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Binomial and Trinomial Trees

Binomial and trinomial trees are very intuitive and comparatively easy to
implement tools to calculate prices and sensitivity parameters of derivatives
while avoiding direct reference to the fundamental differential equations
governing the price of the instrument. In practice, tree methods are applied
occasionally only nowadays, since other methods, e.g. the finite difference
methods (see Chap. 10), show significantly superior numerical features with
respect to stability, accuracy, and flexibility. For pedagogical reasons however,
it is useful to learn these tree methods, because of the illustrative and direct
approach to the valuation of financial derivatives.
In addition to the usual assumptions when excluding arbitrage opportu-

nities (Assumptions 1, 2, 3, and 5), non-stochastic interest rates and default
risk (Assumptions 8 and 4) of Chap. 4 will be also assumed in the subsequent
sections. These assumptions allow a general theory of binomial trees to be
presented. In order to actually calculate option prices, the underlying must
be assumed to behave according to a model. Thus, from Sect. 9.3 onwards,
it will be assumed that the underlying can be modeled as a random walk
with non-stochastic volatility, i.e., the additional Assumptions 7 and 10 from
Chap. 4 will be made. Furthermore, we will assume that the underlying earns
a dividend yield in accordance with Eq. 2.9 rather than discrete dividend
payments.
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9.1 General Trees

9.1.1 Evolution of the Underlying and the Replicating
Portfolio

Generally, in a tree procedure, the time span in question (the lifetime of the
derivative) between t and T is divided into n time intervals of equal length dt :

T − t = n dt . (9.1)

In each such time interval the underlying price S(t) may increase in value to
u S (with u > 1) with a probability p′, or it may decrease in value to dS (with
d < 1) with a probability (1 − p′)

S(t) →
〈

Su(t + dt) = u(t)S(t) with probability p′

Sd(t + dt) = d(t)S(t) with probability 1 − p′ .
(9.2)

After three steps, for example, the price can take on 23 = 8 possible values:

S(t) →
〈

u(t)S(t)

〈u(t + dt)u(t)S(t)

〈
u(t + 2dt)u(t + dt)u(t)S(t)

d(t + 2dt)u(t + dt)u(t)S(t)

d(t + dt)u(t)S(t)

〈
u(t + 2dt)d(t + dt)u(t)S(t)

d(t + 2dt)d(t + dt)u(t)S(t)

d(t)S(t)

〈u(t + dt)d(t)S(t)

〈
u(t + 2dt)u(t + dt)d(t)S(t)

d(t + 2dt)u(t + dt)d(t)S(t)

d(t + dt)d(t)S(t)

〈
u(t + 2dt)d(t + dt)d(t)S(t)

d(t + 2dt)d(t + dt)d(t)S(t) .

Consider now a portfolio consisting of� underlyings and g monetary units
in cash. If the dividend yield q earned in the time interval dt is paid, the cash
is compounded at a risk-free rate r and the price of the underlying behaves as
described above, the value of the portfolio after dt is given by

�(t)S(t) + g(t) →
〈
� (t)u(t)S(t)B−1

q (t) + g(t)B−1(t)

� (t)d(t)S(t)B−1
q (t) + g(t)B−1(t) .

(9.3)
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Here, for the sake of simplifying the notation for the discount factors over a
small time interval dt we have defined

B(t) := B(t, t + dt) , Bq(t) := Bq(t, t + dt) . (9.4)

In the following sections, � and g will be chosen so that the price of this
portfolio behaves exactly as does the value of the derivative we wish to price.
This value of the portfolio will then replicate the value of the derivative at each
time point and is thus referred to as the replicating portfolio.

9.1.2 Evolution of the Derivative

If the underlying moves in accordance with Eq. 9.2 in the time interval dt,

the price V of a derivative on this underlying evolves in accordance with

V (S, t) →
〈

V (Su, t + dt)

V (Sd, t + dt) ,

where V u and V d represent the value of a derivative1 whose underlying has
a price of Su and Sd, respectively. Setting the value of the portfolio (Eq. 9.3)
equal to the value of the derivative at time t as well as after the next binomial
step t + dt , we obtain the following three equations:

V (S, t) = �(t) S(t) + g(t) (9.5)

V (Su, t + dt) = �(t) u(t)S(t)B−1
q (t) + g(t)B−1(t) (9.6)

V (Sd, t + dt) = �(t) d(t)S(t)B−1
q (t) + g(t)B−1(t) (9.7)

1In order to emphasize that this method is valid for all kinds of derivatives, we will continue to denote the
value of the derivative with the letter V .
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These can be easily rearranged2 to express the number of underlyings, the cash
amount and the value of the derivative at time t in terms of values at time t+dt :

�(t) = V (Su, t + dt) − V (Sd, t + dt)

[u(t) − d(t)]S(t)/Bq(t)

g(t) = u(t) V (Sd, t + dt) − d(t) V (Su, t + dt)

[u(t) − d(t)]/B(t)

V (S, t) = B(t) [p(t)V (Su, t + dt) + (1 − p(t))V (Sd, t + dt)] (9.8)

where

p(t) = Bq(t)/B(t) − d(t)

u(t) − d(t)
. (9.9)

In Eq. 9.8, we have succeeded in expressing the unknown value of the
derivative at time t in terms of quantities known at time t , namely Bq(t),

B(t), u(t) and d(t), (in Chap. 13, we will show how the values of u and d

are determined) and the (likewise unknown) derivative values at time t + dt .
The reader might ask what this has accomplished. This expression will in deed
prove to be useful if the value of the derivative at a future time is known. Such
a future time is, for example, the maturity date T of the derivative. At this
time, the value of the derivative as a function of the underlying price is given
explicitly by its payoff profile, and as such, is known. The strategy is thus to
repeat the procedure described above until reaching a time at which the value
of the option is known (in most cases, maturity T ). This procedure will be
demonstrated below.

Equation 9.8 holds for European derivatives since it is implicitly assumed
that the option still exists after a time step has been taken. In order to account
for the possibility of exercising early as in the case of derivatives with American
features, the derivative’s value as given in Eq. 9.8 is compared with its intrinsic

2Subtracting Eq. 9.7 from Eq. 9.6 yields

V u
S − V d

S = �(t) (u − d)S(t)B−1
q (t) .

This allows us to isolate the �(t) term easily. Multiplying Eq. 9.7 by u, and Eq. 9.6 by d and subtracting
the results yields

u V d
S − d V u

S = (u − d)g(t)B−1(t) .

This can be readily solved for g(t). Substituting the expressions thus obtained for �(t) and g(t) into
Eq. 9.5 yields the value of the derivative VS(t, T ,K).
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value at each node in the tree. Then the larger of the two values is taken as
the derivative price at that node. For instance for American calls and puts
with payoff profiles S(t) − K and K − S(t), respectively, Eq. 9.8 would be
replaced by

CS(t) = max
{
B(t)

[
p(t)Cu

S(t + dt) + (1 − p(t))Cd
S(t + dt)

]
, S(t) − K

}

PS(t) = max
{
B(t)

[
p(t)P u

S (t + dt) + (1 − p(t))P d
S (t + dt)

]
, K − S(t)

}
.

9.1.3 Forward Contracts

The evolution of the replicating portfolio consisting of underlyings and cash
in a bank account is described by Eq. 9.3. According to Eq. 6.6, the evolution
of a futures position is given by

V (S, t) →
〈

V (Su, t + dt) = Su(t + dt, T ) − S(t, T )

V (Sd, t + dt) = Sd(t + dt, T ) − S(t, T ) .

Here, it is not the value of the future at time t which is unknown (this is equal
to zero since K = S(t, T )), but the forward price of the underlying S(t, T ).
Setting the portfolio equal to the future at both time t and at the next time in
the binomial tree t + dt yields three equations:

0 = V (S, t) = �(t) S(t) + g(t) (9.10)

Su(t + dt, T ) − S(t, T ) = V (Su, t + dt) = �(t) u(t)S(t)B−1
q (t) + g(t)B−1(t)

(9.11)

Sd(t + dt, T ) − S(t, T ) = V (Sd, t + dt) = �(t) d(t)S(t)B−1
q (t) + g(t)B−1(t)

(9.12)

With the help of these three equations, the number of underlyings, the money
in the bank account and the forward price at time t can (making use of the
expression p defined in Eq. 9.9) be expressed3 in terms of the forward price

3Subtracting Eq. 9.11 from Eq. 9.12 yields

Su(t + dt, T ) − Sd (t + dt, T ) = �(t) (u − d)S(t)B−1
q (t) .
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at time t + dt :

�(t) = Su(t + dt, T ) − Sd(t + dt, T )

[u(t) − d(t)]S(t)Bq(t)
(9.13)

g(t) = −Su(t + dt, T ) − Sd(t + dt, T )

[u(t) − d(t)]Bq(t)

S(t, T ) = p(t)Su(t + dt, T ) + (1 − p(t))Sd(t + dt, T ) .

9.2 Recombining Trees

9.2.1 The Underlying

If the parameters u and d are independent of time4

u(t + j dt) = u(t) ≡ u ∀j , d(t + j dt) = d(t) ≡ d ∀j

then obviously udS(t) = duS(t) holds, i.e., an upward move followed by a
downward move results in the same underlying price as a downward move
followed by an upward move. Thus the tree is forced to recombine. This
significantly reduces the number of possible nodes, making the computation
much more efficient. Such a recombining binomial tree has the form depicted
in Fig. 9.1. The probability for a single path ending at S(T ) = ujdn−j S(t) is

p′j (1 − p′)n−j .

The number of all paths ending at S(T ) = ujdn−j S(t) can be deduced from
permutation laws and is given by the binomial coefficient

(
n

j

)
≡ n!

j !(n − j)! .

This allows us to easily isolate �(t). Because of Eq. 9.10, g(t) = −�(t)S(t) holds, which immediately
yields g(t) if �(t) is known. Substituting the expressions for �(t) and g(t) into Eq. 9.11 or Eq. 9.12
yields, after a simple calculation, the forward price S(t, T ).
4It is possible to construct recombining trees with time-dependent u and d, if at the same time some other
constraint, e.g. constant time steps, is dropped.
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Fig. 9.1 The first steps in a recombining binomial tree

The probability in the above tree of arriving at a value S(T ) = ujdn−j S(t)

regardless of the path taken to get there is equal to the number of such paths
multiplied by the probability of realizing such a path.

P
[
S(T ) = ujdn−j S(t)

] =
(

n

j

)
p′j (1 − p′)n−j = Bn,p′(j) . (9.14)

This is the definition of the probability density function of the binomial
distribution, see Sect. A.4.2. This is how the binomial distribution enters into
the binomial trees.

9.2.2 The Binomial Distribution for European Derivatives

In addition to the assumptions made at the beginning of Chap. 9 and the one
just made, namely that the parameters u and d are constant over time, we will
henceforth assume that the yields (interest rates and dividends) are constant
over time as well, i.e., that Assumptions 9 and 12 from Chap. 4 hold5:

B(t + j dt) = B(t) ∀j , Bq(t + j dt) = Bq(t) ∀j . (9.15)

In consequence, the parameter p defined in Eq. 9.9 is time independent as
well:

p(t + j dt) = p(t) = p ∀j .

5On both sides we use here again the short notation defined in Eq. 9.4.
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Equation 9.8 holds not only at time t but for other times as well, for example
at time t + dt . This is true for both V u

S and V d
S :

V (Su, t + dt) = B(t) [p V (Suu, t + 2dt) + (1 − p)V (Sud, t + 2dt)]

V (Sd, t + dt) = B(t) [p V (Sud, t + 2dt) + (1 − p)V (Sdd, t + 2dt)] .

Substitution into Eq. 9.8 leads to an expression for V (S, t) as a function of
the derivative price at time t + 2dt. Analogous expressions can be obtained
for V uu

S , V ud
S , etc. This recursive procedure performed iteratively for n =

(T − t )/dt binomial steps gives

V (S, t) = B(t, T )

n∑
j=0

(
n

j

)
pj(1 − p)n−jV

(
ujdn−j S(t), T

)

= B(t, T )

n∑
j=0

Bn,p(j)V
(
ujdn−jS(t), T

)
, (9.16)

where the second line was obtained by observing that
(
n

j

)
pj(1 − p)n−j

corresponds to a binomial probability density Bn,p(j) but with parameters
n and p (not with p′ as in Eq. 9.14).

Thus the value of the derivative at time t has been expressed as a sum over
its values at a later time T . If this time T is chosen to be the maturity then the
value of the derivative at time t is written in terms of its payoff profile. This
reads explicitly for European calls and puts

cs(t) = B(t, T )

n∑
j=0

(
n

j

)
pj(1 − p)n−j max

{
0, ujdn−j S(t) − K

}

ps(t) = B(t, T )

n∑
j=0

(
n

j

)
pj(1 − p)n−j max

{
0,K − ujdn−j S(t)

}
.

Because of the maximum function appearing in the summand, the sum for
the call is effectively taken over the values of j for which ujdn−jS(t) is larger
than K . This condition can be written as (u/d)j > d−nK/S. Taking the
logarithm of both sides yields the equivalent condition

j > ln

(
K

S(t)dn

)
/ ln

(u

d

)
.
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The sum is taken over whole numbers j. The smallest whole number greater
than the right-hand side in the above inequality is

y = 1 + Trunc
(

ln(
K

S(t)dn
)/ ln(

u

d
)

)
, (9.17)

where the function “Trunc” is defined as the greatest whole number smaller
than the argument (decimal values are simply truncated and not rounded).
The number y defined in Eq. 9.17 is thus the lower limit in the sum for the
call (correspondingly, the sum for the put is taken over the whole numbers j

ranging from 0 to the upper limit y − 1). The value of a call is thus

cs(t) = S(t)B(t, T )

n∑
j=y

(
n

j

)
pj (1 − p)n−j uj dn−j − KB(t, T )

n∑
j=y

(
n

j

)
pj (1 − p)n−j

︸ ︷︷ ︸
Bn,p(j≥y)

.

According to Eq. A.42, the last sum is the probability that a binomially
distributed random variable (where Bn,p denotes the binomial distribution
with parameters n andp) is greater than or equal to y. Under Assumption 9.15
that yields are constant, i.e., Br(t) = Br independent of t , we can write

B(t, T ) =
n−1∏
k=0

B(t + kdt) = Bn , Bq(t, T ) = Bn
q .

Now the first sum can be represented as a binomial probability as well:

cs(t) = S(t)Bq(t, T )

n∑
j=y

(
n

j

)
pjuj Bn

Bn
q

(1 − p)n−j dn−j (9.18)

− KB(t, T )

n∑
j=y

(
n

j

)
pj (1 − p)n−j

= S(t)Bq(t, T )

n∑
j=y

(
n

j

)
p̂j (1 − p̂)n−j

︸ ︷︷ ︸
Bn,p̂(j≥y)

− KB(t, T )

n∑
j=y

(
n

j

)
pj (1 − p)n−j

︸ ︷︷ ︸
Bn,p(j≥y)
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where6

p̂ = u
B

Bq

p ⇒ 1 − p̂ = d
B

Bq

(1 − p) .

The value of a European put can be determined analogously with the help
of the binomial distribution. So the prices of European options expressed in
terms of binomial distributions are

cs(t) = Bq(t, T ) S(t)Bn,p̂(j ≥ y) − B(t, T )KBn,p(j ≥ y)

ps(t) = −Bq(t, T ) S(t)
[
1 − Bn,p̂(j ≥ y)

] + B(t, T ) K
[
1 − Bn,p(j ≥ y)

]
.

(9.19)

Note the similarity to the famous Black-Scholes equation (see, for example
Eq. 8.6 or Eq. 8.7). The difference is that the binomial distribution appears
in the above expression in place of the normal distribution. In Sect. 9.4,
we will see that the binomial distribution for infinitesimally small intervals
dt converges towards a normal distribution and thus the binomial model
approaches the Black-Scholes model in the limit dt → 0.

As another example of the above procedure we demonstrate how the forward
price can be determined by iterating Eq. 9.13 for n = (T − t )/dt binomial
steps

S(t, T ) =
n∑

j=0

(
n

j

)
pj(1 − p)n−jujdn−jS(t) ,

6Writing Su = uS and Sd = dS in the third equation in 9.13 and using Eq. 6.1 for S(t, T ) yields

Bq

B
S(t) = p u S(t) + (1 − p) d S(t) .

Dividing by the left-hand side gives

1 = p
B

Bq

u + (1 − p)
B

Bq

d .

It then follows immediately that

1 − p̂ ≡ 1 − u
B

Bq

p = d
B

Bq

(1 − p) .



9 Binomial and Trinomial Trees 149

where the spot price S(T ) for the forward contract after n steps is substituted
into the equation, since the maturity date T will have been reached after this
time. Under the assumption of constant interest rates and dividend yields, we
obtain

S(t, T ) = Bq(t, T )

B(t, T )
S(t)

n∑
j=0

(
n

j

)
pjuj Bn

Bn
q

(1 − p)n−jdn−j

= Bq(t, T )

B(t, T )
S(t)

n∑
j=0

(
n

j

)
p̂j (1 − p̂)n−j = Bq(t, T )

B(t, T )
S(t)Bn,p̂(j ≥ 0)︸ ︷︷ ︸

1

,

corresponding to the result in Eq. 6.1 obtained solely on the basis of arbitrage
considerations.

9.2.3 A Third Contact with the Risk-Neutral World

Neither for derivatives (see Eq. 9.8) nor for forward prices (see Eq. 9.13) does
the probability p′ for the underlying S to increase to Su (see, for example
Eq. 9.2) enter into any equation. The valuation of derivatives (or forward
prices) does not depend on the probability that the underlying rises or falls!
Instead, it depends on the value p as defined in Eq. 9.9. If we could interpret
p as a kind of “artificial probability”, and if for pricing purposes we could
put ourselves into an “artificial world” in which, after one step, the price of
the underlying is given by Su with this “probability” p (and not with the
probability p′as in the real world), then the probability for the underlying to
decrease to Sd over one time step would be (1 − p) in this “artificial world”.
The expression in brackets in Eq. 9.8 would then just be the expectation of
the derivative price one time step later with respect to the probability p in
the artificial world. This holds for many time steps as well, since the binomial
density Bn,p(j) appearing in Eq. 9.16 is the probability in the artificial world
for the underlying to arrive at the value S(T ) = ujdn−j S(t); just as Eq. 9.14
was this probability in the real world. The sum in Eq. 9.16 over all the
derivative values is then the expectation of the derivative value at the future
time T in the artificial world.
We can summarize our observations in the following way: In an artificial

world, where the probability of an up-move is p (and not p′ as in the real
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world), today’s price of a derivative is the expectation of its future price
discounted back to today.

V (S, t) = B(t, T )Ep [V (S, T )] Derivat (z. B. Option) auf S . (9.20)

The notation “Ep[]” here means: “expectation with respect to the probability
p”.

Likewise, the forward price of the underlying in Eq. 9.13 is exactly the
expectation of the underlying’s price at the future time T with respect to the
probability p:

S(t, T ) = Ep [S(T )] Forward Price of S . (9.21)

In the case of forward prices (which are not tradable financial instruments
themselves) the expectation is not discounted.

By substituting Eq. 6.1 for S(t, T ) into the above equation it follows that the
dividend-adjusted spot price of the underlying (which is a tradable financial
instrument) likewise can be expressed as the discounted expectation with
respect to this probability

S̃(t, T ) = B(t, T )Ep [S(T )] Spot price S . (9.22)

As in Sects. 7.1.3 and 7.2.1, it does not matter if the underlying is expected
to rise or fall in the real world. This plays no role in the valuation of derivatives
on the underlying.The valuation is independent of the expected changes in the
underlying. In contrast to the real world where investors are compensated for
taking the risk of investing in an underlying by the underlying’s mean return,
this mean return doesn’t play any role at all in the artificial world used for
pricing derivatives. This artificial world is thus neutral to the risk inherent in
the underlying and is therefore called the risk-neutral world and the probability
p is called the risk-neutral probability. We are again confronted with the risk
neutrality described in Sects. 7.1.3 and 7.2.1.

This risk neutrality is caused by the fact that the option buyer would
hedge himself against the risk of an unfavorable development of the option
underlying by entering into a portfolio of shares and cash, which replicates
the option pay off at expiry. Therefore, he has eliminated the risk and his
total position is risk neutral. The cost for the derivative is identical to the cost
of this replication strategy. Would the seller value the derivative differently,
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an arbitrage opportunity would arise, since the potential buyer could apply
the replication strategy in order to earn a risk-less profit. Likewise, because of
this effect, different market participants would be able to agree on the same
option price independently of their estimate of the future development of the
underlying. Based on these arbitrage considerations making use of the fact
that options and futures can be replicated by a portfolio consisting of the
underlying and risk-free assets, it follows that a purely objective, risk-neutral
probability p for an up-move in a risk-neutral world exists, eliminating any
subjectivity (see Eq. 9.9). On the other hand, a derivative buyer, who does
plan to hedge his derivative position by means of a strategy replicating the pay
off profile (and also does not need this derivative to hedge some other existing
positions), would rely on a valuation of the derivative based on his subjective
judgment about the future market development. He would indeed seek his
advantage in making a profit by means of the difference between risk neutral
valuation and the real world development. Of course, this strategy would not
be risk-free anymore.
To see how powerful Eqs. 9.20, 9.21 and 9.22 are, we have to be more

specific. We now choose a stochastic process for the underlying. In what
follows, we will assume that the relative changes of S(t) behave as a random
walk as in Eq. 2.17, i.e., we will rely on Assumption 7 from Chap. 4. But
Eq. 2.17 was established to model the behavior of S in the real world.7 We
will show later,8 however, that if S performs a random walk in the real world,
it also performs a random walk in the risk-neutral world. The distribution and
first moments of such a random walk are those given in Table 2.7 at the end
of Sect. 2.3. Thus, the underlying is lognormally distributed with expectation

〈S(T )〉 = S(t)e(μ+σ 2/2)(T −t) . (9.23)

In the risk-neutral world (i.e., in the world we need for pricing) this expec-
tation has to be equal to the expectation Ep [S(T )] with respect to the
risk-neutral probability p:

〈S(T )〉 != Ep [S(T )] .

7A “risk-neutral” world was never mentioned in the vicinity of Eq. 2.17, nor in the whole of Chap. 2.
8We will explicitly show this in great detail and on a much more fundamental basis in Chap. 13 when we
discuss the famous Girsanov theorem.
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Substituting Eqs. 9.22 and 9.23 into this requirement completely determines
the drift μ of the underlying in the risk-neutral world, i.e., the drift to be used
for pricing:

S(t)e(μ+σ 2/2)(T −t) != S̃(t, T )

B(t, T )

⇔ μ
!= 1

T − t
ln

(
S̃(t, T )

S(t)B(t,T )

)
− σ 2

2
.

Using the forward price equation 9.21 instead, we obtain the drift from the
ratio of forward price to spot price:

S(t)e(μ+σ 2/2)(T −t) != S(t, T )

⇔ μ
!= 1

T − t
ln

(
S(t, T )

S(t)

)
− σ 2

2
. (9.24)

With a dividend yield q and continuous compounding, we obtain, for
example,

μ = 1

T − t
ln

(
Bq(t, T )

B(t, T )

)
− σ 2

2
= r − q − σ 2

2
, (9.25)

where the first equality holds as a result of the assumed dividend yield and the
second is valid for continuous compounding. But this is exactly Eq. 7.19.

As was pointed out in Eq. 2.30, the drift μ is exactly equal to the expected
return of the underlying. This means that the expected return in the risk-
neutral world (i.e., with respect to the probability p) is objectively given
through the risk-free interest rate and the dividends (or through the ratio of
forward price to spot price) and the volatility, independent of an investor’s
opinion as to whether the price will rise or fall. The parameter μ thus
determined is called the risk-neutral yield or the risk-neutral drift.

We note for later reference that all this holds for any arbitrary time span
T − t , for instances also for one time step dt in a binomial tree:

μ dt = ln

(
Bq(t)

B(t)

)
− σ 2

2
dt . (9.26)
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9.3 Random Walk and Binomial Parameters

Risk neutrality is the essential link connecting the stochastic model describing
the underlying with the pricing method used for a derivative. This will be
demonstrated for the binomial model. The parameters u and d must first be
determined before the binomial model can be applied in pricing derivatives.
The choice of these parameters has a significant influence on derivative and
forward prices thus calculated. To make a reasonable choice of u and d further
assumptions concerning the behavior of the underlying must be made, i.e., a
stochastic process for the underlying must be specified. We will again assume
that the relative changes of S(t) behave as a random walk as in Eq. 2.17
and are therefore normally distributed with moments of the form given in
Table 2.7 at the end of Sect. 2.3. On the other hand we know from the previous
sections that in a binomial tree the underlying S is distributed according to
the binomial distribution, see Eq. 9.14, where for pricing purposes we have to
replace the real world probability p′ by the risk-neutral “probability” p. We
will now relate the randomwalk parametersμ and σ to the parameters u and d

of the binomial tree by matching the moments of the random walk distribution
to the moments of the binomial distribution. We will ensure that we work
in the risk-neutral world (i.e., that we determine the parameters needed for
pricing) by using p as defined in Eq. 9.9 for the binomial tree and by using
the risk-neutral drift defined in Eq. 9.25 for the random walk.
In the following derivation, we will assume that the parameters u and d are

constant over time until maturity. After j up-moves and n − j down-moves,
the final value S(T ) and thus the logarithm of the relative price change is

S(T ) = ujdn−jS(t) ⇒ ln

(
S(T )

S(t)

)
= j ln

(u

d

)
+ n ln(d) .

S(T ) (and thus j ) is binomially distributed in our binomial model and from
Eq. A.44, it follow that 〈j 〉 = np and var(j) = np(1 − p).
For the random walk model, on the other hand, the expectation and

variance of the logarithmic changes of S are equal to the drift and the square
of the volatility, each multiplied by the time difference T − t (see the first
column of Table 2.7). Thus matching the first two moments of the random



154 H.-P. Deutsch and M. W. Beinker

walk distribution to the distribution induced by the binomial tree yields

μ(T − t ) =
〈
ln

(
S(T )

S(t)

)〉
= 〈j 〉︸︷︷︸

np

ln
(u

d

)
+ n ln(d)

σ 2(T − t ) = var
(

ln

(
S(T )

S(t)

))
= var (j)︸ ︷︷ ︸

np(1−p)

(
ln

(u

d

))2
. (9.27)

Because dt = (T − t )/n this can be written as

μdt = p ln
(u

d

)
+ ln(d)

σ 2dt = p(1 − p)
(

ln
(u

d

))2
.

Now we use Eq. 9.9 for the risk-neutral probability p and Eq. 9.26 for the
risk-neutral driftμ to establish a system of two (non-linear!) equations for the
two unknown binomial parameters u and d :

ln

(
Bq

B

)
− σ 2

2
dt = Bq/B − d

u − d
ln

(u

d

)
+ ln(d)

σ 2dt =
(
Bq/B − d

) (
u − Bq/B

)
(u − d)2

(
ln

(u

d

))2
. (9.28)

There exist several closed form solutions to this system which are exact up
to linear order in dt . One such solution is given by

u = Bq

B
e−(σ 2/2)dt+σ

√
dt , d = Bq

B
e−(σ 2/2)dt−σ

√
dt . (9.29)

Inserting this into Eq. 9.9 for the risk-neutral probability yields

p = e(σ 2/2)dt − e−σ
√

dt

e+σ
√

dt − e−σ
√

dt
= e(σ 2/2)dt − e−σ

√
dt

2 sinh(σ
√

dt)
,

where we have used the definition of the hyperbolic sine function in
the last step. Using Eq. 9.26 (which is equivalent to exp (μ dt) =
exp

(−σ 2dt/2
)
Bq/B) we can bring the parameters u and d into a more
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intuitive form using the risk-neutral drift:

u = eμdt+σ
√

dt , d = eμdt−σ
√

dt .

Thus, in this solution the drift only appears in the parameters u and d , while
the probability p is determined solely from knowledge of the volatility. For
small values of dt and assuming continuous compounding, the Taylor series
representation of the exponential function expanded up to linear terms in dt

gives

u ≈ 1 + σ
√

dt + (q − r) dt , d ≈ 1 − σ
√

dt + (q − r) dt , p ≈ 1/2 .

(9.30)

Since in this solution both the volatility and the risk neutral drift appear in
u and d , we must assume constant volatilities and because of Eq. 9.25 also
constant yields and dividends, i.e., Assumptions 9, 11 and 12 from Chap. 4, to
ensure that the parameters u and d are constant over time and, in consequence,
that the tree recombines.
Another frequently used solution of Eq. 9.28 for which it suffices to assume

constant volatilities (Assumption 11) is

u = e+σ
√

dt , d = e−σ
√

dt ⇒ p = Bq/B − e−σ
√

dt

2 sinh(σ
√

dt)
= e(q−r)dt − e−σ

√
dt

2 sinh(σ
√

dt)
,

(9.31)

where the last step is of course only valid for continuous compounding. In
this solution, the volatility alone completely determines the parameters u and
d . Observe that u(t) = 1/d(t) holds. As long as the volatility is constant
(allowing the parameters u and d to remain constant over time), the tree is
recombining since the starting price is recovered after an up-move followed by
a down-move:

u(t) d(t + dt) = u(t + dt)d(t) = u(t)/u(t) = 1 .

The ease in the construction and analysis of binomial trees resulting from
this relation prompts us to utilize the solution given by Eq. 9.31 exclusively
in the remainder of this book whenever we use binomial trees. For small
time intervals dt , the Taylor series representation of the exponential function
expanded up to and including terms of linear order in dt yields the following
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approximations for u, d and p:

u ≈ 1 + σ
√

dt + σ 2

2
dt, d ≈ 1 − σ

√
dt + σ 2

2
dt , p ≈ 1

2

(
1 + μ

σ

√
dt

)
,

where again the risk-neutral drift μ is used to simplify the last expression.
A detailed demonstration of the application of binomial trees for the

valuation of an option portfolio is provided in the Excel workbook Binomial-
Tree.xls. In anticipation of Chap. 12, the evaluation of the Greeks (derivatives
of the option price with respect to its parameters) using binomial trees also
receives attention. This workbook can be used as a small but fully functioning
option calculator (as always, the yellow fields are the input fields).

9.4 The Binomial Model with Infinitesimal Steps

In this section, the Black-Scholes option pricing formula is derived directly
from the binomial model for European options as given by Eq. 9.19. A deeper
insight into the relationship between these two important methods in option
pricing (finding solutions to a differential equation on the one hand and the
calculation of (discounted) expectations on the other) can be gained from an
understanding of this derivation. The reader less interested in mathematics
may choose to continue on to the next section.

A classical result from statistics, the Moivre-Laplace theorem, states that the
binomial distribution converges towards a normal distribution as the number
n of the observed trials approaches infinity. The statement of the theorem in
integral form can be expressed as

Bn,p(a ≤ j − np√
np(1 − p)

≤ b)
n→∞−→ N(b) − N(a) = 1√

2π

b∫
a

e−z2/2dz .

The left-hand side of the equation denotes the probability that the stan-
dardized form of a binomially distributed random variable j (i.e., j less its
expectation divided by its standard deviation) will lie in the interval between
a and b, while the right-hand side is simply the probability that a standard
normally distributed random variable will take on values lying within the same
interval.

We can exploit this theorem to see what happens to Eq. 9.19 as the time
interval dt converges towards zero, i.e., as the number n of steps in the
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binomial tree approaches infinity. This will be demonstrated for a call, the
procedure for a put being completely analogous.
We need, for example, to determine the limit of Bn,p(y ≤ j) in Eq. 9.19

For arbitrary constants f and g with g > 0, the probability that y ≤ j is
of course equal to the probability that (y − f )/g ≤ (j − f )/g. We take
advantage of this fact9 to manipulate Bn,p(y ≤ j) into a suitable form to
apply the Moivre-Laplace theorem:

Bn,p(y ≤ j) = Bn,p

(
y − np√
np(1 − p)

≤ j − np√
np(1 − p)

≤ ∞
)

n→∞−→ N(∞)︸ ︷︷ ︸
1

− N
(

y − np√
np(1 − p)

)

= N
(

np − y√
np(1 − p)

)
,

where in the last step the symmetry property of the normal distribution,
Eq. A.54, is used.
Equations 9.27 and 9.17 deliver the necessary elements for computing (np−

y)/
√

np(1 − p):

np = 1

ln(u/d)
(μ(T − t) − n ln(d)) ,

√
np(1 − p) = 1

ln(u/d)
σ
√

T − t

and

y =
ln

(
K

S(t)dn

)
ln(u/d)

+ ε =
ln

(
K

S(t)

)
− n ln(d) + ε ln(u/d)

ln(u/d)
mit 0 < ε ≤ 1 .

Here, ε represents the difference between ln(K/Sdn)/ ln(u/d) and the small-
est whole number greater than this value. We will show immediately that the
term ε ln(u/d) becomes arbitrarily small. Substituting accordingly yields the
argument for the standard normal distribution above:

np − y√
np(1 − p)

= ln(S(t)/K) + μ(T − t) − ε ln(u/d)

σ
√

T − t
.

9With the choice f = np und g = √
np(1 − p) .
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In both solutions 9.29 and 9.31 the ratio u/d converges towards 1 as n → ∞
(i.e., dt → 0), thus by continuity, ln(u/d) converges towards zero. Thus, the
limit for infinitely many binomial steps becomes

np − y√
np(1 − p)

n→∞−→ ln(S(t)/K) + μ(T − t)

σ
√

T − t
= x − σ

√
T − t .

Using now Eq. 9.25 for the risk-neutral drift we can write

np − y√
np(1 − p)

n→∞−→ x − σ
√

T − t

where we have defined the abbreviation x as in Eq. 8.5:

x = 1

σ
√

T − t
ln

(
S(t) Bq(t, T )

K B(t, T )

)
+ 1

2
σ
√

T − t .

The limit of Bn,p(y ≤ j) is thus established. Proceeding analogously,
we can calculate the limit of the other binomial probability in Eq. 9.19. In
summary, for an infinite number of binomial steps in a finite time interval,
the behavior of the binomial distribution is given by

Bn,p(y ≤ j)
n→∞−→ N

(
x − σ

√
T − t

)
, Bn,p̂(y ≤ j)

n→∞−→ N (x) .

Using these convergence relations, we obtain the value of a call as the number
of binomial steps approaches infinity to be

cs(t)
n→∞= S(t)Bq(t, T )N(x) − KB(t, T )N(x − σ

√
T − t) . (9.32)

This is in complete agreement with Eq. 8.6 and is thus (again!) the famous
Black-Scholes option pricing formula.

9.4.1 Components of the Black-Scholes Option Pricing
Formula

In the above section the Black-Scholes formula was derived from Eqs. 9.18
and 9.19. We can see from this derivation that the cumulative normal distri-
bution found next to the discounted strike price B(t, T )K is the risk-neutral
probability for the price of the underlying to be larger than the strike price.
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Table 9.1 Interpretation of the various components in the Black-Scholes option pricing
formulae for plain vanilla calls and puts. All probabilities mentioned are risk-neutral.
The lower four terms are required for replicating (hedge) calls resp. puts

N(x − σ
√

T − t) Risk-neutral exercise probability for call
N(−x + σ

√
T − t) Risk-neutral exercise probability for put

KB(t, T ) Present value (PV) of cash flow at exercise
Bq(t, T )N(x) Number of underlyings to buy for replicating the call
Bq(t, T )N(−x) Number of underlyings to buy for replicating the put
KB(t, T )N(x − σ

√
T − t) Amount to be borrowed for call replication

KB(t, T )N(−x + σ
√

T − t) Amount to be borrowed for put replication

This is referred to as the risk-neutral exercise probability. A comparison with the
replicating portfolio in Eq. 9.3 shows that the number �(t) of underlyings
needed to replicate the option is given by the factor next to S(t) in Eq. 9.32,
namely Bq(t, T )N(x), while the amount g(t) of money in the bank account
is given by the second summand in Eq. 9.32. The intuitive interpretations of
these values in the Black-Scholes formulae for puts and calls are collected in
Table 9.1.

9.5 Trinomial Trees

Trinomial trees present us with an alternative method to binomial trees. The
form of a trinomial tree is represented graphically in Fig. 9.2. The j th step
of the tree at time tj is connected, not with two other nodes in the next
step (as was the case for the binomial tree), but with three. The price paid
for this additional degree of freedom is additional computational effort. The
advantage is that a trinomial tree can always be constructed in such a way that
it recombines and in addition, achieves the same degree of accuracy as the
binomial tree with fewer time steps. The trinomial tree has 2j + 1 nodes after
j steps where the time t is indexed with j = 0. The length of the time steps
may vary. The value of the underlying at the ith node after j steps is denoted
by Sji where

i = −j, −j + 1, . . . , j − 1, j .

Each node at time step j branches into three nodes at time step j + 1, with a
probability being associated with each of these branches.10 Starting from Sji ,

10All probabilities appearing in this context are risk-neutral probabilities.
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(0,0)  (1,0)     

(1,-1)        

(1,1)  

Fig. 9.2 A simple trinomial tree

we denote by p+ the probability that the underlying will increase from Sji to
the value Sj+1,i+1 at time step (j + 1). Correspondingly, denote by p0 and
p− the probabilities that the underlying at time step (j + 1) will take on the
values Sj+1,i and Sj+1,i−1, respectively. Each of these probabilities must be
≥ 0 and ≤ 1. In addition:

p+ + p0 + p− = 1 . (9.33)

For the binomial tree,11 a portfolio can be constructed consisting of a
position � in the underlying and money g in a bank account whose value
replicates the option price exactly at each time step. This is also possible for
trinomial trees. Though, because of the addition of the third attainable value
for the underlying after one time step, just two parameters � and g are not
sufficient to determine a replicating portfolio that replicates exactly all three
possible states after one time step. Therefore, we need to make a further
choice before all parameters could be determined unequivocally. Because of
this additional degree of freedom, trinomial trees can be more flexibly adopted
for different purposes.

To do so, it is sufficient to choose the probabilities p+, p0 and p− and the
nodes Sji so that the tree reflects the probability distribution of the underlying.
Again, we assume that the underlying price is lognormally distributed (this

11The binomial tree usually assumes a constant time step dt . In the most general case, this assumption is
not necessary.
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corresponds to Assumption 7 from Chap. 4). The lognormal distribution is
completely determined by two parameters, the expectation and the variance of
the logarithm.Thus, two conditions are sufficient to adapt the trinomial tree to
a lognormal distribution. Like in Eq. 9.23, the expectation for the lognormally
distributed random variable after a time step of length dt starting from the
node Sji (with the risk-neutral drift Eq. 9.25) is given by

E
[
S(tj+1)

] = Sjie
(r−q)dt .

On the other hand, from the tree we have

E
[
S(tj+1)

] = p+Sj+1,i+1 + p0Sj+1,i + p−Sj+1,i−1 .

Setting these two expressions equal to one another yields one equation for the
determination of the probabilities:

Sjie
(r−q)dt = p+Sj+1,i+1 + p0Sj+1,i + p−Sj+1,i−1 . (9.34)

Analogously, taking the expression for the variance of the lognormal distribu-
tion shown in Table 2.7 at the end of Sect. 2.3 we have

Var
[
S(tj+1)

] = S2
ij e

2(r−q)dt
(
eσ 2dt − 1

)
.

It is sometimes easier to work with the expectation of S2(tj+1) rather than the
variance and such is the case here. With the help of Eq. A.7 we obtain this
expectation as

E
[
S2(tj+1)

] = S2
jie

2(r−q)dt
(
eσ 2dt − 1

)
+ S2

jie
2(r−q)dt

= S2
jie

2(r−q)dt eσ 2dt .

Expressed in terms of the probabilities for the trinomial tree, the same
expectation is given by

E
[
S2(tj+1)

]
= p+S2

j+1,i+1 + p0S2
j+1,i + p−S2

j+1,i−1 .

Combining the two above expressions gives

S2
jie

2(r−q)dt eσ 2dt = p+S2
j+1,i+1 + p0S2

j+1,i + p−S2
j+1,i−1 . (9.35)
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Equations 9.33, 9.34 and 9.35 are sufficient to fit the trinomial tree to the
lognormal distribution. Of course, only three of the six parameters p+, p0,
p−, Sj+1,i+1, Sj+1,i and Sj+1,i−1 will be determined. In general, these will be
the probabilities. The nodes can then be arbitrarily selected.

The actual option pricing now proceeds as for a binomial tree. Vji denotes
the price of the option at the ith node of the j th time step. We assume
that the tree consists of N time steps with j = 0, 1, . . . , N . To price a
European option, the nodes are initialized with the payoff profile of the option
at maturity tN = T . In the case of a call option we have:

VNi = max(SNi − X, 0) .

The calculation then rolls backwards through the tree. The option value is
calculated iteratively for a time step using the values just calculated at the next
time step starting with j = N − 1 and working back to j = 0:

Vji = B(tj , tj+1)
[
p+Vj+1,i+1 + p0Vj+1,i + p−Vj+1,i−1

]
.

V00 is the present value of the option at time t0 = t (assuming that S00

is the price of the underlying at t = t0). It should be emphasized that the
model admits both time-dependent interest rates and volatilities. To take this
into consideration either the nodes need to be selected accordingly or the
probabilities must be made time-dependent. American options are treated in
the same manner as they are treated in binomial trees. Barrier options should
be calculated by choosing the nodes such that they lie directly on the barrier.

9.5.1 The Trinomial Tree as an Improved Binomial Tree

After two time steps a recombining binomial tree has exactly three distinct
nodes. This is equal to the number of nodes in the trinomial tree after one
step. Since the nodes of the trinomial tree can be freely chosen, it is possible to
generate a trinomial tree (with an even number of time steps) corresponding
to any given recombining binomial tree. Such a trinomial tree yields the exact
same results as the binomial tree, but in only half the time steps. This will be
demonstrated for the binomial tree with parameters u, d, and p as given in
Eq. 9.31 serving as an example. Starting from the node Sij , we can choose the
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nodes at time tj+1 = tj + 2 dt as follows:

Sj+1,i+1 = u2Sij

Sj+1,i = Sij

Sj+1,i−1 = d2Sij .

where dt is the length of one time step in the binomial tree and hence 2 dt

is the length of one time step in the trinomial tree. The probabilities for the
trinomial tree are easily obtained from the probability p in the binomial tree:

p+ = p2 , p0 = 2p(1 − p) , p− = (1 − p)2 .

The values for the probabilities are consistent with those in Eqs. 9.33, 9.34
and 9.35.
The trinomial tree converges faster than the corresponding binomial tree

because it requires only half as many steps. Approximately half of the nodes
in the binomial tree need not be computed. This advantage is, however not
quite as great as it may seem at first glance. It is known that the results of
the binomial tree oscillate strongly when the number of time steps increases
by one. The best results are obtained by averaging two calculations with N

and N + 1 time steps (which doubles the required computation time). This
trick cannot be exploited when using trinomial trees.Moreover, the parameters
specified above are not an optimal choice for the trinomial tree.
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