially the
same proofs also work for infinite successor α.

Now assume that a Σ0
α-computable family S is equal to {A0, A1, . . . , An},

and consider the following Σ0
α-computable numberings of S:

νi(x) :=
{

Ax, if x ≤ n,
Ai, otherwise.

Lemma 2.1 shows that the numberings νi, i ≤ n, are pairwise bm-incomparable.
Moreover, it is not hard to show that for i �= j, there is no numbering μ of the
family S such that μ ≤ νi and μ ≤ νj . Hence, R0

α;bm(S) is not a lattice. ��

We note that the methods of [22] can be used to transfer the obtained exis-
tence results (such as Theorem 3.1 and Corollary 4.1) into non-limit levels of the
Ershov hierarchy, see Theorems 2 and 17 in [22] for the details.

In conclusion, we formulate two problems that are left open.

Question 5.1. Let S be a computable infinite family of c.e. sets. Describe all
possible cardinalities of the Rogers semilattice Rbm(S).

Note that all our examples of computable families S possess the following
property: If Rbm(S) is an infinite lattice, then the structure Rm(S) has only one
element.

Question 5.2. Is there a computable family S such that Rm(S) is infinite and
Rbm(S) is a lattice?
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Abstract. A graph database is a digraph whose arcs are labelled with
symbols from a fixed alphabet. A regular graph pattern (RGP) is a
digraph whose edges are labelled with regular expressions over the alpha-
bet. RGPs model navigational queries for graph databases, more pre-
cisely, conjunctive regular path queries. A match of a navigational RGP
query in the database is witnessed by a special navigational homomor-
phism of the RGP to the database. We study the complexity of deciding
the existence of a homomorphism between two RGPs. Such homomor-
phisms model a strong type of containment between two navigational
RGP queries. We show that this problem can be solved by an EXP-
TIME algorithm (while general query containment in this context is
EXPSPACE-complete). We also study the problem for restricted RGPs
over a unary alphabet, that arise from some applications like XPath, and
prove that certain interesting cases are polynomial-time solvable.

1 Introduction

Graphs are a fundamental way to store and organize data. Most prominently,
graph database systems have been developed for three decades and are widely
used; recently, such systems have seen an increased interest both in academic
research and in industry [3]. A graph database can be seen as a directed graph
with arc-labels (possibly also vertex-labels). Various methods are used to retrieve
data in such systems, see for example the very recently developed graph query
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language G-CORE [2] for graph databases. Classically, matching queries in graph
databases can be modeled as graph homomorphisms [16]. In this setting, a query
is itself a graph, and a match is modeled by a homomorphism of the query to
the database, that is, a vertex-mapping that preserves the graph adjacencies
and labels. Graph databases can be very large, thus it is important to study the
algorithmic complexity of such queries. In modern applications, classic homo-
morphisms are often not powerful enough to model realistic graph data queries.
In recent years, navigational queries have been developed [3]. Such queries are
more powerful than classical queries, since they allow for non-local pattern
matching, by means of arbitrary paths or walks instead of arcs. Such queries
can also be modeled as a more general kind of homomorphism, called naviga-
tional homomorphism (n-homomorphism for short). The most studied type of
navigational queries is the one of regular path queries, that is based on regular
expressions [3,10,17]. A conjunctive regular path query is modeled by a regu-
lar graph pattern (RGP for short), that is, a digraph whose arcs are labelled
by regular expressions, each representing a regular path query. The associated
notion of navigational homomorphism is called RGP homomorphism. The study
of the algorithmic complexity of RGP homomorphisms has been recently initi-
ated in [19], where the authors focused on homomorphisms of RGPs to graph
databases. In the present paper, we continue this study by focusing on conjunc-
tive regular path query containment, as modeled by the existence of a RGP
homomorphism between two queries.

We delay to the next section for formal definitions. We consider the following
decision problem

RGPHom
Input: Two RGPs P and Q.
Question: Does P admit an n-homomorphism to Q?

and its non-uniform version, defined as follows for a fixed RGP Q.

RGPHom(Q)
Input: A RGP P .
Question: Does P admit an n-homomorphism to Q?

The latter was introduced in [19] for the restricted case where Q is a graph
database (i.e. labels are letters rather than more complex regular expressions) –
which amounts to RGP evaluation – and showed that this class of problems fol-
lows a dichotomy between Ptime and NP-complete. Indeed they showed it to be
equivalent to the (classical) homomorphism problems a.k.a. the constraint sat-
isfaction problems [9], whose complexity delineation follows a dichotomy based
on specific algebraic properties of the template Q, as shown independently by
Bulatov [5] and Zhuk [22].

In this paper, we initiate the study of these problems in full generality, that
is when Q is not a graph database but any RGP. We cannot expect a Ptime/NP-
complete dichotomy in the style of the result of [19], since RGPHom(Q) is in
fact PSPACE-hard already for very simple cases, as it can model the problem of
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deciding the inclusion between regular languages. We detail these lower bounds
in Sect. 3.

We show in Sect. 4 that RGPHom is decidable by an EXPTIME algorithm.
This shows that n-homomorphism-based query containment is less expensive
than general query containment, which, in the case of RGP queries, is known to
be EXPSPACE-complete [7,10].

In Sect. 5, we address the simpler case of a unary alphabet Σ = {a}, when
all arcs are labelled either by “a” or “a+”. This includes not only all classic
homomorphism problems and CSPs, but also queries over hierarchical data
reminiscent of SPARQL and XPath [8,15,18]. In particular, we give a simple
Ptime/NP-complete complexity dichotomy for the case of undirected (or sym-
metric) RGPs in the style of Hell and Nešetřil’s dichotomy for H-colouring [11].
Furthermore, we show that even for arbitrary (directed) RGPs the problem fol-
lows a dichotomy by relating it to (classical) homomorphism problems. Finally,
we focus on certain queries of interest. We relate the case of path templates that
have only “a” labels to an interesting (Ptime) scheduling problem. We extend
this result and show also that for all directed path RGP templates Q with arc
labels “a” or “a+”, RGPHom(Q) is in Ptime.

2 Preliminaries

Let Σ be a fixed countable alphabet. A graph database B = (DB , EB) over Σ
is an arc-labelled digraph, where DB is a finite digraph with vertex set V (DB)
and arc set A(DB), and EB : A(DB) → Σ is an arc-label function. We may
adapt the notion of graph homomorphism to graph databases following [16] and
view the existence of a homomorphism from a graph database Q = (DQ, EQ)
– which models a query – to B = (DB , EB) as the fact that the database B
matches the query Q. A homomorphism is a mapping f of V (DQ) to V (DB)
such that for every arc (x, y) in DQ, there is an arc (f(x), f(y)) in DB with
EQ(x, y) = EB(f(x), f(y)). If such a homomorphism exists, we note Q → B.
Every homomorphic image f(Q) of Q to B is a match of the query Q in B. In
this classic setting, queries and graph databases coincide and the existence of a
homomorphism between queries models query containment. Thus, the evaluation
problem (deciding whether a query Q has a match in a database B) and the
containment problem (deciding whether for two queries Q1 and Q2, for any
database B, if B matches Q1 then B matches Q2) both amount to the following
decision problem.

Hom
Input: Two arc-labelled digraphs G and H.
Question: Does G admit a homomorphism to H?

Hom is generally NP-complete, even when H is a small fixed graph (for
example a symmetric triangle, in which case Hom is equivalent to the graph 3-
colourability problem). To better understand the complexity of Hom, the follow-
ing version, called the non-uniform homomorphism problem, has been studied
extensively. Here, H is a fixed arc-labelled digraph called the template.
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Hom(H)
Input: An arc-labelled digraph G.
Question: Does G admit a homomorphism to H?

In a digraph D, a directed walk is a sequence of arcs of the digraph, such that
the head of each arc is the same vertex as the tail of the next arc. A directed path
is a directed walk where each vertex occurs in at most two arcs in the sequence.

Standard homomorphisms are not powerful enough to model all queries used
in modern graph database systems. In particular, a homomorphism of a query
Q to a database B can only match a subgraph of B that is no larger than the
query Q itself. To the contrary, navigational queries are types of queries where
we may allow arbitrarily large subgraphs of the database to match the query.
In this setting, we still model the query Q (for database B) as an arc-labelled
digraph, but the arcs are labelled with sets of words over the alphabet Σ, rather
than letters. Now, a match of Q in B is a vertex-mapping f from V (DQ) to
V (DB) such that for an arc (x, y) of Q labelled with a set E(x, y) of words,
there exists a directed walk (or path, depending on applications) Wxy in DB

from f(x) to f(y) such that the concatenation of labels of the arcs of Wxy is a
word of E(x, y).

Perhaps the most popular navigational queries are conjunctive regular path
queries, studied in many contexts [3,4,8,15,18,19]. These navigational queries
are based on regular languages: the labels on query arcs are regular expressions
over the alphabet Σ. The advantage of considering such queries is that regular
languages are a relatively simple yet powerful way of defining sets of words,
that is both well-understood and sufficiently expressive for many applications.
A conjunctive regular path query of this type has been called a regular graph
pattern (RGP).

For a fixed countable alphabet Σ, we denote by RegExp(Σ) the set of regular
expressions over alphabet Σ, with the symbols + (union), ∗ (Kleene star), and
· (concatenation; sometimes this symbol is omitted). Moreover, for a regular
expression X, as a notation we let X+ := X · X∗. For any regular expression X
in RegExp(Σ), we denote by L(X) the regular language defined by X. We will
use the following decision problems for regular languages.

Regular Language Inclusion
Input: Two regular expressions E1 and E2 (over the same alphabet).
Question: Is L(E1) ⊆ L(E2)?

Regular Language Universality
Input: A regular expression E over alphabet Σ.
Question: Is L(E) = Σ∗?

Note that Regular Language Universality is the special case of Reg-
ular Language Inclusion where E1 = Σ∗ and E2 = E. The following are
classic results.
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Theorem 1 ([1,21]). Regular Language Universality and Regular
Language Inclusion are PSPACE-complete.

A RGP P over an alphabet Σ is a pair (DP , EP ), where DP is a digraph
with vertex set V (DP ) and arc set A(DP ) and EP : A(DP ) → RegExp(Σ) is an
arc-label function. Given a directed walk W = a1,2 . . . ak−1,k in a RGP P , the
label EP (W ) of W is the regular expression over Σ formed by the concatenation
EP (a1,2) . . . EP (ak−1,k).

A sub-RGP P ′ of P is induced by a subset V (DP ′) of V (DP ) where A(DP ′)
is A(DP ) ∩ V (DP ′) × V (DP ′) and the arc label function EP ′ is the restriction
of EP to A(DP ′).

Given two RGPs P and Q over alphabet Σ, a navigational homomorphism
(n-homomorphism for short) of P to Q is a mapping f of V (DP ) to V (DQ) such
that for each arc (x, y) in DP , there is a directed walk W in Q from f(x) to f(y)
such that the language L(EQ(W )) is contained in the language L(EP (x, y)).
When such an n-homomorphism exists, we write P

n−→ Q. It is not hard to see
that n−→ is transitive.

This definition also applies to graph databases and amounts in fact to RGP
query evaluation when Q is a graph database and P an RGP.

A digraph D is called a core if it has no homomorphism to a proper sub-
digraph of itself; in other words, every endomorphism is an automorphism. Sim-
ilarly we define the notion of a navigational core (n-core for short): a RGP P
is an n-core if it has no n-homomorphism to a proper sub-RGP of itself. When
studying the problem RGPHom(Q), we may always assume that Q is an n-core,
since RGPHom(Q) has the same complexity as RGPHom(CQ), where CQ is a
sub-RGP of Q that is an n-core. Unfortunately, it is coNP-complete to decide
whether a graph is a core [12] (thus deciding whether a RGP is an n-core is
coNP-hard, even if it is a graph database).

With respect to classic digraph homomorphisms, any digraph has (up to
isomorphism) a unique minimal subgraph to which it admits a homomorphism,
called the core. This is not the case for n-cores of RGPs and n-homomorphisms.
For example, any two RGPs each consisting of a unique directed cycle with all arc
labels equal to “a+” have an n-homomorphism to each other. Thus, if we identify
one vertex of two such cycles of different lengths, we obtain a RGP P with two
minimal sub-RGPs of P (the two cycles) to which P has an n-homomorphism,
thus these two are non-isomorphic n-cores of P .1

3 Lower Bounds

The next proposition is proved by a very simple reduction from Regular Lan-
guage Inclusion to RGPHom for two RGPs each having a single arc.

Proposition 1. RGPHom is PSPACE-hard.

1 There exist more complicated examples where, furthermore, the two non-isomorphic
n-cores have the same size.
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As witnessed by the simplicity of the reduction given in Proposition 1, the
PSPACE-hardness of RGPHom is inherently caused by the hardness of the
underlying regular language problem. This phenomenon arises also in the non-
uniform case for a very simple template.

Proposition 2. Let Σ be a fixed alphabet of size at least 2, and let DΣ
2 be

the RGP of order 2 over Σ consisting of a single arc labelled Σ∗. Then,
RGPHom(DΣ

2 ) is PSPACE-complete.

4 An EXPTIME Algorithm for RGPHOM

In certain models where simple directed paths rather than directed walks are
considered, like in [17], or when the target RGP is acyclic, there is a simple
PSPACE algorithm to decide RGPHom. Indeed, in those cases, the length of a
walk in Q is at most |V (DQ)|. Thus, we can iterate over each possible mapping
f and for each mapped arc (x, y), we iterate over each possible walk W from
f(x) to f(y), and check in polynomial space whether L(EQ(W )) ⊆ L(EP (x, y)).

However, in general, the walks may be arbitrarily long. As we will see, we can
still bound their maximum length. Note that for two RGPs P and Q, if P

n−→ Q
then the query Q is contained in the query P , but there are examples where the
converse does not hold (see Fig. 1). Thus, the problem RGPHom for two RGPs
does not fully capture RGP Query Containment. Nevertheless, we will show
that the former can be solved in EXPTIME, which is better than the (tight)
EXPSPACE complexity of RGP Query Containment shown in [7,10].

ba+

P

a

Q

Fig. 1. Two n-core RGPs P andQ over alphabet {a, b} which have no n-homomorphism
in either direction. From P to Q because one can not map suitably the arc labelled by b,
in the other direction because neither b nor a+ is included in a. However, any database
that matches the RGP P would contain a walk of arcs all labelled by a (because of the
arc with label a+ in P ). The database would clearly also match Q. So Q is contained
in P .

For a regular language L over alphabet Σ and a positive integer n, we denote
by L|n the n-truncation of L, i.e. the set of words of L with length at most n.

Lemma 1. Let A, B1, . . . Bk be a collection of regular expressions over alphabet
Σ, and let nA, ni be the minimum number of states of an NFA recognizing L(A)
and L(Bi), respectively. Then, we have that L(B1) · · · L(Bk) ⊆ L(A) if, and only
if, L(B1)|nAn1 · · · L(Bk)|nAnk

⊆ L(A) (the left hand side denotes the product of
languages).
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Proof. Since L(Bi)|nAni
⊆ L(Bi) for every i with 1 ≤ i ≤ k, if L(B1) · · · L(Bk) ⊆

L(A), then it holds also for truncations and L(B1)|nAn1 · · · L(Bk)|nAnk
⊆ L(A).

For the converse, we assume that L(B1)|nAn1 · · · L(Bk)|nAnk
⊆ L(A). That

is, any word w1 · · · wk of L(B1) · · · L(Bk) with |wi| ≤ nAni for every i with
1 ≤ i ≤ k, belongs to L(A). We need to prove that all words of L(B1) · · · L(Bk)
(without length restriction) belong to L(A).

We proceed by induction on the vectors of subword lengths of words
in L(B1) · · · L(Bk). For such a word w1 · · · wk, this associated vector is
(|w1|, . . . , |wk|), and these vectors are ordered lexicographically. The induction
hypothesis is that all words of L(B1) · · · L(Bk) whose associated vector is at
most (l1, . . . , lk) (where for any i with 1 ≤ i ≤ k, li is a positive integer), belongs
to A. By our assumption, the case where li ≤ nAni is true.

Now, consider a word w = w1 · · · wk of L(B1) · · · L(Bk), whose associated
vector is (|w1|, . . . , |wk|), and where for some j ∈ {1, . . . , k}, |wj | = lj + 1;
whenever i �= j, |wi| ≤ li. Let A and Aj be two NFAs recognizing A and Bj

with smallest numbers nA and nj of states, respectively.
We consider the product automaton A × Aj of A and Aj , with set of states

S × Sj (where S and Sj are the sets of states of A and Aj , respectively), and
a transition ((s1, s2), a, (s′

1, s
′
2)) only if we have the transitions (s1, a, s′

1) and
(s2, a, s′

2) in A and Aj , respectively (all other transitions are “dummy transi-
tions” to a “garbage state”). Consider the run of A × Aj for the word wj . The
crucial observation is that, because |wj | = lj + 1 > nAnj , this run necessarily
visits two states of A × Aj twice, that is, the run contains a directed cycle.
Consider the shorter run obtained by pruning this cycle. The two runs start and
end at the same two states of A × Aj . The shorter run corresponds to a word
w′

j of length at most |wj | − 1 ≤ lj . Since wj ∈ L(Bj), the end state of these
runs is a pair containing an accepting state of Aj (thus w′

j belongs to L(Bj) as
well). Thus, the word w′ obtained from w by replacing wj with w′

j belongs to
L(B1) · · · L(Bk), and w′ satisfies the induction hypothesis. Thus, w′ belongs to
L(A). But now, considering the pruned cycle in A×Aj , we can build a valid run
for wj in A × Aj that leads to a valid run for w in A. This proves the inductive
step and concludes the proof.

Proposition 3. Let E be a regular expression over alphabet Σ, and AE an NFA
with nE states recognizing L(E). Let Q = (DQ, EQ) be an RGP over Σ. For any
two vertices u and v in Q, we can compute a walk W from u to v satisfying
L(EQ(W )) ⊆ L(E) (if one exists), in time 2O(nE |Q| log(|E|+|Q|)). Moreover, if
such a walk exists, then there exists one of length at most 2nE |Q|.
Proof. Since E and Q are finite, we will assume that |Σ| ≤ |E| + |Q| (if not, we
simply remove the unused symbols from Σ.)

By Lemma 1, there is a walk W in Q from u to v such that L(EQ(W )) ⊆ L(E)
if and only if there exists one in the RGP Q′ obtained from Q by replacing
each arc-label EQ(x, y) by a regular expression EQ′(x, y) defining the nEnB-
truncation of L(EQ(x, y)) (where nB is the smallest number of states of an
NFA recognizing L(E(x, y)). Thus, we first compute Q′. Note that L(EQ′(x, y))
contains at most |Σ|nEnB words.
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Next, we will construct an auxiliary digraph G(E,Q, u, v). This digraph has
vertex set 2S × V (Q), where S is the set of states of AE .

Given two states s1 and s2 of AE and a word w over Σ, we say that w reaches
s2 from s1 in AE if there exists a sequence of transitions of AE starting at s1
and ending at s2 using the sequence of letters of w.

Now, for two vertices (S1, x) and (S2, y) of G(E,Q, u, v), we create the arc
((S1, x), (S2, y)) if, and only if, for each state s of S1 and each word w of
L(EQ′(x, y)), w reaches a state of S2 in AE .

Deciding whether ((S1, x), (S2, y)) is an arc of G(E,Q, u, v) takes time
at most |S1|2nE |L(EQ′(x, y))|, which is at most |Σ|O(nE |Q|). Since there
are (2nE |Q|)2 pairs of vertices of G(E,Q, u, v), overall the construction of
G(E,Q, u, v) can be done in time |Σ|O(nE |Q|).

Now, we claim that there exists a walk W from u to v with L(EQ(W )) ⊆ L(E)
if and only if there is a directed path in G(E,Q, u, v) from a vertex ({s0}, u) to
a vertex (Sf , v), where s0 is the initial state of AE , and Sf is a subset of the
accepting states of AE . Indeed, such a path corresponds precisely to a walk W
from u to v in Q, such that all the words of L(W ) are accepted by AE .

This check can be done in linear time in the size of G(E,Q, u, v) using
a standard BFS search, thus we obtain an additional time complexity of
(2nE |Q|)2, which is also at most |Σ|O(nE |Q|). Since |Σ| ≤ |E| + |Q| we obtain
2O(nE |Q| log(|E|+|Q|)).

Finally, it is clear that the length of an obtained directed path of G(E,Q, u, v)
is at most the number of vertices of G(E,Q, u, v), which is 2nE |Q|, as claimed.
This completes the proof. 	

Theorem 2. RGPHom is in EXPTIME.

Proof. We proceed as follows. First, we go through all possible vertex-mappings
of V (P ) to V (Q) (there are |V (Q)||V (P )| such possible mappings). Consider such
a vertex-mapping, f .

For each arc (x, y) in P with label EP (x, y), we proceed as follows. Let A be
an NFA recognizing L(EP (x, y)) with smallest possible number nA of states. We
apply Proposition 3 to E = EP (x, y), A and Q, with u = f(x) and v = f(y): thus
we can decide in time 2O(nA|Q| log(|EP (x,y)|+|Q|)) whether the mapping f satisfies
the definition of an n-homomorphism for the arc (x, y). If yes, we proceed to the
next arc; otherwise, we abort and try the next possible mapping. If we find a
valid mapping, we return YES. Otherwise, we return NO.

Our algorithm has a time complexity of |V (Q)||V (P )|·|P |·2O(|P ||Q| log(|P |+|Q|)).
Let n = |P | + |Q| be the input size. We obtain an overall running time of
2O(n2 log n), which is an EXPTIME running time.

5 RGPs Over a Unary Alphabet: The {a, a+} Case

In this section, we consider a unary alphabet Σ = {a}. For unary regular lan-
guages, Regular Language Inclusion and Regular Language Univer-
sality are no longer PSPACE-complete but they are coNP-complete (see [13]
and [21], respectively) and the lower bounds from Sect. 3 do not apply.
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The case where all arc-labels of the considered RGPs are equal to “a” is
equivalent to the problem of classic digraph homomorphisms, and is known to
capture all CSPs [9]. When each label is either “a” or “a+”– in which case
we speak of {a, a+}-RGP – we have two kinds of constraints: arcs labelled “a”
must map in a classic, local, way, while arcs labelled “a+” can be mapped to
an arbitrary path in the target RGP. Thus, this setting is useful for example to
model descendance relations in hierarchical data such as XML. This setting is
for example used in languages like SPARQL or XPath for XML documents, that
are tree-structured [8,15,18].

For an {a, a+}-RGP Q, let D(Q) be the arc-labelled digraph with labels
{a, t} and the same vertices as Q obtained from Q as follows. The arcs labelled
by a coincide. The set of arcs labelled by t in D(Q) is the transitive closure of
the arcs of Q (labelled by either label a or a+).

Proposition 4. For any {a, a+}-RGP Q, RGPHom(Q) for {a, a+}-RGP
inputs is Ptime equivalent to Hom(D(Q)). Thus, the class of {a, a+}-RGP-
restricted non-uniform RGPHom problems follows a dichotomy between Ptime
and NP-complete.

Proof. Let D′
P be the digraph obtained from P = (DP , EP ) by replacing all arc-

labels “a+” by labels “t”. For any pair of {a, a+}-RGP P and Q, we have P
n−→ Q

(n-homomorphism) if and only if D′
P → D(Q) (classic homomorphism of arc-

labelled digraphs). This provides us with a Ptime reduction from RGPHom(Q)
to Hom(D(Q)). Conversely, given a digraph D′

P with arcs labelled by a and t,
let P be the {a, a+}-RGP obtained from D′

P by replacing t labels by a+. This
is a Ptime reduction from Hom(D(Q)) to RGPHom(Q).

The dichotomy follows from the CSP dichotomy of [5,22]. 	

Proposition 5. RGPHom for {a, a+}-RGPs is Ptime reducible to Hom for
two-arc-labelled digraphs. Thus this uniform problem is in NP.

The Ptime algorithms based on algebraic methods proposed by Bulatov [5]
and Zhuk [22] for tractable CSPs are somewhat contrived and a bit overkill for
the class of non-uniform RGPHom problems restricted to {a, a+}-RGPs. This
motivates us to look for simple direct combinatorial characterisations and simple
algorithms for interesting {a, a+}-RGPs that model natural queries.

5.1 Undirected {a, a+}-RGPs

We now consider undirected {a, a+}-RGPs, where arcs are pairs of vertices, called
edges (equivalently, for each arc from x to y, we have its symmetric arc from y
to x). In an n-homomorphism between two undirected {a, a+}-RGPs P and Q,
“a”-edges must be preserved (as in a classic graph homomorphism), while the
endpoints of “a+”-edges need to be mapped to two vertices of Q that are con-
nected by some path. Thus, this variant extends classic graph homomorphisms
via additional (binary) connectivity constraints. We provide an analogue of the
Hell-Nešetřil dichotomy for Hom(H) [11] in this setting.
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Theorem 3. Let Q be an undirected and connected n-core {a, a+}-RGP. If Q
has at most one edge, RGPHom(Q) is in Ptime. Otherwise, RGPHom(Q) is
NP-complete.

5.2 Directed Path {a}-RGPs

We first consider RGPHom(Q) when Q is a directed path whose arc labels are
all “a” (Q is called an {a}-RGP) — arguably the simplest RGP directed graph
example — and where inputs are {a, a+}-RGPs. This case turns out to have an
interesting connection to the following scheduling problem, which enjoys a Ptime
algorithm by reduction to a shortest path problem in edge-weighted digraphs [20,
Chapter 4.4, p. 666].

Parallel Job Scheduling With Relative Deadlines
Input: A set J of jobs, a duration function d : J → N, a relative deadline
function r : J × J → Z, and a maximum time tmax.
Question: Is there a feasible schedule for the jobs, that is, an assignment
t : J → N of start times such that every job finishes before time tmax

and for any two jobs j1 and j2, j1 starts before the time t(j2)+r(j1, j2)?

Theorem 4. For any directed path {a}-RGP Q, RGPHom(Q) for {a, a+}-
RGP inputs is Ptime-reducible to Parallel Job Scheduling With Relative
Deadlines. Thus, RGPHom(Q) is in Ptime when restricted to such inputs.

As we will see in the next section, the second part of Theorem 4 can be gener-
alized to all directed path {a, a+}-RGPs using a different method.

5.3 Directed Path {a, a+}-RGPs

Our next result is more general than Theorem 4, as we use a stronger method.
It also extends a result from [18], where the statement is proved for directed tree
input RGPs. Here we prove it for all kinds of inputs.

For an arc-labelled digraph D and a positive integer k, the product digraph Dk

is the digraph with vertices V (D)k and with an arc labelled � from (x1, . . . , xk)
to (y1, . . . , yk) iff all pairs (xi, yi) with 1 ≤ i ≤ k are arcs labelled � in D.
A homomorphism of Dk to D is called a (k-ary) polymorphism of D. For a
set S, a function f from S3 to S is a majority function if for all x, y in S,
f(x, x, y) = f(x, y, x) = f(y, x, x) = x.

Theorem 5. ([14]). Let D be an arc-labelled digraph that has a ternary poly-
morphism that is a majority function. Then, Hom(D) is in Ptime.

It is well known that the above applies to directed paths, a result that we can
lift to {a, a+}-RGPs.

Theorem 6. Let Q be an {a, a+}-RGP whose underlying digraph is a directed
path. Then, D(Q) admits a majority polymorphism and thus RGPHom(Q) is
in Ptime.
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We remark that Theorem 6 also applies to RGPs with vertex-labels (where the
mapping must preserve the vertex-labels). Indeed, vertex-labels are modeled
as unary relations, which trivially satisfy the properties for having a majority
polymorphism. Moreover, using the same method, Theorem 6 extends to labels
of the form “a∗”, “ak” or “a≤k” for k ∈ N.

6 Conclusion

We have seen that RGPHom, which is generally PSPACE-hard (but in NP when
the target RGP is a graph database), is in EXPTIME. This favorably compares
to the general complexity of RGP query containment, which is EXPSPACE-
complete [7,10], and motivates the use of RGP n-homomorphisms to approxi-
mate query containment. It remains to close the gap between the PSPACE lower
bound and the EXPTIME upper bound.

We have also seen that the case of {a, a+}-RGPs (a case that is also in
NP, and that corresponds to XPath and SPARQL queries), we have a complete
classification of the NP-complete and Ptime cases for undirected RGPs, and all
RGPs whose underlying digraph is a directed path are in Ptime. It was proved
in [18] that when both the input and target is a directed tree {a, a+}-RGP,
RGPHom is in Ptime. Is it true that (for general inputs) RGPHom(Q) is in
Ptime when Q is a directed tree {a, a+}-RGP? 2 When all arc-labels are “a”,
then the only n-core RGPs whose underlying digraphs are directed trees are, in
fact, the directed paths. But there are many more directed tree {a, a+}-RGP
n-cores, see Fig. 2 for a simple example.

Fig. 2. An n-core directed tree {a, a+}-RGP. Doubled edges are labelled “a+”, the
others are labelled “a”.
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Abstract. The problem of uniformly placing N points onto a sphere
finds applications in many areas. An online version of this problem was
recently studied with respect to the gap ratio as a measure of uniformity.
The proposed online algorithm of Chen et al. was upper-bounded by 5.99
and then improved to 3.69, which is achieved by considering a circum-
scribed dodecahedron followed by a recursive decomposition of each face.
We analyse a simple tessellation technique based on the regular icosa-
hedron, which decreases the upper-bound for the online version of this
problem to around 2.84. Moreover, we show that the lower bound for the

gap ratio of placing up to three points is 1+
√
5

2
≈ 1.618. The uniform

distribution of points on a sphere also corresponds to uniform distribu-
tion of unit quaternions which represent rotations in 3D space and has
numerous applications in many areas.

Keywords: Online algorithms · Discrepancy theory ·
Spherical trigonometry · Uniform point placement

1 Introduction

One of the central problems of classical discrepancy theory is to maximize the
uniformity of distributing a set of n points into some metric space [5,11]. For
example, this includes questions about arranging points over a unit cube in
a d-dimensional space, a polyhedral region, a sphere, a torus or even over a
hyperbolic plane, etc. Applications of modern day discrepancy theory include
those in number theory (Ramsey theory), problems in numerical integration,
financial calculations, computer graphics and computational physics [11].

In order to measure the discrepancy from uniformity, the gap ratio metric
introduced by Teramoto et al. [16] for analysing dynamic discrepancy has been
widely accepted, i.e. the ratio between the maximum and minimal gap, where
the maximum gap is the diameter of the largest empty circle on the sphere and
the minimal gap is just the minimum pairwise distance. One might consider
defining uniformity just by measuring the closest two points, however this does
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not take into account large undesirable gaps that may be present in the point
set. Alternatively one may use the standard measure from discrepancy theory;
define some fixed geometric shape R and count the number of inserted points
that are contained in R, whilst moving it all over some space. This measure
has two main disadvantages – that of computational hardness of calculating the
discrepancy at each stage and also that we must decide upon a given shape R,
each of which may give different results [16].

The more challenging problem of generating a point set on 2-sphere which
minimizes criteria such as energy functions, discrepancy, dispersion and mutual
distances has been extensively studied in the offline setting [7,10,13–15,19,20].
Some motivations and applications of this problem when restricted to the
2-sphere stretch from the classical Thompson problem of determining a con-
figuration of N electrons on the surface of a unit sphere that minimizes the
electrostatic potential energy [12,17], to search and rescue/exploration problems
as well as problems related to extremal energy, crystallography and computa-
tional chemistry [13]. In the original offline version of the problem of distributing
points over some space, the number of points is predetermined and the goal is
to distribute all points as uniformly as possible at the end of the process.

In contrast, the online problem requires that the points should be dynami-
cally inserted one at a time on the surface of a sphere without knowing the set
of points in advance and the objective is to distribute the points as uniformly
as possible at every instance of inserting a point. Note that in this case once a
point has been placed it cannot be later moved. The points on the sphere cor-
respond to unit quaternions and the group of rotations SO(3) [3,8], which have
a large number of engineering applications in the online setting (also known as
“incremental generation”) and plays a crucial role in applications ranging from
robotics and aeronautics to computer graphics [20].

The online variant of distributing points in a given space has been already
studied, e.g. for inserting integral points on a line [1] or on a grid [21], inserting
real points over a unit cube [16] and also recently as a more complex version
of inserting real points on a surface of a sphere [6,20,22]. A good strategy for
online distribution of points on the plane has been found in [2,16] based on the
Voronoi insertion, where the gap ratio is proved to be at most 2. For insertion on
a two-dimensional grid, algorithms with a maximal gap ratio 2

√
2 ≈ 2.828 were

shown in [21]. The same authors showed that the lower bound for the maximal
gap ratio is 2.5 in this context. The other important direction was to solve the
problem in a one-dimensional line and an insertion strategy with a uniformity
of 2 has been found in [1]. An approach of using generalised spiral points was
discussed in [12,13], which performs well for minimizing extremal energy, but
this approach is strictly offline (number of points N known in advance).

Recently the solution for online distribution of points on 2-sphere has been
proposed in [6] where a two phase point insertion algorithm with an overall upper
bound of 5.99 was designed. The first phase uses a circumscribed dodecahedron
to place the first twenty vertices, achieving a maximal gap ratio 2.618. After that,
each of the twelve pentagonal faces can be recursively divided. This procedure
is efficient and leads to a gap ratio of no more than 5.99. With more complex
analysis, the bound was recently decreased to at most 3.69 in [22].
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Fig. 1. Delauney triangula-
tion applied twice

Fig. 2. Recursive triangle
dissection (twice)

Fig. 3. Deformation of tri-
angles in projection

One may consider whether such two phase algorithms may perform well for
this problem by either modifying the initial shape used in the first phase of the
algorithm (such as using initial points derived from other Platonic solids) or
else whether the recursive procedure used in phase two to tessellate each regular
shape may be improved. We may readily identify an advantage to choosing a
Platonic solid for which each face is a triangle (the tetrahedron, octahedron
and icosahedron), since in this case at least two procedures for tessellating each
triangle immediately spring to mind – namely to recursively place a new point at
the centre of each edge, denoted triangular dissection (creating four subtriangles,
see Fig. 2), or else the Delaunay tessellation, which is to place a new point at
the centre of each triangle (creating three new triangles, see Fig. 1).

It can be readily seen that the Delaunay tessellation of each spherical triangle
rapidly gives a poor gap ratio, since points start to become dense around the cen-
tre of edges of the initial tessellation. The second recursive tessellation strategy
(Fig. 2), was conjectured to give a poor ratio in [6]. This intuition seems reason-
able, since as we recursively decompose each spherical triangle by this strategy
the gap ratio increases as for such a triangle this decomposition deforms with
each recursive step as can be seen in Fig. 3. It can also be seen that the gap ratio
at each level of the triangular dissection is increasing (see Lemma 5). Neverthe-
less, we show in this paper that as long as the initial tessellation (stage 1) does
not create too ‘large’ spherical triangles (with high curvature), then the gap ratio
of stage 2 has an upper limit, and performs much better than the tessellation of
the regular dodecahedron proposed in [6,22].

In this paper, we provide a new algorithm and utilise an circumscribed reg-
ular icosahedron and the recursive triangular dissection procedure to reduce the
bound of 3.69 derived in [22] to π

arccos (1/
√
5) ≈ 2.8376. Apart from a better upper

bound, an advantage of our triangular tessellation procedure is its generalisabil-
ity and more efficient tessellation as we only need to compute the spherical
median between two locally introduced points at every step.

Another natural point insertion algorithm to consider is a greedy algorithm,
where points are iteratively added to the centre of the largest empty circle.
However, the decomposition of a 2-sphere according to the greedy approach
leads to complex non-regular local structures and it soon becomes intractable
to determine the next point to place [6,22] (such points can in general even be
difficult to describe in a computationally efficient way).

Full details of missing proofs are available in the full version of this paper [4].
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2 Notation

2.1 Spherical Trigonometry

Given a set P , we denote by 2P the power set of P (the set of all subsets). Let
S denote the 3-dimensional unit sphere. We will deal almost exclusively with
unit spheres, since for our purposes the gap ratio (introduced formally later) is
not affected by the spherical radius. Let u1, u2, u3 ∈ R

3 be three unit length
vectors, then T = 〈u1, u2, u3〉 denotes the spherical triangle on S with vertices
u1, u2 and u3. Given some set of points {u1, u2, u3}∪{vj |1 ≤ j ≤ k}, a spherical
triangle T = 〈u1, u2, u3〉 is called minimal over that set of points if no vj for
1 ≤ j ≤ k lies on the interior or boundary of T . As an example, in Fig. 5, triangle
〈u1, u113, u112〉 is minimal, but 〈u1, u13, u12〉 is not, since points u113 and u112

lie on the boundary of that triangle.
The edges of a spherical triangle are arcs of great circles. A great circle is

the intersection of S with a central plane, i.e one which goes through the centre
of S. We denote the length of a path connecting two points u1, u2 on the unit
sphere by ζ(u1, u2) (the spherical length).

Given a non-degenerate spherical triangle (i.e. one with positive area, defined
later) with two edges e1 and e2 which intersect at a point P , then we say that the
angle of P is the angle of P measured when projected to the plane tangent at P .
We constrain all spherical triangles to have edge lengths strictly between 0 and
π, which avoids issues with antipodal triangles. Two points on the unit sphere are
called antipodal if the angle between them is π (i.e. they lie on opposite sides of
the unit sphere) and an antipodal triangle contains two antipodal points. Several
results in spherical trigonometry (and in this paper) are derived by projections
of points/edges to planes tangent to a point on the sphere; in all such cases the
projection is from the centre of the sphere.

The following results are all standard from spherical trigonometry, see [18]
for proofs and further details. The length of an arc belonging to a great circle
corresponds with the angle of the arc, see Fig. 4. Furthermore, given an arc
between two points u1 and u2 on S, the length of the line connecting u1 and the
projection of u2 to the plane tangent to u1 is given by tan(ζ(u1, u2)), see Fig. 4.

Lemma 1 (The Spherical Laws of Sines and Cosines). Given a spher-
ical triangle with sides a, b, c and angles A,B,C opposite to side a, b, c resp.,
then: cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C); cos(C) = − cos(A) cos(B) +
sin(A) sin(B) cos(c) and sin(a)

sin(A) = sin(b)
sin(B) .

The sum of angles within a spherical triangle is between π (as the volume
approaches zero) and 3π (as the triangle fills the whole sphere). The spheri-
cal excess of a triangle is the sum of its angles minus π radians.

Theorem 1 (Girard’s theorem). The area of a spherical triangle is equal to
its spherical excess.
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2.2 Online Point Placing on the Unit Sphere

Our aim is to insert a sequence of ‘uniformly distributed’ points onto S in an
online manner. After placing a point, it cannot be moved in the future. Let pi

be the i’th point thus inserted and let Si = {p1, p2, . . . , pi} be the configuration
after inserting the i’th point. Teramoto et al. introduced the gap ratio [16],
which defines a measure of uniformity for point samples and we use this metric
(similarly to [6]).

Let ρmin : 2S → R denote the minimal distance of a set of points, defined
by ρmin(Si) = minp,q∈Si,p�=q ζ(p, q). Recall that notation 2S means the set of
all points lying on the 2-sphere S. Let ρS′

max : 2S → R denote the maximal
spherical diameter of the largest empty circle centered at some point of S ′ ⊆ S
avoiding a given set of points, defined by ρS′

max(Si) = maxp∈S′ minq∈Si
2 · ζ(p, q).

We then define ρS′
(Si) = ρS′

max(Si)
ρmin(Si)

to be the gap ratio of Si over S ′. When
S ′ = S (i.e. when points can be placed anywhere on the sphere), we define that
ρ(Si) = ρS(Si).

We denote an equilateral spherical triangle as one for which each side has
the same length. By Lemma 1 (the spherical law of cosines), having three equal
length edges implies that an equilateral spherical triangle has the same three
angles. By Theorem 1 (Girard’s theorem), each such angle is greater than π

3
(for an equilateral triangle of positive volume). Let Δ ⊆ S denote the set of all
spherical triangles on the unit sphere.

Consider a spherical triangle T ∈ Δ. We define a triangular dissection func-
tion σ : Δ → 2Δ in the following way. If T ∈ Δ is defined by T = 〈u1, u2, u3〉,
then σ(T ) = {T1, T2, T3, T4} ⊂ Δ, where T1 = 〈u1, u12, u13〉, T2 = 〈u12, u2, u23〉,
T3 = 〈u3, u13, u23〉 and T4 = 〈u12, u13, u23〉, with uij being the midpoints (on
the unit sphere) of the arc connecting ui and uj (see Fig. 5). Define σE(T ) as
the set of nine induced edges: {(u1, u12), (u12, u2), (u2, u23), (u23, u3), (u3, u13),
(u13, u1), (u13, u23), (u23, u12), (u12, u13)}.

We extend the domain of σ to sets of spherical triangles: σ({T1, T2, . . . , Tk}) =
{σ(T1), σ(T2), . . . , σ(Tk)}; thus σ : 2Δ → 2Δ. Given a spherical triangle T ∈ Δ,
we then define that σ1(T ) = σ(T ) and σk(T ) = σ(σk−1(T )) for k > 1.
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For notational convenience, we also define that σ0(T ) = T (the identity tessel-
lation). We similarly extend σE(T ) to a set of triangles: σE({T1, T2, . . . , Tk}) =
{σE(T1), σE(T2), . . . , σE(Tk)} and let σk

E(T ) = σE(σk(T1), σk(T2), . . . , σk(Tk)).
See Fig. 5 for an example showing the tessellation of T to depth 2 (e.g. σ2(T ))
and the set of edges σ2

E(T ).
Let μ : Δ → 2S be a function which, for an input spherical triangle, returns

the (unique) set of three points defining that triangle. For example, given a spher-
ical triangle T = 〈p1, p2, p3〉, then μ(T ) = {p1, p2, p3}. Clearly μ may be extended
to sets of triangles by defining that μ({T1, . . . , Tk}) = {μ(T1), . . . , μ(Tk)}; thus
μ : 2Δ → 2S . When there is no danger of confusion, by abuse of notation, we
sometimes write T rather than μ(T ). This allows us to write ρ(T ) (or ρ(σk(T )))
for example, as the gap ratio of the three points defining spherical triangle T
(resp. the set of points in the k-fold triangular dissection σk(T )).

We will also require an ordering on the set of points generated by a tessellation
σk(T ). Essentially, we wish to order the points as those of σ0(T ) = T first (in any
order), then those of σ1(T ) in any order but omitting the points of σ0(T ) = T ,
then the points of σ2(T ), omitting points in triangles of σ0(T ) or σ1(T ) etc. To
capture this notion, we introduce a function τ : Δ × Z

+ → 2S defined thus:

τ(T, k) =
{

μ(σk(T )) − μ(σk−1(T )) ; if k ≥ 1
μ(T ) ; if k = 0

As an example, in Fig. 5, τ(T, 0) = {u1, u2, u3}, τ(T, 1) = {u12, u13, u23},
and τ(T, 2) = {u112, u122, u232, u323, u133, u113, u1323, u1213, u1223}. By abuse of
notation, we redefine σk(T ) such that σk(T ) = τ(T, 0) ∪ τ(T, 1) ∪ · · · ∪ τ(T, k) is
an ordered set.

3 Overview of Online Vertex Insertion Algorithm

Our algorithm is a two stage strategy. In stage one, we project the 12 vertices
of the regular icosahedron onto the unit sphere. The first two points inserted
should be opposite each other (antipodal points), but the remaining 10 points
can be inserted in any order, giving a stage one gap ratio of π

arccos
(

1√
5

) ≈ 2.8376.

In the second stage, we treat each of the 20 equilateral spherical triangles of
the regular icosahedron in isolation. We show in Lemma 5 that the gap ratio for
our tessellation is ‘local’ and depends only on the local configuration of vertices
around a given point. This allows us to consider each triangle separately. During
stage two, we use the fact that these twenty spherical triangles are equilateral and
apply Lemma 7 to independently tesselate each triangle recursively in order to
derive an upper bound of the gap ratio in stage two of 2(3−√

5)

arcsin
(

1
2

√
2− 2√

5

) ≈ 2.760.

We note here that the radius of the sphere does not affect the gap ratio of
the point insertion problem, and thus we assume a unit sphere throughout.

The algorithmic procedure to generate an infinite set of points is shown in
Algorithm 1. To generate a set of k points {p1, p2, . . . , pk}, we choose the first k
points generated by the algorithm.
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Stage one: Project 12 vertices of the icosahedron to the unit sphere:
Place two antipodal points on the unit sphere.
Place the remaining ten points in any order.
Arbitrarily label the 20 minimal spherical triangles T = {T1, . . . , T20}.

Stage two: Recursively tessellate minimal triangles
Let T ′ ← T
while TRUE do

for all minimal spherical triangles R ∈ T do
Let T ′ ← (T ′ ∪ σ(R)) − R

end for
Let T ← T ′

end while

Algorithm 1. Placing infinitely many points on the unit sphere using our
recursive tessellation procedure on the regular icosahedron.

4 Gap Ratio of Equilateral Spherical Triangles

We will require several lemmata regarding tessellations of spherical triangles. The
following lemma is trivial from the spherical sine rule and Girard’s theorem.

Lemma 2. Let T ∈ Δ be an equilateral triangle. Then the central triangle in
the tessellation σ(T ) is also equilateral.

It is worth again noting in Lemma 2 that the other three triangles in the
triangular dissection of an equilateral triangle are not equilateral, and have a
strictly smaller area than the central triangle. This deformation of the recursive
triangular dissection makes the analysis of the algorithm nontrivial. The fol-
lowing lemma equates the distance from the centroid of an equilateral spherical
triangle to a vertex of that triangle.

Lemma 3. Let T = 〈u1, u2, u3〉 ∈ Δ be an equilateral triangle with centroid
uc and edge length ζ(u1, u2) = α. Then ζ(u1, uc) = ζ(u2, uc) = ζ(u3, uc) =
arcsin

(
2 sin(α

2 )/
√

3
)
.

Given an equilateral spherical triangle T , we will also need to determine the
maximal and minimal edge lengths in σk

E(T ) for k ≥ 1, which we now show.

Lemma 4. Let T = 〈u1, u2, u3〉 ∈ Δ be an equilateral triangle such that α =
ζ(u1, u2) ∈ (0, π

2 ] and k ≥ 1. Then the minimal length edge in σk
E(T ) is given by

any edge lying on the boundary of T . The maximal length edge of σk
E(T ) is any

of the edges of the central equilateral triangle of σk(T ).

Proof. Consider Fig. 4. The lemma states that in σ2(T ) shown, the shortest
length edge of σ2

E(T ) is (u1, u113), or indeed any such edge on the boundary
of triangle 〈u1, u2, u3〉. The lemma similarly states that the longest edge of
σ2

E(T ) is edge (u1213, u1223), or indeed any edge of the central equilateral tri-
angle 〈u1213, u1223, u1323〉.
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Fig. 6. Max and min lengths of σ tessel-
lations of an equilateral triangle.
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Fig. 7. Centroid calculations

Consider now Fig. 6 illustrating T = 〈u1, u2, u3〉. Point u12 (resp. u13) is at
the midpoint of spherical edge (u1, u2) (resp. (u1, u3)). Let α = ζ(u1, u2) =
ζ(u2, u3) = ζ(u1, u3) be the edge length. The intersection of spherical edges
(u2, u13) and (u1, u3) forms a spherical right angle. We denote y = ζ(u13, u12),
thus y is the edge length of the central equilateral triangle of σ(T ) (and α

2 =
ζ(u1, u13) is the edge length of the minimal length edge of one of the non-central
triangles in σ(T ); note that this is the same for each such triangle).

By the spherical sine rule, sin
(

γ
2

)
= sin α

2
sinα , which is illustrated by triangle

〈u2, u13, u3〉. Thus sin(γ
2 ) = 1

2 sec
(

α
2

)
. Here we used the identity that

sin ( x
2 )

sinx =
1
2 sec

(
x
2

)
. Further, one can see by the spherical sine rule that sin

(
y
2

)
= sin

(
α
2

) ·
sin

(
γ
2

)
= 1

2

sin (α
2 )

cos (α
2 ) = 1

2 tan
(

α
2

)
. This implies ζ(u13, u12) = y = 2arcsin

(
1
2 tan α

2

)
which is larger than α

2 for α ∈ (0, π
2 ]. To prove this, let f(α) = 2 arcsin(12 tan α

2 )
then df

dα = 2

cos2 (α
2 )

√
4−tan2(α

2 )
as is not difficult to prove. Noting that if α ∈ (0, π

2 ],

then cos2
(

α
2

) ∈ [ 12 , 1] and
√

4 − tan2(α
2 ) ∈ [

√
3, 2], then df

dα > 1
2 = dα

2
dα and thus

since f(α) = 0 = α
2 when α = 0, then y > α

2 for α ∈ (0, π
2 ].

For any depth k-tessellation σk(T ), the maximal edge length of σk
E(T ) will

thus be given by the length of the edges of the central equilateral triangle and
the minimal length edges will be located on the boundary of T as required. �

Given an equilateral spherical triangle T = 〈u1, u2, u3〉, we now consider the
gap ratio implied by the restriction of points to those of T . The first part of
this lemma shows that the gap ratio of a depth-k tessellation is lower than the
gap ratio of a depth-k + 1 tessellation (when restricted to points of T ), and the
second part shows that in the limit, the upper bound converges.

Lemma 5. Let T = 〈u1, u2, u3〉 be an equilateral spherical triangle with spheri-
cal edge length α, then:

(i) ρT (μ(σk(T ))) < ρT (μ(σk+1(T )));
(ii) limk→∞ ρT (μ(σk(T ))) = 4 sin (α

2 )

α
√

3−4 sin2 (α
2 )
.
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Proof Sketch. Consider Fig. 7 and let α = ζ(u1, u2) = ζ(u2, u3) = ζ(u1, u3) be the
edge length of the equilateral triangle T = 〈u1, u2, u3〉. We begin by calculating
ρT (σ0(T )) = ρT (T )1. Recall that ρT (T ) denotes the gap ratio of point set μ(T )
when the maximal gap ratio calculation is restricted to points of T .

We may show that ρmin(T ) = α and ρT
max(T ) = 2x; in other words the

maximal spherical diameter of the largest empty circle centered inside T should
be placed at the centroid uc of T . This implies ρT (T ) = 2x

α . We may then prove
that the maximal circle for σk(T ) is centered at uc, based on Lemmas 2 and 4.

By Lemma 2, triangle 〈u12, u23, u13〉 in the decomposition σ(T ) is equilateral.
It is clear that y > α

2 in Fig. 6 (proven in Lemma 4) and we may prove that
β < x in Fig. 7 by the spherical sine rule, since γ > π/3 (by Girard’s theorem).

Therefore, ρmin(σ1(T )) = α
2 , ρT

max(σ
1(T )) = 2β and thus ρT (σ1(T )) = 4β

α .
Since the depth 0 tessellation σ0(T ) has a gap ratio of 2x

α and the depth 1
tessellation has a gap ratio of 4β

α , we may then show that 2x
α < 4β

α which proves
the first result of the lemma by induction. The proof of this fact uses a projection
of T to the tangent plane of the unit sphere centered at the triangle’s centroid
uc and then standard geometry on the projected triangle.

The second statement of the lemma is proven by infinitesimal calculus on
this projected triangle, see [4] for details. �

5 Regular Icosahedral Tessellation

As explained in Sect. 3 and Algorithm 1, our algorithm consists of two stages.
Using the lemmata of the previous section, we are now ready to show that the
stage one gap ratio is no more than π

arccos
(

1√
5

) ≈ 2.8376 and the second stage

gap ratio is no more than 2(3−√
5)

arcsin
(

1
2

√
2− 2√

5

) ≈ 2.760.

Lemma 6. The gap ratio of stage one is no more than π

arccos
(

1√
5

) ≈ 2.8376.

Proof. The points of a regular icosahedron can be defined by taking circular
permutations of (0,±1,±φ), where φ = 1+

√
5

2 is the golden ratio. Let V ′ be the
set of the twelve such vertices. Normalising each element of V ′ gives a set V .
Note that the area of each spherical triangle is given by π

5 since we have a unit
sphere and twenty identical spherical triangles forming a tessellation. By Girard’s
theorem (Theorem 1), this implies that 3γ −π = π

5 , where γ is the interior angle
of the equilateral triangle and thus γ = 2π

5 . By the second spherical law of cosines
(Lemma 1), this implies that the spherical distance between adjacent vertices, α,

is thus given by cos(α) = cos( 2π
5 )+cos2( 2π

5 )

sin2( 2π
5 )

=
1
4 (

√
5−1)+ 3

8+(
√

5
8 )

5
8+

√
5

8

=
1
8 (1+

√
5)

1
8 (5+

√
5)

= 1√
5

and therefore α ≈ 1.1071. The first two points are placed opposite to other,
for example u2 ≈ (0,−0.5257, 0.8507) and u3 ≈ (0, 0.5257,−0.8507). At this
stage, the gap ratio is 1, since the largest circle may be placed on the equator

1 Note by abuse of notation that we write ρT (T ) rather than the more formal ρT (μ(T )),
as explained previously.
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(with u2 and u3 at the poles) with a diameter of π, whereas the spherical distance
between u2 and u3 can be calculated as π. The remaining ten vertices of the
normalised regular icosahedron are placed in any order. The minimal distance
between them is given by α above, and thus the gap ratio during stage one is no
more than π

arccos
(

1√
5

) ≈ 2.8376, as required. �

As explained in Sect. 3 and Algorithm 1, we start with the twenty equilateral
spherical triangles produced in stage one, denoted the depth-0 tessellation of S.
We apply σ to each such triangle to generate 20 ∗ 4 = 80 smaller triangles (note
that not all such triangles are equilateral, in fact only eight triangles at each
depth tessellation are equilateral). At this stage we have the depth-1 tessellation
of S. We recursively apply σ to each spherical triangle at depth-k to generate
the depth-k + 1 tessellation, which contains 20 ∗ 4k+1 spherical triangles.

Lemma 7. The gap ratio of stage two is no more than 12−4
√
5

arccos
(

1√
5

) ≈ 2.760.

Proof. At the start of stage two, we have 20 equilateral spherical triangles,
T1, . . . , T20 which are identical (up to rotation). Note that moving from depth-k
tessellation to depth-k + 1, each edge of σk

E(Ti) will be split at its midpoint,
therefore applying σ to any spherical triangle will only ‘locally’ change the gap
ratio of at most two adjacent triangles. Thus the order in which σ is applied to
each triangle at depth k is irrelevant.

Assume that we have a (complete) depth-k tessellation with 20∗4k triangles.
Lemma 5 tell us that the gap ratio increases from the depth-k to the depth-
k + 1 tessellations for all k ≥ 0 and in the limit, the gap ratio of the depth-k
tessellation of each Ti is given by:

lim
k→∞

ρT (σk(Ti)) =
4 sin (α

2 )

α
√

3 − 4 sin2 (α
2 )

(1)

where α is the length of the edges of Ti (i.e. the length of those triangles produced
by stage 1 via the icosahedron). When we start to tessellate the depth-k spherical
triangles, until we have a complete depth-k + 1 tessellation, applying σ to each
of the triangles may decrease the minimal gap ratio at most by a factor up to 2
overall (since we split each edge at its midpoint). The maximal gap ratio cannot
increase, but decreases upon completing the depth k + 1 tessellation. Therefore,
we multiply Eq. (1) by 2 to obtain an upper bound of the gap ratio for the entire
sequence, not only when some depth-k tessellation is complete. We now solve
Eq. (1), after multiplying by 2, by substituting α = arccos

(
1√
5

)
≈ 1.1071. This

is laborious, but by noting that sin(α
2 ) =

√
1
10 (5 − √

5) and sin2(α
2 ) = 1

10 (5−√
5),

then: 8 sin (α
2 )

α
√

3−4 sin2 (α
2 )

= 8
√

1
10 (5−√

5)

arccos
(

1√
5

)√
1+ 2√

5

= 12−4
√
5

arccos
(

1√
5

) ≈ 2.760. Therefore, the

gap ratio during stage two is upper bounded by 2.76. �
Theorem 2. The gap ratio of the icosahedral triangular dissection is equal to

π

arccos
(

1√
5

) ≈ 2.8376.
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Table 1. The gap ratio of stage one and two of various regular Platonic solids. Italic
elements show which value defines the overall gap ratio in each case.

Tetrahedron Octahedron Dodecahedron Icosahedron

Stage 1 2.289 2.0 2.618 2.8376

Stage 2 5.921 3.601 5.995 2.760

We can now prove the first nontrivial lower bound when we have only 2 or 3
points on the sphere in this online version of the problem.

Theorem 3. The gap ratio for the problem of placing points on the sphere can-
not be less than 1+

√
5

2 ≈ 1.6180.

Proof. Let us first estimate the ratio with only two points when one point is
located at the north pole of the 2-sphere and the other is shifted by a distance
x from the south pole. The gap ratio in this case is π+x

π−x , which increases from 1
to ∞ when x ≥ 0.

Let us now consider the case with three points. If we place the third point
on the plane P defined by the center of the sphere and the other two points,
then the gap ratio will be π

π+x
2

= 2π
π+x as in this case the maximal diameter of an

empty circle is π regardless of the position of the third point on P . Note that
the diameter of a largest circle will be on the orthogonal plane to P and the
smallest function for the gap ratio in terms of x can be defined by positioning
the third point at the largest distance from initial two points which is π+x

2 .
If the third point is not on the plane P then the ratio would be equal to

some value a
b that is larger than 2π

π+x . This follows from the fact that the value a
which is the maximal gap would be greater than π and the minimal gap b would
be less than π+x

2 . So the minimal gap ratio that can be achieved for the three
points will be represented by the expression 2π

π+x .
By solving the equation where the left hand side represents the gap ratio in

the case of 3 points (decreasing function) and the right hand side representing
the case with 2 points (increasing function), we find a positive value of the one
unknown x: 2π

π+x = π+x
π−x . The only positive value x satisfying the above equation

has the value π(
√

5 − 2) and the gap ratio for this value x is equal to 1+
√
5

2 . �

6 Conclusion

To determine the most appropriate stage 1 shape, we derived (theoretically and
via a computer simulation) the gap ratios of the stage 1 and 2 tessellations of
various Platonic solids, shown in Table 1. The results for the dodecahedron are
from [6] using a different tessellation (dodecahedra have non triangular faces).

The results match our intuition, that a finer grained initial tessellation per-
forms better in stage 2 than a coarse grained initial tessellation. It would be
interesting to consider modifications of the stage 2 procedure which may allow
the octahedron to be utilised, given its low stage 1 gap ratio.
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3 CMM, UMI CNRS 2807, Universidad de Chile, Santiago, Chile

richard@unice.fr

Abstract. A Boolean network (BN) with n components is a discrete
dynamical system described by the successive iterations of a function
f : {0, 1}n → {0, 1}n. This model finds applications in biology, where
fixed points play a central role. For example in genetic regulation they
correspond to cell phenotypes. In this context, experiments reveal the
existence of positive or negative influences among components: compo-
nent i has a positive (resp. negative) influence on component j, mean-
ing that j tends to mimic (resp. negate) i. The digraph of influences is
called signed interaction digraph (SID), and one SID may correspond to
multiple BNs. The present work opens a new perspective on the well-
established study of fixed points in BNs. Biologists discover the SID of
a BN they do not know, and may ask: given that SID, can it correspond
to a BN having at least k fixed points? Depending on the input, this
problem is in P or complete for NP, NP#P or NEXPTIME.

1 Introduction

A Boolean network (BN) with n components is a discrete dynamical system
described by the successive iterations of a function

f : {0, 1}n → {0, 1}n, x = (x1, . . . , xn) �→ f(x) = (f1(x), . . . , fn(x)).

The structure of the network is often described by a signed digraph G, called
signed interaction digraph (SID) of f , catching effective positive and negative
dependencies among components: the vertex set is [n] := {1, . . . , n} and, for all
i, j ∈ [n], there is a positive (resp. negative) arc from i to j if fj(x) − fj(y) is
positive (resp. negative) for some x, y ∈ {0, 1}n that only differ in xi > yi. The
SID provides a very rough information about f . Hence, given a SID G, the set
F (G) of BNs f whose SID is G, is generally huge.

BNs have many applications. In particular, since the seminal papers of Kauff-
man [14,15] and Thomas [30,31], they are very classical models for the dynamics
of gene networks. In this context, the first reliable experimental information often
concern the SID of the network, while the actual dynamics are very difficult to
c© Springer Nature Switzerland AG 2019
F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 132–143, 2019.
https://doi.org/10.1007/978-3-030-22996-2_12
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observe [18,32]. One is thus faced with the following question: What can be said
about the dynamics described by f according to G only?

Among the many dynamical properties that can be studied, fixed points are
of special interest, since they correspond to stable patterns of gene expression
at the basis of particular cellular phenotypes [3,31]. As such, they are arguably
the property which has been the most thoroughly studied. The number of fixed
points and its maximization in particular is the subject of a stream of work, e.g.
in [4–7,11,12,24,26].

From the complexity point of view, previous works essentially focused on
decision problems of the following form: given f and a dynamical property P ,
what is the complexity of deciding if the dynamics described by f has the prop-
erty P . For instance, it is well-known that deciding if f has a fixed point is
NP-complete in general (see [17] and the references therein), and in P for some
families of BNs, such as monotone or non-expansive BNs [10,13]. However, as
mentioned above, in practice, f is often unknown while its SID is well approxi-
mated. Hence, a much more natural question is: given a SID G and dynamical
property P , what is the complexity of deciding if the dynamics described by
some f ∈ F (G) has the property P . Up to our knowledge, there is, perhaps
surprisingly, no work concerning this kind of questions.

In this paper, we study this class of decision problems, focusing on the max-
imum number of fixed points. More precisely, given a SID G, we denote by φ(G)
the maximum number of fixed points in a BN f ∈ F (G), and we study the
complexity of deciding if φ(G) ≥ k.

After the definitions in Sect. 2, we first study the problem when the positive
integer k is fixed. We prove in Sect. 3 that, given a SID G, deciding if φ(G) ≥ k
is in P if k = 1. We also prove in Sect. 4 that the same problem is NP-complete
if k ≥ 2. Furthermore, these results remain true if the maximum in-degree Δ(G)
is bounded by any constant d ≥ 2. The case k = 2 is of particular interest
since many works have been devoted to finding necessary conditions for the
existence of multiple fixed points, both in the discrete and continuous settings,
see [16,24,25,28] and the references therein. Section 5 considers the case where
k is part of the input. We prove that, given a SID G and a positive integer
k, deciding if φ(G) ≥ k is NEXPTIME-complete, and becomes NP#P-complete
if Δ(G) is bounded by a constant d ≥ 2. Note that, from these results, we
immediately obtain complexity results for the dual decision problem φ(G) < k.
A summary is given in Table 1.

In the case where k is fixed, while proving that the problem φ(G) ≥ k belongs
to NP, we study a decision problem of independent interest, called extension or
consistency problem [2,8,9]. Here, the property P consists of a partial BN, that
is, a function h : X → {0, 1}n where X ⊆ {0, 1}n. This partial BN may represent
some experimental observations about the dynamics. Given a SID G, we prove
that we can check in O(|X|2n2) time if there is a BN f ∈ F (G) which is consistent
with h, that is, such that f(x) = h(x) for all x ∈ X. Thus, the task consists in
extending h to a global BN f under the constraint that the SID of f is G.
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Table 1. Complexity results.

Problem Δ(G) ≤ d k = 1 k ≥ 2 k given in input

φ(G) ≥ k Yes P NP-complete NP#P-complete

No NEXPTIME-complete

φ(G) < k Yes coNP-complete coNP#P-complete

No coNEXPTIME-complete

2 Definitions and Notations

Let V be a finite set. A Boolean network (BN) with component set V is defined
as a function f : {0, 1}V → {0, 1}V . A configuration x ∈ {0, 1}V assigns a state
xi ∈ {0, 1} to each component i ∈ V . During an application of f , the state of
component i evolves according to the local function fi : {0, 1}V → {0, 1}, which
is the coordinate i of f , i.e. fi(x) = f(x)i for all x ∈ {0, 1}V . When V = [n], we
write x = (x1, . . . , xn) and f(x) = (f1(x), . . . , fn(x)).

Given a configuration x ∈ {0, 1}V and I ⊆ V , we denote by xI the config-
uration y ∈ {0, 1}I such that yi = xi for all i ∈ I. Given i ∈ V , we denote the
i-base vector ei, that is, (ei)i = 1 and (ei)j = 0 for all j �= i. If x, y ∈ {0, 1}V

then x ⊕ y is the configuration z ∈ {0, 1}V such that zi = xi ⊕ yi for all i ∈ V ,
where the addition is computed modulo two. Hence, x ⊕ ei is the configuration
obtained from x by flipping component i only.

A signed digraph G = (V,A, σ) is a digraph (V,A) with an arc-labeling func-
tion σ from A to {−1, 0, 1}, that gives a sign (negative, null or positive) to each
arc (i, j), denoted σij . We say that G is simple if it has no null sign. Given a
vertex i and s ∈ {−1, 0, 1}, we denote by Ns

G(i) the set of in-neighbors j of i such
that σij = s, and we drop G in the notations when it is clear from the context.
We call N1(i) (resp. N−1(i)) the set of positive (resp. negative) in-neighbors
of i. We also simply denote N(i) the set of all in-neighbors of i. In the following,
it is very convenient to set σ̃ij = 0 if σij ≥ 0 and σ̃ij = 1 otherwise.

The signed interaction digraph (SID) of a BN f with component set V is
the signed digraph Gf = (V,A, σ) defined as follows. First, given i, j ∈ V ,
there is an arc (i, j) ∈ A if and only if there exists a configuration x such
that fj(x ⊕ ei) �= fj(x) (i.e. the state of component i influences the state of
component j). Second, the sign σij of an arc (i, j) ∈ A depends on whether the
state of j tends to mimic or negate the state of i, and is defined as

σij =

⎧
⎨

⎩

1 if fj(x ⊕ ei) ≥ fj(x) for all x ∈ {0, 1}n with xi = 0,
−1 if fj(x ⊕ ei) ≤ fj(x) for all x ∈ {0, 1}n with xi = 0,

0 otherwise.

Given j ∈ V , we say that fj is the AND (resp. OR) function if it is the ordinary
logical and (resp. or) but inputs with a negative sign are flipped, i.e

fj(x) =
∧

i∈N(j)

xi ⊕ σ̃ij (resp. fj(x) =
∨

i∈N(j)

xi ⊕ σ̃ij).
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Given a signed digraph G, we know that G is a SID (i.e. there exists a BN
f with Gf = G), if and only if there is no vertex i such that |N(i)| ≤ 2 and
|N0(i)| = 1 [23]. In particular, a simple signed digraph is always a SID.

A fundamental remark regarding the present work is that multiple BNs may
have the same SID. Given a SID G with vertex set V , we denote by F (G) the
set of BNs admitting G as SID:

F (G) = {f : {0, 1}V → {0, 1}V | Gf = G}.

The size of F (G) is generally huge. If a component i has in-degree d in G, then the
number of possible local functions fi is doubly exponential according to d, thus
it scales as the number of Boolean functions on d variables, 22

d

. Hence, |F (G)| is
at least doubly exponential according to its maximum in-degree, denoted Δ(G).
The precise value of |F (G)| is not trivial, see A006126 on the OEIS [1].

A fixed point of f is a configuration x such that f(x) = x, which is equivalent
to fi(x) = xi for all i ∈ [n]. We denote by Φ(f) the set of fixed points of f and
φ(f) = |Φ(f)|. We are interested in a decision problem related to the maximum
number of fixed points of BNs within F (G), denoted

φ(G) = max {φ(f) | f ∈ F (G)} .

More precisely, we will study the complexity of deciding if φ(G) ≥ k, where k is
a positive integer, fixed or not. This gives the two following decision problems.

k-Maximum Fixed Point Problem (k-MFPP)
Input: a SID G.
Question: φ(G) ≥ k?

Maximum Fixed Point Problem (MFPP)
Input: a SID G and an integer k ≥ 1.
Question: φ(G) ≥ k?

Cycles of interactions (in the SID) are known to play a fundamental role in
the dynamical complexity of BN (the cycles we consider are always directed and
without repeated vertices). Indeed, if Gf is acyclic then φ(f) = 1 [26]. The sign
of a cycle or a path in a signed digraph is the product of the signs of its arcs.
It is well-known that if all the cycles of Gf are positive (resp. negative) then
φ(f) ≥ 1 (resp. φ(f) ≤ 1), see [4,25]. Hence, if all the cycles of a SID G are
negative, then φ(G) ≤ 1. The previous notions are illustrated in Fig. 1.

3 k-Maximum Fixed Point Problem for k = 1

A strongly connected component H in a signed digraph G is trivial if it has a
unique vertex and no arc, and initial if G has no arc (i, j) where j is in H but
not i. We first have a lemma to concentrate on simple signed digraphs.
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1

23

f1(x) = ¬x3

f2(x) = x1 ∨ ¬x2

f3(x) = x1 ∨ (¬x2 ∧ x3)

g1(x) = ¬x3

g2(x) = x1 ∨ ¬x2

g3(x) = x1 ∧¬x2 ∧x3

Fig. 1. Example of simple signed digraph G with two BNs f, g ∈ F (G). BN f has no
fixed point, and g has one fixed point (110), which is the maximum for BNs in F (G),
that is φ(G) = 1. Note that G has two positive cycles and two negative cycles.

Lemma 1. For any SID G, there is a simple SID G′ such that φ(G) ≥ 1 ⇐⇒
φ(G′) ≥ 1, and G′ is computable from G in constant parallel time.

Proof. From G, the construction of G′ is made component by component, inde-
pendently, by removing incoming arcs. For j ∈ [n],

– If |N0(j)| ≥ 2 then we delete all incoming arcs of j. If there exists f ∈ F (G)
and y ∈ Φ(f), then we can take f ′ ∈ F (G′) equal to f , except for f ′

j(x) = yj

(a constant). Conversely, if there exists f ′ ∈ F (G′) and y ∈ Φ(f ′), then we
can take f ∈ F (G) equal to f ′, except for

fj(x) = (bj ⊕
⊕

i∈N0(j)

xi) ∧
∧

i∈N(j)\N0(j)

(xi⊕σ̃ij)

with bj =
⊕

i∈N0(j) yi, in the case yj = 0 (the case yj = 1 is symmetric, with
OR instead of AND function). We have f ′

j(y) = fj(y) = yj hence y ∈ Φ(f).
– If |N0(j)| = 1, then we delete this arc. One can check that, if y ∈ Φ(f) with

f ∈ F (G) (resp. y ∈ Φ(f ′) with f ′ ∈ F (G′)), then there exists i ∈ N(j)\N0(j)
such that yi ⊕ σ̃ij = yj . Consequently, if there exists f ∈ F (G) and y ∈ Φ(f)
then we can take f ′ ∈ F (G′) equal to f , except that f ′

j is the AND function
if yj = 0 and the OR function otherwise. Conversely, suppose there exists
f ′ ∈ F (G′) and y ∈ Φ(f ′), and let {k} = N0(j). In the case yj = 0, we can
construct a function f ∈ F (G) equal to f ′, except for

fj(x) =
(
(xi ⊕ σ̃ij) ∨ (xk ⊕ yk)

) ∧
∧

�∈N(j)\{i,k}

(
(x� ⊕ σ̃�j) ∨ (xk ⊕ ¬yk)

)
.

We have fj(y) = 0 = yj because the left hand side of the conjunction is false,
thus y ∈ Φ(f) (the case yj = 1 is symmetric by switching OR and AND
functions, and replacing yk with ¬yk). ��

Lemma 2. Let G be a simple SID. Then φ(G) ≥ 1 if and only if each non-trivial
initial strongly connected component of G contains a positive cycle.

Proof. The left to right implication has been proved by Aracena [4, Corollary 3].
For the converse, suppose that G = (V,A, σ) has p initial strongly connected
components H1, . . . , Hp. For all k ∈ [p], if Hk is trivial then ik denotes the
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unique vertex it contains, and otherwise we select a positive cycle Ck in Hk and
an arc (jk, ik) inside. Then, G can be spanned by a forest of p vertex disjoint
trees T1, . . . , Tp rooted in i1, . . . , ip such that if Hk is not trivial then the path
from ik to jk contained in Tk is the one contained in Ck. For all k ∈ [p] and
all vertices j in Tk, we denote by Pkj the path from ik to j contained in Tk (if
j = ik this path is of length zero and positive by convention).

Now, we define f ∈ F (G) as follows. First, for all k ∈ [p], if Hk is trivial then
fik is the constant 0 function, and otherwise fik is the AND function. Second,
for all k ∈ [p] and all vertices j �= ik in Tk, fj is the AND function if Pkj is
positive and the OR function otherwise. Next, we define x ∈ {0, 1}V as follows:
for all j ∈ V , xj = 0 if and only if Pkj is positive (thus xik = 0 for all k ∈ [p]).

We claim that x ∈ Φ(f). Indeed, given k ∈ [p] and a vertex j �= ik in Tk, it
is easy to prove that fj(x) = xj by induction on the length of Pkj . Next, if Hk

is trivial then fik(x) = 0. Otherwise, (jk, ik) is an arc of Hk. Let s be the sign
of the path Pkjk , which is in Ck by construction. Since Ck is positive, s = σjkik .
So if σjkik = 1 then xjk = 0 and thus fik(x) = 0, and if σjkik = −1 then xjk = 1
and thus fik(x) = 0. In all cases, fik(x) = 0 = xik . We deduce that x ∈ Φ(f). ��

Thus, to decide if φ(G) ≥ 1, it is sufficient to compute the non-trivial initial
strongly connected components of G (this can be done in linear time [29]) and
to check if they contain a positive cycle. As described below, this checking can
be done in polynomial time using the following difficult theorem independently
proved by Robertson, Seymour and Thomas [27] and McCuaig [20].

Theorem 1 ([20,27]). There exists a polynomial time algorithm for deciding
if a given digraph contains a cycle of even length.

Let G be a signed digraph with n vertices, and let G̃ be obtained from G
by replacing each positive arc by a path of length two, with two negative arcs,
where the internal vertex is new. Then G̃ has at most n + n2 vertices, and it is
easy to see that G has a positive cycle if and only if G̃ has a cycle of even length
[21]. We then deduce the following theorem.

Theorem 2. 1-MFPP is in P.

4 k-Maximum Fixed Point Problem for k ≥ 2

Theorem 3. For any k ≥ 2, k-MFPP is NP-complete, even with Δ(G) ≤ 2.

Theorem 3 is obtained from Lemmas 3, 5 and 6.

Lemma 3. For any k ≥ 2, k-MFPP is in NP.

Proof (sketch, see details in Appendix ??). First, consider the case where Δ(G) ≤
d for some constant d. Then a certificate of φ(G) ≥ k could consist in a network
f ∈ F (G) and k distinct fixed points x(1), . . . , x(k). The fact that f ∈ F (G), and
f(x(i)) = x(i) with distinct x(i) for all i ∈ [k], is checked in polynomial time.
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However, when Δ(G) is not bounded, F (G) can be of doubly exponential size
in n. Thus, some functions f require an exponential space to be encoded. Instead,
one can give as a certificate a partial function h : X → {0, 1}n with X ⊆ {0, 1}n

such that f(x) = h(x) for any x ∈ X. In the set X, we put k fixed points and
configurations which assert the effectiveness of the arcs. To check the certificate
it is sufficient to ensure that there are no inconsistencies (independently for each
local function). As a result, the problem is in NP. ��

A shorter certificate (only the k fixed points) is possible when G is simple (see
Appendix ??). This result from the following theorem. Note that the extending
partial Boolean functions is a well established topic [8,9].

Theorem 4. Let G be a simple SIG with vertex set V and consider a partial
BN h : X → {0, 1}V with X ⊆ {0, 1}V . There is a O(|X|2|V |2)-time algorithm
to decide if there exists an extension of h in F (G).

We now prove that 2-MFPP is NP-hard. We will use observations from [4].

Lemma 4 ([4]). Let G = (V,A, σ) be a simple signed digraph, f ∈ F (G) and
x, y two distinct fixed points of f . Then there exists a positive cycle C in G such
that, for any arc (i, j) in C, we have xi ⊕ σ̃ij = xj �= yj = yi ⊕ σ̃ij.

Remark 1. If the positive cycle C in Lemma 4 has only positive arcs, then either
xi < yi for all vertex i in C, or xi > yi for all vertex i in C.

Remark 2. Given f ∈ F (G) and x, y two distinct fixed points of f , for any
feedback vertex set I of G we have xI �= yI .

Lemma 5. The problem 2-MFPP is NP-hard, even with Δ(G) ≤ 2.

Proof. We reduce 3SAT to our problem. Let us consider a 3SAT instance ψ with
n variables λ1, . . . , λn and m clauses μ1, . . . , μm. We define the signed digraph
Gψ = (V,A, σ), where |V | = 4n + 2m + 1, as follows (see Fig. 2).

First, V = R∪P ∪L∪ L̄∪S ∪T with R = {ri | i ∈ [n]}, P = {pi | i ∈ [0, n]},
L = {�i | i ∈ [n]}, L̄ = {�̄i | i ∈ [n]}, S = {si | i ∈ [m]}, and T = {ti | i ∈ [m]}.
To simplify the notation let s0 = p0 and sm+1 = pn. Second,

A :=
⋃

i∈[n]
{(pi−1, �i), (pi−1, �̄i), (�i, pi), (�̄i, pi), (ri, �i), (ri, �̄i)}

∪
⋃

j∈[m]
{(ti, si), (si, si−1)} ∪ {(pn, sm)}

∪{(�i, tj) | i ∈ [n], j ∈ [m] if λi appears positively in μj}
∪{(�̄i, tj) | i ∈ [n], j ∈ [m] if λi appears negatively in μj}.

Arcs in {(si, ti) | i ∈ [m]}∪{(ri, �i) | i ∈ [n]} are negative, all others are positive.
Let us first prove that if ψ is satisfiable then there exists a BN f ∈ F (Gψ)

with has at least two fixed points. Consider a valid assignment v : {λ1, . . . λn} →
{⊥,�}. Let I⊥ = {i ∈ [n] | v(λi) = ⊥} and I� = {i ∈ [n] | v(λi) = �}. We
define f ∈ F (Gψ) as follows.
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– For all i ∈ I⊥ (resp. I�), fri
is the constant 0 (resp. 1) function.

– For all i ∈ [n], f�i and f�̄i are both AND functions.
– For all i ∈ [0, n], fpi

is the OR function.
– For all i ∈ [m], fsi

and fti are the AND functions.

The two following configurations x and y are distinct fixed points of f , and
therefore φ(Gψ) ≥ 2: for all j ∈ V ,

xj =
{
1 if j ∈ {ri | i ∈ I�}
0 otherwise

yj =
{
1 if j ∈ {ri | i ∈ I�} ∪ P ∪ S ∪ {�i | i ∈ I⊥} ∪ {�̄i |∈ I�}
0 otherwise.

Now, we prove that if φ(Gψ) ≥ 2 then ψ is satisfiable. Consider a BN f ∈
F (Gψ) with two distinct fixed points x and y. Remark that {p0} is a feedback
vertex set of Gψ. In other words, all cycles of Gψ contain p0. We deduce from
Remark 2 that xp0 �= yp0 and that φ(Gψ) ≤ 2. Without loss of generality,
suppose that xp0 < yp0 . Remark also that any cycle containing one of the vertices
t1, . . . , tm is negative, and that no positive cycle in Gψ contains any negative arc.
Thus, according to Remark 1, there exists a cycle C such that xj < yj for every
vertex j in C. In other words, xP < yP and xS < yS and for every i ∈ [n] either
C contains �i and we have x�i < y�i , or it contains �̄i and we have x�̄i < y�̄i . We
construct the following assignment v from C.

v(λi) =
{⊥ if C contains �i,

� if C contains �̄i.

For the sake of contradiction, suppose that v does not satisfy the formula. As
a consequence, there is a clause μj which is false with assignment v. In other
words, any variable which appears positively in the clause is assigned to false
and any variable which appears negatively is assigned to true.

Let us prove that xtj < ytj . Since any incoming arc of tj is positive, and since
x and y are fixed points, it is sufficient to prove that, for every in-neighbor � of
tj , we have x� < y�. By definition of Gψ, any in-neighbor of tj corresponds to a
variable λi of the clause. If λi appears positively (resp. negatively) in clause μj

then the in-neighbor of tj corresponding to λi is �i (resp. �̄i). Since v(λi) = ⊥
(resp. �) because the clause is false then C contains �i (resp. �̄i) and we have
x�i < y�i (resp. x�̄i < y�̄i). As a result, xtj < ytj .

Now, the vertex sj has two in-neighbors. One of them is sj+1 and we have
σsj+1sj

= 1 and xsj+1 < ysj+1 . The other is tj with σtjsj
= −1 and xtj < ytj .

Hence, there are two possible local functions for fsi
:

– fsj
(z) = zsj+1 ∨ ¬ztj , and then xsj

= fsj
(x) = xsj+1 ∨ ¬xtj = 0 ∨ ¬0 = 1.

– fsi
(z) = zsi+1 ∧ ¬ztj , and then ysj

= fsj
(y) = ysj+1 ∧ ¬ytj = 1 ∧ ¬1 = 0.

In both cases, we do not have xsj
< ysj

, which is a contradiction since sj is
in C. As a result, the 3SAT instance ψ is satisfiable. Additionally, remark that
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φ(Gψ) ≥ 1 because, with the constant 1 function for the vertices in R, and the
OR local function everywhere else, the configuration zi = 1 for all i is a fixed
point. We can conclude that φ(Gψ) = 1 when ψ is unsatisfiable.

To get a bounded degree Δ(Gψ) ≤ 2, notice that only vertices in T have
in-degree three, which can be decreased by adding an intermediate vertex (see
the right picture in Fig. 2) while preserving the correctness of the reduction.

��
We can extend the NP-hardness reduction to any k ≥ 2.

p0

�1

�̄1

p1

�2

�̄2

p2

�3

�̄3

p3

�4

�̄4

p4

r1 r2 r3 r4

s1 s2 s3 s4 s5

t1 t2 t3 t4 t5

ti

�

ti

t′
i

Fig. 2. Example of construction in the reduction from 3SAT to k-MFPP (Lemma 5).
This signed digraph Gψ implements the following 3SAT instance ψ: (λ1 ∨ λ2 ∨ λ3) ∧
(¬λ1∨λ2∨λ4)∧(λ1∨¬λ2∨¬λ3)∧(¬λ1∨¬λ2∨λ3)∧(λ1 ∨λ3∨¬λ4) which is satisfiable
if and only if φ(Gψ) ≥ 2, otherwise φ(Gψ) = 1.

Lemma 6. For any k ≥ 2, k-MFPP is NP-hard, even with Δ(G) ≤ 2.

Proof. Let � = �log2(k − 1)�, i.e. 2� < k ≤ 2�+1. Given a formula, consider the
digraph G from Lemma 5, and add � new isolated vertices with positive loops.
Then 1 or 2 fixed points on Gψ become respectively 2� or 2�+1 fixed points. ��
Remark 3. For Δ(G) ≤ 1, |F (G)| = 1 since each local function is the identity or
the negation, and computing φ(G) is in O(|G|), hence k-MFPP ∈ P.

5 Maximum Fixed Point Problem

Theorem 5. When Δ(G) ≤ d, MFPP is NP#P-complete.

In this first part of the section, we prove Theorem 5, from Lemmas 7 and 8.
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Lemma 7. When Δ(G) ≤ d, MFPPis in NP#P.

Proof. An algorithm in NP#P to solve MFPP is, on input G, k:

1. guess local functions fi for i ∈ [n] (polynomial from Δ(G) ≤ d),
2. construct ψ = (f1(x) = x1) ∧ · · · ∧ (fn(x) = xn) on variables x1, . . . , xn,
3. compute the number of solutions of ψ with the #P oracle, that is φ(f),
4. accept if and only if φ(f) ≥ k.

A non-deterministic branch accepts if and only if φ(G) ≥ k. ��
Lemma 8. When Δ(G) ≤ d, MFPPis NP#P-hard.

Proof (sketch, see details in Appendix ??). We consider the following problem.

Existential-Majority-3SAT (E-Maj3SAT)
Input: A 3SAT formula ψ on {λ1, . . . , λn} and s ∈ [n]
Question: Is there an assignment v of λ1, . . . , λs such that the majority
of assignments of λs+1, . . . , λn satisfy ψ?

We know that E-Maj3SAT is NPPP-complete [19] and that NP#P = NPPP

(direct extension of P#P = PPP [22]). Consequently, it is sufficient to prove
that we can reduce E-Maj3SAT to MFPP. To represent an instance (ψ, s) of
E-Maj3SAT, we construct a digraph Gψ,s similar to the digraph Gψ constructed
in Lemma 5 except that we add a positive loop to the q = n − s vertices
rs+1, . . . , rn. We claim that φ(Gψ,s) = α + 2q, with

α = max
v:{λ1,...,λs}→{⊥,�}

|{u : {λs+1, . . . , λn} → {⊥,�} | v ∪ u satisfies ψ}|.

Indeed, consider f ∈ F (Gψ,s) with φ(f) = φ(Gψ,s). As in Lemma 5, the func-
tions fi for i ∈ {�1, �̄1, . . . , �s, �̄s} correspond to an assignment v of λ1, . . . , λs.
Moreover, each valuation u of λs+1, . . . , λn corresponds to one (resp. two) fixed
points if the assignment v ∪ u makes ψ false (resp. true). As a consequence, the
reduction is correct by setting k = 3

22q. ��
In this second part, we study MFPP with unbounded maximum degree.

Theorem 6. When Δ(G) is unbounded, MFPP is NEXPTIME-complete.

Proof (sketch, see details in Appendix ??). It is easy to see that the problem
MFPP with unbounded degree is in NEXPTIME. Indeed, to know if φ(G) ≥ k
it is sufficient to guess a function f ∈ F (G) (encoded in exponential space), to
compute φ(f) (in exponential time) and then accept if φ(f) ≥ k, reject otherwise.
A non-deterministic branch accepts if and only if φ(G) ≥ k.

For the hardness, we reduce from Succint-3SAT [22], which is 3SAT where
ψ has n = 2ñ variables, m = 2m̃ clauses, and is given by a circuit D with:

– m̃ input bits for the clauses, and 2 for the three literal positions,
– ñ output bits to give the corresponding variable, and 1 for its polarity.
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D is acyclic, has in-degree at most 2, and has simple OR, AND, NOT, iden-
tity or constant functions. The idea is to generalize the construction from the
proof of Theorem 3, with one literal for each node of the circuit D (top part), and
additional clauses implementing the circuit (bottom part). With non-trivial addi-
tional elements, choosing local functions correspond to choosing an assignment.
There will be a maximum of one (resp. two) fixed point for each non-satisfied
(resp. satisfied) clause. As a result, ψ is satisfiable if and only if φ(G) ≥ 2m. ��

6 Conclusion

This first work raises many open questions. First, is the problem 1-MFPP
P-complete? We proved that it is equivalent to the problem of finding an even
cycle in a digraph, for which the P versus NP-complete status remained open
until [20,27]. Now we know that the problem is in P, but is it a tight bound?

Several natural extensions of the present results may be addressed. What
happens to the complexity when we study the minimum number of fixed points
instead of the maximum? And for digraphs with only positive arcs? What about
limit cycles of period greater than one instead of fixed points? Understanding
the complexity of computing bounds on dynamical properties of BNs respect-
ing a given interaction digraph is a new and promising approach, both on the
theoretical and practical points of view.
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Abstract. We fill an apparent gap in the literature by giving a short
and self-contained proof that the ordinal of the theory RCA0 + WO(σ)
is σω, for any ordinal σ satisfying ω · σ = σ (e.g., ωω, ωωω

, ε0). The-
ories of the form RCA0 + WO(σ) are of interest in Proof Theory and
Reverse Mathematics because of their connections to a number of well-
investigated combinatorial principles related to various subsystems of
arithmetic.

1 Introduction

Well-ordering statements are commonly used in Proof Theory and Reverse Math-
ematics as measures of strength of a theorem or a theory. For example a number
of interesting theorems is known to be equivalent to WO(ωω) or WO(ωωω

) over
the theory RCA0 (see, e.g., [3,7,9,15]). It is then natural to ask what is the
proof-theoretic ordinal of the theories RCA0 + WO(ωω), RCA0 + WO(ωωω

)
and, in general, RCA0 + WO(α). While it is well-known that the ordinal of
RCA0 is ωω, the answer for the other theories is not so immediate and occa-
sionally some confusion arises.1 Even the standard argument for showing that ωω

is an upper bound on the proof-theoretic ordinal of RCA0 is somewhat indirect
in that it hinges on the characterization of the provably recursive functions of
RCA0 rather than only on the computation of its proof-theoretical ordinal. A
proper direct treatment approach to determining the proof-theoretic ordinal of
theories of the form RCA0+WO(α) seems to be missing from the literature. The
closest match is Sommer’s [17] model-theoretical treatment of first-order theo-
ries with transfinite induction restricted to various formula-classes and ordinals
strictly below ε0.

In this paper we show that, if σ is an ordinal satisfying ω · σ = σ, the proof-
theoretic ordinal of the theory RCA0 + WO(σ) is σω. Examples of relevant σs
1 For example, in proving that a Π1

1 -version of Ramsey’s Theorem called the Adjacent
Ramsey Theorem is equivalent to WO(ε0) over RCA0, [4] Lemma 2.2 makes use of
the false equivalence, over RCA0, between WO(ε0) and the Π1

1 -soundness of ACA0.
The presentation in the later [5] avoids this pitfall but establishes a slightly different
result.
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F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 144–155, 2019.
https://doi.org/10.1007/978-3-030-22996-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22996-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-22996-2_13


A Note on the Ordinal Analysis of RCA0 + WO(σ) 145

are ωω, ωωω

etc. and ε0. This should be contrasted with the fact that the ordinal
of ACA0 + WO(ε0) is the much larger ε1, as can be gleaned from the proof-
theoretical analysis of transfinite induction over Peano Arithmetic (the original
proof seems to be in [8]).

Essentially, we show that the first-order part of RCA0+WO(σ) is the theory
IΣ1 plus the scheme of transfinite induction up to σ restricted to Π1 formulas,
which we denote by TI(σ,Π1). We give an ordinal analysis of the latter theory
augmented by a generic unary predicate symbol U and then show that the the-
ories prove the same Π1

1 -statements, where a Π1
1 -sentence ∀XF (X) with F (X)

being arithmetic is identified with F (U) in the first-order context of TI(σ,Π1).
For the remainder of the paper, we fix an ordinal σ such that ω · σ = σ.

The ordinal σ is assumed to be represented in a natural ordinal representation
system. We denote by � the primitive recursive ordering on the ordinals smaller
that σ to distinguish it from the usual ordering on the naturals.

2 Ordinal Analysis of IΣ1 + TI(σ, Π1)

The language of Tσ := IΣ1 + TI(σ,Π1) is the language of Primitive Recursive
Arithmetic, PRA, augmented by a unary predicate symbol U. Especially we
assume that there is a binary surjective coding function 〈 · , · 〉 with inverses
( · )0, ( · )1. The order relation for the ordering on σ will be denoted by the
same symbol � used to denote the corresponding primitive recursive relation.
Bounded quantifiers ∀x ≤ t and ∃x ≤ t will be treated as quantifiers in their
own right. Formulas containing only bounded quantifiers are called Δ0-formulas.
For our proof-theoretic purposes, Tσ will be formalized in a one-sided sequent
calculus, using negation normal forms following [14] (this is also known as the
Tait-calculus [18]). Tσ has the usual axioms pertaining to primitive recursive
functions and predicates. A noteworthy feature is that transfinite induction on
σ for Π1-formulas is expressed via the rule

Θ, ∃z ((z)0 � a ∧ ¬F ((z)1, (z)0)), ∀xF (x, a)
Θ, F (t, s)

(1)

where a is an eigenvariable, F (x, a) is Δ0, t, s are arbitrary terms, and Θ is an
arbitrary finite set of formulas.

Observe that we do not need Σ1-induction as an extra induction principle as
it follows from TI(σ,Π1), since IΠ1 entails IΣ1.

In order to perform partial cut eliminations, we define the degree, |A|, of a
formula A as follows:

– |A| = |¬A| = 0 if A is Δ0.

If A is not Δ0 and of one of the forms below, then:

– |A0 ∧ A1| = |A0 ∨ A1| = max(|A0|, |A1|) + 1;
– |∀xF (x)| = |∃xF (x)| = |F (0)| + 1;
– |∀x ≤ t F (x)| = |∃x ≤ t F (x)| = |F (0)| + 2.
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As the rule (1) introduces a Δ0-formula and the main formulas of axioms are
Δ0 as well, we can easily eliminate cuts of degree greater than 0. We use the
notation Tσ

m

k
Γ to convey that Γ is deducible in Tσ by a deduction of length

at most m such that all cuts occurring in this deduction are with cut formulas
of a degree < k. Thus Tσ

m

1
Γ means that there is deduction in which all cut

formulas (if any) are Δ0-formulas.

Theorem 1. Tσ
n

r+1
Γ ⇒ ∃mTσ

m

1
Γ .

Proof. By the usual cut elimination method of Gentzen’s Hauptsatz.

2.1 Embedding Tσ in an Infinitary System

Next we embed Tσ into an infinitary system, called PAω, with ω-rule (basically
the same as the system Z∞ in [14]; a definition of PAω in a two-sided Gentzen
calculus can be found in [10]). The formulas of PAω are the closed formulas
of Tσ, i.e. formulas without free variables. We shall assign a rank, |A|Δ0 to a
formula A of PAω as follows:

(i) |A|Δ0 = 0 if A is atomic or a negated atom.
(ii) |A0 ∧ A1|Δ0 = |A0 ∨ A1|Δ0 = max(|A0|Δ0 , |A1|Δ0) + 1.
(iii) |∃x ≤ t F (x)|Δ0 = |∀x ≤ t F (x)|Δ0 = |F (0)|Δ0 + 1.
(iv) |∃xF (x)|Δ0 = |∀x F (x)|Δ0 = max(ω, |F (0)|Δ0 + 1).

Note that |A|Δ0 < ω exactly when A is Δ0, and |∃xF (x)|Δ0 = |∀xF (x)|Δ0 = ω
when F (0) is Δ0.

Definition 1. For a natural number n we use n̄ to denote the nth numeral, that
is the term obtained from the term 0̄ for zero by adding the successor function
symbol n-times in front of it. The terms of PAω are closed and thus can be
evaluated to a number. For a term t let tN be the number n such that t evaluates
to n (in the following we occasionally refer to tN by t).

The axioms of PAω are sequents of two kinds. Let Γ be a finite set of formulas
of PAω.

(i) Let R(t1, . . . , tr) be an atomic formula, where R is a relation symbol for a
primitive recursive relation RN. If RN(tN1 , . . . , tNr ) is true, then

Γ,R(t1, . . . , tr)

is an axiom. If RN(tN1 , . . . , tNr ) is false, then

Γ,¬R(t1, . . . , tr)

is an axiom.
(ii) If sN = tN holds for terms s and t, then

Γ,U(s),¬U(t)

is an axiom.



A Note on the Ordinal Analysis of RCA0 + WO(σ) 147

The ω-rule is the following rule: If Γ, F (n̄) is deducible for all n, then Γ,∀xF (x)
is the conclusion.

Similarly to derivations in Tσ, we will use the notation PAω
α

β
Γ to convey that

Γ is deducible in PAω by a deduction of height at most α such that all cuts
occurring in this deduction are with cut formulas of | · |Δ0 -rank < β.

Lemma 1 (Reduction Lemma). If |B|Δ0 = ω, PAω
α

ω Γ,B and

PAω
β

ω Γ,¬B , then

PAω
α#β

ω Γ

where α#β denotes the natural or Hessenberg sum of α and β.

Proof. Standard.

Theorem 2 (Embedding Theorem). If Tσ
m

1
Γ , then PAω

σm

ω Γ ∗ , where
Γ ∗ is the result of assigning closed terms to all free variables in Γ (the same
term to the same variable).

Proof. We proceed by induction on m. We only need to pay attention to
the case where the last inference is an instance of the rule (1). So let Γ =
Θ,F (t, s) and assume Tσ

m0

1
Λ with m0 < m and Λ = Θ,∃z ((z)0 � a ∧

¬F ((z)1, (z)0)),∀x F (x, a).
Let * be an assignment. Inductively we have for all closed terms q that

PAω
σm0

ω Θ∗,∃z ((z)0 � q ∧ ¬F ∗((z)1, (z)0)),∀xF ∗(x, q). (2)

We use transfinite induction on α for α in the field of � to show that:

PAω
σm0 ·ω·(α+1)

ω Θ∗,∀xF ∗(x, ᾱ) (3)

By the induction hypothesis, we have:

PAω
σm0 ·(ω·(η+1))

ω Θ∗, F ∗(s′, η̄)

for every η � α and arbitrary closed term s′, yielding

PAω
σm0 ·(ω·α)+1

ω Θ∗, η̄ � ᾱ → F ∗(s′, η̄)

via an inference (∨). If r is a closed term such that rN is different from all η
preceding α, then ¬r � ᾱ is an axiom, and thus, via an inference (∨), we arrive
at PAω

1

0
Θ∗, r � ᾱ → F ∗(s′, r) . Thus from the above we conclude that

PAω
σm0 ·(ω·α)+1

ω Θ∗, (k̄)0 � ᾱ → F ∗((k̄)1, (k̄)0)

holds for all k, so that, via an application of the ω-rule, we get:

PAω
σm0 ·(ω·α)+2

ω Θ∗,∀z ((z)0 � ᾱ → F ∗((z)1, (z)0)). (4)
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Applying the Reduction Lemma 1 to (2) and (4) yields:

PAω
σm0#(σm0 ·(ω·α))+2

ω Θ∗,∀xF ∗(x, ᾱ). (5)

From (5) we finally get:

PAω
σm0 ·(ω·(α+1))

ω Θ∗,∀xF ∗(x, ᾱ) ,

confirming (3).
If a term q has the property that qN is not in the field of � then one can

directly infer from (2) that

PAω
σm0

ω Θ∗,∀xF ∗(x, q). (6)

The reason for this is that if the formula ∃z ((z)0 � q ∧ ¬F ∗((z)1, (z)0)) figures
as the main formula of an inference in this derivation its minor formula is of
the form (p)0 � q ∧ ¬F ∗((p)1, (p)0). The latter formula conjunctively contains a
false atomic formula. Such a formula can always be erased from the derivation.
Formally, of course, this has to be proved by a separate induction on the ordinal
of the derivation.

(3) and (6) now yield

PAω
σm

ω Θ∗, F ∗(t, s)

for all closed terms t and s, since ω · (α + 1) � σ on account of ω · σ = σ.

2.2 Eliminating Cuts with Δ0-Formulas

The next step is to eliminate cuts with Δ0-formulas that are not atomic.

Lemma 2. Let 0 < n < ω and suppose PAω
α

n+1
Γ . Then PAω

ω·α
n Γ .

Proof. We proceed by induction on α. The crucial case is when the last inference
was a cut of rank n with cut formulas A,¬A. Note that A is not an atomic
formula. We then have PAω

α0

n+1
Γ,A and PAω

α0

n+1
Γ,¬A for some α0 < α.

The induction hypotheses furnishes us with

PAω
ω·α0

n Γ,A and PAω
ω·α0

n Γ,¬A . (7)

Let A be of the form ∃x ≤ t F (x). Then ¬A is the formula ∀x ≤ t ¬F (x). From
(7) we obtain

PAω
ω·α0

n Γ, F (0̄), . . . , F (p̄) and PAω
ω·α0

n Γ,¬F (k̄) (8)

for all k ≤ p, where p is the numerical value of t. As the formulas F (k̄),¬F (k̄)
have rank < n, we can employ (p + 1)-many cuts to (8) to arrive at
PAω

ω·α0+p+1

n Γ . Thus we have PAω
ω·α
n Γ as ω · α0 + p + 1 < ω · α. A similar

argument works when A is of either form A0 ∧ A1 or A0 ∨ A1.
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Corollary 1. If PAω
α

ω Γ then PAω
ωω·α
1

Γ .

Proof. We use induction on α. The only interesting case arises when the
last inference is a cut with a formula A of rank k > 0. Then we have
PAω

α0

ω Γ,A and PAω
α0

ω Γ,¬A for some α0 < α. The induction hypothesis

yields PAω
ωω·α0

1
Γ,A and PAω

ωω·α0

1
Γ,¬A . Hence PAω

ωω·α0+1

k+1
Γ . Apply-

ing Lemma 2 k times we arrive at PAω
ωk·(ωω·α0+1)

1
Γ . As ωk · (ωω · α0 + 1) =

ωω · α0 + ωk ≤ ωω · α we also have PAω
ωω·α
1

Γ as desired.

Note that σ ≥ ωω since ω · σ = σ.

Corollary 2. Let m > 0. If PAω
σm

ω Γ then PAω
σm+1

1
Γ .

Proof. Corollary 1 yields PAω
ωω·σm

1
Γ . Thus the desired conclusion follows as

ωω · σm ≤ σ · σm = σm+1.

3 Upper Bounds for the Provable Well-Orderings of Tσ

The results of the previous section can be utilized to determine the ordinal rank
of provable well-orderings of Tσ. Let ≺ be a primitive recursive ordering. ≺ is
said to be a provable well-ordering of Tσ if Tσ proves that ≺ is a total linear
ordering and

Tσ  WO(≺)

where WO(≺) stands for the formula

∀v[∀u ≺ vU(u) → U(v)] → ∀vU(v).

Assuming Tσ  WO(≺), as a consequence of Theorems 1, 2 and Corollary 2 we
then have

PAω
σm

1
∀v[∀u ≺ vU(u) → U(v)] → ∀vU(v) (9)

for some m > 0. There are several ways of obtaining an upper bound for the
order-type of ≺ in terms of the length of a cut-free deduction of WO(≺) (see e.g.
[13, Theorem 23.1], [19, Theorem 3.6], [6, Theorem 2.27]) which ultimately go
back to Gentzen. Schütte [13, Theorem 23.1] obtains particularly sharp bounds.
He shows that the length α of a cut-free derivation of transfinite induction along
an ordering ≺ provides an upper bound for the ordinal rank of ≺ if ω ·α = α. For
our purpose, however, we need to extract bounds from deductions that still have
cuts with formulas U(s),¬U(s).2 We could first eliminate these remaining cuts,
however, we would get bounds of the form 2σm

, and these are too high for our
purpose of showing that σω is the proof-theoretic ordinal of Tσ. To overcome
2 They may also contain cuts with formulas R(t1, . . . , tk),¬R(t1, . . . , tk), where R is

a symbol for a primitive recursive predicate. But these are entirely harmless.
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this obstacle we shall draw on a technique that the third author has used for
many years. To this end we extend PAω by yet another infinitary rule Prog≺
due to Schütte [11, p. 384] called Progressionsregel (Prog≺ was also used in [12,
p. 214] and in [14]):

Γ,U(m̄) for all m ≺ n

Γ,U(s)
(10)

whenever s is a closed term with value n.
Let PROG≺ be an abbreviation for ∀v[∀u ≺ vU(u) → U(v)]. The rule Prog≺

has the effect of making PROG≺ provable. We shall refer by PA∗
∞ to the exten-

sion of PAω by the rule Prog≺.

Lemma 3

PA∗
∞

α

1
¬PROG≺, Γ ⇒ PA∗

∞
3·α
1

Γ . (11)

Proof. We proceed by induction on α. If ¬PROG≺ was not the main formula
of the last inference then the desired result follows immediately by applying
the inductive assumption to its premisses and subsequently reapplying the same
inference. Thus suppose that ¬PROG≺ was the main formula of the last infer-
ence. Then

PA∗
∞

α0

1
¬PROG≺,∀u ≺ sU(u) ∧ ¬U(s), Γ (12)

for some α0 � α. The induction hypothesis yields

PA∗
∞

3·α0

1
∀u ≺ sU(u) ∧ ¬U(s), Γ . (13)

for some s. Using inversion for (∧), (∀) and (∨) we arrive at

PA∗
∞

3·α0

1
Γ, ¬ n̄ ≺ s, U(n̄) (14)

for all n, and

PA∗
∞

3·α0

1
¬U(s), Γ . (15)

Since PA∗
∞

0

0
Γ, n̄ ≺ s holds for all n with n ≺ sN, we can apply cuts and the

rule Prog≺ to (14) to arrive at

PA∗
∞

3·α0+2

1
Γ, U(s). (16)

Applying Cut to (16) and (15) yields

PA∗
∞

3·α0+3

1
Γ (17)

and hence

PA∗
∞

3·α
1

Γ. (18)
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Corollary 3

PA∗
∞

σm

1
U(n̄)

for all n.

Proof. Follows from (9) and Lemma 3. Note that m > 0.

For a closed numerical term s we denote by |s|≺ the ordinal {|n̄|≺ | n̄ ≺ s is true}.

Proposition 1. Assume that the sequent ¬U(t1), . . . ,¬U(tr),U(s1), . . . ,U(sq) is
not an axiom and s1 � . . . � sq holds. Then

PA∗
∞

α

1
¬U(t1), . . . ,¬U(tr),U(s1), . . . ,U(sq)

implies

|s1|≺ < ω · α. (19)

Proof. Let ¬U(t ) be an abbreviation for ¬U(t1), . . . ,¬U(tr). In the above we
allow r = 0 in which case ¬U(t ) is the empty sequent.

We proceed by induction on α. As the sequent is not an axiom it must have
been inferred. The only two possibilities are applications of Prog≺ or cuts with
atomic formulas.

Case 1: The last inference was Prog≺. Then there is a term sj and α0 � α such
that PA∗

∞
α0

1
¬U(t ),U(s1), . . . ,U(sq),U(n̄) for all n̄ ≺ sj . As s1 � sj this also

holds for all n̄ ≺ s1. The induction hypothesis yields that

|n̄|≺ < ω · α0

holds for those n̄ ≺ s1 for which the sequent is not an axiom. Since by Defini-
tion 1 (ii)

¬U(t ),U(s1), . . . ,U(sq),U(n̄) (20)

is an axiom only if n̄ has the same value as some t1, . . . , tr, then there are only
finitely many n for which (20) is an axiom. Thus |s1|≺ < ω · α0 + ω, whence
|s1|≺ < ω · α.

Case 2: The last inference was a cut with cut formulas U(p),¬U(p), i.e., we
have

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq),U(p) (21)

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq),¬U(p) (22)
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for some α0 < α and closed term p. If the sequent from (22) is not an axiom,
the induction hypothesis applied to that derivation yields |s1|≺ < ω · α0. If it
is an axiom, there is an sj such that p and sj evaluate to the same numeral,
and hence s1 � p. So in this case the induction hypothesis applied to (21) yields
|s1|≺ < ω · α0.

Case 3: The last inference was a cut with cut formulas
R(u1, . . . , up),¬R(u1, . . . , up) for a symbol R for a primitive recursive relation.
Then we have

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq), R(u1, . . . , up) (23)

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq),¬R(u1, . . . , up) (24)

for some α0 < α. If R(u1, . . . , up) is true it follows from (24) that we also have

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq)

and hence the induction hypothesis yields |s1|≺ < ω · α0.
Likewise, if R(u1, . . . , up) is false it follows from (23) that we also have

PA∗
∞

α0

1
¬U(t ),U(s1), . . . ,U(sq)

and hence the induction hypothesis yields |s1|≺ < ω · α0.

Corollary 4

(i)

PA∗
∞

α

1
U(s) ⇒ |s|≺ < ω · α.

(ii)

PAω
β

1
WO(≺) ⇒ | ≺ | ≤ ω · 3 · β

where | ≺ | stands for the ordinal rank of ≺.

Proof. (i) is an immediate consequence of Proposition 1.
(ii) follows from (i) and Lemma3.

In sum, it follows that the ordinal rank of ≺ is not bigger than σm, and hence
σω is an upper bound for the proof-theoretic ordinal of Tσ.

Proposition 1 can also be shown via techniques in A. Beckmann’s dissertation,
notably his [1, 5.2.5 Boundedness Theorem] that also features in [2].

Turning to lower bounds, one can easily show, using external induction on n,
that Tσ  WO(σn). This is a folklore result; details can be found in [17, Lemma
4.3]. As a consequence of the results gathered so far we have

Theorem 3. The proof-theoretic ordinal of IΣ1 + TI(σ,Π1) is σω.

It remains to transfer this result to our target theory RCA0 + WO(σ).
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4 Π1
1 -Conservativity

We here prove that RCA0+WO(σ) is Π1
1 -conservative over Tσ. More precisely,

a Π1
1 -sentence ∀XF (X) (with F (X) being arithmetic) is identified with F (U)

in the first-order context of TI(σ,Π1). This is enough to apply our results from
the previous section to conclude that the ordinal of RCA0 + WO(σ) is σω.

To prove the conservativity result, we proceed as follows. We start by
showing that any model of IΣ1 + TI(σ,Π1) can be extended to a model of
RCA0 + WO(σ). The argument is essentially contained in Simpson [16], IX.1.
By writing that M1 is an ω-submodel of M2 we mean that M1 = (M1,S1) and
M2 = (M1,S2) where S1 ⊆ S2. In other words, the two models share the same
first-order part M1.

Lemma 4. Let M be an L2-structure which satisfies the axioms of
IΣ1 + TI(σ,Π1). Then M is an ω-submodel of some model of RCA0 + WO(σ).

Proof. We first show that M can be extended to a model M′ satisfying RCA0

and TI(σ,Δ0
0) with the same first-order domain as M. Then we show that such

an extension also satisfies WO(σ).
The ω-extension M′ is defined exactly as in Simpson [16] Lemma IX.1.8, i.e.,

the second-order part is given by the Δ0
1-definable sets of the base model M. By

Lemma IX.1.8 of [16] we have that M′ satisfies RCA0.
Then, in order to check that TI(σ,Δ0

0) is also satisfied, we use the first claim
in Simpson’s Lemma IX.1.8. Let ϕ be a Σ0

0 formula with no free set variables
and parameters in M ′. Then, there exists a Π0

1 -formula ϕΠ with the same free
variables and parameters only in M such that ϕ and ϕΠ are equivalent over M ′.
Thus, TI(σ,Π0

1 ) in M implies TI(σ,Δ0
0) in M′.

Finally, we show that M ′ also satisfies WO(σ). If this were not the case, let-
ting S be a set witnessing ¬WO(σ), we would have that S̄, i.e. the complement of
S, witnesses the failure of an instance of TI(σ,Δ0

0). More precisely: suppose that
S is non-empty and has no �-minimal element. Then ∃x(x ∈ S). On the other
hand, S̄ is in M ′ (since any model of RCA0 is closed under Turing reducibility
hence under complement) and ∀x(∀y(y � x → y ∈ S̄) → x ∈ S̄). Suppose in fact
that for some x, ∀y(y � x → y ∈ S̄) but x ∈ S. Then all y � x are not in S but
x is in S and thus x is the minimum of S, contra our hypothesis. ��
Remark 1. The proof of Lemma 4 above shows that if RCA0 + WO(σ) proves
∀XF (X) with F (X) arithmetic, then Tσ proves the formula F ′(U) obtained
from F (X) by replacing expressions of the form ‘t ∈ X’ by ‘U(t)’.

Then, we proceed by showing that Lemma 4 gives a sufficient condition for
Π1

1 -conservativity.

Lemma 5. If T1 and T2 are theories in the language of second order arith-
metic and every model of T1 is an ω-submodel of a model of T2 then T2 is
Π1

1 -conservative over T1.
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Proof. If ψ is Π1
1 and T1 does not prove ψ, let M1 be a model of T1 +¬ψ. Then

M1 is an ω-submodel of a model M2 of T2. Then M2 is a model of T2 +¬ψ and
thus T2 does not prove ψ. ��
Theorem 4. RCA0 + WO(σ) is Π1

1 -conservative over IΣ1 + TI(σ,Π1).

Proof. Follows immediately from Lemmas 4 and 5.

Theorem 5. The proof-theoretic ordinal of RCA0 + WO(σ) is σω.

Proof. The upper bound follows from Theorems 3 and 4. The lower bound follows
from the observation that for each n RCA0 + WO(σ)  WO(σn). The proof,
which we omit, is analogous to the proof that RCA0  WO(ωn), for each n.

��
Remark 2. The Π1

1 -conservativity of IΣ1 +TI(σ,Π1) over RCA0 + WO(σ) also
holds and can be established by standard arguments. In particular one can prove
that if A(U) is provable in Tσ then ∀XA∗(X) is provable in RCA0 + WO(σ),
where A∗(X) is the result of first replacing ‘U(t)’ by ‘t ∈ X’ and then translating
the primitive recursive function and predicate symbols not belonging to the
language of RCA0 as in [16], Definition IX.3.4.
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Abstract. In this paper we study the notion of stepwise simulation
between Abstract State Machines, to explore if some natural change on
the original definition would keep it sound. We prove that we have to
keep the classical notion and give results about the computability of the
simulation itself.

1 Introduction

After one or two centuries of discussion, Richard Dedekind has given a definition
of “function”: A function f from a set A to a set B is a relation R ⊆ A×B such
that if (x, y) and (x, y′) belongs to the relation then y = y′.

From an informal point of view, a function is computable if there exists a
“mechanical” process which, being given an element x of A, provides the (unique)
element y = f(x) of B after some finite “time of computation” (or equivalently
some finite number of “steps”) if f(x) exists, and runs indefinitely otherwise. A
formal definition was given by Alan Turing in 1936, exhibiting a non computable
function.

The definition of Turing is universally accepted but other “models of com-
putation” were and are still exhibited for various reasons.

A model of computation is a set of elements, each of them being called a
machine or a program, depending on the model. Here, we do not define a program
as a word over some alphabet because such a pattern is not convenient for ASM.
To each machine is associated a finite set of variables, each variable taking values
in a well defined set. Some variables are used for the input and possibly some
variables for the output; the other variables are called auxiliary variables.

Given a finite list v0, v1, . . . , vn of variables and an associated list
D0,D1, . . . , Dn of sets, called value sets, an element of trace is an assignment
for every variable which gives to vi an assignment in Di. A trace is a finite or
infinite sequence of trace elements over the same variables and value sets.

For a given machine M of a given deterministic model of computation M,
the run of M on a given input is the unique trace whose first element is the initial
assignment of the variables: The input variables are initialized with the input
and the auxiliary and output variables are initialized as specified by the model.
The element following an element e corresponds to the states of the variables
after one step of M starting with the variable values as in the element e.
c© Springer Nature Switzerland AG 2019
F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 156–167, 2019.
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Obviously, a run is a trace but the converse is not necessarily true: Indeed, a
trace is not necessarily recursive while a run from a constructive model is always
recursive.

Let v0, v1, · · · , vn be a finite list of variables, v0, v1, · · · , vp be a sublist of
input variables, and D0,D1, · · · ,Dn be the associated value sets. For a machine
M of a model of computation M, the runs’ log is the set of runs of M for all
the possible inputs I ∈ D0 × · · · × Dp. Thus, a machine is a finite description of
a runs’ log, which is an infinite set.

Problem. Given two models of computation, is a runs’ log in one equal to a runs’
log in the other?

The answer to this problem is in general NO but there exists a model of
computation, ASM, which has the property that each runs’ log of any machine
of any model of computation is the runs’ log of a machine of the ASM model.
Let us make this statement more precise. Yuri Gurevich has given a schema
of languages which is not only a Turing-complete language (a language allowing
to program each computable function), but which also allows to describe step-
by-step the behavior of all algorithms for each computable function (it is an
algorithmically complete language); this schema of languages was first called
dynamic structures, then evolving algebras, and finally ASM (for Abstract State
Machines) [2]. In 2000, he proposed the now-called Gurevich’s thesis “the notion
of algorithm is entirely captured by the model” in [3]. A consequence is

For every runs’ log, there exists an ASM with that exact runs’ log.

ASM is the only known model of computation to have this property. However,
authors have considered some other models of computation which are interesting
candidates to have a weaker variant of the property. For some of them, it depends
on the granularity of a step: Instead of requiring equality of runs, one allows the
run of the model to be a specific subsequence of the simulated run. For instance,
one keeps only an element every k elements, where the integer k is fixed. This
leads us to the notion of k-simulation.

Some authors (see for instance [4]), considering and proving this weaker prop-
erty for their model, insist on the strict regularity: an element every k elements
(for instance 2, 4, 6, . . . for k = 2) and not just allowing to discard at most
k−1 elements (for instance 1, 3, 4, 5, 7, . . .). This implies adding steps which do
nothing (often called “skip” of “nop”) in the programs. But these authors give
no explanation to justify such a strict constraint.

Then a natural question arises on the behavior of models of computation:
Do we need to force the regularity? One way to get enlightenment about the
question is to see if we can build two ASM A and B whose traces are all equal
up to irregular dilatation but in such a way that the set of points to be removed
is, somehow, a non recursive set. This means that the two computations are
equivalent but that one of the ASM computes something more in its trace than
the other one.

The main result of this paper proves that we have built such a pair of ASM
and furthermore that these two ASM are such that one simulates the other but
for a simpler notion: removing at most one point to each trace is sufficient to
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get the simulation. The result states that the point is not computable given the
input.

The paper is organized as follows. The next section gives insight about what
is a trace of the execution in the case of a general model of computation and
introduces formally ASM and their traces. Section 3 analyzes some possible def-
initions of equivalent traces and how they are related to computability. It also
includes the proofs of announced results.

2 Definitions

2.1 Traces in a General Setting of Model of Computation

Let M be a (discrete time) model of computation and M an instance of M. We
suppose that M is such that the “state” of M at some time is entirely described
by values stored in a finite number of variables. Let v0, . . . , vn be these variables.
For all i, the variable vi takes its values from the set Di (in a more general setting,
it is sufficient for Di to be just a class).

Definition 1. A element of trace for M is an element of D0 × · · · × Dn.
A trace is a sequence of elements of trace indexed by N or by a finite interval

Ik = {0, . . . , k} of N. In case of a finite interval Ik, we call k the length of the
trace.

For a given M , some variables are distinguished and called input variables.
Without loss of generality, we suppose that v0, . . . , vm for some m ≤ n (i.e.
the first m + 1 ones) are the input variables. An input for M is an element of
D0 × · · · × Dm.

A run on input ı for machine M is the trace (ti)i∈I where

– The trace element t0 is initialized with ı i.e. the input variables are set as in
ı and the remaining variables are set depending on the definition of M (see
Remark 1).

– For all i ∈ I, applying one step of M to ti leads to ti+1 unless M halts and
in this case the interval I is {0, . . . , i}.

Remark 1. We suppose that the values of variables vi for m < i ≤ n in t0 are
either fixed by the definition of M or can take any values and in this case, they
must have no incidence on the computation of M .

2.2 Definition of ASM

We first introduce ASM, making precise our point of view on ASM, because
several definitions exist.

ASM were defined formally in [2]. For this paper, we choose to use only
ASM in some normal form (see [1]). We refer the reader to the aforementioned
references for the general ASM definition; we just give the formal definition of
ASM we use, a variant which is simpler though more verbose and equivalent in
power.
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Syntax

Definition 2. An ASM vocabulary, or signature, is a first-order signature L
with a finite number of static function symbols, a finite number of dynamic func-
tion symbols, a finite number of predicate symbols (among which the two boolean
constant symbols true and false), and an additional symbol, of arity 0, (denoted
by undef), logical connectives (¬, ∧, and ∨), and the equality predicate denoted
by =.

Terms of L are defined by:

– if c is a nullary function symbol (a constant, dynamic or static) of L, then c
is a term,

– if t1, . . . , tn are terms and f is an n-ary function symbol (dynamic or static)
of L then f(t1, . . . , tn) is a term.

Definition 3. Boolean terms of L are defined inductively by:

– if p is an n-ary predicate and t1, . . . , tn are terms of L then p(t1, . . . , tn) is a
boolean term;

– if t and t′ are terms of L, then t = t′ is a boolean term;
– if F, F ′ are boolean terms of L, then ¬F , F ∧ F ′, F ∨ F ′ are boolean terms.

Definition 4. Let L be an ASM signature. ASM rules are defined inductively
as follows:

– An update is an expression of the form f(t1, . . . , tn) := t0, where f is a n-ary
dynamic functional symbol and t0, t1, . . . , tn are terms of L.

– If R1, . . . , Rk are updates of signature L, where k ≥ 1, then the expression
R1|| · · · ||Rk is called a block and means parallel execution of the updates.

– Finally, if R is a block and ϕ is a boolean term, the ordered pair 〈ϕ,R〉 is
called a conditional rule which must be seen as the instruction if ϕ then R.
In this paper, we call ϕ the guard and R the block of the conditional rule.

Definition 5. Let L be an ASM signature. A program on signature L, or L-
program, is a finite set of conditional rules of that signature.

We can now define ASM.

Definition 6. An ASM A is a tuple 〈L, P 〉 where L is an ASM signature and
P is an L-program. We denote by AD the set of dynamic symbols of A.

Semantics

Definition 7. Let L be an ASM signature. An ASM abstract state, or more
precisely an L-state, is a synonym for a first-order structure A of signature L
(an L-structure). We denote by [t]A the value of the term t in the structure A.

The universe of A, denoted by A⊥, consists of the elements of the data set A
and a special value ⊥ (supposedly not in A). The interpretation of the symbol
undef in A⊥ is always ⊥.
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Definition 8. Let L be an ASM signature and A a nonempty set. A set of
modifications (more precisely an (L, A)-modification set) is any finite set of
triples (f, a, a), where f is an n-ary function symbol of L, a = (a1, . . . , an) is an
n-tuple of A⊥, and a is an element of A⊥.

Definition 9. Let L be an ASM signature, let A be an L-state and let Π be an
L-program. Let ΔΠ(A) denote the set defined by as follows:

1. If u is the update rule f(t1, . . . , tn) := t0 then

Δu(A) = {(f, ([t1]A, . . . , [tn]A), [t0]A)}.

2. If B is the block R1|| · · · ||Rk then:

ΔB(A) = {ΔR1(A), . . . ,ΔRn
(A)}.

3. If T is the conditional rule 〈ϕ,R〉, we first have to evaluate the expression
t = [ϕ]A. We define:

ΔT (A) =
{ ∅ if t is false,

ΔR(A) otherwise.

4. Finally, if Π is a program consisting in rules T1, . . . , Tn, then we define:

ΔΠ(A) =
n⋃

i=1

ΔTi
(A).

We defined ΔΠ(A) as an (Π,L, A)-set of modifications.

Definition 10. A set of modifications is incoherent if it contains two elements
(f, a, a) and (f, a, b) with a �= b. It is coherent otherwise.

Definition 11. Let L be an ASM signature, Π an L-program, and A an L-state.
The machine’s definition must ensure ΔΠ(A) is coherent (otherwise, the

machine’s definition is invalid1). The transform τΠ(A) of A by Π is the L-
structure B defined by:

– the base set of B is the base set A⊥ of A;
– for any n-ary element f of L and any element a = (a1, . . . , an) of An:

• If there exists some (necessarily unique) a such that (f, a, a) ∈ ΔΠ(A),
then: [f ]B(a) = a.

• Otherwise: [f ]B(a) = [f ]A(a).

Definition 12. Let L be an ASM signature, Π an L-program, and A an L-state.
The computation is the sequence of L-states (An)n∈N defined by:

1 Given an ASM, the well definition of an ASM is undecidable. However, one could
add some rules to detect incoherence at runtime and behave accordingly.
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– A0 = A (called the initial algebra of the computation);
– An+1 = τΠ(An) for n ∈ N.

For ASM, a computation halts if there exists a fixed point An+1 = An. In
this case, this fixed point An is the result of the computation.

Definition 13. The formal semantics is the partial class function which trans-
forms 〈Π,A〉, where Π is an ASM program and A a state, in the fixed point
An obtained by iterating τΠ starting from τΠ(A) until a fixed point is reached if
such a fixed point exists, otherwise it is undefined.

Finally, though it is not directly mentioned in the original paper defining
ASM, as we need to deal with simulation, we need a formal definition of how
input is treated.

For some ASM signature L, some of the dynamic symbols will be used for
the input. We call them input symbols. To construct the initial algebra I(e) of
an ASM computation on input e, we use the following:

– Some set E to use E⊥ as universe for the algebra.
– For all static variables of arity n of L, we assign a function from (E⊥)n → E.
– The input is stored in input symbols (so input can be some values of E⊥ or

functional).
– The rest of the dynamic symbols are set to the constant functions equal to ⊥

on all their inputs.
– The set E is called the data set of the ASM.
– We say that an ASM is m-ary when it has only one input symbol, this symbol

having arity m.

2.3 Trace

We restate here the definition of trace introduced in Sect. 2.1 in the special case
of ASM.

Definition 14. For some ASM, a trace element is the values of all the dynamic
symbols (input or not).

The trace of some ASM A on input e is the sequence of elements of trace
(ti)i∈I where I is either N or {0, . . . , �} for some � where ti is the restriction of
Ai to dynamic symbols if (An)n∈N is the computation of the ASM starting from
I(e). Moreover, if the computation does not halt, then I = N, and otherwise,
I = {0, . . . , �} when � is the number of steps before halting (that is the smallest
with τΠ(A�) = A�). We denote I by dom(t).

If y is a trace element and S is a subset of the dynamic symbols, y � S is the
trace element which assign values only to symbols of S as in y. If t is a trace,
we denote by t � S the trace ((ti � S)i)i∈dom(t).
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2.4 Self-detection of a Halting ASM

It is possible (well-known result of the folklore) in any ASM to write a boolean
expression (subsequently called HasHalted) which evaluates to true when it is
in a state which is a fixed point. The idea is to test if all assignments do not
change the assigned value.

3 Analysis

We first introduce a preliminary notion of subtrace.

Definition 15. Let t1 and t2 be two traces. We say that t2 is a subtrace of t1
if there exists a strictly increasing function s : dom(t1) → dom(t2) such that:

1. ∀i ∈ dom(t1), t1(i) = t2(s(i)),
2. s(0) = 0
3. dom(t1) is finite if and only if dom(t2) is finite
4. if dom(t1) is finite, then s(max dom(t1)) = max dom(t2).

The function s and condition 1. ensure that t1 is extracted from the elements
of t2 keeping the order. The next conditions state that the two traces have the
same start 2. both have an end or both are infinite 3. and in the finite case, have
the same end 4.

We define the notion of k-weak regular subtracing which is a more constrained
notion of subsequence.

Definition 16 (Weak regular subtrace). Let t1 and t2 be two traces and k
some positive integer. We say that t2 is a k-weak regular subtrace of t1 if t2 is
a subtrace of t1 and furthermore if ∀i ∈ dom(t1), k ≥ s(i + 1) − s(i) > 0.

The last condition ensures that to build the subtrace of t2, one cannot skip
more than k − 1 elements: two consecutive terms taken from t2 always belong to
some windows of length k.

We say that s is a guide of the k-weak regular subtracing of t1 by t2.
Finally, we say that the set w = dom(t2) � {s(i) | i ∈ dom(t1)} is a witness

of the k-weak regular subtracing of t1 by t2.

Remark 2. Witnesses and guides are not unique: if the same trace element x
occurs twice in t2 (t2(a) = t2(b) = x) and corresponds to only one trace element
in t1 (t1(c) = x), the function s can possibly choose either (s(c) = a or s(c) = b)
provided both choices comply to the weak regular subtracing condition.

Remark 3. Note that guides and witnesses are linked and uniquely defined and
computable one from another. Indeed, the guide is the increasing enumeration
of the complement of the witness.

For instance, consider the trace t1 = [x = 0], [x = 2], [x = 4], . . . (x is
incremented by 2 at each step) and the trace t2 = [x = 0], [x = 1], [x = 2], . . .
(x is incremented by 1 at each step). The only guide of the 2-weak regular
subtracing of t1 by t2 is s : t �→ 2t. The only witness is {2k + 1 | k ∈ N}.

We now define the stronger notion of k-regular subtrace.
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Definition 17 (Regular subtrace). Let t1 and t2 be two traces (finite or infi-
nite) and k be some integer. We say that t2 is a k-regular subtrace of t1 if t2 is
a subtrace of t1 and furthermore if ∀i ∈ dom(t1), s(i) = ki.

For regular subtracing, the chosen elements are picked up one every exactly
k elements.

Remark 4. If t2 is a k-regular subtrace of t1, it is also a k-weak regular subtrace
of t1.

For an ASM A and e some input, we denote by tAe the run of A on initial
algebra I(e).

Definition 18 (Weak simulation). Some ASM B k-weakly simulates some
other A if AD ⊆ BD and for all input e, the run tAe is a k-weak regular subtrace
of tBe � AD. We denote by We

k(A,B) the set of witnesses for this weak regular
subtracing and by Ge

k(A,B) the set of guides.

Definition 19. An ASM A is arithmetic if its data set is N and all the static
functions are Turing computable.

Theorem 1. Let A and B be two arithmetic ASM such that B k-weakly simu-
lates A. Then, given any computable input e on this input, there is a computable
element in Ge

k(A,B).

Proof. If both traces are finite, the guides of Ge
k(A,B) are all finite and therefore

computable. Without loss of generality, we may assume in the sequel that both
traces are infinite.

Firstly, note that one can simulate the execution of A and B on input e. This
can be done since the modifications of the dynamic values only concern a finite
number of elements of the domains which are integers. More precisely, for all
dynamic symbols f of domain D (D is N

� where � is the arity of f), the simulator
saves a table Tf from P(D × N). The simulator evaluates the program’s guard
with a call by value scheme: when the simulator is computing the value f(x) for
some x in D, the simulator first checks if there exists y such that 〈x, y〉 ∈ Tf .
In this case, the result is y. Otherwise, the result is taken from e for input
symbols and ⊥ for other dynamic symbols. When f(x) is assigned a value v, the
simulator adds 〈x, v〉 in Tf possibly removing an ancient value associated to x
in the table. With this way of representing the state of an arithmetic ASM, it is
decidable whether two trace elements corresponding to the same ASM are equal.
We denote by �q� the minimal representation of the state q using such tables
(minimal meaning removing entries 〈x,⊥〉 for dynamic symbols and entries 〈x, y〉
where y is the same value as in e from input symbols).

We conclude that the functions t1 and t2 defined as t1(i) = �tAe (i)� and
t2(i) = �tBe � AD(i)� are computable. Moreover, by definition of an ASM, the
state of an ASM after one step only depends on the current state. Therefore,
there is a computable function a such that t1(i + 1) = a(t1(i)).
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We now construct an enumerable rooted DAG (directed acyclic graph) D
whose nodes are labeled by integers. The DAG D is built such that, for all paths
from the root p, the sequence (xi)i∈N, where xi is the integer labelling pi, is a
guide of Ge

k(A,B).
The DAG D is built inductively. We firstly label the root by 0. For each node

n labeled by i, we look consider the possibly empty set Si = {i′ | i + 1 ≤ i′ ≤
i + k ∧ t2(i′) = a(t2(i))}. For all i′ ∈ Si, we add a child to n labeled by i′. If two
nodes have the same label, they are merged. Since the label is only increasing,
at some point, the algorithm performing the construction knows when all the
ancestors of a given node have been produced.

Let us prove by induction that paths from the root are labeled by guides. The
initialization comes from the fact that tAe (0) = tBe � AD(0). For the induction
step, consider the first n elements of a path of D: x0, . . . , xn−1 and such that
∀i < n, tAe (i) = tBe � AD(xi). For any child xn of xn+1, one has �tAe (n)� =
t1(n) = a(t1(n − 1)) = a(t2(xn−1)) = t2(xn) = �tBe � AD(xn)�. Therefore,
tAe (n) = tBe � AD(xn).

In order to end the proof, we need to show that D has a computable infinite
path. Firstly, we consider D′, subgraph of D, which is a tree, keeping, for each
node, only the edge to its smaller labeled ancestor. By construction of D, each
path of D′, labeled by x, is such that ∀i, |xi+1 − xi| ≤ k.

Let us show, by contradiction, that there are at most k infinite paths. Suppose
that there are k + 1 infinite paths labeled by x(0), . . . , x(k). Let n be such that
the paths have no common node labeled by an integer greater then n. Since ∀i, j,
|x(j)

i+1−x
(j)
i | ≤ k, it means that the set {n+1, . . . , n+k} of cardinality k intersects

the k+1 sequences x(0), . . . , x(k) which contradicts the definition of n. Hence, D′

is a computable tree with at most k infinite paths. Then the sequence of labels
of each of these paths are computable. Indeed, to enumerate them increasingly:
the programs knows the (finite) beginning of the path up to the first node q
labeled by an integer greater than n. From node q, the tree has only one infinite
branch. Then to enumerate the successor of some node r, the program starts in
parallel searches in D′ from all the children of r. All of the children but one, r′,
belong to finite subtrees. Once they are all found (i.e. all searches have halted
but one), the program output r′ and continues the enumeration from r′.

Proposition 1. There exist 0-ary ASM A and B such that B 2-simulates A
and such that no element of W∅

2 (A,B) is recursive.

Proof. Let A be the ASM, with the successor function as static symbol and
dynamic 0-ary symbols m and n with program:

if (n = undef)
m := 0
n := 1

if (n �= undef)
n := n+1

This ASM simply keeps m=0 and increments n from 1 to infinity.
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Let f be the characteristic function of a non-recursive set (that is a total
function from N to {0, 1} such that f−1(1) is non-recursive). Let B be the ASM,
with f , the division by 2, parity test, and the integer successor as static symbols
and dynamic 0-ary symbols m and n, with program:

if (n = undef)
m := 0
n := 1

if (n is even ∧ f(n/2) = 1)
m := 1

if (n is odd ∨ m = 1)
m := 0
n := n+1

This ASM does what A does but delays the incrementation of n when
f(n/2) = 1. The ASM B 2-weakly simulates A by simply omitting the steps
where f(n/2) = 1. These steps occurs at time t where ∃k �= 0, such that f(k) = 1
and t =

∑k
i=1 2+ δf(i)1 (where δ is the Kronecker delta). Hence the only witness

for B 2-weak simulating A is W = {∑k
i=1 2 + δf(i)1 | k ∈ N � {0} ∧ f(k) = 1}.

Since f−1(1) is a non-recursive set and can be computed from W , we conclude
that W is non-recursive.

Theorem 2. There exist some arithmetic ASM A and B such that:

– The ASM B 2-weakly simulates A and the set W2(A,B) contains only finite
sets.

– The set W2(A,B) is non-recursive.

Proof. Let E ⊂ N be a recursively enumerable, non-recursive set. Let f be a
recursive function such that E = {x | f (x) halts}. Let F be an arithmetic ASM
computing f . Without loss of generality, assume that the input for F is in the
variable x.

We design two ASM A and B as follows.

– The ASM A and B have all the symbols of F .
– We add to A and B the new variables s, c, d, and m (initialized to undef).

The purpose of these variables is as follows:
• s is used to have an initial step which copies x into c.
• c is a counter which, after the initial step, decreases from x to 0 and

afterwards remains equal to 0.
• d is a counter which increases from 0 after c has reached 0. It increases

while the simulation of A has not halted.
• m is turned to 1 for one step at the beginning and at the end of the

simulation of F but only in B. Otherwise it remains equal to 0. It is also
the case during the whole run in A.

– To allow the expected behavior of A and B, for all rule 〈g,R〉 of F , one puts
into A and B the rule 〈g ∧ s = 1 ∧ c = 0, R〉.
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– In A, we add the three following rules (HasHalted is the halt time detection
expression for the ASM F ):

if (s = undef)
c := x
s := 1
d := 0

if(s = 1 ∧ c > 0)
c := c-1

if(c = 0 ∧ ¬HasHalted)
d := d+1

– In B, we do almost the same but, using the variable m, we add differences in
the execution of the ASM:

if(s = undef)
c := x
s := 1
d := 0

if(s = 1 ∧ c > 1)
c := c-1

if(s = 1 ∧ c = 1 ∧ m = undef)
m := 1

if(s = 1 ∧ c = 1 ∧ m = 1)
m := undef
c := 0

if (c = 0 ∧ ¬HasHalted)
d := d+1

if (HasHalted)
m := 1

The runs for A and B on input x start with:

ı + [m = ⊥, s = ⊥, x = x, c = ⊥, d = ⊥],
(ı + [m = ⊥, s = 1, x = x, c = i, d = 0])i from x to 1

where ı contains the initial values of all other variables.
Then, the next element of the run for B, is

ı + [m = 1, s = 1, x = x, c = 1, d = 0]

Afterwards, the elements of the runs for A and B are again identical and
contain the computation of f(x) by F and d which increases by 1 at each step.

If the computation of f(x) does not halt, the only witness of Wx
2 (A,B) is

the singleton {x}.
If the computation of f(x) halts, the run of A ends after the computation as

does the run of B which has one more element, of index rx, equal to j + [m = 1]
where j is the state of both A and B at the previous step. In this case, the only
witness of Wx

2 (A,B) is {x, rx}.
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We conclude that W = {We
k(A,B) | e input} = {{x} | f(x) does not halts}∪

{{x, rx} | f(x) halts}. If one can enumerate W , one can enumerate N � E and
therefore, being enumerable, E is computable which is a contradiction. We con-
clude that W is not enumerable and consequently non-recursive.

4 Conclusion

In this paper, we studied the simulation of computation models by ASM where
one step of simulation is executed by several steps of the ASM. We showed
that the correct simulation must ensure that each simulated step corresponds to
the same number of steps of the ASM. Indeed, if the number can be variable,
the simulated model could be computing more information, not directly in its
variables but looking at which steps the content of some variables is modified.
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Abstract. Cohesive powers of computable structures can be viewed as
effective ultraproducts over effectively indecomposable sets called cohe-
sive sets. We investigate the isomorphism types of cohesive powers ΠCL
for familiar computable linear orders L. If L is isomorphic to the ordered
set of natural numbers N and has a computable successor function, then
ΠCL is isomorphic to N+Q×Z. Here, + stands for the sum and × for the
lexicographical product of two orders. We construct computable linear
orders L1 and L2 isomorphic to N, both with noncomputable successor
functions, such that ΠCL1 is isomorphic to N + Q × Z, while ΠCL2 is
not. While cohesive powers preserve the satisfiability of all Π0

2 and Σ0
2

sentences, we provide new examples of Π0
3 sentences Φ and computable

structures M such that M � Φ while ΠCM ��Φ.

1 Introduction and Preliminaries

Skolem was the first to construct a countable nonstandard model of true arith-
metic. Various countable nonstandard models of (fragments of) arithmetic have
been later studied by Feferman, Scott, Tennenbaum, Hirschfeld, Wheeler, Ler-
man, McLaughlin and others (see [6–9]). The following definition, and other
notions from computability theory can be found in [10].
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Definition 1. (i) An infinite set C ⊆ ω is cohesive ( r-cohesive) if for every c.e.
(computable) set W, either W ∩ C or W ∩ C is finite.

(ii) A set M is maximal ( r-maximal) if M is c.e. and M is cohesive ( r-
cohesive).

(iii) If M is maximal, then M is called co-maximal.
(iv) A set B is quasimaximal if it is the intersection of finitely many maximal

sets.

In the definition above, ω denotes the set of natural numbers. We will use
=∗(and ⊆∗) to refer to equality (inclusion) of sets up to finitely many elements.
Let A be a fixed r -cohesive set. For computable functions f and g, Feferman,
Scott, and Tennenbaum (see [6]) defined an equivalence relation f ∼A g if A ⊆∗

{n : f(n) = g(n)}. They then proved that the structure R/∼A, with domain the
set of recursive functions modulo ∼A, is a model of only a fragment of arithmetic.
They constructed a particular Π0

3 sentence Φ such that for the standard model
of arithmetic, N , we have N � Φ but R/∼A� Φ. The sentence Φ provided in [6]
essentially uses Kleene’s T predicate.

Cohesive powers of computable structures are effective versions of ultrapow-
ers. They have been introduced in [2] in relation to the study of automorphisms
of the lattice L∗(V∞) of effective vector spaces. Cohesive powers of the field
of rational numbers were used in [1] to characterize certain principal filters of
L∗(V∞). Their isomorphism types and automorphisms were further studied in
[4]. They were also used in [1] and [3] to find interesting orbits in L∗(V∞).

The goal of this paper is to show that the presentation of a computable
structure matters for the isomorphism type of its cohesive power. We give com-
putable presentations of the ordered set of natural numbers such that their
cohesive powers are not elementary equivalent. Furthermore, we provide exam-
ples of computable structures M and Π0

3 sentences Ψ , which do not use Kleene’s
T predicate, such that M � Ψ while the cohesive power ΠCM ��Ψ . We will
now present some additional definitions and known results.

Definition 2 [2]. Let A be a computable structure for a computable language L
and with domain A. Let C ⊆ ω be a cohesive set. The cohesive power of A over
C, denoted by ΠCA, is a structure B for L defined as follows:

(i) Let D = {ϕ | ϕ : ω → A is a partial computable function, and C ⊆∗

dom(ϕ)}.
For ϕ1, ϕ2 ∈ D, define ϕ1 =C ϕ2 iff C ⊆∗ {x : ϕ1(x)↓ = ϕ2(x)↓}.
Let B = (D/ =C) be the domain of B =ΠCA.

(ii) If f ∈ L is an n-ary function symbol, then fB is an n-ary function on B
such that for every [ϕ1], . . . , [ϕn] ∈ B, fB([ϕ1], . . . , [ϕn]) = [ϕ], where for
every x ∈ A,

ϕ(x) � fA(ϕ1(x), . . . , ϕn(x)),

and � stands for equality of partial functions.
(iii) If P ∈ L is an m-ary predicate symbol, then PB is an m-ary relation on B

such that for every [ϕ1], . . . , [ϕm] ∈ B,

PB([ϕ1], . . . , [ϕm]) ⇔ C ⊆∗ {x ∈ A | PA(ϕ1(x), . . . , ϕm(x))}.
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(iv) If c ∈ L is a constant symbol, then cB is the equivalence class of the (total)
computable function on A with constant value cA.

The following is the fundamental theorem of cohesive powers due to Dimitrov
(see [2]). We view cohesive powers as effective ultrapowers and Theorem 3 as an
effective version of �Loś’s theorem.

Theorem 3. Let C be a cohesive set and let A and B be as in the definition
above.

1. If τ(y1, . . . , yn) is a term in L and [ϕ1], . . . , [ϕn] ∈ B, then [τB([ϕ1], . . . , [ϕn])]
is the equivalence class of a partial computable function such that

τB([ϕ1], . . . , [ϕn])(x) = τA(ϕ1(x), . . . , ϕn(x)).

2. If Φ(y1, . . . , yn) is a formula in L that is a Boolean combination of Σ0
1 and

Π0
1 formulas and [ϕ1], . . . , [ϕn] ∈ B, then

B � Φ([ϕ1], . . . , [ϕn]) iff C ⊆∗ {x : A |= Φ(ϕ1(x), . . . , ϕn(x))}.

3. If Φ is a Π0
2 (or Σ0

2) sentence in L, then B � Φ iff A � Φ.
4. If Φ is a Π0

3 sentence in L, then B � Φ implies A � Φ.

Note that A is a substructure of B =ΠCA. For c ∈ A let [ϕc] ∈ B be the
equivalence class of the total function ϕc such that ϕc(x) = c for every x ∈ ω.
The map d : A → B such that d(c) = [ϕc] is called the canonical embedding of
A into B.

2 Cohesive Powers of Linear Orders

We will now investigate various algebraic and computability-theoretic properties
of cohesive powers of linear orders. We first provide some definitions and nota-
tional conventions we will use. Let C ⊆ ω be a cohesive set. Let 〈·, ·〉 : ω2 → ω
be a fixed computable bijection, and let (computable) functions π1 and π2 be
such that π1(〈m,n〉) = m and π2(〈m,n〉) = n.

Definition 4. Let L0 = 〈L0, <L0〉 and L1 = 〈L1, <L1〉 be linear orders. Then

(1) L0 + L1 = 〈{〈0, l〉 : l ∈ L0} ∪ {〈1, l〉 : l ∈ L1}, <L0+L1〉 , where

〈i, l〉 <L0+L1 〈j,m〉 iff (i < j) ∨ (i = j ∧ l <Li
m) .

(2) L0 × L1 = 〈L0 × L1, <L0×L1〉 , where

〈k,m〉 <L0×L1 〈l, n〉 iff (k <L0 l) ∨ (k =L0 l ∧ m <L1 n).

Remark 5.(1) By N, Z, and Q we denote the usual presentations of the ordered
sets of natural numbers, integers, and rational numbers. The order types of
N, Z, and Q are denoted by ω, ζ, and η.
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(2) In Definition 4, we use L0 × L1 to denote the lexicographical product of
the linear orders L0 and L1. This product is also denoted by L1 · L0. (For
example, Q×Z is also denoted by Z · Q, and its order type is denoted ζ · η.)

(3) We will use Lrev to denote the reverse linear order of L. (In the literature
it is also denoted by L∗.)

(4) Let the quantifier ∀∞n stand for “for almost every n.” Note that for a
cohesive C and a Σ0

1 formula φ(x), (∀∞n ∈ C)[φ(n)] is equivalent to “there
are infinitely many n ∈ C such that φ(n).”

Before we state the next theorem, we would like to remind the reader that
N + Q × Z is the order type of a countable non-standard model of PA.

Theorem 6. Let L0 and L1 be computable linear orders and let C be a cohesive
set. Then

(1) ΠC (L0 + L1) ∼= ΠCL0 + ΠCL1

(2) ΠC (L0 × L1) ∼= ΠCL0 × ΠCL1

(3) ΠCLrev
0

∼= (ΠCL0)
rev

(4) Let A be a computable presentation of the linear order N with a computable
successor function. Then ΠCA ∼= N + Q × Z.

(5) If L is a computable dense linear order without endpoints, then L ∼= ΠCL.

Proof. (1) Let A = ΠC (L0 + L1) and B = ΠCL0 + ΠCL1. We will define an
isomorphism Φ : A → B. Suppose [ϕ]C ∈ ΠC (L0 + L1) for a partial computable
function ϕ.

If (∀∞n ∈ C) [ϕ(n) ∈ {0} × L1], then let Φ([ϕ]C) =def 〈0, [π2 ◦ ϕ]C〉 .
If (∀∞n ∈ C) [ϕ(n) ∈ {1} × L2] , then let Φ([ϕ]C) =def 〈1, [π2 ◦ ϕ]C〉 .
Since C is cohesive, exactly one of the two cases above applies, so it follows

that Φ is well defined. It is then easy to check that Φ is an isomorphism.

(2) Let A = ΠC (L0 × L1) and B = ΠCL0 × ΠCL1. We will define an iso-
morphism Φ : A → B. Suppose [ϕ]C ∈ ΠC (L0 × L1) , and let Φ([ϕ]C) =def

〈[π1 ◦ ϕ]C , [π2 ◦ ϕ]C〉. We will prove that

[ϕ]C <A [ψ]C ⇔ 〈[π1 ◦ ϕ]C , [π2 ◦ ϕ]C〉 <B 〈[π1 ◦ ψ]C , [π2 ◦ ψ]C〉 .

By definition, [ϕ]C <A [ψ]C iff C ⊆∗ {n : ϕ(n) < ψ(n)}. By cohesiveness of C,
we will have either

(∀∞n ∈ C) [(π1 ◦ ϕ) (n) < (π1 ◦ ψ) (n)], or
(∀∞n ∈ C) [(π1 ◦ ϕ) (n) = (π1 ◦ ψ) (n) ∧ (π2 ◦ ϕ) (n) < (π2 ◦ ψ) (n)]. In the

first case, [π1 ◦ ϕ]C <ΠCL0 [π1 ◦ ψ]C . In the second case, [π1 ◦ ϕ]C =ΠCL0

[π1 ◦ ψ]C and [π2 ◦ ϕ]C <ΠCL1 [π2 ◦ ψ]C . Therefore,

〈[π1 ◦ ϕ]C , [π2 ◦ ϕ]C〉 <B 〈[π1 ◦ ψ]C , [π2 ◦ ψ]C〉 .

(3) Let A = ΠCLrev
0 and B = (ΠCL0)

rev. We will define an isomorphism
Φ : A → B. If [ϕ]C ∈ ΠCLrev

0 , then let Φ ([ϕ]C) = [ϕ]C . We will prove that
[ϕ]C <A [ψ]C iff [ϕ]C <B [ψ]C . By definition, we have

[ϕ]C <B [ψ]C ⇔ [ψ]C <ΠCL0 [ϕ]C ⇔
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(∀∞n ∈ C) (ψ(n) <L0 ϕ(n)) ⇔
(∀∞n ∈ C) (ϕ(n) <Lrev

0
ψ(n)) ⇔ [ϕ]C <A [ψ]C .

(4) The proof of this fact is omitted because it is a simplified version of the
proof of Theorem 8.

(5) The theory of dense linear orders without endpoints is Π0
2 axiomatizable

and countably categorical. By Theorem 3 (part 4), ΠCL is also a dense linear
order without endpoints. Since ΠCL is countable, we have Q ∼= L ∼= ΠCL.

Part (5) in the previous theorem provides an example of an infinite structure
L such that L ∼= ΠCL. The linear order Q is an ultrahomogeneous structure; it
is the Fra ı̈ssé limit of the class of finite linear orders. The relationship between
Fräıssé limits and cohesive powers is considered in [5]. We now provide two more
examples of structures isomorphic to their cohesive powers.

Example 7. (1) ΠC (Q × Z) ∼= Q × Z

(2) ΠC (N + Q × Z) ∼= N + Q × Z

Proof. (1) ΠCQ × ΠCZ ∼= Q × ΠC(Nrev+N) ∼= Q × (ΠCN
rev + ΠCN)

∼= Q × [(N + Q × Z)rev + (N + Q × Z)] ∼= Q × [Q × Z + N
rev + N + Q × Z]

∼= Q × [Q × Z + Z + Q × Z] ∼= Q × [Q × Z] ∼= Q × Z

(2) ΠC (N + Q × Z) ∼= ΠCN+ΠC (Q × Z) ∼= N + Q×Z + Q×Z ∼= N + Q×Z

Part (4) of Theorem 6 demonstrates that having a computable successor
function is a sufficient condition for the cohesive power of a computable linear
order of type ω to be isomorphic to N + Q × Z. The next theorem shows that
this condition is not necessary.

Theorem 8. There is a computable linear order L of order type ω with a non-
computable successor function such that for every cohesive set C we have ΠCL ∼=
N + Q × Z.

Proof. Fix a non-computable c.e. set A, and let f be a total computable injection
on the set of natural numbers with range A. Let L = (ω,<L) be the linear order
obtained by ordering the even numbers according to their natural order, and by
setting 2a <L 2k + 1 <L 2a + 2 if and only if f(k) = a. Specifically, we set

2c <L 2d ⇔ 2c < 2d

2c <L 2k + 1 ⇔ c ≤ f(k)
2k + 1 <L 2c ⇔ f(k) < c

2k + 1 <L 2 + 1 ⇔ f(k) < f().

Then L is a computable linear order of type ω. Let SL denote the successor
function of L. Then A ≤T SL (indeed, A ≡T SL) because a ∈ A if and only if
SL(2a) �= 2a + 2. Thus SL is not computable.

Let C be cohesive, and let P = ΠCL. We show that P ∼= N + Q × Z. To do
this, we begin by establishing the following properties of P.
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(a) P has an initial segment of type ω.
(b) Every element of P has a <P -immediate successor.
(c) Every element of P that is not the least element has an <P -immediate

predecessor.

For (a), note that the range of the canonical embedding of L into P is an
initial segment of P of type ω.

For (b), consider a [ψ] ∈ P. We define a partial computable ϕ such that, for
almost every n ∈ C, ϕ(n) is the <L-immediate successor of ψ(n). It then follows
that [ϕ] is the <P -immediate successor of [ψ]. To define ϕ, observe that, by the
cohesiveness of C, exactly one of the following three cases occurs.

(1) (∀∞n ∈ C)(ψ(n) is odd)
(2) (∀∞n ∈ C)(∃a ∈ A)(ψ(n) = 2a)
(3) (∀∞n ∈ C)(∃a /∈ A)(ψ(n) = 2a)

Note that we cannot effectively decide which case occurs, but in each case we
can define a particular ϕi such that [ϕi] is the <P -immediate successor of [ψ].

If case (1) occurs, define

ϕ1(n) =

{
2a + 2 if ψ(n)↓, ψ(n) = 2k + 1, and f(k) = a;
↑ otherwise.

If case (2) occurs, define

ϕ2(n) =

{
2k + 1 if ψ(n)↓, ψ(n) = 2a, a ∈ A, and f(k) = a;
↑ otherwise.

If case (3) occurs, define

ϕ3(n) =

{
2a + 2 if ψ(n)↓ and ψ(n) = 2a;
↑ otherwise.

In each case (i) (i = 1, 2, 3), we have that for almost every n ∈ C, ϕi(n) is the
<L-immediate successor of ψ(n).

The proof of (c) is analogous to the proof of (b).
For [ψ], [ϕ] ∈ P, write [ψ] �P [ϕ] if [ψ] <P [ϕ] and the interval ([ψ], [ϕ])P in

P is infinite. Using the cohesiveness of C, we check that [ψ] �P [ϕ] if and only
if [ψ] <P [ϕ] and lim supn∈C |(ψ(n), ϕ(n))L| = ∞, where |(a, b)L| denotes the
cardinality of the interval (a, b)L in L. Note that for even numbers 2a and 2b,
2a <L 2b if and only if 2a < 2b. Therefore, if 2a < 2b, then |(2a, 2b)L| ≥ b−a−1.

To finish the proof, we show the following.

(d) If [ψ], [ϕ] ∈ P satisfy [ψ] �P [ϕ], then there is a [θ] ∈ P such that [ψ] �P
[θ] �P [ϕ].

(e) If [ψ] ∈ P, then there is a [ϕ] ∈ P with [ψ] �P [ϕ].
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For (d), suppose that [ψ], [ϕ] ∈ Psatisfy [ψ] �P [ϕ]. Again, by considering
the cases (1)–(3) above, either ψ(n) is odd for almost every n ∈ C, or ψ(n) is
even for almost every n ∈ C. In the case where ψ(n) is odd for almost every
n ∈ C, ψ̂(n) is even for almost every n ∈ C, where [ψ̂] is the <P -immediate suc-
cessor of [ψ]. Thus, we may assume that ψ(n) and ϕ(n) are even for almost
every n ∈ C by replacing [ψ] and [ϕ] by their <P -immediate successors if
necessary. The condition lim supn∈C |(ψ(n), ϕ(n))L| = ∞ is now equivalent to
lim supn∈C(ϕ(n) − ψ(n)) = ∞.

Define a partial computable θ by

θ(n) =

⎧⎪⎪⎨
⎪⎪⎩

⌊
ψ(n)+ϕ(n)

2

⌋
if

⌊
ψ(n)+ϕ(n)

2

⌋
is even;

⌊
ψ(n)+ϕ(n)

2

⌋
+ 1 if

⌊
ψ(n)+ϕ(n)

2

⌋
is odd.

By the definition of θ, we have that lim supn∈C(θ(n) − ψ(n)) = ∞ and that
lim supn∈C(ϕ(n) − θ(n)) = ∞. Since ψ(n), ϕ(n), and θ(n) are even for almost
all n ∈ C, we have that:

lim sup
n∈C

|(ψ(n), θ(n))L| = ∞ and lim sup
n∈C

|(θ(n), ϕ(n))L| = ∞.

Thus, [ψ] �P [θ] �P [ϕ], as desired.
For(e), consider [ψ] ∈ P. As argued above, we may assume that ψ(n) is

even for almost every n ∈ C by replacing [ψ] by its <P -immediate successor,
if necessary. If lim supn∈C ψ(n) is finite, then by the cohesiveness of C, the
function ψ must be eventually constant on C. In this case, [ψ] �P [2id]. If
lim supn∈C ψ(n) = ∞, then [ψ] �P [2ψ].

This completes the proof since the properties (a)–(e) ensure that P ∼= N +
Q × Z.

3 Non-isomorphic Cohesive Powers of Isomorphic
Structures

Theorem 9. For every co-maximal set C ⊆ ω there exist two isomorphic com-
putable structures A and B such the cohesive powers

∏
C A and

∏
C B are not

isomorphic.

Proof. Note that it suffices to prove the theorem for an arbitrary co-maximal
set consisting of even numbers only. Indeed, if C is an arbitrary co-maximal
set, then C1 = {2s | s ∈ C} is also a co-maximal set, and for any computable
structure M, we have

∏
C M ∼= ∏

C1
M (via [φ(x)] �→ [φ(�x

2 �)]). Then, if M0

and M1 are isomorphic computable structures such that
∏

C1
M0 �

∏
C1

M1,
then

∏
C M0 �

∏
C M1.

Let S = {2s | s ∈ ω}. Let A ⊆ S be such that A1 = S − A is infinite and
c.e. For every such A we will define a computable structure MA with a single
ternary relation.
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Let F = {4s + 1 | s ∈ ω} and B = {4s + 3 | s ∈ ω}. Fix a computable
bijection f from the set {〈i, j〉 ∈ S | i < j} onto F . Let also b be a computable
bijection from the set {〈j, i〉 ∈ S | i < j ∧ (i ∈ A1 ∨ j ∈ A1)} onto B. For the
function f , we write fij instead of f(i, j), and similarly for the function b. Define
a ternary relation P as follows:

P = {(x, fxy, y) | x, y ∈ S ∧ x < y} ∪
{(y, byx, x) | x, y ∈ S ∧ x < y ∧ (x ∈ A1 ∨ y ∈ A1)}.

Finally, let MA = 〈ω;P 〉. Informally, we can view the triples x,w, y with the
property P (x,w, y) as labelled arrows (e.g., x

w−→ y). We start with a structure

consisting of the set S ∪ F with arrows i
fij−→ j that connect i with j for all

i, j ∈ S such that i < j. These arrows can be viewed as a way of redefining the
natural ordering < on S. Elements of S can be thought of as “stem elements”
and elements of F can be thought of as “forward witnesses.” Next, we start enu-
merating the c.e. set A1 = S −A. At every stage a new element k is enumerated
into A1, we add new arrows together with appropriate elements from B, the
“backward witnesses,” which intend to exclude k from the initial ordering on S.

More precisely, we add arrows k
bki−→ i for all i with i < k, and arrows j

bjk−→ k,
for each j with j > k. Eventually, exactly the elements of A1 will be excluded
from the ordering, and the final ordering will be an ordering on the set A.

In the resulting structure, every element x ∈ A1 is connected with every
element y ∈ S such that x �= y with exactly two arrows: x

w−→ y and y
w1−→ x.

If x, y ∈ A are such that x �= y then they are connected with arrows of the type
x

w−→ y exactly when x < y. In other words, the formula

Φ(x, y) =def ∃wP (x,w, y) ∧ ¬∃w1P (y, w1, x)

will be satisfied by exactly those x, y ∈ A such that x < y. The formula Φ will
not be satisfied by any pair (x, y) for which at least one of x or y has been
excluded.

The following properties of the structure MA follow immediately from the
definition above.

(1) For every w there is at most one pair x, y such that P (x,w, y).
(2) If x ∈ S − A, then for any y ∈ S, y �= x, there is a unique w1 such that

P (x,w1, y) and a unique w2 such that P (y, w2, x).
(3) If x, y ∈ A, then x < y ⇔ ∃wP (x,w, y).
(4) MA is computable.

To prove (4) note that the relation P is computable because

P (x, z, y) ⇔ x, y ∈ S ∧ [
(x < y ∧ z = fxy) ∨ (x > y ∧ z ∈ B ∧ b−1(z) = 〈x, y〉)] .

(5) Let D, E ⊆ S be infinite and such that S − D and S − E are infinite and
c.e. Then MD

∼= ME .
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Since D and E are infinite, the orders (D,<) and (E,<), where < is the natu-
ral order, are isomorphic to N. The isomorphism between these orders, extended
by any bijection between S − D and S − E, has a unique natural extension to a
map from the domain of MD to the domain of ME . That is, the arrows in MD

(the elements of F and B) can be uniquely mapped to corresponding arrows in
ME .

To continue with the proof, we let

Θ(x) =def (∃t) [Φ(x, t) ∨ Φ(t, x)] .

The formula Θ(x) defines the set A in MA.
For any structure M = (M,P ) in the language with one ternary predicate

symbol we will use the following notation:
LM =def {x ∈ M |M � Θ(x)} , and
<LM=def {(x, y) ∈ M × M |M � Φ(x, y)}.
Fix A ⊆ S such that S − A is infinite and c.e.
It follows from the discussion above that the formula Φ(x, y) defines in MA

the restriction of the natural order < to A. Clearly,
(
LMA

, <LMA

)
has order

type ω.

Let M�
A =

∏
C MA. For partial computable functions g and h such that

[g] , [h] ∈ dom(M�
A) we have:

(i) M�
A |= Φ([g] , [h]) ⇔ C ⊆∗ {i| (g(i) ∈ A) ∧ (h(i) ∈ A) ∧ (g(i) < h(i))}

(ii) LM�
A

= {[g] ∈ M�
A| g(C) ⊆∗ A} and

(
LM�

A
, <LM�

A

)
is a linear order.

Note that (i) follows from Theorem 3, part (2), since Φ(x, y) is a Boolean
combination of Σ0

1 and Π0
1 formulas.

For the proof of (ii) note that for any [g] ∈ M�
A we have either C ⊆∗ {i|g(i) ∈

A} or C ⊆∗ {i|g(i) ∈ ω − A} because C is cohesive and ω − A is c.e. Since

[g] ∈ LM�
A

⇔ (∃x) [Φ([g] , x) ∨ Φ(x, [g])] ,

the equivalence in part (i) implies that LM�
A

= {[g] ∈ M�
A| g(C) ⊆∗ A}. It is

easy to show that the relation <LM�
A

is a linear order on LM�
A
.

For any a ∈ A let ha(i) = a for all i ∈ ω. We will call the element [ha] in
M�

A a constant in M�
A.

(6) The set of constants {[ha] |a ∈ A} in the structure M�
A forms an initial

segment of
(

LM�
A
, <LM�

A

)
of order type ω.

Clearly, if a0, a1 ∈ A, then Φ([ha0 ] , [ha1 ]) if and only if a0 < a1. Therefore,
{[ha] |a ∈ A} is an ordered set of type ω. It remains to check that {[ha] |a ∈ A}
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is an initial segment. Suppose [h] ∈ M�
A and a ∈ A are such that M�

A �
Φ([h] , [ha]). Then

C ⊆∗ {i|MA � Φ(h(i), a)} = {i|h(i) ∈ A ∧ h(i) < a} =
⋃

k∈A∧k<a

{i|h(i) = k}.

The last expression is a union of a finite family of mutually disjoint c.e. sets.
Since C is cohesive, there exists a k ∈ A such that C ⊆∗ {i|h(i) = k}, which
means that [h] = [hk] is a constant.

We now define the following Σ0
3 sentence

Ψ =def (∃x) [Θ(x) ∧ (∀y) [Θ(y) ⇒ Φ(y, x)]] .

The intended interpretation of Ψ is that when Φ(x, t) defines a linear order
(LM, <LM) , then the order has a greatest element. Note that MA ��Ψ . This is
because

(
LMA

, <LMA

)
has order type ω and hence has no greatest element.

Before we continue with the proof we recall Proposition 2.1 from [8].

Proposition 10 (Lerman [8]). Let R be a co-r-maximal set, and let f be a com-
putable function such that f(R)∩R is infinite and f(R) ⊂ R almost everywhere.
Then the restriction f � R differs from the identity function at only finitely many
points.

We now fix a co-maximal (hence co-r-maximal) set C ⊆ S and an infinite
co-infinite computable set D ⊆ S. By property (5) above, we have MC

∼= MD.
Let M�

C =
∏

C MC and M�
D =

∏
C MD.

It is not hard to show that, since C is co-maximal, for every partial com-
putable function ϕ for which C ⊆∗ dom(ϕ), there is a computable function fϕ

such that [ϕ] = [fϕ] (see [4]).
To finish the proof we will establish the following facts:

(7) M�
C � Ψ

(8) M�
D ��Ψ

To prove (7) recall that LM�
C

= {[f ] ∈ M�
C | f(C) ⊆∗ C}. By Proposition 10,

if [f ] ∈ M�
C is such that f(C) ⊆∗ C and f(C) is infinite, then [f ] = [id].

If f(C) is finite, then f is eventually a constant on C, because C is cohesive.
Therefore, LM�

C
= {[fc] | c ∈ C} ∪ {[id]}. It is easy to see that if c ∈ C,

then Φ([fc] , [id]). Thus,
(

LM�
C
, <LM�

C

)
has order type ω + 1 with the greatest

element [id]. Therefore, M�
C � Ψ .

To prove (8), let D = {d0 < d1 < · · · }. The function g defined as g(di) =
di+1 is computable. Suppose that M�

D � Ψ and let [f ] be the greatest element

in
(

LM�
D

, <LM�
D

)
. Since [f ] <LM�

D

[g ◦ f ] , it follows that M∗
D ��Ψ .

In conclusion, we defined computable isomorphic structures MC and MD

such that
∏

C MC and
∏

C MD are not even elementary equivalent. The struc-
ture MC also provides a sharp bound for the fundamental theorem of cohesive
powers. Namely, for the Σ0

3 sentence Ψ, MC ��Ψ but
∏

C MC � Ψ .
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4 Orders of Type ω with Cohesive Powers Not
Isomorphic to N + Q × Z

We prove that if C is co-maximal, then there is a computable linear order L of
type ω (necessarily with a non-computable successor function) such that ΠCL �

N + Q × Z.

Lemma 11. Let C ⊆ ω be co-c.e., infinite, and co-infinite. Then there is a com-
putable linear order L = (ω,<L) of type ω such that for every partial computable
function ϕe,

∀∞n ∈ C(ϕe(n)↓ ⇒ ϕe(n) is not the L-immediate successor of n). (*)

Proof. Fix an infinite computable set R ⊆ C. We define <L in stages. By the end
of stage s, <L will have been defined on Xs×Xs for some finite Xs ⊇ {0, 1, . . . , s}.
At stage 0, set X0 = {0} and define 0 ≮L 0. At stage s > 0, start with Xs = Xs−1

and update Xs and <L according to the following procedure.

1. If <L has not yet been defined on s (i.e., if s /∈ Xs), then update Xs to
Xs ∪ {s} and extend <L to make s the <L-greatest element of Xs.

2. Consider each 〈e, n〉 < s in order. If
(a) ϕe,s(n)↓ ∈ Xs,
(b) ϕe(n) is currently the <L-immediate successor of n in Xs,
(c) n /∈ R, and
(d) n is not <L-below any of 0, 1, . . . , e,
then let m be the least element of R − Xs. Update Xs to Xs ∪ {m}, and
extend <L so that n <L m <L ϕe(n).

This completes the construction.
We claim that for every k, there are only finitely many elements <L-below

k. It follows that L is of type ω. Say that ϕe acts for n and adds m when <L
is defined on an m ∈ R to make n <L m <L ϕe(n) as in (2). Let s0 be a stage
with k ∈ Xs0 . Suppose at stage s > s0 we add an m to Xs and define m <L k.
This can only be due to a ϕe acting for an n /∈ R and adding m at stage s. At
stage s, we must have n <L k because n <L m <L k. Therefore, we must also
have e < k, for otherwise k would be among 0, 1, . . . e, and condition (2d) would
prevent the action of ϕe. Furthermore, m is chosen so that m ∈ R and thus
only elements of R are added <L-below k after stage s0. Hence an m can only
be added <L-below k after stage s0 when a ϕe with e < k acts for an n <L k
with n /∈ R. Each ϕe acts at most once for every n, and no new n /∈ R appears
<L-below k after stage s0. Thus, after stage s0, only finitely many m are ever
added <L-below k.

We claim that for every e, (*) holds. Given e, let  be the <L-greatest element
of {0, 1, . . . , e}. Suppose that n >L  and n ∈ C. If ϕe(n)↓, let s be large enough
so that 〈e, n〉 < s, ϕe,s(n)↓, n ∈ Xs, and ϕe(n) ∈ Xs. Then either ϕe(n) is already
not the L-immediate successor of n at stage s+1, or at stage s+1 the conditions
of (2) are satisfied for 〈e, n〉, and an m is added such that n <L m <L ϕe(n).
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Theorem 12. Let C be a co-maximal set. Then there is a computable linear
order L of type ω such that [id] does not have a successor in ΠCL. Therefore,
ΠCL � N + Q × Z.

Proof. Let L be a computable linear order for C as in Lemma 11. Suppose that
ϕ is a partial computable function such that [id] <ΠCL [ϕ]. We show that [ϕ] is
not the <ΠCL-immediate successor of [id]. The inequality [id] <ΠCL [ϕ] means
that (∀∞n ∈ C) (n <L ϕ(n)). However, by Lemma 11,

(∀∞n ∈ C) (ϕ(n) is not the L-immediate successor of n).

Define a partial computable ψ so that, for every n,

ψ(n) =

{
the least m such that n <L m <L ϕ(n) if there is such an m;
↑ otherwise.

Then (∀∞n ∈ C) (n <L ψ(n) <L ϕ(n)). Thus, [id] <ΠCL [ψ] <ΠCL [ϕ]. So, [ϕ]
is not the <ΠCL-immediate successor of [id].

It follows that ΠCL � N + Q × Z because every element of N + Q × Z has
an immediate successor, but [id] ∈ ΠCL does not have an immediate successor.

Note that the sentence Ψ that states that every element has an immediate suc-
cessor is Π0

3. Then for the computable linear order L of type ω constructed
above, L � Ψ but ΠCL ��Ψ . Note that when working on this paper we proved
Theorem 9 first, and even though it is subsumed by Theorem 12 as stated, we
wanted to include our first proof in case others also find the method useful.
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Abstract. Sacks proved that every admissible countable ordinal is the
first admissible ordinal relatively to a real. We give an algorithmic proof
of this result for constructibly countable admissibles. Our study is com-
pleted by an algorithmic approach to a generalization of Sacks’ theorem
due to Jensen, that finds a real relatively to which a countable sequence
of admissibles, having a compatible structure, constitutes the sequence of
the first admissibles. Our approach deeply involves infinite time Turing
machines. We also present different considerations on the constructible
ranks of the reals involved in coding ordinals.

Introduction

One motivation for ordinal computability (see, e.g., [5]) is to find new proofs for
theorems in constructible and descriptive set theory. Such proofs may yield extra
information and give a further perspective. Examples so far include the proof by
Koepke and Seyfferth of the existence of incomparable α-degrees using α-Turing
machines in [26], Koepke’s proof of the continuum hypothesis in L using ordinal
Turing machines in [25] and the proof by Schlicht and Seyfferth of Shoenfield’s
absoluteness theorem in [34], also via ordinal Turing machines.

In this paper, we prove a constructive version of a theorem of Sacks, along
with a strengthening thereof due to Jensen, the latter using infinite time Tur-
ing machines (ITTMs). These were invented by Hamkins and Kidder and first
introduced in [17]. A topic that has received particular attention is the issue
of clockability. This subject is of special concern for us as it shows some deep
relations with admissible ordinals.

Admissible ordinals correspond to levels of the constructible hierarchy that
are closed enough to carry computabilities, in other words closed under Σ1 defin-
ability; the reference text is Barwise’s book [1]. This notion has several equivalent
definitions stated in rather different terms and involves many deep properties
witnessed by ITTMs.

The research for this paper has been done thanks to the support of the Agence nationale
de la recherche through the RaCAF ANR-15-CE40-0016-01 grant.
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Sacks’ theorem is very important to understand countable admissible ordi-
nals. It states that for any countable admissible ordinal α, there exists a real r
such that α is the first non-recursive ordinal relatively to r (written ωCK,r

1 , this
ordinal is admissible and the first admissible > ω relatively to r). For the first
admissibles, this statement is rather clear: the first admissible is ωCK

1 , the next
one is ωCK,r1

1 where r1 is a code of lowest constructible rank for ωCK
1 , and so

on. The situation is more complex with the first recursively inaccessible ordinal
(an admissible which is a limit of admissibles). Indeed a computability construc-
tion is required to transform a sequence of admissibles co-final in this admissible
into an adequate real. The situation is much more complex for larger ordinals
because of coding problems. For successor admissibles, those that are not recur-
sively inaccessible, our idea is to use a code for the admissible just below, but
questions arise to know whether such a code exists and if it exists, in which con-
structibility level. For recursively inaccessibles, the situation is even more subtle
since the ω-sequence of admissibles cofinal in this ordinal must also be definable,
and various cases arise depending on the different gaps in which the ordinals of
the sequence might appear.

When one has proven Sacks’ theorem, it is rather natural to try to obtain that
any two admissibles become the first and the second admissibles relatively to a
real. Once again the case where the ordinals are small is not difficult (although
it requires to work both with Turing and hyperarithmetic reducibilities). For
transfinite sequences of admissibles, the situation is more complex since our goal
is that this sequence coincides with an initial segment of the admissibles using
only an oracle r—which one can see as some kind of translation function. We
provide an elementary proof of Jensen’s generalization to Sacks’ theorem for
sequences of constructibly countable admissibles, the ordinal type of which is
bounded by the supremum of the clockable times of ITTMs.

We begin our paper by describing various gaps and ranks concerning defin-
ability/coding issues, and then describe our algorithmic and computability app-
roach to proving versions of these two theorems.

1 Gaps and ranks

In the different results of this paper, in particular in Theorem 3, we are interested
in finding the simplest reals, simplest in the sense that they appear at the lowest
possible rank in the constructible hierarchy. This approach is naturally linked to
various gaps and ranks described in this section.

1.1 The constructible hierarchy

We recall Gödel’s constructible hierarchy (Lα : α ∈ On) and an accompanying
ad hoc hierarchy Jα in which we can find Jensen’s master codes for levels where
new reals appear. The reader is referred to [22,10,21] for more on this hierarchy.

Definition 1. L0 = J0 = ∅, Lα+1 = Def(Lα), Lλ =
⋃

α<λ Lα, L =
⋃

α∈On Lα,
Jω·ξ = Lξ, Jω·ξ+n = Δn(Lξ), where λ is a limit ordinal and Def(X), resp.
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Δn(X), is the set of all subsets of X definable with parameters in 〈X,∈〉 by a
first order formula, resp. by both Σn and Πn first order formulae.

We are interested in finding the lowest level of Gödel’s constructible hierarchy
where certain sets appear, in particular certain reals (subsets of ω). The least
level α of L where a certain set A appears (A ∈ Lα+1) is called the L-rank of A.

1.2 Gaps in the constructible hierarchy

H. W. Putnam and G. S. Boolos identified levels of L where no new reals appear.

Theorem 1. There are arbitrarily long gaps in L where no new reals appear.1

This leads to the notion of gaps in the constructible hierarchy: an ordinal
α is in a Putnam gap (or L-gap) if no new reals appear in Lα. The proof of
Theorem 1 uses the fact that if M is a countable elementary subset of LωL

2
, then

the image of ωL
1 under the Mostowski collapse of M is a very long Putnam gap.

The idea behind such a Putnam gap is that an ordinal α < ωL
1 starts a long gap

if it is very similar to ωL
1 . When new reals appear at level α + 1, a real coding

all of Lα is one of them.

Lemma 1 ([2,3]). If new reals appear at α + 1, then among them is an arith-
metical copy2 Eα of Lα.

If α is a Putnam-gap ordinal and if r ∈ Lα is a real coding a well-order on ω,
then the order type of that well-order is less than α. Thus if α starts a Putnam-
gap, then α is a limit ordinal and Marek and Srebrny [30] actually showed that
an ordinal α starts a Putnam-gap if and only if Lα |= ZFC− + V = HC.

Gaps naturally appear both in the L and the J hierarchies. When new reals
appear at a level, we call this level an index. Let �J (α) be the maximum β such
that [α, α + β) is a J -gap. Thus α is a J -gap ordinal if and only if �J (α) �= 0,
and if α starts an J -gap, �J (α) is the length of that J -gap.

Special reals in J were identified by Jensen: a real r is a master code for Jξ

(or, for ξ) if {x ⊆ ω : x �T r} = Jξ+1 ∩ P(ω).

Theorem 2 (Jensen). ξ is a J -index if and only if there is a master code for
ξ. Furthermore, if r is a master code for ξ, then r′ is the master code for ξ + 1.

The gaps in the J hierarchy can be described in the following way (for more
on master codes and these gaps, see [20,18,19,22,23]): let ς(α) be the least strict
upper bound on {IndJ (ξ) : ξ < α}, where IndJ : ωL

1 → ωL
1 enumerates the J -

indices in increasing order; obviously α � IndJ (α). α � ς(α) and α < ς(α)
1 Let β > α be countable ordinals such that there is an elementary embedding

j : Lβ → Lω2 with critical point cr(j) � α. For every γ < cr(j), Lω2 |=
“No new reals appear between ranks ω1 and ω1 + γ.” No new reals thus appear
between cr(j) and cr(j) + γ, by elementarity and absoluteness. Cf. [31,2,3,28].

2 Eα is an arithmetical copy of Lα if there is one-one function f from Lα to ω (and
onto the field of Eα) such that ∀x, y ∈ Lα, x ∈ y ⇐⇒ 〈f(x), f(y)〉 ∈ Eα.
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iff IndJ (α) > α and α does not start a J -gap. ς(α) �= IndJ (α) iff α starts a
J -gap. IndJ (α) = ς(α) + �J (ς(α)). ς(λ) is a J -gap ordinal iff ς(λ) is admissible
iff λ is admissible and locally countable (|= ∀a (a is countable)). If α starts an
L-gap, then α also starts a J -gap. If α starts a J -gap, then α is the supremum
of L-indices and α starts an L-gap iff �J (α) � ω. Moreover if α starts a J -gap
and �J (α) � n, then α is Σn-admissible.

1.3 Definability and coding

There are some other gaps that we call definability gaps, which are obviously
linked to Putnam gaps: there are countable ordinals α, υ such that α is not
definable in Lυ.3 It is possible to characterize the least such definability gap: the
ordinal υ0, which is the least υ such that there is an ordinal α not definable in
Lυ, can be characterized as the least η such that there exists an ordinal δ < η
such that Lδ ≺ Lη (≺ means being an elementary submodel).4

Now we would like to know for a particular real where it first appears, espe-
cially for a real coding a countable ordinal.

Definition 2. Let α be a countable ordinal. α is definable at (level)γ if α is
definable without parameters in Lγ . α is codable at (level)γ if a real appears in
Lγ+1 coding α. The code-rank of α (< ωL

1 ), code-rk(α), is the least γ such that
α is codable at γ. α is countable at (level)γ if Lγ |= “α is countable”.

If α < ωL
1 , then it is codable at some level. And if α is countable at β, then

α is codable and definable at β.

Lemma 2. For every countable ordinal α, there exists a countable β such that
α is definable at β.5

By Löwenheim-Skolem and a combination of footnotes 5 and 3, there exists
an ordinal α < ωL

1 which is definable at a β, then not definable at a β′ > β, etc.
There is actually an upper bound for the ordinals that remain definable from

3 There exists α such that Lα ≺ Lω1 , α is thus not definable in Lω1 . There is a
countable υ > α such that Lυ ≺ Lω1 , and α is already not definable in Lυ.

4 υ0 is clearly � the least such η, η0, since whenever one has Lα ≺ Lβ , α is not definable
in Lβ . Now, suppose that υ0 < η0, in other words, for all δ < υ0, Lδ 
≺ Lυ0 . Now,
by Löwenheim-Skolem there is a countable elementary submodel of Lυ0 . Take the
⊆-least such model M . By the Condensation Lemma, there is an α < υ0 and an
isomorphism j such that the Mostowski collapse of M is isomorphic to Lα via j.
j cannot be trivial as this would mean that Lα ≺ Lδ, although δ < υ0 and υ0

is the least such ordinal. We can thus consider κ, the critical point1 of j. Since
Lα

∼= M ≺ Lυ0 , Lκ ≺ Lj(κ). But then κ cannot be definable in Lj(κ), and thus
υ0 � j(κ). But j(κ) < υ0, contradiction.

5 Consider κ = ℵα. κ is definable as the greatest cardinal in Lκ+ . (Here κ+ denotes
the least ordinal of cardinality greater than κ.) And thus α is also definable in
Lκ+ . Löwenheim-Skolem’s theorem, in conjunction with Mostowski’s lemma and
the Condensation Lemma, provides the countable β such that α is definable in Lβ .
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some point on (they have been called memorable6 ordinals): ordinals α for which
there exists β such that for any countable γ � β, α is still definable at γ.7

1.4 Clockability

Computations by ITTMs are intimately related to admissibles since they are in
some sense universal tools for Σ1 functions. In particular, an ordinal α is said
to be clockable if there exists an ITTM that halts exactly in time α on input 0.
ITTMs can also write a real coding an ordinal. In this case the ordinal is said
to be writable. See [17] for more on these notions. A very powerful theorem by
Welch [36] asserts that the supremum of clockable ordinals is the same as the
supremum of the writable ordinals. In our paper, we denote this ordinal by λ∞.8

Writable ordinals have no gaps: α is writable if and only if α < λ∞. The
situation is different with clockability: there are gaps inside clockable ordinals.
The study of these gaps is very interesting and has been carried out through
many papers (see in particular the seminal [17,37]), among them we refer to [6]
since it contains all the considerations on gaps needed in the present paper. We
can summarize the situation in terms of clockable gaps as follows. The situa-
tion resembles Putnam gaps with a major difference: for a clockable gap, the
starting point is also a limit ordinal, but its size is always a limit ordinal. Fur-
thermore, they are deeply related to admissibles. The properties we most often
use in the present paper are that all starting points of gaps are admissibles,
that no admissible is clockable, but some admissibles can be strictly inside a gap
(see [6]). Moreover, if α starts a gap, the ordinal type of clockable ordinals below
α is exactly α.

The structure of admissible ordinals can be relativized to a real without any
major change. With ITTMs we can use the standard oracle definition of Turing
machines (with a special oracle tape), or even see the oracle real as an input.

Some other considerations are important for us. If an ordinal can be written
by an ITTM in time γ then it is codable at level γ. The writing time of a
recursive ordinal is exactly ω and if the ordinal α is not recursive, its writing
time is exactly the supremum of the ends of those gaps that start no later than α.
For admissibles, the situation is simple: their writing time is exactly the end of
the gap they belong to. A detailed proof of these results can be found in [27,11].
A consequence of these results is that for every clockable α < λ∞ which does
not end a clockable gap, we have that the code-rank of α is < α and bounded
by its writing time.
6 Cf. https://mathoverflow.net/questions/259100/memorable-ordinals.
7 Any countable τ such that Lτ ≺ Lω1 is such an upper bound: if α is definable at β,

take δ above τ and β such that Lδ ≺ Lω1 . We then have Lτ ≺ Lδ ≺ Lω1 . α is thus
definable at δ, since δ is above β, and also at τ . τ is therefore above α and any other
definable ordinal. In fact, the least non-memorable ordinal τ0 is the least ordinal τ
with uncountably many elementary extensions Lτ ≺ Lγ . (Cf. footnote 6).

8 We use Barwise’s convention for admissibles: τ0 = ω, τ1 = ωCK
1 , . . . , τα is the α-th

admissible. Note that there exist admissibles α such that α = τα. Such is the case
for λ∞, but it is not the first one.

https://mathoverflow.net/questions/259100/memorable-ordinals
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If we set a (sufficiently closed) bound for computation times of the ITTMs,
we obtain nice computation models. If the bound is chosen as ω, we obtain
classical Turing machines; if the bound is chosen to be any admissible ordinal,
then the model is well defined, keeping the same universal machine for all bounds.
Therefore, if α is admissible, we can define �α as the ITTM reducibilities with
computations bounded by admissible time α. The reducibilities �α and �β are
the same over reals if and only if α and β belong to the same clockable gap.
If α and β do not belong to the same clockable gap and α < β then �α is a
refinement of �β .

2 Sacks’ theorem revisited

Theorem 3 (Sacks). For every admissible countable ordinal α, there exists a
real r such that α = ωCK,r

1 .

Gerald E. Sacks first proved Theorem 3 in [32] by a forcing argument. Fried-
man and Jensen [13] gave an alternative proof, which does not make use of
forcing but involves infinitary logic. See also Chong and Yu [8, Theorem 5.4.12]
for a proof using Steel forcing.

In the proof of our version of Sacks’ theorem, Theorem 4, we need to be able
to construct reals with ad hoc properties. We choose to isolate this construction
in the following lemma.

Lemma 3. For any countable set of reals {ri : i ∈ ω} such that for every i,
r′
i �T ri+1, there exists a real r such that for all i, ri �T r, but9

⊕
i ri ��T r.

Moreover r �T (
⊕

i ri)
′.

Proof. We first prove the lemma when for every i, r′′
i �T ri+1, then we adapt

the proof to the hypothesis r′
i �T ri+1. Please note that it is not straightforward

(we cannot just take every other real in the sequence) since it might be possible
that

⊕
i r2i <T

⊕
i ri. This cannot be the case for the sequences constructed in

our use of this lemma but we prefer to formulate the lemma and prove it in its
most general form.

The real r needs to code the ri’s in such a way that for every i, ri can be
computed from r but not uniformly, as

⊕
i ri would then be �T -below r. We

consider that r is a mapping from ω2 to {0, 1} that contains ri in the column
b(i). At the same time, we make sure that

⊕
i ri ��T r by adding just the needed

supplementary information to hide the ri’s.

Construction: r is constructed as
⋃

i oi where the oi’s are compatible (infinite)
oracles that represent the left part of r up to the column b(i), the rest is empty
(at 0). We now assume that oi has been built and that we know b(i), and we
give the construction for oi+1 and b(i + 1).

We now consider all the computations ϕτ
i (〈i + 1, j〉) for every j and every

finite extension τ of oi. We look for the first (τ, j) such that it either (i) converges

9 The infinite join,
⊕

i ri, of the ri’s is defined as {〈i, j〉 : j ∈ ri}.
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and is �= ri+1(j), or (ii) for every extension of τ , it diverges. b(i+1) is then taken
to be greater (+1) than [case (i)] the maximum between b(i) and the greatest
column reached during the computation, [case (ii)] the greatest column reached
in the enumeration of the extensions of oi; which is the column from which every
extension will make the computation diverge on j.

oi+1 is the found τ , in which we add ri+1 at column b(i + 1). Thus oi+1 con-
tains oi, ri+1 in column b(i+1), and some extra finite information. ��Construction

We now show, by induction, that the construction works: we suppose that oi

has been constructed and that oi �T r′
i. We show that oi+1 is built such that

oi+1 �T r′
i+1. In the construction of oi+1 from oi, we end up either in case (i)

or (ii): by reductio ad absurdum, suppose that both cases are false. We then

–a– either have convergence for every j such that they all converge to ri+1(j).
But then we would have ri+1 �T oi, which is impossible since oi �T r′

i,
–b– or there are some j’s where it diverges and all extensions end up making it

converge to ri+1(j), but then ri+1 would be recursively enumerable in oi,
which is also impossible since ri+1 �T r′′

i .

Looking closely at the construction, one observes that oi+1 �T r′
i+1.

Now, for every i, ri �T r (from a finite information, b(i)). And if we had⊕
i ri �T r, there would be an e such that for all i, j, ϕr

e(〈i, j〉) = ri(j). Take
i = e + 1, we observe a contradiction:

Case (i) : ϕr
e(〈e + 1, j〉) �= re+1(j) for the found j,

Case (ii) : ϕr
e(〈e + 1, j〉) diverges for every extension. But r is an extension of

oi+1, which implies that ϕr
e diverges on the found j.

As we have that for every i, oi �T r′
i, we get that r =

⋃
i oi �T (

⊕
i ri)

′.
Now let us adapt the proof to the hypothesis r′

i �T ri+1: instead of coding
ri in the column b(i) we code r2i in b(i) and r2i+1 in b(i) + 1. The oracle oi is
thus defined until the b(i) + 1 column and the finite extension which is defined
uses r2i+3 instead of ri+1 since we have that r2i+3 �T o′

i. Thus we have non-
recursivity relative to oracle r only on the r2i+1 terms of

⊕
i ri but it is sufficient

for our lemma. ��
The construction can be slightly enhanced to make r and

⊕
i ri incomparable,

by introducing witnesses for r ��T

⊕
i ri. We just need to be careful to intro-

duce only a finite number of witnesses on every column. The following theorem
provides an explicit construction of a weaker version of Sacks’ result.

Theorem 4. For every admissible constructibly countable ordinal α, there exists
a real r such that α = ωCK,r

1 .

Proof. First, we solve the easy case, where α is a successor admissible, i.e.,
admissible but not a limit of admissibles: α = β+ for some admissible β.

We first assume that α and β are not codable at the same level. There exist
(many) reals that code β. For any such real r, we have that α � ωCK,r

1 and ωCK,r
1

is admissible. Among those reals, we choose rβ of least constructible rank γ.
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If α < ω
CK,rβ

1 , then α is recursive in rβ and codable at level γ. Therefore, β and
α are codable at the same level, which contradicts the hypothesis.

We now assume that α and β have the same code-rank (in L). Let γ then be
the least level of J where a code for α appears, and thus also where one appears
for β. New reals appear at this level and among them, there is a master code
for γ. From this master code, we can extract a code r for β of minimal Turing
degree. α is not recursive in r, since α is admissible. And thus, α = ωCK,r

1 .
Now assume that α is recursively inaccessible. As α < ωL

1 , we have α =
limn<ω αn, where the αn’s are admissible, the αn’s are codable at the code-rank
of α, and α is admissible relative10 to {αn : n < ω}. For each n, rn is chosen as
a “simplest” code for αn. To precise the meaning of “simplest”, there are two
cases: either they are all of the same code-rank than α, or they can be chosen
to have strictly increasing code-ranks.

In the latter case, by the admissibility hypothesis on the structure, we choose
the rn’s of least code-rank so that the

⊕
n rn ≡T rα. In other terms, we do not

add extra information in the precise chosen sequence.
In the former case, α and all αn’s are of code-rank γ. As a code for α, we

choose a real rα extracted from a master code of J for the least level where a
code for α appears. From rα we can define integer indices i0, i1, . . . such that in
the order that codes α in rα, αn is at index in. Thus, the order for α truncated
at level in is a code for αn and is represented by a real rn. We can remark
that 1’s in rn are also 1’s in rn+1 while some 0’s in rn become 1’s in rn+1.
By the admissibility hypothesis on the structure, the infinite join of the rn’s is
Turing-equivalent to rα.

In both cases, we also have that r′
n �T rn+1, since the αn’s are admissible.

The real r we look for is obtained directly by Lemma 3. As rα is not recursive
in r, and because of the hypothesis on the sequence of the αn’s, rn is recursive
in r and α is the least ordinal which is not recursive in r. α is thus ωCK,r

1 . ��
This proof provides properties that go beyond the statement of Theorem 4.

For instance, if α = ωCK,r
1 for r ∈ Lα then α = β+, i.e., is a successor admissible,

and there is γ, such that β < γ < α and new reals appear in Lγ , i.e., the interval
(β, α) is not inside a coding gap. An analogous result can be found in [7].

Note that since Lemma 3 gives r �T (
⊕

i ri)
′, our proof provides a certain

minimality property of the constructed real. In general, it can be expressed
in terms of hyperarithmetic11 minimality, exactly as the refinement that Sacks
obtained in [33, Theorem 4.26] of his original theorem. But in the case where
the admissible is a successor admissible, we get an improved optimality result:

Theorem 5. For every admissible α < ωL
1 , there exists a real r such that

ωCK,r
1 = α, and for every real s <h r, ωCK,s

1 < α. Moreover if α is a successor
admissible, for every real s <T r, ωCK,s

1 < α.

10 An ordinal α is admissible relative to a set of ordinals A if 〈Lα [A] ; A ∩ α〉 is an
admissible structure.

11 Recall that Y �h X if Y is hyperarithmetic in X, that is if Y is ITTM-computable
in some bounded recursive ordinal length of time (< ωCK,X

1 ).
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This naturally leads to the study of the least constructible rank of the real
that defines a countable admissible ordinal via Sacks’ result. The Sacks-rank of a
countable ordinal α, Sacks-rk(α), is the least γ such that there is a real r in Lγ+1

such that ωCK,r
1 = α. Thanks to our construction, some structural properties

can be proved concerning Sacks ranks: for every countable ordinal α < ωL
1 , if

α is a successor admissible (=β+), we have that Sacks-rk(α) = code-rk(β), and
otherwise (α is recursively inaccessible) that Sacks-rk(α) = code-rk(α).

3 Jensen’s theorem revisited

Ronald B. Jensen and Harvey Friedman gave in [13] a model-theoretic proof
of Sacks’ theorem (cf. Theorem 3). Jensen had formulated the model existence
theorem and applied it to provide an alternative proof. This method could not
be applied to prove Jensen’s theorem, which is a generalization of Sacks’ theorem
to a sequence of admissibles. He had to use proper class forcing over admissible
sets. A proof of Jensen’s theorem can be found in his unpublished manuscript
[23, Chapter 6, Theorem 4] and also in Simpson and Weitkamp’s [35].

It has to be noted that one needs to be careful when stating the hypoth-
esis of this theorem: choose for example a recursively inaccessible for αω and
{αi : i ∈ ω} a sequence of admissibles cofinal in αω. Relative to any oracle, the
supremum of the first ω admissibles cannot be admissible: to see that, design an
ITTM looking for clockable gaps and make it halt at the sup of the ω first gaps
(cf. [6]). The hypothesis proposed by Jensen, which solves this difficulty, asserts
that every admissible in the considered sequence is still admissible relative10 to
admissibles of the sequence below it.12 This is the hypothesis that we use in our
version of the theorem (Theorem 6).

We first present a computability lemma that provides a real that verifies some
computability specifications in terms of ITTM reducibilities (�τα

means ITTM-
computable in time < τα). The proof of this lemma is a direct generalization of
the proof of Lemma 3.

Lemma 4. For any ordinal γ < λ∞, for any sequence of reals (rα : α < ω · γ),
such that for every α, r′

α <T rα+1, there exists r : γ → P(ω) such that for
all β < γ, for all i < ω, rω·β+i �τβ

r(β), but
⊕

i rω·β+i and r(β) are �τβ
-

incomparable, and
⊕

i rω·β+i and r(β + 1) are �τβ
-incomparable; and for any

limit ordinal λ < ω · γ and any α < λ, rα �τλ
r(λ),

⊕
α<λ rα and r(λ) are

�τλ
-incomparable. Moreover for all β < γ, r(β) �T (

⊕
i rω·β+i)

′ and for any
limit ordinal λ < ω · γ, r(λ) �T

(⊕
α<λ rα

)′.
⊕

α<λ rα is defined as follows: first note that if λ is a recursive ordinal, we
can use a standard bi-recursive encoding of ω2 in ω. Otherwise, we form the

12 This hypothesis carries the ideas of progressivity of the sequence and indiscernibility
by first order properties: in the list of admissibles 〈τβ : β < λ∞〉, the sequence
of indices that correspond to the considered sequence does not contain too much
information in itself.
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equivalence classes of those ITTMs (represented by their indices in a standard
enumeration) that halt in a given ordinal time δ. In each class we have ω integers.
We encode rω+δ at the abscisse given by the first ITTM that halts in time δ.
Note that this encoding covers all clockable ordinals. When we enter gaps, we
proceed in the same way but on the second ITTM that halts in time η, for the
η-th non-clockable ordinal. Then we continue the construction for ω imbrications
of gaps of gaps of gaps, etc. But we could have more than ω such imbrications.
Thus, we use once again ITTM indices inside the sequence of ITTMs that halt
at a given time to find the proper abscisse. Please note that the lengths and
the ranks of the clockable gaps are co-final in λ∞. Thus, for any λ < λ∞, we
get a coding that is recursive for ITTMs bounded by time supremum of length
of the possible gap and starting point. This construction of a transfinite join is
compatible with Jensen’s hypothesis on relative admissibility of the admissible
ordinals of the considered sequence.

Our version of Jensen’s theorem provides an explicit construction: we keep
Jensen’s hypothesis, but add λ∞ as an upper bound on the length of the sequence
and also require that the admissibles of the sequence are below ωL

1 .

Theorem 6. Let γ < λ∞. If 〈αβ : β < γ〉 is a sequence of constructibly
countable admissibles such that for every δ < γ, αδ is admissible relative10 to
{αβ : β < δ}, then there is a real r such that αβ is the β-th r-admissible ordinal.

Proof sketch. To start with, we would like to construct r such that α0 = ωCK,r
1 .

And of course, we would like to add much more things in r in order to get that
α1 becomes the next admissible, and so on. The situation is analogous to that
of Sacks’ theorem: if α0 is a successor admissible, then we consider r0 a code of
its predecessor that we write in r (if we are in a definability gap, we proceed as
we have done in the proof of Theorem 4). If α0 is recursively inaccessible, then
we encode in a special way an ω-sequence of codes 〈rβi

: i < ω〉 for admissibles
〈βi : i < ω〉 cofinal in α0. We use Lemma 3 to get the ad hoc real r0.

Now we would like to add some new information to encode also the real r1 that
makes α1 the second admissible. But while doing this, we should not make α0 com-
putable. Thus we can make a special version of Lemma 3 where the reduction used
is not the Turing reducibility, but the ITTM reducibility with time bounded by the
first admissible (which is exactly the hyperarithmetic reducibility, �h) and while
doing this, we make sure that we still have α0 ��T r0 ⊕ r1.

This construction gives the induction step when β is a successor ordinal.
When β is limit, let us first assume that β is not strictly inside an ITTM-gap;
thanks to the relative admissibility hypothesis of the sequence, αβ is recursively
inaccessible if and only if τβ is. We propose a single construction for the two
cases concerning αβ , being recursively inaccessible or a successor admissible. We
proceed as above, with the help of a more complex lemma. We consider ITTM-
reducibilities bounded by the β-th admissible, and apply this to the ω-sequence
extracted from admissibles below αβ if inaccessible, or to the real coding its pre-
decessor if αβ is a successor admissible. The hypotheses of our improved lemma
(Lemma 4) that provides rβ are verified thanks to the relative admissibility
hypothesis and the constructibly countability of the considered ordinals.
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The problem now is when the β-th admissible is inside an ITTM clockable
gap. Indeed, if τη starts a clockable gap which contains τβ , then �τη

is exactly
the same reducibility than �τβ

. Note that in this case, αη starts a clockable gap
which contains αβ . We use a slightly modified version of Lemma 4 that uses αη

as an oracle from rank η on. If αβ is in a gap of a gap of a gap . . . (of rank δ),
then we modify analogously Lemma 4 adding as an oracle the starting points of
the gaps of rank < δ. ��

We propose an application of our theorem to a bounded version of Solovay’s
problem, namely finding a real relatively to which the admissibles are the recur-
sively inaccessibles. The solution to Solovay’s problem by Sy D. Friedman (cf. [15])
proves that the sequence of recursively inaccessible ordinals below ωL

1 verify the
relative admissibility hypothesis of Jensen, thus our construction works as is.

Theorem 7 (Solovay’s problem below λ∞). If 〈ιβ : β < λ∞〉 is the sequence
of recursively inaccessible ordinals below λ∞, then there is a real r such that ιβ
is the β-th r-admissible ordinal.

References

1. Barwise, J.: Admissible Sets and Structures: An Approach to Definability Theory,
Perspectives in Mathematical Logic, vol. 7. Springer, Heidelberg (1975)

2. Boolos, G.S.: The hierarchy of constructible sets of integers. Ph.D. thesis, Mas-
sachusetts Institute of Technology, Cambridge, Mass. (1966)

3. Boolos, G.S., Putnam, H.: Degrees of unsolvability of constructible sets of integers.
J. Symb. Log. 33, 497–513 (1968)

4. Boyd, R., Hensel, G., Putnam, H.: A recursion-theoretic characterization of the
ramified analytical hierarchy. Trans. Am. Math. Soc. 141, 37–62 (1969)

5. Carl, M.: Ordinal Computability. De Gruyter Series in Logic and Its Applications,
vol. 9. De Gruyter, July 2019

6. Carl, M., Durand, B., Lafitte, G., Ouazzani, S.: Admissibles in gaps. In: Kari et al.
[24], pp. 175–186

7. Chong, C.T.: A recursion-theoretic characterization of constructible reals. Bull.
Lond. Math. Soc. 9, 241–244 (1977)

8. Chong, C.T., Yu, L.: Recursion theory. De Gruyter Series in Logic and Its Appli-
cations, vol. 8. De Gruyter (2015)

9. David, R.: A functorial Π1
2 singleton. Adv. Math. 74, 258–268 (1989)

10. Devlin, K.: Constructibility. Springer, Heidelberg (1984)
11. Durand, B., Lafitte, G.: A constructive Swiss knife for infinite time Turing machines

(2016)
12. Friedman, H.: Minimality in the Δ1

2-degrees. Fundamenta Mathematicae 81(3),
183–192 (1974)

13. Friedman, H., Jensen, R.: Note on admissible ordinals. In: Barwise, J. (ed.) The
Syntax and Semantics of Infinitary Languages. LNM, vol. 72, pp. 77–79. Springer,
Heidelberg (1968). https://doi.org/10.1007/BFb0079683

The authors would like to thank the anonymous referees for their constructive com-
ments which helped a lot to improve the manuscript.

https://doi.org/10.1007/BFb0079683


192 B. Durand and G. Lafitte

14. Friedman, S.D.: An introduction to the admissibility spectrum. In: Marcus, R.B.,
Dorn, G.J., Weingartner, P. (eds.) Logic, Methodology and Philosophy of Science
VII, Proceedings of the Seventh International Congress of Logic, Methodology and
Philosophy of Science (Salzburg, 1983). Studies in Logic and the Foundations of
Mathematics, vol. 114, pp. 129–139. North-Holland (1986)

15. Friedman, S.D.: Strong coding. Ann. Pure Appl. Log. 35, 1–98 (1987)
16. Grilliot, T.: Omitting types: applications to recursion theory. J. Symb. Log. 37,

81–89 (1972)
17. Hamkins, J.D., Lewis, A.: Infinite time Turing machines. J. Symb. Log. 65(2),

567–604 (2000)
18. Hodes, H.T.: Jumping through the transfinite: the master code hierarchy of Turing

degrees. J. Symb. Log. 45(2), 204–220 (1980)
19. Hodes, H.T.: Upper bounds on locally countable admissible initial segments of a

Turing degree hierarchy. J. Symb. Log. 46, 753–760 (1981)
20. Hodes, H.T.: Jumping through the transfinite. Ph.D. thesis, Harvard University

(1977)
21. Jech, T.: Set Theory: The Third Millennium Edition, Revised and Expanded.

SMM. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44761-X
22. Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Log.

4, 229–308 (1972). Erratum, ibid. 4, 443 (1972)
23. Jensen, R.B.: Admissible sets, December 2010. https://www.mathematik.hu-

berlin.de/∼raesch/org/jensen.html. Handwritten notes (1969)
24. Kari, J., Manea, F., Petre, I. (eds.): CiE 2017. LNCS, vol. 10307. Springer, Cham

(2017). https://doi.org/10.1007/978-3-319-58741-7
25. Koepke, P.: Turing computations on ordinals. Bull. Symb. Log. 11, 377–397 (2005)
26. Koepke, P., Seyfferth, B.: Ordinal machines and admissible recursion theory. Ann.

Pure Appl. Log. 160, 310–318 (2009)
27. Le Scornet, P.: Les machines de Turing en temps transfini. Rapport de stage, Ecole

Normale Supérieure de Rennes, June 2017
28. Leeds, S., Putnam, H.: An intrinsic characterization of the hierarchy of con-

structible sets of integers. In: Gandy, R.O., Yates, C.M.E. (eds.) Logic Colloquium
’69 (Proceedings of the Summer School and Colloquium in Mathematical Logic,
Manchester, August 1969), pp. 311–350. North-Holland (1971)

29. Lukas, J.D., Putnam, H.: Systems of notations and the ramified analytical hierar-
chy. J. Symb. Log. 39, 243–253 (1974)

30. Marek, W., Srebrny, M.: Gaps in the constructible universe. Ann. Math. Log. 6,
359–394 (1974)

31. Putnam, H.: A note on constructible sets of integers. Notre Dame J. Formal Log.
4(4), 270–273 (1963)

32. Sacks, G.E.: Forcing with perfect closed sets. In: Proceedings of the Symposia Pure
Math, vol. XIII, pp. 331–355. American Mathematical Society (1971)

33. Sacks, G.E.: Countable admissible ordinals and hyperdegrees. Adv. Math. 19, 213–
262 (1976)

34. Seyfferth, B.: Three models of ordinal computability. Ph.D. thesis, Rheinischen
Friedrich-Wilhelms-Universitat Bonn (2012)

35. Simpson, S.G., Weitkamp, G.: High and low Kleene degrees of coanalytic sets. J.
Symb. Log. 48(2), 356–368 (1983)

36. Welch, P.D.: Eventually infinite time Turing degrees: infinite time decidable reals.
J. Symb. Log. 65(3), 1193–1203 (2000)

37. Welch, P.D.: Characteristics of discrete transfinite time Turing machine models:
halting times, stabilization times, and normal form theorems. Theoret. Comput.
Sci. 410, 426–442 (2009)

https://doi.org/10.1007/3-540-44761-X
https://www.mathematik.hu-berlin.de/~raesch/org/jensen.html
https://www.mathematik.hu-berlin.de/~raesch/org/jensen.html
https://doi.org/10.1007/978-3-319-58741-7


Destroying Bicolored P3s by Deleting
Few Edges
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Abstract. We introduce and study the Bicolored P3 Deletion prob-
lem defined as follows. The input is a graph G = (V, E) where the
edge set E is partitioned into a set Eb of blue edges and a set Er of
red edges. The question is whether we can delete at most k edges such
that G does not contain a bicolored P3 as an induced subgraph. Here,
a bicolored P3 is a path on three vertices with one blue and one red
edge. We show that Bicolored P3 Deletion is NP-hard and cannot
be solved in 2o(|V |+|E|) time on bounded-degree graphs if the ETH is
true. Then, we show that Bicolored P3 Deletion is polynomial-time
solvable when G does not contain a bicolored K3, that is, a triangle with
edges of both colors. Moreover, we provide a polynomial-time algorithm
for the case where G contains no induced blue P3, red P3, blue K3, and
red K3. Finally, we show that Bicolored P3 Deletion can be solved
in O(1.85k · |V |5) time and that it admits a kernel with O(Δk2) vertices,
where Δ is the maximum degree of G.

1 Introduction

Graph modification problems are a popular topic in computer science. In these
problems, one is given a graph and one wants to apply a minimum number of
modifications, for example edge deletions, to obtain a graph that fulfills some
graph property Π.

One important reason for the popularity of graph modification problems is
their usefulness in graph-based data analysis. A classic problem in this context
is Cluster Editing where we may insert and delete edges and Π is the set of
cluster graphs. These are exactly the graphs that are disjoint unions of cliques
and it is well-known that a graph is a cluster graph if and only if it does not
contain a P3, a path on three vertices, as induced subgraph. Cluster Editing
has many applications [4], for example in clustering gene interaction networks [3]
or protein sequences [23]. The variant where we may only delete edges is known
as Cluster Deletion [20]. Further, graph-based data analysis problems that
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lead to graph modification problems for some graph property Π defined by small
forbidden induced subgraphs arise in the analysis of biological [7,12] or social
networks [5,18].

Besides the application, there is a more theoretical reason why graph modi-
fication problems are very important in computer science: Often these problems
are NP-hard [17,24] and thus represent interesting case studies for algorithmic
approaches to NP-hard problems. For example, by systematically categorizing
graph properties based on their forbidden subgraphs one may outline the border
between tractable and hard graph modification problems [2,16,24].

In recent years, multilayer graphs have become an increasingly important tool
for integrating and analyzing network data from different sources [15]. Formally,
multilayer graphs can be viewed as edge-colored (multi-)graphs, where each edge
color represents one layer of the input graph. With the advent of multilayer
graphs in network analysis it can be expected that graph modification problems
for edge-colored graphs will arise in many applications as it was the case in
uncolored graphs.

One example for such a problem is Module Map [21]. Here, the input is a
graph with red and blue edges and the aim is to obtain by a minimum number k
of edge deletions and edge insertions a graph that contains no induced P3 with
two blue edges, no induced P3 with a red and a blue edge, and not a triangle,
called K3, with two blue edges and one red edge. Module Map arises in com-
putational biology [1,21]; the red layer represents genetic interactions and the
blue layer represents physical protein interactions [1]. Module Map is NP-hard,
even if G contains only blue edges, and can be solved in O(2k · |V |3) time [21].

Motivated by the practical application of Module Map, an edge deletion
problem with bicolored forbidden induced subgraphs, we aim to study such prob-
lems from a more systematic and algorithmic point of view. Given the importance
of P3-free graphs in the uncolored case, we focus on the problem where we want
to destroy all induced bicolored P3s, that is, all induced P3s with one blue and
one red edge, by edge deletions.

Bicolored P3 Deletion (BPD)
Input: A two-colored graph G = (V,Er, Eb) and an integer k ∈ N.
Question: Can we delete at most k edges from G such that the remaining
graph contains no bicolored P3 as induced subgraph?

We use E := Er �Eb to denote the set of all edges of G, n to denote the number
of vertices in G, and m to denote the number of edges in G.

Our Results. We show that BPD is NP-hard and that, assuming the Expo-
nential-Time Hypothesis (ETH) [14], it cannot be solved in a running time that
is subexponential in the instance size. We then study two different aspects of
the computational complexity of the problem.

First, we consider special cases that can be solved in polynomial time, moti-
vated by similar studies for problems on uncolored graphs [6]. We are in partic-
ular interested in whether or not we can exploit structural properties of input
graphs that can be expressed in terms of bicolored forbidden subgraphs. We show
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that BPD can be solved in polynomial time on graphs that do not contain a
certain type of bicolored K3s as induced subgraphs, where bicolored K3s are tri-
angles with edges of both colors. Moreover, we show that BPD can be solved in
polynomial time on graphs that contain no K3s with one edge color and no P3s
with one edge color as induced subgraphs.

Second, we consider the parameterized complexity of BPD with respect to
the natural parameter k. We show that BPD can be solved in O(1.85k ·nm2) time
and that it admits a problem kernel with O(Δk2) vertices, where Δ is the max-
imum degree in G. As a side result, we show that BPD admits a trivial problem
kernel with respect to � := m−k. Due to lack of space several proofs are deferred
to a long version of the article.

2 Preliminaries

We consider undirected simple graphs G = (V,E) where the edge set E is
partitioned into a set Eb of blue edges and a set Er of red edges, denoted
by G = (V,Er, Eb). For a vertex v, NG(v) := {u | {u, v} ∈ E} denotes the
open neighborhood of v and NG[v] := NG(v) ∪ {v} denotes the closed neighbor-
hood of v. For a vertex set W , NG(W ) :=

⋃
w∈W N(w) \ W denotes the open

neighborhood of W and NG[W ] := NG(W ) ∪ W denotes the closed neighborhood
of W . The degree deg(v) := |NG(v)| of a vertex v is the size of its open neigh-
borhood. Moreover, we define degb(v) := |{u | {u, v} ∈ Eb}| as the blue degree
of v and degr(v) := |{u | {u, v} ∈ Er}| as the red degree of v, respectively. We
let N2

G(v) := NG(NG(v)) \ {v} and N3
G(v) := NG(N2

G(v)) \ NG(v) denote the
second and third neighborhood of v.

For any two vertex sets V1, V2 ⊆ V , we denote by EG(V1, V2) := {{v1, v2} ∈
E | v1 ∈ V1, v2 ∈ V2} the set of edges between V1 and V2 in G and write E(V ′) :=
E(V ′, V ′). For any V ′ ⊆ V , G[V ′] := (V ′, E(V ′) ∩ Er, E(V ′) ∩ Eb) denotes
the subgraph induced by V ′. We say that some graph H = (V H , EH

r , EH
b ) is

an induced subgraph of G if there is a set V ′ ⊆ V , such that G[V ′] = H,
otherwise G is called H-free. Two vertices u and v are connected if there is
a path from u to v in G. A connected component is a maximal vertex set S
such that each two vertices are connected in G[S]. A clique in a graph G is
a set K ⊆ V of vertices such that in G[K] each pair of vertices is adjacent.
The graph ({u, v, w}, {{u, v}}, {{v, w}}) is called bicolored P3. We say that a
vertex v ∈ V is part of a bicolored P3 in G if there is a set V ′ ⊆ V with v ∈ V ′

such that G[V ′] is a bicolored P3. Furthermore, we say that two edges {u, v}
and {v, w} form a bicolored P3 if G[{u, v, w}] is a bicolored P3. For any set E′

of edges we denote by G − E′ := (V,Er \ E′, Eb \ E′) the graph we obtain by
deleting all edges in E′. As a shorthand, we write G−e := G−{e} for an edge e.
An edge deletion set S is a solution for an instance (G, k) of BPD if G − S is
bicolored P3-free and |S| ≤ k. In each context we may omit the subscript G if
the graph is clear from the context.

A reduction rule for some problem L is a computable function that maps an
instance w of L to an instance w′ of L such that w is a yes-instance if and only
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if w′ is a yes-instance and |w′| ≤ |w|. For the relevant notions of parameterized
complexity we refer to the standard monographs [8,9].

3 Bicolored P3 Deletion is NP-Hard

In this section, we prove the NP-hardness of BPD. This hardness result moti-
vates our study of polynomial-time solvable cases and the parameterized com-
plexity in Sects. 4 and 5, respectively.

Theorem 1. BPD is NP-hard even if the maximum degree of G is eight.

Proof. To show the NP-hardness we give a polynomial-time reduction from the
NP-hard (3,4)-Sat problem which is given a 3-CNF formula φ where each vari-
able occurs in at most four clauses, and asks if there is a satisfying assignment
for φ [22].

Let φ be a 3-CNF formula with variables X = {x1, . . . , xn} and clauses C =
{C1, . . . , Cm} with four occurrences per variable. For a given variable xi that
occurs in a clause Cj we define the occurrence number Ψ(Cj , xi) as the number
of clauses in {C1, C2, . . . , Cj} where xi occurs. Intuitively, Ψ(Cj , xi) = r means
that the rth occurrence of variable xi is the occurrence in clause Cj . Since each
variable occurs in at most four clauses, we have Ψ(Cj , xi) ∈ {1, 2, 3, 4}.

Construction: We describe how to construct an equivalent instance (G =
(V,Er, Eb), k) of BPD from φ.

For each variable xi ∈ X we define a variable gadget as follows. The variable
gadget of xi consists of a central vertex vi and two sets Ti := {t1i , t

2
i , t

3
i , t

4
i }

and Fi := {f1
i , f2

i , f3
i , f4

i } of vertices. We add a blue edge from vi to every
vertex in Ti and a red edge from vi to every vertex in Fi.

For each clause Cj ∈ C we define a clause gadget as follows. The clause
gadget of Cj consists of three vertex sets Aj := {a1

j , a
2
j , a

3
j}, Bj := {b1j , b

2
j , b

3
j},

and Wj := {w1
j , w2

j , w3
j , w4

j }. We add blue edges such that the vertices in Bj ∪Wj

form a clique with only blue edges in G. Moreover, we add blue edges {ap
j , b

p
j}

and red edges {ap
j , u} for every p ∈ {1, 2, 3} and u ∈ Wj ∪ Bj \ {bp

j}.
We connect the variable gadgets with the clause gadgets by identifying ver-

tices in Ti ∪ Fi with vertices in Aj as follows. Let Cj be a clause containing
variables xi1 , xi2 , and xi3 . For each p ∈ {1, 2, 3} we set

ap
j =

{
t
Ψ(Cj ,xip )

ip
if xip occurs as a positive literal in Cj , and

f
Ψ(Cj ,xip )

ip
if xip occurs as a negative literal in Cj .

Now, for every variable xi ∈ X each vertex in Ti ∪ Fi is identified with
at most one vertex ap

j . Figure 1 shows an example of a clause gadget and its
connection with the variable gadgets. To complete the construction of the BPD
instance (G, k) we set k := 4n + 14m.

Correctness: The formal proof of the correctness is deferred to a long version.
Instead, we briefly describe its idea. For each variable xi we have to delete all
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a1
1 = t11

a2
1 = f1

2

a3
1 = t13

b11

b21

b31

v1 v2 v3

Fig. 1. The lower part of the figure shows the clause gadget of a clause C1 = (x1 ∨
x2 ∨x3). The upper part of the figure shows variable gadgets representing variables x1,
x2, and x3. The vertices a1

1, a
2
1, and a3

1 from the clause gadget are identified with
vertices from the variable gadgets. The bold lines represent blue edges and the thin
lines represent red edges. (Color figure online)

blue edges in E({vi}, Ti) or all red edges in E({vi}, Fi) in the corresponding
variable gadget. Deleting the edges in E({vi}, Ti) models a true-assignment of
the variable xi while deleting the edges in E({vi}, Fi) models a false-assignment
of xi. Since we identify vertices in Ti ∪ Fi with vertices in Aj the information of
the truth assignment is transmitted to the clause gadgets. This ensures that we
can make a clause-gadget bicolored P3-free with 14 edge deletions if and only
if there is at least one vertex in Aj which is incident with a deleted edge of its
variable gadget. �	

Note that in the proof of Theorem 1 we constructed a graph with 8n +
42m ∈ O(n) edges, k = 4n + 14m ∈ O(n) and therefore � = 4n + 28m ∈ O(n).
Considering the ETH [14] and the fact that there is a reduction from 3-Sat to
(3,4)-Sat with a linear blow up in the number of variables [22] this implies the
following.

Corollary 1. If the ETH is true, then BPD cannot be solved in 2o(|V |+|E|+k+�)

time even if the maximum degree is eight.

4 Polynomial-Time Solvable Cases

Since BPD is NP-hard in general, there is little hope to find a polynomial-time
algorithm that solves BPD on arbitrary instances. In this section, we provide
polynomial-time algorithms for two special cases of BPD.

Our first result is a polynomial-time algorithm for BPD, when G =
(V,Er, Eb) does not contain a certain type of K3s.
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Definition 1. Three vertices u, v, w form a bicolored K3 if G[{u, v, w}] con-
tains exactly three edges such that exactly two of them have the same color.
A bicolored K3 is endangered in G if at least one of the two edges with the same
color is part of a bicolored P3 in G.

Theorem 2. BPD can be solved in polynomial time if G contains no endangered
bicolored K3s.

Proof. We prove the theorem by reducing BPD to Vertex Cover on bipartite
graphs which can be solved in polynomial time since it is equivalent to computing
a maximum matching.

Vertex Cover
Input: A graph G = (V,E) and an integer k ∈ N.
Question: Is there a vertex cover of size at most k in G, that is, a set S ⊆ V
with |S| ≤ k such that every edge e ∈ E has at least one endpoint in S.

Let (G = (V,Eb, Er), k) be an instance of BPD where G contains no endan-
gered bicolored K3. We define an instance (G′, k′) of Vertex Cover as fol-
lows. Let G′ = (V ′, E′) be the graph with vertex set V ′ := Er ∪ Eb and edge
set E′ := {{e1, e2} ⊆ Eb ∪ Er | e1 and e2 form a bicolored P3 in G}. That is, G′

contains a vertex for each edge of G and edges are adjacent if they form a P3

in G. Moreover, let k′ = k. The graph G′ is obviously bipartite with partite
sets Eb and Er.

We now show that (G, k) is a yes-instance for bicolored P3-Deletion if
and only if (G′, k′) is a yes-instance for Vertex Cover.

(⇒) Let S be a solution for (G, k). Note that the edges of G are vertices of G′

by construction and therefore S ⊆ V ′. We show that S is a vertex cover in G′.
Assume towards a contradiction that there is an edge {x, y} ∈ E′ with x, y �∈ S.

By the definition of E′, the edges x and y form a bicolored P3 in G. This contradicts
the fact that G−S is bicolored P3-free. Hence, S is a vertex cover of size at most k
in G′.

(⇐) Let C ⊆ V ′ with |C| ≤ k be a minimal vertex cover of G′. Note that
the vertices of G′ are edges of G by construction and therefore C ⊆ E. We show
that G − C is bicolored P3-free.

Assume towards a contradiction that there are x = {u, v} ∈ Eb \ C, and
y = {v, w} ∈ Er \ C forming an induced bicolored P3 in G − C. Then, x
and y do not form an induced bicolored P3 in G since otherwise there is an
edge {x, y} ∈ E′, which has no endpoint in the vertex cover C. It follows
that {u,w} ∈ C. Obviously, the vertices u, v, w form a bicolored K3. Since x
and y form an induced bicolored P3 in G−C, one of these edges has the same color
as {u,w}. Since {u,w} ∈ C and C is minimal, it follows that {u,w} ∈ V ′ is an
endpoint of an edge in G′ and thus {u,w} is part of an induced bicolored P3 in G.
Therefore, G[{u, v, w}] forms an endangered bicolored K3 in G which contradicts
the fact that G contains no endangered bicolored K3s. This proves the correct-
ness of the reduction.
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For a given instance (G, k) of BPD, the Vertex Cover instance (G′, k′) can
be computed in O(nm) time by computing all induced bicolored P3s of G. Since
Vertex Cover can be solved in O(|E| · √|V |) time on bipartite graphs [13]
and since |V ′| = m and |E′| ≤ nm, we have that BPD can be solved in O(nm

3
2 )

time on graphs without endangered K3s. �	
Theorem 2 implies that BPD can be solved in polynomial time on bipartite

graphs and thus also on triangle-free graphs.
We now provide a second polynomial-time solvable special case that is

characterized by four colored forbidden induced subgraphs: the two monochro-
matic K3s, these are the K3s where all three edges have the same color, and the
two monochromatic P3s, these are the P3s where both edges have the same color.
Observe that a graph that does not contain these forbidden induced subgraphs
may still contain K3s or P3s as induced subgraphs. The algorithm exploits the
following observation.

Lemma 1. Let G be a graph that contains no monochromatic K3 and no mono-
chromatic P3 as induced subgraphs. Then the maximum blue degree and the max-
imum red degree in G are two.

Proof. We show the proof only for the blue degree, the bound for the red degree
can be shown symmetrically.

Assume towards a contradiction that G contains a vertex t with at least three
blue neighbors u, v, and w. Since G contains no induced blue P3, G[{u, v, w}]
has three edges. Moreover, since G contains no monochromatic K3 not all of the
three edges in G[{u, v, w}] are red. Assume without loss of generality that {u, v}
is blue. Then, G[{u, v, t}] is a blue K3, a contradiction. �	

The algorithm now applies the following two reduction rules exhaustively.

Reduction Rule 1. (a) Remove all bicolored P3-free components from G.
(b) If G contains a connected component C of size at most five, then compute

the minimum number of edge deletions kC to make G[C] bicolored P3-free,
remove C from G, and decrease k by kC .

The second reduction rule involves certain bridges that may be deleted greed-
ily. An edge e is a bridge if the graph G − e has more connected components
than G.

Reduction Rule 2. If G contains an induced bicolored P3 formed by {u, v}
and {v, w} such that {u, v} is a bridge of G and the connected component C
containing v and w in G − {u, v} is bicolored P3-free, then remove C from G
and decrease k by one.

On graphs without monochromatic K3s and P3s we can apply both reduction
rules exhaustively in O(n) time. Moreover, the remaining instance, which has
maximum degree two, can be solved in O(n) time as well.

Theorem 3. BPD can be solved in O(n) time if G contains no monochro-
matic K3 and no monochromatic P3 as induced subgraph.
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5 Parameterized Complexity

In this section, we study the parameterized complexity of BPD parameterized
by k, � := m − k, and (k,Δ), where Δ denotes the maximum degree of G. First,
we provide the following running time bound for BPD.

Theorem 4. BPD can be solved in O(1.85k · nm2) time.

Next, we consider problem kernelization for BPD parameterized by (k,Δ)
and � := m−k. We show that BPD admits problem kernels with at most O(k2Δ)
vertices or 2� edges, respectively.

In the following, we provide two reduction rules leading to an O(k2Δ) vertex
kernel for BPD. The first reduction rule deletes all edges which form more than k
bicolored P3s.

Reduction Rule 3. If G contains an edge {u, v} such that there exist ver-
tices w1, . . . , wt with t > k such that G[{u, v, wi}] is an induced bicolored P3 for
each i, then remove {u, v} from G and decrease k by one.

Lemma 2. Reduction Rule 3 is correct and it can be applied exhaustively in
O(nm) time.

Proof. First, we prove the correctness of Reduction Rule 3. Let S be a solution
for (G, k). Without loss of generality consider an edge {u, v} ∈ Er such that
there exist vertices w1, . . . , wt such that for each i the graph G[{u, v, wi}] is an
induced bicolored P3. At least one edge of each G[{u, v, wi}] is an element of S.
Assume towards a contradiction {u, v} /∈ S. In each G[{u, v, wi}], the blue edge
has to be removed. In other words, {{v, wi}|1 ≤ i ≤ t} ⊆ S. Since t > k, |S| > k,
a contradiction to |S| ≤ k. Hence, {u, v} ∈ S.

Second, we bound the running time of applying Reduction Rule 3 exhaus-
tively. In a first step, for each edge e ∈ E compute the number of bicolored P3s
containing e. This can be done in O(nm) time. In a second step, check if an
edge e = {u, v} is part of more than k bicolored P3s, then remove e. After, the
removal of e, only new bicolored P3s can arise which contain vertices u and v.
Hence, for each remaining vertex w ∈ V check if G[{u, v, w}] is a new induced
bicolored P3 in G − {u, v}. Afterwards, update the number of bicolored P3s for
edges {u,w} and {v, w}. This can be done in O(n) time. Since at most k edges
can be removed, this step can be done in O(kn) time. Since k < m, the overall
running time of Reduction Rule 3 is O(nm). �	

Let P denote the set of all vertices of G which are part of bicolored P3s.
Then, the set N [P] contains all vertices which are either part of an induced
bicolored P3 or which are adjacent to a vertex in an induced bicolored P3. In the
following, we present a reduction rule to remove all vertices in V \ N [P]. Note
that a vertex v is contained in V \ N [P] if and only if each vertex u ∈ N [v] is
not part of any induced bicolored P3.

Reduction Rule 4. If G contains a vertex v ∈ V such that each vertex u ∈ N [v]
is not part of any induced bicolored P3, then remove vertex v from G.
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Lemma 3. Reduction Rule 4 is correct and it can be applied exhaustively in
O(nm) time.

Proof. Let H := G\{v}. We prove that there exist a solution S for (G, k) if and
only if S is also a solution for (H, k)

(⇒) Let S be a solution for (G, k). Since H is an induced subgraph of G, S
is also a solution for (H, k).

(⇐) Let S be a solution for (H, k). Further, assume without loss of generality
that for each S′ � S the graph H − S′ is not bicolored P3-free. Assume towards
a contradiction that G − S is not bicolored P3-free. Then, each induced bi-
colored P3 in G − S has to contain vertex v. Since vertex v is not part of any
induced bicolored P3 in G, at least one edge deletion is incident with v. We will
use the following claim to obtain a contradiction.

Claim 1. There exists an ordering (e1, . . . , e|S|) of the elements of S such that
for each i the edge ei is part of an induced bicolored P3 in G − {e1, . . . , ei−1}.
Proof. Assume towards a contradiction that such an ordering does not exist.
Since there is at least one edge deletion incident with vertex v, S is not empty.
Thus, there exists a maximal index 1 ≤ i < |S| such that there is a finite
sequence (e1, . . . , ei) of elements of S where for each j the edge ej is part of an
induced bicolored P3 in G − {e1, . . . , ej−1}. According to our choice of i, there
exists no edge of S which is part of an induced bicolored P3 in G − {e1, . . . , ei}.
If G−{e1, . . . , ei} contains an induced bicolored P3 formed by {u, v} and {v, w},
then {u, v} ∈ S or {v, w} ∈ S. This contradicts the fact that no edge of S is
part of an induced bicolored P3 in G − {e1, . . . , ei}. Otherwise, G − {e1, . . . , ei}
is bicolored P3-free. Then, {e1, . . . , ei} is a solution for (G, k). This contradicts
the fact that no S′ � S is a solution for (G, k). ♦

We assumed that there exists an edge deletion incident with vertex v. Since v
is not part of any induced bicolored P3 in G and according to Claim 1 there exists
an ordering F = (e1, . . . , e|S|) of edge deletions such that for each i the edge ei is
part of an induced bicolored P3 in G − {e1, . . . , ei−1}. Let W ⊆ N(v) be the set
of neighbors of v which are incident with an edge deletion in S. For each x ∈ W
define i(x) := minx∈ej

j. Intuitively, i(x) denotes the minimal index of an edge
deletion of F incident with x.

Let w ∈ W be the vertex with lowest value i(w) and let z be the other
endpoint of edge ei(w). Intuitively, edge ei(w) is the first edge deletion incident
with a neighbor w of v. Observe that z ∈ N2

G(v) since no vertex of NG(v) is part
of any induced bicolored P3 in G.

Without loss of generality assume that the edge {v, w} is red. The edge {w, z}
is red since otherwise G[{v, w, z}] is an induced bicolored P3. According to
Claim 1 the edge {w, z} is part of an induced bicolored P3 in G−{e1, . . . , ei(w)−1}.
Hence, there exists a vertex y ∈ V with y �= v such that G[{w, y, z}] is an induced
bicolored P3 in G − {e1, . . . , ei−1}. First, assume y ∈ NG(v). According to our
assumption that no vertex in NG[v] is part of an induced bicolored P3 in G,
vertex y is not part of an induced bicolored P3 in G. Hence, in the ordering F
there exists a minimal index j such that the edge ej is the first edge deletion
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incident with vertex y. Since j < i(w) this contradicts the maximality of i(w).
Second, assume y ∈ N2

G(v). Since all edges between w and N2
G(v) ∩ NG(w) are

red, the edge {w, y} is red. Hence, in the graph G−{e1, . . . , ei−1} the edge {w, y}
is contained in S. This contradicts the choice of i(w). Hence, vertex v is not inci-
dent with an edge deletion. Third, assume towards a contradiction y ∈ N3

G(v).
Since {w, z} ∈ Er and {w, y} /∈ E, we conclude {y, z} ∈ Er. Since vertex w is in
no induced bicolored P3 in G, {w, y} ∈ EG. Hence, y ∈ N2

G(v), a contradiction.
Next, consider the running time of applying Reduction Rule 4 exhaustively.

In a first step, determine all bicolored P3s in G. Afterwards, determine for each
vertex v ∈ V if it is part of some induced bicolored P3. This needs O(nm) time.
Now, check for each vertex v ∈ V if each vertex u ∈ N [v] is not part of any
induced bicolored P3. This can be done in O(m) time. The claimed running
time follows. �	
Theorem 5. BPD admits a O(k2Δ)-vertex kernel that can be computed in
O(nm) time.

Proof. First, apply Reduction Rule 3 exhaustively. Second, apply Reduction
Rule 4 exhaustively. This needs O(nm) time. Let P be the set of vertices which
are contained in an induced bicolored P3 in G. We prove that (G, k) is a yes-
instance if G contains at most O(k2Δ) vertices. If (G, k) is a yes-instances for
BPD the graph G[P] can contain at most k vertex-disjoint bicolored P3s. Since
Reduction Rule 3 was applied exhaustively, each edge is contained in at most k
bicolored P3s. Hence, |P| ≤ 2k2. Since Reduction Rule 4 was applied exhaus-
tively, V \ N [P] = ∅. In other words, set P has no second neighborhood in G.
Since each vertex has degree at most Δ we have |N(P)| ≤ 2k2Δ. Hence, the
overall number of vertices in G is at most O(k2Δ). �	

Note that a kernelization by Δ alone is unlikely since BPD is NP-hard even
if Δ = 8 by Theorem 1. Since BPD is fixed-parameter tractable with respect to
parameter k, we can trivially conclude that it admits an exponential-size problem
kernel. It is open if there is a polynomial kernel depending only on k while
Cluster Deletion has a relatively simple 4k-vertex kernel [11]. Summarizing,
BPD seems to be somewhat harder than Cluster Deletion for parameter k.

In contrast, BPD seems to be easier than Cluster Deletion if parame-
terized by the dual parameter � := m − k: there is little hope that Cluster
Deletion admits a problem kernel of size �O(1) [10] while BPD has a trivial
linear size problem kernel as we show below.

Theorem 6. BPD admits a problem kernel with O(2�) edges and vertices which
can be computed in O(n + m) time.

Proof. We show that instances with more than 2� edges are trivial yes-instances.
Let (G, k) with |E| ≥ 2� be an instance of BPD. Then, since Er and Eb forms
a partition of E, we conclude |Er| ≥ � or |Eb| ≥ �. Without loss of generality
let |Er| ≥ �. Since |Eb| = m − |Er| ≤ m − � = k, Eb is a solution for (G, k). �	
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6 Outlook

We have left open many questions for future work. First, it would be interesting
to further investigate the structure and usefulness of bicolored P3-free graphs.
Since each color class may induce an arbitrary graph it seems difficult to obtain a
concise and nontrivial structural characterization of these graphs. Nevertheless,
one could aim to identify graph problems that are NP-hard on general two-edge
colored graphs but polynomial-time solvable on bicolored P3-free graphs.

Second, there are many open questions concerning Bicolored P3 Dele-
tion. Does Bicolored P3 Deletion admit a polynomial kernel for k? Can
Bicolored P3 Deletion be solved in 2O(n) time? Can Bicolored P3 Dele-
tion be solved in polynomial time on graphs that contain no induced monochro-
matic P3s? Can Bicolored P3 Deletion be solved in polynomial time on
graphs that contain no cycle consisting only of blue edges? Even simpler is the
following question: Can Bicolored P3 Deletion be solved in polynomial time
if the subgraph induced by the red edges and the subgraph induced by the blue
edges are each a disjoint union of paths?

Moreover, it would be interesting to perform a similar study on Bicol-
ored P3Editing where we may also insert blue and red edges. Finally, we
were not able to resolve the following question: Can we find bicolored P3s in
linear time?
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204 N. Grüttemeier et al.

11. Guo, J.: A more effective linear kernelization for cluster editing. Theoret. Comput.
Sci. 410(8–10), 718–726 (2009)

12. Hellmuth, M., Wieseke, N., Lechner, M., Lenhof, H.-P., Middendorf, M., Stadler,
P.F.: Phylogenomics with paralogs. Proc. Nat. Acad. Sci. 112(7), 2058–2063 (2015)

13. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

14. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
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Abstract. We show that for both the unary relation of transcendence
and the finitary relation of algebraic independence on a field, the degree
spectra of these relations may consist of any single computably enu-
merable Turing degree, or of those c.e. degrees above an arbitrary fixed
Δ0

2 degree. In other cases, these spectra may be characterized by the
ability to enumerate an arbitrary Σ0

2 set. This is the first proof that a
computable field can fail to have a computable copy with a computable
transcendence basis.
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1 Introduction

It has been known since the work of Metakides and Nerode in [7] that a com-
putable field need not have a computable transcendence basis. This result, read-
ily established, is fundamental to the study of effectiveness for fields. Under the
usual definition of computable structure, a computable field is simply a field
whose domain is a computable subset of ω (usually just ω itself, the set of all
nonnegative integers) and whose atomic diagram, in the language with addition
and multiplication, is computable. The theorem of Metakides and Nerode shows
that working with an arbitrary computable field will be difficult, as one cannot
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in general distinguish the algebraic elements of the field (relative to the prime
subfield, either Q or Z/(p)) from those transcendental over the prime subfield.

We recently realized that the following very natural question had not been
addressed: must every computable field be isomorphic to a computable field with
a computable transcendence basis? It is well known that there need not exist
a computable isomorphism between two isomorphic computable fields, and so
it is plausible that the answer might be affirmative: two computable fields, one
with a computable transcendence basis and the other without any such basis,
can certainly be isomorphic. (We normally refer to isomorphic computable fields
as computable copies of each other.) In case of an affirmative answer, one would
be justified in always assuming a computable transcendence basis, as this would
only require choosing a “nice” computable copy of the field in question.

Initially we were optimistic that the answer would indeed be affirmative, and
even that a single Turing procedure might produce such a copy uniformly, using
the original field’s atomic diagram as an oracle. (This could also then be extended
to noncomputable fields.) However, conversations with our colleague Ken Kramer
disabused us of that notion, and in fact we will demonstrate here that the answer
is negative. For uniform procedures, the negative answer is proven in Sect. 2,
which introduces and illustrates the use of algebraic curves of positive genus
for this purpose. The remainder of the article shows that there is not even any
nonuniform procedure: certain computable fields have no computable copy with
any computable transcendence basis. Indeed, the spectrum of the transcendence
relation on a field has many possible configurations, plenty of which do not
include the degree 0. For each computably enumerable Turing degree c, it is
possible for transcendence to be intrinsically of degree c, or for it intrinsically to
compute c, or for it intrinsically to enumerate a given Σ0

2 set. The proofs here
make substantial use of results on algebraic curves developed during earlier work
by two of us in [11].

Transcendence bases are not in general definable, and a single field of infinite
transcendence degree will have continuum-many different transcendence bases.
This makes it difficult to define “the” Turing degree for transcendence bases. To
address this, we use two Lω1ω-definable relations on fields. The transcendence
relation T , which is unary, holds of those elements not algebraic over the prime
subfield Q of a field F :

x ∈ T ⇐⇒ (∀f ∈ Q[X]∗)f(x) �= 0.

(Here Q[X]∗ is the set of nonzero polynomials over Q.) The algebraic indepen-
dence relation I is a generalization of this to tuples of all arities n:

(x1, . . . , xn) ∈ I ⇐⇒ (∀f ∈ Q[X1, . . . , Xn]∗)f(x1, . . . , xn) �= 0.

A computable field of infinite transcendence degree will possess transcendence
bases having each Turing degree ≥T deg(I), but not of any other Turing degree:
given any basis as an oracle, one can decide the independence relation on the
field, and conversely, from an I-oracle, one can compute a transcendence basis
for F . Thus the Turing degree of I can stand in for the set of Turing degrees
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of transcendence bases, as this set is the upper cone above deg(I). In turn, the
unary relation T is always computable from I, although sometimes strictly below
I under Turing reducibility. In the fields we consider here, we will always have
I ≡T T . We remark the following useful property.

Lemma 1. In a computable field F , for each Turing degree d, every d-
computably enumerable transcendence basis B over the prime subfield Q is d-
computable.

Proof. Given any x ∈ F , use a d-oracle to list the elements b0, b1, . . . of B, and
search for an n and a polynomial f ∈ Q[X,Y0, . . . , Yn]∗ with f(x, b0, b1, . . . , bn) =
0 in F . This search must terminate, and x ∈ B just if x ∈ {b0, . . . , bn}. 	


Our notation is generally standard. The articles [8,9] form good introductions
to computable field theory, and myriad other articles have contributed to the
area: [3,4,7,12,16] all have historical importance, while [5,10,11] describe related
recent work in the discipline.

2 Curves of Positive Genus

Proposition 1. Let f(Y,Z) = 0 define a curve over a field k of characteristic
0. If the genus of this curve is positive, then f = 0 has no solutions in the purely
transcendental field extension K = k(t1, t2, . . .) except those solutions within k
itself. (We say that f = 0 has no nonconstant solutions in K.)

Proof. A solution in K would lie within some subfield k(t1, . . . , tn), so we prove
by induction on n that no such subfield contains a nonconstant solution. For
n = 1, we can view the extension k(t1) as an algebraic curve of genus 0 over
k. If an extension k(y, z) (where f(y, z) = 0) lies within k(t1), with {y, z} �⊆ k,
then the Riemann-Hurwitz formula dictates that f = 0 must also have genus 0,
contradicting the hypothesis of the proposition.

For the inductive step, suppose y, z ∈ k(t1, . . . , tn+1) satisfy f(y, z) = 0. We
express y = g1

h1
and z = g2

h2
as rational functions of t1, . . . , tn over the field

k(tn+1) Of course, each of g1, g2, h1, h2 has finitely many nonzero coefficients in
that field, and the pairs (g1, h1) and (g2, h2) may be taken to have no common
factor. Having characteristic 0, k is infinite, so it must contain an element a such
that, when tn+1 is replaced by a, all of these coefficients remain nonzero and
no common factors are introduced. Substituting a for tn+1 in y and z yields a
solution to f = 0 in k(t1, . . . , tn). By inductive hypothesis this solution lies in
k, meaning that the original y and z did not involve any of t1, . . . , tn (since no
common factors arose to be cancelled when we made the substitution). But then
y and z were a solution to f = 0 in k(tn+1), hence must be a constant solution,
according to the base case of the induction. 	

Corollary 1. There is no uniform procedure for transforming a countable field
into an isomorphic countable field that decides its own transcendence relation T .

That is, there does not exist any Turing functional Ψ such that, for every
atomic diagram F of a countable field with domain ω (in the signature with just
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+ and ·), ΨF computes the atomic diagram, in the larger signature with +, · and
T , of a structure with reduct F and for which T is the (unary) transcendence
relation. The same holds with the (<ω-ary) algebraic independence relation I in
place of T .

Proof. Suppose Ψ were such a functional. Fix an irreducible curve with affine
equation f(Y,Z) = 0 of positive genus over Q, and let F be a presentation of the
field Q(y1, y2, y3, . . .)(z1), with {y1, y2, . . .} algebraically independent over Q and
f(y1, z1) = 0. Then ΨF must compute the atomic diagram of an isomorphic field
L with a transcendence relation T , say with isomorphism h : F → L. Therefore
T will hold of the 1-tuple h(y1) in the field L. Let σ be an initial segment of
the atomic diagram of F such that Ψσ ensures that T holds of h(y1) and that
f(h(y1), h(z1)) = 0 in L.

Now let E be a presentation of the field whose atomic diagram begins with σ.
However, the atomic diagram of E (beyond σ) specifies that y1 is in fact rational
itself, in some way consistent with σ, and thus that z1 is algebraic over Q in E. (It
may not be possible to make z1 rational too, as f = 0 will have only finitely many
solutions in Q, by Faltings’ proof of the Mordell Conjecture. However, there is
no difficulty in making z1 algebraic over Q.) The rest of E is then generated by
this portion and by elements y2, y3, . . . algebraically independent over Q, just as
in F .

Thus ΨE will build a field in which the domain element h(y1) is transcenden-
tal over Q (being thus specified by ΨE) and f(h(y1), h(z1)) = 0. However, E is
a purely transcendental extension of the field k = Q(z1), which is algebraic over
Q. By Proposition 1, E does not contain any solution to f(Y,Z) = 0 outside of
k, so every solution in E consists of elements algebraic over Q. This ensures that
E and the field with atomic diagram ΨE are not isomorphic as fields, proving
the Corollary. (The result for the relation I follows directly.) 	


3 Background on Algebraic Curves

Corollary 1 proved that there is no uniform method of taking a computable field
and producing a computable copy with a computable transcendence basis. Now
we wish to show that a single computable field can entirely fail to have a com-
putable copy with a computable transcendence basis. Indeed, we will establish
far more specific results, with detailed descriptions of the possible degrees of
transcendence bases in computable copies of the field. To do this, however, we
need to work with infinitely many curves of positive genus at once, as a single
curve will only allow our field to avoid being isomorphic to a single computable
field with computable transcendence basis.

Fortunately, an appropriate collection of curves has already been built. We
recall the following result from [11], as stated there.

Theorem 1 (Miller and Schoutens, Thm. 3.1 of [11]). There exists a
non-covering collection C of curves with the effective Faltings property, over a
computable ground field k.
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That is, C = {f0, f1, . . .} is an infinite set of smooth projective curves Ci with
corresponding affine equations fi ∈ k[X,Y ] such that:

– for each i, the function field k(fi) does not embed into k(C − {fi}); and
– the function i → fi(k) giving (a strong index for the finite set of) all solutions

of fi(X,Y ) = 0 in k2 is computable. (This is the effective Faltings property.)

In particular, the second item requires that each equation fi = 0 should have
only finitely many solutions by elements of k.

The specific example C given in [11] is in fact a collection of Fermat curves
fi = Xqi + Y qi − 1, for a fixed increasing computable sequence q0 < q1 < · · ·
of odd prime numbers. By Fermat’s Theorem, each has exactly two solutions
in k = Q, and the non-covering property for this C is established in [11]. It is
believed that many other computable sets of curves have the same property, but
rather than pursuing that question here, we will use this same set C. It should
be borne in mind that not all odd primes belong to the sequence 〈qi〉i∈ω. Indeed,
this sequence is quite sparse within the primes: each element is the least prime
qi+1 > (4(qi −1)(qi −2))2, with q0 chosen to be 5 (or any other odd prime except
3, which is ruled out because the genus of (Xd + Y d − 1) is (d−2)(d−1)

2 and we
need genera > 1).

For the rest of this article we fix these curves C0, C1, . . . with affine equations
f0, f1, . . . exactly as given here. The usefulness of Theorem 1 lies in the fact that it
enables us to adjoin to a ground field k (such as Q or Q) a transcendental element
x and then an element y satisfying fi(x, y) = 0 (so y is also transcendental)
without creating any transcendental solutions to any other fj in the new field
K = k(x)[y]/(fi). Indeed, our k might already have been built this way, with
pairs (x0, y0), . . . , (xi−1, yi−1) of transcendental solutions to f0, . . . , fi−1, say,
and the new (x, y) will not generate any solutions to any of f0, . . . , fi−1 that
were not already in k. This allows us to work independently with the distinct
polynomials fi and their solutions, and avoids the need for priority arguments
and the like.

It should be noted that Q(xi)[yi]/(fi) actually contains eight solutions to
fi(X,Y ) = 0. Two are the trivial solutions (0, 1) and (1, 0), which we can always
recognize and ignore. Then the solution (xi, yi) generates (−xi

yi
, 1

yi
), (−yi

xi
, 1

xi
),

and the transpositions of these three. Moreover, we will sometimes work over
the algebraic closure Q instead of Q, and in this case we get 6q2i nontrivial
solutions from (xi, yi), since for a primitive qi-th root θ of unity, (xiθ

j , yiθ
k) will

be another solution. (There will also be plenty of non-transcendental solutions
within Q, of course.) However, it was shown by Leopoldt [6] and Tzermias [15]
that no further transcendental solutions will exist; this result is also used in [11],
appearing there as Theorem 4.4.

4 Examples of Degree Spectra

Our initial goal was to produce a computable field such that no computable copy
of the field has a computable transcendence basis. In fact, we will give a much
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more specific answer to the question, using the well-established notion of the
degree spectrum of a relation.

Definition 1. For a computable structure A and a relation R on A, the Turing
degree spectrum of R on A is the set of all Turing degrees of images of R in
computable structures isomorphic to A:

DgSpA(R) = {deg(g(R)) : g : A → B is an isomorphism onto a computable B}.
In many contexts this definition is restricted to n-ary relations R, but it applies
equally well to finitary relations, i.e., those defined on all finite tuples from
(A)<ω, of arbitrary length.

Notice first that both the (unary) transcendence relation T on a computable
field and the (finitary) relation I of algebraic independence are definable in the
field by computable infinitary Π0

1 formulas. Therefore, in every computable field
F , both T and I will be Π0

1 sets, hence of c.e. Turing degree. This places an upper
bound on the complexity of the degrees in DgSpF (T ) and DgSpF (I), since all
such degrees must be ≤T 0′. Even below that bound, it also rules out a number
of further candidates, namely those degrees that do not contain any c.e. set. (We
call these properly Δ0

2 degrees, meaning that they are Δ0
2 but not Σ0

1 .)
Our ultimate goal is to know the degrees of the transcendence bases in the

various computable copies of F . Recall, however, that these are precisely the
degrees ≥T deg(I). Thus, once one knows the Turing degree of I in a particular
computable copy of the field, one knows all the degrees of transcendence bases
in that copy, and so we view DgSpF (I) as a reasonable answer to the question.

Our first example shows that, for a fixed computably enumerable Turing
degree c, the relations T and I can both be intrinsically of degree c. This term
was used in [2], in which Downey and Moses showed that the relation of adjacency
in a computable linear order can be intrinsically of degree 0′. Subsequently,
Downey, Lempp, and Wu showed in [1] that the only degrees c for which the
adjacency relation can be intrinsically of degree c are c = 0′ and (if the adjacency
relation is finite) c = 0. Therefore Theorem 2 distinguishes the situation for
transcendence and for independence in fields from that of adjacency in linear
orders.

Theorem 2. For each computably enumerable Turing degree c, there exists a
computable field F for which the spectrum of the transcendence relation T and
of the independence relation I are both the singleton {c}.
Proof. Fixing a computable enumeration 〈Cs〉s∈ω of a c.e. set C ∈ c, we can
describe the isomorphism type of our field quickly. For every i /∈ C, it will contain
a transcendental element xi (over the ground field Q) and an additional element
yi with fi(xi, yi) = 0. Moreover, these elements xi will form a transcendence
basis, as i ranges over C. For each i ∈ C, the field will contain elements called
xi and yi, again satisfying fi(xi, yi) = 0, but this xi will lie within Q, making
yi algebraic over Q. These xi and yi (for all i ∈ ω) will generate the field. (The
choice of which rational number equals xi, for i ∈ C, will depend on the least s
with i ∈ Cs.)



Degree Spectra for Transcendence in Fields 211

Next we give a computable presentation F of this field. At stage 0, F0 consists
of a finite substructure of the field Q (with the operations viewed as relations,
so that it makes sense for Q to have a finite substructure). At stage s + 1, we
add elements xs and ys to Fs, along with as many new elements as are needed
in order for the relational atomic diagram of Fs+1 to specify that fs(xs, ys) = 0
(but without making xs itself algebraic over Fs). Then, for the least i ≤ s (if any)
such that i ∈ Cs and we have not yet acted on behalf of i, we add enough new
elements to Fs+1 and define the operations on them to make xi lie within Q (in a
way consistent with Fs, of course: nothing in the atomic diagram should ever be
redefined). This must be possible, since xi has been treated as a transcendental
up until this stage. Finally, we take another step to close F under the field
operations, adding another element and extending the relations in Fs+1 in a way
consistent with the principle that the set

{xi : i ≤ s & we have not yet acted on behalf of i}
should form a transcendence basis for Fs+1. That is, we make sure not to create
any algebraic relations involving these xi’s, and all new elements added to the
field are generated by {xi, yi : i ≤ s}. This is the entire construction, and it is
clear that it does ultimately build a computable field F = ∪sFs. Furthermore,
{xi : i /∈ C} will indeed be a transcendence basis for F , and every xi with i ∈ C
will lie within Q in the field F .

We now argue that for every computable field E ∼= F , the transcendence
relation T and the independence relation I on E have T ≡T I ≡T C. First,
given a C-oracle, we enumerate a transcendence basis for F by collecting, for
each i /∈ C, the first coordinate of the first pair (x, y) that we find in E2 for
which fi(x, y) = 0 �= xy. (This pair is not unique, as mentioned in Sect. 3, but
the six possible x-values are pairwise interalgebraic.) By the construction, this
enumerates a transcendence basis B for F , hence computes one, by Lemma 1,
and from B we can compute I and T .

To show that C ≤T T , we claim that i ∈ C just if there exists a pair (x, y)
of elements of E with x ∈ T and fi(x, y) = 0 in E. (Thus C is ΠT

1 , as well as
Σ1.) Indeed, for i /∈ C, the isomorphic image in E of the elements (xi, yi) from
F will be such a pair. For the converse, suppose i ∈ C. Then xi and yi were
made algebraic at some stage in the construction of F , and by Theorem1 with
k = Q(yi : i ∈ C) ⊆ F (which is the subfield containing all elements algebraic
over Q), the function field of the collection {fj : j /∈ C} over k does not contain
any nontrivial solution to fi = 0. This function field is isomorphic to F itself, so
we have C ≤T T . 	


Theorem 2 answers the initial question posed above. Theorems 3 and 4 will
provide further examples.

Corollary 2. There exists a computable field F such that no computable field E
isomorphic to F has a computable transcendence basis, nor even a computable
transcendence relation. 	


Our next example shows that the relations T and I can also intrinsically
compute a c.e. degree c, in the sense that the spectra of T and I can equal the
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upper cone above c (subject to the restriction that these spectra only contain
c.e. degrees). Once again, this parallels a result of Downey and Moses in [2] for
linear orders. In Corollary 3 below, we will generalize this result to all Δ0

2 degrees
c, which is not known (to us) to be possible for adjacency on linear orders.

Theorem 3. For each computably enumerable Turing degree c, there exists a
computable field F for which the spectrum of the transcendence relation T and
of the independence relation I are both

DgSpF (T ) = DgSpF (I) = {d ≥ c : d is a c.e. degree}.

Proof. Fix some c.e. set C ∈ c, with a computable enumeration 〈Ct〉t∈ω by finite
nested sets Ct. The field F for this degree is the field

F = Q(xk)[yk]/(fk(xk, yk)),

with k ranging over the set C ⊕ ω. That is, F has the algebraic closure Q

as its ground field, and contains an algebraically independent set {x2i : i ∈
C} ∪ {x2j+1 : j ∈ ω} of elements, along with corresponding elements y2i and
y2j+1 that “tag” the individual x-elements by forming solutions to f2i = 0 or
f2j+1 = 0. (The reason for the odd-indexed elements x2j+1 will become clear
below: they will give us the upward closure we desire.)

To see that F has a computable presentation, start building a computable
copy of Q, with only finitely many elements added at each stage. At stage s+1,
we add new elements xs and ys to the field, with fs(xs, ys) = 0, and treat xs

as a transcendental over all previously existing field elements. For odd values
s = 2j + 1, we simply continue at each subsequent stage to build the field,
with xs remaining transcendental. For even s = 2i, at each subsequent stage
t > s+1, we check whether i ∈ Ct. As long as i /∈ Ct, we simply add to the field
the next element generated by xs, continuing to treat xs as transcendental over
the preceding elements. However, for the first t (if any) with i ∈ Ct, we switch
strategies and make xs a rational number, finding some way to do this that is
consistent with the finite portion of the atomic diagram of F that has already
been defined. Of course, this also makes ys algebraic over Q, though not rational.
This enlarges our presentation of the ground field Q, of course, but since only
finitely much of Q had been built so far, it is easy to incorporate xs and ys into
it and to continue building Q, including them, at each subsequent stage.

Now for any computable field E ∼= F , with transcendence relation T , we can
compute C from T . Indeed, by Theorem1, a number i lies in C if and only if E
contains transcendental elements x and y such that f2i(x, y) = 0, so C is ΣT

1 ,
while C is Σ1. Thus DgSpF (T ) contains only degrees above c, and these must
all be c.e. degrees, as the relation T is definable in F by a computable infinitary
Π0

1 formula. The same analysis applies to the independence relation I.
To prove the reverse inclusion, let d be any c.e. degree that computes c,

and fix some c.e. set D ∈ d with computable enumeration 〈Ds〉s∈ω. We build
a specific computable copy E of F in which T ≡T I ≡T D, by a process quite
similar to the above construction of F itself. E includes a copy of Q, built slowly,
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with only finitely many elements added at each stage. Once again, the even-
indexed x2i and y2i are added at stage 2i and treated as transcendental until i
enters C, at which point x2i becomes rational. The odd-indexed elements x2j+1

and y2j+1 are added at stage 2j + 1 and treated as transcendental until (if ever)
we reach a stage s with j ∈ Ds. If such a stage occurs, then this x2j+1 is made
rational at that stage (in the same way as with x2i if i enters C), and we adjoin
to the field new elements x′

2j+1 and y′
2j+1, again with x′

2j+1 transcendental over
all existing elements of F and with f2j+1(x′

2j+1, y
′
2j+1) = 0. These new elements

will forever remain transcendental over the ground field Q, and the original x2j+1

and y2j+1 have now been “swallowed up” by Q. Thus the E built here is indeed
isomorphic to F , and is a computable field. However, from the transcendence
relation T on F , we can compute D, since j ∈ D if and only if the original x2j+1

lies in T . Conversely, from a D-oracle we can decide whether x2j+1 will ever be
swallowed up by Q or not, and also (since C ≤T D) whether x2i will remain
transcendental in E or not. Thus T ≡T D, and so d ∈ DgSpF (T ).

The same argument also shows that d ∈ DgSpF (I), since the elements xs

that stay transcendental forever form a transcendence basis for E, from which
we can compute the independence relation. It should be remarked here, as in
Sect. 3, that the first transcendental solution to fk = 0 that one finds in E will
only be one of the 6q2i such solutions, but in enumerating a transcendence basis,
it is safe to choose the first coordinate of the first transcendental solution we find,
and then to ignore all other solutions to the same fk, as their coordinates are
all either in Q or interalgebraic with the coordinate we chose. In fact, since the
automorphism group of E acts transitively on these solutions, there is nothing
to distinguish one such choice from another. 	


Our next result suggests that many spectra of transcendence relations can be
viewed as upper cones of enumeration degrees. To be clear, the spectrum is still
a set of Turing degrees, by definition, but the defining property of the spectrum
may be the ability to enumerate a particular set. (It remains true that only c.e.
degrees may lie in DgSpF (T ), although other Turing degrees may enumerate the
same set. So the spectrum will never truly be an upper cone of e-degrees.)

Theorem 4. Let S be any Σ0
2 subset of ω. Then there exists a computable field

F such that

DgSpF (T ) = DgSpF (I) = {c.e. degrees d : S ∈ Σd
1 }.

That is, DgSpF (T ) contains exactly those c.e. degrees that have the ability to
enumerate S.

Proof. Since S is Σ0
2 , there exists a computable total “chip function” h : ω → ω

such that S = {n : h−1(n)is finite}. The field F we use for this set is the field

F = Q(xk)[yk]/(fi(xk, yk)),

with k ranging over the set S ⊕ ω, much as in Theorem 3 but using the set S
itself instead of its complement.
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To give a computable presentation of F , we start building a copy of the
field Q(xk)[yk]/(fk(xk, yk)) with k ranging over all of ω, so that every xk is
initially treated as a transcendental. For odd k = 2j +1, xk stays transcendental
throughout this construction. For even k = 2i, we write x2i,0 = x2i for the initial
element described above. At each stage s + 1, we check whether h(s) = i. If not,
then we keep x2i,s+1 = x2i,s and continue to treat it as a transcendental. If
h(s) = i, however, then we suspect that i might not lie in S (since h−1(i) might
turn out to be infinite). In this case we make the current x2i,s into a rational
number, consistently with the finite portion of the atomic diagram of F built
so far, and thus make y2i,s algebraic. We then adjoin new elements x2i,s+1 and
y2i,s+1 to F , treating x2i,s+1 as transcendental and setting f2i(x2i,s+1, y2i,s+1) =
0. We continue building Q as the ground field, now incorporating the old x2i,s

and y2i,s into it, and continuing closing F itself under the field operations, but
always adding only finitely many new elements at each stage. This completes
the construction, and it is clear that f2i(X,Y ) = 0 will have a solution by
transcendental elements in F just if h−1(i) is finite, which is to say, just if i ∈ S.
The rest of the construction then makes it clear that the field we have built is a
computable copy of the field F described above.

Given any computable field E ∼= F , let T be the transcendence relation on
E. Then, given a T -oracle, we may search in E for a solution to f2i(X,Y ) = 0
using transcendental elements x and y. If we find one, then by the definition of
F we know that i ∈ S. Conversely, if i ∈ S, then such a solution exists, and we
will eventually find it. Thus S is c.e. relative to the degree d of T , as required.

Conversely, fix any c.e. degree d such that S is Σd
1 , and fix a c.e. set D ∈ d

and a computable enumeration of it. Also fix an index e such that S = WD
e =

dom(ΦD
e ); we will use this below to give a computable chip function for S, similar

to that used in the original computation of F but specific to this D. To build a
computable copy E of F whose transcendence relation T satisfies T ≡T D, we
use the strategy from Theorem 3. The elements x2i,0 and y2i,0 are defined and
initially treated as transcendentals. However, at each stage s + 1, the current
x2i,s and y2i,s are made into algebraic elements and replaced by new elements
x2i,s+1 and y2i,s+1 unless ΦDs

e,s(i)↓ with some use u such that Ds+1�u = Ds�u.
This is our new chip function for S: if i ∈ S = dom(ΦD

e ), then there will be some
s0 such that we keep x2i,s0 transcendental at all stages ≥ s0; whereas if i /∈ S,
then for every stage s + 1 at which ΦDs

e,s(i) ↓ with a use u, there must be some
t > s with Dt�u �= Ds�u, so that x2i,s will be made algebraic at stage t + 1 and
replaced by a new x2i,t+1.

We also revamp the construction for the odd-indexed elements x2j+1 and
y2j+1, using exactly the same process as in the proof of Theorem 3. If we ever
reach a stage at which j enters D, then we turn x2j+1 into a rational number,
consistently with the construction so far, and adjoin a new transcendental x′

2j+1

and corresponding y′
2j+1 with f2j+1(x′

2j+1, y
′
2j+1) = 0 in E. This completes the

construction of E, which is clearly a computable field and isomorphic to F .
Now from an oracle for the transcendence relation T on E, we can determine

whether x2j+1 is algebraic in E or not, thus deciding whether or not j ∈ D.
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Thus D ≤T T . For the reverse reduction, we claim that with a D-oracle we
can enumerate a transcendence basis B for E, thus deciding the independence
relation I on E, which in turn computes T . This will prove I ≡T T ≡T D as
required. The D-oracle allows us to decide, for each j, whether j ∈ D, from
which we determine either that x2j+1 lies in B (if j /∈ D) or that x′

2j+1 does (if
j ∈ D, in which case we identify x′

2j+1 by waiting for a stage at which j has
entered D). Next, for each i, we watch for a stage s at which ΦDs

e,s(i)↓ with a use
u such that Ds�u = D�u. The D-oracle allows us to check this, and if we ever
find such an s, then we enumerate x2i,s+1 into our basis, since the computable
enumeration of D will never again change below u. (This is where our argument
would fail if d were a properly Δ0

2 degree, rather than a c.e. degree. With only
a computable approximation to D, we could not be sure whether Ds� u would
ever again change, even knowing that Ds�u = D�u.) Thus we have enumerated
exactly the set of elements xk given when we first defined the isomorphism type
of F above, and this set is a transcendence basis for E. 	

Corollary 3. Let c be any Δ0

2 Turing degree. Then there exists a computable
field F such that

DgSpF (T ) = DgSpF (I) = {c.e. degrees d : c ≤T d}.

In particular, both DgSpF (T ) and DgSpF (I) can fail to contain a least degree.

The condition of not containing a least degree also holds for many of the spectra
given in Theorem 4. In particular, if no set A′ (with A c.e.) is 1-equivalent to
S, then the spectrum has no least degree, as deg(D) ∈ DgSpF (T ) if and only
if S ≤1 D′. The proof uses the Sacks Jump Theorem (see [13], or [14, Thm.
VII.3.1]), to avoid the upper cone above a hypothetical least degree.

Proof. Fix a set C ∈ c, and apply Theorem4 to the Σ0
2 set S = C⊕C. The ability

to enumerate S is exactly the ability to compute C, so the corollary follows. (To
avoid having a least degree in the spectra, just choose a degree c ≤ 0′ that is
not c.e. and has no least c.e. degree above it.) 	


Corollary 3 extends Theorem 3 to the Δ0
2 degrees. The result can be viewed

as an upper-cone result, but in a somewhat odd way. If the c in the corollary is
c.e., then the corollary merely repeats Theorem3. If c is Δ0

2 but not c.e., then the
degree spectrum is the restriction of the upper cone above c to the c.e. degrees,
and therefore does not contain the base degree c itself, nor any other non-c.e.
degree ≥T c.
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Abstract. Classic results in computability theory concern extensional
results: the behaviour of partial recursive functions rather than the pro-
grams computing them. We prove a generalisation of Rice’s Theorem
concerning equivalence classes of programs and show how it can be used
to study intensional properties such as time and space complexity. While
many results that follow from our general theorems can - and have - been
proved by more involved, specialised methods, our results are sufficiently
simple that little work is needed to apply them.

1 Introduction

Rice’s Theorem [17] states that any non-trivial extensional set of programs is
undecidable. This generic formulation allows to prove undecidability of a variety
of sets e.g. “programs that, on input 0, return 42”, “programs that compute a
bijection” or “programs that compute a non-total function”.

Rice’s Theorem showcases a fundamental dichotomy between programs and
the partial functions they compute: it gives an undecidability criterion for sets
of programs, but these sets are defined by the functions computed by the pro-
grams. Underlying this dichotomy and the Theorem is the notion of extensional
equivalence: “two programs are equivalent iff they compute the same function”.
Rice’s Theorem is, quintessentially, that this equivalence relation is undecidable.

After 60 years, scant research has investigated intensional analogues of Rice’s
Theorem: undecidability results concerning how programs compute rather than
what they compute. One exception is Asperti’s work on complexity cliques [1]
that, roughly, considers two programs equivalent if they compute the same func-
tion with comparable (up to big-Θ) complexity, and proceeds to prove Rice-
like theorems for this equivalence relation. In a different vein, several classic
results such as the Rice-Shapiro [14,18] and Kreisel-Lacombe-Shoenfield/Tseitin-
Moschovakis Theorems [10,11,20,21] consider what is essentially continuity
properties on appropriate metric spaces to characterize the semi-decidable prop-
erties of partial recursive functions, and decidable properties of total recursive
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functions, respectively. In recent work, Hoyrup et al. [4–6] have investigated topo-
logical characterizations of (semi-)decidable sets under different representations,
remarkably including results for the class of primitive recursive functions [4]. Our
current work considers programs as the representations of choice, rather than
the (partial) functions computed by programs (i.e., we use what is sometimes
called the “Markov” approach in the literature); while some of our techniques
are clearly topological in nature, and thus related to Hoyrup’s recent results,
we are more interested in (a) the interplay between equivalence relations on
the set of programs–not just extensional equivalence–, and (b) (semi-)decidable
over-approximations of such equivalence classes.

Contribution: We generalise Rice’s Theorem in two ways: The first generalisa-
tion (Theorem 2) only asks that the studied sets accept all programs computing
one given function, but has no condition on programs computing other functions
(which may or not be in the set); The second generalisation (Theorem3) imposes
very general conditions on equivalence relations (via so-called switching fami-
lies), and can be used to prove several well-known results traditionally proved
by specialized methods. While Theorem 2 is a corollary of Theorem3, Theorem 2
is perhaps more accessible when wanting to prove simple (un)decidability results,
whence we give separate proofs.

Our results shed light on the problems with over-approximations in the field
of implicit computational complexity: For example, one may want a procedure
that accepts all polynomial-time programs and “a few” exponential-time pro-
grams. But our results can be applied to show that over-approximations are
patently not viable: there will, necessarily, always be many bad eggs and there
will always be extremely bad eggs.

2 Preliminaries and Notation

We assume an unspecified, Turing-complete, programming language and denote
by P the set of all programs in the language1). We assume the language has
a single datatype D, typically D = N or D = {0, 1}∗, and assume appropriate
computable encodings of elements of N , P, finite sets, and finite strings of sym-
bols as elements of D. We denote by φp : D ⇀ D the partial function computed
by p ∈ P, and for any partial function f : D ⇀ D, we denote by Pf the set of
all programs computing function f . We write φp (x) = ⊥ to denote that p does
not terminate on input x. By Turing completeness of P, we assume computable
pairing and unpairing functions such that partial functions φp may informally be
considered to have type Dm ⇀ Dk for any m, k ∈ N . By Turing completeness,
we further assume wlog. the existence of a fixed universal program that allows
simulation of all other programs in P, and that the s-m-n Theorem holds. As
usual [7] in examples, we shall freely use informal vernacular such as “loop” and
appropriate pseudocode with the understanding that this is to be interpreted in

1 For the technical development, we need only assume P to be r.e. but morally we are
interested in concrete programming languages where P will always be a decidable
set.
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P. When S is a countable set (suitably encoded by elements of D, we denote by
RECS and RES the sets of decidable, resp. r.e. subsets of S, usually suppressing
S in the notation if S is clear from the context).

We refer to [3] for basic definitions of Blum complexity. With the notation of
the current paper (assuming a standard encoding of elements of N as elements
of D), a map Φ from P to P is (the complexity function of) a Blum complexity
measure if (i), for every p ∈ P and every n ∈ N , φΦ(p)(n) �= ⊥ iff φp(n) �= ⊥,
and (ii) the ternary predicate Φ(p)(n) = m on P ×N ×N is dedidable. As usual,
for two partial functions f, g : N ⇀ N , we write f ∈ O(g) if there are m, c ∈ N
such that for all n ≥ m, g(n) �= ⊥ implies f(n) ≤ cg(n); and we write f ∈ Θ(g)
if f ∈ O(g) and g ∈ O(f).

We shall use a straightforward abstraction of Smullyan’s notion of recursively
separable sets [19]: Let S be a family of subsets on a set W, and let A,B ⊆ W.
Set A is said to be S-separated from B if there is a set C ∈ S such that A ⊆ C
and B ∩C = ∅. If no such C exists, A is said to be S-inseparable from B. A and
B are said to be S-separable if A is S-separated from B, or B is S-separated
from A. If A and B are not S-separable, they are said to be S-inseparable.
The standard example of a family S and S-inseparable sets is S = REC–the
family of all decidable sets; A and B are S-(in)separable iff they are recursively
(in)separable. The classic example of two specific recursively inseparable sets are
A =

{
p : φp (0) = 0

}
and B =

{
p : φp (0) /∈ {0,⊥}

}
(see, e.g., [16, Sec. 3.3])

for proof of the following.

3 Rice’s Theorem and the Rice Equivalence Relation

In the below definition, the notions of intensionally complete, extensionally
sound, complete and universal are new, but completely natural and straight-
forward.

Definition 1. Let P ⊆ P and F be a non-empty set of partial recursive func-
tions f : D ⇀ D. We say that P is (i) non-trivial if P /∈ {∅,P}; (ii) extensional
if (p ∈ P) ∧ (q /∈ P) implies φp �= φq; (iii) intensionally complete for F if
PF ⊆ P (i.e., P contains all programs computing a function in F and is thus
an over-approximation of PF ); (iv) extensionally complete for F if F ⊆ φP (i.e.
P contains at least one program computing each function in F : (v) extensionally
sound for F if φP ⊆ F (i.e. P contains only programs computing functions in
F and is thus an under-approximation of PF ); (vi) extensionally universal if it
is extensionally complete for the set of all partial recursive functions.

Note that a set P intensionally complete for F does not need to be exten-
sional, and thus functions not in F may be computed by both programs in, and
not in, P. An example: “the set of programs that contain a loop” is intensionally
complete for the set F = {x �→ ⊥} where x �→ ⊥ is the nowhere defined partial
function (because programs without loops always terminate). Note that this set
of programs is non-trivial and decidable.

Typical examples of extensionally sound and complete P found in the litera-
ture are for subrecursive classes F , e.g., Bellantoni-Cook style characterizations
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of the set of polynomial-time computable functions [2]; extensionally sound and
complete P are informally known as characterizations of F in the field of implicit
computational complexity. Rice’s Theorem is:

Theorem 1 (Rice [17]). Any (non-trivial) extensional set of programs is unde-
cidable.

Theorem 1 is limited to extensional properties: it is does not yield any infor-
mation about intensional sets of programs, that depend on the actual program
behaviour. That is, it provides undecidability results on “what is computed?”,
but is unable to provide undecidability results on “how is it computed?”.

The extensionality central to Rice’s Theorem defines an equivalence relation
between programs:

Definition 2 (The Rice Equivalence Relation). The Extensional Equiv-
alence Relation, or Rice Equivalence Relation is R ⊆ P × P, defined by:
pRq ⇔ φp = φq.

Thus “two programs are R-equivalent iff they compute the same function”, an
extensional set of programs is exactly the union of equivalence classes of the
Extensional Equivalence Relation R.

The set of equivalence relations (or, equivalently, partitions) on a set has a
useful order structure, the refinement ordering. The refinement order � is defined
by ≡0�≡1 iff x ≡0 y implies x ≡1 y (i.e., each class of ≡0 is a subset of a class
of ≡1). Rice’s Theorem may hence be restated as: any (non-trivial) equivalence
relation ≡� D × D with R �≡ is undecidable.

We shall momentarily generalise Rice’s Theorem by utilizing the view of
Rice’s Theorem as a result on equivalence classes. First, we shall require the tar-
get set to simply contain some classes of R, and not necessarily to be exactly the
union of these (partial extensionality); second, we shall consider what happens
if we completely change the equivalence relation and use some other equivalence
than R. We first re-cast Asperti’s result from [1] purely in terms of equivalence
relations.

Definition 3 (The Asperti Equivalence Relation). The Asperti Equiva-
lence Relation A ⊆ P × P is defined by pAq ⇔ φp = φq ∧ Φ(p) ∈ Θ(Φ(q)).

That is, “two programs are equivalent iff they compute the same function with
the same complexity”. A is exactly Asperti’s “similarity” [1, Def. 3, Thm. 4], and
unions of equivalence classes of A are exactly Asperti’s “complexity cliques” [1,
Def. 5, Thm. 8]. We can then reformulate the main result of [1] (the “Asperti-Rice
Theorem”) as: any equivalence relation ≡� D × D with A �≡ is undecidable.

The set of equivalence relations on P equipped with � forms a complete lat-
tice [15] whose minimal element, ⊥, is (syntactic) equality, and whose maximal
element, �, is the trivial equivalence with a single class (where every program
is equivalent to every other program). In the vernacular of lattice theory, Rice’s
Theorem is then: an equivalence relation ≡0 in the principal filter of R is decid-
able iff ≡0= �, and the Asperti-Rice Theorem is: an equivalence relation in the
principal filter of A is decidable iff ≡0= �.
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The fact that these results are so cleanly expressed with order-theoretic
vocabulary is a clue that the study of the lattice of equivalence relations on
programs can shed some light on the extensional/intensional dichotomy [13].
However, to obtain a more general result, one must prove undecidability of equiv-
alence relations not in the principal filter at either R or A. We now proceed to
do so.

4 Intensionality I: A Simple Generalisation of Rice’s
Theorem

We now consider sets P that are not unions of classes of R (i.e., extensional sets),
but instead contain some equivalence classes (i.e., P will be an intensionally
complete set). Our first main result is:

Theorem 2. Any non-empty, decidable set of programs that is intensionally
complete for a non-empty set F of partial recursive functions, is extensionally
universal.

Proof. Let f be a computable function and let P be a decidable set of programs
that is intensionally complete for {f}. Let p be a program computing f : φp = f ,
thus p ∈ P. Assume, for contradiction, that P is not extensionally universal.
Then there is a program q such that no program computing the same function
is in P: φs = φq ⇒ s /∈ P. Now, for every program r, construct program r′

which, on input x, works as follows: r′ first simulates program r on input 0; if
it terminates, then (i) if the result is 0, r′ simulates p on input x; otherwise (ii)
if the result is not 0, r′ simulates q on input x (end of description of r′).

Note that by Turing-completeness of P, given r, r′ is effectively computable
(in informal syntax, r′ is essentially the program if r(0)=0 then p(x) else
q(x)).

– If φr (0) = 0, then φr′ = φp, hence because P is intensionally complete for
f = φp, r′ ∈ P.

– If φr (0) �= 0 but it does terminates, then φr′ = φq, and hence r′ /∈ P by
hypothesis.

Now, consider the set C = { r : r′ ∈ P }. As P is decidable (by hypothesis)
and r′ is effectively computable from r, then C is decidable. But by the above
observations { r : φr(0) = 0 } ⊆ C, and { r : φr(0) /∈ {0,⊥}} ∩ C = ∅. How-
ever, these sets cannot be recursively separated. Hence, C cannot be decidable,
and we obtain a contradiction. ��

Note that, contrary to Rice’s Theorem, Theorem2 only requires the set of
programs to be non-empty rather than non-trivial—indeed, the trivial set of all
programs is certainly decidable, intensionally complete and extensionally uni-
versal. Also observe that Theorem 2 holds more information than simply “the
set of all programs computing some computable partial function is undecidable”:
every decidable over-approximation of such a set must, for every partial recursive
function f , contain at least one (but not necessarily all) program(s) computing
f .
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Fig. 1. Extensionally universal over-
approximation.

Theorem 2 creates a “deadlock”
for attempts to devise program-
ming languages that attempt to over-
approximate subrecursive classes, e.g.,
the polynomial-time computable func-
tions. This is illustrated in Fig. 1,
where any over-approximation will
contain programs computing the
Ackermann function, or winning the
Hydra game [9].

Theorem 2 has several corollaries:

Corollary 1. The following hold:

Rice’s Theorem: Any (non-trivial) extensional set of programs is undecidable.
The Rice-Asperti Theorem: Any equivalence relation ≡� P × P with A �≡

is undecidable.
All ICC characterisations are intensionally incomplete: Any proper sub-

set of P that is intensionally complete and extensionally sound for some non-
empty set F of partial functions is undecidable.

Proof. We prove each part in turn:

– Let P be an extensional decidable set of programs. If P = ∅, then it is trivial.
Otherwise, by definition, any extensional set is intensionally complete. Hence,
by Theorem 2, P is extensionally universal. Let p ∈ P and q be any program.
Because P is extensionally universal, there exists q′ with φq = φq′ and q′ ∈ P.
Because P is extensional, any program that computes the same function as
q′ is also in it. Especially q ∈ P.
Hence, P = P, and P is thus trivial.

– Observe that “extensional” in the previous argument is equivalent to stating
P is union of equivalence classes of R. The argument can now be repeated,
replacing R by A, mutatis mutandis (observing that r′ has the same com-
plexity as either p or q up to the constant factor Φ(r)(0)).

– Let P ⊆ P be intensionally complete and extensionally sound for F . If P
is decidable, so is the complement P \ P. As P is a proper subset of P,
then P \P �= ∅, and as P is extensionally sound for F , P \P is extensionally
complete for the set of partial recursive functions not in F , and this set is non-
empty (otherwise, P would be extensionally complete for the set of all partial
recursive functions, and as it is also intensionally complete, we would have
P = P). Then, Theorem 2 applied to P \P yields that P \P is extensionally
universal, and hence contains at least one p such that φp ∈ F , contradicting
intensional completeness of P.

��
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5 Intensionality II: A General Theorem

Theorem 2 concerns extensionality: it speaks of sets of programs determined by
the function they compute, no matter how they compute it. This limitation is
set in stone by the use of R, whence one should properly parameterise the result
over the equivalence relation used. However, changing the equivalence relation
must be done cautiously as some equivalence relations on programs are decidable
(e.g., “having the same number of lines of code”).

In order to replace R by other suitable equivalence relations, we adapt our
vocabulary as follows:

Definition 4. Let F be an equivalence relation on a set S and let {F1,F2, . . .}
be the set of its equivalence classes. A subset P of S is (i) partially compatible
with an equivalence class Fk if Fk ⊆ P; (ii) complete for a set F of equivalence
classes if, for each class Fk ∈ F , we have P∩ Fk �= ∅; (iii) sound for a set F of
equivalence classes if P ⊆

⋃
Fk∈F Fk; (iv) universal (for F) if it is complete for

F.

The primary means of using our second main result (Theorem3 below) is
to construct a family of (typically, but not necessarily computable) maps called
switching functions that interact appropriately with two sets S and T (where
typically T = P) and an equivalence relation on T .

Definition 5. Let S and T be sets and ≈ an equivalence relation on T . Let
S ⊆ P (S) and T ⊆ P (T ) be families of subsets of S and T . A switching
function is a total function π : S → T . It is S-T -continuous if the reverse image
of any set in T is in S: ∀T ′ ∈ T , π−1(T ′) ∈ S. If F,G are sets of equivalence
classes of ≈, An F -G-switching family is a family of switching functions I =
(πa,b)(a,b)∈(∪F )×(∪G).

Let (a, b) ∈ (∪F )× (∪G). Define the sets Aa,b = { x ∈ S : πa,b(x) ≈ a } and
Ba,b = { x ∈ S : πa,b(x) ≈ b }. An F -G-switching family is S-F -G-intricated
with ≈ if, for each pair of elements (a, b) ∈ (∪F ) × (∪G) such that there is a
T ′ ∈ T with Aa,b ⊆ π−1

a,b(T
′), Aa,b is S-inseparable from Ba,b.

Observe that if Aa,b∩Ba,b �= ∅, then Aa,b and Ba,b are S-inseparable. Thus, it
suffices to check a-b- S-intrication for a, b where Aa,b and Ba,b are disjoint. Note
in particular that if a ≈ b then Aa,b and Ba,b are the same and hence cannot be
S-separated. Observe that there may be elements in S that are neither in Aa,b

nor in Ba,b, i.e., πa,b(x) is not equivalent to a and not equivalent to b.

Example 1 (Standard Switching family). Let S = T = P. The standard switch-
ing family is: πp,q(r)(x) = r′(x) � if r(0)=0 then p(x) else q(x)

– Each function in the family is REC-REC-continuous. Indeed, let D be a
decidable set, to decide if x ∈ π−1

p,q(D), it suffices to compute πp,q(x) and
decide πp,q(x) ∈ D, which is clearly possible as each function in the family is
computable.
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– For any non-empty sets F,G of equivalence classes of R (πa,b)(a,b)∈(∪F )×(∪G)

is REC-F -G-intricated with R. Indeed, for any p, q ∈ P with φp �= φq we
have Ap,q =

{
r : φπp,q(r) = φp

}
. From the proof of Theorem 2 we know that

Ap,q = { r : r(0) = 0 } and similarly Bp,q = { r : r(0) /∈ {0,⊥}}, and these
sets are recursively inseparable. Hence, if p ∈ ∪F and q ∈ ∪G, the result
follows (if ∪F = ∪G there is nothing to prove).

– REC-intrication also implies, for example, Ptime-intrication as every Ptime
set is decidable. Similarly, for any non-empty F,G, the standard switching
family is REC-intricated with A.

Example 2 (Hyperconnectedness in topological spaces). Let (S,S) and (T, T ) be
topological spaces, and let ≈ be any equivalence relation on S such that the
quotient topology S/ ≈ is hyperconnected (i.e., no two non-empty open sets are
disjoint). Let g : S/ ≈→ T be continuous. Then, for any non-empty sets F,G
of equivalence classes of ≈, the switching family (πa,b)(a,b)∈(∪F )×(∪G) defined by
πa,b = g for any (a, b) ∈ S×S is S/ ≈-intricated with ≈ (because g is continuous,
and no two non-empty open sets of S/ ≈ are disjoint).

The next example shows a switching family where S �= T . We first introduce
the following equivalence relations.

Definition 6. Let f, g be partial recursive functions. We write f � g, iff they
differ only on a finite set of inputs: f � g ⇔ { x : f(x) �= g(x) } is finite. The
equivalence relation �⊆ P × P is defined by p � q iff φp � φq Let s ∈ P. The
equivalence relation �s⊆ P × P is defined by p �s q iff either φp = φq = φs, or
( φp, φq �= φs and p � q).

Example 3 (A Rice-Shapiro family). Let S = P × N and T = P. Define, for
each (r, n) ∈ P × N and p, q ∈ P, a switching function as follows: The program
sr,n = πp,q(r, n), on input k runs r on input n for k steps. If r halts on n in at
most k steps, the program returns q(k), and otherwise returns p(k).

– Each function in the switching family is RE-RE-continuous: Let T ′ be any
r.e. subset of P; as the switching function is clearly total and computable,
we can use the enumeration of T ′ to enumerate the set of pairs (r, n) in
S = P × N mapped to elements of T (i.e., if sr,n ∈ T , then r ∈ π−1

p,q (T
′)).

Hence, π−1
p,q (T ) is r.e.

– Let s ∈ P and consider the equivalence relation �s. Let F be the singleton
set containing the equivalence class {p : φp = φs}, and let G be the set of
equivalence classes H of �s such that all q ∈ H satisfy ¬(q � s) (i.e., every
q ∈ H differs from s on infinitely many inputs). Then, the switching family
(πa,b)(a,b)∈(∪F )×(∪G) is RE-F -G-intricated with �s.

We now prove a general theorem stating that the existence of an intricated
switching family of continuous functions is enough to ensure that any partially
compatible set in the family is also universal. In Theorem 2, S was the family
of all decidable sets and took F = R. The existence of an intricated switching
family was not required in the statement of the Theorem but used in the proof
(with the standard switching family). We now generalise the result.
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Theorem 3. Let S, T be sets, S ⊆ P (S), T ⊆ P (T ) be two families of sets.
Let ≈ be an equivalence relation on T and F,G be sets of equivalence classes of
T . Let I = (πa,b)(a,b)∈(∪F )×(∪G) be an F -G-switching family of S-T -continuous
functions that is S-F -G-intricated with ≈. Then, any T ′ ∈ T that is partially
compatible with F is complete for G.

Proof. Suppose, for contradiction, that T ′ were not complete for G, that is, there
is a b such that the equivalence class [b] ∈ G containing b satisfies [b] ∩ T ′ = ∅.
Let a ∈ F ; as T ′ is partially compatible with F , we have [a] = F ⊆ T ′. Let
x ∈ S be arbitrary and set y � πa,b(x). Now, if x ∈ Aa,b then by definition
y = πa,b(x) ≈ a. Hence, y ∈ [a] and thus y ∈ T ′. On the other hand, if x ∈ Ba,b

then by definition y = πa,b(x) ≈ b. Hence, y ∈ [b] and thus y /∈ T ′.
Let T ′ ⊆ T , and define C = π−1

a,b(T
′) = { x : y = πa,b(x) ∈ T ′ }. Because

T ′ ∈ T and πa,b is S-T -continuous, we have C ∈ S. Hence, x ∈ Aa,b implies
y ∈ T ′, and thus Aa,b ⊆ C. On the other hand, x ∈ Ba,b implies y /∈ T ′ and thus
Ba,b ⊆ S \ C. But then C ∩ Ba,b = ∅. In other words, Aa,b is S-separated from
Ba,b, contradicting the assumption that the switching family is S-intricated with
≈. Hence, there cannot exist a class [b] of ≈ such that [b] ∩ T ′ = ∅, and thus T ′

is complete for G. ��

5.1 Examples

We now give a sequence of corollaries showing the usefulness of Theorem 3.
The first states that our first generalisation of Rice’s Theorem (Theorem 2 is
a consequence of Theorem 3).

Corollary 2 (Theorem 2). Any non-empty, decidable set of programs that is
intensionally complete for some F containing at least one computable partial
function is extensionally universal.

Proof. By Example 1, for S = T = P, the standard switching family is REC −
REC-continuous and REC-intricated with R.

As S = T = REC is closed under complements, Theorem 3 yields that any
non-empty, decidable set that contains all programs in an equivalence class of R
is also universal for R, and the result follows. ��

As Theorem 2 follows from Theorem 3, so do the results of Corollary 1, in
particular Rice’s Theorem and the Rice-Asperti Theorem.

An Intensional Rice-Shapiro Theorem. To see why it is useful that Theorem 3
is formulated using two distinct families of sets S and T , we treat the classic
Rice-Shapiro Theorem [14,18]. As with Rice’s Theorem, the Rice-Shapiro The-
orem was originally formulated as a result on partial recursive functions (and is
hence purely extensional, in our terminology). Recall that if f1 and f2 are par-
tial recursive functions defined on domains D1,D2 ⊆ D, respectively. For two
programs p, q, define p � q iff ∀x ∈ D.(p(x) = ⊥ or p(x) = q(x)).

With the terminology of the present paper, the classic Rice-Shapiro Theorem
is then:
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Theorem 4 (Rice-Shapiro [14,18]). An extensional set of programs P is r.e.
iff : p ∈ P ⇔ ∃q ∈ P, q is defined only on a finite subset of D, and q � p.

When moving to intensional completeness as elsewhere in this paper, we cannot
hope to have a necessary and sufficient criterion for an extensional set being r.e.
(because we can in general only ensure that sets are extensionally universal, i.e.
that a set of programs contains at least one representative of each equivalence
class of R, but not all elements of the class). However, using Theorem 3, we
can obtain a result that strengthens the necessary (“only if”) part of the Rice-
Shapiro Theorem:

Corollary 3 (Rice-Shapiro, intensional version). Let P be an r.e. set of
programs that is intensionally complete for some non-empty set H of partially
recursive functions. Then, for any partial recursive function f (not necessarily
in F ), there exists a program p ∈ P such that φp � f .

Proof. Let s ∈ P be such that φs ∈ H. Consider the equivalence relation �s (cf.
Definition 6). It suffices to prove that P is universal for �s. If p ∈ P satisfies
p � s, we are done, and it thus suffices to consider classes of �s where all
elements of the class satisfy ¬(s � p).

Let F be the singleton set containing the equivalence class {p : φp = φs},
and let G be the set of equivalence classes such that every element p satisfies
¬(p � s). By Example 3, the F -G-switching family (πa,b)(a,b)∈(∪F )×(∪G) is RE-
F -G-intricated with �s, and the family is RE-RE-continuous. Theorem 3 then
yields that any r.e. set of programs partially compatible with F is universal for
G, and the result follows. ��

An example application of Corollary 3: Let P be an r.e. set of programs
intensionally complete for a total function (e.g., the constant function x �→ 0);
then by choosing f as the everywhere undefined function, we conclude that P
must contain a program that loops on all but finitely many inputs; by choosing
a different constant function (e.g., x �→ 1), we can conclude that P contains a
program whose result is 1 for all but finitely many inputs, and so on.

Spambots. Our final example is another illustration of why Theorem3 is formu-
lated using two distinct families of sets S, T . The example shows that a typi-
cal prosaic formulation of program properties is treatable without much special
encoding.

Let S be the set of (one tape, 2-symbol) Turing Machines, and let T = P be
the set of all programs in a given language L that has I/O in the form of sending
e-mails (we assume wlog. that sending an email is a special, detectable command,
e.g., akin to a particular designated state in a Turing machine). Let S be the
family of decidable sets of (Gödel encodings of) Turing Machines, and let T be
the family of decidable sets of programs in L. Let F be the equivalence relation
on T defined by pFq iff, for any input x, p(x) and q(x) send the same number
of email. Note that this is not a complexity measure in the sense of Blum—the
predicate “p(x) sends k emails” is not decidable due to Turing equivalence of L
(e.g., p may diverge after sending k − 1 emails).
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By Turing completeness, let eval ∈ P be a universal program takes as inputs
(the representation of) a Turing Machine, M , and an integer n and returns the
result of M on input n: φeval (M,n) = φM (n). Moreover, we consider that eval
never ever sends a single email. Consider the set of switching functions defined by

πp,q(M)(x) = r(x) = if eval(M, 0)=0 then p(x) else q(x) (1)

Because eval never sends an email, πp,q(M)Fp iff φM (0) = 0 and πp,q(M)Fp iff
φM (0) /∈ {0,⊥}. These sets are REC-inseparable, and if F and G are the sets
of all classes of R and F, respectively, the F -G-switching family (πp,q)(p,q)∈P×P
is thus REC-F -G-intricated with F.

To show intrication it is crucial that the evaluator does not send any emails.
Thus, we need the argument of the evaluator (here, the Turing Machine) to live
in a world where email cannot be sent, and trying to do the same thing with S =
T = P would be more difficult. By Theorem 3, any decidable set of programs that
does not send any emails must thus contain programs that send an arbitrarily
large number of emails. That is, if the set contains all programs that does not
send any emails, it must also contain “Spambots” that will constantly send
emails. Similarly, and in the same prosaic vein, one can prove that a decidable
set containing all programs that do not access the Internet will also contain
botnets that constantly will contact external servers and receive orders from
them.

6 Future Work

The generalisations of Rice’s Theorem proved in the present paper provide
(un)decidability results for sets containing (all) programs whose extension is in
some subclass of the partial recursive functions (e.g., the set of polynomial-time
computable functions). However, undecidability hinges on the language in ques-
tion being Turing-complete; for some subrecursive classes, the set of “programs”
becomes much easier to wield—e.g., the set of primitive recursive functions has
an r.e. presentation (morally, a set of programs computing it) without semantic
repetition, i.e., every program computes a different function2, and thus clearly
has decidable non-trivial extensional properties. The techniques of the present
paper patently fail for such classes—we hope that more refined undecidability
results, perhaps in the vein of [4], may be procured for these in the future.

A Material Omitted from the Main Text

Proof (Full proof of intrication from Example 3). We prove that the switching
family (πa,b)(a,b)∈(∪F )×(∪G) is RE-F -G-intricated with �s:

If p ∈ ∪F , q ∈ ∪G and T ′ ∈ T such that Ap,q ⊆ π−1
p,q (T

′), there are two cases:

2 See, e.g., [8] for an easily readable account.
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– If φp = φq, then As,p = Bs,q, and there is clearly no set separating As,p from
Bs,q.

– If φp �= φq, there are again two cases:
• If r does not halt on n, then φsr,n

= φp = φs ∈ F , and thus (r, n) ∈ Ap,q.
Conversely, if (r, n) ∈ Ap,q, then φsr,n

= φs, and as ¬(q � s), this implies
that r does not halt on n.

• If r halts on n, then φsr,n
� φq. As q ∈ ∪G, we have ¬(q � s), and thus

¬(φsr,n
� s), whence in particular φsr,n

�= φs, and hence φsr,n
�s q. Thus,

(r, n) ∈ Bp,q. Conversely, if (r, n) ∈ Bp,q, sr,n �s q which–as ¬(q � p)–
implies φsr,n

�= φs and hence that r halts on n.
Thus (r, n) ∈ Ap,q iff r does not halt on n, and (r, n) ∈ Bp,q iff r halts on
n. Hence, Ap,q ∪ Bp,q = P × N , and Ap,s are Bp,s is co-r.e.-complete and
r.e.-complete, respectively. If there were an an r.e. set C such that Ap,q ⊆ C
and Ba,b ∩ C = ∅, then Ap,q ∪ Bp,q = P × N implies Aa,b = C, whence Aa,b

is r.e., contradicting that it is co-r.e.-complete. ��
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Abstract. Kolmogorov complexity C(x) of a string x is the length of
its shortest possible description. It is well known that C(x) is not com-
putable. Moreover, any computable lower estimate of C(x) is bounded
by a constant. We study the following question: suppose that we want to
compute C with some precision and some amount of errors. For which
parameters is it possible? Our main result is the following: the error
must be at least an inverse exponential function of the precision. It
gives two striking implications. Firstly, no computable function approxi-
mate Kolmogorov complexity much better than the length function does.
Secondly, time-bounded Kolmogorov complexity is sufficiently far from
unbounded Kolmogorov complexity for any particular computable time
bound.

1 Introduction

Kolmogorov complexity C(x) of a string x is the minimal possible length of a
program that generates x for some universal programming language. This notion
was introduced in the 1960s and since then the area was comprehensively studied.
There are many applications in computability theory, computational complexity,
machine learning, statistics etc. Extensive expositions of the subject may be
found in books by Li and Vitányi [6] and by Shen, Uspensky and Vereshchagin [8].

A simple observation similar to the Berry paradox shows that Kolmogorov
complexity is an uncomputable function. Moreover, there are no computable
and unbounded lower estimates. In this paper we study how far is it from being
computable. Firstly, we consider two well-known notions of being close to com-
putable. The first one is generic computability: there exists a computable func-
tion that is defined almost everywhere and equals to our function on its domain.
The second one is coarse computability: there exists a totally computable func-
tion that coincides with ours almost everywhere. Then we relax the second notion
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by allowing a computable function to be close to the complexity function, not
necessarily be equal.

The length function is a good approximation for a majority of strings. Specif-
ically, there are two well-known results:

Lemma 1. There is some constant c such that for any string x of length n it
holds that C(x) ≤ n + c.

Lemma 2. For any constant c there are less than 2n−c strings of length n and
complexity less than n − c.

Thus, for all but a fraction 2−c of strings it holds that |len(x) − C(x)| ≤ c.
Our main question is whether this estimate may be substantially improved by
another computable function instead of len(x). The main (and surprising) result
is that the answer is negative: the fraction 2−c may be replaced by a smaller
constant, but it is still a constant for any constant c. Moreover, this exponential
dependency is preserved for less accurate precisions, where the difference between
a computable function and the complexity function grows superconstantly.

1.1 Related Work

Algorithmic properties of the complexity function were studied in many
sources. Some basic properties are listed in [8, Sect. 1.2], [6, Sect. 2.7] and
[7, Sect. 2.1]. The incomputability of C(x) traces back to the pioneering works by
Kolmogorov [4] and Solomonoff [9]. Kummer [5] studies algorithmic properties
of the set of random strings (that is, the strings for which the complexity is not
less then the length) and, in particular, proves that this set is not frequency enu-
merable. This means that there is no computable function f that gets k strings
and guesses for at least one of them whether it is random or not. A similar in
spirit result due to Beigel et al. [2] tells about complexity function itself: if an
algorithm produces a list of numbers that is guaranteed to contain C(x), then
the length of this list must be linear. Bauwens et al. [1] show that, given a string
x, it is possible to algorithmically produce a small list of programs, one of which
generates x and is optimal up to a constant additive term. Unfortunately, this
list is not short enough to make any implication about the complexity itself. Fen-
ner and Fortnow [3] show that it is possible to produce a single optimal program
for all strings of length n if the generator receives a piece of advice of length
approximately n.

1.2 Roadmap

The rest of the text is organized as follows. In Sect. 2 we strictly define the
notions we use and state some basic properties. In Sect. 3 we show that there is no
coarsely computable function that approximates C(x) with a constant precision.
In Sect. 4 we prove our main result about the exact relationship between the
precision of approximation and the number of errors. In Sect. 5 we give a brief
conclusion and present some open questions.
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2 Preliminaries

In this section we give precise definitions of the notions we use.

2.1 Kolmogorov Complexity

A simple definition “Kolmogorov complexity of a string is the length of a shortest
program that generates this string” lacks the specification of a programming
language. To address this issue, we consider the notion of a description method,
or a decompressor. We define a more general notion of conditional complexity.

Definition 1. Let D be a computable function with two arguments. The com-
plexity CD(x|y) of a string x ∈ {0, 1}∗ conditional on a string y ∈ {0, 1}∗

with respect to a decompressor D is the minimal length of a string p such that
D(p, y) = x. If there is no such p, then CD(x|y) = ∞.

For any particular string x, one may consider a decompressor that hardwires
x and outputs it, say, on the empty program p. Thus, changing the decompressor
may drastically change the complexity. The following celebrated theorem shows
that this change is limited.

Theorem 1 (Kolmogorov-Solomonoff [4,9]). There exists a decompressor U
such that for any decompressor D there exists a constant c such that for all x
and y it holds that CU (x|y) ≤ CD(x|y) + c.

Such machine is called a universal decompressor. The proof idea is simple:
U treats a part of its first input as a description of D and launches it on the
rest of the input. Usually a particular U is fixed and the index is omitted. Most
equations are valid up to some additive constant. In the paper we consider two
specific complexities:

Definition 2. Let x be some string. Its unconditional complexity C(x) is just
C(x|ε), where ε is the empty string. The length conditional complexity of x is
C(x|n), where n = |x|.

The idea behind length conditional complexity is the following. Complexity
may be considered as a measure of information contained in a particular string.
If a string is a prefix of a computable sequence, then its complexity equals the
complexity of its length plus some constant. If a string is random, then its
complexity is close to its length. Length condition makes the complexity of a
computable string essentially zero, but keeps the complexity of a random string
close to its length. Thus length condition helps to separate the information about
the length of the string from the information in the string itself.

We consider also a time-bounded version of Kolmogorov complexity.

Definition 3. Let D be a Turing machine. The complexity Ct
D(x|y) of a string

x ∈ {0, 1}∗ conditional on y in time t with respect to decompressor D is the
minimal length of a string p such that D(p, y) = x and D(p, y) halts in at most
t steps. If there are no such p, then Ct

D(x|y) = ∞.
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For the time-bounded version the universal decompression theorem is the
following:

Theorem 2. There exists a decompressor U such that for any decompressor
D there exist constants c and d such that for all x, y and t it holds that
Cdt log t

U (x|y) ≤ Ct
D(x|y) + c.

It is clear that a universal decompressor in the time-bounded framework is
also a universal decompressor in the unbounded framework. In the sequel we fix
some such decompressor, and thus obtain Ct(x|y) ≥ C(x|y) for all x, y and t
without adding a constant.

2.2 Generic and Coarse Computability

Apart from computable functions, one may consider functions that are com-
putable “almost everywhere”. This notion may be formalized in two non-
equivalent ways. Both of them employ the notion of asymptotic density.

Definition 4. Let S ⊂ {0, 1}∗. The density of S in length n is defined as the
fraction of length-n strings that lie in S, i.e., ρn(S) = |S ∩ {0,1}n|

2n . If the sequence
ρn(S) has a limit ρ(S), then it is called the asymptotic density of S. If ρ(S) = 1,
we call S a generic set. If ρ(S) = 0, we call S a negligible set.

Definition 5. A total function h : {0, 1}∗ → {0, 1}∗ is called generic com-
putable if there exists a partially computable function f : {0, 1}∗ → {0, 1}∗ such
that if f(x) is defined, then f(x) = h(x), and the domain of f is a generic set.

Definition 6. A total function h : {0, 1}∗ → {0, 1}∗ is called coarsely com-
putable if there exists a total computable function f : {0, 1}∗ → {0, 1}∗ such
that the set {x | f(x) = h(x)} is a generic set.

3 Approximating Kolmogorov Complexity with Constant
Accuracy

The following theorem shows that there does not exist generic computable lower
estimate of C(x) in any sense.

Theorem 3. There is no partially computable function f(x) such that f(x) ≤
C(x) in the domain of f and f(x) takes on arbitrarily large values.

Proof. The standard argument is valid here. Suppose that such function f exists.
From its definition, the set {x | f(x) > n} is non-empty and computably enu-
merable. The complexity of the first element x0 in an enumeration is at most
log n + O(1). On the other hand, C(x0) ≥ f(x0) > n, hence a contradiction for
a sufficiently large n.
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On the other hand, C(x) does have coarsely computable lower estimates.
For instance, f(x) = min

{
|x|
2 , C(x)

}
is not greater than C(x) and coincides

with computable function |x|
2 with asymptotic density 1. So, the question arises

how accurately can C(x) be approximated by a coarsely computable function. It
turns out that any computable superconstant accuracy can be achieved: just take
f(x) = min{|x| − α(|x|), C(x)} for any computable function α(·) that tends to
infinity. Such a function is not greater than C(x) and coincides with |x| − α(|x|)
with density O(2−α(|x|)) that tends to zero. We want to show that a constant
accuracy cannot be achieved. We start from showing a similar fact about the
length conditional complexity C(x|n).

Theorem 4. There is no coarsely computable function f(x) such that for some
constant c it holds that C(x|n) − c ≤ f(x) ≤ C(x|n) for all x.

Proof. Suppose that such f(x) exists for some c. Consider a computable function
h that coincides with f with asymptotic density 1. Take an arbitrary number
δ = 2−k, where k > 2. From the definition, there must exist N such that for all
n > N the fraction of strings x of length n with different values f(x) and h(x) is
less than δ. Now fix an arbitrary n > N . Consider a program P that gets n and
enumerates all strings of length n in a specific order. The strings are ordered by
h(x) in a non-increasing manner, and then lexicographically. Denote by xi the
ith string in this enumeration. It is clear that C(xi|n) ≤ C(i) + O(1), where the
constant in O(1) depends on the program that computes h. From the properties
of h and the pigeonhole principle, there must exist some j ≤ 2n−k such that
f(xj) = h(xj). We fix such xj and estimate its complexity. On the one hand,
it has low complexity: C(xj |n) ≤ C(j) + O(1) ≤ n − k + O(1). On the other
hand, it must have high complexity. Specifically, for at least half of the strings
it holds that C(xi|n) ≥ n − 1. Since f(x) ≥ C(x|n) − c, for at least half of the
strings it holds that f(xi) ≥ n − c − 1. Because δ < 1

4 , for at least a quarter of
the strings it holds simultaneously that f(xi) = h(xi) and f(xi) ≥ n − c − 1.
Since the output of P is ordered by the value of h in a non-increasing way, for
all strings in the first quarter of the list it holds that h(xi) ≥ n− c−1. Thus, for
the previously fixed j it holds that C(xj |n) ≥ f(xj) ≥ n − c − 1. Now we obtain
a contradiction: on the one hand, C(xj |n) ≤ n − k + O(1). On the other hand,
C(xj |n) ≥ n− c−1. Since c is fixed and k is arbitrary, we obtain a contradiction
for large enough k.

This proof cannot be literally reproduced for the unconditional complexity,
because a logarithmic term should be added to the upper bound, but not to the
lower one, and with this addition the contradiction vanishes. Instead, we employ
the following lemma that compares the complexities C(x) and C(x|n).

Lemma 3. Suppose that C(x|n) < n − k. Then C(x) ≤ n − k + O(log k).

Proof. Firstly, we modify the description method such that it obtains the fol-
lowing property: if C(x|n) < n − k, then there exists a description of length
exactly n − k. This is done by the following: discard the leading zeros and the
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first one from a description and then launch a usual decompressor. In this case
any number of zeros may be attached from the beginning without changing the
output, and thus the desired property is satisfied.

Secondly, the description of x now consists of a description of k and a descrip-
tion of x conditional on n of length exactly n − k. By restoring k and adding it
to the length of the description we may compute n and then obtain x. The total
length of the description is n − k + O(log k), as claimed.

Now we are ready to expand the result to the case of unconditional complex-
ity. It is not a direct corollary of Theorem4, but can be obtained by a similar
argument.

Theorem 5. There is no coarsely computable function f(x) such that for some
constant c it holds that C(x) − c ≤ f(x) ≤ C(x) for all x.

Proof. The proof proceeds like the proof of Theorem4. We suppose that such
f(x) exists, denote by h(x) the respective computable function and define
δ = 2−k as before. Consider a large enough n and the enumeration of all strings
of length n ordered by h(x) in the non-increasing manner, and then lexicograph-
ically. As before, we denote by xj the earliest x such that f(x) = h(x). On the
one hand, we have f(xj) ≥ n − c − 1 and thus C(xj) ≥ n − c − 1. On the
other hand, we have C(xj |n) ≤ n − k + O(1), as before. By Lemma 3 we get
C(xj) ≤ n − k + O(log k). Since c is fixed and k is arbitrary, the two bounds
contradict for large enough k.

Note that now we can modify the theorem to be symmetric:

Corollary 1. There is no coarsely computable function f(x) such that for some
constant d it holds that |C(x) − f(x)| ≤ d for all x.

Proof. If such function f(x) exists, then f(x) − d contradicts Theorem 5 for
c = 2d.

One interesting corollary deals with computable upper estimates of C(x).

Corollary 2. Suppose that t(n) is some total computable function. Then for
any constant d and all sufficiently large n the density of x ∈ {0, 1}n such that
Ct(n)(x) − C(x) ≥ d is bounded away from zero.

This is more than a direct application of Corollary 1, because we claim not only
that the density does not tend to zero but also that it is bounded away from
zero. This is why we repeat a part of the proof.

Proof. Suppose that, on the contrary, there exists a constant d and an increasing
sequencenm, such that the fraction ofx ∈ {0, 1}nm such thatCt(nm)(x)−C(x) ≤ d
tends to zero. We repeat the argument from the proof of Theorem 5 for such values
of n and h(x) = Ct(|x|)(x). All x ∈ {0, 1}n are sorted by h in a non-increasing
order, then lexicographically. Among the first 2n−k strings there must be xj , such
that h(xj) ≤ C(xj) + d. On the one hand, h(xj) must be at least n − 1, thus
C(xj) ≥ n − d − 1. On the other hand, C(xj |n) ≤ n − k and a contradiction
follows.
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This corollary is very meaningful: giving more working time allows to sub-
stantially economize on the program length. It does not matter, how much
time do you already have—polynomial, exponential, power of exponents etc.—
allowing unlimited time may shorten a constant fraction of programs by more
than a constant number of bits.

4 Measuring the Exact Accuracy

In this section we do a more precise analysis. We consider two parameters: a
threshold on the difference between a complexity function and a totally com-
putable function, and the fraction of strings that exceed this difference. Formally,
we use the following definition:

Definition 7. Let F : {0, 1}∗ → N be some function, d : N → N be a total com-
putable function, and α : N → (0, 1) be another function. We say that F is
approximately computable with precision d(n) and error α(n) if there exists a
total computable function h : {0, 1}∗ → N such that for all large enough n the
fraction of x ∈ {0, 1}n satisfying |F (x) − h(x)| > d(n) does not exceed α(n).
If, moreover, it holds that h(x) ≥ F (x) for all x (resp., h(x) ≤ F (x)), we call
F approximately computable from above (resp., approximately computable from
below).

Note that by modifying h in a finite number of arguments we may replace
“for all large enough n” by “for all n”. In these terms Theorems 4 and 5 may
be restated as follows: for any constant d ∈ N and any function α(n) = o(1) the
functions C(x|n) and C(x) are not approximately computable with precision d
and error α. Now we consider the case of a non-constant precision.

4.1 Approximating Length Conditional Complexity

In this section we prove a generalized version of Theorem 4. We start by con-
sidering approximate computability from above. This leads to a corollary about
approximation of the plain complexity by the time-bounded complexity.

Theorem 6. Let d(n) < n − Ω(1) be a total computable function. Then C(x|n)
is not approximately computable from above with precision d(n) and error α(n) =
o(2−d(n)).

Note that if d(n) = n − O(1), then the theorem is wrong, at least for some
choice of the decompressor. Indeed, we can think that c1 < C(x|n) < n + c2 for
arbitrarily large c1 − c2. In this case n + c2 is a computable upper bound. The
length function is also an approximation with an arbitrary precision d(n) and
error O(2−d(n)), so this bound is tight.

Proof. Let h(x) be a computable approximation of C(x|n) from above with
precision d(n) and error α(n) = o(2−d(n)). Take an arbitrary δ = 2−k and
n so large that α(n) < δ · 2−d(n) = 2−d(n)−k. Consider the enumeration of
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{0, 1}n by h(x) in a non-decreasing order, then lexicographically. Among the
first 2n−d(n)−k elements there must exist xj such that h(xj) ≤ C(xj |n) + d(n).
On the one hand, since h(x) ≥ C(x|n) and xj is in the first half of the list, it
must hold that h(xj) ≥ n − 1, and thus C(xj |n) ≥ n − d(n) − 1. On the other
hand, C(xj |n) ≤ n − d(n) − k + O(1), because xj can be specified by its ordinal
number in the enumeration. If k is large enough, we obtain a contradiction.

Now consider the general case of approximate computability.

Theorem 7. Let d(n) < n
2 −Ω(1) be a total computable function. Then C(x|n)

is not approximately computable with precision d(n) and error α(n) = o(2−2d(n)).

Again the claim is wrong for d(n) = n
2 − O(1). The function n

2 + c is a good
approximation. Error O(2−2d(n)) is achieved by a simple approximation n−d(n),
so this bound is also tight.

Proof. Let h(x) be a computable approximation of C(x|n) with precision d(n)
and error α(n) = o(2−2d(n)). Take an arbitrary δ = 2−k, k > 2, and take n so
large that α(n) < δ ·2−2d(n) = 2−2d(n)−k. Consider the enumeration of {0, 1}n by
h(x) in a non-increasing order, then lexicographically. Among the first 2n−2d(n)−k

elements there must exist xj such that |h(xj) − C(xj |n)| ≤ d(n). On the one
hand, for at least half of x it holds that C(x|n) ≥ n − 1, thus for at least a
quarter of x it holds that h(x) ≥ n − d(n) − 1. Since k > 2, the chosen xj must
lie in this quarter. We obtain C(xj |n) ≥ h(xj) − d(n) ≥ n − 2d(n) − 1. On the
other hand, C(xj |n) ≤ n − 2d(n) − k + O(1). If k is large enough, we obtain a
contradiction.

Thus, two-sided approximation can be obtained with an error smaller than
one-sided approximation (note that approximation from below cannot be made
at all). But the order of this approximation is the same: for instance, logarithmic
precision may be achieved for all but inverse polynomial fraction of strings.

4.2 Approximating Plain Complexity

In order to obtain a result about approximating plain complexity C(x), we need
to prove an analogue of Lemma 3. Direct application produces logarithmic dis-
crepancies and leads to a weaker theorem. We slightly change the statement and
employ the fact that d(n) is computable.

Lemma 4. Suppose that C(x|n) < n−k. Then C(x) ≤ n−k+C(n|n−k)+O(1).

Proof. The proof proceeds along the lines of the proof of Lemma3. At the last
step we replace the description of k by a description of n conditional on n − k,
that is sufficient to restore n.

When is the complexity C(n|n − d(n)) constant? For instance, if d(n) is
growing slow. Specifically, we use the following mild condition.
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Definition 8. Let d : N → N be a total computable function. Say that d grows
uniformly slower than linearly if there exists a constant c such that for all n and
m such that m > n + c it holds that d(m) − d(n) < m − n.

It is clear that “usual” functions, like logarithms, polylogarithmic functions,
power functions nδ for δ < 1, linear functions αn for α < 1, etc. all possess this
property.

Lemma 5. If d is totally computable and grows uniformly slower than linearly,
then C(n|n − d(n)) = O(1).

Proof. Let K be some number and n0 be the smallest n such that n−d(n) = K.
If m > n0 + c, then m − d(m) > n0 − d(n0) from the properties of d. Thus, any
n with n − d(n) = K must lie in [n0, n0 + c]. Since c is a constant, one needs a
constant number of bits to specify a particular n.

Now we are ready to prove the theorems.

Theorem 8. Let d(n) < n − Ω(1) be a total computable function that grows
uniformly slower than linearly. Then C(x) is not approximately computable from
above with precision d(n) and error α(n) = o(2−d(n)).

Theorem 9. Let d(n) < n
2 − Ω(1) be a total computable function such that

2d(n) grows uniformly slower than linearly. Then C(x) is not approximately
computable with precision d(n) and error α(n) = o(2−2d(n)).

Proof. The proofs proceed along the same lines up to the condition C(xj |n) ≤
n−d(n)−k+O(1) (resp., C(xj |n) ≤ n−2d(n)−k+O(1)). By applying Lemma4,
we get C(xj) ≤ n−d(n)−k+C(n|n−d(n)−k)+O(1) ≤ n−d(n)−k+C(n|n−
d(n))+C(k)+O(1) ≤ n−d(n)−k+O(log k), where the last inequality employs
Lemma 5. The contradiction for large enough k still holds.

As before, we obtain a proposition about time-bounded complexity:

Corollary 3. Suppose that t(n) is some computable function. Then for any com-
putable function d(n) = n − Ω(1) that grows slower then linearly the density of
x such that Ct(|x|)(x) − C(x) ≥ d(|x|) is Ω(2−d(|x|)).

The proof combines the previously used techniques and thus is omitted. The
informal meaning expands that of Corollary 2: allowing unlimited time may
decrease the program length by at least logarithm for an inverse polynomial
fraction of the strings, by at least n−δ for the fraction at least Ω( 1

2n−δ ) etc.

5 Conclusion

In this paper we introduced the notion of approximate computability and ana-
lyzed it for the case of Kolmogorov complexity function. Despite its naturalness,
it seems to have never been appeared in the literature. It would be interest-
ing to study the structural properties of approximately computable functions.
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For instance, what can be done with an oracle that approximately computes
C(x) with sufficiently small precision and error? Can one then compute C(x)
exactly? What other functions that are not approximately computable may be
constructed? Are there natural examples that do not deal with Kolmogorov
complexity? How can these examples be classified? Is there any nice hierarchy?
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Abstract. We study the Borel sets Borel(F ) and the Baire sets
Baire(F ) generated by a Bishop topology F on a set X. These are
inductively defined sets of F -complemented subsets of X. Because of the
constructive definition of Borel(F ), and in contrast to classical topology,
we show that Baire(F ) = Borel(F ). We define the uniform version of
an F -complemented subset of X and we show the Urysohn lemma for
them. We work within Bishop’s system BISH∗ of informal constructive
mathematics that includes inductive definitions with rules of countably
many premises.

1 Introduction

The set of Borel sets generated by a given family of complemented subsets of
a set X, with respect to a set Φ of real-valued functions on X, was introduced
in [2], p. 68. This set is inductively defined and plays a crucial role in providing
important examples of measure spaces in Bishop’s measure theory developed
in [2]. As this measure theory was replaced in [4] by the Bishop-Cheng measure
theory, an enriched version of [3] that made no use of Borel sets, the Borel sets
were somehow “forgotten” in the constructive literature.

In the introduction of [3], Bishop and Cheng explained why they consider
their new measure theory “much more natural and powerful theory”. They do
admit though that some results are harder to prove (see [3], p. v). As it is
also noted though, in [20], p. 25, the Bishop-Cheng measure theory is highly
impredicative, while, although we cannot explain this here, Bishop’s measure
theory in [2] is highly predicative. This fact makes the original Bishop-Cheng
measure theory hard to implement in some functional-programming language,
a serious disadvantage from the computational point of view. This is maybe
why, later attempts to develop constructive measure theory were done within an
abstract algebraic framework (see [7,8,21].)

Despite the history of measure theory within Bishop-style constructive math-
ematics, the set of Borel sets is interesting on its own, and, as we try to show
here, there are interesting interconnections between the theory of Bishop spaces
and the notion of Borel sets. The notion of Bishop space, Bishop used the term
function space for it, was also introduced by Bishop in [2], p. 71, as a construc-
tive and function-theoretic alternative to the notion of a topological space. The
notion of a least Bishop topology generated by a given set of function from X

c© Springer Nature Switzerland AG 2019
F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 240–252, 2019.
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to R, together with the set of Borel sets generated by a family of complemented
subsets of X, are the main two inductively defined concepts found in [2]. The
theory of Bishop spaces was not elaborated by Bishop, and it remained in obliv-
ion, until Bridges and Ishihara revived the subject in [5] and [12], respectively.
In [14–18] we tried to develop their theory.

This paper is the first step towards a systematic study of Borel sets and Baire
sets, that we introduce here, in Bishop spaces. A Bishop topology is a set of real-
valued functions on X, all elements of which are “a priori” continuous. The study
of Borel and Baire sets within Bishop spaces is a constructive counterpart to the
study of Borel and Baire algebras within topological spaces.

As it is indicated here, but needs to be elaborated further somewhere else,
using complemented subsets to represent pairs of basic open sets and basic closed
sets has as a result that some parts of the classical duality between open and
closed sets in a topological space are recovered constructively. This reinforces
our conviction that the notion of a complemented subset is one of the most
important positive notions introduced by Bishop to overcome the difficulties
that negatively defined concepts generate in constructive mathematics.

We work within Bishop’s informal system of constructive mathematics
BISH∗, that is BISH together with inductive definitions with rules of countably
many premises. Roughly speaking, [2] is within BISH∗, while [3,4] are within
BISH. A formal system for BISH∗ is Myhill’s system CST∗ in [13], or CZF
with dependence choice and some weak form of Aczel’s regular extension axiom
(see [1]).

All proofs that are not included here, are omitted as straightforward.

2 F -Complemented Subsets

A Bishop space is a constructive, function-theoretic alternative to the set-
theoretic notion of topological space and a Bishop morphism is the corresponding
notion of “continuous” function between Bishop spaces. In contrast to topologi-
cal spaces, continuity of functions is a primitive notion and a concept of open set
comes a posteriori. A Bishop topology on a set can be seen as an abstract and
constructive approach to the ring of continuous functions C(X) of a topological
space X.

Definition 1. A Bishop space is a couple F := (X,F ), where X is an inhabited
set (i.e., a set with a given element in it) and F is a subset of F(X), the set of
all real-valued functions on X, such that the following conditions hold:

(BS1) The set of constant functions Const(X) on X is included in F .
(BS2) If f, g ∈ F , then f + g ∈ F .
(BS3) If f ∈ F and φ ∈ Bic(R), then φ ◦ f ∈ F , where Bic(R) is the set
of all Bishop-continuous functions from R to R i.e., of all functions that are
uniformly continuous on every closed interval [−n, n], where n ≥ 1.
(BS4) If f ∈ F(X) and (gn)∞

n=1 such that U(f, gn, 1
n ) :⇔ ∀x∈X

(
|f(x) −

gn(x)| ≤ 1
n

)
, for every n ≥ 1, then f ∈ F .
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We call F a Bishop topology on X. If G := (Y,G) is a Bishop space, a Bishop
morphism from F to G is a function h : X → Y such that ∀g∈G

(
g ◦ h ∈ F

)
. We

denote by Mor(F ,G) the set of Bishop morphisms from F to G.

It is easy to show (see [2], p. 71) that a Bishop topology F is an algebra
and a lattice, where f ∨ g and f ∧ g are defined pointwise, and if a, b ∈ R, then
a∨ b := max{a, b} and a∧ b := min{a, b}. Moreover, Bic(R) is a Bishop topology
on R, Const(X) and F(X) are Bishop topologies on X. If F is a Bishop topology
on X, then Const(X) ⊆ F ⊆ F(X), and F ∗ := F ∩ F

∗(X) is a Bishop topology
on X, where F

∗(X) denotes the bounded elements of F(X).

Definition 2. Turning the definitional clauses (BS1) − (BS4) into inductive
rules one can define the least Bishop topology

∨
F0 on X that includes a given

subset F0 of F(X). In this case F0 is called a subbase of F . A base of F is a
subset B of F such that for every f ∈ F there is a sequence (gn)∞

n=1 ⊆ B such
that ∀n≥1

(
U(f, gn, 1

n )
)
.

From now on, F denotes a Bishop topology on an inhabited set X and G a
Bishop topology on an inhabited set Y . For simplicity, we denote the constant
function on X with value a ∈ R also by a.

A complemented subset of X is a couple (A1, A0) of subsets of X such that
every element of A1 is “apart” from every element of A0, where the apartness
relation x = y on a set X is a positive and stronger version of the negatively
defined inequality ¬(x =X y). Here x = y is defined through a given set of
functions from X to R. The induced apartness between A1 and A0 is a positive
and stronger version of the negatively defined disjointness A1 ∩ A0 = ∅.

Definition 3. An inequality on X is a relation x = y such that the following
conditions are satisfied:

(Ap1) ∀x,y∈X

(
x =X y & x = y ⇒ ⊥

)
.

(Ap2) ∀x,y∈X

(
x = y ⇒ y = x

)
.

(Ap3) ∀x,y∈X

(
x = y ⇒ ∀z∈X(z = x ∨ z = y)

)
.

If a, b ∈ R, we define a =R b :⇔ |a − b| > 0. Usually, we write a = b instead of
a =R b. The inequality x =F y on X generated by F is defined by

x =F y :⇔ ∃f∈F

(
f(x) =R f(y)

)
.

A complemented subset of X with respect to =F , or an F -complemented subset of
X, is a pair A := (A1, A0) such that ∀x∈A1∀y∈A0

(
x =F y

)
. In this case we write

A1][FA0, and we denote their totality by P ][F (X). The characteristic function
of A is the map χA : A0 ∪ A1 → 2 defined by

χA (x) :=
{

1, x ∈ A1

0, x ∈ A0.

If A,B are in P ][F (X), then A = B :⇔ A1 = B1 & A0 = B0, and A ⊆ B :⇔
A1 ⊆ B1 & B0 ⊆ A0.
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Clearly, a = b ⇔ a > b ∨ a < b and A1][FA0 ⇒ A1 ∩ A0 = ∅. If A,B ⊆ R,
the implication A ∩ B = ∅ ⇒ A ][Bic(R) B implies Markov’s principle, hence
it cannot be accepted in BISH∗. To see this, take A := {x ∈ R | ¬(x = 0)}
and B := {x ∈ R | x = 0}. If A ][Bic(R) B, then for every x ∈ A, there is
some φx ∈ Bic(R) such that φx(x) = φx(0). Every element of Bic(R) though, is
strongly extensional i.e., φx(x) = φx(0) ⇒ x = 0 (see Proposition 5.1.2 in [14],
p. 102). Actually, we have that ∀x,y∈R

(
x =Bic(R) y ⇔ x =R y

)
. In this way we

get ∀x∈R

(
¬(x = 0) ⇒ x = 0

)
, which is equivalent to Markov’s principle (see [6],

p. 20).

Corollary 1. If A,B ∈ P ][F (X), then

A ∪ B := (A1 ∪ B1, A0 ∩ B0) & A ∩ B := (A1 ∩ B1, A0 ∪ B0),

A − B := (A1 ∩ B0, A0 ∪ B1) & − A := (A0, A1),

are F -complemented subsets of X.

Clearly, −(−A)) = A, and A−B = A∩(−B). In [3], p. 16, and in [4], p. 73,
the “union” and the “intersection” of A and B are defined in a more complex
way, so that their corresponding characteristic functions are given through the
characteristic functions of A and B. Since here we do not use the characteristic
functions of the complemented subsets, we keep the above simpler definitions
given in [2], p. 66. If A2n := A and A2n+1 := B, for every n ≥ 1, the definitions
of A ∪ B and A ∩ B are special cases of the following definitions.

Corollary 2. If (An)∞
n=1 ⊆ P ][F (X), then

∞⋃

n=1

An :=
( ∞⋃

n=1

A1
n,

∞⋂

n=1

A0
n

)
&

∞⋂

n=1

An :=
( ∞⋂

n=1

A1
n,

∞⋃

n=1

A0
n

)
,

are F -complemented subsets of X. Moreover,

−
∞⋂

n=1

An =
∞⋃

n=1

(−An) & −
∞⋃

n=1

An =
∞⋂

n=1

(−An).

Proposition 1. If h ∈ Mor(F ,G), A,B ∈ P ][G(Y ), (An)∞
n=1 ⊆ P ][F (Y ) , let

h−1(A) :=
(
h−1(A1), h−1(A0)

)
.

(i) h−1(A) ∈ P ][F (X).
(ii) h−1(A ∪ B) = h−1(A) ∪ h−1(B), and h−1(A ∩ B) = h−1(A) ∩ h−1(B).
(iii) h−1(−A) = −h−1(A) and h−1(A − B) = h−1(A) − h−1(B).
(iv) h−1

(⋃∞
n=1 An

)
=

⋃∞
n=1 h−1(An) and h−1

(⋂∞
n=1 An

)
=

⋂∞
n=1 h−1(An).

Proof. (i) Let x ∈ h−1(A1) and y ∈ h−1(A0) i.e., h(x) ∈ A1 and h(y) ∈ A0. Let
g ∈ G such that g(h(x)) = g(h(y)). Hence, g ◦ h ∈ F and (g ◦ h)(x) = (g ◦ h)(y).
The rest of the proof is omitted as straightforward.
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3 Borel Sets

The Borel sets in a topological space (X, T ) is the least set of subsets of X that
includes the open (or, equivalently the closed) sets in X and it is closed under
countable unions, countable intersections and relative complements. The Borel
sets in a Bishop space (X,F ) is the least set of complemented subsets of X that
includes the basic F -complemented (open-closed) subsets of X that are generated
by F , and it is closed under countable unions and countable intersections (the
closure under relative complements is redundant in the case of Bishop spaces).
The next definition is Bishop’s definition, given in [2], p. 68, restricted though,
to Bishop topologies.

Definition 4. An I-family of F -complemented subsets of X is an assignment
routine λ that assigns to every i ∈ I an F -complemented subset λ(i) of X such
that ∀i,j∈I

(
i =I j ⇒ λ(i) =P][F (X) λ(j)

)
. An I-family of F -complemented sub-

sets of X is called an I-set of complemented subsets of X, if ∀i,j∈I

(
λ(i) =P][F (X)

λ(j) ⇒ i =I j
)
. The set Borel(λ) of Borel sets generated by λ is defined induc-

tively by the following rules:

(Borel1)
i ∈ I

λ(i) ∈ Borel(λ)

(Borel2)
B(1) ∈ Borel(λ),B(2) ∈ Borel(λ), . . .

⋃∞
n=1 B(n) ∈ Borel(λ) &

⋂∞
n=1 B(n) ∈ Borel(λ)

.

In the induction principle IndBorel(λ) associated to the definition of Borel(λ)
we take P to be any formula in which the set Borel(F ) does not occur.

∀i∈I

(
P (λ(i))

)
& ∀α :N→P][F (X)

[
∀n≥1

(
α(n) ∈ Borel(λ) & P (α(n))

)
⇒

P

( ∞⋃

n=1

α(n)
)

& P

( ∞⋂

n=1

α(n)
)]

⇒ ∀B∈Borel(λ)

(
P (B)

)
.

Let oF , or simply o, be the F -family of the basic F -complemented subsets of X:

oF (f) :=
(
[f > 0], [f ≤ 0]

)
,

[f > 0] := {x ∈ X | f(x) > 0}, [f ≤ 0] := {x ∈ X | f(x) ≤ 0}.

We write Borel(F ) := Borel(oF ) and we call its elements the Borel sets in F .

Proposition 2. (i) If we keep the pointwise equality of functions as the equality of
F , then the F -family o is not a set of F -complemented subsets of X.
(ii) o(1) = (X, ∅) and o(−1) = (∅,X).
(iii) If f, g ∈ F , then o(f) ∪ o(g) = o(f ∨ g).
(iv) If B ∈ Borel(F ), then −B ∈ Borel(F ).
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(v) There is a Bishop space (X,F ) and some f ∈ F such that −o(f) is not
equal to o(g) for some g ∈ F .
(vi) o(f) = o([f ∨ 0] ∧ 1).

Proof. (i) and (ii) If f ∈ F , then o(f) = o(2f), but ¬(f = 2f). (ii) is trivial.
(iii) This equality is implied from the following property for reals

a ∨ b > 0 ⇔ a > 0 ∨ b > 0& a ∨ b ≤ 0 ⇔ a ≤ 0 ∧ b ≤ 0.

(iv) If a ∈ R, then a ≤ 0 ⇔ ∀n≥1

(
a < 1

n

)
and a > 0 ⇔ ∃n≥1

(
a ≥ 1

n

)
, hence

−o(f) :=
(
[f ≤ 0], [f > 0]

)

=
( ∞⋂

n=1

[( 1
n

− f
)

> 0
]
,

∞⋃

n=1

[( 1
n

− f
)

≤ 0
]
)

:=
∞⋂

n=1

o
( 1
n

− f
)

∈ Borel(F ).

If P (B) := −B ∈ Borel(F ), the above equality proves the first step of the
corresponding induction on Borel(F ). The rest of the inductive proof is easy.
(v) Let the Bishop space (R,Bic(R)). If we take o(idR) :=

(
[x > 0], [x ≤ 0]

)
, and

if we suppose that −o(idR) :=
(
[x ≤ 0], [x > 0]

)
=

(
[φ > 0], [φ ≤ 0]

)
=: o(φ), for

some φ ∈ Bic(R), then φ(0) > 0 and φ is not continuous at 0, which contradicts
the fact that φ is uniformly continuous on every bounded subset of R.
(vi) The proof is based on basic properties of R, like a ∧ 1 = 0 ⇒ a = 0.

Since Borel(F ) is closed under intersections and complements, if A,B ∈
Borel(F ), then A − B ∈ Borel(F ). As Bishop remarks in [2], p. 69, the proof
of Proposition 2 (iv) rests on the property of F that

(
1
n − f

)
∈ F , for every

f ∈ F and n ≥ 1. If we define similarly the Borel sets generated by any family of
real-valued functions Θ on X, then we can find Θ such that Borel(Θ) is closed
under complements without satisfying the condition f ∈ Θ ⇒

(
1
n − f

)
∈ Θ.

Such a family is the set F(X, 2) of all functions from X to 2 := {0, 1}. In this
case we have that

oF(X,2)(f) :=
(
[f = 1], [f = 0]

)
& − oF(X,2)(f) = oF(X,2)(1 − f).

Hence, the property mentioned by Bishop is sufficient, but not necessary.
Constructively, we cannot show, in general, that o(f) ∩ o(g) = o(f ∧ g). If
f := idR ∈ Bic(R) and g := −idR ∈ Bic(R), then o(idR) ∩ o(−idR) =

(
[x >

0] ∩ [x < 0], [x ≤ 0] ∪ [−x ≤ 0]
)

=
(
∅, [x ≤ 0] ∪ [x ≥ 0]

)
Since x ∧ (−x) = −|x|,

we get o(idR ∧ (−idR)) = o(−|x|) =
(
∅, [|x| ≥ 0]

)
. The supposed equality implies

that |x| ≥ 0 ⇔ x ≤ 0 ∨ x ≥ 0. Since |x| ≥ 0 is always the case, we get
∀x∈R

(
x ≤ 0 ∨ x ≥ 0

)
, which implies LLPO (see [6], p. 20). If one add the con-

dition |f | + |g| > 0, then o(f) ∩ o(g) = o(f ∧ g) follows constructively. The
condition BS4 in the definition of a Bishop space is crucial to the next proof.
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Proposition 3. If (fn)∞
n=1 ⊆ F , then f :=

∑∞
n=1(fn ∨ 0) ∧ 2−n ∈ F and

o(f) =
∞⋃

n=1

o(fn) =
( ∞⋃

n=1

[fn > 0],
∞⋃

n=1

[fn ≤ 0]
)

.

Proof. The function f is well-defined by the comparison test (see [4], p. 32). If
gn := (fn ∨ 0) ∧ 2−n, for every n ≥ 1, then

∣
∣
∣
∣

∞∑

n=1

gn −
N∑

n=1

gn

∣
∣
∣
∣ =

∣
∣
∣
∣

∞∑

n=N+1

gn

∣
∣
∣
∣ ≤

∞∑

n=N+1

|gn| ≤
∞∑

n=N+1

1
2n

N−→ 0,

the sequence of the partial sums
∑N

n=1 gn ∈ F converges uniformly to f , hence by
BS4 we get f ∈ F . Next we show that [f > 0] ⊆

⋃∞
n=1[fn > 0]. If x ∈ X such that

f(x) > 0, there is N ≥ 1 such that
∑N

n=1 gn(x) > 0. By Proposition (2.16) in [4],
p. 26, there is n ≥ 1 and n ≤ N with gn(x) > 0, hence (fn(x) ∨ 0) ≥ gn(x) > 0,
which implies fn(x) > 0. For the converse inclusion, if fn(x) > 0, for some
n ≥ 1, then gn(x) > 0, hence f(x) > 0. To show [f ≤ 0] ⊆

⋃∞
n=1[fn ≤ 0], let

x ∈ X such that f(x) ≤ 0, and suppose that fn(x) > 0, for some n ≥ 1. By the
previous argument we get f(x) > 0, which contradicts our hypothesis f(x) ≤ 0.
For the converse inclusion, let fn(x) ≤ 0, for every n ≥ 1, hence fn(x) ∨ 0 = 0
and gn(x) = 0, for every n ≥ 1. Consequently, f(x) = 0.

Proposition 4. If h ∈ Mor(F ,G) and B ∈ Borel(G), then h−1(B) ∈
Borel(F ).

Proof. By the definition of h−1(B) in Proposition 1, if g ∈ G, then

h−1(oG(g)) := h−1
(
[g > 0], [g ≤ 0]

)

:=
(
h−1[g > 0], h−1[g ≤ 0]

)

=
(
[(g ◦ h) > 0], [(g ◦ h) ≤ 0]

)

:= oF (g ◦ h) ∈ Borel(F ).

If P (B) := h−1(B) ∈ Borel(F ), the above equality is the first step of the
corresponding inductive proof on Borel(G). The rest of the inductive proof
follows immediately from Proposition 1 (iv).

Definition 5. If B ⊆ F , let oB be the B-family of F -complemented subsets of
X defined by oB(f) := oF (f), for every f ∈ B. We denote by Borel(B) the set
of Borel sets generated by oB.

If F0 is a subbase of F , then, Borel(F0) ⊆ Borel(F ). More can be said on
the relation between Borel(B) and Borel(F ), when B is a base of F .

Proposition 5. Let B be a base of F .

(i) If for every f ∈ F , oF (f) ∈ Borel(B), then Borel(F ) = Borel(B).
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(ii) If for every g ∈ B and f ∈ F , f ∧ g ∈ B, then Borel(F ) = Borel(B).
(iii) If for every g ∈ B and every n ≥ 1, g − 1

n ∈ B, then Borel(F ) =
Borel(B).

Proof. (i) It follows by a straightforward induction on Borel(F ).
(ii) and (iii) Let (gn)∞

n=1 ⊆ B such that ∀n≥1

(
U(f, gn, 1

n )
)
. We have that

oF (f) ⊆
∞⋃

n=1

oB(gn) :=
( ∞⋃

n=1

[gn > 0],
∞⋂

n=1

[gn ≤ 0]
)

i.e., by Definition 3, [f > 0] ⊆
⋃∞

n=1[gn > 0] and
⋂∞

n=1[gn ≤ 0] ⊆ [f ≤ 0]; if
x ∈ X with f(x) > 0 there is n ≥ 1 with gn(x) > 0, and if ∀n≥1

(
gn(x) ≤ 0

)
,

then for the same reason f(x) cannot be > 0, hence f(x) ≤ 0.
Because of (i), for (ii) it suffices to show that oF (f) ∈ Borel(B). We show that

oF (f) =
∞⋃

n=1

oB(f ∧ gn) :=
( ∞⋃

n=1

[(f ∧ gn) > 0],
∞⋂

n=1

[(f ∧ gn) ≤ 0]
)

∈ Borel(B).

If f(x) > 0, then we can find n ≥ 1 such that gn(x) > 0, hence f(x) ∧ gn(x) > 0.
Hence we showed that [f > 0] ⊆

⋃∞
n=1[(f ∧ gn) > 0]. For the converse inclusion,

let x ∈ X and n ≥ 1 such that (f ∧ gn)(x) > 0. Then f(x) > 0 and x ∈ [f > 0]. If
f(x) ≤ 0, then∀n≥1

(
f(x)∧gn(x) ≤ 0

)
. Suppose next that∀n≥1

(
f(x)∧gn(x) ≤ 0

)
.

If f(x) > 0, there is n ≥ 1 with gn(x) > 0, hence f(x)∧gn(x) > 0, which contradict
the hypothesis f(x) ∧ gn(x) ≤ 0. Hence f(x) ≤ 0.
Because of (i), for (iii) it suffices to show that oF (f) ∈ Borel(B). We show that

oF (f) =
∞⋃

n=1

oB

(
gn − 1

n

)
:=

( ∞⋃

n=1

[(
gn − 1

n

)
> 0

]
,

∞⋂

n=1

[(
gn − 1

n

) ≤ 0
]) ∈ Borel(B).

First we show that [f > 0] ⊆
⋃∞

n=1

[(
gn − 1

n

)
> 0

]
. If f(x) > 0, there is n ≥ 1

with f(x) > 1
n , hence, since − 1

2n ≤ g2n(x) − f(x) ≤ 1
2n , we get

g2n(x) − 1
2n

≥
(
f(x) − 1

2n

)
− 1

2n
= f(x) − 1

n
> 0

i.e., x ∈
[(

g2n − 1
2n

)
> 0

]
. For the converse inclusion, let x ∈ X and n ≥ 1 such

that gn(x) − 1
n > 0. Since 0 < gn(x) − 1

n ≤ f(x), we get x ∈ [f > 0]. Next we
show that [f ≤ 0] ⊆

⋂∞
n=1[

(
gn − 1

n

)
≤ 0]. Let x ∈ X with f(x) ≤ 0, and suppose

that n ≥ 1 with gn(x)− 1
n > 0. Then 0 ≥ f(x) > 0. By this contradiction we get

gn(x) − 1
n ≤ 0. For the converse inclusion let x ∈ X such that gn(x) − 1

n ≤ 0,
for every n ≥ 1, and suppose that f(x) > 0. Since we have already shown that
[f > 0] ⊆

⋃∞
n=1

[(
gn − 1

n

)
> 0

]
, there is some n ≥ 1 with gn(x) − 1

n > 0, which
contradicts our hypothesis, hence f(x) ≤ 0.
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4 Baire Sets

One of the definitions1 of the set of Baire sets in a topological space (X, T ), which
was given by Hewitt in [11], is that it is the least σ-algebra of subsets of X that
includes the zero sets of X i.e., the sets of the form f−1({0}), where f ∈ C(X).
Clearly, a Baire set in (X, T ) is a Borel set in (X, T ), and for many topological
spaces, like the metrizable ones, the two classes coincide. In this section we adopt
Hewitt’s notion in Bishop spaces and the framework of F -complemented subsets.

Definition 6. Let ζF , or simply ζ, be the F -family of the F -zero complemented
subsets of X:

ζF (f) :=
(
[f = 0], [f = 0]

)
,

[f = 0] := {x ∈ X | f(x) = 0}, [f = 0] := {x ∈ X | f(x) = 0}.

We write Baire(F ) := Borel(ζF ) and we call its elements the Baire sets in F .

Since a = 0 :⇔ |a| > 0 ⇔ a < 0 ∨ a > 0, for every a ∈ R, we get

ζF (f) =
(
[f = 0], [|f | > 0]

)
=

(
[f = 0], [f > 0] ∪ [f < 0]

)
.

Proposition 6. (i) If we keep the pointwise equality of functions as the equality
of F , then the F -family ζ is not a set of F -complemented subsets of X.
(ii) ζ(0) = (X, ∅) and ζ(1) = (∅,X).
(iii) If f, g ∈ F , then ζ(f) ∩ ζ(g) = ζ(|f | ∨ |g|).
(iv) If B ∈ Baire(F ), then −B ∈ Baire(F ).
(v) There is a Bishop space (X,F ) and some f ∈ F such that −ζ(f) is not equal
to ζ(g) for some g ∈ F .
(vi) ζ(f) = ζ(|f | ∧ 1).

Proof. (i) and (ii) If f ∈ F , then ζ(f) = ζ(2f), but ¬(f = 2f). (ii) is trivial.
(iii) This equality is implied from the following property for reals

|a| ∨ |b| = 0 ⇔ |a| = 0 ∧ |b| = 0& |a| ∨ |b| = 0 ⇔ |a| > 0 ∨ |b| > 0.

(iv) If f ∈ F , then −ζ(f) :=
(
[f = 0], [f = 0]

)
. For every n ≥ 1, let

gn :=
(
|f | ∧ 1

n

)
− 1

n
∈ F.

We show that
∞⋃

n=1

ζ(gn) :=
( ∞⋃

n=1

[gn = 0],
∞⋂

n=1

[gn = 0]
)

= −ζ(f) ∈ Baire(F ).

First we show that [f = 0] =
⋃∞

n=1[gn = 0]. If |f(x)| > 0, there is n ≥ 1 such that
|f(x)| > 1

n , hence |f(x)| ∧ 1
n = 1

n , and gn(x) = 0. For the converse inclusion, let

1 A different definition is given in [10]. See [19] for the relations between these two
definitions.
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x ∈ X and n ≥ 1 such that gn(x) = 0 ⇔ |f(x)| ∧ 1
n = 1

n , hence |f(x)| ≥ 1
n > 0.

Next we show that [f = 0] =
⋂∞

n=1[gn = 0]. If x ∈ X such that f(x) = 0, and
n ≥ 1, then gn(x) = − 1

n < 0. For the converse inclusion, let x ∈ X such that
for all n ≥ 1 we have that gn(x) = 0. If |f(x)| > 0, there is n ≥ 1 such that
|f(x)| > 1

n , hence gn(x) = 0, which contradicts our hypothesis. Hence, |f(x)| ≤ 0,
which implies that |f(x)| = 0 ⇔ f(x) = 0. If P (B) := −B ∈ Baire(F ), the above
equality proves the first step of the corresponding induction on Baire(F ). The rest
of the inductive proof is immediate2.
(v) Let the Bishop space (R,Bic(R)). If we take ζ(idR) :=

(
[x = 0], [x = 0]

)
, and

if we suppose that −ζ(idR) :=
(
[x = 0], [x = 0]

)
=

(
[φ = 0], [φ = 0]

)
=: ζ(φ),

for some φ ∈ Bic(R), then φ(0) > 0 ∨ φ(0) < 0 and φ(x) = 0, if x < 0 or x > 0.
Hence φ is not continuous at 0, which contradicts the fact that φ is uniformly
continuous on every bounded subset of R.
(vi) This proof is straightforward.

As in the case of basic Borel sets in F , we cannot show constructively that
ζ(f) ∪ ζ(g) = ζ(|f | ∧ |g|). If we add the condition |f | + |g| > 0 though, this
equality is constructively provable.

Proposition 7. If (fn)∞
n=1 ⊆ F , then f :=

∑∞
n=1 |fn| ∧ 2−n ∈ F and

ζ(f) =
∞⋂

n=1

ζ(fn) =
( ∞⋂

n=1

[fn = 0],
∞⋃

n=1

[fn = 0]
)

.

Proof. Working as in the proof of Proposition 3, f is well-defined and if
gn := |fn| ∧ 2−n, for every n ≥ 1, then the sequence of the partial sums∑N

n=1 gn ∈ F converges uniformly to f , and by BS4 we get f ∈ F . Since
f(x) = 0 ⇔ ∀≥1(gn(x) = 0) ⇔ ∀≥1(fn(x) = 0), we get [f = 0] =

⋂∞
n=1[fn = 0].

Next we show that [f = 0] ⊆
⋃∞

n=1[fn = 0]. If |f(x)| > 0, then there is N ≥ 1
such that

∑N
n=1 gn(x) > 0. By Proposition (2.16) in [4], p. 26, there is some

n ≥ 1 and n ≥ N such that gn(x) > 0, hence |fn(x)| ≥ gn(x) > 0. The converse
inclusion follows trivially.

Theorem 1. (i) If B ∈ Baire(F ), then B ∈ Borel(F ).
(ii) If o(f) ∈ Baire(F ), for every f ∈ F , then Baire(F ) = Borel(F ).
(iii) If f ∈ F , then o(f) = −ζ

(
(−f) ∧ 0

)
.

(iv) Baire(F ∗) = Baire(F ) = Borel(F ) = Borel(F ∗).

Proof. (i) By Proposition 2(iv) −o(f) =
(
[f ≤ 0], [f > 0]

)
∈ Borel(F ), for every

f ∈ F , hence −o(−f) =
(
[f ≥ 0], [f < 0] ∈ Borel(F ) too. Consequently

−o(f) ∩ −o(−f) =
(
[f ≤ 0] ∩ [f ≥ 0], [f > 0] ∪ [f < 0]

)
= ζ(f) ∈ Borel(F ).

2 Hence, if we define the set of Baire sets over an arbitrary family Θ of functions from
X to R, a sufficient condition so that Baire(Θ) is closed under complements is that
Θ is closed under |.|, under wedge with 1

n
and under subtraction with 1

n
, for every

n ≥ 1. If Θ := F(X, 2), then −oF(X,2)(f) = oF(X,2)(1 − f) = ζ
F(X,2)(f), hence by

Proposition 4(ii) we get Borel(F(X, 2)) = Baire(F(X, 2)).
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If P (B) := B ∈ Borel(F ), the above equality is the first step of the correspond-
ing inductive proof on Baire(F ). The rest of the inductive proof is trivial.
(ii) The hypothesis is the first step of the obvious inductive proof on Borel(F ),
which shows that Borel(F ) ⊆ Baire(F ). By (i) we get Baire(F ) ⊆ Borel(F ).
(iii) We show that

(
[f > 0], [f ≤ 0]

)
=

(
[(−f) ∧ 0 = 0], [(−f) ∧ 0 = 0]

)
.

First we show that [f > 0] ⊆ [(−f)∧0 = 0]; if f(x) > 0, then −f(x)∧0 = −f(x) <
0. For the converse inclusion, let −f(x)∧0 = 0 ⇔ −f(x)∧0 > 0 or −f(x)∧0 < 0.
Since 0 ≥ −f(x)∧0, the first option is impossible. If −f(x)∧0 < 0, then −f(x) < 0
or 0 < 0, hence f(x) > 0. Next we show that [f ≤ 0] = [(−f) ∧ 0 = 0]; since
f(x) ≤ 0 ⇔ −f(x) ≥ 0 ⇔ −f(x) ∧ 0 = 0 (see [6], p. 52), the equality follows.
(iv) Clearly, Baire(F ∗) ⊆ Baire(F ). By Proposition 6(vi) ζ(f) = ζ(|f | ∧ 1),
where |f | ∧ 1 ∈ F ∗. Continuing with the obvious induction we get Baire(F ) ⊆
Baire(F ∗). By case (iii) and Proposition 6(iv) we get o(f) ∈ Baire(F ), hence
by case (ii) we conclude that Baire(F ) = Borel(F ). Clearly, Borel(F ∗) ⊆
Borel(F ). By Proposition 2(vi) o(f) = o((f ∨ 0) ∧ 1), where (f ∨ 0) ∧ 1 ∈ F ∗.
Continuing with the obvious induction we get Borel(F ) ⊆ Borel(F ∗).

Either by definition, as in the proof of Proposition 4, or by Theorem 1(iii) and
Proposition 4, if h ∈ Mor(F ,G) and B ∈ Baire(G), then h−1(B) ∈ Baire(F ).

5 Uniformly F -Complemented Subsets

Next follows the uniform version of the notion of an F -complemented subset.

Definition 7. If A := (A1, A0) ∈ P ][F (X), we say that A is uniformly F -
complemented, and we write A1 =F A0, if

∃f∈F∀x∈A1∀y∈A0

(
f(x) = 1 & f(y) = 0

)
.

Taking (f ∨0)∧1 we get A1 =F A0 ⇔ ∃f∈F

[
0 ≤ f ≤ 1 & ∀x∈A1∀y∈A0

(
f(x) =

1 & f(y) = 0
)]

. In [3], p. 55, the following relation is defined:

A ≤ B :⇔ A1 ⊆ B1 & A0 ⊆ B0.

If A1 =F A0, then A ≤ o(f). According to the classical Urysohn lemma for
C(X)-zero sets, the disjoint zero sets of a topological space X are separated by
some f ∈ C(X) (see [9], p. 17). We show a constructive version of this, where
disjointness is replaced by a stronger, but positively defined form of it.

Theorem 2 (Urysohn lemma). If A := (A1, A0) ∈ P ][F (X), then

A1 =F A0 ⇔ ∃f,g∈F∃c>0

(
A ≤ ζ(f) & − A ≤ ζ(g) & |f | + |g| ≥ c

)
.
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Proof. (⇒) Let h ∈ F such that 0 ≤ h ≤ 1, A1 ⊆ [h = 1] and A0 ⊆ [h = 0].
We take f := 1 − h ∈ F, g := h and c := 1. First we show that A ≤ ζ(f).
If x ∈ A1, then h(x) = 1, and f(x) = 0. If y ∈ A0, then h(y) = 0, hence
f(y) = 1 and y ∈ [f = 0]. Next we show that −A ≤ ζ(g). If y ∈ A0, then
h(y) = 0 = g(y). If x ∈ A1, then h(x) = 1 = g(y) i.e., x ∈ [g = 0]. If x ∈ X, then
1 = |1 − h(x) + h(x)| ≤ |1 − h(x)| + |h(x)|.
(⇐) Let h := 1 −

(
1
c |f | ∧ 1

)
∈ F . If x ∈ A1, then f(x) = 0, and hence h(x) = 1.

If y ∈ A0, then g(y) = 0, hence |f(y)| ≥ c, and consequently h(y) = 0.

The condition BS3 is crucial to the next proof.

Corollary 3. If A := (A1, A0) ∈ P ][F (X) and f ∈ F , then

f(A1) =Bic(R) f(A0) ⇒ A1 =F A0.

Proof. If f(A) :=
(
f(A1), f(A0)

)
is uniformly Bic(R)-complemented, then by

Urysohn lemma there are φ, θ ∈ Bic(R) and c > 0 with f(A) ≤ ζ(φ),−f(A) ≤
ζ(θ) and |φ|+ |θ| ≥ c. Consequently, A ≤ ζ(φ◦f),−A ≤ ζ(θ◦f) and |φ◦f |+ |θ◦
f | ≥ c. Since by BS3 we have that φ ◦ f and θ ◦ f ∈ F , by the other implication
of the Urysohn lemma we get A1 =F A0.
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Abstract. Nets are generalisations of sequences involving possibly
uncountable index sets; this notion was introduced about a century ago
by Moore and Smith, together with the generalisation to nets of vari-
ous basic theorems of analysis due to Bolzano-Weierstrass, Dini, Arzelà,
and others. This paper deals with the Reverse Mathematics study of
theorems about nets indexed by subsets of Baire space, i.e. part of third-
order arithmetic. Perhaps surprisingly, over Kohlenbach’s base theory of
higher-order Reverse Mathematics, the Bolzano-Weierstrass theorem for
nets and the unit interval implies the Heine-Borel theorem for uncount-
able covers. Hence, the former theorem is extremely hard to prove (in
terms of the usual hierarchy of comprehension axioms), but also unifies
the concepts of sequential and open-cover compactness. Similarly, Dini’s
theorem for nets is equivalent to the uncountable Heine-Borel theorem.

1 Introduction

Nets, also known as Moore-Smith sequences, are generalisations of sequences to
possibly uncountable index sets; following the pioneering work of Moore ([24–26])
nets were introduced about a century ago by Moore and Smith ([27]). They also
established the generalisation to nets of various basic theorems due to Bolzano-
Weierstrass, Dini, and Arzelà ([27, Sects. 8 and 9]).

We deal with the Reverse Mathematics (RM hereafter) study of theorems
about nets, based on the motivation provided by Remark 2.6. Since the study of
nets treats uncountable objects as first-class citizens, we will work in Kohlen-
bach’s higher-order RM (see Sect. 2.1), while our nets are exclusively indexed by
subsets of Baire space, i.e. part of third-order arithmetic, as discussed in Sect. 3.1.
We study the Bolzano-Weierstrass theorem in Sect. 3.2 and Dini’s theorem in
Sect. 3.3, and our main result is that each implies the Heine-Borel theorem for
uncountable covers, while we obtain an equivalence in the case of Dini’s theorem.
By [35, Sect. 3], the minimal comprehension axiom needed to proved the uncount-
able Heine-Borel theorem is (∃3) (see Sect. 2.2 for the latter), which implies full
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second-order arithmetic. Moreover, the aforementioned theorems thus falls (far)
outside the Gödel hierarchy, as discussed in Sect. 4. It goes without saying that
this paper constitutes a spin-off from the joint project with Dag Normann that
has so far led to [33–36].

Finally, since sequences are a special case of nets, the Bolzano-Weierstrass
theorem for nets thus unifies sequential and open-cover compactness in one
elegant package simply by replacing the concept of sequence by that of net. The
exact results are detailed in Sect. 3.2.

2 Preliminaries

We introduce Reverse Mathematics in Sect. 2.1, as well as its generalisation to
higher-order arithmetic. We introduce some essential axioms in Sect. 2.2.

2.1 Reverse Mathematics

Reverse Mathematics is a program in the foundations of mathematics initiated
around 1975 by Friedman ([11,12]) and developed extensively by Simpson ([41]).
The aim of RM is to identify the minimal axioms needed to prove theorems of
ordinary, i.e. non-set theoretical, mathematics. We refer to [43] for a basic intro-
duction to RM and to [40,41] for an overview of RM. We expect basic familiarity
with RM, but do sketch some aspects of Kohlenbach’s higher-order RM ([20])
essential to this paper. Since the latter is officially a type theory, we discuss
how we can represent subsets of Baire space in Definition 2.4. Furthermore, in
contrast to ‘classical’ RM based on second-order arithmetic, higher-order RM
makes use of the richer language of higher-order arithmetic, as follows.

As suggested by its name, higher-order arithmetic extends second-order arith-
metic. Indeed, while the latter is restricted to natural numbers and sets of natural
numbers, higher-order arithmetic also has sets of sets of natural numbers, sets
of sets of sets of natural numbers, et cetera. To formalise this idea, we introduce
the collection of all finite types T, defined by the two clauses:

(i) 0 ∈ T and (ii) If σ, τ ∈ T then (σ → τ) ∈ T,

where 0 is the type of naturals, and σ → τ is the type of mappings from objects
of type σ to objects of type τ . In this way, 1 ≡ 0 → 0 is the type of functions
from numbers to numbers, and where n + 1 ≡ n → 0. Viewing sets as given by
characteristic functions, we note that Z2 only includes objects of type 0 and 1.

The language Lω includes variables xρ, yρ, zρ, . . . of any finite type ρ ∈ T.
Types may be omitted when they can be inferred from context. The constants
of Lω includes the type 0 objects 0, 1 and <0,+0,×0,=0 which are intended to
have their usual meaning as operations on N. Equality at higher types is defined
in terms of ‘=0’ as follows: for any objects xτ , yτ , we have

[x =τ y] ≡ (∀zτ1
1 . . . zτk

k )[xz1 . . . zk =0 yz1 . . . zk], (2.1)



Nets and Reverse Mathematics 255

if the type τ is composed as τ ≡ (τ1 → . . . → τk → 0). Furthermore, Lω includes
the recursor constant Rσ for any σ ∈ T, which allows for iteration on type
σ-objects as in the special case (2.2). Formulas and terms are defined as usual.

Definition 2.1. The base theory RCAω
0 consists of the following axioms.

1. Basic axioms expressing that 0, 1, <0,+0,×0 form an ordered semi-ring with
equality =0.

2. Basic axioms defining the well-known Π and Σ combinators (aka K and S
in [2]), which allow for the definition of λ-abstraction.

3. The defining axiom of the recursor constant R0: For m0 and f1:

R0(f,m, 0) := m and R0(f,m, n + 1) := f(R0(f,m, n)). (2.2)

4. The axiom of extensionality : for all ρ, τ ∈ T, we have:

(∀xρ, yρ, ϕρ→τ )
[
x =ρ y → ϕ(x) =τ ϕ(y)

]
. (Eρ,τ )

5. The induction axiom for quantifier-free1 formulas of Lω.
6. QF-AC1,0: The quantifier-free Axiom of Choice as in Definition 2.2.

Definition 2.2. The axiom QF-AC consists of the following for all σ, τ ∈ T:

(∀xσ)(∃yτ )A(x, y) → (∃Y σ→τ )(∀xσ)A(x, Y (x)), (QF-ACσ,τ )

for any quantifier-free formula A in the language of Lω.

By [20, Sect. 2], RCAω
0 and RCA0 prove the same sentences ‘up to language’ as

the latter is set-based and the former function-based. Recursion as in (2.2) is
called primitive recursion; the class of functionals obtained from Rρ for all ρ ∈ T
is called Gödel’s system T of all (higher-order) primitive recursive functionals.

We use the usual notations for natural, rational, and real numbers, and the
associated functions, as introduced in [20, pp. 288–289].

Definition 2.3 (Real numbers and related notions in RCAω
0 )

1. Natural numbers correspond to type zero objects, and we use ‘n0’ and ‘n ∈ N’
interchangeably. Rational numbers are defined as signed quotients of natural
numbers, and ‘q ∈ Q’ and ‘<Q’ have their usual meaning.

2. Real numbers are coded by fast-converging Cauchy sequences q(·) : N → Q, i.e.
such that (∀n0, i0)(|qn − qn+i)| <Q

1
2n ). We use Kohlenbach’s ‘hat function’

from [20, p. 289] to guarantee that every f1 defines a real number.
3. We write ‘x ∈ R’ to express that x1 := (q1(·)) represents a real as in the

previous item and write [x](k) := qk for the k-th approximation of x.
4. Two reals x, y represented by q(·) and r(·) are equal, denoted x =R y, if

(∀n0)(|qn − rn| ≤ 1
2n−1 ). Inequality ‘<R’ is defined similarly. We sometimes

omit the subscript ‘R’ if it is clear from context.
1 To be absolutely clear, variables (of any finite type) are allowed in quantifier-free

formulas of the language Lω: only quantifiers are banned.
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5. Functions F : R → R are represented by Φ1→1 mapping equal reals to equal
reals, i.e. (∀x, y ∈ R)(x =R y → Φ(x) =R Φ(y)).

6. The relation ‘x ≤τ y’ is defined as in (2.1) but with ‘≤0’ instead of ‘=0’.
Binary sequences are denoted ‘f1, g1 ≤1 1’, but also ‘f, g ∈ C’ or ‘f, g ∈ 2N’.

7. Sets of type ρ objects Xρ→0, Y ρ→0, . . . are given by their characteristic func-
tions fρ→0

X , i.e. (∀xρ)[x ∈ X ↔ fX(x) =0 1], where fρ→0
X ≤ρ→0 1.

The following special case of item 7 is singled out, as it will be used fre-
quently. Indeed, our notion of net introduced in Sect. 3.1 (only) involves index
sets restricted to subsets of Baire space.

Definition 2.4 [RCAω
0 ]. A ‘subset D of NN’ is given by its characteristic function

F 2
D ≤2 1, i.e. we write ‘f ∈ D’ for FD(f) = 1 for any f ∈ NN. A ‘binary

relation 	 on a subset D of NN’ is given by the associated characteristic function
G

(1×1)→0
� , i.e. we write ‘f 	 g’ for G�(f, g) = 1 and any f, g ∈ D. Assuming

extensionality on the reals as in item 5, we obtain characteristic functions that
represent subsets of R and relations thereon. Using pairing functions, it is clear
we can also represent sets of finite sequences (of reals), and relations thereon.

Finally, we mention the highly useful ECF-interpretation.

Remark 2.5 (The ECF -interpretation). The technical definition of ECF
may be found in [47, p. 138, Sect. 2.6]. Intuitively speaking, the ECF-
interpretation [A]ECF of a formula A ∈ Lω is just A with all variables of type
two and higher replaced by countable representations of continuous functionals.
Such representations are also (equivalently) called ‘associates’ or ‘codes’ (see
[19, Sect. 4]). The ECF-interpretation connects RCAω

0 and RCA0 (see [20, Pro-
postion 3.1]) in that if RCAω

0 proves A, then RCA0 proves [A]ECF, again ‘up to
language’, as RCA0 is formulated using sets, and [A]ECF is formulated using types,
namely only using type zero and one objects.

2.2 Some Axioms of Higher-Order RM

We introduce some functionals which constitute the counterparts of second-order
arithmetic Z2, and some of the Big Five systems, in higher-order RM. We assume
basic familiarity with the aforementioned second-order systems, while the exact
definitions can be found in [41]. We use the formulation of the higher-order
systems from [20,35]. First of all, ACA0 is readily derived from:

(∃μ2)(∀f1)
[
(∃n)(f(n) = 0) → [f(μ(f)) = 0 ∧ (∀i < μ(f))f(i) �= 0] (μ2)

∧ [(∀n)(f(n) �= 0) → μ(f) = 0]
]
,

and ACAω
0 ≡ RCAω

0 + (μ2) proves the same sentences as ACA0 by [16, The-
orem 2.5]. The (unique) functional μ2 in (μ2) is called Feferman’s μ ([2]), and
is discontinuous at f =1 11 . . .; in fact, (μ2) is equivalent to the existence of
F : R → R such that F (x) = 1 if x >R 0, and 0 otherwise ([20, Sect. 3]), and to

(∃ϕ2 ≤2 1)(∀f1)
[
(∃n)(f(n) = 0) ↔ ϕ(f) = 0

]
. (∃2)
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Secondly, Π1
1 -CA0 is readily derived from the following sentence:

(∃S2 ≤2 1)(∀f1)
[
(∃g1)(∀n0)(f(gn) = 0) ↔ S(f) = 0

]
, (S2)

and Π1
1 -CAω

0 ≡ RCAω
0 + (S2) proves the same Π1

3 -sentences as Π1
1 -CA0 by [38,

Theorem 2.2]. The (unique) functional S2 in (S2) is also called the Suslin func-
tional ([20]). By definition, the Suslin functional S2 can decide whether a Σ1

1 -
formula (as in the left-hand side of (S2)) is true or false. We similarly define the
functional S2k which decides the truth or falsity of Σ1

k-formulas; we also define the
system Π1

k -CAω
0 as RCAω

0 + (S2k), where (S2k) expresses that S2k exists. Note that
we allow formulas with function parameters, but not functionals here. In fact,
Gandy’s Superjump ([14]) constitutes a way of extending Π1

1 -CAω
0 to parameters

of type two.
Thirdly, second-order arithmetic Z2 is readily derived from ∪kΠ1

k -CAω
0 , or from:

(∃E3 ≤3 1)(∀Y 2)
[
(∃f1)Y (f) = 0 ↔ E(Y ) = 0

]
, (∃3)

and we therefore define ZΩ
2 ≡ RCAω

0 + (∃3) and Zω
2 ≡ ∪kΠ1

k -CAω
0 , which are

conservative over Z2 by [16, Corollary 2.6]. Despite this close connection, Zω
2 and

ZΩ
2 can behave quite differently, as discussed in e.g. [35, Sect. 2.2]. The functional

from (∃3) is also called ‘∃3’, and we use the same convention for other functionals.
Finally, the Heine-Borel theorem (aka Cousin’s lemma [10, p. 22]) states

the existence of a finite sub-cover for an open cover of certain spaces. Now, a
functional Ψ : R → R+ gives rise to the canonical cover ∪x∈II

Ψ
x for I ≡ [0, 1],

where IΨ
x is the open interval (x−Ψ(x), x+Ψ(x)). Hence, the uncountable cover

∪x∈II
Ψ
x has a finite sub-cover by the Heine-Borel theorem; in symbols:

(∀Ψ : R → R+)(∃〈y1, . . . , yk〉)(∀x ∈ I)(∃i ≤ k)(x ∈ IΨ
yi

). (HBU)

By the results in [35,36], ZΩ
2 proves HBU but Π1

k -CAω
0 + QF-AC0,1 cannot, and

many basic properties of the gauge integral ([28,44]) are equivalent to HBU.
We finish this section with a motivation for the study of nets in RM.

Remark 2.6. First of all, nets were introduced about a century ago ([26,27]) in
mathematics, and therefore should count as ‘ordinary mathematics’ in Simpson’s
sense, as discussed in [41, I.1]. Secondly, filters are studied in the RM of topology
(see e.g. [29–31]), and it is well-known that nets and filters provide an equivalent
framework (see [3] and Remark 3.6). Thirdly, the weak-∗-topology is studied in
RM (see [41, X.2] for an overview) and this topology has an elegant equivalent
formulation in terms of nets by [8, Theorem 3.1].

3 Main Results

We provide a brief introduction to nets in Sect. 3.1. We study the Bolzano-
Weierstrass theorem for nets and the unit interval in Sect. 3.2. We study Dini’s
theorem for nets of functions in Sect. 3.3. In each case, we obtain HBU from
Sect. 2.2, and even an equivalence in the latter case. As discussed in Sect. 3.1,
we shall only study nets indexed by subsets of Baire space, where the latter are
defined in Definition 2.4 in the context of RCAω

0 .
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3.1 Introducing Nets

We introduce the notion of net and associated concepts. We first consider the
following standard definition (see e.g. [17, Chap. 2]).

Definition 3.1 [Nets]. A set D �= ∅ with a binary relation ‘	’ is directed if

a. The relation 	 is transitive, i.e. (∀x, y, z ∈ D)([x 	 y ∧ y 	 z] → x 	 z).
b. The relation 	 is reflexive, i.e. (∀x ∈ D)(x 	 x).
c. For x, y ∈ D, there is z ∈ D such that x 	 z ∧ y 	 z.

For such (D,	) and topological space X, any x : D → X is a net in X. To
emphasise the similarity with sequences, we write ‘xd’ in the stead of x(d).

The relation ‘	’ is often not explicitly mentioned; we also write d1, . . . , dk � d
as short for (∀i ≤ k)(di � d). In this paper, we shall only study nets indexed by
subsets of Baire space, as defined in Definition 2.4.

The definitions of convergence and increasing net are of course familiar.

Definition 3.2 [Convergence of nets]. If xd is a net in X, we say that xd con-
verges to the limit limd xd = y ∈ X if for every neighbourhood U of y, there is
d0 ∈ D such that for all e � d0, xe ∈ U .

Definition 3.3 [Increasing nets]. A net xd in I ≡ [0, 1] is increasing if a 	 b
implies xa ≤R xb for all a, b ∈ D.

Definition 3.4 [Sub-nets]. A sub-net of a net xd with directed set D, is a net
yb with directed set B such that there is a function φ : B → D such that:

a. the function φ satisfies yb = xφ(b),
b. (∀d ∈ D)(∃b0 ∈ B)(∀b � b0)(φ(b) � d).

Finally, we point out that N with its usual ordering yields a directed set, i.e.
convergence results about nets always apply to sequences and can even yield the
associated convergence results for sequences; the latter are studied in e.g. [41,
III.2] as part of classical RM. An example is provided in the proof of Theorem3.5
where the monotone convergence theorem for sequences is shown to follow from
the Bolzano-Weierstrass theorem for nets.

3.2 The Bolzano-Weierstrass Theorem for Nets

We study the Bolzano-Weierstrass theorem for nets, BWnet for short, i.e. the
statement that every net in the unit interval (indexed by subsets of Baire space)
has a convergent sub-net. This theorem is one of the standard results pertain-
ing to nets, and can even be found in mathematical physics (see [37, p. 98]).
As discussed in the first paragraph of the proof of Theorem3.5, BWnet implies
the sequential compactness of the unit interval, but also the Heine-Borel com-
pactness for uncountable covers by Theorem 3.5. Hence, nets provide a ‘unified’
approach to compactness that captures both sequential and (uncountable) open-
cover compactness.
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Theorem 3.5. The system RCAω
0 + BWnet proves HBU.

Proof. First of all, BWnet implies the monotone convergence theorem for
sequences, i.e. we have access to ACA0 by [41, III.2.2]. Indeed, a monotone
sequence in [0, 1] is also a net in [0, 1], and has a convergent sub-net by BWnet. It
is a straightforward checking of definitions that the original monotone sequence
also converges (in the sense of sequences) to the limit of the sub-net.

We shall provide two proofs of HBU, one in case (∃2) and one in case ¬(∃2).
The law of excluded middle (as in (∃2) ∨ ¬(∃2)) then finishes the proof.

First of all, in case ¬(∃2), all functions on R are continuous by [20, Propo-
sition 3.12], and HBU reduces to WKL by [19, Sect. 4]. Indeed, if Ψ : I → R+ is
continuous, then the associated canonical cover has a countable sub-cover given
by the rationals in the unit interval. By [41, IV.1], WKL is equivalent to the
Heine-Borel theorem for countable covers of the unit interval.

Secondly, we now prove HBU in case (∃2). To this end, suppose ¬HBU and
fix some Ψ : I → R+ for which ∪x∈II

Ψ
x does not have a finite sub-cover. Let D

be the set of all finite sequences of reals in the unit interval, and define ‘v 	 w’
for w, v ∈ D if ∪i<|v|I

ψ
v(i) ⊆ ∪i<|w|I

ψ
w(i), i.e. the cover generated by w is ‘bigger’

than the cover associated to v. Note that (∃2) suffices to define the relation
	. Clearly, the latter is transitive and reflexive, and our assumption ¬HBU also
implies item (c) in Definition 3.1. To define a net, consider the following formula:

(∀w1∗ ∈ [0, 1])(∃q ∈ Q ∩ [0, 1])(q �∈ ∪i<|w|IΨ
w(i)), (3.1)

which again holds by assumption. Note that the underlined formula in (3.1) is
decidable thanks to (∃2). Applying QF-AC1,0 to (3.1), we obtain a net xw in [0, 1],
which has a convergent (say to y0 ∈ I) sub-net yb = xφ(d) for some directed set
B and φ : B → D, by BWnet.

By definition, the neighbourhood U0 = IΨ
y0

contains all yb for b � b1 for
some b1 ∈ B. However, taking d = 〈y0〉 in the second item in Definition 3.4,
there is also b0 ∈ B such that (∀b � b0)(φ(b) � 〈y0〉). By the definition of ‘	’,
φ(b) is hence such that ∪i<|φ(b)|IΨ

φ(b)(i) contains U0, for any b � b0. Now use
item (c) from Definition 3.1 to find b2 ∈ B satisfying b2 � b0 and b2 � b1. Hence,
yb2 = xφ(b2) is in U0, but ∪i<|φ(b2)|I

Ψ
φ(b2)(i)

also contains U0, i.e. xφ(b2) must be
outside of U0 by the definition of xw, a contradiction. In this way, we obtain
HBU in case (∃2), and we are done. ��

We cannot expect a reversal in the previous theorem, as BWnet implies ACA0

by [41, III.2.2], while RCAω
0 +HBU is conservative over WKL0, which readily fol-

lows from applying the ECF-translation from Remark 2.5. We finish this section
with a conceptual remark on nets.

Remark 3.6 (Filters versus nets). For completeness, we discuss the connec-
tion between filters and nets. By [3, Proposition 3.4], a topological space X is
compact if and only if every filter base has a refinement that converges to a
point of X.



260 S. Sanders

Whatever the meaning of the italicised notions, the similarity with the
Bolzano-Weierstrass theorem for nets is obvious, and not a coincidence: for every
net r, there is an associated filter base B(r) such that if the erstwhile converges,
so does the latter to the same point; one similarly associates a net to a given
filter base with the same convergence properties (see [3, Sect. 2]). Hence, one can
reformulate BWnet using filters and obtain the same result as in Theorem 3.5.

3.3 Dini’s Theorem for Nets

We study Dini’s theorem for nets, which is found in [1,4,17,21,27,32,45,46,49].
First of all, we introduce some notation: a net fd : (D × I) → R is increasing

if a 	 b implies fa(x) ≤R fb(x) for all x ∈ I and a, b ∈ D. It goes without saying
that properties of fd(x) like continuity pertain to the variable x, while the net is
indexed by d ∈ D. We (do) say that the net fd : (D×I) → R converges uniformly
if the net λd.fd(x) converges and d0 ∈ D as in Definition 3.2 is independent of
the choice of x ∈ I, i.e. the usual definition.

Secondly, by Corollary 3.9, the following version of Dini’s theorem for nets is
equivalent to HBU. Note the verbatim replacement of ‘sequence’ by ‘net’.

Definition 3.7 [DINnet]. For continuous fd : (D×I) → R forming an increasing
net and converging to continuous f : I → R, the convergence is uniform.

Recall that we only consider nets indexed by subsets of Baire space.

Theorem 3.8. The system RCAω
0 + DINnet proves HBU.

Proof. The ‘classical’ Dini theorem (for sequences) is equivalent to WKL by
[7, Theorem 21], and thus have access to the latter lemma. We proceed as in
the proof of Theorem3.5, i.e. using (∃2) ∨ ¬(∃2). First of all, in case ¬(∃2), all
functions on R are continuous by [20, Proposition 3.12], and HBU reduces to
WKL by [19, Sect. 4], as in the proof of Theorem3.5

Secondly, we prove HBU in case (∃2). Suppose ¬HBU and let Ψ : I → R+ be
such that the canonical cover does not have a finite sub-cover. Now let D be the
set of finite sequences of reals in I and define ‘v 	 w’ for w, v ∈ D if

(∀i < |v|)(∃j < |w|)(v(i) = w(j)) ∧ ∪i<|v|I
ψ
v(i) ⊆ ∪i<|w|I

ψ
w(i).

Clearly, 	 is transitive and our assumption ¬HBU yields item (c) in Defini-
tion 3.1. Now define fw : I → R as follows: If w = 〈x〉 for some x ∈ I, then fw is 0
outside of IΨ

x , while inside the latter, fw(x) is the piecewise linear function that is
1 at x, and 0 in x ± Ψ(x). If w is not a singleton, then fw(x) = maxi<|w| f〈w(i)〉(x).
Moreover, fw is also increasing (in the sense of nets) and converges to the con-
stant one function (in the sense of nets), as for any v � 〈x〉, we have fv(x) = 1.
The crucial property of the net fw(x) is of course that:

(∀x ∈ I)(fw(x) >R 0 ↔ x ∈ ∪i<|w|IΨ
w(i)). (3.2)

Now apply DINnet and conclude that the convergence is uniform. Hence, for
ε = 1/2, there is w0 such that for all x ∈ I, we have fw0(x) > 0. However, the
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latter implies that every x ∈ I is in ∪i<|w0|IΨ
w0(i)

by (3.2), i.e. we found a finite
sub-cover. This contradiction yields HBU and we are done. ��
Since Dini’s theorem is equivalent to WKL in classical RM ([7]), we expect the
following result in Corollary 3.9.

Corollary 3.9. The system ACAω
0 + QF-AC1,1 proves HBU ↔ DINnet.

Proof. We only have to prove the forward direction. As in the usual proof of
Dini’s theorem, we may assume that the net fd is decreasing and converges
pointwise to the constant zero function. Fix ε0 > 0 and apply QF-AC1,1 to
(∀z ∈ I)(∃d ∈ D)(0 ≤ fd(z) < ε0), to obtain Φ1→1 yielding d ∈ D from z ∈ I.
Since λx.fΦ(z)(x) is continuous for any fixed z, (∃2) yields a modulus of continuity
g as in the proof of [19, Proposition 4.7], as follows:

(∀ε > 0)(∀x, y ∈ I)(|x − y| < g(x, ε, z) → |fΦ(z)(x) − fΦ(z)(y)| < ε), (3.3)

and this for all for all z ∈ I. Define Ψ : I → R+ as Ψ(x) := g(x, ε0, x) and note
that (0 ≤ fΦ(x)(y) < ε0) for all y ∈ IΨ

x by (3.3) and the definition of Φ. Now
let y1, . . . , yk be the associated finite sub-cover provided by HBU. By item (c) of
Definition 3.1, there is d0 ∈ D such that d0 � Φ(yi) for all i ≤ k. Since fd is a
decreasing net and [0, 1] ⊂ ∪i≤kIΨ

yi
, we have (0 ≤ fd(y) < ε0) for all y ∈ I and

d � d0, i.e. uniform convergence as required. ��
In the previous proof, using the continuity properties of the functions in the
net, one can get by with QF-AC0,1, but the latter does seem essential. Moreover,
using the above ‘excluded middle’ trick, one could omit (∃2), as nets (essentially)
reduce to sequences if all functions on Baire space are continuous.

4 Nets and the Gödel Hierarchy

We discuss the foundational implications of our results, esp. as they pertain to
the Gödel hierarchy. Now, the latter is a collection of logical systems ordered via
consistency strength. This hierarchy is claimed to capture most systems that are
natural or have foundational import, as follows.

It is striking that a great many foundational theories are linearly ordered
by <. Of course it is possible to construct pairs of artificial theories which
are incomparable under <. However, this is not the case for the “natural”
or non-artificial theories which are usually regarded as significant in the
foundations of mathematics. ([42])

Burgess and Koellner corroborate this claim in [9, Sect. 1.5] and [18, Sect. 1.1].
The Gödel hierarchy is a central object of study in mathematical logic, as e.g.
argued by Simpson in [42, p. 112] or Burgess in [9, p. 40]. Precursors to the Gödel
hierarchy may be found in the work of Wang ([48]) and Bernays (see [5,6]). Fried-
man ([13]) studies the linear nature of the Gödel hierarchy in detail. Moreover,
the Gödel hierarchy exhibits some remarkable robustness: we can perform the
following modifications and the hierarchy remains essentially unchanged:
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1. Instead of the ordering via consistency strength, we can order via inclusion:
Simpson claims that inclusion and consistency strength yield the same2 Gödel
hierarchy as depicted in [42, Table 1]. Some exceptional (semi-natural) state-
ments3 do fall outside of the Gödel hierarchy based on inclusion.

2. We can replace the systems with their higher-order (eponymous but for the
‘ω’) counterparts. The higher-order systems are generally conservative over
their second-order counterpart for (large parts of) the second-order language.

Now, if one accepts the modifications (inclusion ordering and higher types)
described in the previous two items, then an obvious question is where HBU fits
into the (inclusion-based) Gödel hierarchy. Indeed, the Heine-Borel theorem has
a central place in analysis and a rich history predating set theory (see e.g. [22]).

The answer to this question may come as a surprise: starting with the results
in [35,36], Dag Normann and the author have identified a large number of natural
theorems of third-order arithmetic, including HBU, forming a branch independent
of the medium range of the Gödel hierarchy based on inclusion. Indeed, none
of the systems Π1

k -CAω
0 + QF-AC0,1 can prove HBU, while ZΩ

2 can. We stress
that both Π1

k -CAω
0 + QF-AC0,1 and HBU are part of the language of third-order

arithmetic, i.e. expressible in the same language.
Results pertaining to ‘local-global’ theorems are obtained in [36], while the

results pertaining to HBU and the gauge integral may be found in [35]. In this
paper, we have shown that a number of basic theorems about nets similarly fall
outside of the Gödel hierarchy. The Bolzano-Weierstrass and Dini theorems for
nets are old and well-established, starting with [26,27].

Finally, the aforementioned results highlight a fundamental difference
between second-order and higher-order arithmetic. Such differences are discussed
in detail in [39, Sect. 4], based on helpful discussion with Steve Simpson, Denis
Hirschfeldt, and Anil Nerode.
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Abstract. Computer Science is a rather young discipline, and as usual
with new disciplines, in its early stage there were important discussions
about its aim, scope and methodology. Throughout these debates, it was
claimed at different times that computer science belongs to the natural
sciences, mathematics, or engineering. Questions about the organization
of the field were raised as well: is there a need for computer science
departments, or for separate computer science majors at the university
level? The history of these debates has been documented rather well in
recent years. However, the literature focuses mostly on sources from the
US and Western Europe. The aim of this paper is to include the stance
of eminent Hungarian logician and computer scientist László Kalmár in
the history of this discussion. Kalmár’s view is reconstructed based on
recently found, formerly unpublished archival materials from 1970–1971:
a conference abstract and his correspondence about Hungarian computer
science education. In this paper, I will also situate Kalmár’s view among
the positions of other prominent scholars in these debates.

1 Introduction

Computer Science is a rather young discipline, and as usual with new disci-
plines, in its early stage there were important discussions about its aim, scope
and methodology. Many people argued that computer science is an indepen-
dent branch of science worthy of academic examination on its own. However,
throughout these debates it was also claimed at different times that computer
science belongs to the natural sciences, (applied) mathematics, or engineering. In
many cases the arguments were based on the backgrounds or scientific interests
of those who put them forward; researchers of artificial intelligence argued for
the natural science interpretation, while mathematicians invested in the field of
computing emphasized its mathematical aspects. Besides its methodology, the
scope of computer science was called into question as well. Is it, to name a few
options, the study of machines and related questions (as the name of its first
and largest association, the Association of Computing Machinery, indicates), of
information and data processing or of algorithms? Again, scholars were usually
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arguing for one or another view based on their own research interests. During
these early, identity-forming years even the name of the field was called into
question and generated debates.

These questions about the identity of computer science were not merely
intellectual or philosophical questions–they also had practical consequences. For
example, if computer science is an independent science, then it should have
independent institutions within academia, such as departments at universities.
Although today we take the independence of computer science for granted, it
was not obvious in the beginning. Indeed, even in 1966, President of the ACM
Anthony Oettinger stated, “I personally believe, and still believe that I am right,
that departments of computer science have no place in the eternal scheme of
things. [...] I am forced to split my mind and say that I believe that it is an intel-
lectual mistake to have departments of computer science, while I believe there is
no real tactical alternative to having them” ([16], pp. 27–28). He believed that
computer science is not part of either mathematics or engineering, but that it
is anchored to both. As a consequence, he was worried that separate computer
science departments might become isolated within universities. Another practi-
cal question was whether there was a need for separate computer science majors
at the university level: if computer science is simply viewed as a tool for natural
sciences and engineering, then a couple courses should suffice for the experts of
those fields, possibly even only on the graduate level. These questions dominated
the discussions about computer science education throughout the 1960s.

Scholars have taken an interest in the history of computer science’s quest for
its identity as an independent scientific discipline. As early as 1976, Wegner wrote
about the different research paradigms in the field [22]. Many of these debates
were thematized and further analyzed more recently in [3] and [6]. The most
complete historical overview of these debates can be found in Tedre’s excellent
book [21] from 2014. However, the literature covers almost exclusively West-
ern sources (mainly for language reasons), even though computer science as a
discipline clearly had to go through a similar process to gain independence,
acceptance, and prestige outside the US and Western Europe.

The aim of this paper is to include a scholar in this discourse from the East-
ern Block as well.1 The short argument presented below comes from prominent
Hungarian logician and later computer scientist László Kalmár2 from 1970–1971.
He was at the vanguard of Hungarian research in computer science and automata
theory as well as building computing devices. He was also indispensable in the
start of computer science education in Hungary ([18,20]). As a consequence, he
was involved in many similar discussions about computer science as a discipline,
and faced many challenges while fighting for its institutional independence in
Hungary.

1 See [7], Sect. 6 and especially page 183, for examples depicting similar struggles in
the Soviet Union.

2 For bibliographical information and description of his work in the field of computer
science see ([20], Sect. 3) and [14].
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Kalmár, although coming from a mathematical background, argued for the
independence of computer science from mathematics based on methodological
differences. He used his argument to support certain institutional changes in
the Hungarian academic world of computing. I will also situate Kalmár’s view
among the positions of other prominent scholars in these debates. However, due
to lack of space only those with similar views will be indicated.

Sources. While looking through the correspondence between Kalmár and
Patrick Suppes3 in the Kalmár Nachlass at the Klebelsberg Library at the Uni-
versity of Szeged, I accidentally found an interesting acceptance letter from Sup-
pes. The letter, dated the 3rd of May 1971, announces that Kalmár’s contributed
paper, entitled Is Computing Science an Independent Science?, is accepted for
presentation at the Fourth International Congress on Logic, Methodology and
Philosophy of Science.4 It seems, however, that Kalmár never did deliver his
talk. The proceedings [19] do not mention Kalmár, nor does the list of his offi-
cial travels [9] mention this congress, and the list of his collected papers in [1]
does not contain anything similar. Fortunately, the one-page long abstract can
be found in the Nachlass under ‘Folder 311’ [10]. In addition, again by pure
accident, I stumbled upon another exposition of the same argument by Kalmár.
Folder ‘Lev-12’ [11] contains a 24-page long letter from April 10th, 1971 detailing
his comments and recommendations about the national computer science edu-
cation for Hungary’s unified computer science initiative. The letter was sent to
György Aczél, the secretary for cultural affairs of the Central Committee of the
Hungarian Socialist Workers’ Party, upon Aczél’s request. In this letter, Kalmár
gives detailed recommendations for computer science education from elemen-
tary school through high school to university, and even postgraduate courses
and trainings. The context in which the question of the independence of com-
puter science comes up is the education and training of future academic scholars.
I will use these two sources to present Kalmár’s argument that computer science
is independent from mathematics and the implications he thinks this has for the
organization of academic institutions.

Remark. Before turning to Kalmár’s writings, I must explain his choice of words.
His abstract is entitled Is Computing Science an Independent Science? : he uses
‘computing science’ instead of the now customary ‘computer science.’ First it
should be remarked that the field itself did not yet have a generally accepted,
singular term for the discipline of computing (for examples see Chap. 7 of [21]
and p. 324 of [13]). Furthermore, it appears to be a deliberate choice on Kalmár’s
part, as the typewritten abstract I found originally used the expression “com-
puter scientist,” which was later changed to “computing scientist” by hand.
3 Between 1963 and 1965, both Kalmár and Suppes served in the governance of the

DLMPS, Kalmár as Vice-President and Suppes as Secretary General, and as mem-
bers of the Committee on the Teaching of Logic and Philosophy of Science from 1964
until 1968 as well.

4 The Congress took place in Bucharest, Romania from August 29 to September 4 in
the same year.
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His letter [11] written in Hungarian provides some clarification about his choice
of words. There (pp. 16–17), Kalmár makes a distinction between two commonly
used Hungarian terms, ‘számı́tástechnika’ and ‘számı́tástudomány,’ which can
be translated as ‘computing technology (or technique)’ and ‘computing science,’
respectively. Kalmár briefly indicates that he uses these different phrases such
that ‘computing technology’ covers hardware-related issues, while questions con-
cerning software design and engineering belong under ‘computing science.’ For
the remaining part of this paper, I will use ‘computing science’ wherever I dis-
cuss Kalmár’s view. The reader should keep in mind that Kalmár understands
it to mean what we would today call software design and engineering, and that
it does not cover the entirety of computer science, broadly understood. Thus, in
Kalmár’s terminology ‘computing science’ is part of computer science.5

2 Kalmár on the Independence of Computing Science

As mentioned above, there are two sources that contain Kalmár’s argument for
the independence of computing science. First, I will use his letter [11] on the
unified computer science education initiative to provide the context in which
Kalmár used the argument, then display his conference abstract that contains
the argument in its entirety [10], and finally, explain some of his points in detail
and position him among the opinions of others at the time.

Section 6 of Kalmár’s letter ([11], pp. 16–19) is devoted to the question of the
“education of academic scholars” in computer science, that is, those who received
scientific degrees, engaged in research and possibly stayed in academia. They also
clearly were to have a serious impact on the education of the subject, as they
would be the ones to teach it at the university level. The unified computer science
initiative contained a directive of funding ten computer science departments in
the five year period between 1971 and 1975.6 Kalmár emphasized that, in order to
provide quality education, computer science departments needed highly trained
faculty conducting research in both hardware- and software-related issues. How-
ever, as Kalmár pointed out, there were only two PhD7 holders in the field
of software engineering at the time in Hungary, and “even the number of those

5 To make things precise, but possibly even worse, computer science departments in
Hungary are usually called ‘számı́tástechnika’ departments, thus the word Kalmár
uses for hardware-related issues was also used in Hungary as an umbrella term that
can be translated as ‘computer science’ broadly understood.

6 This period coincides with the Fourth Five Year Plan of Hungary. (Five year plans
were overarching, nationwide centralized economic plans in the socialist countries.).

7 In Hungary, and many other countries in the Eastern Block, this scientific degree
was called ‘candidate of sciences’ (‘kandidátusi fokozat’ in Hungarian). As it is a
PhD-equivalent degree, I decided to use ‘PhD’ throughout the paper to avoid confu-
sion and cumbersome phrasing. (Indeed, many ‘candidate of sciences’ degrees were
actually converted to PhDs in the 1990s, after the collapse of the Eastern Block).
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PhDs is rather low that were defended in computing science broadly understood”
(p. 17).8 This obviously posed a problem for the founding of new departments,
as the faculty of university departments had to hold a certain number of scien-
tific degrees in order to be accredited.9 Kalmár’s explanation of the low number
of software engineering and design PhDs, and his recommended solution, were
tied to his argument for the independence of computing science. To understand
the context appropriately, we have to go into more detail about the process of
obtaining a PhD in Hungary during this period.

Hungary, among other Eastern Block countries, adopted many features of
the Soviet academic system. These changes were put into effect in Hungary in
1949, including the creation of the ‘Scientific Qualification Committee’10 of the
Hungarian Academy of Sciences. This committee was a centralized organization
responsible for the selection of PhD candidates and approval of dissertation
topics, as well as approval of faculty members as supervisors, etc. (these decisions
were, in many cases, also not free from political considerations). Thus, in this
new system, departments and universities lost their freedom and autonomy to
award scientific degrees [15].11

Although the Scientific Qualification Committee claimed to assign high pri-
ority to software-related topics, the number of applicants remained quite low.
Kalmár explained the low number of software-related PhDs by the organi-
zational structure of the committee and its approved dissertation categories.
Software-related dissertation topics fit only under the Mathematical machines
and programming category offered by the Mathematical subcommittee. How-
ever, according to Kalmár, the subcommittee contained only mathematicians,
who understood “programming” as it was customary in operation research at the
time, i.e. as linear programming, convex programming, etc.12 As a consequence,
applicants with software-related research interests were often either rejected,
8 It is well known that the Eastern Block lagged behind the West in computing tech-

nologies in general. The gap was even larger in the case of software development and
maintenance than in the case of hardware ([4] pp. 98–100, and [8]).

9 In addition, according to Kalmár, most of the PhD holders had already reached well-
paid, high ranks in the industry and were unlikely to leave their jobs for academia.

10 ‘Tudományos Minőśıtő Bizottság’ in Hungarian.
11 For the sake of completeness, it has to be mentioned that from the 1950s, universities

were allowed to award a title, colloquially referred to as ‘little doctorate’ (‘kisdoktori’
in Hungarian), but it did not count as a scientific degree and in most cases they were
not allowed to be converted into PhD degrees in the 1990s.

12 On p. 17 Kalmár makes a claim, the accuracy of which it is hard to judge today,
that this understanding was facilitated by a typo. According to Kalmár, the category
was supposed to be called ‘Matematikai gépek és programozásuk’ which translates as
‘Mathematical machines and their programming’. However, the official description
read ‘Matematikai gépek és programozások,’ which differs only in one letter (the
second from last), and means ‘Mathematical machines and programming,’ where
programming is actually in plural (which is grammatically correct in Hungarian).
Thus, programming wasn’t necessarily linked to the mathematical machines any-
more, and required multiple kinds of programming, leading to the preference of
operation research themed dissertation topics.
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as their topic was “not mathematical enough,” or directed towards operation
research. In addition, Kalmár noted that some members of the committee “even
a couple years ago during committee meetings openly proclaimed their opin-
ion that programmers are trained at universities but no one should apply for a
PhD with such a topic, as ‘programming is not a scientific research topic’.” This
attitude kept many worthy candidates from even applying.

Kalmár saw these issues as part of a “natural process” in which new branches
have to fight for their acceptance and approval. Thus, that computing sci-
ence faced these difficulties was not surprising–quite the opposite, it was to
be expected. He even mentioned operation research itself and probability theory
as recent examples of new branches that had to fight for their acceptance as
legitimate branches of academic mathematical research.

However, argued Kalmár further, the case of computing science was some-
what different from the acceptance of those branches. While he acknowledged
that computing science had its origins in mathematics, he also argued that its
methodology was so different from mathematics that it should be considered
“an independent science”, i.e. independent from mathematics. This difference
in methodology explained, according to Kalmár, the rejected dissertation topics
as well, since mathematicians did not understand what counts as an (intellec-
tual) achievement in software design and engineering, and thus could not judge
which topic was worthy of a PhD degree. The solution Kalmár proposed was,
of course, to create a new computing science subcommittee within the Scientific
Qualification Committee where the members were computing experts instead of
mathematicians. In January of 1970, he submitted a request for such a subcom-
mittee to be created.

Although today it is widely accepted without much argumentation that com-
puting science should be considered independent from mathematics, it was not
so at the time.13 This is why, at this point in the letter, Kalmár put forward
his argument for the independence of computing science based on its different
methodology from mathematics. The same argument was accepted (without the
aforementioned context) to the Fourth International Congress on Logic, Method-
ology and Philosophy of Science of 1971. As the argument provided in the Hun-
garian letter [11] for computing science being an independent science is very
similar to the English abstract [10], I display the entire abstract below to show
Kalmár’s argumentation in his own phrasing, instead of providing a summary
of it. This is a formerly unpublished abstract of a presentation that was most
likely never delivered. To retain its original appearance, I used a typewriter font
and kept its original typesetting. However, I silently corrected typos and clear
grammatical mistakes, and changed the parentheses from “/” and “/” to “(”
and “)”. The two references listed in the Bibliography are not referred to in the
abstract text by Kalmár. The three footnotes (14, 15 and 16) are added by me.

13 For example Knuth in the preface of his [12] from 1968 wrote that “computers are
widely regarded as belonging to the domain of ‘applied mathematics”’ (p. ix). Inter-
estingly, Knuth uses the term ‘computer,’ not even ‘(theoretical) computer science’
belonging to applied mathematics.
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Is Computing Science an independent science?

Computing Science obviously has its origin in Mathematics. The question

is, whether it is a branch of Mathematics or it can be considered as an

independent science.

Beside its special subject-field, Computing Science diverges from Mathe-

matics by its method. Indeed, while Mathematics is a proof-oriented science,

Computing Science is more algorithm-oriented. In any case, a computing

scientist puts generally as much ingenuity into his algorithms as a mathe-

matician into the proofs of his theorems.

True enough, algorithms play some role in Mathematics as well. However,

even the most sophisticated mathematical algorithms (e.g. Kronecker’s algo-

rithm for decision of the reducibility of a polynomial in the field of rationals,

say, or Galois’ algorithm, using the latter, for decision of solvability, by means

of radicals, of an algebraic equation, with rational coefficients, say) are very

short relative to a compiling algorithm or to an operational system.

Also, the computing scientist has to prove his propositions, e.g. the cor-

rectness of his programs. However, in most cases, the proof has a verificative

character. The name “debugging” given to such verifications shows that the

computing scientist does not esteem this activity, though important, so high

as the mathematician his proofs. In most cases, the errors found in the course

of debugging are easily corrected (at least if the programming idea is sound),

while errors in mathematical proofs are in general fatal.14

A mathematical problem, asking if some statement is true or not, is finally

solved by a proof (or disproof) of the statement in question. On the contrary,

if one has a computational algorithm for the solution of a given problem of

Computing Science, the problem is not yet finally settled, for one is asking

for a better algorithm for the same goal (from the point of view of computing

time or memory place).15 Well, a mathematician can also look for a simpler

proof of some theorem. However, to find one is not as great an achievement

as to find the first proof. On the other hand, the improvement of a compu-

tational algorithm is sometimes as (or more) valuable as producing the first

algorithm for the same purpose.

These arguments show that Computing Science requires a way of thinking

that is different from that of a traditional mathematician. Hence, Computing

Science is appropriately considered an independent science rather than a

branch of Mathematics.

László Kalmár

14 This comparison of Kalmár’s is not clear without further arguments. For, if the idea
behind a mathematical proof is sound, it can be “easily corrected” as well. What he
might have meant is that judging an idea to be sound in programming is easier than
in mathematics.

15 On a similar note in the letter (p. 18), Kalmár remarks that a proof of the optimality
of a particular algorithm belongs to mathematics.
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We see that in arguing for the independence of computing science, Kalmár
tried to differentiate it only from mathematics, and not from engineering. Most
likely he did not address its relation to engineering for two reasons. First, and
most importantly, arguments for computer science and programming being an
engineering discipline (i.e. “software engineering”) became widespread only later,
from the 1970s onward. Second, in Hungary technical universities offered pro-
gramming majors rather late and did not dominate the field ([18,20]).

Kalmár emphasized the differing methodologies of computing science and
mathematics to set computing science aside from applied mathematics. Indeed,
it was customary at the time to categorize computing science as applied math-
ematics. Of course, the subjects of applied mathematics differ from pure math-
ematics, but it is still considered to be a branch of mathematics. Thus, Kalmár
had to argue that the difference between mathematics and computing science is
not a mere difference in their subjects, but a difference in their methodologies.

At the beginning of the abstract, Kalmár declared computing science to be
an “algorithm-oriented” science. The most famous advocate of this point of view
is most likely Donald Knuth, who was originally trained as a mathematician just
like Kalmár. Indeed, in his [13], Knuth wrote that his “favorite way to describe
computer science is to stay that it is the study of algorithms [...] because they are
really the central core of the subject, the common denominator which underlies
and unifies the different branches.” (pp. 323–324) However, Knuth emphasized
the mathematical aspect of algorithms and compared programming to creating
mathematical proofs: “The construction of a computer program from a set of
basic instructions is very similar to the construction of a mathematical proof
from a set of axioms.” ([12], p. ix) He did so to stress the strong interconnect-
edness of programming and mathematics, not only with applied, but with pure
mathematics as well. Kalmár, on the contrary, downplayed the role of algorithms
in mathematics in order to separate it from computing science.

Furthermore, Kalmár distanced the notion of mathematical proof from the
social practice of “proving” programs to be correct, i.e. from “debugging.” In
addition to pointing out the different practices in “verification” in these fields,
he also claimed that verification is not considered to be the intellectually chal-
lenging part of programming, quite in contrast to the appreciation of proofs in
mathematics. This part of the argument can be considered Kalmár’s response to

16 Also published as Jones C.B., Lucas P. (1971) Proving correctness of implementation
techniques. In: Engeler E. (ed) Symposium on Semantics of Algorithmic Languages.
Lecture Notes in Mathematics, vol 188. Springer, Berlin, Heidelberg. DOI: https://
doi.org/10.1007/BFb0059698.

https://doi.org/10.1007/BFb0059698.
https://doi.org/10.1007/BFb0059698.
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the so-called “verificationists.”17 This is the view that programs (algorithms) are
mathematical entities, and if all their specifications are fully formally described,
their correctness could and should be verified by formal mathematical proofs
instead of “debugging.” ([3,21]) According to Tedre, “Although the formal ver-
ification movement was, from its start in the early 1960s, light years away from
the reality of actual programming practice in the industry, many believed in
its intellectual superiority.” ([21], p. 60) This “intellectual superiority” is inher-
ited from the practices of formal mathematics, which is an accepted and well
respected science. Clearly, Kalmár was advocating instead for the examina-
tion and acceptance of the practices being used in computing science, such as
debugging.

In the last step Kalmár compared where the intellectual effort was invested in
these fields. He claimed that the intellectual effort on display in computing sci-
ence was on par with mathematicians’ efforts to provide proofs, but it was used
to design ever more sophisticated and complex algorithms. As a consequence,
connecting back his argument to the academic and institutional context, mathe-
maticians should not be the ones assessing the intellectual merits of achievements
in computing science, simply because they are not acquainted with its method-
ology and practice.

Fig. 1. Kalmár during a lecture. (Picture is from [2]).

17 Indeed, the two entries in the Bibliography attached to the abstract are proponents
of the verificationist view.
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3 A Strong Parallel: Kalmár and Perlis

As a final thought for this paper, I would like to put Kalmár’s argument and
the context in which he gave it in parallel with Alan Perlis’ Computer Science is
Neither Mathematics nor Electrical Engineering [17] from 1968. Although today
this similarity might not appear to be surprising, as their stance turned out
to be the well accepted one, I find it quite striking just how much their views,
background in mathematics and even their positions in the academic institutions
lined up with each other despite being on two opposite sides of the world.18

Perlis, at Carnegie Mellon University at the time, was instrumental in starting
a program in computer science during the mid 1960s, which led to the funding
of a separate computer science department which he was the first head of [5].
Similarly, Kalmár started the first university-level training in computer science
and programming in Hungary at the University of Szeged in 1957 and was the
head of a separate computer science department from 1967 [20].19 Just as Kalmár
expressed frustration over mathematicians assessing computing scientists in the
Scientific Qualification Committee, Perlis began his paper by describing how,
in the US, the allocation of federal funding for computer science research is
decided by various mathematics and applied mathematics committees. Perlis
believed this was because “Computer Science is, unfortunately a bit too large
to be ignored, and yet too new to be properly treated. As a result, computer
science is in danger of being mishandled and misinterpreted” (p. 69).

Similarly to Kalmár, Perlis downplayed the importance of algorithms in
mathematics: “Before the advent of the computer, algorithms were encountered,
but they were rare, simple, and always consigned to the support and back-
ground of other investigations.” (p. 70) Then he pointed out features in the
practice of computer science that are not shared with mathematics: “Still, there
are aspects of computer science’s preoccupation with algorithms which are less
directly related to mathematics. This is true, for example, of computer program-
ming. The algorithms of computer programming are enormously complex and
more specialized than it is the custom of mathematics to treat.” (p. 71) Finally,
he claimed that since computer science is “preoccupied with design and process”
while “mathematics is oriented to abstract analysis” (p. 71), they have different
methodological approaches, and thus computer science should be institutionally
independent from mathematics.20

18 Again, for lack of space, no one else holding this general position is mentioned from
among the many. As just one example, see George Forsythe’s position as described by
Tedre ([21], pp. 37–38). Still, I believe, Kalmár and Perlis’ positions show a striking
resemblance.

19 The department was called Foundations of Mathematics and Computer Technology
Department until 1971, when it morphed into the Computer Science Department,
still headed by Kalmár until his retirement in 1975.

20 Interestingly, even though Perlis mentions “engineering” in the title explicitly, he
does not provide arguments for the independence of computer science from it, just
as Kalmár did not.
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Thus, Kalmár and Perlis described the methodological differences between
computer science and mathematics slight differently. Perlis named the “abstract-
ness” of mathematics and the “design” focus of computer science as distinguish-
ing features, and Kalmár pointed to the different approaches of their verification
processes. Nevertheless, their academic pasts and positions, the context in which
they argued for an independent computer (or computing) science, and their argu-
ments themselves are astonishingly similar.
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Abstract. We prove in this paper that the d.r.e. wtt-degrees are dense,
improving a result of Wu and Yamaleev. Our result is a direct general-
ization of Ladner and Sasso’s splitting theorem for r.e. wtt-degrees. One
essential feature of our construction is that the Lachlan sets are used as
a help to obtain more information of d.r.e. sets.

In this article, we prove that the d.r.e. wtt-degrees are dense, improving a
result of Wu and Yamaleev in their paper [19].

Theorem 1. For any d.r.e. wtt-degrees c < d, there is a d.r.e. wtt-degree a
with c < a < d.

We actually prove Theorem 1 by showing that an analogue of Ladner and
Sasso’s splitting theorem is true for d.r.e. wtt-degree. Recall that Ladner and
Sasso’s splitting theorem in [13] says that any r.e. wtt-degree splits above less
ones. In Theorem 1, if both c and d are r.e. wtt-degrees, then our construc-
tion gives Ladner and Sasso’s splitting, and due to this, Theorem 1 is a direct
generalization of Ladner and Sasso’s splitting, from r.e. wtt-degrees to d.r.e.
wtt-degrees.

A set A ⊆ N is recursively enumerable, r.e. for short, if it is a domain of some
partial recursive function, and a set D ⊆ N is d.r.e. if D is the difference of two
r.e. sets, i.e. D = A−B for some r.e. sets A and B with B ⊆ A. A Turing degree
is r.e. (d.r.e.) if it contains an r.e. (d.r.e., respectively) set.

For the r.e. degrees, Sacks proved that this structure is dense (Sacks density
theorem, [16]) and every nonzero r.e. degree splits (Sacks splitting theorem, [15]).
Cooper proved an analogue of Sacks splitting for d.r.e. degrees (in [4]), and the
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density for d.r.e. degrees is true for low2 d.r.e. degrees [3]. In 1975, Lachlan
proved in [12] that the density and splitting above cannot be combined, where
Lachlan developed the 0′′′ argument for the first time.

Cooper initiated the study of the structure of d.r.e. degrees in his PhD thesis
[2] in 1971. Lachlan observed that the d.c.e. degrees are downwards dense, by
using the degrees of Lachlan sets. However, the d.r.e. degrees fail to be dense,
by the existence of maximal d.r.e. degrees constructed by Cooper, Harrington,
Lachlan, Lempp and Soare in their paper [5].

In this paper, we consider the structure of d.r.e. wtt-degrees, i.e., weak-truth-
table degrees of d.r.e. sets. In [19], Wu and Yamaleev proved that there is no
maximal d.r.e. wtt-degree, providing a structural difference between d.r.e. wtt-
degrees and d.r.e. Turing degrees.

Recall that weak-truth-table reduction was proposed by Friedberg and
Rogers in 1959 in [9], and is now also called bounded Turing reduction, as the uses
of computations are bounded by partial recursive functions. Ladner and Sasso’s
paper [13] gives a systematic study of r.e. wtt-degrees, where they showed that
the splitting and density can be combined in this degree structure. Technically,
we can handle the constructions of wtt-degrees in a much easier manner, due
the bound of uses given in advance.

For the proof of Theorem 1, as we are dealing with d.r.e. sets, for a given
recursive approximations of d.r.e. A, we need to use Lachlan sets, which is defined
based on the approximations we take, to catch the information of numbers leav-
ing A. Lachalan used this kind of sets to show that the d.r.e. Turing degrees
are downward dense. Ishmukhametov [10,11] and also Wu, Yamaleev and their
coauthors [7,8] had considered the distributions of Lachlan degrees. Our proof of
Theorem 1 will be the first construction to use Lachlan sets as an essential help
for obtaining detailed information of the given d.r.e. set. The notion of Lachlan
sets and Lachlan degrees will be given the preliminary part. We believe that
such an idea will be useful for other constructions.

In the remainder of this paper, all degrees are d.r.e. wtt-degrees. Our notation
and terminology are standard and generally follow Soare [17] and Odifreddi [14].
The readers can refer to Ambos-Spies’ paper [1] and Stob’s paper [18] for general
idea on r.e. wtt-degrees. Downey [6] provides an extensive survey of splitting
theorems.

1 Preliminary and Requirements

Given c < d as required, we take d.r.e sets C, D with C ∈ c, D ∈ d, and
let {Cs : s ∈ ω} and {Ds : s ∈ ω} be recursive approximations of C and D,
respectively.

Without loss of generality, we assume that C ⊕ L(D) <wtt D, where L(D) is
the Lachlan set of D with respect to the approximation {Ds : s ∈ ω}, i.e.,

L(D) = {s : ∃x[(x ∈ Ds − Ds−1) and x �∈ D]}.

It is easy to see that L(D) is r.e., if D is a d.r.e. set, then L(D) <wtt D (L(D) is
empty, if D is r.e.). Note that it is possible that C ⊕ L(D) ≡wtt D (even though
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C <wtt D), and if so, we choose C ⊕ L(D) instead of D from d, and consider
the Lachlan set of C ⊕ L(D):

L(C ⊕ L(D)) ≡wtt L(C) ⊕ L(L(D)) ≡wtt L(C) ≤wtt C <wtt D ≡wtt C ⊕ L(D).

This shows that we can always choose C and D with C <wtt D with C ⊕
L(D) <wtt D. We are targeting to apply this idea to the n-r.e. wtt-degrees, to
show that the n-r.e. wtt-degrees are dense. Note that this does not work for
ω-r.e. wtt-degrees, as Downey, Ng and Solomon proved recently the existence of
minimal ω-r.e. wtt-degrees.

We assume that C ∩ D = ∅. Further, we assume that at each stage s + 1,
exactly one number enters or leaves C ∪ D.

To prove the theorem, we split D into two d.r.e sets, D0 and D1, such that D
cannot be wtt-reducible to either D0 ⊕ C or D1 ⊕ C. As a consequence, D0 ⊕ C
and D1 ⊕C are not wtt-reducible to each other, and hence their wtt-degrees are
above c.

D0 and D1 are constructed to meet the following requirements:

P : D0 ∪ D1 = D, D0 ∩ D1 = ∅;
N〈e,i〉 : If D = ΦDi⊕C

e and the use function φe is bounded by ψe, then D ≤wtt

L(D) ⊕ C.

Here {〈Φe, ψe〉 : s ∈ ω} is an effective list of pairs 〈Φe, ψe〉, where Φe is a partial
recursive functional, with use function φe, and ψe is a partial recursive function.

2 Satisfying the P -Requirement

The P -strategy is a standard set-splitting strategy for wtt-reduction, like Ladner-
Sasso’s splitting, with modification for d.r.e. sets.

In Ladner-Sasso’s splitting, also in Sacks splitting, we construct two disjoint
r.e. sets D0 and D1 whose union is D. That is, to split D, when a number x
enters D, it is immediately enumerated into one of D0 and D1, but not both. In
this case, once a number x is enumerated into Di, it will be kept in it forever.
We have D ≡wtt D0 ⊕ D1 easily.

In our construction, D is given as a d.r.e. set and we work in a similar way:
construct two disjoint d.r.e. sets D0 and D1 whose union is D. If a number x
enters D, we enumerate x one of D0 and D1, Di say, but not both. If later x
leaves D, then we remove x from Di immediately. Again, in this case, we have
D ≡wtt D0 ⊕ D1.

A crucial point here is that when x leaves D, s, the stage when x enters D,
enters L(D), the Lachlan set of D, and this enumeration into L(D) keeps the
consistency between N -strategies. We will give detail in the N strategies.
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3 Satisfying One N -Requirement

The core of Sacks splitting is the technique of Sacks preservation, where the main
point is to preserve the agreement between D and ΦDi

e , to force a disagreement,
as D is nonrecursive. This technique was developed by Robinson to show that
r.e. sets split above low r.e. sets. Lachlan’s nonsplitting theorem says that Sacks
splitting cannot be combined with Sacks density, and the main obstacle is that
one strategy can impose restraint with limit infinite. Ladner-Sasso’s splitting
theorem says that splitting and density can be combined for r.e. wtt-degrees.
That is, D �≡wtt Di ⊕ C can be guaranteed by applying Sacks preservation, via
threatening D ≤wtt C. In particular, to make D �= ΦDi⊕C

e , where Φe is a wtt-
reduction, we will construct a wtt-reduction Δe,i such that once we see D and
ΦDi⊕C
e agree on a certain length, � say, we will preserve the Di-side, and define

ΔC
e,i up to �. Thus, for n ≤ �, either ΦDi⊕C

e (n) is preserved, and ΔC
e,i(n) is kept,

or C changes below the use φe(n), and this change undefines ΔC
e,i(n). As for a

fixed n, ΦDi⊕C
e (n) converges at most finitely many times, and each change of

the computation ΦDi⊕C
e (n) is caused by a C-change, ΔC

e,i(n) can be defined at
most finitely many times, and each time when it is defined, we define it as D(n),
so if ΔC

e,i(n) �= D(n), we will have D(n) �= ΦDi⊕C
e (n).

We are now ready to describe how to satisfy one N -requirement, Ne,i say,
where C and D are d.r.e. sets. At a stage s, we define the length of agreement
of D and ΦDi⊕C

e as:

�(e, i; s) = max{x < s : ∀y < x[ψe(y)[s] ↓, ΦDi,s⊕C
e (y)[s] ↓= Ds(y)

and the use ϕDi⊕C
e (y)[s] < ψe(y)]},

and define the restriction function as:

r(e, i; s) = max{ψe(x) : x ≤ �(e, i; s)}.

To simplify the expression, we denote r(e, i; s) by r(s). That is, r(s) is the largest
value of the use in computing the initial segment of ΦDi⊕C

e (y)[s], which agrees
with the initial segment of Ds. As in Sacks preservation strategy, if x ≤ r(s)
enters D at this stage, then we enumerate x into D1−i, and we are expecting
to preserve the length of agreement �(s) by ensuring that no enumerations into
the Di-part can change the computations, like the splitting of Ladner-Sasso.
However, in our construction, both C and D are d.r.e. sets, n can enter C or
D first and then leave at a later stage, and due to this, we cannot guarantee a
disagreement between D(y) and ΦDi⊕C

e (y) if y enters D at a stage s with

D(y)[s] = 1 �= 0 = ΦDi⊕C
e (y)[s],

as when y leaves D at a stage s′ > s, we will come back to

D(y)[s′] = 0 = ΦDi⊕C
e (y)[s].

Therefore, for Sacks preservation, for x between y and �(s), we also need to keep
ΦDi⊕C
e (x) from the enumeration of Di (We definitely cannot prevent the removal
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of elements from Di), and because of this, we will keep the restraint we had at
stage s forever, even when we see y enters D at stage s. This is a feature different
from those in Sacks splitting and Ladner-Sasso splitting.

We comment here that this will not make difference at all in Sacks splitting
and Ladner-Sasso splitting, as the restraints imposed in this way will be finite
in the whole construction. In our construction, this idea is crucial, as we are
expecting that all changes of the disagreement being caused by the enumerations
into C or D may change back later, as noted and used in Wu and Yamaleev’s
paper [19]. We will refer to this idea “once forever”. That is, once a restraint
r(s) is set at a stage s, no number less than r(s) can be put in Di at a later stage
(unless this strategy is initialized), and we will show that, by the assumption
that L(D) ⊕ C <wtt D, this strategy will impose only finite restraint in the
whole construction. We will show this now.

Recall that we are constructing a partial recursive functional Δe,i, such that if
there are infinitely many expansionary stages between D and ΦDi⊕C

e , where the
use function φe is bounded by ψe, then Δ

L(D)⊕C
e,i will be defined infinitely often,

and at any expansionary stage, Δ
L(D)⊕C
e,i computes D correctly at arguments in

the current domain.
As above, when we have �(s), for n < �(s), if Δ

L(D)⊕C
e,i (n)[s] is not defined,

we define
Δ

L(D)⊕C
e,i (n)[s] = Ds(n),

with the C-part of the use as ψe(n), and the L(D)-part of the use as the latest
stage t < s at which some number y ∈ Di[s] less than ψe(n) enters Di. Once we
define it, the C-part and the L(D)-part of the use will not be changed in the
remainder of the construction, unless the strategy is initialized.

Note that L(D) is r.e., once a number t is enumerated into L(D), t

will be in L(D) forever, which means that Δ
L(D)⊕C
e,i (n) never comes back to

Δ
L(D)⊕C
e,i (n)[s], and when it is redefined later, t is already in L(D). This just

says that if the computation ΦDi⊕C
e (n) changes due to some number less than

ψe(n) leaves Di (and hence leaves D), then Δ
L(D)⊕C
e,i (n) will get undefined, and

the new definition will be different from the one at stage s. Also note that when
Δ

L(D)⊕C
e,i (n) is defined at stage s, a restraint is put on to prevent the enumera-

tion of any number less than ψe(n) into Di. By this restraint, Δ
L(D)⊕C
e,i (n) does

not recover to a previous definition. Thus, Δ
L(D)⊕C
e,i (n) can be undefined in this

way by the change of Di at most ψe(n) many times, and as no number less than
ψe(n) can be enumerated into Di (by the “once forever” rule), once it is defined
again at stage s′ > s, Di[s′] ⊆ Di[s], and hence we can still keep the use of the
L(D)-part the same as before.

Now consider the C-part of the use. By the discussion above, we only need
to consider definitions of Δ

L(D)⊕C
e,i (n) between two L(D)-changes, if any. In this

case, Δ
L(D)⊕C
e,i (n) changes due to C-changes. In particular, these changes are

below ψe(n).
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There are two cases.

Case 1. C changes and the computation ΦDi⊕C
e (n) does not recover to a pre-

vious one.
Then Δ

L(D)⊕C
e,i (n) is redefined again at a later stage.

Case 2. C-changes recover ΦDi⊕C
e (n) to a previous one.

In this case, Δ
L(D)⊕C
e,i (n) is also recovered to a previous definition.

In both cases, if D(n) = ΦDi⊕C
e (n), then we can have D(n) = Δ

L(D)⊕C
e,i (n),

either by redefining Δ
L(D)⊕C
e,i (n) and letting it be D(n), or because of Ds′(n) =

ΦDi⊕C
e (n)[s′] = ΦDi⊕C

e (n)[s] = Ds(n), and

Δ
L(D)⊕C
e,i (n)[s′] = Δ

L(D)⊕C
e,i (n)[s] = ΦDi⊕C

e (n)[s] = Ds(n) = Ds′(n).

Therefore, once Δ
L(D)⊕C
e,i (n) is defined, the use will be kept the same, and

if for all n, D(n) = ΦDi⊕C
e (n), then Δ

L(D)⊕C
e,i (n) is defined, where the L(D)-

part and the C-part of the use are fixed, and computes D(n) correctly. This
shows that D is wtt-reducible to L(D)⊕C, which is impossible, by our assump-
tion. Therefore, in the construction, after a certain stage, we will not have more
agreement between D and ΦDi⊕C

e , and this Ne,i-requirement is satisfied.

4 Construction

We are ready to construct a splitting D0, D1, of D satisfying the requirements.
Also we assume that C has changes at odd stages and D has changes at even stages.

We list all requirements as follows:

P < N0,0 < N0,1 < N1,0 < N1,1 < · · · · · · < Ne,0 < Ne,1 < · · · · · · .

P is a global requirement and has the highest priority. We will take care of
it at every stage. For Ne1,j1 < Ne2,j2 , Ne1,j1 has higher priority. Say that a
requirement Ne,j requires attention at a stage s, if the change of C ∪ D at
number x at stage s affects the way of satisfying Ne,j , or s is an expansionary
for Ne,j .
Stage s = 0. Do nothing and go to Stage 1.
Stage s + 1.
Step 1: Check whether stage s+1 is an expansionary stage for some requirement
among N0,0, N0,1, · · · , Ns,0, Ns,1.
(We are trying to find a requirement that requires attention at this stage via
expansionary stages.)

If Yes, let Ne,i be the requirement with the highest priority such that s + 1
is an expansionary stage for Ne,i. Extend the definition of Δ

L(D)⊕C
e,i with the

C-part of the use of δe,i(n) defined as ψe(n) and the L(D)-part of the use δe,i
defined as the last stage t < s + 1 such that some number y < ψe(n) enters Di

and still in Di. Initialize all the requirements with lower priority and proceed to
step 2.
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If Not, then do nothing and proceed to step 2.
Step 2: Suppose that x enters or leaves C ∪ D at stage s + 1.

s odd: If x enters D at this stage, then find the requirement with the highest
priority, Ne,i say, whose restraint is bigger than x, and enumerate x into D1−i.
If x leaves D at this stage, then remove x from D0 ∪ D1. Let Ne,i be the
requirement with the highest priority that is affected by the removal of D.
In both cases, initialize all the requirements with priority lower than Ne,i.
(Again, we are trying to find a requirement that requires attention at this
stage because of the changes of D(x).)

s even: If x enters or leaves C at this stage, then find the requirement with
the highest priority, Ne,i say, whose definition of ΔDi⊕C

e,i (n) is affected by the
change of C at x, if any, and initialize all the requirements with priority lower
than Ne,i. If there is no such a requirement, then do nothing. In both cases,
go to the next stage.
(We are trying to find a requirement that requires attention at this stage
because of the changes of C(x).)

This completes the construction of D0 and D1.

5 Verification

Obviously, the constructed D0 and D1 form a disjoint splitting of D. The
N -requirement is satisfied.

In this section, we verify that D0 and D1 satisfies all the N -requirements.
Thus, the wtt-degrees of D0 ⊕ C and D1 ⊕ C form a wtt-degree splitting of
degwtt(D) above degwtt(C).

Lemma 1. For each e, i,

(1) Ne,i can be initialized at most finitely many times;
(2) Ne,i can be affected by the approximations of C and D at most finitely many

times and consequently, D �= ΦDi⊕C
e , Ne,i is satisfied;

(3) r(e, i) = lim
s→∞ r(e, i, s) exists and is finite, and Ne,i acts and initializes

requirements with lower priority at most finitely many times.

Proof. We prove by induction on 〈e, i〉. Fix 〈e, i〉 and assume (1), (2), (3) hold
for all 〈k, j〉 < 〈e, i〉.

According to the construction, Ne,i is initialized only by strategies of higher
priority, i.e., Nk,j , with 〈k, j〉 < 〈e, i〉. By the induction hypothesis (3), each such
Nk,j initializes Ne,i at most finitely many times, and hence, Ne,i is initialized
finitely many times. (1) is true for Ne,i.

Let t be the least stage such that N〈e,i〉 cannot be initialized after this stage.
Assume for contradiction that Ne,i is affected by approximations of C and

D infinitely many times. As for a fixed n, for computation ΦDi⊕C
e (n), the use

φe(n) is bounded by ψe(n), the affection of approximations of C and D on it is
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finite. So our assumption implies that D = ΦDi⊕C
e . We show below that under

this assumption, D is wtt-reducible to L(Di) ⊕ C, via Λe,i defined by us.
Fix p, and assume that after stage t′ > t, further approximations of C and

D do not affect computations ΦDi⊕C
e (q), and also Λ

L(Di)⊕C
e,i (q), where q < p,

and Λ
L(D)⊕C
e,i (q) = D(q). By our assumption D = ΦDi⊕C

e , there is a stage t′′ > t
such that further approximations of C and D do not affect the computation
ΦDi⊕C
e (p), and ΦDi⊕C

e (p) = ΦDi⊕C
e (p)[t′] = Dt′(p) = D(p).

We now show that at a stage s > t, if we define Λ
L(D)⊕C
e,i (p) at this stage

for the first time, we have ΦDi⊕C
e (p)[s] = Ds(p), and we define Λ

L(D)⊕C
e,i (p)[s] =

Ds(p), with use the C-part use as ψe(p) and the L(D)-part use as the biggest
stage at which some number less than ψe(p) in Di,s enters D. This use will be
fixed since this stage, and because of this, Λe,i is a wtt-reduction. That is, if
at a stage s′ > s, Λ

L(D)⊕C
e,i (p) is undefined, then we make the definition, and

keep the use unchanged. It is obvious for the C-part use, as ψe(p) is fixed, and
the C-part use in the computation of ΦDi⊕C

e (p) is below ψe(p). For the L(D)-
part, note that from stage s onwards, no number less than ψe(p) is allowed to be
enumerated into Di, and hence for any computation ΦDi⊕C

e (p) we see after stage
s, numbers in Di involved in the computation are all in Di,s, and hence when
we redefine Λ

L(D)⊕C
e,i (p), the L(D)-part use is always less the one we defined at

stage s. Thus, Λ
L(D)⊕C
e,i (p) is defined, with use fixed since stage s.

Now we show that from stage s, if Λ
L(D)⊕C
e,i (p) has definition at stage s′, or

is defined at this stage, then ΦDi⊕C
e (p)[s′] = Ds′(p), we have Λ

L(D)⊕C
e,i (p)[s′] =

Ds′(p). It is true because for any stage s′′ with s ≤ s′′ < s′, if computations
ΦDi⊕C
e (p)[s′] and ΦDi⊕C

e (p)[s′′] are different, then either C changes below ψe(p)
or some numbers less than ψe(p) leave Di, and in the latter case, L(D) changes
below the use. In both cases, Λ

L(D)⊕C
e,i (p)[s′] = Ds′(p).

This shows that for each p, Λ
L(D)⊕C
e,i (p) is defined, Λ

L(D)⊕C
e,i = D and the

reduction Λe,i is a wtt-reduction, contradicting our assumption that D >wtt

L(D) ⊕ C.
Therefore, Ne,i can be affected by the approximations of C and D at most

finitely many times, and we have D �= ΦDi⊕C
e . (2) holds for Ne,i. As a conse-

quence, Λ
L(D)⊕C
e,i can have the definition extended at most finitely many times.

For (3), note that Ne,i sets a restraint at a stage s only when Λ
L(D)⊕C
e,i (n) is

defined at this stage for some n, or approximations of C and D affect computa-
tions involved. By (2), we know that such actions can happen at most finitely
many times. Hence we can set restraint for Ne,i finitely many times, and hence
has a finite limit. Ne,i initializes strategies with lower priority only when Ne,i is
affected during the construction, and can take only finitely many such initializa-
tions during the whole construction. (3) holds for Ne,i.

This completes the proof of Lemma 1.
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Abstract. Finite state machines with feedback present a novel machine
model when considered under the scenario of cognitive computations.
The model is designed in the spirit of automata theory and presents a mix
of Alan Turing’s finite state machines and Norbert Wiener’s machines
with feedback. For the model we define, what we call, minimal machine
consciousness and machine qualia. The design of our model is lead by
natural engineering requirements. Its properties are justified by the latest
findings in neuroscience and by ideas from the classical literature of the
philosophy of mind. For the model a test distinguishing minimally con-
scious machines from unconscious ones (“zombies”) on a given cognitive
task is proposed. Our modeling supports the claim that consciousness
is a computational phenomenon that is not just a matter of suitable
software but also requires a dedicated architecture.

“We need to break down the concept of consciousness into different aspects,
all of which tend to occur together in humans, but can occur independently,
or some subset of these can occur on its own in an artificial intelligence.
. . .We can imagine building something that has some aspects of conscious-
ness and lacks others.”
Murray Shanahan, The Space of Possible Minds, Edge, July 10, 2018.

1 Introduction

Although the efforts in the computational modeling of intelligence have a long
tradition, it continues to be a challenge to design formal computational models
that adequately capture all important aspects of the human mind. The respective
efforts have started with Turing’s foundational paper on machine intelligence
[14]. Shortly later, Kleene [10] clarified the intimate connection between neural
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modeling as understood at the time and finite automata theory. Since then, the
efforts in computational modeling of the brain have permeated all of artificial
intelligence and robotics.

For years, research has focused mainly on specific aspects of cognition, like
vision, planning, and natural language processing (cf. [11,15]). Until recently,
almost no attention was paid to consciousness from this perspective, not in
the least because there was no clear-cut separation between intelligence and
consciousness [4]. Some notable exceptions exist, such as the work by Aleksander
[1]. He presented a theory of consciousness based on neural machines, starting
from fundamental postulates that a neural machine should satisfy in order to
exhibit “artificial consciousness”. Aleksander and Dunmall [2] proposed a set
of informal axioms, meant as necessary conditions for consciousness in agents.
Bringsjord et al. [3] went even further and used both formal expressions and
inference schemata in proposing a definition of artificial consciousness, based on
formal axioms. These approaches all aim at modeling human-like consciousness.

With the advent of robotics, the deep issues of high-level cognitive processes
and of mind as a whole, including consciousness, have entered the center stage
of AI. This was also triggered by the current, unprecedented progress in the
area of deep neural networks. Recent findings in neuroscience (cf. [5]) and in the
philosophy of mind (cf. [18]) support the functional (or computational) theory
of mind – namely, that cognitive functions of the brain, consciousness included,
are of a computational nature. However, until now there were practically no
attempts to investigate this using the classical means of theoretical computer
science. What can theory tell us about the feasibility of designing robots with
at least minimal consciousness?

Given this challenge, and leaving the current approaches to modeling con-
sciousness in AI and the philosophy of mind aside for the moment, we propose
an approach to consciousness in the best tradition and spirit of the theory of
computation and, especially, of automata theory. This is quite different from
the formal approaches [1,2] and [3] mentioned earlier, since we employ a formal
machine rather than a formal theory model. A further difference is that, while
the former approaches aim at modeling human consciousness—in some sense
a “maximally” developed consciousness, our model has a different, more mod-
est and pragmatic, purpose. Namely, we aim at the design of a computational
model of cognitive systems that is as simple as possible while still capturing the
minimalist requirements imposed by the intended presence of some important
aspects of consciousness.

Our design is lead by natural engineering requirements, asking that cognitive
systems should at least have some means for situating themselves in their envi-
ronment, be able to monitor their functioning, and coordinate the actions of their
sensory and motor units in an unpredictable environment. Using this as a guide-
line, we develop a model for the respective mechanisms. For this model we define,
what we call, minimal machine consciousness and machine qualia. The presence
of qualia is generally considered to be the hallmark of consciousness [13]. We
point to analogues of our machine qualia with the classical philosophical notion



288 J. Wiedermann and J. van Leeuwen

of qualia (or subjective experience) and justify our model by the latest findings
of neuroscience, claiming that conscious systems possess a mechanism for the
global availability of information and have self-knowledge, self-monitoring and
self-awareness ability [5]. Our model seems to be the first computational model
utilizing qualia for enabling a correct behavior of cognitive systems in situations
when a malicious adversary occasionally prevents machine’s sensory and motor
units from optimal performance.

The design of our model, giving sufficient conditions for a machine to exhibit
minimal machine consciousness, is already the main result of our paper. Notably,
the possession of minimal machine consciousness is not a purposeless property,
but presents a set of natural engineering conditions as mentioned above which,
when satisfied, facilitate a machine’s meaningful behavior. The model also points
to an important methodological finding, namely, that the presence of (even min-
imal) machine consciousness is not a matter of the software design of a model’s
inner machinery, or of the size of this machinery, as some thinkers believe. On
the contrary, it is a matter of the organization of the system’s interface with the
environment, i.e., a matter of the system’s architecture.

We stress that our paper is not intended to be a paper in the philosophy
of mind and it is not aiming at modeling and explaining the human mind,
although it has several philosophical connotations along this line. Rather, our
model should be seen as a theoretical model whose aim is to study the proper-
ties of minimal machine consciousness, and of machine qualia, in computational
artifacts like robots that can be designed and constructed. It is our contribution
to the feasibility of robots with minimal machine consciousness.

To get an idea of what kind of machines can be endowed with minimal
machine consciousness, think of computational devices provided with simple sen-
sors and motor units with broadcasting facilities. Examples of such devices are
molecular nanorobots operating in a confined space (e.g. the bloodstream) and
communicating via signal molecules, mobile phones communicating via radio on
various frequencies, or driverless cars fitted with ultrasound sensors, lidars and
radars, GPS units, etcetera. More generally, devices which also include facilities
for vision, requiring more sophisticated processing of inputs, also count.

2 An Automata-Based Model of Cognitive Machines

The basis of our model is an embodied interactive finite-state system equipped
with sensory and motor units. What makes it different from a classical finite
automaton is the feedback between its sensory units and its finite-state control,
and between its motor units and its finite-state control. Moreover, our model
works under a different, non-standard scenario than what is common in automata
theory, and in fact, in the majority of contemporary computational systems. This
so-called cognitive scenario captures the natural requirements that any cognitive
system should meet in order to act successfully in its environment.

Namely, by its actions the model is continually generating sensory inputs that
must be registered and classified. Doing so, inputs caused by the own actions
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of the system must be distinguished from information about independent exter-
nal changes. In this way the system gets acquainted with what goes on in its
environment and can single itself out from this environment. Last but not least,
the system must be knowledgeable about the proper working of its sensory and
motor units in order to be able to take corrective measures, if a need for it arises.
Integrating and disambiguating all this knowledge, the system’s finite control
eventually generates new actions. In this way the system becomes a center of
action and perception and builds the basis for its self-awareness.

Within this cognitive computational scenario, we consider a non-standard
model of a finite-state system with sensor and motor units called a cognitive
automaton. This automaton survives and operates in a certain environment.
The system obtains inputs from its environment through its sensors. It has a
fixed, finite number of sensors of several kinds. Sensory and motor units are of
two types: external and internal ones. Depending on its type, a sensor sends both
a representation of an occurrence of a phenomenon it is specialized to and the
quality of the corresponding sensation. The quality of a sensation can be graded
and depends on the nature of that sensation. It can be, e.g., its magnitude,
intensity, frequency, etc. The system also has various motor units to which it
sends instructions how to operate and from which it obtains reports whether,
or to what extent, the proposed operation could be realized. The qualities of
the sensations and reports from the motor units provide important information
for a system’s self-monitoring and self-awareness. The graded responses allow
the system to monitor the working of its sensory and motor units. We assume
that among the motor units there is one special unit – called the engine – that
is always on and that powers all system activities. The source of energy of the
engine is not a subject of our modeling. Some motor units may serve for the
positioning of sensors, others for the manipulation of various of the machine’s
effectors.

The model operates as follows. In a single move (i.e., in parallel), it reads
a tuple of (input) sensations from its sensory units and to each sensation it
also reads the quality of that sensation. Moreover, it also reads reports from
the motor units indicating whether and how the motor units have realized the
instructions sent to the motor units in the previous step. Then, based in its
internal state, the automaton makes a transition. A transition is dictated by
a so-called transition function which assigns, to all signals mentioned above, a
new instruction for each motor unit and a new internal state. In this way, the
mechanism applies its “causal power” to the current state in order to determine
a next state and a next action. A formal definition is as follows:

Definition 1. A cognitive automaton with k ≥ 1 sensory units and n ≥ 1 motor
units is a system 〈A,S1, . . . , Sk, Q1, . . . , Qk, R1, . . . , Rn,M1, . . . ,Mn, δ, q0〉,
where

– A is the finite set of states,
– Si is the finite set of sensations from the i-th sensory unit, for i = 1, . . . , k,
– Qi is the finite set of qualities of sensations from the i-th sensory unit, for

i = 1, . . . , k,
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– Rj is the finite set of reports from the j-th motor unit, for j = 1, . . . , n,
– Mj is the finite set of motor instructions for the j-th motor unit, for j =

1, . . . , k,
– δ is a partial transition function from A × S1 × . . . × Sk × Q1 × . . . × Qk ×

R1 × . . . × Rn to A × M1 × . . . × Mn, and
– q0 ∈ A is the initial state.

From the definition of δ it follows that if q is a current internal state of
the system, s1, s2, . . . , sk current sensations, q1, q2, . . . qk current qualities of the
previous sensations, r1, r2, . . . , rn the reports from the motor units, r a new
internal state, and m1,m2, . . . ,mn motor instructions, then each transition has
the following form: (q, s1, . . . , sk, q1, . . . qk, r1, . . . , rn) → (r,m1, . . . ,mn). The
left-hand part of the transition is called the configuration of the automaton.

From the automata-theoretic point of view, our model represents an interac-
tive model of computation—a transducer—with feedback. It is interactive since
the next move of the automaton depends on the reactions of the environment
as perceived by the automaton’s sensory units. Within the model feedback is
provided internally—by the qualities of sensations and reports from the motor
units which. Technically, these are not a part of the outputs from the system
that are intended to go beyond (i.e., out of) the system. Rather, they are routed
back to the system without leaving it. This corresponds to a classical (digital,
in our case) feedback as described by Wiener [17]. It is a feedback that is differ-
ent from the external feedback usually considered in purely interactive systems
where feedback means that all outputs of a process can be read again by system’s
sensors as causal inputs to the ongoing process.

From the viewpoint of cognition, and more specifically, in order to enable min-
imal machine consciousness to occur in a cognitive automaton in a given environ-
ment, the automaton must possess elementary, but important self-control abil-
ities. These abilities include self-knowledge, self-monitoring and self-awareness.
Self-knowledge means that the system has available information about its state
and that produced both by its sensors (the percepts and their qualities) and by
its motor units (the reports from all of them). Self-monitoring is the ability of a
system to evaluate the performance of its own sensory and motor units. Finally,
self-awareness is the capacity of the system for introspection and to recognize
itself as an individual object, separate from the environment and other systems
(cf. Wikipedia), and the awareness of changes in the outside world.

Proposition 1. There exist environments for which cognitive automata can be
constructed possessing the capacity of self-knowledge, self-monitoring and self-
awareness.

The information needed for self-knowledge includes the information about
a system’s state and that produced both by its sensors (the percepts and their
qualities) and by its motor units (the reports from all of them). Knowing what
a system is presently doing is a form of self-knowledge that leads both to a
subjective machine sense of presence and the capacity of reportability.
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It is almost obvious that the feedback from the sensory and motor units
enables the realization of self-monitoring. Namely, from these units the systems
gets the data about the working conditions of the system, and based on this
information it can either prolong its working without any further special actions
or remedy it. All this leads to a subjective machine sense of certainty or error
and enables the repair of a system’s own mistakes [5].

The definition of self-awareness requires fulfillment of three conditions. First,
the capacity for introspection, i.e., the ability to reflect one’s own mental state
(cf. [5]. In general, mechanisms of introspection seem to be beyond the abil-
ity of finite automata. However, in the framework of finite automata we will
model introspection by a finite number of dedicated automata states—so-called
machine qualia states. We will explain the latter notion in the next section.

Second, the ability to recognize oneself as an individual object separate from
the environment and other objects is usually provided by a proper selection of
a pair of sender-receiver units whose cooperation provides the required effect.
There are several modalities of signals that can work in this way. For instance,
reception of a returned specific olfactory (or chemosensory), electric, optical,
acoustic or haptic signal indicates the presence of other instances of the respec-
tive object. Obviously, absence of such returning signals indicates that no sim-
ilar objects are around. Using a vision system for a similar purpose is a more
demanding process, which may go beyond our modeling possibilities.

Third, the feedback also allows the system to distinguish its own actions as
observed by its sensory units from the similarly observed actions performed by
other such systems. That is to say, in the latter case the reports from the motor
units do not match the sensations from the sensory units.

Self-awareness provides a cognitive automaton with a rudimentary machine
concept of the self – the automaton has the information on what goes on in the
outside world, what its own actions are and what is their effect. This information
is of the form “here and now” – it is pertinent to the present position of the
automaton in its environment and to the present moment.

Definition 2. Self-knowledgeable, self-monitoring and self-aware cognitive
automata are called minimally conscious automata.

By the very definition of a cognitive automaton its current state is “globally
available” to all its transitions that can be evaluated independently, in parallel.

3 Classifying Cognitive Machines

A cognitive machine can be designed so as to perform an important cognitive
activity—and this is classification. Classification is the problem of identifying to
which of the sets of inputs a new observation belongs. We do not require that
each observation belongs to at most one set of inputs. It may belong to several
such sets, or to none at all. To this end we extend our model from Definition 1.

Let C be the set of all possible inputs to an automaton’s finite control, and let
C1, . . . , Cp, (the so-called classification sets), be subsets of C such that ∪p

i=1Ci = C.
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Informally, a classifying cognitive machine with classification sets C1, . . . , Cp, is a
cognitive machine that works as follows. At any time, the automaton is in a current
internal state. On any input, the classification automaton determines the classifi-
cation sets to which the input at hand belongs and assigns to it a new, uniquely
defined, so-called classification state. Then, based on the current input and both
the current internal and new classification state, the transition function of the
automaton determines the new actions and the new internal state of the automa-
ton.

Note that what the classification automaton does, is the decomposition of
the space of all inputs into equivalence classes of classification sets represented
by the respective classification states.

Definition 3. Let A,Si, Qi, Rj ,Mj , q0 for i = 1, . . . , k, j = 1, . . . , n be as in
Definition 1. Let C = S1 × . . . × Sk × Q1 × . . . × Qk × R1 × . . . × Rn be the
set of all possible inputs to the automaton’s finite control, let C1, . . . , Cp, be the
classification sets.

Given an input from C the task of the classifying automaton is to identify all
classification sets to which the given input belongs. This is done by determining,
for each input a Boolean vector whose non-zero components denote the index of
a classification set pertinent to that input. Formally, let κ : C → {0, 1}p, the
so-called classification function, be defined for any d ∈ C as follows:

κ(d) = (b1, b2, . . . , bp) where for i = 1, . . . , p : bi = 1 iff d ∈ Ci

The set B of all vectors of form (b1, b2, . . . , bp) = κ(d) for some d ∈ C is called
the set of classifying states.

Then the classifying cognitive automaton with k ≥ 1 sensory units and n ≥ 1
motor units and the classification sets C1, . . . , Cp is the system

〈A,B, S1, . . . , Sk, Q1, . . . , Qk, R1, . . . , Rn,M1, . . . ,Mn, C1, . . . , Cp, δ, κ, q0,⊥〉

where ⊥ is the initial classification state and δ is the partial transition func-
tion from (A × B) × S1 × . . . × Sk × Q1 × . . . × Qk × R1 × . . . × Rn to (A ×
B)×M1 × . . .×Mn defined as follows: δ((q, u), s1, . . . , sk, q1, . . . qk, r1, . . . , rn) =
((r, v),m1, . . . ,mn)), with v = κ(s1, . . . , sk, q1, . . . qk, r1, . . . , rn).

Note that for a given input, classification function κ correctly returns in the
respective classification state indexes of those classification sets to which the
input belongs. Classification states arise by fusion of the data from different
sources captured by C. On one hand, this produces more consistent, accurate
information than that provided by any individual data source. On the other
hand, by possibly omitting information from certain sensors that are not impor-
tant for judging the current situation the resulting information is more compre-
hensive and more informative for subsequent decision purposes.

Proposition 2. Classifying cognitive automata possess the capacity of perform-
ing the classification task.
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When compared to the automaton from Definition 1, the classifying cognitive
automaton has a set of “structured” internal states. Each such state stores in its
first component the internal state that controls the computation of the automa-
ton and in its second component the classifying state denoting the subsets of
inputs to which the current input belongs. Thus, the transition function δ is the
mechanism that performs two tasks at the same time: it realizes the “classical”
transition as in Definition 1, and in addition, it also realizes the classification
task (with the help of the classifying function κ). Note that, as long as the
inputs are from the same classification class, the automaton remains in the same
classification state.

4 Machine Qualia

There are many definitions of qualia which have changed over time. None of them
is supported by a computational model. Therefore, it makes sense to select a sim-
ple, broad definition for our purposes. One of the simplest definitions captures
the “what-it-is-like” character of sensations. Hence, we will view qualia as char-
acterizations of certain specific sensations to which specific states are assigned.
Thus, a quale is characterized by the corresponding state called a quale state, and
by both qualitative and quantitative aspects of sensations. Qualitative aspects
describe what sensations are important to a given quale state, while quantitative
aspects describe the required quality of such sensations.

The key to defining qualia are classification sets. To this end, the classification
sets must be designed so as to capture important circumstances in the operation
of a cognitive machine that matter and require a similar response. Such events
are defined by the current input from the sensory units and by the conditions
that the feedback information from the sensory and motor units must satisfy.
That is, classification sets are no longer defined by enumeration of their members
(as it was the case with Definition 3), but in a more compact way by computable
predicates. These predicates list the sensory and motor units that are active in
the circumstance of interest, the expected outputs from the sensory units, their
expected quality, and the expected types of reports from the motor units. Thus,
these predicates in fact check whether the inputs at hand satisfy a certain set
of conditions that indicate for the machine how it should react to its current
inputs.

Definition 4. Qualia sets are specific classifying sets of the classifying cognitive
machine, defined in a compact way with the help of computable predicates. Qualia
sets differentiate the inputs with respect to the similarity of circumstance and the
actions that should be taken by the machine under a given circumstance. Inputs
assigned to the same qualia set cause the machine to enter into the respective,
uniquely defined classification state called the quale state that represents the
entire quale set. The members of a qualia set defined by a given quale state are
called the machine qualia defined by that state.
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Note that the current quale state is made globally available to the entire
automaton, as the automaton’s transition depends (also) on this state (cf. Defi-
nition 3).

Definition 5. Let A be a minimally conscious classification automaton, let b be
a quale state. Then we say that A perceives a quale defined by the given input if
and only if this input is classified by A as belonging to the quale set defined by b.

It is important to note the perception of machine qualia is defined only
for minimally conscious machines. This is because without self-knowledge, self-
monitoring and self-awareness there would be no subject, no mechanism playing
the role of an internal machine “observer” perceiving the machine qualia. An
other implicit condition for a machine quale to be perceived is that all inputs to
a machine must be registered in parallel, as the machine must “globally” react to
the entire input rather than “locally” to its parts only. Also note that perceiving
a quale is a primitive form of introspection which is an important aspect of self
awareness—in the quale state a remembrance of the characteristic circumstance
that lead to activation of the quale at hand is preserved.

Observe that a machine can remain in the same quale state during a sequence
of internal states. This is because a change of a quale state is invoked by signals
from specified sensory and motor units, and it can take several clock cycles
between the initiation and the end of a sensory or motor operation, since these
operations may include slow mechanical actions, or for other reasons.

Examples of specific machine qualia are, e.g., for a nanorobot: “achieving the
threshold of quorum sensing”, for a smartphone: “receiving a blue-tooth signal”,
for a driverless car: “the sensing of car sliding”, etc.

5 Justification of the Model

Although our model has not been intended as a model of human brain, it is
interesting to compare our notion of machine consciousness and machine qualia
with the ideas of philosophers of mind concerning human consciousness and
human qualia.

Our notion of minimal machine consciousness of (artificial) cognitive
machines is close in spirit to the ideas of Edelman [8] on primary conscious-
ness and to those of Damasio [6] on core consciousness concerning humans and
animals. According to Edelman, primary consciousness refers to being mentally
aware of things in the world in the present time without any sense of past and
future. Damasio [6] has it that “core consciousness enables a sense of self about
one moment – now, and one place – here. The scope of core consciousness is
here and now.”

As far as our notion of machine qualia is concerned Dennett [7] has explored
a classical conception of human qualia and gave four conditions that these must
satisfy:

(i) Qualia are directly or immediately apprehensible in consciousness,
(ii) qualia are intrinsic, (iii) qualia are ineffable, and (iv), qualia are
private.
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Dennett famously argued that, if these conditions are to hold, human qualia are
vacuous. However, we show that in our model of cognitive machines machine
qualia satisfying these conditions do exist.

Consider a cognitive machine A in the context of the epistemic theory of
computation (cf. [16]). The machine works in an environment E that is described
by a certain epistemic theory that captures all objects in E , their properties and
relations among them knowable by the sensorimotor apparatus of A. Let us see
whether our machine qualia (cf. Definition 4) satisfy the four conditions imposed
by Dennett.

First of all, machine qualia are obviously directly and immediately appre-
hensible in a minimally consciousness machine by definition. Remember that
minimal machine consciousness requires that the machine must be self-
knowledgeable, self-monitoring, and self-aware, meaning that the machine must
have knowledge of its own self-monitoring and self-knowledge pertaining to given
time and space, here and now.

Secondly, machine qualia in minimally conscious machines are intrinsic,
because they are designed in this way and belong to essential nature of the
machine. They originate by fusion of machine’s sensorimotor percepts by a mech-
anism that is a part of a machine’s design isolated from any other influence.

The matter of the ineffability of machine qualia is interesting. They are ineffa-
ble from a machine’s own perspective: the machine cannot, in principle, express
its qualia in terms of its epistemic theory, since qualia represent non-existing
objects and data that are knowable by activities of its sensorimotor units (since
such objects do not occur in the machine’s environment). However, from the
viewpoint of the machine’s designer, machine qualia are effable. The designer
can “measure” the quality of the machine’s instantaneous observation by tam-
pering with the sensorimotor units and he can give a complete description of
any machine quale. A designer can even record and copy them into an (genuine)
copy of the machine at hand and invoke them in this new machine.

Finally, the latter consideration also gives an answer to the question about
the privacy of machine qualia. From the machine’s perspective, its qualia are
private: without having access to the machine’s fusion mechanism, nobody or
nothing can infer the machine’s quale state.

To conclude, if one accepts that our model captures at least some valid
aspects of qualia (as considered by Dennett), it seems that Dennett’s arguments
for the non-existence of human qualia are too feeble. This is because we have a
model based on realistic groundings, whereas Dennett has no such a model.

6 On the Power of Minimal Machine Consciousness

In the philosophy of mind, a (philosophical) zombie is a hypothetical being that
from the outside its behavior is indistinguishable from a normal human being,
but lacks conscious experience, qualia, or sentience (cf. [9]). We argue that a
minimally machine conscious machine would be able to perform under certain
circumstance in ways a zombie machine lacking minimal machine consciousness
would never be able to act.
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Proposition 3. Let M be an arbitrary minimally conscious (non-zombie)
machine and Z an arbitrary zombie machine. Then there exist situations in
which Z cannot behave in the same way as M does.

Consider an arbitrary zombie machine Z which is, by definition, not min-
imally machine conscious. That is, Z is either not self-knowledgeable, or not
self-monitoring, or not self-aware. If Z is not self-knowledgeable, then in some
situation it will not be registering some information vital for the behavior of M
and therefore, in this particular situation, Z cannot behave in a way as M does.
If Z is not self-monitoring then again, in situations where an adversary prevents
some non-monitored motor unit of Z from performing as expected, then Z, not
being informed about the failure of its action, cannot behave in a way as M
does. Last but not least, if Z is not self-aware, it must err sometimes in the
classification of situations that have been evaluated by M as a consequence of
its own previous actions.

Based on the previous argumentation we can design an experimental test
for minimal machine consciousness. The test is based on the assumption that
minimally conscious machines are designed so as to behave purposefully under
all external conditions that a machine at hand can encounter. The idea of the test
of an unknown machine is to check whether this assumption is always fulfilled.
If the tested machine happens to be a zombie machine then it cannot pass the
test since it will miss information which is important to its behavior due to the
lack of self-knowledge, or self-monitoring, or self-awareness ability.

To this end, we test the machine at hand whether it can adjust its behavior
to variable conditions in its environment that would complicate the machine’s
mission. That is, we check whether the machine will operate meaningfully under
the conditions of temporarily preventing its sensors or motor units in their free
operation. If under such conditions the machine starts to behave erratically or
nonsensically, we conclude that it was a zombie machine.

Comparing our experimental test with the recently proposed test by Schnei-
der and Turner [12], which is in fact a variant of the Turing test focused on
discovering subjective experience during a verbal interaction with the subject,
we immediately see the advantages of our test. Namely, our test is suitable for
consciousness testing in living and non-living entities, and it is a behavioral test
not dependent upon understanding a natural language.

The example of zombies illustrates the advantages of possessing minimal
machine consciousness: without it, a cognitive machine would at best be a zombie
machine, unable to deal with non-standard situations.

7 Conclusions

We have presented a relatively simple computational model of cognitive machines
that makes use of machine qualia to implement the basic ingredients of the min-
imal machine consciousness: global availability of information, self-knowledge,
self-monitoring and self-awareness. The emergence of minimal machine con-
sciousness has been enabled by a specific architecture of cognitive machine
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with internal feedback between its sensory units and its finite-state control, and
between its motor units and its finite-state control. Therefore it is to be expected
that in general, a “full” (machine) consciousness will not only be a matter of a
suitably programmed “standard” model of computation, but will also require a
non-standard, specific architecture such as in our model. This finding seems to
be the essential contribution to the theory of machine consciousness.
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Abstract. We discuss various ways of representing natural numbers
in computations. We are primarily concerned with their computational
properties, i.e. which functions each of these representations allows us
to compute. We show that basic functions, such as successor, addition,
multiplication and exponentiation are largely computationally indepen-
dent from each other, which means that in most cases computability of
one of them in a certain representation does not imply that others will
be computable in it as well.

We also examine what difference can be made if we restrict our atten-
tion only to those representations in which it is decidable whether two
numerals represent the same number. It turns out that the impact of
such restriction is huge and that it allows us to rule out representations
with certain unusual properties.

Keywords: Representations of numbers · Computable functions ·
Characteristic functions

1 Introduction

Various authors have been considering the view that the notion of computability
applies in the first place to functions on numerals, rather than on numbers them-
selves. Such position has been suggested by Shapiro in [4] and further discussed,
among others, by Rescorla in [3], Copeland and Proudfoot in [1] and Quinon in
[2]. I have also considered related issues in [5].

All algorithms are performed on strings of symbols which denote numbers
(or other objects)—but a certain number can be represented by different strings.
E.g. the number 6 is represented as VI when we use Roman numerals, but by 110
if we want to use binary numerals. Computation of a function such as addition
is different in each of these cases.

According to Church’s thesis, computable functions are exactly recursive
functions. However, if we allow non-standard ways of encoding numbers, this
does not have to be true. A set of numerals (satisfying a few additional conditions
specified in the next section) together with a function assigning a natural number
to each numeral, shall be called a representation.

c© Springer Nature Switzerland AG 2019
F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 298–309, 2019.
https://doi.org/10.1007/978-3-030-22996-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22996-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-22996-2_26


Representations of Numbers and Computability of Various Functions 299

In this paper we are going to examine computability of the most important
functions on natural numbers: successor, addition, multiplication and exponen-
tiation. While they are all recursive and hence their computability is normally
taken for granted, we want to show that this is not always the case (i.e. not
in every representation). Furthermore, as it turns out, these functions are com-
putationally largely independent from each other—i.e. the assumption of com-
putability of one of them in most cases does not guarantee computability of the
others.

We shall also provide a suggestion of an additional constraint on representa-
tions which will allow us to rule out representations with particularly irregular
properties. Namely, if for a certain representation there exists an algorithm which
for any two numerals determines whether they represent the same number or
not, then such representations exhibit properties much more similar to represen-
tations usually employed.

2 Defining the Concept of Representation

In this section we are going to define some basic notions regarding representa-
tions.

Definition 1. Let Σ be a finite alphabet. We shall call (S, σ) a representation
of N, where S ⊆ Σ∗ is an infinite computable set and σ : S → N is a surjection.

Definition 2. Let (S, σ) be a representation of N. We shall say that this rep-
resentation is unambiguous iff for every n ∈ N there exists exactly one numeral
α ∈ S such that σ(α) = n. Otherwise we shall call the representation ambiguous.

The basic example of a representation is the unary representation defined as
follows:

Let Σ = {1}. S is the set of all finite sequences comprised of 1 and the empty
word ε, and the function σ is defined in the following way:

σ(ε) = 0,

if σ(α) = n, then σ(α � 1) = n + 1.

Another representation, which we shall refer to throughout this paper as the
standard representation, is the decimal representation, defined as follows:

Let Σ = {0, 1, ..., 9}. S is the set of all standard decimal numerals (i.e. the
set consisting of the numeral 0 and of all finite sequences of digit from Σ which
do not begin with 0), and the function σ is defined in the following way:

σ(an...a0) =
n∑

i=0

ai · 10i,

Both these representations are unambiguous.
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In unambiguous representations, the concept of computability is simple. A
function is computable if there exists an algorithm which for every numeral (rep-
resenting a certain number) supplied on the input, returns the numeral repre-
senting the value of the function on the output. The issue gets more complicated
when it comes to ambiguous representations. This is how we define computability
in general case:

Definition 3. Let (S, σ) be a representation of N. Then for any function,
f : N

n → N, by fσ : Sn → S we shall denote a function such that for any
α1, ..., αn, β ∈ S the following condition is satisfied:

fσ(α1, ..., αn) = β ⇒ f(σ(α1), ..., σ(αn)) = σ(β).

If there exists a computable function fσ satisfying the above condition, than we
shall say that f is computable in (S, σ).

Note that in case of ambiguous representations, many such functions fσ can
exist. It is possible that some of them are computable, and some are not. We
adopt a convention that “to compute the function f in (S, σ)” and “to compute
fσ” are both going to mean “to compute any function fσ which satisfies the
above condition”.

We will also want to be able to compute Boolean functions, i.e. functions
whose values are TRUE and FALSE.

Definition 4. Let R ⊆ N
n. The characteristic function of the relation R is the

function χR such that for any a1, ..., an ∈ N the following holds:

χR(a1, ..., an) = TRUE ⇔ R(a1, ...an).

χR(a1, ..., an) = FALSE ⇔ ¬R(a1, ...an).

In this paper we are going to be particularly concerned with the characteristic
function of identity:

χ=(a1, a2) = TRUE ⇔ a1 = a2,

χ=(a1, a2) = FALSE ⇔ a1 �= a2.

The computability of characteristic functions is defined in a similar way as in
the case of numerical functions.

Definition 5. Let (S, σ) be a representation of N. Then for any relation R ⊆ N
n

we shall define Rσ ⊆ Sn in the following way:

(α1, ..., αn) ∈ Rσ ⇔ (σ(α1), ..., σ(αn)) ∈ R,

for all α1, ..., αn ∈ S. We shall say that χR is computable (or simply that R is
computable) in (S, σ) if and only if Rσ is computable.

Note that TRUE and FALSE are neither numerals, nor numbers, but they are
entirely different symbols.
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3 Computability of Successor, Addition, Multiplication
and Exponentiation in Representations of Natural
Numbers

In this section we are going to show what are the relations between computabil-
ity of some basic functions. In particular, we want to emphasise the role of
computability of characteristic function of identity χ=.

The proofs of Theorems 6 (in a modified form) and 7 come from my paper
[5]. The former theorem is a generalised version of Shapiro’s result included
in his paper [4]. Shapiro considered only unambiguous representations (in his
terminology—notations), which is a very common approach among authors deal-
ing with this subject. I have generalised his result to include all types of repre-
sentations.

Theorem 6. Let (S, σ) be a representation of N in which successor and χ=

are computable. Then all functions computable in the standard representation,
including addition, multiplication and exponentiation, are also computable in
(S, σ).

Proof. Let (S, σ) be a representation of N in which the successor function
(denoted as Succ) and χ= are computable. In this representation there is a
numeral representing number 0. Let us denote such a numeral as α, i.e. let
α ∈ S be such that σ(α) = 0. Note that for the purpose of this proof we only
need to know that such α exists, not which numeral it is. This is because it is our
aim here only to prove the existence of an algorithm, not to state which exactly
algorithm it is.

We shall first show how to translate numerals from (S, σ) to the standard
representation.

Let n be a numeral representing n in the standard representation, for every
natural number n. The purpose of this convention is to clearly distinguish
between standard numerals and numbers which they denote.

Let λ be a numeral of (S, σ). For every natural number n, let us denote
λn = Succσ(Succσ(...(α)...)), where the successor is iterated n times in λn. We
compare one by one each λn with λ until we find such n that χσ

=(λ, λn) = TRUE.
Then σ(λ) = n, so the numeral n represents the same number in the standard
representation as the numeral λ in (S, σ).

Let n be a numeral of the standard representation. To find its counterpart
in (S, σ), we calculate λn defined as above.

Now suppose that f is computable in the standard representation. We want
to compute this function in (S, σ) on some given input. In order to do so, we
translate this input to the standard representation, perform an algorithm in the
standard representation and then translate the output back to (S, σ).

Theorem 7. There exists a representation (S, σ) of N in which the successor
function is computable, but addition, multiplication and exponentiation are not
computable.
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Proof. We construct (S, σ) as follows:
The alphabet consists of symbols: 0, 1, a.
The set of numerals S consists of all finite non-empty sequences of symbols

from the alphabet which contain at most one occurrence of a.
Let A ⊆ N be uncomputable in the standard representation.
We construct σ in the following way:

σ(0) = 0,

σ(1) = 1,

σ(a) = 0 ⇔ 1 �∈ A,

σ(a) = 1 ⇔ 1 ∈ A.

Also, for any α ∈ S:
σ(α � 0) = σ(α),

σ(α � 1) = σ(α) + 1,

σ(α � a) = σ(α) ⇔ lh(α) + 1 �∈ A,

σ(α � a) = σ(α) + 1 ⇔ lh(α) + 1 ∈ A,

where � is a concatenation and lh(α) is the length of the sequence α.
This is a correct representation because every natural number n is represented

by at least one numeral, namely 1...1 consisting of n digits 1, with the exception
of number 0, which is represented by the numeral 0.

For any α ∈ S, let #1(α) denote the number of occurrences of symbol 1 in
the numeral α.

The successor function in (S, σ) can be computed as follows:

Succσ(α) = α � 1.

We shall show that addition is not computable in this representation. Suppose
to the contrary that it is.

For any natural number n ≥ 1 let us denote:

λn = 0...0a,

where λn consists of n − 1 digits 0 followed by one occurrence of a.
We want to find out whether n ∈ A. We compute λn +λn in (S, σ). We know

that σ(λn) is equal to 0 or 1. Thus σ(λn +σ λn) is equal to 0 or 2.
If n ∈ A, then σ(λn) = 1 and σ(λn +σ λn) = 2. Then #1(λn +σ λn) ≥ 1. If,

however, n �∈ A, then σ(λn) = σ(λn +σ λn) = 0 and then #1(λn +σ λn) = 0.
It is easy to find out which of these cases occurs and thus—whether n ∈ A. It

follows that A is computable in the standard representation, which contradicts
our assumption. Therefore, addition is not computable in (S, σ).

Similarly we show that multiplication and exponentiation are not computable
in (S, σ). Let us denote:

δn = 1...1a,
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where λn consists of n − 1 digits 1 followed by one occurrence of a. Then we
compute respectively δn · δn or δn

11 in (S, σ) (note that they both return the
same result, we shall only provide a proof for the case with multiplication).

Suppose that multiplication is computable in (S, σ). We shall prove that A is
also computable. Let n ∈ N. We want to find out whether n ∈ A. Without loss of
generality we can assume that n ≥ 2.1 Let α ∈ S be the result of multiplication
δn · δn in (S, σ). We know that σ(δn) is equal to either n − 1 or n. Therefore:

1. If σ(δn) = n − 1, then σ(δn ·σ δn) = (n − 1)2 = n2 − 2n + 1. Therefore
#1(α) = n2 − 2n or #1(α) = n2 − 2n + 1.

2. If σ(δn) = n, then σ(δn ·σ δn) = n2. Therefore #1(α) = n2 −1 or #1(α) = n2.

Note that for n ≥ 2 we can find out which of these cases occurs. If the first
case occurs, then n �∈ A, otherwise n ∈ A. Thus we have obtained contradiction
with the assumption that A is not computable. Therefore multiplication (and
similarly exponentiation) is not computable in (S, σ).

Theorem 8. Let (S, σ) be a representation of N in which addition is computable.
Then the successor function is also computable in this representation.

Proof. Let (S, σ) be a representation of N in which addition is computable. In
(S, σ) there must be a numeral representing number 1. Let us denote this numeral
as β. Then we can calculate the successor function in (N,σ) as follows:

Succ(α) = α +σ β.

Theorem 9. There exists a representation (S, σ) of N in which addition (and
thus also successor) is computable, but multiplication and exponentiation are not
computable.

Proof. For any natural number n, let n denote the numeral which represents n
in the standard representation of N.

We construct the following representation (S, σ):
The alphabet Σ consists of digits 0, ... , 9, of symbols (, ) and the comma.
We construct the set S of numerals as follows:
For any standard numerals a0, ... , an, the sequence (a0, ..., an) is a numeral

of the representation (S, σ) if a0 ≥
n∑

i=1

ai.

Let A ⊆ N be uncomputable in the standard representation such that 0 ∈ A.
For any (a0, ..., an) ∈ S the function σ is defined as follows:

σ((a0, ..., an)) =
n∑

i=0

(ai · χA(i)),

where for any natural number i: χA(i) = 1 if i ∈ A, and χA(i) = 0 if i �∈ A.
1 The algorithm which is supposed to find out whether n ∈ A will have answers for
n ∈ {0, 1} explicitly given as special cases.
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This representation is well-defined because every natural number is repre-
sented by at least one numeral, in particular n is represented by (n).

For any numerals (a0, ..., am) and (b0, ..., bn) (without loss of generality we
assume that m ≤ n), we define addition in (S, σ) in the following way:

(a0, ..., am) +σ (b0, ..., bn) = (a0 + b0, ..., am + bm, bm+1, ...bn),

where +S is interpreted as addition of numbers represented by respective numer-
als in the standard representation. It is obviously computable.

We shall prove that multiplication is not computable in this representation.
Suppose that it is computable. We shall show that then A is computable in the
standard representation which leads to a contradiction.

We want to find out whether n ∈ A.
For any natural number n we define the following numeral:

λn = (1, 0, ..., 0, 1),

where λn has 1 on the zeroth and n-th position and 0 on all the other positions.
We compute the multiplication λn ·λn in (S, σ). There are two possible cases:
If n ∈ A, then σ(λn) = 2 and σ(λn · λn) = 4. From the condition that

a0 ≥
n∑

i=1

ai it follows that a0 ≥ 2 for every numeral representing number 4 in

this representation.
If n �∈ A, then σ(λn) = 1 and σ(λn · λn) = 1, so a0 = 1 in a numeral

representing number 1 in this representation.
We determine which of these cases occurs and thus we can find out whether

n ∈ A. Therefore A is a computable set in the standard representation, which
leads to a contradiction. It follows that multiplication is not computable in (S, σ).

Similarly, by considering the result of the computation λn
λn we can show

that exponentiation is not computable in this representation.
We compute λn

λn in (S, σ). There are two possible cases:
If n ∈ A, then σ(λn) = 2 and σ(λn

λn) = 4. From the condition that a0 ≥
n∑

i=1

ai it follows that a0 ≥ 2 for every numeral representing number 4 in this

representation.
If n �∈ A, then σ(λn) = 1 and σ(λn

λn) = 1, so a0 = 1 in a numeral represent-
ing number 1 in this representation.

We determine which of the cases occurs and thus we can find out whether
n ∈ A. Therefore A is a computable set in the standard representation, which
leads to a contradiction. It follows that exponentiation is not computable in
(S, σ).

Theorem 10. There exists a representation (S, σ) of N in which multiplication
and χ= are computable, but addition and exponentiation are not computable.

Proof. Let π be a permutation of N uncomputable in the standard representa-
tion.
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We construct the following representation. The alphabet consists of the digits
0, ... , 9, of the symbols ( , ) and the comma.

The admissible numerals in (S, σ) are all finite sequences of the form
(a0, ..., an), where each ai is a natural number. Additionally, the numeral 0
belongs to S.

We construct σ as follows:
σ(0) = 0,

σ((a0, ..., an)) = pa0
π(0) · ... · pan

π(n),

where ai is the numeral representing ai in the standard representation and pi is
the i-th prime number.

It is a correct representation because each natural number is represented by
a certain numeral, which results from the fundamental theorem of arithmetic.

For any numerals (a0, ..., am) and (b0, ..., bn) (without loss of generality we
assume that k ≤ l), we define multiplication in (S, σ) in the following way:

(a0, ..., am) ·σ (b0, ..., bn) = (a0 + b0, ..., am + bm, bm+1, ...bn),

where + is interpreted as addition of numbers in the standard representation.
Additionally, for any α ∈ S, let α ·σ 0 = 0 ·σ α = 0.
Hence, multiplication is computable in (S, σ). The function χ= is also com-

putable, as a consequence of the fundamental theorem of arithmetic. We shall
show that addition and exponentiation are not computable in this representa-
tion.

Let us assume that addition is computable in this representation. We shall
show that then the permutation π must be computable in the standard repre-
sentation, which leads to a contradiction.

Let n be any natural number. We want to find the value of π−1(n). We
take any non-zero numeral λ ∈ S and we calculate λ + ... + λ︸ ︷︷ ︸

pn times

in (S, σ). Then

we check on which position of λ the number has increased by 1 (note that
it can also be a new position on which 1 has appeared). The number of this
position is equal to π−1(n). Thus we can compute the permutation π−1 in the
standard representations. However, if π−1 is computable, then obviously π is
also computable.

Now suppose that exponentiation is computable in this representation. We
shall prove that then the permutation π must be computable in the standard
representation.

For any natural number n we shall find π(n) using the following method:
Let λn be a numeral of the form (0, ..., 0, 1), where the digit 1 is proceeded

by n occurrences of the digit 0. Then σ(λn) = pπ(n). We compute the result of
(1)λn in (S, σ). Obviously:

σ((1)λn) = p
pπ(n)

π(0) .

When we calculate this exponentiation, we will get the numeral (pπ(n)) as a
result. Thus we find out the value of the π(n)-th prime number, so we can easily
compute π(n).
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Theorem 11. Let (S, σ) be a representation of N in which exponentiation and
χ= are computable. Then multiplication and addition are also computable in this
representation.

Proof. Let α, β ∈ S. We want to calculate α ·σ β and α+σ β. Let λ be a numeral
representing number 2 in (S, σ) and let (ζn)n∈N be a recursive enumeration of
all numerals from S. For each ζn we check if the following equality holds:

(λα)β = λζn

until we find a numeral for which it is true. Such ζn shall be the result of
calculating α ·σ β in (S, σ).

To calculate α +σ β in (S, σ), for each ζn we check whether the following
equality holds:

λα ·σ λβ = λζn .

until we find a numeral for which it is true. Such ζn shall be the result of
calculating α +σ β in (S, σ).

We conclude that addition and multiplication are computable in (S, σ).

Theorem 12. There exists a representation (S, σ) of N in which exponentiation
is computable, but successor, addition and multiplication are not computable.

Proof. We construct such a representation as follows:
The alphabet consists of digits 0, ... , 9, symbols π, E, (, ) and the comma.
The set of numerals S is the smallest set satisfying the following conditions:
Every numeral of the standard representation belongs to S.
If α, β ∈ S \ {0, 1}, then E(α, β) ∈ S.
If α ∈ S and α represents a prime number in the standard representation,

then π(α) ∈ S.
We construct the function σ in the following way:
Let π be a permutation of prime numbers (i.e. a bijection from prime numbers

onto prime numbers) uncomputable in the standard representation such that
π(2) = 2.

For any standard numeral n, let σ(n) = n

For any α, β ∈ S \ {0, 1}, let σ(E(α, β)) = σ(α)σ(β).
For any prime number p, let σ(π(p)) = π(p).
This representation is well-defined because every natural number is repre-

sented by a certain numeral, in particular by the same numeral as in the standard
representation.

We define exponentiation in (S, σ) as follows:
αβ = E(α, β), for α, β ∈ S \ {0, 1},
α0 = 1, α1 = α, 1α = 1, for any α ∈ S,
0α = 0, for any α ∈ S \ {0, 1}.
Exponentiation is computable in this representation.
We shall prove that successor is not computable in (S, σ). Suppose to the

contrary that it is computable. We shall show that π is then computable in the
standard representation, which leads to a contradiction.
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Let T = (αij)i,j∈N be defined as follows:

αij = Succσ(Succσ(...(π(pi))...)),

where the successor is iterated j times, and pi is the i-th prime number.
Since we assumed that the successor function is computable, it follows that

T is a computable family of numerals indexed by pairs of natural numbers.
Note that each prime number p is represented by exactly two numerals in

(S, σ), namely p and π(q), for a certain prime number q. Let us consider the
following cases:

Case 1. Suppose that there exists a prime number p and that there exist natural
numbers i, j such that αij = p (by this we understand the equality of numerals,
not just the equality of numbers represented by them) and for every prime
number p′ > p and for any natural numbers i′, j′ the following holds: αi′j′ �= p′.
Then we consider the infinite sequence of results of the following computations
(which is a row of T , possibly with the exception of a certain initial segment):

p, Succσ(p), Succσ(Succσ(p)), ...

It is a sequence of numerals representing consecutive natural numbers, starting
with σ(p). For any natural numbers i, j, if αij is a numeral representing a cer-
tain prime number p, then αij = p or αij = π(q), for a certain prime number
q. According to our assumption, there are only finitely many prime numbers
represented in the first of these two ways. In each row of T nearly all prime
numbers are represented by numerals of the second type. Since T is computable,
by calculating consecutive numerals from any row of T and choosing only those
of them which represent prime numbers, we obtain an infinite sequence repre-
senting consecutive prime numbers:

π(pi0), π(pi1), π(pi2), ...

Then we compute π in the following way: nearly all of its elements can be
obtained from the above sequence, the rest of them (which are finite in number)
can be enumerated as special cases.

Case 2. Suppose that there exists a natural number i such that for any natural
number j and any prime number p: αi,j �= p. Then from the i-th row of T , like
in the previous case, we calculate nearly all values of π. Since there are only
finitely many values outside of this row, it follows that π is computable.

Case 3. Suppose that there is no natural number which satisfies either of the
conditions from cases 1 and 2. Therefore, for every natural number i there exist
a natural number j and a prime number p such that αi,j = p. Let us take any
natural number i. We shall show how to compute π(pi), where pi is the i-th
prime number. Let j, p be such that αi,j = p, where p is a prime number. Also:

αi,j = Succσ(Succσ(...(π(pi))...)),

where the successor function is iterated j times.
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Therefore π(pi) + j = p. It follows that π(pi) = p − j. We have obtained
a contradiction with the assumption that π is not computable in the standard
representation. Therefore the successor function is not computable in (S, σ).

From this and Theorem 8 it follows that addition is not computable in (S, σ)
either.

We shall show that multiplication is not computable in (S, σ). Assume to the
contrary that it is. We shall show that π is then computable in the standard
representation and thus we shall obtain a contradiction. Let p > 2 be a prime
number. We shall show how to compute π(p).

Let us calculate 2 ·σ π(p). From the definition of (S, σ) it follows that the
result of this calculation cannot be of the form E(α, β) for any numerals α, β.
It cannot be of the form π(q), for any prime number q because the result of this
multiplication is not a prime number. Therefore it must be a certain standard
numeral n. However, all such numerals are interpreted in (S, σ) just like in the
standard representation. Therefore π(p) = n

2 .
It follows that π is computable in the standard representation, which contra-

dicts our assumption. Therefore, multiplication is not computable in (S, σ).

4 Conclusions

In this paper we have considered computability of the most important functions
on natural numbers. We believe that we have managed to establish in what ways
their computability depends on each other.

Based on these results it seems that except for some trivial cases, we can
usually construct a representation in which one function is computable and the
other is not. The example of such a trivial case was that computability of addition
implies computability of successor—which is not surprising because successor
function can be obtained by addition by substituting a constant for one of the
arguments.

It is our purpose to find general rules governing such dependencies. Suppose
that for a function f , we define computational closure of f as the set of all
functions computable in every representation in which f is computable. Certainly
f will be closed under such operations as substitution, composition of functions,
etc. But is it possible to give a complete description of what functions belong to
such closure? This is a question we are currently investigating.

Another important conclusion is that the computational landscape dramat-
ically changes as soon as Boolean functions are included. The assumption of
computability of χ= ensures that we are already able to say a lot more about
properties of various representations. The question arises whether there are other
equivalence relations of similar importance.
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Abstract. A real number is called left c.e. (right c.e.) if it is the limit of
an increasing (decreasing) computable sequence of rational numbers. In
particular, if a left c.e. real has a c.e. binary expansion, then it is called
strongly c.e. While the strongly c.e. reals have nice computational prop-
erties, the class of strongly c.e. reals does not have good mathematical
properties. In this paper, we show that, for any non-computable strongly
c.e. real x, there are strongly c.e. reals y1 and y2 such that the difference
x−y1 is neither left c.e., nor right c.e., and the sum x + y2 is not strongly
c.e. Thus, the class of strongly c.e. reals is not closed under addition and
subtraction in an extremely strong sense.

Keywords: C.e. reals · Strongly c.e. reals · Semi-computable reals

1 Introduction

A precise definition of the “computable real numbers” was the main motivation
of Alan Turing’s seminal paper [16]. According to Turing, “the computable (real)
numbers are those whose decimals are calculable by finite means ”, where the
“finite means” were defined in the same paper as the “automatic machines”
which are now widely called “Turing machines”. In other words, the decimal
expansion of a computable real can be represented by a computable function. As
Turing also mentioned, the computability of the reals can be defined equivalently
based on binary expansions. Actually, the notion of “computable reals” can be
defined equivalently based on any classic definitions of reals (see [12]).

One important property of the binary (as well as decimal) representations of
reals is that every real has at most two representations. This representation is not
“admissible” (see [13] for more details), i.e. it does not transfer the topological

This research was done when the first author visited Arcadia University in the fall
2018. We appreciate very much the support of the Department of Mathematics and
Computer Science, Arcadia University.

c© Springer Nature Switzerland AG 2019
F. Manea et al. (Eds.): CiE 2019, LNCS 11558, pp. 310–322, 2019.
https://doi.org/10.1007/978-3-030-22996-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22996-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-22996-2_27


Differences and Sums of Strongly C. E. Real Numbers 311

properties well from the Cantor space (i.e., {0, 1}ω) to the Euclidean space of
reals. Topological properties are especially important when the computable real
functions are investigated, because the computable real functions are essentially
the effectivization of uniform continuity. Therefore, binary expansion is not a
suitable representation for computable analysis in general.

However, binary expansion does closely relate the computable analysis with
the classic computability and randomness theory (cf. [8,17]), because a set of
natural numbers corresponds naturally to a real in terms of binary expansion.
For example, if A ⊆ ω and if the characteristic sequence of A is also denoted by
A, then the set A corresponds to a real x in the unit interval with the binary
expansion 0.A (= 0.A(0)A(1)A(2) · · · ), or equivalently, x =

∑
i∈A 2−(i+1). In

this case, we call A the (binary) representation of x. We also write x = xA if A
represents x. Throughout this paper we consider only reals in the unit interval
[0, 1]. If x has a finite or co-finite representation then x is a dyadic rational.

By means of binary representation almost all results of classic computability
theory about sets of natural numbers can be “translated” directly into the corre-
sponding results about reals. In particular, a real x is computable or computably
approximable (c.a. for short) if it has a computable or Δ0

2 representation, respec-
tively. Most of this kind of translations are quite reasonable and make perfect
sense. For example, we can define the Turing reducibility between two reals by
x ≤T y iff there are sets A,B ⊆ ω such that A ≤T B with x = xA and y = xB .

Unfortunately, however, some of these translations do not seem reasonable.
For example, computable enumerability (c.e. for short), one of the most impor-
tant notions in classical computability theory, can not be well translated into
reals in such a straightforward way. As it was first observed by Jockusch and
Soare ([15]), for a non-computable c.e. set A, the real xA⊕A does not have a
c.e. binary expansion, but its left Dedekind’s cut is a c.e. set of rational numbers
and, equivalently, it is the limit of an increasing computable sequence of ratio-
nal numbers. It seems that these reals are better counterparts of the c.e. sets.
Therefore, we call a real x left c.e. or simply c.e. if it is the limit of an increasing
computable sequence of rational numbers. The example of Jockusch and Soare
shows that not every c.e. real has a c.e. binary representation. So, we call a real
x strongly c.e. if it has a c.e. binary representation, i.e. x = xA for a c.e. set
A. Moreover, we call a real right c.e. or co-c.e. if it is the limit of a decreasing
computable sequence of rational numbers, and we call a real semi-computable if
it is either left c.e. or right c.e.

The class of c.e. reals has been widely investigated (see [6–8,10,21]) and
it has very rich and nice properties with respect to computability as well as
randomness. Unfortunately, however, the class of c.e. reals does not have nice
algebraic properties. In particularly, it is not closed under subtraction, because
−x is not c.e. if x is c.e. but not computable. The class of strongly c.e. reals is
even worse with respect to the algebraic properties, and it is not closed under
addition. For example, the sum xA⊕A = x2ω+1 +x2A+1 of two strongly c.e. reals
x2ω+1 and x2A+1 is not strongly c.e. if A is a non-computable c.e. set. This
observation is extended by Wu [18] as follows. He calls a real n-strongly c.e. if
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it is the sum of up to n strongly c.e. reals, and he calls a real regular if it is
the sum of finitely many strongly c.e. reals. Then he shows that these classes
form a proper hierarchy and they do not exhaust all c.e. reals. In this paper, we
strengthen the observation that the class of the strongly c.e. reals is not closed
under sums in a different direction. We show that, for any strongly c.e. real x, if
it is not a dyadic rational, then there exists a strongly c.e. real y such that x+ y
is not strongly c.e. (Theorem 2).

Since (x2A + x2ω+1) − x2A+1 = xA⊕A we know that the class of strongly
c.e. reals is also not closed under subtraction. Furthermore, as it is shown in
[2], the real xA⊕B is neither c.e. nor co-c.e. if A and B are Turing incomparable
c.e. sets. This immediately implies that there are strongly c.e. reals such that
their difference is not even semi-computable. Furthermore, the second author
shows in [19] that, there are strongly c.e. reals x and y such that their differ-
ence x − y does not have an ω-c.e. Turing degree. Moreover, for the c.e. reals
Barmpalias and Lewis-Pye [4] show that, for any non-computable c.e. real x,
there is a c.e. real y such that the difference x − y is not semi-computable. Here
we will show the corresponding result for strongly c.e. reals (Theorem1) namely
that, for any non-computable strongly c.e. real x, there is a strongly c.e. real
y such that the difference x − y is not semi-computable. Therefore, the class
of strongly c.e. reals is not closed under both addition and subtraction in an
extremely strong sense. For some more recent work on differences of c.e. reals
we refer the reader to Barmpalias and Lewis-Pye [5] and Miller [11].

We close this section by explaining some useful notions and notations. In the
following the term set refers to sets of nonnegative integers, i.e., subsets of ω. A
is the complement of A. A⊕B = {2n : n ∈ A}∪{2n+1 : n ∈ B} is the effective
disjoint union of A and B. We call a set A almost c.e. if there is a computable
sequence (As) of finite sets such that lim As = A and, for any n and s, if
n ∈ As\As+1 then m ∈ As+1\As for some m < n. Such a sequence (As) is called
a computable almost-enumeration of A. Notice that we have As ≤lex As+1 if (As)
is a computable almost-enumeration. A real x is c.e. iff its binary representation
is almost c.e. (see [6]). In the literature, c.e. and co-c.e. reals are also called
left computable and right computable, respectively. Since the reals in the unit
interval are not closed under sums and differences, we tacitly use the following
convention in this paper. If x = xA + xB is greater than 1 then we replace x by
x − 1 and if x = xA − xB is less than 0 then we replace x by x + 1. By these
shifts we can keep the sums and differences of the reals from the unit interval
still in the unit interval.

2 Differences of Strongly C.E. Reals

This section will explore the differences of strongly c.e. reals. We will show

Theorem 1. For any noncomputable strongly c.e. real x there is a strongly c.e.
real y < x such that x − y is not semi-computable.
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Before we turn to the proof, we first give some of the underlying ideas. In [2]
Ambos-Spies, Weihrauch and Zheng observed that, for any c.e. sets A and B such
that A and B are Turing incomparable, the real xA⊕B is not semi-computable.
Since xA⊕B = (x2A + x2ω+1) − x2B+1 this immediately gives an example of
two strongly c.e. reals such that their difference is not semi-computable. This
argument can be easily modified to show that xA − xB is not semi-computable
if B ⊆ A and A and B are Turing incomparable c.e. sets. Moreover, by Sacks’
Splitting Theorem [14], one can easily show that any noncomputable Turing
incomplete set A contains a c.e. subset B as above. This proves Theorem 1 for
strongly c.e. reals x = xA represented by Turing incomplete sets A. In order to
obtain the theorem for all noncomputable c.e. sets including the Turing complete
sets, we first observe that for the above argument, it suffices to assume that the
sets A and B are ibT incomparable, where ibT denotes identity bounded Turing
reducibility. The ibT reducibility admits only such Turing reductions ΦX(x)
where any oracle query y is bounded by the input x, i.e., y ≤ x (see e.g. Downey
and Hirschfeldt [8]). Moreover, as shown in [8], there are no ibT complete sets.
So, in order to complete the proof of Theorem1, it suffices to extend the latter
result by showing that, for any noncomputable c.e. set A, there is a c.e. subset
B of A such that A and B are ibT incomparable.

We now turn to the proof of Theorem1. By the above observations, the
following two lemmas are the keys to the proof.

Lemma 1. Let A and B be c.e. sets such that B ⊆ A, A �≤ibT B and B �≤ibT A.
Then neither A \ B nor A \ B is almost-c.e.

Proof. We first show that C = A \ B is not almost-c.e. The proof is indirect.
For a contradiction assume that A \ B is almost-c.e. We show that B ≤ibT A
contrary to assumption. Given n, it suffices to show that B(n) can be computed
from A � (n + 1) and B � n uniformly in n. Fix a computable enumeration
(Bs)s≥0 of B and a computable almost-enumeration (Cs)s≥0 of A \ B. Now if
n �∈ A then, by B ⊆ A, B(n) = 0. So w.l.o.g. we may assume that A(n) = 1.
Then there is a least stage s such that

Cs � (n + 1) =
(
(A \ B) � n

)
(1 − Bs(n)), (1)

and s can be computed from A � (n + 1) and B � n. So it suffices to show that
B(n) = Bs(n). If Bs(n) = 1 then this is immediate since (Bs)s≥0 is a computable
enumeration of B. So, for the remainder of the argument we may assume that
Bs(n) = 0 hence Cs(n) = 1. Since (Cs)s≥0 is a computable almost-enumeration
of C = A \ B,

Cs � (n + 1) ≤lex Ct � (n + 1) ≤lex

(
(A \ B) � n

)
C(n)

for all numbers t ≥ s. But, by (1) and by Cs(n) = 1, this implies that C(n) = 1
hence B(n) = 0.

The proof that C = A \ B is not almost-c.e. is similar and left to the
reader. 	
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Lemma 2. Let A be a noncomputable c.e. set. There is a c.e. set B ⊆ A such
that A �≤ibT B and B �≤ibT A.

Proof. It suffices to give a c.e. set B such that

B ⊆ A and B �≤ibT A. (2)

Then, by Sacks’ Splitting Theorem, we can split B into two c.e. subsets B̂0 and
B̂1 such that A �≤T B̂0, B̂1 hence A �≤ibT B̂0, B̂1. Moreover, since B̂0 ∪ B̂1 =
B �≤ibT A it follows that B̂0 �≤ibT A or B̂1 �≤ibT A. So, for some i ≤ 1, B̂i ⊆ A,
A �≤ibT B̂i and B̂i �≤ibT A.

The c.e. set B satisfying (2) is constructed in stages. Let Bs denote the finite
part of B enumerated by the end of stage s.

By the noncomputability, the set A contains a computable ascending
sequence (ke)e≥0 such that the interval Ie = [ke, ke+1) contains at least ke + 2
elements of A which can be effectively given as k0

e = ke < k1
e < · · · < kke+1

e .
Moreover, we may fix a computable enumeration (As)s≥0 of A such that, for
e < s, all numbers km

e (m ≤ ke + 1) have been enumerated in As.
In order to ensure that B �≤ibT A, fix a computable numbering (Φ̂e)e≥0 of

the ibT-functionals, and let Φ̂X
e,s(m) = Φ̂X

e (m) if the computation on the right
hand side converges in less than s steps, and let Φ̂X

e,s(m) ↑ otherwise. Then it
suffices to meet the requirements

Re : B �= Φ̂A
e

for e ≥ 0. The strategies for meeting these requirements are finitary and do
not interfere with each other. The strategy for meeting the requirement Re will
enumerate only elements of A from the interval Ie into B. So in order to define
the computable enumeration (Bs)s≥0, given e and s it suffices to determine which
numbers from Ie are enumerated into B by the Re-strategy at stage s + 1. (B0

will be empty.)
Requirement Re requires attention at stage s + 1 if the following hold.

(i) s > e.
(ii) For all m ∈ Ie, Bs(m) = Φ̂As

e,s(m).
(iii) There is an m ∈ Ie such that m ∈ As \ Bs.

If Re requires attention then enumerate the greatest number m as in (iii) into
Bs+1. (Moreover say that Re requires attention via any number m as in (iii) and
that it becomes active via the greatest such number.)

It remains to show that B has the required properties. Obviously, B ⊆ A
and B is computably enumerable. So it suffices to show that the requirements
Re are met. Assume by contradiction that Re is not met for some e. Then Φ̂A

e is
total and B(m) = Φ̂A

e (m) for all numbers m. So we may fix a stage s0 > e such
that Bs0 � ke+1 = B � ke+1, As0 � ke+1 = A � ke+1, and Bs0(m) = Φ̂A

e,s0
(m) for

all m ∈ Ie. Then conditions (i) and (ii) in the definition of requiring attention
hold for all s ≥ s0. On the other hand, however, Re does not require attention
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after stage s0 since no number from Ie becomes enumerated into B after stage
s0. So (iii) fails for s ≥ s0 whence A ∩ Ie ⊆ Bs0 . Hence all elements of A in Ie

have been enumerated into B by the end of stage s0.
Now let m0, . . . ,mp be the numbers from Ie entering B in order of their

enumeration, say mq is enumerated into B at stage tq + 1. We claim that, for
q < p,

∣
∣(Atq \ (Ie ∩ Btq )) � mq

∣
∣ ≤ ∣

∣(Atq+1 \ (Ie ∩ Btq+1)) � mq+1

∣
∣ . (3)

Note that this gives the desired contradiction. Namely, the first number from
Ie put into B is kke+1

e or a greater number hence m0 ≥ kke+1
e and the ke + 1

numbers k0
e , k1

e , . . . , kke+1
e less than m0 are in Ie and At0 but not in Bt0 . So

|(At0 \ (Ie ∩ Bt0)) � m0| ≥ k(e) + 1. (4)

On the other hand, since ke = k0
e is enumerated into B too, there is a number

q ≥ 0 such that mq+1 = ke. Then, obviously,
∣
∣(Atq+1 \ (Ie ∩ Btq+1)) � mq+1

∣
∣ ≤ mq+1 = k(e).

By (4) this contradicts (3).
In the rest of the proof we show (3). So fix q < p. If the set (Atq \(Ie ∩Btq )) �

mq is empty or does not intersect Ie (hence is contained in ω � ke) then the
claim is trivial. So w.l.o.g. assume that nq ∈ Ie is the greatest element of this
set. Now, by assumption, Re requires attention via mq and mq+1 at stages tq +1
and tq+1 + 1, respectively, and does not require attention at any stage s with
tq + 1 < s ≤ tq+1. So mq is the only number from Ie which is in Btq+1 but not
in Btq whence

(Ie ∩ Btq ) � mq = (Ie ∩ Btq+1) � mq.

It follows by choice of nq that

(Atq \ (Ie ∩ Btq )) � mq ⊆ (Atq \ (Ie ∩ Btq+1)) � (nq + 1). (5)

and nq ∈ Atq \ Btq+1 . So Re requires attention via nq at stage tq+1 + 1. Since
Re acts via the greatest number via which it requires attention it follows that
nq ≤ mq+1. Moreover, by (5), (3) holds if nq < mq+1.

So, for the remainder of the proof, we may assume that mq+1 = nq. Now,
since Re acts via mq at stage tq + 1 and requires attention at stage tq+1 + 1
again, it follows by clause (ii) in the definition of requiring attention that

Φ̂
Atq+1
e (mq) = Btq+1(mq) = Btq+1(mq) = 1 �= 0 = Btq (mq) = Φ̂

Atq
e (mq)

whence
Atq+1 � mq �= Atq � mq.

(Recall that Φ̂A
e is an ibT-functional. So the computation Φ̂

Atq
e (mq) can only

change after stage s if a number ≤ mq becomes enumerated into A later, and
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mq is in A at stage tq already.) So, by mq ∈ Ie, there is a greatest number
n′ ≤ max Ie such that n′ ∈ Atq+1 \ Atq . Since

Ie ∩ Btq+1 = Ie ∩ (Btq ∪ {mq}) ⊆ Atq

and nq ∈ Aqt ∩ Ie, it follows that n′ ∈ Atq+1 \ (Ie ∩ Btq+1) and n′ �= nq. By the
former, n′ < min Ie or Re requires attention via n′ but, by n′ �= nq = mq+1,
does not become active via n′. In either case this implies n′ < nq. Hence n′ is
witnessing the following (first) inequality (the second inequality is trivial).

∣
∣(Atq+1 \ (Ie ∩ Btq+1)) � nq

∣
∣ ≥ ∣

∣(Atq \ (Ie ∩ Btq+1)) � nq

∣
∣ + 1

≥ ∣
∣(Atq \ (Ie ∩ Btq+1)) � (nq + 1)

∣
∣ .

By (5) this implies (3) which completes the proof of (3) and the proof of the
lemma. 	


Remark. The complexity of the proof of Lemma2 is due to the fact that the
desired c.e. set B which is ibT-incomparable with the given noncomputable
c.e. set A has to be a subset of A. Without this condition, the proof easily
follows from Sacks’s Splitting Theorem by using the simple observation (see e.g.
Lemma 11 in [1]) that, by noncomputability of A, A <ibT A−1 for the left shift
A−1 = {n : n + 1 ∈ A} of A. Namely, if we split the c.e. set A−1 into c.e. sets
B0 and B1 such that A �≤T B0 and A �≤T B1 (hence A �≤ibT B0 and A �≤ibT B1)
then B0 or B1 will be ibT incomparable with A. The sets B0 and B1, however,
might not be subsets of A.

It remains to show how the above two lemmas imply Theorem 1.

Proof (of Theorem 1). Given a noncomputable c.e. set A it suffices to give a c.e.
set B such that xA − xB is not semi-computable. By Lemma 2 let B be a c.e.
set such that B ⊆ A and A and B are ibT incomparable. Then, by B ⊆ A,
xA\B = xA − xB and xB ≤ xA while, by Lemma 1, neither A \ B nor A \ B is
almost-c.e. So xA\B is neither left computable nor right computable, hence not
semi-computable.1 	


Note that in Theorem 1 the assumption that x is noncomputable is necessary
since, for any computable real x and any (strongly) c.e. real y, the difference x−y
is right computable hence semi-computable. Nevertheless, for any computable
real x the difference x − y is not c.e., hence not strongly c.e., as long as y is c.e.
but not computable.
1 One of the referees pointed out an alternative proof of Theorem 1 which follows

more easily from results in the literature. It is based on the observation that the
difference of two left computable reals which are Solovay incomparable is not semi-
computable. So, since Downey, Hirschfeldt and LaForte [9] have shown that Solovay
reducibility coincides with computable Lipschitz reducibility on the strongly c.e.
reals, it suffices to show that for any noncomputable c.e. set A there is a c.e. set B
which is cl-incomparable with A. But, since Barmpalias [3] has shown that there are
no maximal c.e. cl-degrees, this can be deduced from Sacks’ Splitting Theorem by
duplicating the argument for cl-reducibility which we have given for ibT-reducibility
in the remark following the proof of Lemma 2.
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3 Sums of Strongly C.E. Reals

We now consider sums of strongly c.e. reals. Since the class of the c.e. reals
is closed under addition, the sum of any two strongly c.e. reals is c.e. As we
mentioned in Sect. 1, however, the class of the strongly c.e. reals is not closed
under addition. Here we will show a very strong version of this non-closure
property:

Theorem 2. Let x be any strongly c.e. real such that x is not a dyadic rational.
There is a strongly c.e. real y such that x + y is not strongly c.e.

Here the assumption that x is not a dyadic rational is necessary: As one can
easily show, for any dyadic rational x and any strongly c.e. real y, the sum x+y
is strongly c.e.

Proof. (of Theorem 2). The outline of the proof is as follows. Fix a c.e. set A
such that x = xA. Since x is not a dyadic rational, A is infinite and coinfinite.
We define a c.e. subset B of A such that, for the strongly c.e. real y = xB , the
sum x + y is not strongly c.e. So, for the unique set C such that xC = xA + xB,
we have to ensure that C is not c.e. For this sake, we first show how the set C
can be described in terms of A and B (using that B is a subset of A and that A
is infinite and coinfinite).

Claim 1. Let {Ie}e≥0 be the unique sequence of nonempty finite intervals Ie =
(pe, qe) such that p0 is the least number which is not in A, qe ≤ pe+1, Ie ⊆ A,
pe, qe �∈ A and

⋃
e≥0 Ie = A \ {0, . . . , p0 − 1}. Moreover, assume that B is a

subset of A \ {0, . . . , p0 − 1}. Then xA + xB = xC for the set C ⊆ {0, . . . , p0 −
1} ∪

(⋃
e≥0[pe, qe)

)
defined as follows (where e ≥ 0).

(i) {0, . . . , p0 − 1} ⊆ C.
(ii) If B ∩ Ie = ∅ then C ∩ [pe, qe) = Ie.
(iii) If B ∩ Ie �= ∅ and be is the greatest element of B ∩ Ie then C ∩ [pe, qe) is

defined by

C(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if be < n < qe

0 if n = be

B(n) if pe < n < be

1 if n = pe.

We omit the straightforward proof of Claim1. Note that the intervals Ie are
the maximal (i.e. nonextendible) subintervals of A. Now, the actual construction
of B is nonuniform. It depends on whether the lengths of the intervals Ie are
bounded or not. For this sake we say that A is k-scattered (k ≥ 1) if k is maximal
such that there are infinitely many intervals I of length k such that I ⊆ A, i.e.,
if |Ie| = k for infinitely many e and |Ie| ≤ k for almost all e. Moreover, we say
that A is scattered if A is k-scattered for some k ≥ 1, and that A is nonscattered
otherwise.
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Now if A is scattered, then the construction of B is rather straightforward.
If A is nonscattered then the construction of B is more involved and requires a
finite injury argument. We treat the two cases in the following two claims.

Claim 2. Assume that A is scattered. There is a c.e. set B ⊆ A such that xA+xB

is not strongly c.e.

Proof. Fix k ≥ 1 such that A is k-scattered, and fix Ie = (pe, qe) as in Claim 1.
Then there are infinitely many numbers e such that |Ie| = k whereas there are
only finitely many numbers e such that Ie has length greater than k. So, since A
is c.e., we may effectively enumerate an infinite computable subsequence {Îe}e≥0

of {Ie}e≥0 such that |Îe| = k and such that, for the numbers p̂e and q̂e such that
Îe = (p̂e, q̂e), q̂e ≤ p̂e+1. Then the desired set B is defined by

B = {q̂e − 1 : e ≥ 0 & q̂e − 1 ∈ We}.

Obviously, B is c.e. and B is contained in A\{0, . . . , p0 −1}. So, by Claim 1, for
the unique set C such that xA+xB = xC , it holds that q̂e−1 ∈ C iff q̂e−1 �∈ We.
So C is not c.e. whence xA + xB is not strongly c.e. 	

Claim 3. Assume that A is nonscattered. There is a c.e. set B ⊆ A such that
xA + xB is not strongly c.e.

Proof (sketch). The proof is by a finite injury argument. We enumerate the
desired set B in stages where we let Bs be the finite part of B enumerated
by the end of stage s. Let {As}s≥0 be a computable enumeration of A, and
let Ie = (pe, qe) be the nonextendible subintervals of A (to the right of p0) as
defined in Claim 1. Since we will ensure that B is a subset of A \ {0, . . . , p0 − 1},
it suffices to ensure that the set C (depending on B) defined in Claim 1 is not
c.e., i.e., for n ≥ 0, the requirements

Rn : ∃ m (C(m) �= Wn(m))

are met.
The basic strategy for meeting Rn is as follows. We appoint a follower m ∈

A \ {0, . . . , p0 − 1} to Rn for which we attempt to ensure C(m) �= Wn(m). We
put the follower m into B if and only if m ∈ Wn. Now, by clauses (ii) and (iii)
in the definition of C, this guarantees that Rn is met unless there is a number
m′ > m in Iem

which is put into B where em is the unique index such that
m ∈ Iem

. Namely, if Wn(m) = 0 (whence m is not put into B), then either
B ∩ Iem

= ∅ or bem
(as defined in Claim 1) is less than m. So, in either case,

C(m) = 1 by definition of C. On the other hand, if Wn(m) = 1 then bem
= m

hence C(m) = 0.
The problem with this strategy is how to ensure that no number m′ > m

in Iem
is put into B. As usual, we can ensure that, for followers m and m′ of

requirements Rn and Rn′ , respectively, which exist at the same stage, m < m′

iff n < n′ and that m′ is appointed later than m. So it suffices to ensure that,
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once m is appointed at stage s + 1, then, for any follower m′ of a lower priority
requirement Rn′ (n′ > n) which is appointed later, either m′ is not in Iem

or
m′ is prevented from entering B (by cancellation). Now if we would know the
interval Iem

then this problem could be overcome by choosing m′ to be bigger
than max Iem

. Since A is nonscattered, however, in general we cannot compute
the borders of an interval Ie from an element of the interval. So if we appoint
m′ at stage s′ + 1 > s + 1 then we do so only if there is at least one number k
separating m from m′ which is not yet in A, i.e., m < k < m′ and k �∈ As′+1.
Now, if one of these numbers k is never enumerated into A, then em < em′

whence enumerating m′ into B does not affect the Rn-strategy. If, however, it
eventually turns out that m and m′ are in the same interval, i.e., em = em′ then
the enumeration of m′ in B will kill the Rn-strategy. So, if we see that m and
m′ are in the same interval at a stage where m′ has not (yet) been enumerated
in B then the Rn-strategy cancels the lower priority follower m′. (In this case
Rn′ has to get a new greater follower. Since the interval Iem

is finite, Rn′ will
be injured by Rn via m in this way only finitely often.) If m′ has been put into
B, however, before it became apparent that m and m′ are in the same interval,
then the attack on Rn via m fails and has to be abandoned.

The above problem caused by the fact that A is nonscattered can be resolved
by using this property of A too. Since A is nonscattered there are arbitrarily long
intervals contained in A. So we may appoint the follower m′ of Rn′ only when
m′ and the following n′ numbers m′ + 1, . . . , m′ + n′ have been enumerated
into A already, and we reserve these numbers in decreasing order as potential
replacements of the current followers of the higher priority requirements. Note
that all of these numbers are in the same interval. So if m′ is enumerated into B
and later we see that m and m′ are in the same interval then we replace m (and
its entourage m + n,m + (n − 1), . . . , m + 1 of candidates for the higher priority
requirements R0, . . . ,Rn−1) by m′ + n′ − n (and m + n′,m + n′ − 1, . . . ,m +
n′ − (n + 1), respectively). Then the new Rn-follower m′ + n′ − n is greater
than m′, and the numbers m, m′ and m′ + n′ − n are in the same interval.
So the enumeration of m′ into B which took place earlier does not affect the
Rn-strategy for the new follower m′ + n′ − (n + 1). Moreover, since a follower
is replaced by a greater follower from the same interval, eventually the follower
stabilizes and, for the final follower, the strategy works. So we may argue that
the requirements are finitary and will be eventually met.

This completes the intuitive description of the strategy for meeting a
requirement Rn. In order to formally describe the construction, we start
with some notation. Two numbers k, k′ are called equivalent if the interval
[min(k, k′),max(k, k′)] is contained in A, i.e., if Iek

= Iek′ , and we say that k, k′

are equivalent at stage s or s-equivalent for short if [min(k, k′),max(k, k′)] ⊆ As.
Moreover, we say that a number k is unused at stage s if, for any follower k′

appointed by the end of stage s, k is greater than k′ and any number in the
entourage of k′.

At any stage s of the construction, a requirement Rn may or may not have
followers. If Rn has some followers at stage s then either all of these followers or
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all but one are frozen. (Once frozen, a follower remains frozen forever.) So there
is at most one follower which is not frozen and which is called active. At stage
0 no requirement has any follower. Requirement Rn requires attention at stage
s + 1 if n < s + 1 and one of the following holds.

(i) There is no active follower of Rn at the end of stage s and there is an unused
number m > p0 such that [m,m + n] ⊆ As.

(ii) Rn has active follower m at the end of stage s and there is a number m′ > m
such that, at the end of stage s, m′ is a (frozen or active) follower of a lower
priority requirement Rn′ , n < n′, and m and m′ are s-equivalent.

(iii) Rn has active follower m at the end of stage s, (ii) does not hold, m �∈ Bs

and m ∈ Wn,s.

Using these definitions the construction is as follows where stage 0 is vacuous.

Stage s+1. Fix n ≤ s minimal such that Rn requires attention. Declare that
Rn becomes active at stage s+1, and distinguish the following cases according
to the clause via which Rn requires attention. (If there is no such n, stage
s + 1 is vacuous.)

(i) For the least unused number m such that [m,m + n] ⊆ As, appoint m
as active follower of Rn and let {m + 1, . . . ,m + n} be the entourage of
m where the number m+n−n′′ becomes reserved for requirement Rn′′

(n′′ < n).
(ii) Fix the greatest m′ > m such that m′ is follower of a lower priority

requirement and m and m′ are s-equivalent. Replace the active follower
m of Rn by the number m′ + n′ − n in the entourage of m′ reserved for
Rn (i.e., freeze m and declare m′ + n′ − n to be active follower of Rn)
and let m′ +n′ −n+1, . . . ,m′ +n′ be the entourage of m′ +n′ −n where
m′ + n′ − n′′ becomes reserved for requirement Rn′′ (n′′ < n).

(iii) Enumerate the active follower m of Rn into B.
In any case initialize all lower priority requirements Rn′ , n < n′, i.e., freeze
the active follower of Rn′ (if there is any).

This completes the construction. It remains to show that the set B has the
required properties. Obviously, the construction is effective, hence B is com-
putably enumerable. Moreover, B is a subset of A\{0, . . . , p0−1}. Hence the set
C corresponding to B according to Claim 1 is well defined. So it only remains to
show that the requirements Rn (n ≥ 0) are met. Using the above given intuition
behind the construction, this is done in the standard way. For lack of space, the
formal verification is left to the reader. 	


Note that Theorem 2 is immediate by Claims 2 and 3. 	

Note that the proofs of our two main results (Theorems 1 and 2) are nonuni-

form. We do not know whether there are uniform proofs.
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