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Abstract. In this work, we investigate the non-orthogonal multiple
access (NOMA) enabled power allocation for cooperative jamming under
a two-user downlink scenario. In particular, we consider that there exists
a malicious eavesdropper overhearing the data transmission of the mobile
user (MU) with a stronger channel power gain. Meanwhile, exploiting the
simultaneous transmission in NOMA, we consider that the other MU
with a weak channel power gain provides cooperative jamming to the
eavesdropper for enhancing the secure throughput of the stronger MU.
In particular, we formulate a power allocation problem to maximize the
secure throughput of the strong MU while satisfying the throughput
requirement of the weak MU. Despite the non-convexity of the formu-
lated problem, we provide an efficient algorithm to compute the optimal
solution (i.e., the power allocations for the two users). Numerical results
are provided to validate the effectiveness of our proposed algorithm and
the performance of our optimal power allocation scheme.

Keywords: Non-orthogonal multiple access · Cooperative jamming ·
Power allocation

1 Introduction

Non-orthogonal multiple access (NOMA), which allows mobile users (MUs) to
simultaneously use a same frequency channel for data transmission and further
adopts the principle of successive interference cancellation (SIC) to mitigate
the MUs’ co-channel interference, has been considered as one of the enabling
technologies for the fifth generation (5G) cellular systems [1,2]. Compared with
the conventional orthogonal multiple access (OMA), NOMA has been expected
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to significantly improve the spectrum efficiency and the system throughput, and
thus has attracted lots of research efforts. Many studies have been devoted to
analyzing the potential performance advantage of NOMA [3,4], and NOMA
has been exploited for many potential applications, e.g., heterogeneous cellular
systems and mobile data offloading [5,6]. In particular, the proper radio resource
allocation plays a critical role to reap the benefits of NOMA, and thus has
attracted lost of interests for different network paradigms [7–11].

In addition to the improvement on spectrum efficiency and throughput, the
simultaneous data transmissions of different MUs over a same frequency chan-
nel can also yield an important benefit, namely, the cooperative jamming to
encounter the overhearing of some potential eavesdropper. Specifically, let us
consider that a downlink NOMA scenario in which the base station (BS) uses
NOMA to simultaneously transmit to a group of MUs. There exists a malicious
eavesdropper who intentionally overhears the transmission of a targeted MU.
Thanks to NOMA, the BS’s transmissions to other MUs provide the cooperative
jamming to the eavesdropper, which thus improves the secrecy level of the tar-
geted MU. In this work, we thus investigate this cooperative jamming provided
by NOMA via proper power allocation. Our detailed contributions in this work
can be summarized as follows.

– We consider a representative scenario in which the BS uses NOMA to send
data to two different MUs, i.e., one MU with a strong channel power gain
and the other with a weak channel power gain, and there exists a malicious
eavesdropper who intentionally overhears the strong MU’s data. Thanks to
NOMA, the BS’s transmission to the weak MU provides a cooperative jam-
ming to the eavesdropper and thus helps enhance the secure throughput for
the strong MU. To analytically study this problem, we formulate an optimal
power allocation problem that aims at maximizing the strong MU’s secure
throughput while satisfying the throughput requirement of the weak MU and
the total power capacity of the BS.

– We use the secrecy-outage probability based on the physical layer security
[12,13] to quantify how secure it is for the strong MU’s transmission. Despite
the non-convexity of the formulated power allocation problem, we identify
the monotonic property via a vertical decomposition and thus propose an
efficient layered-algorithm to compute the optimal solution. To further reduce
the complexity, we exploit the hidden unimodal property with the respective
to the secrecy-outage level and propose a low-complexity to compute the
solution.

– We provide extensive numerical results to validate the effectiveness of our pro-
posed algorithm and the performance advantage of the optimal cooperative
jamming in enhancing the user’s secure throughput.

The remainder of this paper is organized as follows. In Sect. 2, we present the
system model and problem formulation. We focus on analyzing the most general
case of the formulated problem in Sect. 3 and propose an efficient algorithm to
compute the optimal solution. Numerical results are provided in Sect. 4, and
conclusions are given in Sect. 5.
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Fig. 1. System model

2 System Model and Problem Formulation

2.1 System Model and Formulation

We consider a two-user downlink NOMA scenario as shown in Fig. 1, in which
the BS uses NOMA to simultaneously send data to two MUs. We use g1, g2, and
gE to denote the channel power gains from the BS to MU 1, MU 2, and the eaves-
dropper, respectively. For the sake of easy presentation, we assume that g1 ≥ g2,
meaning that MU 1 has a stronger downlink channel power gain than MU 2.
Meanwhile, there exists a malicious eavesdropper who intentionally overhears
the BS’s data transmission to MU 1 (i.e., the strong user). Exploiting NOMA,
the transmission to MU 2 provides a cooperative jamming to the eavesdropper
for enhancing the security of MU 1’s transmission. Let p1 and p2 denote the BS’s
transmit-powers to MU 1 and MU 2, respectively. Thus, based on the physical
layer security [12,13], the secure throughput from the BS to MU 1 can be given
as

Rsec
1 =

[
W log2(1 +

p1g1
n1

) − W log2(1 +
p1gE

nE + p2gE
)
]+

, (1)

in which W denotes the channel bandwidth, n1 and nE denote the power of
the background noise, respectively. Here, function [x]+ denotes max(x, 0). In
particular, the accurate value of gE may not be available, since the eavesdropper
may intentionally hide its location information. Thus, similar to [13], we assume
that gE follows an exponential distribution with the mean equal θ. Taking into
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account the randomness in gE, we can express the probability that MU 1’s data
cannot be overheard by the eavesdropper as follows

Psecure(x1, p1, p2) = Pr
{
Rsec

1 ≥ x1|Rsec
1 ≥ 0

}
, (2)

where variable x1 denotes the assigned throughput x1 for MU 1. Correspond-
ingly, the outage probability, i.e., the probability that MU 1’s data is overheard
by the eavesdropper is

Poutage(x1, p1, p2) = 1 − Psecure(x1, p1, p2). (3)

With (3) we formulate the following secure throughput maximization (STM)
as follows.

(STM) max x1

(
1 − Poutage(x1, p1, p2)

)
subject to: Poutage(x1, p1, p2) ≤ εmax, (4)

p1 + p2 ≤ P tot
B , (5)

W log2
(
1 +

p2g2
p1g2 + n2

) ≥ Rreq
2 , (6)

variables: x1, p1, and p2.

In Problem (STM), the objective function denotes MU 1’s secure throughput.
Constraint (4) limits the secure-outage probability for MU 1’s transmission no
greater than the required secrecy-requirement εmax. Constraint (5) means that
the BS’s total power consumption for both MUs cannot exceed the budget of
P tot
B , and finally, constraint (6) means that MU 2 can reach its throughput

requirement Rreq
2 .

2.2 Analysis of the Secrecy-Outage Probability

To solve Problem (STM), we firstly derive the analytical expression of
Poutage(x1, p1, p2) as follows.

Proposition 1. The analytical expression of the outage probability
Poutage(x1, p1, p2) can be given in the following four cases:

– (Case-I) when x1 > W log2(1 + p1g1
n1

), then we have

Poutage(x1, p1, p2) = 1. (7)

– (Case-II) when W log2(1 + p1g1
n1

) ≥ x1 ≥ W log2(1 + p1g1
n1

) − W log2(1 + p1
p2

)
and p2 ≥ n1

g1
, then we have

Poutage(x1, p1, p2) = e− 1
θ M , (8)

where parameter M is given by:

M =
nE

p1

1
1

(1+
p1g1

n1
)2− x1

W −1
− p2

p1

. (9)
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– (Case-III) when W log2(1 + p1g1
n1

) − W log2(1 + p1
p2

) ≥ x1 and p2 ≥ n1
g1
, we

have

Poutage(x1, p1, p2) = 0. (10)

– (Case-IV) when W log2(1 + p1g1
n1

) ≥ x1 ≥ W log2(1 + p1g1
n1

) − W log2(1 + p1
p2

)
and p2 < n1

g1
, then we have

Poutage(x1, p1, p2) =
e− 1

θ M − e− 1
θ

g1nE
n1−g1p2

1 − e− 1
θ

g1nE
n1−g1p2

, (11)

with parameter M given in (9) before.

Proof. Based on (2), we have

Psecure(x1, p1, p2) =
Pr

{
Rsec

1 ≥ x1

}
Pr

{
Rsec

1 ≥ 0
} . (12)

In particular, based on (1), we can derive Pr
{
Rsec

1 ≥ 0
}

as

Pr
{
Rsec

1 ≥ 0
}

=

{
1, when p2 ≥ n1

g1

1 − e− 1
θ

g1nE
n1−g1p2 , when p2 < n1

g1

(13)

In particular, (13) is consistent with the intuition, namely, Rsec
1 is always positive

when p2 is sufficiently large (i.e., MU 2 provides a sufficiently large jamming to
the eavesdropper).

To derive Pr
{
Rsec

1 ≥ x1

}
(with x1 ≥ 0), we consider:

W log2(1 +
p1g1
n1

) − W log2(1 +
p1gE

nE + p2gE
) ≥ x1

⇐⇒ n1 + p1g1
n1

2− x1
W − 1 ≥ p1gE

nE + p2gE
(14)

⇐⇒ nE

p1gE
≥ 1

(1 + p1g1
n1

)2− x1
W − 1

− p2
p1

(15)

Notice that the equivalence between (14) and (15) requires x1 ≤ W log2(1+ p1g1
n1

).
Otherwise (i.e., x1 > W log2(1 + p1g1

n1
)), there always exists Pr

{
Rsec

1 ≥ x1

}
= 0

according to (1), which leads to Case-I in Proposition 1.
In the next, we consider x1 ≤ W log2(1 + p1g1

n1
) for Case-II, Case-III, and

Case-IV.
In particular, let us first consider the case that p2 ≥ n1

g1
(i.e., the case of

Pr
{
Rsec

1 ≥ 0
}

= 1 in Eq. (13)). Then, we have

Pr
{
Rsec

1 ≥ x1

}
= 1 when p2 ≥ n1

g1
and

x1 ≤ W log2(1 +
p1g1
n1

) − W log2(1 +
p1
p2

). (16)
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As a result, we have Poutage(x1, p1, p2) = 0, which corresponds to Case-III in
Proposition 1.

In addition, we have

Pr
{
Rsec

1 ≥ x1

}
= Pr{gE ≤ M} when p2 ≥ n1

g1
,

and

W log2(1 +
p1g1
n1

) ≥ x1 ≥ W log2(1 +
p1g1
n1

) − W log2(1 +
p1
p2

),

where parameter M is given in Eq. (9) (notice that M can be derived from (15)).
As a result, we have

Poutage(x1, p1, p2) = e− 1
θ M , (17)

which corresponds to Case-II in Proposition 1.
Finally, when p2 < n1

g1
, i.e., the case of Pr

{
Rsec

1 ≥ 0
}

= 1 − e− 1
θ

g1nE
n1−g1p2 in

Eq. (13), then we again have

Pr
{
Rsec

1 ≥ x1

}
= Pr{gE ≤ M} when p2 <

n1

g1
,

and

W log2(1 +
p1g1
n1

) ≥ x1 ≥ W log2(1 +
p1g1
n1

) − W log2(1 +
p1
p2

).

As a result, we have

Poutage(x1, p1, p2) =
e− 1

θ M − e− 1
θ

g1nE
n1−g1p2

1 − e− 1
θ

g1nE
n1−g1p2

(18)

which corresponds to Case-IV in Proposition 1. Notice that based on (9), there
always exists M < g1nE

n1−g1p2
.

We thus finish the proof of Proposition 1.

To solve Problem (STM), we need to consider the above four cases given in
Proposition 1, and the maximum secure throughput V ∗ of Problem (STM) can
be given as:

V ∗ = max{V I∗, V II∗, V III∗, V IV∗}, (19)

where V I∗, V II∗, V III∗, and V IV∗ denote MU 1’s maximum secure throughput
under Case-I, Case-II, Case-III, and Case-IV, respectively. It is noticed that
Case-I is a trivial case since V I∗ = 0. In the following, due to the limited space
in the paper, we focus on solving Problem (STM) under the most difficult case,
i.e., Case-IV. The other two cases, i.e., Case-II and Case-III, can solved in a
similar manner.
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3 Optimization Problem Under Case IV

In this section, we focus on solving Problem (STM) under Case-IV. We introduce
an auxiliary variable ε which denotes the secrecy-outage probability of MU 1,
i.e.,

ε =
e− 1

θ M − e− 1
θ

g1nE
n1−g1p2

1 − e− 1
θ

g1nE
n1−g1p2

(20)

according to (11).
Thus, based on (20), we can derive the following secrecy-based throughput

for MU 1:

x̂IV
1 (ε, p1, p2) = W log2(1 +

p1g1
n1

) − W log2(1 +
p1z(ε,p2)

nE + p2z(ε,p2)
), (21)

where parameter z(ε,p2) is given by:

z(ε,p2) = −θ ln
(
ε + (1 − ε)e− 1

θ

g1nE
n1−g1p2

)
. (22)

Notice that z(ε,p2) is always positive, since p2 ≤ n1
g1

holds in Case-IV. The secrecy-
based throughput x̂IV

1 (ε, p1, p2) can be treated as the maximum throughput of
MU 1, under the given transmit-powers (p1, p2) as well as the given level of the
secrecy-outage ε.

An observation on x̂IV
1 (ε, p1, p2) is as follows.

Lemma 1. There always exists

x̂IV
1 (ε, p1, p2) > W log2(1 +

p1g1
n1

) − W log2(1 +
p1
p2

),

meaning that x̂IV
1 (ε, p1, p2) is compatible with the conditions of Case- IV in

Proposition 1.

Proof. Based on (21), we can analytically express x̂IV
1 (ε, p1, p2) as follows:

x̂IV
1 (ε, p1, p2) = W log2(1 +

p1g1
n1

) − W log2(1 +
p1z(ε,p2)

nE + p2z(ε,p2)
)

> W log2(1 +
p1g1
n1

) − W log2(1 +
p1
p2

).

We thus finish the proof of Lemma1.

Based on Lemma 1, we can obtain the equivalent form of Problem (STM)
under Case-IV as follows:

(STM-E-IV): max x̂IV
1 (ε, p1, p2)(1 − ε)

subject to: p2 ≤ n1

g1
, (23)

0 ≤ ε ≤ εmax, (24)
constraints (5), (6), and (21).

variables: p1, p2, and ε.
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Notice that constraint (23) comes from the condition of Case-IV. However,
directly solving Problem (STM-E-IV) is still difficult since Problem (STM-E-
IV) is a non-convex optimization problem [14].

To tackle with this difficulty, we exploit a vertical decomposition as follows.
Suppose that the values of (p2, ε) are given in advance. We firstly aim at finding
the corresponding optimal p1 (as a response to (p2, ε)), which corresponds to
solving the following optimization problem:

(STM-E-IV-Sub) V IV-Sub
(p2,ε) = max

n1(nE + p2z(ε,p2)) + p1g1(nE + p2z(ε,p2))
n1(nE + p2z(ε,p2)) + p1n1z(ε,p2)

variable: 0 ≤ p1 ≤ min
{
p2(2

R
req
2
W − 1)−1 − n2

g2
, P tot

B − p2
}
. (25)

In particular, we can analytically solve Problem (STM-E-IV-Sub) based on
the following result.

Proposition 2. Given (p2, ε), the optimal solution of Problem (STM-E-IV-Sub)
can be analytically given by:

pIV∗
1,(p2)

=

{
p2(2

R
req
2

W − 1)−1 − n2
g2

, if p2 ≤ pIV,Tr
2

P tot
B − p2, else

(26)

where pIV,Tr
2 = 2

R
req
2

W −1

2
R

req
2

W

(P tot
B + n2

g2
), if the following condition holds:

n1(nE + p2z(ε,p2)) + pIV∗
1,(p2)

g1(nE + p2z(ε,p2))

n1(nE + p2z(ε,p2)) + pIV∗
1,(p2)

n1z(ε,p2)

> 1. (27)

Otherwise (namely, (27) does not hold), then Problem (STM-E-IV-Sub) is infea-
sible.

Proof. The key of the proof is to show that the first order derivative of the
objective function of Problem (STM-E-IV-Sub) is increasing in p1. Therefore,
for the sake of clear presentation, we introduce the following three auxiliary
parameters:

A = n1(nE + p2z(ε,p2)), (28)
B = g1(nE + p2z(ε,p2)), (29)
C = n1z(ε,p2). (30)

With the above defined A, B, and C, we can derive

d

dp1

(A + Bp1
A + Cp1

)
=

A(B − C)
(A + Cp1)2

. (31)

We next focus on proving that B > C, namely, g1(nE + p2z(ε,p2)) > n1z(ε,p2)

always holds. The details are as follows. Based on (22) and p2 < n1
g1

, we can
make the following derivations:
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g1(nE + p2z(ε,p2)) > n1z(ε,p2)

⇐⇒ g1nE

n1 − g1p2
≥ z(ε,p2) = −θ ln

(
ε + (1 − ε)e− 1

θ

g1nE
n1−g1p2

)

⇐⇒ e− 1
θ

g1nE
n1−g1p2 ≤ ε + (1 − ε)e− 1

θ

g1nE
n1−g1p2

⇐⇒ e− 1
θ

g1nE
n1−g1p2 ≤ e− 1

θ

g1nE
n1−g1p2 + (1 − e− 1

θ

g1nE
n1−g1p2 )ε.

With p2 < n1
g1

, we have e− 1
θ

g1nE
n1−g1p2 < 1, meaning that the above inequality

always holds. As a result, B > C always holds, which finishes the proof. Since
the objective function of Problem (STM-E-IV-Sub) is increasing in p1, it gives
us the optimal solution in (26). Meanwhile, condition 27 is used to guarantee
that x̂IV

1 (ε, pIV∗
1,(p2)

, p2) ≥ 0.

As a result, we can analytically express V IV-Sub
(p2,ε) as follows:

V IV-Sub
(p2,ε) =

n1(nE + p2z(ε,p2)) + pIV∗
1,(p2)

g1(nE + p2z(ε,p2))

n1(nE + p2z(ε,p2)) + pIV∗
1,(p2)

n1z(ε,p2)

. (32)

3.1 Proposed Algorithm to Find the Optimal (p2, ε)

Based on (32), we then continue to find the optimal (p2, ε), which corresponds
to solving the following problem:

(STM-E-IV-Top): max(1 − ε)W log2
(
V IV-Sub
(p2,ε)

)
subject to: 0 ≤ p2 ≤ min{P tot

B , n1
g1

},

constraints: (32) and (24),
variables: (p2, ε).

An important observation of Problem (STM-E-IV-Top) is that p2 falls within
a fixed interval p2 ∈ [0,min{P tot

B , n1
g1

}], and ε falls within a fixed interval ε ∈
[0, εmax]. Therefore, to solve Problem (STM-E-IV-Top), we can perform a two-
dimensional linear-search (2DLS) on (p2, ε) within [0,min{P tot

B , n1
g1

}] × [0, εmax]
(with small step-sizes Δε and Δp). The details are shown in the following 2DLS-
Algorithm. Notice that the overall complexity in solving Problem (STM) under

Case-IV is just εmax

Δε

min{P tot
B ,

n1
g1

}
Δp

.
Let (pIV∗

2 , εIV∗) denote the output of our 2DLS-Algorithm. Then, we have
pIV∗
1 = pIV∗

1,(pIV∗
2 )

(according to (26)), and xIV∗
1 = x̂IV

1 (εIV∗, pIV∗
1 , pIV∗

2 ) (according
to (21)). Thus, the maximum secure throughput of MU 1 under Case-IV is
V IV∗ = xIV∗

1 (1 − εIV∗).
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Sub-Algorithm: to solve top-problem (STM-E-IV-Sub) and find (V IV-Sub
(pcur

2 ,εcur))

1: Input: pcur
2 and εcur.

2: Set pIV∗
1,(pcur

2 ) according to (26).

3: if constraint(27) holds then
4: Set V IV-Sub

(pcur
2 ,εcur) according to (32).

5: else
6: Set V IV-Sub

(pcur
2 ,εcur) = 1.

7: end if
8: Output: V IV-Sub

(pcur
2 ,εcur) and (1 − εcur)W log2

(
V IV-Sub
(pcur

2 ,εcur)

)
.

2DLS-Algorithm: to solve top-problem (STM-E-IV-Top) and output V IV∗

and the corresponding (pIV∗
2 , εIV∗)

1: Initialization: Set step-size Δε and Δp as a small number. Set CBV = 0 and
CBS = ∅.

2: Set pcur
2 = Δp, εcur = Δε.

3: while pcur
2 ≤ min{P tot

B , n1
g1

} do
4: while εcur ≤ εmax do
5: Use Sub-Algorithm to compute V IV-Sub

(pcur
2 ,εcur).

6: if (1 − εcur)W log2

(
V IV-Sub
(pcur

2 ,εcur)

)
> CBV then

7: Set CBV = (1 − εcur)W log2

(
V IV-Sub
(pcur

2 ,εcur)

)
.

8: Set CBS = (pcur
2 , εcur).

9: end if
10: Update εcur = εcur + Δε.
11: end while
12: Update pcur

2 = pcur
2 + Δp.

13: end while
14: Output: V IV∗ = CBV and (pIV∗

2 , εIV∗) = CBS.

3.2 A Low-Complexity Algorithm Based on the Brent’s Method

To further reduce the complexity of 2DLS-Algorithm, we identify the follow-
ing property. Specifically, support that the value of p2 is given in advance,
we enumerate ε ∈ [0, εmax] with a small step-size Δε. The corresponding
results are shown in Fig. 2 below. Notice that for each given (p2, ε), we can
use (26) to compute pIV∗

1,(p2)
and obtain the corresponding secure throughput

(1 − ε)W log2
(
V IV-Sub
(p2,ε)

)
. Specifically, the left subplot shows the case when

pIV∗
1,(p2)

= p2(2
R

req
2
W − 1)−1 − n2

g2
, and the right subplot shows the case when

pIV∗
1,(p2)

= P tot
B − p2.

As shown in both subplots, with the respectively given p2, the secure through-
put is always unimodal in ε. Such a phenomenon is consistent with the intu-
ition, namely, neither a too large ε nor a too small ε will be beneficial to the
secure throughput. A too large ε (meaning a too weak secrecy-level) will directly
reduce the secure throughput. In comparison, a too small ε (meaning a too strict
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secrecy-level) will require larger a larger power consumption, which consequently
limits the secure throughput due to (5). Thanks to this hidden unimodal prop-
erty, we can use the Brent’s method [15] to find ε∗ under given p2. The Brent’s
method is a numerical algorithm that jointly exploits the golden-section search
and the parabolic interpolation, with the objective of efficiently finding the opti-
mum of a single-variable function. In particular, for the unimodal function [15],
the Brent’s method is guaranteed to find its global optimum within a given
interval. Due to the limited space in this paper, we skip the detailed operations
of the Brent’s method here. Interested readers can refer to [15] for the details.
In particular, we emphasize within each round of the iteration in this Brent’s
method, we need to Sub-Algorithm to compute the value of V IV-Sub

(pcur
2 ,ε) under the

given ε (which is being currently evaluated in the Brent’s method) as well as
the given pcur2 . Therefore, based on the output of the Brent’s, we can further
execute a linear-search of p2 ∈ [0,min{P tot

B , n1
g1

}], which leads to the proposed
LSBM-Algorithm. Here, “LSBM” means linear-search and the Brent’s method.

Although it is technically challenging to prove the unimodal property of the
secure throughput of MU 1 with respect to ε, our following numerical results
in Tables 1 and 2 show that our proposed LSBM-Algorithm can achieve the
result almost same (with a negligible relative error) as our 2DLS-Algorithm. In
the meantime, thanks to exploiting the Brent’s method, LSBM-Algorithm can
significantly reduce the computational time compared with 2DLS-Algorithm.

LSBM-Algorithm: to solve top-problem (STM-E-IV-Top) and find
(pIV∗

2 , εIV∗)

1: Initialization: Set step-size Δp as a small number. Set CBV = 0.
2: Set pcur

2 = Δp.
3: while pcur

2 ≤ min{P tot
B , n1

g1
} do

4: Use the Brent’s method to compute V IV-Sub
(pcur

2 ,εcur) and εcur.

5: if (1 − εcur)W log2

(
V IV-Sub
(pcur

2 ,εcur)

)
> CBV then

6: Set CBV = (1 − εcur)W log2

(
V IV-Sub
(pcur

2 ,εcur)

)
and (p∗

2, ε
∗) = (pcur

2 , εcur).
7: end if
8: Update pcur

2 = pcur
2 + Δp.

9: end while
10: Output: V IV∗ = CBV and (pIV∗

2 , εIV∗).

4 Numerical Results

We present the numerical results in this section. Figure 2 validates the uni-
modal property of the secure throughput in ε under the given p2. Specifically,
the left subplot shows the case when p2 ≤ pIV,Tr

2 , which leads to pIV∗
1,(p2)

=

p2(2
R

req
2
W − 1)−1 − n2

g2
, The right subplot shows the case when p2 > pIV,Tr

2 , which
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Fig. 2. Illustration of hidden unimodal property of the secure throughput in ε under the
given p2. We set W = 10MHz, P tot

B = 2W, Rreq
2 = 1Mbits, n1 = 1∗10−6, n2 = 1∗10−6,

nE = 1∗10−6, θ = 1∗10−7, and εmax = 0.2. In addition, the randomly generated channel
power gains from the BS to the two MUs are {gi} = {1.9330 ∗ 10−6, 1.9047 ∗ 10−6}.
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thus leads to pIV∗
1,(p2)

= P tot
B − p2. As explained before in Sect. 3.2, when we enu-

merate ε, the corresponding MU 1’s secure throughput (under different given p2)
always increases firstly and then gradually decreases, i.e., showing the unimodal
property.

Tables 1 and 2 show the performance comparison between our pro-
posed 2DLS-Algorithm and LSBM-Algorithm. In particular, the results show
that LSBM-Algorithm can achieve approximately the same result as 2DLS-
Algorithm(Δp = 0.001,Δε = 0.001), while consuming a significantly less com-
putation time. Such an advantage essentially stems from that we exploit the
unimodal property of the secure throughput with respect to ε, which thus saves
the operation of the linear-search in ε.

Table 1. 2-MU Scenario: We fix Wi = 10 MHz, and εmax = 0.2

With θ = 1 ∗ 10−7 P tot
B = 1W P tot

B = 3W P tot
B = 5W P tot

B = 7W P tot
B = 9W Ave. error

2DLS-Algorithm 10.7024, 2.6259 s 17.8531, 2.3464 s 20.9709, 2.1135 s 22.8431, 2.1369 s 22.9778, 2.0802 s 0.0023%

LSBM-Algorithm 10.7026, 0.1833 s 17.8535, 0.1717 s 20.9711, 0.1585 s 22.8436, 0.2006 s 22.9788, 0.2287 s

With θ = 2 ∗ 10−7 P tot
B = 1W P tot

B = 3W P tot
B = 5W P tot

B = 7W P tot
B = 9W Ave. error

2DLS-Algorithm 8.8601, 2.4043 s 14.4397, 2.4194 s 16.9766, 2.4750 s 18.2725, 2.3883 s 18.3641, 2.4481 s 0.0021%

LSBM-Algorithm 8.8603, 0.2390 s 14.4404, 0.2243 s 16.9768, 0.2878 s 18.2727, 0.2250 s 18.3643, 0.2086 s

Table 2. 2-MU Scenario: We fix Wi = 16 MHz, and εmax = 0.2

With θ = 1 ∗ 10−7 P tot
B = 1W P tot

B = 3W P tot
B = 5W P tot

B = 7W P tot
B = 9W Ave. error

2DLS-Algorithm 17.4824, 1.9048 s 28.7146, 2.0574 s 33.5533, 1.9295 s 36.5498, 2.1404 s 38.4497, 2.2434 s 0.0017%

LSBM-Algorithm 17.4827, 0.1969 s 28.7152, 0.1781 s 33.5538, 0.1757 s 36.5503, 0.1983 s 38.4501, 0.2026 s

With θ = 2 ∗ 10−7 P tot
B = 1W P tot

B = 3W P tot
B = 5W P tot

B = 7W P tot
B = 9W Ave. error

2DLS-Algorithm 14.4187, 2.3016 s 23.1039, 2.4512 s 27.1639, 2.5397 s 29.2377, 2.5824 s 30.5101, 2.5057 s 0.0014%

LSBM-Algorithm 14.4191, 0.2444 s 23.1046, 0.2471 s 27.1640, 0.2482 s 29.2380, 0.2811 s 30.5101, 0.2683 s

Figure 3 shows the impact of MU 2’s throughput requirement Rreq
2 . We set

W = 10MHz, n1 = 1∗10−6, n2 = 1∗10−6, nE = 1∗10−6, θ = 1∗10−7, and εmax =
0.2. In addition, the randomly generated channel power gains from the BS to the
two MUs are {gi} = {1.9330 ∗ 10−6, 1.9047 ∗ 10−6}. As shown in Fig. 3, the MU
1’s maximum secure throughput gradually decreases when Rreq

2 increases, which
is consistent with the intuition. Corresponding, the corresponding ε∗ gradually
decreases, meaning that a stronger secrecy-level is provided to avoid a significant
loss in the secure throughput.
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Fig. 3. Impact of MU 2’s throughput requirement Rreq
2 .

5 Conclusion

In this paper, we have investigated the optimal power allocation for cooperative
jamming in NOMA systems under a two-user downlink scenario. Specifically,
exploiting the two MUs’ simultaneous transmissions in NOMA, we use the BS’s
transmission to MU 2 (i.e., the MU with a weak channel power gain) to provide a
jamming to the eavesdropper who intentionally overhears the BS’s transmission
to MU 1 (i.e., the MU with a strong channel power gain). To study this cooper-
ative jamming, we have formulated a power allocation problem to maximize the
secure throughput of MU 1 while satisfying the throughput requirement of MU
2. Despite the non-convexity of the above formulated problem, we have provided
two efficient algorithms to compute the optimal solution. In addition, Numerical
results have been provided to validate the effectiveness of our proposed algo-
rithms and the performance of our proposed cooperative jamming scheme in
NOMA.

Acknowledgement. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61572440, in part by the Zhejiang Provincial
Natural Science Foundation of China under Grants LR17F010002 and LR16F010003,
and in part by the open research fund of National Mobile Communications Research
Laboratory, Southeast University (No. 2019D11).



Non-orthogonal Multiple Access Enabled Power Allocation for Cooperative 93

References

1. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., Hanzo, L.: Non-
orthogonal multiple access for 5G and beyond. Proc. IEEE 105(12), 2347–2381
(2017)

2. Dai, L., et al.: Non-orthogonal multiple access for 5G: solutions, challenges, oppor-
tunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)

3. Zhang, Z., Sun, H., Hu, R.Q.: Downlink and uplink nonorthogonal multiple access
in a dense wireless network. IEEE J. Sel. Areas Commun. 35(17), 2771–2784 (2017)

4. Ding, Z., Fan, P., Poor, H.V.: Impact of user pairing on 5G nonorthogonal multiple
access. IEEE Trans. Veh. Technol. 65(8), 6010–6023 (2016)

5. Ding, Z., et al.: Application of non-orthogonal multiple access in LTE and 5G
networks. IEEE Commun. Mag. 55(2), 185–191 (2017)

6. Wu, Y., Chen, J., Qian, L., Huang, J., Shen, X.: Energy-aware cooperative traffic
offloading via device-to-device cooperations: an analytical approach. IEEE Trans.
Mob. Comput. 16(1), 97–114 (2017)

7. Zhang, Y., Wang, H., Zheng, T., Yang, Q.: Energy-efficient transmission design
in non-orthogonal multiple access. IEEE Trans. Veh. Technol. 66(3), 2852–2857
(2017)

8. Zhang, S., Di, B., Song, L., Li, Y.: Sub-channel and power allocation for non-
orthogonal multiple access relay networks with amplify-and-forward protocol.
IEEE Trans. Wirel. Commun. 16(4), 2249–2261 (2017)

9. Qian, L., Wu, Y., Zhou, H., Shen, X.: Joint uplink base station association and
power control for small-cell networks with non-orthogonal multiple access. IEEE
Trans. Wirel. Commun. 16(9), 5567–5582 (2017)

10. Wu, Y., Qian, L., Mao, H., Yang, X., Shen, X.: Optimal power allocation and
scheduling for non-orthogonal multiple access relay-assisted networks. IEEE Trans.
Mob. Comput. 17(11), 2591–2606 (2018)

11. Wu, Y., Ni, K., Zhang, C., Qian, L., Tsang, D.H.K.: NOMA assisted multi-access
mobile edge computing: a joint optimization of computation offloading and time
allocation. IEEE Trans. Veh. Technol. 67(12), 12244–12258 (2018)

12. Zhang, N., Cheng, N., Lu, N., Zhang, X., Mark, J.W., Shen, X.: Partner selection
and incentive mechanism for physical layer security. IEEE Trans. Wirel. Commun.
14(8), 4265–4276 (2015)

13. Yue, J., Ma, C., Yu, H., Zhou, W.: Secrecy-based access control for device-to-device
communication underlaying cellular networks. IEEE Commun. Lett. 17(11), 2068–
2071 (2013)

14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
England (2004)

15. Brent, R.P.: Chapters 3–4 in Algorithms for Minimization Without Derivatives.
Prentice-Hall, Englewood Cliffs (1973)


	Non-orthogonal Multiple Access Enabled Power Allocation for Cooperative Jamming in Wireless Networks
	1 Introduction
	2 System Model and Problem Formulation
	2.1 System Model and Formulation
	2.2 Analysis of the Secrecy-Outage Probability

	3 Optimization Problem Under Case IV
	3.1 Proposed Algorithm to Find the Optimal (p2,)
	3.2 A Low-Complexity Algorithm Based on the Brent's Method

	4 Numerical Results
	5 Conclusion
	References




