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Integral Forms and Analytic Solutions

in the Black-Scholes World

In addition to Assumptions 1, 2, 3, 4, 5 and 6 from Chap. 4 required to
set up the differential equation in Chap. 7, we will now further simplify
our model by assuming that the parameters involved (interest rates, dividend
yields, volatility) are constant (Assumptions 9, 11 and thus 7 from Chap. 4)
despite the fact that these assumptions are quite unrealistic. These were the
assumptions for which Fischer Black and Myron Scholes derived their famous
analytic expression for the price of a plain vanilla option, the Black-Scholes
option pricing formula.1
For this reason, we often speak of the Black-Scholes world when working

with these assumptions. In the Black-Scholes world, solutions of the Black-
Scholes differential equation (i.e., option prices) for some payoff profiles (for
example for plain vanilla calls and puts) can be given in closed form. We will
now present two elegant methods to derive such closed form solutions.

1The mathematician Louis Bachelier was actually the first to derive analytical expressions for the valuation
of options in 1900 [7]. However, Bachelier’s derivation is based on other assumptions and his work has
been forgotten for a long time. Only through the work of Black and Scholes and nonetheless because
of the availability of computers, the use of mathematical formulas and methods has become a market
standard for the valuation of derivatives.
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8.1 Option Prices as Solutions of the Heat
Equation

The first and perhaps most natural approach would be to take advantage of
the constant parameter assumptions to transform the Black-Scholes equation
into the heat equation 7.22 as presented above. Since the solution to the heat
equation is known and given by Eq. 7.21 we simply need to write the initial
condition corresponding to the desired financial instrument in terms of the
variables x and τ , and, in accordance with Eq. 7.23, transform the solution
u back in terms of the original financial variables. We now demonstrate this
technique using a plain vanilla call as an example.

Expressing the payoff profile of the call in the variables of the heat equation
gives

P(S) = max(S − K, 0)

�⇒ u0(x) = P(Kex) = max(Kex − K, 0) = K max(ex − 1, 0) .

Substituting this into Eq. 7.21 immediately yields the solution in integral form
for this initial condition

u(x, τ) = 1

2
√

πτ

∫ ∞

−∞
e−(x−y)2/4τ u0(y) dy . (8.1)

This integral form is not only valid for plain vanilla calls but for arbitrary
European payoff profiles and the resulting initial conditions u0. The integral
can be computed numerically using, for example, the Monte Carlo method.
Decades of research on numerical methods for computing integrals can be
taken advantage of here.

In the case of the plain vanilla call, however, it is in fact possible to obtain
a closed analytical form of the solution of the above integral. Substituting the
initial condition for the call into the above equation yields

u(x, τ) = K

2
√

πτ

∫ ∞

−∞
e−(x−y)2/4τ max(ey − 1, 0) dy

= K

2
√

πτ

∫ ∞

0
e−(x−y)2/4τ (ey − 1) dy

= K

2
√

πτ

∫ ∞

0
ey−(x−y)2/4τ dy − K

2
√

πτ

∫ ∞

0
e−(x−y)2/4τ dy .
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The second of the two integrals above can be computed after making the
change in variable ỹ ≡ (x −y)/

√
2τ implying dy = −√

2τdỹ . The integral
bounds must then be transformed as follows: 0 → x/

√
2τ and ∞ → −∞.

The integral has now become an integral over the density function of the
standard normal distribution:

K
1√
2π

∫ x/
√

2τ

−∞
e−ỹ2/2 dỹ = K N

(
x√
2τ

)
,

where N(x) denotes the cumulative normal distribution given by Eq. A.49.
The first of the above two integrals can be calculated by completing the squares
as follows

y − (x − y)2

4τ
= τ + x − (y − x − 2τ)2

4τ

This transforms the integral into

K√
2π

√
2τ

eτ+x

∫ ∞

0
e
− (y−x−2τ )2

2
√

2τ
2

dy

The remaining integral can now again be expressed in terms of the standard
normal distribution. The necessary change in variable is ỹ ≡ −(y − x −
2τ)/

√
2τ . Combining all these results the solution becomes

u(x, τ) = K ex+τ N
(

x√
2τ

+ √
2τ

)
− K N

(
x√
2τ

)
.

Substituting now for the original variables using Eq. 7.23 gives

er(T −t)V (S, t) = K eln( S
K

)+(r−q)(T −t)

× N

(
ln( S

K
) + (r − q − σ 2

2 )(T − t )√
σ 2(T − t )

+
√

σ 2(T − t )

)

− K N

(
ln( S

K
) + (r − q − σ 2

2 )(T − t )√
σ 2(T − t )

)
.
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After multiplying by e−r(T −t), we finally obtain the famous Black-Scholes
formula for the price of a European call:

V (S, t) = e−q(T −t)S N (x) − e−r(T −t)K N(x − σ
√

(T − t )) (8.2)

where

x ≡ ln( S
K

) + (r − q)(T − t )√
σ 2(T − t )

+ 1

2
σ
√

(T − t ) .

This formula is still generally valid, if interest rate and volatility are time-
dependent, but deterministic. In this case, the constant interest rate and the
constant volatility just need to be replaced by their average values r̃ and σ̃ with

r̃ = 1

T − t

∫ T

t

r(s) ds and

σ̃ =
√

1

T − t

∫ T

t

σ 2(s) ds .

8.2 Option Prices and Transition Probabilities

We will now show how the foundations of stochastic analysis laid in Sect. 2.4
can be used to price options. In Sect. 7.2, we have seen that with the risk-
neutral choice of drift, the prices of derivatives are given by the discounted
expectation of the payoff profile, Eq. 7.16. This expectation is determined
using the transition probabilities p(S ′, t ′ |S, t ). If these are known, cal-
culating the price of the option reduces to simply calculating the integral.
In the Black-Scholes world, i.e., for the simple process 2.23, the transition
probabilities are given explicitly by Eq. 2.38 with μ̃ = μ + σ 2/2. Thus,
Eq. 7.16 becomes the integral form for the price of an arbitrary derivative with
an associated payoff profile f (S, T ):

V (S, t, T ) = B(t, T )

∫ ∞

−∞
f (S′, T )p(S′, T |S, t )dS′

= B(t, T )√
2πσ 2(T − t)

∫ ∞

−∞
f (S′, T ) exp

{
− [

ln(S′/S) − μ(T − t)
]2

2σ 2(T − t)

}
dS′

S′ .

(8.3)
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This integral can be computed numerically for arbitrary payoff profiles
f (S, T ) and is equal to the price of the derivative for the risk-neutral choice
of the drift as specified in Eq. 7.19.
For some special payoff profiles, the integral can even be solved analytically,

or reduced to an expression in terms of known functions. We demonstrate this
using the concrete example of a plain vanilla call option with payoff profile
f (S ′, T ) = max(S ′ − K, 0). For this payoff profile, the integral can be
written as

V (S, t, T ) = B(t, T )√
2πσ 2(T − t)

∫ ∞

K

(S′ − K) exp

{
− [

ln(S′/S) − μ(T − t)
]2

2σ 2(T − t)

}
dS′

S′ .

The substitution u := ln(S ′/S) simplifies the integral to

V (S, t, T ) = B(t, T )√
2πσ 2(T − t)

∫ ∞

ln(K/S)

(Seu − K) exp

{
− [u − μ(T − t)]2

2σ 2(T − t)

}
du

(8.4)

=: B(t, T )SI1 − B(t, T )KI2 .

Both integrals I1 and I2 can be easily calculated. In the first integral we
complete the square in the argument of the exp-function:

u − [u − μ(T − t)]2

2σ 2(T − t)
= − u2 − 2μ(T − t)u + μ2(T − t)2 − 2σ 2(T − t)u

2σ 2(T − t)

= −
[
u −

(
μ + σ 2

)
(T − t)

]2 −
(
μ + σ 2

)2
(T − t)2 + μ2(T − t)2

2σ 2(T − t)

= −
[
u −

(
μ + σ 2

)
(T − t)

]2 −
(
σ 4 + 2μσ 2

)
(T − t)2

2σ 2(T − t)

=
−

[
u −

(
μ + σ 2

)
(T − t)

]2

2σ 2(T − t)
+

(
μ + σ 2

2

)
(T − t) .
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Thus, the first integral becomes

I1 ≡ 1√
2πσ 2(T − t )

∫ ∞

ln(K/S)

exp

{
u − [u − μ(T − t )]2

2σ 2(T − t )

}
du

= e(μ+σ 2/2)(T −t)√
2πσ 2(T − t )

∫ ∞

ln(K/S)

exp

{
− [

u − (
μ + σ 2

)
(T − t )

]2

2σ 2(T − t )

}
du .

With the substitution

y := −u − (
μ + σ 2

)
(T − t )√

σ 2(T − t )
⇒

dy

du
= −1/

√
σ 2(T − t ) ⇒ du = −

√
σ 2(T − t )dy

the upper and lower limits of integration become

yupper = −∞ − (
μ + σ 2

)
(T − t)√

σ 2(T − t)
= −∞

ylower = − ln(K/S) − (
μ + σ 2

)
(T − t)√

σ 2(T − t)
= ln(S/K) + (

μ + σ 2
)
(T − t)√

σ 2(T − t)
.

Exchanging the upper and lower limits results in a change in the sign of the
integral. This is compensated for by the sign of du. Combining the above
results, I1 becomes after this substitution

I1 = e(μ+σ 2/2)(T −t) 1√
2π

∫ ln(S/K)+(μ+σ2)(T −t)√
σ2(T −t)

−∞
exp

{−y2

2

}
dy

= e(μ+σ 2/2)(T −t)N

(
ln(S/K) + (

μ + σ 2
)
(T − t )√

σ 2(T − t )

)
,

where, as usual, N denotes the cumulative standard normal distribution.
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The second integral can be computed after making the substitution y :=
−(u − μ(T − t ))/

√
σ 2(T − t ):

I2 ≡ 1√
2πσ 2(T − t )

∫ ∞

ln(K/S)

exp

{
1

2

− [u − μ(T − t )]2

σ 2(T − t )

}
du

= 1√
2π

∫ ln(S/K)+μ(T −t)√
σ2(T −t)

−∞
exp

{
−y2

2

}
dy

= N

(
ln(S/K) + μ(T − t )√

σ 2(T − t )

)

The generalization of Eq. 7.19 for the risk-neutral choice of drift in arbitrary
compounding methods is (see Eq. 9.25)

μ(T − t) := ln

(
Bq(t, T )

B(t, T )

)
− σ 2

2
(T − t)}

with Bq(t, T ) = exp(−q(T − t )). This simplifies the integrals further to

I1 = Bq(t, T )

B(t, T )
N (x) I2 = N

(
x − σ

√
T − t

)
.

where x is, as usual, given by

x = ln(
Bq(t,T )S

B(t,T )K
) + 1

2σ 2(T − t )√
σ 2(T − t )

. (8.5)

Collecting these results, we obtain the price of a plain vanilla call as

V (S, t, T ) = B(t, T )SI1 − B(t, T )KI2

= Bq(t, T )S(t)N (x) − B(t, T )K N
(
x − σ

√
T − t

)
.

(8.6)

Again, this is the famous Black-Scholes option pricing formula and corresponds
exactly to Eq. 8.2 for continuous compounding.
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8.3 Compilation of Black-Scholes Option Prices
for Different Underlyings

8.3.1 Options on the Spot Price

The above derivation holds for a call on an underlying with a continuous
compounding dividend yield. However, in reality, dividends are paid as discrete
amount at only a few days per year, often once a year only. Such a discrete
dividend payment could either be modeled as a fixed absolute amount
(absolute discrete dividend) or as an amount relative to the spot price at the
ex-dividend date (relative discrete dividend). A simple approach for taking
discrete dividends into account is to adjust the spot price of the underlying by
subtracting the value of the dividend for the considered time period according
to Eq. 2.9. The adjusted spot price can be modeled like an underlying that
does not pay any dividends. The payoff profile and the Black-Scholes value
are summarized here for puts and calls. The payoff profiles at time T are:

cS(T , T ,K) = max {0, S(T ) − K}
pS(T , T ,K) = max {0,K − S(T )} .

The Black-Scholes option prices at time t are:

cS(t, T ,K) = S̃(t, T )N( x) − K B(t, T )N( x − σ
√

T − t)

pS(t, T ,K) = −S̃(t, T )N(−x) + K B(t, T )N(−x + σ
√

T − t )

(8.7)

where

x =
ln

(
S̃(t,T )

K B(t,T )

)

σ
√

T − t
+ 1

2
σ
√

T − t =
ln

(
S(t,T )

K

)

σ
√

T − t
+ 1

2
σ
√

T − t .

The application of this famous Black-Scholes option pricing formula
to option portfolios is demonstrated in detail in the Excel workbook
BlackScholesModel.xls from the download section [50]. In this workbook,
the derivatives of the option price with respect to its parameters, called the
Greeks, are also computed in anticipation of Chap. 12. The workbook can be
used as a complete option calculator (the fields colored yellow are the input
fields).
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8.3.2 Options on the Forward Price

The underlying is now not the spot price S(t) but the forward price S(t, T ′)
for a time T ′ ≥ T , where T is the maturity date of the option. Options on
the forward price refer to either futures or forwards. If physical settlement was
agreed, exercising the option yields in both cases to the payment of the value of
the underlying forward contract. In addition, the exerciser of the option goes
long (in the case of a call) or short (in the case of a put) in the forward contract
concerned.2 Since the value of a futures and forward position according to
Eqs. 6.6 and 6.5, respectively, are different, the payoff profile and thus the
value of options on these contracts are different as well.

Options on Futures

Upon maturity at time T of the option, the value of the future with a maturity
date T ′ ≥ T is paid if this value is positive. The payoff profiles are

cF (T , T ,K) = max
{
0, FS(T , T ′,K)

} = max
{
0, S(T , T ′) − K

}
pF (T , T ,K) = max

{
0, −FS(T , T ′,K)

} = max
{
0,K − S(T , T ′)

}
.

Amethod often used to find the Black-Scholes price is to transform the payoff
profile into a payoff profile of a known option. For this reason, we write the
payoff profile of the call as

cF (T , T , K) = Bq(T , T ′)
B(T , T ′)

max

{
0, S(T ) − B(T , T ′)

Bq(T , T ′)
K

}
.

where we have used Eq. 6.1 for the forward price at time T (for the case of
a dividend yield q). Thus, the price of a call on a future with strike price K

can be written as the price of Bq/B calls on the spot price with strike price
KB/Bq . The argument for the put is completely analogous. A call on a future
with strike price K thus has the same payoff profile as Bq/B calls on the spot
with strike price KB/Bq. Thanks to of Eq. 8.7, the price of an option on

2But of course with the then valid forward price as the delivery price so that the forward contract—as
always—has zero value when entered into.
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the spot price is known. Substituting KB/Bq for the strike price and using
Eq. 2.7 for B and Bq yields:

cS(t, T ,K) = Bq(T , T ′)
B(T , T ′)

[Bq(t, T )S(t)N(x ′)

− B(t, T )K
B(T , T ′)
Bq(T , T ′)

N(x ′ − σ
√

T − t)]

= Bq(t, T
′)

B(T , T ′)
S(t)N(x ′) − B(t, T )KN(x ′ − σ

√
T − t) .

Here, x ′ corresponds to the x in Eq. 8.7 with the modified strike price:

x ′ =
ln

(
Bq(t,T )S(t)

B(t,T )[K B(T ,T ′)/Bq (T ,T ′)]

)

σ
√

T − t
+ 1

2
σ
√

T − t

=
ln

(
Bq(t,T

′)S(t)

B(t,T ′)K

)

σ
√

T − t
+ 1

2
σ
√

T − t .

Now, again with the help of Eq. 6.1, the spot price S(t) is written in terms of
the actual underlying, namely the forward price. Using the expression for B

in Eq. 2.7 finally gives the Black-Scholes price for options on futures:

cF (t, T ,K) = B(t, T )
[
S(t, T ′)N(x ′) − K N(x ′ − σ

√
T − t)

]

pF(t, T ,K) = B(t, T )
[
−S(t, T ′)N(−x ′) + K N(−x ′ + σ

√
T − t)

]
(8.8)

where

x ′ =
ln

(
S(t,T ′)

K

)

σ
√

T − t
+ 1

2
σ
√

T − t .

Comparing this with the corresponding prices for options on the spot prices,
Eq. 8.7, for the special case of an underlying whose dividend yield is exactly



8 Integral Forms and Analytic Solutions in the Black-Scholes World 133

equal to the risk-free interest rate, in other words where (from Eq. 2.9)
S̃(t, T ) = B(t, T )S(t), we obtain the following “cookbook” recipe:

Plain vanilla option on futures can be priced like options on the spot price of an
(artificial) underlying whose spot price is equal to S(t, T ′) and whose dividend
yield is equal to the risk free rate r.

If the future matures at the same date as the option, i.e., if T ′ = T , then
there is (because of Eq. 6.1) no difference in either the payoff profile or the
price of the option on the future and the option on the spot price. In this case
Eq. 8.8 (i.e., pricing options using the forward price, even if it is an option on
the spot price) is referred to as the Black-76 model.
In summary, if either T = T ′ or q = r , there is no difference in the option

on a futures contract and the option on a spot price.

Options on Forwards

On the maturity date T of the option, the value of the forward maturing on
T ′ ≥ T will be paid to the holder of a call if this value is positive. This is
different from the value of the future since in the case of a forward, the value
is discounted from maturity T

′ back to T (see Eq. 6.5). The payoff profiles
are thus:

cf (T , T , K) = max
{
0, fS(T , T ′, K)

} = B(T , T ′) max
{
0, S(T , T ′) − K

}
pf (T , T , K) = max

{
0, −fS(T , T ′, K)

} = B(T , T ′) max
{
0, K − S(T , T ′)

}
.

Comparing this with the payoff profiles for options on futures shows that an
option on a forward corresponds to B options on the future. Therefore the
Black-Scholes prices can be immediately obtained from Eq. 8.8

cf (t, T ,K) = B(t, T ′)
[
S(t, T ′)N(x ′) − K N(x ′ − σ

√
T − t )

]

pf (t, T ,K) = B(t, T ′)
[
−S(t, T ′)N(−x ′) + K N(−x ′ + σ

√
T − t)

]
(8.9)
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with x′ defined as in Eq. 8.8. The difference between this and Eq. 8.8 is that for
options on forwards the discounting is done from the maturity of the forward
contract T ′, whereas for options on futures the discounting is done from the
maturity of the option T .

If the forward matures on the same date as the option, T ′ = T , there is
no difference in the payoff profile or in the Black-Scholes price between an
option on the forward and an option on the spot price. In this case, the prices
of an option on the spot, an option on a future and an option on a forward
are all equal.

8.3.3 Options on Interest Rates

Forward Volatilities

In the derivation of the Black-Scholes equation for options on the forward
price, it has been assumed that volatility remained constant throughout.
Therefore, in Eq. 8.8 and Eq. 8.9 the volatility of the spot price is used, though
the underlying is the forward price. That is because the volatility of the forward
price and the spot price are the same if the volatility is constant. This model
is commonly referred to as the Black-76 model.

The Black-76 model is commonly used especially when the underlying S is
an interest rate or an interest rate instrument (like a bond, for instance). It can
be shown that the Black-76model holds even when the Black-Scholes assump-
tions are weakened somewhat. The underlying process must not necessarily be
a random walk with constant volatility. It is sufficient that the logarithm of the
underlying S(T ) at option maturity is normally distributed. The variance of
the distribution of ln(S(T )) will be written as

var [ln S(T )] = σ(T )2T

The parameter σ(T ) is called the forward volatility. It is the volatility of the
underlying price S(T ) atmaturityT . Because the Black-76model “lives” in the
Black-Scholes world, interest rates are assumed to be non-stochastic. Therefore
the forward price S(t, T ) and the future price S(T ) are equal if the underlying
S is an interest rate or an interest rate instrument.3 At an earlier time t < T

we can thus use the forward price S(t, T ) for S(T ) and the current volatility
of this forward price for the forward volatility.

3This will be shown explicitly in Sect. 14.3.
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Normally Versus Log Normally Distributed Interest Rates

The Black-76 model is applied to options on interest rate instruments such
as bonds as well as to options which depend directly on interest rates, such as
caps and floors. For S(t, T ) we take either the forward price of the underlying
instrument (for example, of the bond) or the forward rate of the reference
interest rate (3-month LIBOR rate in 6 months, for example). In both cases
the application of the Black-76 model implicitly assumes that each underly-
ing (bond price or interest rate) is lognormally distributed. However, both
assumptions contradict each other. Yields are the logarithms of relative price
changes. If, in the case of a bond option, it is assumed that these logarithms
are normally distributed, the interest rates (=yields) cannot simultaneously be
lognormally distributed. This is, however, common market practice: bond
options are priced under the assumption that bond prices are lognormally
distributed, i.e., that interest rates are normally distributed.On the other hand,
caps, floors and collars are priced under the assumption that interest rates are
lognormally distributed (similarly, swaptions are priced under the assumption
of lognormal swap rates).
Though, this inconsistency does not imply that the option prices are also

inconsistent, since the used volatilities are different (bond price volatility vs.
interest rate volatility). As will be shown in Sect. 30.3.3, price volatility and
yield volatility are related to one another through the modified duration, see
Eq. 30.18 (in linear approximation).
Now the question arises, which of both assumptions is indeed correct?

Actually, both assumptions are neither completely wrong nor fully true.
Empirical analysis of interest rate time series shows that the distribution of
interest rates depends on the interest rate level (e.g., see [161]). For low or
very high interest rate levels (i.e. lower than 1.2% or greater than 5.6%),4
the distribution of interest rate is lognormal, while within these boundaries
the distribution is normal. Common interest rate models, modeling the time
evolution of the full interest rate term structure, with consistent modeling
of e.g. Caps as well as bond options, usually assume either normally or
lognormally distributed interest rates. For a more detailed discussion of the
pros and cons of various models see Chap. 14.

4However, own studies conclude that it is not possible with statistical significance to discriminate between
the lognormally and normally distributed interest rate assumption; at least with a advent of negative
interest rates the (unmodified) lognormally distribution assumptions has to be ruled out for low interest
rate levels.
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Here, it should be enough to note that simple interest rate options are prices
by means of Black-75 and that the according underlying is assumed to be
lognormally distributed. In Case of Caps, Floors and Collars, the underlying
is a forward interest rate, in the case of bond options it is the bond price and in
the case of swaptions the (forward) swap rate (the assumption of lognormally
distributed swap rates, which is a weighted sum of forward rates, is inconsistent
with the assumption of lognormally distributed forward rates as well as with
the assumption of normally distributed forward rates).

The Black-76 formula could best be understood as a vehicle to price option
in an intuitively, simple form (by expressing the price in terms of the Black-76
volatility). Then, the inconsistent assumptions do not cause any trouble, if the
markets are kept thoroughly separated and not mixed up.

With negative interest rates in some markets, the Black-76 is increasingly
replaced by normal models or shifted log normal models (i.e. assuming that
rates plus an offset are lognormally distributed).

Black-76 Model for Interest Rate Options

With the above interpretations of the input parameters and under the assump-
tions described above, Eq. 8.8 yields the Black-76 model for interest rate
options. Explicitly:

c(t, T ,K) = B(t, T )
[

S(t, T )N( x) − K N( x − σ
√

T − t)
]

p(t, T ,K) = B(t, T )
[
−S(t, T )N(−x) + K N(−x + σ

√
T − t)

]
,

(8.10)

where

x =
ln

(
S(t,T )

K

)

σ
√

T − t
+ 1

2
σ
√

T − t .

Here, S(t, T ) is either the forward rate of the underlying interest rate or
forward price of an underlying interest rate instrument (like a bond, for
example). This equation forms the basis for pricing interest rate option in the
Black-Scholes world. Formally, the difference between this and Eq. 8.8 is that
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the forward price with respect to the option’s maturity is used, i.e., T = T ′. As
mentioned after Eq. 8.8, there is no difference in this case between an option
on a forward price and an option on a spot price. We could just as well work
with Eq. 8.7. The only subtlety involved is that the forward volatility or the
volatility of the forward rate should be used.
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