
34
Principal Component Analysis

34.1 The General Procedure

In addition to the autoregressive models described above, which are used
for instance in the form of GARCH models when modeling volatility, a
further technique of time series analysis, called principal component analysis
(abbreviated as PCA), is widely applied in the financial world. This technique
is employed in the analysis of term structure evolutions, for instance. A first
approach to describe the stochastic dynamic of an interest rate term structure
could be to define a risk factor for each vertex of the curve, i.e. the zero rate
or the forward rate at that vertex. However, because of the large number
of vertices, this approach would be quite calculation intensive. Instead, it
is possible to reduce the number of stochastic variables to just a few (1 or
2, sometimes more) driving factors without loss of too much information.
This approach has its justification in principal component analysis. Principal
component analysis is a statistical technique which extracts the statistical
components from the time series which are most relevant for the dynamics
of the process in order of their importance. Applying this method to interest
rates (i.e. the vertices of the interest rate curve) shows that often more than
90% of the term structure’s dynamics can be ascribed to the one or two most
important components.
Two other well-known statistical methods used in time series analysis

are factor analysis [32] and cointegration [86]. Principal component analysis
sets itself apart from these other methods by the ease with which the results
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can be interpreted. An extensive description of principal component analysis
can be found in [116], for example.

Since the time dependence of the data is not analyzed in PCA, the remarks
made in Chap. 32 hold for this type of time series analysis as well: principal
component analysis is a suitable approach for stationary time series only. Time
series exhibiting non-stationary behavior like trends, etc. should be first freed
of their non-stationary components by, for example, estimating trends and
subsequently subtracting them from the time series or by taking differences of
the data with respect to time, in other words, by performing a pre-treatment
as described in Chap. 35. A reasonable principal component analysis of non-
stationary time series is not to be achieved without first removing these
potential non-stationary components.

In principal component analysis, the time series of not just one but several
stochastic process are considered which may be strongly correlated. Principal
component analysis is therefore an example ofmultivariate time series analysis.
In financial applications, each process represents a risk factor. The situation
is thus similar to that in Eq. 21.21 in Sect. 21.5 where n risk factors were
considered as well. In the case of PCA, it is not a matter of the stochastic
differential equations of the risk factors, but of their historic evolution. For
each risk factor, there exists an associated time series of data for times tk,
k = 1, . . . T . For example, the data of the relative changes (as in Eq. 31.1)

Xi(tk) = ln

(
Si(tk + δt)

Si(tk)

)
≈ Si(tk + δt) − S(tk)

Si(tk)

i = 1, . . . n, k = 1, . . . T .

These time series are assumed to be stationary, i.e., pre-treatment of the data
has been performed already and the non-stationary components have been
removed, if this has proved to be necessary. As a typical example of such a group
of n risk factors, we can consider the relative changes of the interest rates at the
vertices of an interest rate curve. The variances and pair wise correlations of
these n risk factors can be arranged in a covariance matrix δ� as in Eq. 21.22.
The entries of the covariance matrix can be determined from historical data as
described in Sect. 31.1.

The dimension of this matrix is obviously equal to the number of risk factors
(equivalently, the number of time series) and is thus equal to n. The central
idea of principal component analysis is now to reduce the dimension of the
problem on the basis of its statistical structure. The reduction is achieved by
transforming the variables Xi into new uncorrelated variables Yi appearing in
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order of the size of their variance. This results, circumstances permitting, in a
significant simplification of the subsequent analysis. It is inmany cases possible
to neglect statistical dependences of higher order in these new coordinates and
to consider the time series of the new (transformed) variables as independent.
As will be shown in the construction of the transformations, the new variables
generally have different variances. In this case, it is possible to neglect those
variables with relatively small variance.
This transformation of the random variables X1, . . . , Xn into the new

variables Y1, . . . , Yn is linear and thus we can write Yk = ∑n
i=1 αkiXi , or

equivalently, in the vector notation used in Sect. 21.5

Y = αX mit X =
⎛
⎜⎝

X1
...

Xn

⎞
⎟⎠ ,Y =

⎛
⎜⎝

Y1
...

Yn

⎞
⎟⎠ (34.1)

α =
⎛
⎜⎝

α11 · · · α1n

...
. . .

...

αn1 · · · αnn

⎞
⎟⎠ =

⎛
⎜⎝

(
α1

)T

...

(αn)T

⎞
⎟⎠ .

In the last step, the rows of the transformation matrix have been written in
terms of the vectors α defined as follows:

(
αk

)T :=
(

αk1 · · · αkn

)
�⇒ αk =

⎛
⎜⎝

αk1
...

αkn

⎞
⎟⎠ .

This implies that the components αk
i of these vectors and the components αki

of the matrix are related as follows:

αk
i = αki =

(
αk

)T

i
∀ k, i = 1, . . . n .

The transformation Eq. 34.1 is thus given by

Yk = (
αk

)T
X =

n∑
i=1

αkiXi , k = 1, . . . n . (34.2)
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The coefficients of the matrix α are now chosen such that the transformed
variables Yk possess the following properties:

We require every “transformation vector” αk (each row of the matrix α) to
have a norm of 1, i.e.,

(
αk

)T
αk =

n∑
i=1

αk
i α

k
i =

n∑
i=1

(αki)
2 != 1 ∀ k = 1, . . . n . (34.3)

We now select the components α1
i of α

1 in such a way that the variance of the
first transformed variable Y1 = (

α1
)T X is as large as possible (maximal) while

satisfying Eq. 34.3. This is an optimization problem subject to the constraint(
α1

)T
α1 = 1. It will be shown explicitly in the material below how problems

of this type are treated.
Having determined α1 (and consequently Y1), we proceed by determining

the components α2
i of α2 such that the variance of the second transformed

variable Y2 = (
α2

)T X is as large as possible (maximal), again subject to the
condition that Eq. 34.3 holds. In addition, Y2 must be uncorrelated with the
vector Y1 already determined. This additional condition can be expressed as

cov(Y2, Y1)
!= 0 .

Using Eq. 34.2, we can write this covariance as

cov(Y2, Y1) = cov
((

α2)T
X,

(
α1)T

X
)

= cov

⎛
⎝ n∑

i=1

α2
i Xi,

n∑
j=1

α1
jXj

⎞
⎠

=
n∑

i=1

n∑
j=1

α2iα1jcov(Xi,Xj)︸ ︷︷ ︸
δ�ij

=
n∑

i=1

n∑
j=1

(
α2)T

i
δ�ij α1

j

= (
α2

)T
δ� α1 .

This implies that, in addition to the constraint expressed in Eq. 34.3, α2 must
satisfy the condition

(
α2)T

δ� α1 != 0 (34.4)
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Thus, the determination of α2 (and thus of Y2) involves an optimization
problem with two constraints.
The remaining variables Y3, . . . , Yn are determined successively subject to

analogous conditions: in the kth step, αk is chosen such that the variance of
the kth transformed variable Yk = (

αk
)T X is as large as possible (maximal)

subject to the condition that Eq. 34.3 as well as the additional k−1 conditions
hold, namely that Yk be uncorrelated with all of the previously determined Yi ,
i = 1, . . . k − 1, i.e.,

cov(Yk, Yi)
!= 0 for all i < k .

The formulation of these k − 1 conditions on αi is analogous to Eq. 34.4

(
αk

)T
δ� αi != 0 for all i = 1, . . . k − 1 . (34.5)

Overall, k conditions must be satisfied in the kth step. This decreases the
maximal possible variance of Yk from step to step, since with each step, the
maximum is taken over a smaller class of vectors. It is thus not surprising
that Y1 has the greatest variance among the Yk and that the variances of the Yk

decrease rapidly with increasing k. Therefore, the first Yk contribute most
to the total variance of all Yk. These transformed variables Yk are therefore
referred to as the principal components and the vectors αk defined in the above
construction as the principal axes of the system.
To provide the reader with a concrete example, we compute the first

principal component Y1 here. In order to do so, the variance of Y1 conditional
upon the satisfaction of Eq. 34.3 is maximized. According to Eq. A.12, the
variance of Y1 is

var(Y1) = cov
((

α1
)T

X,
(
α1

)T
X

)
= cov

⎛
⎝ n∑

i=1

α1
i Xi,

n∑
j=1

α1
jXj

⎞
⎠

=
n∑

i=1

n∑
j=1

α1iα1jcov(Xi, Xj)︸ ︷︷ ︸
δ�ij

=
n∑

i=1

n∑
j=1

(
α1)T

i
δ�ij α1

j

= (
α1

)T
δ� α1 . (34.6)
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This is now maximized subject to the constraint
(
α1

)T
α1 = 1. We can take

constraints into account in an optimization problem using the method of
Lagrange multipliers.1 The method has already been discussed in Sect. 26.2.1. It
requires the construction of the Lagrange function L. This function is equal to
the function to be maximized less a “zero” multiplied by a Lagrange multiplier
λ. This zero is written in the form of the constraint to be satisfied, which in
our case here is 0 = (

α1
)T

α1 − 1. The Lagrange function is thus given by

L(λ1) = (
α1)T

δ� α1︸ ︷︷ ︸
zu maximieren

− λ1

[(
α1)T

α1 − 1
]

︸ ︷︷ ︸
Nebenbedingung

(34.7)

=
n∑

i,j=1

α1iδ�ijα1j − λ1

n∑
i=1

(α1i)
2 + λ1 .

In order to find the optimal values α1i subject to this constraint, we differenti-
ate L with respect to the parameter α1i and set the resulting expression equal
to zero; in other words, we locate the maximum of the Lagrange function.2

0
!= ∂L

∂α1i

= 2
n∑
j

δ�ij α1j − 2λ1α1i ∀ i = 1, . . . n

from which it follows

n∑
j

δ�ij α1j − λ1α1i = 0 ∀ i = 1, . . . n

or in the compact matrix notation:

(δ� − λ11)α1 = 0 , (34.8)

where, as in Eq. 21.37, 1 denotes the n-dimensional identity matrix. This
condition implies, however, that the covariance matrix applied to the vector α1

1An introduction in the technique of Lagrange multipliers for solving extreme value problems with
boundary conditions can be found, for example, in [34].
2Since the Lagrange function differs only by zero from the value to be maximized (the variance), this
equals the maximal value we are looking for. Of course, this is only true, if the difference is indeed equal
to zero, i.e., if the boundary condition is fulfilled. This is the short form explanation of this method.
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has no other effect than to multiply α1 by a number: δ�α1 = λ1α
1.

Equation 34.8 is therefore the eigenvalue equation of the covariance matrix
(compare this to Eq. 22.22 in Sect. 22.3.2). The Lagrange multiplier λ1

must in consequence be an eigenvalue of the covariance matrix and α1 is the
associated eigenvector. As discussed in detail in Sect. 22.3.2, the eigenvalue
equation in 34.8 has a non-trivial solution α1 �= 0 if and only if the matrix
(δ� − λ11) is singular. For this to be the case, its determinant must be equal
to zero

det (δ� − λ11) = 0 .

The eigenvalue λ1 is the solution to this determinant equation. Having deter-
mined λ1, it can be substituted into Eq. 34.8 to calculate the eigenvector α1.
The eigenvalue λ1 has another important intuitive interpretation which can

be seen immediately if we multiply both sides of Eq. 34.8 on the left by
(
α1

)T :

λ1α
1 = δ�α1

(
α1

)T
λ1α

1 = (
α1

)T
δ�α1

λ1
(
α1)T

α1︸ ︷︷ ︸
1

= (
α1)T

δ�α1︸ ︷︷ ︸
Var(Y1)

.

Therefore, λ1 is the variance of the principal component Y1.
Analogously (i.e., maximization of the variances of the new variables Yk),

we proceed with the remaining principal components. As already mentioned
above, one more constraint (see Eq. 34.5) must be taken into account with
each further step. Analogous to Eq. 34.7, for each constraint a zero (in
the form of the constraint multiplied by a Lagrange multipliers λi, i =
1, . . . k) is subtracted from the variance of Yk and the resulting Lagrange
functionL is maximized. In the computation of the kth principal component,
k Lagrangemultipliers appear in the expression for the Lagrange function. The
complexity of the corresponding computation increases substantiallywith each
new constraint. We thus refrain from explicitly performing the computation
here. We wish to remark, however, on the following properties holding for all
principal components as was shown for Y1:
The Lagrange multipliers λk can be shown to be the eigenvalues of the

covariance matrix δ� = cov(X,X) appearing in decreasing order. The
row vectors of the transformation matrix α, i.e., the αk, are the associated
eigenvectors.
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This result paves the way for the implementation of the principal com-
ponent analysis: we do not take the optimization problem as the starting
point for our analysis, but rather we compute the eigenvalues and eigenvectors
of the covariance matrix directly. In a second step, the eigenvalues λk and
their associated eigenvectors αk are ordered according to the size of the
eigenvalues, thereby constructing the transformation matrix from the ordered
row vectors αk as defined in Eq. 34.1:

α =

⎛
⎜⎜⎝

(
α1

)T

...

(αn)

⎞
⎟⎟⎠ .

Now, the original dataXi in the time series of the n risk factors are transformed
into the new variables Yi by applying the matrix α; this is done for each
observation in the time series

Yj (tk) =
n∑

i=1

αjiXi(tk) for all j = 1, . . . n and all k = 1, . . . T .

Finally, those components Yk of the transformed data are neglected if the
associated eigenvalues (and thus the variances3 of the new random variablesYk)
are small. It is often the case that the number of time series in the new
variables Yk necessary for further investigation can in this way be reduced to
just two or three.

In many software packages, for example SAS, Matlab, or IDL, principal
component analysis is provided as one of the few multivariate time series
analysis procedures or at least modules exist allowing for its construction. The
steps listed above are automated in these packages; only the original time series
are needed as input. The covariance matrix is estimated from this data. The
output is then obtained in the form of the eigenvalues of the covariance matrix,
the associated eigenvectors, i.e., the transformation matrix, and the time series
of the principal components. The reduction in dimension is achieved in that
the data is reduced by n − l − 1 variables Yl+1, . . . , Yn. Here, l is chosen
conditional upon the relative size of the eigenvalues.

3The kth eigenvalue is in fact equal to the variance of the new random variable Yk .
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34.2 Principal Component Analysis
of the German Term Structure

In this section, we conduct a principal component analysis on real interest
rate data. The aim of our investigation is to determine the typical drivers of
the interest rate term structure and the relative contribution of each individual
driver to the total dynamics of the interest rate curve. The results of this section
are relevant in several different respects. Firstly, the investigation introduced
here will provide a plausible explanation for why it is for many problems
sufficient to model the entire interest rate curve in very low dimensional
spaces as is done in modern one, two, and three-factor term structure models
although the term structure is clearly constructed with a larger number of
vertices. Secondly, stress scenarios for typical and statistically independent
movements in the interest rate curve can be identified.
The time series investigated are the yields for ten vertices with terms between

one and ten years for the German term structure in monthly time steps
spanning over a period of ten years. The data were subjected to a principal
component analysis as described in the above section without having first been
pre-treated by taking time-differences.4 We find that the variances λi of the
principal components Yi , arranged in decreasing order, decrease very quickly.
The proportion of the variances λ1 and λ2 of the first and second principal
components with respect to the total variance

∑10
i=1 λi is

λ1∑10
i=1 λi

≈ 96% ,
λ2∑10
i=1 λi

≈ 3% ,

respectively. The proportion of the third and the fourth principal components
is only

λ3∑10
i=1 λi

≈ 1% ,
λ4∑10
i=1 λi

� 1% ,

4It has already been pointed out that principle component analysis assumes that the data in the time series
are stationary. For the following investigation, this assumption is made keeping in mind that the results of
the investigation should convey only a qualitative impression of term structure dynamics. Using the data
directly (i.e. without a pre-treatment such as taking time differences, etc.) will simplify the interpretation
of the results substantially.
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Fig. 34.1 The components of the first four eigenvectors α1, . . . ,α4. For each of these
eigenvectors the components αi

1, . . . , α
i
10 are shown. The simple structure facilitates an

intuitive interpretation of the associated principal components Y1, . . . , Y4

respectively. The variances of the further principal components disappear
almost completely, lying well below one tenth of one percent. Obviously, the
dynamics of the term structure can be described by just a very few variables.
Indeed, this result provides an excellent motivation for modeling the term
structure in spaces of small dimension (or even in one-dimensional spaces as
in Chap. 14). In Fig. 34.1, the first four of ten eigenvectors are presented. These
eigenvectors can be interpreted quite easily.

The first eigenvector α1 weights the interest rates of all terms approximately
equally. The eigenvector normalization allows the first principal component Y1

to be interpreted as the mean interest rate level. The fluctuations of this
principal component Y1 thus represent parallel shifts of the entire term structure.

The second eigenvector α2 weights the short term interest rates negatively
and the long term rates positively. Considering the inverse transformation of
the principal components to the original interest rate vectors, we can draw
conclusions as to the interpretation of the second principal component Y2:
adding the second component to the first has the effect of adjusting the mean
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interest rate level by a mean slope. A change in this principal component Y2

thus changes the mean slope of the term structure, or in other words, effects a
rotation of the term structure.
The third eigenvector α3 can be interpreted analogously. This vector

weights the short and long-term rates positively, interest rates for the terms
of intermediate length negatively. The addition of the associated principal
component Y3 to the first two thus effects a change in the mean curvature
of the term structure. The fourth principal axis α4 shows a periodic change in
sign.With the associated principal component, periodic structures in the term
structure can be represented such as those described in [159], for example.
Several practical conclusions for the analysis of scenarios commonly used in

risk management can be drawn from the principal component analysis. Many
of the common scenarios used to model a change in the term structure can
be described in terms of the above decomposition. The most frequently used
scenario is the parallel shift, which involves an increase or decrease in the entire
term structure by a constant number of basis points. A further scenario, called
the twist, involves a change in the slope of the term structure. This scenario is
commonly realized through the addition (or subtraction) of, for example, m

basis points to the interest rate corresponding to a term of m years; this is
done for all terms in the term structure. Yet another scenario found in risk
management is called hump. This scenario describes an increase in the short
and long term rates and decrease in those for terms of intermediate length or
vice versa. These three scenarios, the parallel shift, the twist and the hump, very
often deduced on the basis of subjective experience, in fact correspond exactly
to the first three principal components of the term structure. The scenarios
mentioned here thus represent, from the statistical point of view, the most
significant movements in the term structure. From the construction of the
principal components, we can assume that these movements are approximately
independent of one another and thus a simple representation of the dynamics
of the term structure exists.
Finally, the analysis leads to the following results: first, practically all typical

fluctuations in the term structure can be described by a combination of the
above three scenarios. Second, making use of the eigenvalues, i.e., the variances
of the principal components, confidence levels can be determined for the
associated random variables. For example, information on the probability
of the actual occurrence of one of these scenarios could be computed. We
could proceed one step further: since the covariance matrix for the principal
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components is diagonal, the value at risk can be differentiated with respect to
movements in the individual principal components. The threat of VaR losses
can be traced back to different types of movements in the term structure and
interpreted accordingly. In addition, the values at risk from the three named
stress scenarios can be taken to be uncorrelated and the value at risk can be
computed by simply taking the sum of their squares.
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