
33
Forecasting with Time Series Models

Having selected a model and fitted its parameters to a given times series, the
model can then be used to estimate new data of the time series. If such data
are estimated for a time period following the final data value XT of the given
time series, we speak of a prediction or forecast. The estimation of data lying
between given data points is called interpolation. The question now arises as to
how a model such as those given in Eqs. 32.6 or 32.13 could be used to obtain
an “optimal” estimate. To answer this question the forecasting error

XT +k − ̂XT +k , k ∈ N

between the estimated values ̂XT +k and the actual observed time series values
XT +k can be used if the last value used in the calibration of the model was XT .
The best forecast is that which minimizes the mean square error (MSE for
short). The MSE is defined as the expectation of the squared forecasting error

MQF := E[(XT +k − ̂XT +k)
2] . (33.1)

This expression is the mathematical formulation of the intuitive concept of
the “distance” between the estimated and the actual values which is to be
minimized on average (more cannot be expected when dealing with random
variables). Minimizing this mean square error yields the result that the best
forecasting estimate (called the optimal forecast) is given by the conditional
expectation

̂XT +k = E[XT +k|XT , . . . , X2,X1] . (33.2)
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This is the expectation ofXT +k, conditional on all available information about
the time series up to and including T .

In practice, however, the concrete computation of this conditional expec-
tation is generally very difficult since the joint distribution of the random
variables must be known. Therefore, we often limit our consideration to the
linear forecast

̂XT +k = u1X1 + u2X2 + · · · + uT XT (33.3)

with appropriate coefficients ui. This linear forecast is, in contrast to the
optimal forecast, often more easily interpreted. For the special case that the
{Xt} are normally distributed, the linear forecast and the optimal forecast
agree. The best linear forecast can be characterized by the fact that the
forecasting error XT +k − ̂XT +k and the X1,X2, . . . , XT are uncorrelated.
The intuitive interpretation is that the X1, X2, . . . , XT cannot provide any
additional information for the forecast and the error is thus purely random.

33.1 Forecasting with Autoregressive Models

This forecasting procedure will now be applied to an AR(p) process, Eq. 32.6.
The optimal one-step forecast is, according to Eq. 33.2, given directly by the
conditional expectation in Eq. 32.7

̂X
optimal
T +1 = E[XT +1|XT , . . . , X1] =

p
∑

i=1

φiXT +1−i . (33.4)

This has the form indicated in Eq. 33.3. The optimal one-step forecast is thus
the best linear one-step forecast. Equation 32.6 shows that the forecasting error
XT +1 − ̂XT +1 is precisely εT +1 and independent of X1, X2, . . . , XT . The
MSE for the one-step forecast is given by Eq. 33.1 with k = 1. Thus,

MSE = E[(XT +1 − ̂XT +1)
2] = E[ε2

T +1] = σ 2 .

The optimal two-step forecast is the conditional expectation of XT +2 on the
basis of knowledge of XT , . . . , X1, as can be seen from Eq. 33.2:

̂X
optimal
T +2 = E[XT +2|XT , . . . , X1] .
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This is not the equivalent to the conditional expectation of XT +2 on the
basis of knowledge of XT +1, . . . , X1. Hence, Eq. 32.7 cannot be applied
directly. An additional difficulty arises due to the fact that XT +1 is unknown.
The optimal two-step forecast cannot be calculated. We therefore proceed by
computing the linear two-step forecast. The best linear two-step forecast is
obtained by actually calculating the conditional expectation of XT +2 as if all
the XT +1, . . . , X1 were known and replacing the (unknown) value XT +1 by
its best estimate ̂XT +1 (which was calculated in the previous step):

̂Xlinear
T +2 = E[XT +2|̂XT +1,XT , . . . , X1] .

Now Eq. 32.7 can be applied to this conditional expectation and utilizing
Eq. 33.4 we obtain

̂Xlinear
T +2 = φ1̂XT +1 +

p
∑

j=2

φjXT +2−j = φ1

p
∑

i=1

φiXT +1−i +
p

∑

j=2

φjXT +1−(j−1)

= φ1

p
∑

i=1

φiXT +1−i +
p−1
∑

i=1

φi+1XT +1−i

= φ1φpXT +1−p +
p−1
∑

i=1

[φ1φi + φi+1] XT +1−i .

The linear two-step forecast then has the form indicated in Eq. 33.3. The
forecasting error is found to be

XT +2 − ̂XT +2 =
p

∑

i=1

φiXT +2−i + εT +2

︸ ︷︷ ︸

XT +2, see Eqn. 32.6

− φ1̂XT +1 −
p

∑

j=2

φjXT +2−j

= εT +2 + φ1(XT +1 − ̂XT +1)

= εT +2 + φ1εT +1 .

Thus, the forecasting error is a sum of two normally distributed random
variables and therefore itself normally distributed. The MSE can now be
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computed as follows:

MSE = E[(XT +2 − ̂XT +2)
2] = E[(εT +2 + φ1εT +1)

2]
= E[ε2

T +2] + φ2
1E[ε2

T +1] + 2φ1E[εT +2 εT +1]
= var[ε2

T +2] + φ2
1 var[ε2

T +1] + 2φ10

= σ 2(1 + φ2
1) .

This implies that the forecasting error XT +2 − ̂XT +2 of the two-step forecast
is normally distributed with variance σ 2(1 + φ2

1), i.e., N(0, σ 2(1 + φ2
1)).

Proceeding analogously, the best linear h-step forecast is obtained by taking
the conditional expectation of XT +h as if all Xt were known up to XT +h−1

and then replacing the yet unknown values of Xt for T < t < h with their
best estimators calculated inductively in previous steps as described above:

̂Xlinear
T +h = E[XT +h|̂XT +h−1, ̂XT +h−2, . . . , ̂XT +1,XT , . . . , X1] .

Equation 32.7 is then applied to these conditional expectations resulting in

̂XT +h =
min(h−1, p)

∑

i=1

φi
̂XT +h−i +

p
∑

j=h

φjXT +h−j .

The forecasting error of the h-step forecast is

XT +h − ̂XT +h =
p

∑

i=1

φiXT +h−i + εT +h

︸ ︷︷ ︸

XT +h, see Eqn. 32.6

−
min(h−1,p)

∑

i=1

φi
̂XT +h−i −

p
∑

j=h

φjXT +h−j

= εT +h +
min(h−1,p)

∑

i=1

φiXT +h−i +
p

∑

i=h

φiXT +h−i

−
min(h−1,p)

∑

i=1

φi
̂XT +h−i −

p
∑

j=h

φjXT +h−j

= εT +h +
min(h−1,p)

∑

i=1

φi

(

XT +h−i − ̂XT +h−i

)

.
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This is a recursion expressing the h-step forecasting error in terms of the
forecasting errors for fewer than h steps. From this it can be shown that the h-
step forecasting error is distributed as N(0, σ 2(1 + φ2

1 + · · · + φ2
h−1)).

The unknown coefficientsφ1, φ2, . . . , φp are estimated from the time series
as shown in Sect. 32.2.1. The φi in the forecast equation are simply replaced
with ̂φi .

33.2 Volatility Forecasts with GARCH(p, q)
Processes

GARCH models of the form indicated in Eq. 32.13 are not suitable for the
prediction of the actual values Xi of a time series since the random variable
in Eq. 32.13 appears as a product (rather than a sum as in Eq. 32.6). In conse-
quence, the conditional expectations of the Xi are identically zero. However,
GARCH models are well adapted for forecasting the (conditional) variance
of time series values. According to Eq. 33.2, the conditional expectation is
in general the optimal forecast. We are therefore looking for the conditional
expectation of the conditional variance.

33.2.1 Forecast Over Several Time Steps

The One-Step Forecast

Equation 32.16 shows that the conditional variance of XT is equal to HT

if all Xt for t ≤ T − 1 are known. Its conditional expectation is then
the conditional expectation of HT . Based on Eq. 32.17, the conditional
expectation of HT is simply HT itself if the X values are known up to the
time T − 1. Hence, the optimal one-step forecast for the conditional variance
is1

v̂aroptimal
T +1 = E[varT +1 |XT , . . . , X1]

= E[HT +1|XT , . . . , X1]

1In order to keep the notation as simple as possible, we will adopt the convention of denoting the
conditional variance by varT +h := var[XT +h|XT , . . . , X1], likewise for its estimators v̂arT +h :=
v̂ar[XT +h|XT , . . . , X1] for any h > 0. When these abbreviations for the conditional variances are used,
it is always to be understood that the values XT , . . . , X1 are known.
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= HT +1

= α0 +
q

∑

j=1

αjX
2
T +1−j +

p
∑

i=1

βiHT +1−i . (33.5)

To clarify the argument used in the derivation of this result, each of the
equalities in Eq. 33.5 will receive somewhat more scrutiny. The first equation
is obtained from the general forecast equation, Eq. 33.2. The second follows
from Eq. 32.16. The third holds as a result of Eq. 32.17 while the fourth
equation is derived from Eq. 32.13 used in the construction of the GARCH
process.

The Two-Step Forecast

The two-step forecast is somewhat more complicated. The optimal two-step
forecast is, according to Eq. 33.2, the conditional expectation of varT +2 under
the condition that XT , . . . , X1 are known:

v̂aroptimal
T +2 = E[varT +2 |XT , . . . , X1] .

Again, this is not equal to the conditional expectation of varT +2 under the
condition that XT +1, . . . , X1 are known. Equation 32.16 cannot be applied
directly. Indeed, the optimal two-step forecast cannot be computed. We
calculate instead, analogously to the linear forecast of the AR(p) process
illustrated in Sect. 33.1, the best possible two-step forecast by replacing the
expectation of varT +2 conditional upon XT , . . . , X1 with the conditional
expectation of varT +2 as if the XT +1, . . . , X1 were all known:

v̂arT +2 = E[varT +2 |XT +1, . . . , X1] .

Now Eq. 32.16 can be applied to obtain

v̂arT +2 = E[varT +2 |XT +1, . . . , X1] = HT +2 .

Remember however, that XT +1 is not known and therefore HT +2 appearing
here is not known at time T . The best we can do is to replace HT +2 by its
optimal estimator which, according to Eq. 33.2, is given by its conditional



33 Forecasting with Time Series Models 783

expectation

v̂arT +2 = E[HT +2|XT , . . . , X1] . (33.6)

Inside this expectation, we now replaceHT +2 in accordance with the construc-
tion in 32.13:

v̂arT +2 = E[HT +2|XT , . . . , X1]

= α0 +
q

∑

j=1

αjE[X2
T +2−j |XT , . . . , X1] +

p
∑

i=1

βiE[HT +2−i |XT , . . . , X1]

= α0 + α1E[X2
T +1|XT , . . . , X1] +

q
∑

j=2

αjX
2
T +2−j +

p
∑

i=1

βiHT +2−i .

(33.7)

In the last step, we have exploited the fact that all Xt are known for all times
t ≤ T and, according to Eq. 32.17, all of the Ht for the times t ≤ T + 1.
The expectation of the known quantities can be replaced by the quantities
themselves. Only one unknown quantity remains, namely X2

T +1. Because of
Eq. 32.16, the conditional expectation of all of the XT +h for all h > 0 is
always equal to zero. The expectation of X2

T +h can therefore be replaced by
the variance of XT +h:

E[X2
T +h|XT , . . . , X1] = E[X2

T +h|XT , . . . , X1] − (E[XT +h|XT , . . . , X1]
︸ ︷︷ ︸

0

)2

= var[XT +h|XT , . . . , X1] for every h > 0 .

(33.8)

For h = 1 this implies

E[X2
T +1|XT , . . . , X1] = var[XT +1|XT , . . . , X1] = HT +1 ,

where Eq. 32.16 has again been used in the last step. The two-step forecast
then becomes

v̂arT +2 = α0 + α1HT +1 +
q

∑

j=2

αjX
2
T +2−j +

p
∑

i=1

βiHT +2−i . (33.9)
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The Three-Step Forecast

For the two-step forecast, only the value of XT +1 in Eq. 33.7 was unknown,
the necessary H values were known up to time T + 1. This it no longer
the case in the three-step forecast. In this case, some of the H values are also
unknown. Because of this additional difficulty, it is advisable to demonstrate
the computation of a three-step forecast before generalizing to arbitrarilymany
steps.

The three-step forecast now proceeds analogous to the two-step forecast:
the optimal forecast is, as indicated in Eq. 33.2, the conditional expectation
of XT +3 under the condition that XT , . . . , X1 are known.

v̂aroptimal
T +3 = E[varT +3 |XT , . . . , X1] .

Again, Eq. 32.16 cannot be directly applied since the X are only known up
to XT and not up to XT +2. The best possible three-step forecast is thus,
analogous to Eq. 33.6

v̂arT +3 = E[HT +3|XT , . . . , X1] . (33.10)

In this expectation we now replace HT +3 with its expression constructed in
Eq. 32.13 to obtain

v̂arT +3 = E[HT +3|XT , . . . , X1]

= α0 +
p

∑

i=1

βiE[HT +3−i |XT , . . . , X1] +
q

∑

j=1

αjE[X2
T +3−j |XT , . . . , X1]

= α0 +
p

∑

i=2

βiHT +3−i + β1E[HT +2|XT , . . . , X1]

+ α1E[X2
T +2|XT , . . . , X1] + α2E[X2

T +1|XT , . . . , X1] +
q

∑

j=3

αjX
2
T +3−j .

(33.11)

In the last step, the expectations of the known values were again replaced by
the values themselves (all Xt for times t ≤ T and all Ht for times t ≤ T + 1).
Only three unknown values remain, namely X2

T +1, X
2
T +2 and HT +2. For the
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conditional expectation of X2
T +1 and X2

T +2 we can use Eq. 33.8 to write

E[X2
T +1|XT , . . . , X1] = var[XT +1|XT , . . . , X1] = HT +1

E[X2
T +2|XT , . . . , X1] = var[XT +2|XT , . . . , X1] = v̂arT +2 .

Equation 32.16 has been used in the first of the above two equations. In the
second equation, this is not possible since taking the conditional variance at
time T +2 under the condition thatXT , . . . , X1 are known is not the same as
taking it conditional upon knowing the values of XT +1, . . . , X1. We have no
other choice than to replace the unknown var[XT +2|XT , . . . , X1] with the
(previously calculated) estimator v̂arT +2.
For the expectation E[HT +2|XT , . . . , X1] we make use of the fact that,

according to Eq. 33.6, it is equal to the two-step forecast for the variance

E[HT +2|XT , . . . , X1] = v̂arT +2 .

Substituting all this into Eq. 33.11 finally yields

v̂arT +3 = α0+(α1 + β1) v̂arT +2+α2HT +1+
q

∑

j=3

αjX
2
T +3−j+

p
∑

i=2

βiHT +3−i .

(33.12)

The Forecast for h Steps

The generalization to the forecast for an arbitrary number of steps h is now
quite simple. Analogous to Eqs. 33.6 and 33.10 the best possible estimate is

v̂arT +h = E[HT +h|XT , . . . , X1] for every h > 0 . (33.13)

Within this expectation, we now replaceHT +h as in the construction Eq. 32.13
and obtain an equation analogous to Eq. 33.11

v̂arT +h = E[HT +h|XT , . . . , X1]

= α0 +
q

∑

j=1

αjE[X2
T +h−j |XT , . . . , X1] +

p
∑

i=1

βiE[HT +h−i |XT , . . . , X1]
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=
min(h−1, q)

∑

j=1

αjE[X2
T +h−j |XT , . . . , X1] +

q
∑

j=h

αjX
2
T +h−j + α0

+
min(h−2, p)

∑

i=1

βiE[HT +h−i |XT , . . . , X1] +
p

∑

i=h−1

βiHT +h−i .

In the last step, the expectation of the known values have again been replaced
by the values themselves (allXt for times t ≤ T and allHt for times t ≤ T +1).
The remaining expectations of the H s are replaced according to Eq. 33.13
through the respective variance estimators. We again use Eq. 33.8 for the
conditional expectation of X2 and write

E[X2
T +1|XT , . . . , X1] = var[XT +1|XT , . . . , X1] = HT +1

E[X2
T +k|XT , . . . , X1] = var[XT +k|XT , . . . , X1] = v̂arT +k for k > 1 .

Substituting all of these relations for the conditional expectations finally yields
the general h-step forecast of the conditional volatility in the GARCH(p, q)

model:

v̂arT +h =
min(h−2, q)

∑

j=1

αj v̂arT +h−j +
q

∑

j=h

αjX
2
T +h−j + αh−1HT +1 + α0

(33.14)

+
min(h−2, p)

∑

i=1

βi v̂arT +h−i +
p

∑

i=h−1

βiHT +h−i .

Together with the start value, Eq. 33.5, in the form of v̂arT +1 = HT +1 the
h-step forecast can be computed recursively for all h.

From Eqs. 33.13 and 33.2, the estimator for the variance is simultaneously
the estimator for H, and thus

̂HT +h = v̂arT +h for allh > 0 .

33.2.2 Forecast for the Total Variance

In the financial world, the time series {XT } is usually taken to represent a
relative price change (yield), see for example Fig. 32.1 of the FTSE data. We
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are therefore also interested in the variance of the return over an entire time
period of length h, i.e., in the variance of the sum

∑h
j=1 XT +j . In forecasts

such as in Eq. 33.14, we are only dealing with a prediction of the conditional
variance after h steps and not with a prediction of the variance over the entire
term of h steps (fromXT toXT +h). In other words, Eq. 33.14 is forecasting the
conditional variance ofXT +h alone, and not predicting the variance of the sum
∑h

j=1 XT +j . The variance of the total return
∑h

j=1 XT +j for independent (in
particular uncorrelated) returns is simply the sum of the variances as can be
seen in Eq. A.17. Since the Xt of the process in Eq. 32.13 are uncorrelated
(because the εt are iid), the estimator for the total variance of the GARCH
process over h steps is simply

v̂ar[
h

∑

j=1

XT +j |XT , . . . , X1] =
h

∑

j=1

v̂ar[XT +j |XT , . . . , X1] =
h

∑

j=1

v̂arT +j .

(33.15)

Even in the case of weak autocorrelations between the returns in a given time
series, this result holds in good approximation.

33.2.3 Volatility Term Structure

The variance of the total return over a term from T until T + h is a function
of this term. The square root of the (annualized) variance of the total return
as a function of the term is called the volatility term structure. This plays an
important role in pricing options since for an option with a lifetime of h, the
volatility associated with this term is the relevant parameter value. From the
estimator for the variance of the total return over the pertinent term, we obtain
the estimator of the volatility structure as

σ(T , T + h) =
√

√

√

√

1

h
v̂ar

[

h
∑

i=1

XT +i

∣

∣

∣XT , . . . , X1

]

=
√

√

√

√

1

h

h
∑

j=1

v̂arT +j .

(33.16)
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33.3 Volatility Forecasts with GARCH (1,1)
Processes

For the GARCH(1, 1) process (q = 1, p = 1), all of the above estimators can
be computed explicitly and the recursion equation 33.14 can be carried out.
The start value of the recursion is simply

v̂arT +1 = HT +1 = α0 + α1X
2
T + β1HT . (33.17)

as can be seen from Eq. 33.5. The two-step forecast as given by Eq. 33.9
simplifies to

v̂arT +2 = α0 + κHT +1

where we defined the abbreviation

κ := α1 + β1 .

For h > 2 and p = q = 1, the upper limits in the sums over the variance
estimators in the general recursion equation 33.14 are simply

min(h − 2, q) = min(h − 2, p) = 1 for h > 2 .

Neither of the other sumsmakes any contribution since the lower limit in these
sums is greater than the upper limit. The term αh−1HT +1 likewise does not
exist since q = 1 implies that only α0 and α1 exist. However, h − 1 is greater
than 1 for h > 2.All things considered, the h-step forecast in Eq. 33.14 reduces
to

v̂arT +h = α0 + κ v̂arT +h−1

where κ = α1 + β1. This recursion relation has a closed form expression in
the form of a geometric series:

v̂arT +h = α0 + κ v̂arT +h−1

= α0 + κ(α0 + κ v̂arT +h−2) = α0(1 + κ) + κ2v̂arT +h−2

= α0(1 + κ) + κ2(α0 + κ v̂arT +h−3) = (α0(1 + κ + κ2) + κ3v̂arT +h−3)

· · ·
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= α0

h−1
∑

i=1

κi−1

︸ ︷︷ ︸

geometric series

+ κh−1v̂arT +1
︸ ︷︷ ︸

HT +1

= α0

(

1 − κh−1

1 − κ

)

+ κh−1HT +1

= α̃0 + κh−1 (HT +1 − α̃0)

= α̃0 + κh−1
(

α0 + β1HT + α1X
2
T − α̃0

)

, h > 1 , (33.18)

where for v̂arT +1 the start-value of the recursion HT +1 was used and the
geometric series was calculated according to Eq. 15.10. Here

α̃0 := α0

1 − α1 − β1

again denotes the unconditional variance from Eq. 32.18. The GARCH(1,1)
prediction for the conditional variance after h steps is therefore equal to the
unconditional variance plus the difference between the one-step forecast and
the unconditional variance dampened by the factor κh−1. The stationarity con-
dition requiring that α1 + β1 < 1 implies that for h → ∞ (a long prediction
period) the GARCH prediction converges towards the unconditional variance.
The variance of the total return

∑h
i=1 XT +i over a term of length h as

the sum of the conditional forecasts is obtained for the textGARCH(1, 1)

process as indicated in Eq. 33.15:

v̂ar[
h

∑

i=1

XT +i |XT , . . . , X1] =
h

∑

i=1

v̂arT +i

=
h

∑

i=1

[

α̃0 + κi−1
(

α0 + β1HT + α1X
2
T − α̃0

)]

=hα̃0+
(

1 − κh

1 − κ

)

(

α0 + β1HT + α1X
2
T −α̃0

)

,

(33.19)



790 H.-P. Deutsch and M. W. Beinker

where Eq. 15.10 for the geometric series is used again in the last step. The
volatility term structure resulting from the 33.16 GARCH(1, 1) process is thus

σ(T , T + h) =
√

√

√

√

1

h
v̂ar[

h
∑

i=1

XT +i |XT , . . . , X1]

=
√

α̃0 + 1

h

(

1 − κh

1 − κ

)

(

α0 + β1HT + α1X
2
T − α̃0

)

.

which approaches the unconditional variance α̃0 like 1/
√

h for large h.

33.4 Volatility Forecasts with Moving Averages

In addition to the relatively modern GARCH models, older methods such as
moving averages exist in the market, which, despite their obvious shortcomings,
are still widely used, thanks to their simplicity. Before entering into a discussion
of volatility forecasts via moving averages and comparing them with those of
the GARCH models, we will first introduce the two most important varieties,
the simple moving average, abbreviated here as MA and the exponentially
weighted moving average, abbreviated as EWMA.

The (simple) moving average measures the conditional variance (of a time
series with zero mean) simply as the sum of evenly weighted squared time series
values over a time window of width b. The form for the MA corresponding to
Eq. 32.16 is simply

Var[Xt |Xt−1, . . . , X1] = 1

b

b
∑

k=1

X2
t−k .

The well-known phantom structures arise from this equation because every
swing in the X2

t is felt fully for b periods and then suddenly disappears
completely when the term causing the perturbation no longer contributes
to the average. An improvement would be to consider weighted sums where
time series values further in the past are weighted less than values closer to
the present. This can be realized, for example, by the exponentially weighted
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moving average EWMA. The conditional variance in the EWMA is

Var[Xt |Xt−1, . . . , X1] = 1
∑b

j=1 λj−1

b
∑

k=1

λk−1 X2
t−k

= X2
t−1 + λ1X2

t−2 + · · · + λb−1X2
t−b

1 + λ1 + λ2 + · · · + λb−1
.

For λ < 1 the values lying further back contribute less. The values commonly
assigned to the parameterλ lie between 0.8 and 0.98. Naturally, the simpleMA
can be interpreted as a special case of the EWMAwith λ = 1. The conditional
variance of the EWMA is very similar to that of a GARCH(1,1) process since
the recursion for HT in Eq. 32.16 can be performed explicitly for p = q = 1
and the conditional variance of the GARCH(1,1) process becomes

Var[Xt |Xt−1,. . ., X1] = Ht

= α0 + α1X
2
t−1 + β1Ht−1

= α0 + α1X
2
t−1 + β1

[

α0 + β1Ht−2 + α1X
2
t−2

]

= α0(1 + β1)+α1(X
2
t−1+ β1X

2
t−2)+ β2

1

[

α0 + β1Ht−3 + α1X
2
t−3

]

= α0(1 + β1 + β2
1) + α1(X

2
T −1 + β1X

2
T −2 + β2

1X2
T −3) + β3

1Ht−3

· · ·

= α0

b
∑

k=1

βk−1
1 + α1

b
∑

k

βk−1
1 X2

T −k + βb
1 HT −b .

If we now choose the parameters α0 = 0, β1 = λ and α1 = λ(
∑b

j=1 λj )−1

then this conditional variance after b steps (apart from remainder term
βb

1HT −b which contains the influence of factors lying still further in the past)
is exactly the same expression as for the EWMA. The difference between the
GARCH(1, 1) and EWMA models first appears clearly in variance forecasts
over more than one time step.
The conditional variances presented above can be interpreted as a one-step

forecast for the conditional variance. The forecast over h steps delivers nothing
new for the moving averages since both the MA and EWMA are static and
fail to take the time structure into consideration. They start with the basic
assumption that prices are lognormally distributed with a constant volatility.
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This implies that

v̂ar[XT +h|XT , . . . , X1] = v̂ar[XT +1|XT , . . . , X1] = var[XT +1|XT , . . . , X1] .

holds for the h-step forecast of theMA as well as for the EWMA. Asmentioned
after Eq. 33.14, the conditional variance after h steps is being forecasted and
not the variance of the total return over a term of h steps. The prediction for the
variance of the total return as the sum over the conditional one-step forecasts
is for moving averages (MA and EWMA) simply

v̂ar[
h

∑

i=1

XT +i |XT , . . . , X1] =
h

∑

i=1

v̂ar[XT +i |XT , . . . , X1]
︸ ︷︷ ︸

v̂ar[XT +1|XT ,...,X1]
= h var[XT +1|XT , . . . , X1] .

This is again the famous square root law for the growth of the standard
deviation over time. The variance simply increases linearly over time and the
standard deviation is therefore proportional to the square root of time. This
leads to a static prediction of the volatility, and extrapolating, for example,
daily to yearly volatilities in this way can easily result in an overestimation of
the volatilities. The volatility term structure for the moving average is then, as
expected, a constant:

σ(T , T + h) =
√

√

√

√

1

h
v̂ar[

h
∑

i=1

XT +i |XT , . . . , X1] = √

var[XT +1|XT , . . . , X1] .

In the Excel workbook Garch.xlsx , the one-step forecast of a GARCH(1, 1)

process, an MA with b = 80 and an EWMA with b = 80 and λ = 0, 95 are
presented. Furthermore, the ten-step forecast of the GARCH(1, 1) process
is shown. Since the time series we are dealing with is a simulated GARCH
process, the “true” volatility is known (it is the Ht from the simulated series)
and direct comparison can be made with each of the various estimates. As
is clearly illustrated in Garch.xlsx, the one-step GARCH(1, 1) forecast (Ht

with the parameters α̂0, α̂1 and ̂β1 fitted by simulated annealing) produces
estimates which are quite close to the true volatility. The computation of the
GARCH volatility term structure is presented in Garch.xlsx as well.
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